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Preface

The primary aim of this publication is to instruct novice
7040/7044 programmers. The material may be used
with more experienced programmers by skipping sec-
tions familiar to the student and stressing the new
and unfamiliar. Material should be presented serially;
each section requires understanding of the previous
one.

The program examples and techniques use symbolic
language to emphasize programming concepts rather
than machine details. Problems for the student are in-
cluded in most sections; answers are in the Appendix.

Minor Revision (May 1963 )

This edition, Form C22-6732-1, is a minor
revision of, and obsoletes, the preceding edi-
tion, Form C22-6732.

Copies of this and other 18M publications can be obtained through 18M Branch Offices.
Address comments concerning the content of this publication to:
18M Corporation, Customer Manuals, Dept. B398, PO Box 390, Poughkeepsie, N. Y.
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Data processing consists of planned actions and oper-
ations upon data to produce a desired result. These
actions and operations are accomplished with a data
processing system — a combination of units that nor-
mally includes input, storage, processing, and output
devices. The systems are designed to handle business
and scientific data at electronic speeds with internal
checks for accuracy and have as their key element a
high-speed computer — the processing unit.

Data processing systems vary in size, ability, speed,
and cost but, regardless of the information to be proc-
essed or the equipment used, all systems involve at
least three basic considerations:

1. The source data or input entering the system.
2. The planned processing within the system.
3. The end result or output from the system.

Input Data may be classified into two basic groups.
The first, historical data, is a record of something that
has already occurred. The second, real-time data, origi-
nates as something happens.

Processing is carried out in a pre-established se-
quence of instructions, which is automatically followed
by the computer. The plan of processing is always of
human origin. By calculation, sorting, analysis, and
other operations, the computer arrives at a result,
which may be used for further processing or control
or may be recorded as output.

Output from the computer may take the form of
printed reports, punched cards, reels of magnetic tape
or paper tape, messages on communication networks,
or any combination of these forms. Output may be
used to directly control other devices or processes.

Stored Program Concepts

After data are received as input, the data processing
system can take over the complete processing and
preparation of results; however, all procedural steps
that are to take place within the computer system must
be precisely defined in terms of opcerations the system
can perform. The definitions of these procedural steps
are called instructions.

A series of instructions pertaining to an entire pro-
cedure is a program. In current data processing sys-
tems, the program is stored internally, and the system
has electronic-speed access to the instructions in this
stored program.

All instructions and data words are assigned a num-
ber as they are placed in core storage. This number
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is called an address and corresponds to a specific core
storage location. Using the address, the program can
locate and retrieve the information as needed during
processing.

Instructions

Each computer operation is directed by an instruction
— a unit of specific information located in core storage.
The processing unit interprets this information as an
operation to be performed. If data are involved, the
instruction directs the computer to the data. If some
device — a magnetic tape unit for example — is to be
controlled, the instruction specifies the device and the
required operation.

Instructions may shift data from one location in stor-
age to another, they may cause a tape unit to rewind,
they may change the condition of an indicator, or they
may change the contents of a register or counter. Some
instructions arbitrarily, or as a result of some machine
or data indication, can specify the storage location of
the next instruction or block of instructions to be
performed.

Most instructions consist of at least two parts (Fig-
ure 1):

The Operation Part designates read, write, add,
subtract, compare, move data, and so on.

The Operand designates the address of the data or
device needed by the operation part. Operands are
also used to designate the number of places the con-
tents of a register are to be shifted, to set an indicator,
to test an indicator, and so on.

During an instruction cycle, an instruction is re-
moved from storage and analyzed by the processing
unit. Each computer operation, such as add or divide,
is assigned a unique code, which can be recognized

Operation Part Operand Part

Read Select Select o tape unit for reading and read one record
into storage locations 1000 through 1050

Quantity in storage location 1004 is placed in the
accumulator register. This action clears old data
from the accumulator.

Quantity in storage location 1005 from the contents
of the accumulator register.

Store Result in storage location 1051

Transfer To instruction in storage location 5004

Clear and Add

Subtract

Figure 1. Instruction Format
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by the computer. The operand further defines the func-
tion of the operation — for example: to perform arith-
metic, the storage location of one of the factors in-
volved is indicated; for input or output devices, the
unit to be used is specified; for reading or writing,
the area in storage in which the data will be located
is indicated.

Because instructions are stored in the same storage
medium as data are, they must be represented in the
same form as data. The number of storage positions
required by a single instruction is usually constant for
a given computer; stated another way, instructions are
usually fixed in length.

In general, no particular areas of storage are re-
served for instructions only. In most instances, they are
grouped and placed in ascending sequential locations
in the normal order in which they will be executed
by the computer. The order of execution may be
varied, however, by special instructions or recognition
of certain conditions within the system.

The normal sequence of computer operation in a
complete program is:

1. The computer locates and executes the first in-
struction.

2. The computer locates and executes the next in-
struction.

3. The process continues automatically, instruction
by instruction, until the program is completed or until
the computer is instructed to stop.

Serial and Parallel Operation

Computers are classified as either serial or parallel,
depending on the method the computer uses to per-
form arithmetic.

In a serial computer, numbers to be added are con-
sidered one position at a time (the units position, tens
position, hundreds, and so on) in the same way that
addition is done with paper and pencil. Whenever a
carry is developed, it is retained temporarily and, on
the next machine cycle, is added to the sum of the
next higher-order position.

The time required for serial operation depends on
the number of digits in the factors to be added. Fig-
ure 2 shows serial addition.

First Step Second Step | Third Step Fourth Step
Addend 1234 1234 1234 1234
Augend 2459 2459 2459 2459
Carry 1 1
Sum 3 93 693 3693

Figure 2. Serial Addition
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In a parallel computer, addition is performed on
complete numbers. The entire numbers, including
carries, are combined in one machine cycle. Any two
values, regardless of the magnitude of the numbers,
can be added in the same time. Figure 3 shows parallel
addition.

Numbers Being 00564213
Added 00000824

Carry 1

Final Result 00565037

Figure 3. Parallel Addition

Fixed and Variable Word Length

Fixed and variable word length describe the unit of
data that can be addressed and processed by a com-
puter system.

In fixed word length operation, information is
handled and addressed in units or words containin}
a fixed number of positions. The size of a word is
designed into the system and normally corresponds to
the smallest unit of information that can be addressed
for processing in the processing unit. Records, fields,
characters, or factors are all expressed as words; reg-
isters, counters, accumulators, and storage are designed
to accommodate a fixed word.

In variable word length operations, data handling
circuitry is designed to process information serially as
single characters. Records, fields, or factors may be of
any practical length within the capacity of the stor-
age unit. Information is available by character instead
of by word.

Operation within a given data processing system
may be entirely fixed word, entirely variable, or a
combination.

In the 1BM 7040 and 7044 Data Processing Systems,
data are stored and processed as 36-bit words; all data
manipulation operations, including arithmetic, are done
in parallel. Provision is made, however, to select, shift,
and perform logic operations on portions of words.
Consequently, the amount of data within a word can be
adjusted.

Reading Data
All data entering the computer system must first be
read by an input device and then routed to core stor-
age. Each input device is assigned a number to serve
as its address in the same way that each storage posi-
tion is also assigned a location address.

A data processing procedure is normally concerned
with entire files of records, which may be on mag-
netic tape, 1BM cards, or paper tape. These files are



placed on the input device, where the computer has
access to them. To read a record from a file, one or
more instructions in the program activate the input
device and place the record in storage.

At this point, it must be determined exactly where
in storage the incoming record is to be placed, and
an instruction must direct the computer to send the
record to this location. Also, in the plan of manipula-
tion, it is necessary to know at all times where to
find information as needed in successive stages of
processing.

These considerations involve the allocation of storage
space for specific purposes in a logical and convenient
manner. For example, particular fields or quantities
may be used for computation. The instructions to be
used later must specify the location in storage where
this information from each record can be found.

The reading operation performs these distinct func-
tions:

1. The input device is selected and made ready by
the read select instruction. The device chosen is the
one determined by the programmer to have access to
the proper file of records. This device is selected by
specifying its assigned code number (address). The
read operation causes the selected input unit to trans-
fer a record to computer storage. The record is placed
in a storage area reserved for this purpose and is then
available for further processing. A number of input
areas may be assigned to handle several related records
at a time (for example, a master record and its re-
lated transaction detail record).

2. The order of the read instructions in the program
determines the sequence in which files are read. Other
instructions later compare records from separate files
to determine the relationship of detail to master, de-
tail to detail, and so on.

3. The number of records to be placed in storage at
one time depends on the construction of the files, the
type and length of records being handled, and the
available storage capacity.

Calculating

Once data have been read into the computer system
and placed in known locations of storage, calculation
can begin. Each computer is capable of performing
addition, subtraction, multiplication, and division,
either as built-in operations or under program control.
For most commercial applications, these operations
are adequate. Even in many advanced scientific pro-
cedures, the most complex equations can be reduced
to steps of elementary arithmetic. In the 7040 and
7044 systems, however, many specialized operations
can be performed to make the solving of mathematical
problems easier.

In every operation of simple arithmetic, at least two
factors are involved: multiplier and multiplicand, di-
visor and dividend, and so on. These factors are oper-
ated on by the arithmetic unit of the computer to
produce a result, such as a product or quotient. In
every calculation, therefore, at least two storage loca-
tions are needed. One quantity is usually in core
storage and the other is in the accumulator or multi-
plier-quotient register, which are parts of the arith-
metic unit. (A register is a device with the ability to
accept and hold data and to transfer the data to an-
other register or related device.)

A calculation can be started by placing one factor
in the accumulator and, at the same time, clearing this
unit of any previous factors or results contained there.
The address part of the instruction specifies the stor-
age location of the first factor; the use of the accumu-
lator or multiplier-quotient register is implied by the
operation.

When one factor is properly placed in the register,
the actual calculation is executed by an instruction
whose operation part specifies the arithmetic operation
to be performed and whose operand is the location of
the second factor. The computer acts upon the two
factors and produces a result, which is placed in a
register. The result is returned to core storage by an-
other instruction, which designates the storage location.

Any practical number of calculations can take place
on many factors in a single series of instructions: that
is, a factor may be placed in the accumulator and
several other factors may be added to or subtracted
from the product; division can then be executed; other
operations of adding and subtracting can proceed using
this quotient. Intermediate results can be stored at
any time.

All calculations must take into account the algebraic
sign of factors in storage or associated registers. Con-
sequently, the computer is equipped to store and rec-
ognize the sign of a factor. With fixed word data
records, the sign position automatically accompanies
the word. Accumulators also include either a special
sign position of storage or a sign indicator that is avail-
able to the programmer. In this way, the sign of re-
sults can be specified, together with the effect on fol-
lowing calculations. The computer follows the rules
of algebra in all basic arithmetic operations.

The size of words, quantities, and values depends
on the design of each data processing system. The ex-
act rules governing the placement of factors, size of
results, and so on vary from system to system. In all
cases where a result is expected to exceed the capacity
of the accumulator or storage register, the programmer
must arrange (scale) his data to produce partial re-
sults and then combine these for totals. Other oper-
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ations of scaling may be executed so that very large
or small values and fractions may be handled con-
veniently.

Calculation is carried out in all computer systems
at much higher speed than input or output, because
reading and writing require mechanical devices and
movement of documents, while calculation is per-
formed electronically. In many commercial applica-
tions, calculation is relatively simple, and the over-all
speed of the system is usually governed by the speed
of the input/output units. In mathematical applica-
tions, the situation is reversed; calculation is usually
complex and involved, and high calculating speeds are
essential.

Logic Operations

The sequence in which a stored program computer
follows its instructions is determined in one of two
ways: either it finds the instructions in consecutive
storage locations or the instruction operand also desig-
nates the location of each following instruction. If
instructions could be followed only sequentially in a
fixed pattern, a program would follow only a single
path of operation with no possibility of dealing with
exceptions to the procedure and with no ability to
choose alternatives based on special conditions en-
countered in processing data. Further, without some
way of resetting the computer to repeat a given series
of instructions, it would be necessary to have a com-
plete program for each record in a file.

Consider the program illustrated in Figure 4. These
instructions taken alone compute T for only one record.
But by returning to the first instruction, any number
of records may be processed, repeating the same pro-
gram as a loop. For this purpose, another instruction
is given to return to the first instruction (Figure 5).

Once this program is started, it will continue until
there are no more records to process. Such program
loops are common and can be terminated in many

Read
Record

Compute
A+B=T

Write
Record

Figure 4. Block Diagram, A + B=T
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@

Read
Record

Compute
A+B=T

Write
Record

Loop

Figure 5. Program Loop

ways. For example, the computer may be instructed
to examine T each time it is computed and to notify
the operator when the value of T becomes negative
(Figure 6).

In this case, the instruction becomes a conditional
transfer. The program loop is repeated only if some
predetermined condition (T is positive) is present.
The computer can also be instructed to execute the
program for ten records and then stop for operator
intervention (Figure 7). It is assumed that the con-
stants 10 and 1 are stored in the computer and that
1 is subtracted from 10 each time the loop is com-
pleted. After ten times around, a 0 will be in the loca-
tion that contained 10 originally. A transfer or branch
instruction then terminates the loop.

Start

Read
Record

Y

Compute
T

Is T No

Negative
?
Notify Write
Operator Record

Figure 6. Conditional Transfer



Operator
Intervention

Set Counter
to 10

Read
Record

Compute

Write
Record

Figure 7. Program Loop under Count Control

Read
Record

Check
Record

Error

Compute

Write
Record

Set
Error Counter
to 10

The conditional transfer or branch operation may
be used to cause a special-purpose program (sub-
routine) to be executed outside the normal or straight-
line path of the main program. This subroutine is
executed only when a predetermined exception or con-
dition is noted by the computer.

One common example of the subroutine is checking
the accuracy of records as they are read from or written
on magnetic tape. As each record enters or leaves the
processing unit, a read-write error indicator is tested.
If the indicator has been turned on, the computer is
instructed to enter a subroutine of instructions that
attempts to correct the error. Figure 8 shows the pro-
gram logic for such a subroutine for the reading only;
a similar loop might also be included for writing.

When a reading error is detected, a transfer is made
to the error subroutine. A counter is set to 10 to
count the number of times a re-read will be attempted.
The tape is backspaced over the error, and a second
read instruction is given. Another check is made to de-
termine if this operation is correct. If it is, a transfer
returns to the main program, where computing con-
tinues.

Backspace
One Record

Figure 8. Tape Read Error Program Loop

R

Subtract 1
from Counter

Yes

Notify
Operator

No
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If the error persists, 1 is subtracted from the counter
and the counter is tested for 0. The error loop is again
entered and a second re-read and check are executed.
The machine can re-read ten times and, if the error is
not corrected, operation is halted. Further instructions
can be programmed to indicate to the operator the
cause of the stop.

Comparing

The ability of the computer to make limited decisions
based on programmed logic is substantially extended
by operations of comparing. Such operations enable
the computer to determine if two data fields in stor-
age are equal in value or if one is lower or higher
than the other.

A value assignment for each character is built into
the computer. For example, the familiar ascending
sequence of the digits 0-9 assumes that the digit 9
is the highest digit of the series. In the same manner,
the letter Z is assumed to be the highest letter of the
alphabet. To the computer, therefore, as in any file,
the number 162 is higher in sequence than 159, and
the name Jones is lower than the name Smith. Special
characters, such as /, @, *, or — may also be included
because these characters must be manipulated as data
for report printing and other special purposes.

Comparing operations are used to program the se-
quence checking of files, sorting procedures, or the
rearrangement of records in some desired order. The
comparison of an identifying field in one record with
that of another insures that the proper records are
processed. Out-of-sequence records are detected by
the comparison operation.

The two fields to be compared are placed in core
storage. One field is then placed in an accumulator
register, and a compare instruction is given to com-
pare this field against the second specified field. The
results of comparison are registered in high, low, or
equal indicators, which are then interrogated to deter-
mine their condition. If a particular indicator is on, an
automatic operation transfers the program to a sub-
routine that continues processing according to the re-
sult of the comparison.

Figure 9 shows a typical program arrangement for
sequence checking a single file of records. All records
in the file are assumed to be in ascending sequence
by account number. An input area — where records are
received, one at a time, from an input unit —is set
aside in storage. A second area is also reserved in
storage to store the account number from the preced-
ing record. The purpose of this area is to allow com-
parison of the account number of the incoming record
with the corresponding field of the previous record.

10

@

4

Read
Record

Account No.
to
Accumulator

Compare

Write ith Previ
Record with Previous >———
Low
y
Store Notify Operator
Compute Account (Records are out
Number of sequence)
i ] !
-~ — — — — o

Figure 9. Sequence Checking

If the tile is in ascending sequence, the incoming
record should always be higher than the record that
preceded it. When duplicate records are encountered,
the incoming record is equal to the preceding one. If
any incoming record is lower than the previous record,
it is recognized as an out-of-sequence condition, and
an error is signaled to the operator. The out-of-
sequence record may be noted, and corrective action
may be either taken by the operator or programmed
as a subroutine. After each high comparison, the ac-
count number field is placed in storage where it may
be compared with the next record.

Instruction Modification

Some of the preceding examples have shown how
branching or transfer instructions can cause the com-
puter to follow a varied path through the program.
The routine to be executed depends on the result of
a previous comparison or a test of indicators that have
been set by a zero in a counter, an error condition,
and so on.

Another method of varying the program is by chang-
ing or modifying the operation part of the instructions
themselves. Instruction modification, for example, can
be used to set up a program switch, which can cause
the machine to take one of two alternate paths. The
switch (which is an electronic switch) is turned on or
off by instruction. Figure 10 shows the use of the
switch.

Assume that two files are being read. The files are
in sequence by a common identifying field, such as
part number, account number, or employee number.
One file is a master file; the second is a transaction file



that represents adjustments to the master. Three con-
ditions may be encountered in applying the transac-
tions to the corresponding master files:
1. One or more transactions may match a single
master record.
2. There may be no transactions for a master
record.
3. There may be transactions that do not match
a master — these are errors.

It is necessary to process the two files in step; that
is, each transaction record must be compared against
a corresponding master record, if there is one. If sev-
eral transactions apply to the same master record, the
transaction file must continue reading without reading
a new master record. Conversely, if a master record
is read in without a corresponding transaction, this
record is written out unchanged and the following
master is read in. The reading and writing of master
records continue until a matching transaction is found.

Figure 10 shows that one master record is read in
first. A switch instruction is inserted between the read-
ing of the master and the transaction. As operations

Start

Read
Master

Switch

1 Off

Set '
Switch Off

Compare
Detail and

Master,
High (D>M) Low (D<M)
y Equal y (D=M)

Write Adjust Write

Master Master ‘from Detail
Detail

Set
Switch On

Figure 10. Program Switch

begin, this switch is turned off, allowing one trans-
action to be read in. The identifying field of the trans-
action is compared against the master. If they are
equal, the master is adjusted and a second transaction
is read in. If this transaction is not to be applied
against the master (which is still in storage), it should
be high when compared. The previously adjusted
master is then written out and the switch is turned on.
A new master is then placed in storage but, because the
switch is on, a transaction is not read; instead the ma-
chine transfers directly to the compare instruction.
The switch is turned off each time this happens. Oper-
ation continues, with comparison for each new record
placed in storage. If a transaction is low (has no
master record), it is written out on a separate output
unit, and a new transaction is then read in.

The switch, when on, acts as an instruction with an
operation part specifying an unconditional transfer.
The address part is the location of the compare in-
struction. To turn the switch off, the operation part is
changed to no operation by the program. In this case,
the computer ignores the instruction and proceeds to
the following instruction: read a transaction.

Address Modification

Because the address portion of instructions may be
treated as data, instruction addresses can be modified
by arithmetic, reducing the number of instructions in
a program and conserving storage capacity for data or
other factors. One instruction, or a single series of in-
structions, can serve to address variable locations in
storage.

For example, the address part of instructions that
select the devices of a system may be modified by
other instructions in the program. One use of this type
of modification is the selection of alternate magnetic
tape units when an end-of-file or end-of-reel condi-
tion is signaled. A reading or writing operation may
then continue without interruption on an alternate
unit while the first unit is rewinding or standing by
for reel change. When a tape file is made up of more
than one reel, reading or writing may proceed from
reel to reel with minimum lost time.

Assume that the addresses of two tape units are
0201 and 0203. The sum of the units and tens positions
of these addresses is stored as a constant factor 04.
When an end-of-file condition is signaled by tape unit
0201, a transfer is made to a subroutine. In the sub-
routine, the units and tens positions of the tape unit
being used (01) are placed in an accumulator. The
constant 04 is subtracted to obtain minus 03 as a re-
sult. This result is then used as the tape unit address,
converting it from 0201 to 0203. The sign of the re-
sult is ignored.

IBM 7040-7044 11



The subroutine then transfers back to the main
routine and uses tape unit 0203. When end-of-file is
signaled from this unit, the constant 04 is subtracted
from 03 to obtain the result minus 01. Using this re-
sult changes the tape address from 0203 to 0201. The
address of the select instruction alternates between
0201 and 0203 each time an end-of-file is signaled.

Indexing

In the 7040 and 7044 computers, the address portion
of an instruction can be modified by adding or sub-
tracting variable quantities contained in one or more
special-purpose registers called index registers.

Computers with an indexing feature use an instruc-
tion format that allows a particular register or word
to be specified as a part of the instruction.

Assume that fifty quantities are placed in ascending
word positions of storage from locations 1001 to 1050
inclusive and that these quantities are to be added to
the contents of an accumulator. Without indexing or
address modification, it is necessary to repeat an add
instruction fifty times with the address of each instruc-
tion incremented by 1. For example: app 1001, app
1002, app 1003, and so on.

With indexing, the add instruction can be written
as app 1051 with the address decremented by an index
register containing the quantity 50. The address in
storage remains 1051, but the computer calculates and
uses an effective address of 1051 minus 50, or 1001.
When the add instruction is executed, the contents of
the index register are also decremented by 1 (leaving
a remainder of 49) and are tested for 0. When the
same add instruction is re-executed and is again decre-
mented by the contents of the same index register, the
effective address is 1051 minus 49, or 1002. Each time
the index register is decremented, it is also tested for 0.

If a program loop is formed to repeat this process,
the effective address of the add instruction is stepped
up 1 each time it is executed (as the index register
contents are stepped down ). When the index register
equals zero, all 50 quantities will have been added
and the loop is terminated. The computer has conse-
quently performed 50 operations using the same add
instruction. Figure 11 is a flow diagram of the index
loop.

The first instruction places the quantity 50 in index
register 4. An add instruction, with an address 1051,
also specifies as part of its operand that the given
address is to be modified by the quantity contained in
index register 4. The next instruction is transfer on
index, which means: reduce the contents of index regis-
ter by 1; if the contents of the register are greater than
0, transfer to repeat the add instruction; if the contents
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of the index register equal 0, continue to the next in-
struction in the program.

The indexing feature greatly simplifies programming
of repetitious calculations or other operations and re-
duces the number of instructions required.

Indirect Addresses

All instruction addresses discussed in preceding illus-
trations are classified as direct, that is, they refer
directly to the location of data or other instructions
in storage, they select a system component, or they
specify the type of control to be exercised.

Addresses may also be indirect. Such an address can
refer only to a storage location that contains another
address. The second address in turn refers to the loca-
tion of data, a system component, or a control function.

Indirect addressing is particularly useful in perform-
ing address modification. For example, in a program it
may be necessary to refer a number of instructions to
a value which changes with each program iteration.
Without indirect addressing, a number of modification
instructions would be needed.

However, if the instructions are indirectly addressed
to one core storage location, that location can contain
a single address, the address of the values being used
by the program. Therefore, to change or modify all in-
struction addresses, it is only necessary to modify the
single effective address to which the instructions refer
(Figure 12). In this text, the asterisk (*) is used with
the operation code to designate indirect addressing.
Any number of indirect addresses throughout a pro-
gram may refer to a single effective address. In Figure
12, each indirectly addressed clear and add instruction
(CLA* 4069) would bring in the contents of core loca-
tion 2000 instead of location 4069.

Set Index
Register to

50

ADD 1051
(Modified
by IR 4)

Subtract 1
‘Méom IR 4 090_
Test for 0
v

Continue
Processing

Figure 11. Indexing Loop
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|
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Figure 12. Indirect Address
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Computer Data and Instructions

Numbers Concept

The common decimal system, with its ten different
symbols, is learned by most people early in their train-
ing. This system serves very well for counting. Why
then, should computers, which are designed to assist
engineers, businessmen, and scientists, be designed to
use a different system of notation?

The decimal system is built around the base ten and
uses the 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 symbols. Com-
bining these symbols and a place system for their
arrangement, any number can be expressed, no mat-
ter how large or how small. The value of each symbol
depends on its place in a row of symbols. For example,
the symbol 1, by itself, has a place value of 1. Com-
bined with another symbol, as in 21, the 1 symbol
still has a place value of 1. Reverse the symbols, how-
ever, (12) and the 1 symbol now has a place value
of 10.

This concept can be readily applied to any other
number system. For example, imagine a number sys-
tem containing only the symbols 0, 1, 2, 3, and 4. Since
there are five symbols used, the system is called
quinary or, more commonly, a base 5 system. To count
in this system, the first symbol used is the 0. This is
followed by the 1, 2, 3, and 4. At this point, all five
symbols have been used. The next step is to assign the
decimal value of five to the 1 symbel by placing it one
position to the left and combining it with the 0 sym-
bol (10). This combination is then followed by the 11,
12, 13, and 14 combinations. The third symbol in the
system (2) is then assigned the decimal value of ten
and is combined with the 0 giving the combination
20. This is followed by 21, 22, 23, 24, 30, and so forth.

The following table shows the arrangement of sym-
bols used to represent the same values in each system
of notation,

DECIMAL QUINARY DECIMAL QUINARY
0 0 10 20
1 1 11 21
2 2 12 22
3 3 13 23
4 4 14 24
5 10 15 30
6 11 16 31
7 12 17 32
8 13 18 33
9 14 19 34

The main difficulty in using an unfamiliar number
system is recognizing the new values assigned to
familiar symbols. For example, to add the decimal
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symbols 3 and 4 and get a decimal result of 7 is sim-
ple for anyone acquainted with the decimal system.
To add the quinary symbols 3 and 4 and get a quinary
result of 12 is more difficult because of limited use of
the quinary system.

Arithmetic Tables

The construction of arithmetic tables makes operations
faster and easier. Figure 13 shows sample add tables
for both decimal and quinary systems.

Decimal Quinary

JO 1 23! 4 5 [0 1_2'31 4 10
00 1 21314 5 oo 1 2131 4 10
1|1 2 34,5 6 1[v 2 31450 1
212 3 4.,5,6 7 202 3 40,11 12
3[3_4 5'6,7 8 3.3 4 1001512 13
4475 6778 9 414 10 111213 14
505376 7 8 9 10 0 16 11 72 13 14 20
616 7 8 9 10 N 1213 14 20 2

Figure 13. Add Tables

To use these tables, the symbols being added (3
and 4 in the decimal table) are located, one on the top
and the other on the left side of the table. Lines are
then projected until they meet. The value at the inter-
section is the result of the addition. Using the quinary
table: 4 + 3 = 12,11 + 4 = 20,2 + 4 = 11, and
so forth. The results are expressed in quinary values.

The same principle may be applied to other arith-
metic processes. Multiply tables for both systems are
shown in Figure 14. The use of these tables is the
same as with the add tables; only the results differ.
For example, 3 X 4 with the decimal table gives the
result of 12, while 3 X 4 with the base 5 table gives
the result 22; both results represent the same quantity.

Decimal Quinary
0 1 2:3!4 10 1 2131 4
0/0 0 01010 00 0 o0'0'o0
110 1 2,34 110 1 2'3, 4
210 2 4 ,6,38 210 2 4,11113
3.10_3 619112 300 _3 114122
4o _4 8702516 4o 432

Figure 14. Multiply Tables



Binary Mode

Computers function in what is called a binary mode.
This term simply means that the computer components
can indicate only two possible states or conditions.
Therefore, the binary mode system may also be called
a base 2 system. For example, the ordinary light bulb
operates in a binary mode; it is either on, producing
light; or it is off, not producing light. The presence
or absence of light indicates whether the bulb is on
or off. Likewise, within the computer, transistors are
either conducting or not conducting, magnetic mate-
rials are magnetized in one direction or in the opposite
direction; and specific voltage potentials are present
or absent (Figure 15). The binary modes of operation
of the components are signals to the computer, as the
presence or absence of light from an electric light
is to a person.

0 State

[

IBM Punched Card

Magnetic Core

a2

1 State

Relay or Switch

—)

Tube or Transistor

Electrical Pulses

Figure 15. Binary Indicators

Representing data within the computer is accom-
plished by assigning or associating a specific valye to
a binary indication or group of binary indications. For
example, a device to represent values could be de-
signed with four electric light bulbs and switches to
turn each bulb on or off (Figure 16).

The bulbs are assigned arbitrary values of 1, 2, 4,
and 8. When a light is on, it represents the value as-
sociated with it. When a light is off, the value is not

considered. With such an arrangement, the single
value represented by the four bulbs will be the nu-
meric sum indicated by the lighted bulbs.

Values 0 through 15 can be represented. The value
0 is represented by all lights off; the value 15, by all
lights on; 9, by having the 8 and 1 lights on and the
4 and 2 lights off; 5, with the 1 and 4 lights on and
the 8 and 2 lights off; and so on.

The value assigned to each bulb or indicator in the
example could have been something other than the
values used. This change would involve assigning new
values and determining a scheme of operation. In a
computer, the values assigned to a specific number
of binary indications become the code or language for
representing data.

Because binary indications represent data within a
computer, a binary method of notation is used to
illustrate these indications. The binary system of nota-
tion uses only two symbols, zero (0) or one (1), to
represent all quantities. In any single position of
binary notation, the 0 represents the absence of a
related or assigned value and the 1 represents the
presence of a related or assigned value. Using the
light bulbs in Figure 16, for example, the binary nota-
tion 0101 would represent a decimal 5.

The binary notations 0 and 1 are commonly called
bits. The 0 bit is described as no bit and the 1 bit
is described as a bit. Although 0 or 1 bits are necessary
to illustrate the condition of a binary indication or a
group of binary indications, the 1 bits are the bits
generally referred to. For example, the binary notation
0101 of Figure 16 would be described as having a bit
in the 1 and 4 bit positions. The assumption is that
there are no bits (0 bits) in the 2 and 8 bit positions.

Binary Number System

In some computers, the values associated with the
binary notation are related directly to the binary num-
ber system. This system is not used in all computers,

Figure 16. Representing Decimal Data

Computer Data and Instructions 15



but the method of representing values using this num-
bering system is useful in learning the general concept
of data representation.

The common decimal number system uses ten sym-
bols or digits to represent all quantities, and the place
value of the digits signifies units, tens, hundreds,
thousands, and so on. The binary or base 2 number
system uses only two symbols or digits: 0 and 1. The
position value of the bit symbols (0 or 1) is based
on the progression of powers of 2; the units position
of a binary number has the value of 1; the next posi-
tion, a value of 2; the next, 4; the next, 8; the next,
16; and so on (Figure 17).

18192 I4096|204811 024 |512 I256|128 lé4l32|lé|8l4 |2]T|

Figure 17. Place Value of Binary Numbers

In pure binary notation, the binary digits or bits
indicate whether the corresponding power of 2 is ab-
sent or present in each position of the number. The
1 bit represents the presence of the value and the 0
bit represents the absence of the value. The place
value of the digits does not signify units, tens, hun-
dreds, or thousands, as in the decimal system; instead,
the place value signifies units, twos, fours, eights, six-
teens, and so on. Using this system, the quantity 12,
for example, is expressed with the symbols 1100,
meaning (1 X 2%) + (1 X 22) + (0 X 2!) +
(00X 2°) or (1 X 8) + (1 X4) + (0X2) +
(0 X1).

Figure 18 shows the binary representation of the
decimal values 0 through 9. Note that the decimal
digits O through 9 are expressed by four binary digits.
The system of coding or expressing decimal digits in
an equivalent binary value is called binary coded
decimal cp. For example, the decimal digits 2, 6,
5, 4, 9, and 8 would appear in binary coded decimal
form as shown in Figure 19.

£

g2 Place Value

aO>|8 4 2]
0 [000 O
1 10001
2 |]001 0
3|00 11
4 101 00
5 (0101
6 (01 10
7 101 11
8 1 000
9 /1 001

Figure 18. Binary Representations
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Although binary numbers, in general, have more
terms than their decimal counterparts (about 3.3 times
as many ), computation in the binary system is quite
simple.

For addition, it is only necessary to remember three
rules:

1. Zero plus zero equals zero.

2. Zero plus one equals one.

3. One plus one equals zero with a carry of one
to the next position on the left.

To see how the rules work, consider the addition
of 15 + 7, with these numbers expressed in binary
notation:

SIXTEENS EIGHTS FOURS TWOS ONES
(Carries) (1) (1) (1) (1)
0 1 1 1 1 =15
0 0 1 1 1= 7
1 0 1 1 0 = 22

In the ones column, we have 1 + 1 for a sum of 0
and a 1 carried to the twos column. In the twos col-
umn, we have 1 + 1 for a sum of 0, but we must also
add the carry from the ones column, making a final
sum of 1 with a carry to the fours column. In the
eights column, we have a 1 + 0 giving a sum of 1,
but adding in the carry from the fours column makes
the final sum 0 with a carry to the sixteens column.
In this column, we have 0 + 0, giving a sum of 0
and to this we add the carry from the eights column,
making a final sum of 1.

The resultant sum of the addition contains 1’s in
the sixteens, fours, and twos column, which is the
binary representation of 22, the correct sum of 15 plus
7(16 + 4 + 2 = 22),

The rules for subtraction of binary digits are equally
simple:
1. Zero minus zero equals zero.
2. One minus one equals zero.
3. One minus zero equals one.
4. Zero minus one equals one, with one borrowed
from the left, '

Decimal Digits 2 6 5 4 9 8

Binary Value [ 00110 g1[1]o fof1fof1 |of1]o0 | 1]ojo)1 [ 1[olo

Place Value 8421 21 18421 |8142]1 | 814121 21

Figure 19. Binary Coded Decimal



Using the same numbers as we did in the addition,
the subtraction is:

SIXTEENS EIGHTS FOURS TWOS ONES

(Borrows ) (0) (0) (0) (0) (0)
0 1 1 1 1 =15
-0 0 1 1 1= 7
0 1 0 0 0= 8

In the ones column we have 1 — 1 for a sum of 0
with no borrows. The same procedure occurs in the
twos and fours columns. In the eights column, we
have 1 — 0 for a sum of 1. In the sixteens column,
we have 0 — 0 for a sum of 0. With the subtraction
finished, we have 1’s in the eights column only, signi-
fying the answer to be 8.

For multiplication, only three rules are needed:
1. Zero times zero equals zero.
9. Zero times one equals zero; no carries are con-
sidered.
3. One times one equals one.

In the binary multiplication table, all that is neces-
sary when multiplying one number (multiplicand) by
another (multiplier) is to examine the multiplier digits
one at a time and, each time a 1 is found, add the
multiplicand into the result, and each time a 0 is
found add nothing. The multiplicand must be shifted
for each multiplier digit, but this is no different from
the shifting done in the decimal system.

An example of binary multiplication is 26 X 19:

DECIMAL BINARY
26 =16 + 8 + 0 + 2 + 0 = 11010

X 19=16+0+0+ 2 + 1 = 10011
Using the rules, the product is 11010
arrived at by a series 11010
of adding the multiplicand 00000
and shifting whenever 00000
a lis in the 11010
multiplier. 111101110

Interpreting the binary result of the multiplication
by using the ones, twos, fours, . . . etc. system, we find:

256 + 128 + 64 + 32 + 0+ 8+ 4+2+0

which equals 494, proving the problem.

Binary division is accomplished by applying similar
concepts. From the examples of addition, subtraction,
and multiplication, you can see that whatever opera-
tion the computer is working on is accomplished by
repetitive addition.

The computer operates internally using the binary
system. However, it is able to convert from one sys-
tem to another by use of a stored program. Thus,

input/output data may be expressed in decimal (or
any other) form when the programmer finds it con-
venient to do so.

Octal Number System

It has been noted that binary numbers require about
three times as many positions as decimal numbers to
express the equivalent number. This is not much of a
problem to the computer; however, in talking and
writing or in communicating with the computer, these
binary numbers are bulky. A long string of 1s and
0's cannot be effectively transmitted from one indi-
vidual to another. Some shorthand method is necessary.

The octal number system fills this need. Because of
the simple relationship of octal to binary, numbers
can be converted from one system to another by in-
spection. The base or radix of the octal system is 8.
This means there are eight symbols: 0, 1, 2, 3, 4, 5, 6,
and 7. There are no 8s or 9’s in this number system.
The important relationship to remember is that three
binary positions are equivalent to one octal position.
The following table is used constantly when working
on or about the computer.

BINARY OCTAL

000
001
010
011
100
101
110
111

~I DU W - O

At this point, all eight symbols have been used, and
a carry to the next higher position of the number is
necessary.

BINARY OCTAL
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14

and so on.

Remember that as far as the internal circuitry of the
computer is concerned, it only understands binary. But
an operator can look at a series of lights on the com-
puter console showing binary 1’'s and 0’s, for example:

100 011 101 000 111 010 100 011 110 111 101 001

and say that the lights represent the octal value
435072436751. This is easier to state than the actual
binary 1’s and Os.
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Number Conversions

Before converting numbers from one system to another,
it is best to review what a number represents. In the
decimal system, a number is represented or expressed
by a sum of terms. Each individual term consists of a
product of a power of ten and some integer from 0
to 9. For example, the number 123 means 100 plus 20
plus 3. This may also be expressed as:

(1 X10°) + (2 x10") + (3 x 10°)

Ten is said to be the base or radix of this system.
Radix is defined as an integer used in a system of nota-
tion whereby all numbers are expressed as powers of
the integer. In the decimal system, the radix is 10; in
the binary system, it is 2. If 2 is chosen as the base,
numbers are said to be represented in the binary sys-
tem. Consider the binary number 1 111 011. What do
these zeros and ones represent? They represent the
coeflicients of the ascending powers of 2. Expressed
in another way the number is:

(I X2%) 4+ (1xX2%)+ (1x2)+(1x2%
+ (00X 2) + (1x2) + (1x2)

The places do not have the meaning of units, tens,
hundreds, thousands, etc., as in the decimal system;
instead they signify units, twos, fours, eights, sixteens,
etc. In applying the above information, the decimal
number 123 breaks down in both systems as:

DECIMAL BINARY
123 1 111 011
L— 3 units L1 units
20 tens 2 twos
100 hundreds 0 fours
123 8 eights

16 sixteens
32 thirty-twos
- 64 sixty-fours

123

In the octal system, a number is represented in the
same manner, except that the base is 8. The digits of
the number represent the coefficients of the ascending
powers of 8. Consider the octal number:

173 = (1 X 8) + (7 X 8') + (3 x 8)

= 64 + 56 + 3
123 (decimal)

Similarly:
Octal 173
L3 units
56 eights

64 sixty-fours

123

By remembering what a number represents in the
binary or octal system, you can convert the number
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to its decimal equivalent by the method shown. As the
numbers get bigger, this method becomes quite im-
practical. The following section provides detailed
methods for converting from one system to another.

Integers

DECIMAL TO OCTAL

Convert decimal number 149 to its octal equivalent.
Rule: Divide the decimal number by 8 and develop
the octal number:

81149 Remainder 5

8 |18 2 = 225
8 L2 “ 2
0 Read

The original number to be converted is divided by 8.
The remainder of this first division becomes the low-
order digit of the conversion (5). The quotient (re-
ceived from the first division) is then divided by 8.
Again the remainder becomes a part of the answer
{next higher order, 2). This method is continued until
the quotient is smaller than the divisor. The final
quotient is considered the high order of the conver-
sion (2).

OCTAL TO DECIMAL

Convert octal number 225 to its decimal equivalent.
Rule: Multiply by 8 and add, as in the example:

225

X 8
16
+ 2

18
X 8

144
+ 5

149

The high-order digit is multiplied by 8'and the next
lower-order digit is added to the result. The resultant
answer is then multiplied by 8 and the next lower-
order digit is added to the result. When the low-order
digit has been added to the answer, the process ends.
In the following examples, where multiplication or
division is used, detailed explanations are not given
because the operations are similar.

OCTAL TO BINARY AND BINARY TO OCTAL

Rule: Express the number in binary groups of three:

BINARY TO OCTAL
010 010 101

P v )

5 = 225

OCTAL TO BINARY

2 2 5

010 010 101 = 010 010 101 2 2



DECIMAL TO BINARY

Convert 149 to its binary equivalent.
Rule: Divide the decimal number by 2 and develop
as in the example:

2| 149 Remainder

«

[ ol S
ol (2 R

1
0
1
0
“ 1|= 010 010 101
0
0
1

Flelelo

BINARY TO DECIMAL

Convert 010 010 101 to its decimal equivalent.
Rule: Multiply by 2 and add as in the example:

10 010 101
2

2
0

+

X |+ |x
[ SR KR i S S

+
-

or 10 010 101

X
[Se Vo]

|<

=1(27) +0(2°) +0(2°) +1(2") +

|+
_
| S

0(2°)+1(2°)+0(2") +1(2%

X
[

=128+16+4+1

+
f
A=

= 149

X
[S2]

-1

+
[0\

X
~
(SN

4

— Qo

1
+1

1

el

©

Fractions
DECIMAL TO OCTAL

Rule: Multiply by 8 and develop the octal number
as in the example:

Read
1
1
4
{2

OCTAL TO DECIMAL

Rule: Express as powers of 8, add and divide as in
the example:
1142 = 1(87%) +1(87*) +4(8%) +2(8%)
=1/8 + 1/64 + 4/512 + 2/4096
= 610/4096
= 1489 plus
or .149

OCTAL TO BINARY AND BINARY TO OCTAL

Rule: The same rule applies for fractions as for
whole numbers:

1 1 4 2 001 001 100 010
.001 001 100 010 1 1 4 2

BINARY TO DECIMAL

The same rule applies as for whole numbers:

.001 001 100 010
=1(2®)+1(2°% +1(27") +1(2™)
=1/8 + 1/64 + 1/128 + 172048
= 305/2048
= .1489 plus
or .149

DECIMAL TO BINARY

The same rule applies as for whole numbers:

Read .149

X 2
0o [298
X 2
0o |59
X 2
1 192
X 2
0o |384
X 2
0o [768
X 2
1 [536
% 2
1 [o7e
X 2
o [14
X 2
0o [288
X 2
o [576
X 2
1 |12
"
o I304
! = 001 001 100 010 +

Computer Data and Instructions 19



Improper Fractions

DECIMAL TO BINARY

Convert 149.149 to its binary equivalent. This requires
conversion from decimal to octal and then to binary:

8 | 149. remainder 5
8 18 “ 2

s L2 2 '

0 Read
1
4
4
Read 2

= 2 2 5 1 1 4 2

010 010 101 - 001 001 100 010
149.149,, = 225.1142, = 010 010 101.001 001 100 010.

BINARY TO DECIMAL

This requires conversion from binary to octal and then
to decimal:

010 010 101 - 001 001 100 010

vy ey ey iy ey

= 2 2 5 +« 1 1 4 2

ad AN

2
18 8teat szt do06
x 8 610

144 m= .149

+5

149

As with decimal-to-binary, conversion of the integer
and fraction parts is performed independently.

Computer Codes

The method or system used to represent (symbolize )
data is a code. In the computer, the code relates data
to a fixed number of binary indications (symbols).
For example, a code used to represent numeric and
alphabetic characters may use seven positions of
binary indication; by the proper arrangement of the
binary indications (bit, no bit), all characters can be
represented by a different combination of bits.

Some computer codes in use are: seven-bit alpha-
meric code, two-of-five fixed count code, bi-quinary
code, six-bit numeric code, and the binary system.

Code Checking

Most computer codes are self-checking; that is, they
are provided with a built-in method of checking the
validity of the coded information. This code checking

20

occurs automatically within the system as the data
processing operations are carried out. The method of
validity checking is a part of the design of the code.

In some codes, each unit or character of data is
represented by a specific number of bit positions, and
these must always contain an even number of 1 bits.
Different characters are made up of different combina-
tions of 1 bits, but the number of 1 bits in any valid
character is always even. With this code system, a
character with an odd number of 1 bits is detected
and an error is indicated. Likewise, a code may be
used in which all characters must have an odd number
of 1 bits; an error is indicated when a character with
an even number of 1 bits is detected.

This type of checking is known as a parity check.
Codes that use an even number of 1 bits are said
to have even parity. Codes that use an odd number
of bits are said to have odd parity.

In other codes, the number of 1 bits present in each
unit of data is fixed. For example, a code may use five
bit positions to code all digits but only two 1 bits will
be present in each digit. Digits having more or fewer
than two 1 bits cause an error indication. This system
of checking is known as a fixed count check.

Seven-Bit Alphameric Code (Binary Coded Decimal)
In this code, all characters — numeric, alphabetic, and
special —are represented (coded) using seven positions
of binary notation. These positions are divided into
three groups: one check position, two zone positions,
and four numeric positions (Figure 20).

Check Bit | Zone Bits | Numeric Bits

C B A 8 4 21

Figure 20. Bit Positions, Seven-Bit Alphameric Code

The four numeric positions are assigned decimal
values of 8, 4, 2, and 1 and represent, in binary coded
decimal form, the numeric digits 0 through 9 (Figure
21). Note that 0 is represented as 1010, actually the
binary number for 10. The B and A zone bits are
not present (they are 00) when the numeric digits
0 through 9 are represented.

Combinations of zone and numeric bits represent
alphabetic and special characters. The B and A bits
provide three bit combinations: 10, 01, and 11. Figure
22 shows the zone and numeric bit combinations used



,

g —3 Place Value

o>18 4 21
0 {010
1 /10001
2 0010
3 (0011
4 101 00
5101 01
6 |01 10
7 0111
8 1000
9 {1 001

Figure 21. Seven-Bit Alphameric Code ( Numeric Part)

to represent numeric, alphabetic, and special charac-
ters in the 18M 705 and 7080 Data Processing Systems
and on 1BM magnetic tape. In other systems using this
code, there may be special characters not shown; how-
ever, these characters follow the same scheme of bit
arrangement.

The C position, known as the check bit, is used for
code checking only. Because the seven-bit alphameric
code is an even parity code, the number of bits that
represent a character must have an even number of
bits, or the character is considered invalid. The check
bit is present in a character when the sum of the zone
and numeric bits representing the character is odd.
If the number of bits in a character is even without
the C bit, the C bit is not used.

Problems

1. Convert 89,, to its octal equivalent.

2. Convert 010001110010111, to its decimal equiv-
alent.

3. Convert the fraction .358,, to its octal equivalent.

4. Convert the improper fraction 139.247,, to its
binary equivalent.

0123456789

1J KLMNOPQRSTUVWXYZ

With the next four problems, it is necessary to first
convert the decimal numbers and then perform the
arithmetic operation.

5. Add 18,, and 92,, in binary.

6. Subtract 34,, from 71,, in binary.

7. Multiply 17, times 43,, in binary.

8. Divide 448,, by 14,, in binary.

9. Make a binary add and a binary multiply table.

Code Definitions

Four code structures are used with the 7040 and 7044
systems and input-output equipment. Each code is a
specific system of representing numeric, alphabetic,
and special characters. Figure 23 shows the codes and
relations between them.

Two sets of graphics are used. One is designed for
report writing and the other for programming lan-
guage. A print head for the console typewriter is avail-
able for each graphic set. For other 1M Printers, spe-
cial character arrangement A agrees with the report
writing set and special character arrangement H agrees
with the programming language set.

Code headings in Figure 23 are:

H (standard M card code) defines the combination
of punches used to represent each of the 64 code
combinations.

9 (as used in 1BM 704, 709, 7090, 7094) shows the
same characters as they are normally placed in internal
storage of the 7040 and 7044 systems. The six-bit code
groups are represented as two octal digits.

5 (as used in the 705, 7080, and on binary coded
decimal (Bcp» magnetic tape) shows the same char-
acters as they normally appear on BCD magnetic tape
for communication with other 1BM magnetic tape
equipment. Note that this representation permits only
63 code combinations, not 64.

14 (as used in the 1401, 1410, and 1414) shows the
same characters as they normally appear in the internal

& .0-§*/, %+@

Check { C

{
Zone

Numeric

N

Figure 22. Seven-Bit Alphameric Code on Magnetic Tape
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Report Programming Report Programming

Writing Languoges Writing Languages

Graphics Graphics HCode 9 Code 5 Code 14 Code Graphics  Graphics HCode 9 Code 5Code 14 Code
@ (zero) g 0 00 12 12 - - n 40 40 40
1 1 1 01 01 01 J J 11-1 41 4] 41
2 2 2 02 02 02 K K 11-2 42 42 42
3 3 3 03 03 03 L L 11-3 43 43 43
4 4 4 04 04 04 M M 11-4 44 44 44
5 5 5 05 05 05 N N 11-5 45 45 45
[ 6 6 06 06 06 (@] (o] 11-6 46 46 46
7 7 7 07 07 07 P P 11-7 47 47 47
8 8 8 10 10 10 Q Q 11-8 50 50 50
9 9 9 11 11 1 R R 11-9 51 51 51
b ) 8-2 12 Note 20 ! ! 11-0 52 52 52
#® = 8-3 13 13 13 $ $ 11-8-3 53 53 53
@ ' 8-4 14 14 14 * * 11-8-4 54 54 54
' : 8-5 15 15 15 J | 11-8-5 55 55 55
> > 8-6 16 16 16 ; ; 11-8-6 56 56 56
V(TM) s 8-7 17 17 17 A A 11-8-7 57 57 57
& + 12 20 60 60 blank blank No Punch 60 20 00
A A 12-1 21 61 61 / / 0-1 61 21 21
B B 12-2 22 62 62 S S 0-2 62 22 22
C C 12-3 23 63 63 T T 0-3 63 23 23
D D 12-4 24 64 64 V) u 0-4 64 24 24
E E 12-5 25 65 65 v \% 0-5 65 25 25
F F 12-6 26 66 66 w w 0-6 66 26 26
G G 12-7 27 67 67 X X 0-7 67 27 27
H H 12-8 30 70 70 Y Y 0-8 70 30 30
| | 12-9 31 71 71 4 z 0-9 71 31 31
? ? 12-0 32 72 72 1 (RM) t 0-8-2 72 32 k)
. . 12-8-3 33 73 73 . ’ 0-8-3 73 33 33
a ) 12-8-4 34 74 74 % ( 0-8-4 74 34 34
C C 12-8-5 35 75 75 M M 0-8-5 75 35 35
< < 12-8-6 36 76 76 \ \ 0-8-6 76 36 36
§ (GM) 3 12-8-7 37 77 77 +H ++ 0-8-7 77 37 37

Note: The octal combination 00 cannot exist in 5 code because it
must be written on BCD tape and would be indistinguishable from blank
tape. This means there are only 63 possible combinations in 5 code
and that 5 code cannot be used directly to represent essentially binary
information, such as programs, arithmetic quantities, and so on from

the 7040/7044 system.

Code Translations

Provision is made in the 7040/7044 system for automatic translation
from one code to another, as required, when data are transmitted

to or from input/output devices. In some cases, it may be necessary
to perform programmed translations (either in the 7040/7044 or in an
off=line 1401) to achieve a desired result. Programmed translation
is required to maintain compatible card formats when binary infor-
mation is recorded in H code on cards and it is desired to read or
punch the cards both on-line on a card reader and off-line via a
card-to-tape or tape-to-card operation. Programmed translation
can be avoided if the octal group 12 in 9 code can be omitted,
since the information can use BCD tape (rather than binary tape)

for off-line operations.

Figure 23. 7040 and 7044 Code Combinations
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storage of a 1401 or 1410 and as they exist in the input
and output buffers of a 1414 used on the 7040 or 7044
system,

The octal code groups should be interpreted as rep-
resentations of a six-bit pattern in the order of: (BA8)
(421). For example, 101010 equals 52 octal. The entire
figure (Figure 23) is in the order of 9 code. This order
is the same as the collating sequence on the 7040, 7044,
7090, and 7094 systems. ( The collating sequence deter-
mines the rank of the characters in compare opera-
tions; 00 is low, 77 is high.)

Figure 24 shows Bcp characters, both in core storage
and as they appear on magnetic tape:

(9 Code) (5 Code) (9 Code) (5 Code)

Character In Storage  On Tape | Character In Storage  On Tape
0 00 0000 00 1010 - 10 0000 10 0000
1 00 0001 00 0001 J 10 0001 10 0001
2 00 0010 00 0010 K 10 0010 10 0010
3 00 0011 00 0011 L 10 0011 10 0011
4 00 0100 00 0100 M 10 0100 10 0100
5 00 0101 00 0101 N 10 0101 10 0101
6 00 0110 000110 o] 100110 100110
7 00 0111 00 0111 P 100111 100111
8 00 1000 00 1000 Q 10 1000 10 1000
9 00 1001 00 1001 R 10 1001 10 1001
# 00 1011 00 1011 0 10 1010 101010
@ 00 1100 00 1100 $ 10 1011 101011
& 01 0000 11 0000 * 10 1100 10 1100
A 01 0001 11 0001 Blank 11 0000 01 0000
B 01 0010 11 0010 / 11 0001 01 0001
C 01 001 11 0011 S 11 0010 01 0010
D 01 0100 11 0100 T 11 0011 01 0011
E 01 0101 11 0101 U 11 0100 01 0100
F 01 0110 110110 \ 11 0101 01 0101
G o1 01N 11 0111 W 11 0110 01 0110
H 01 1000 11 1000 X 1101 01 0111
| 01 1001 11 1001 Y 11 1000 01 1000
[} 01 1010 111010 z 11 1001 01 1001
L——01 101 111011 * 11 1010 01 1010
o 01 1100 111100 , 11101 01 1011
% 11 1100 01 1100

Figure 24. Bcp Characters in Storage and on Tape

Processing Unit Operations

The processing unit controls and supervises the entire
computer system and performs the actual arithmetic
and logic operations on data. From a functional view-
point, the processing unit consists of two sections: con-
trol and arithmetic-logic.

The control section directs and coordinates all opera-
tions called for by instructions. This involves control
of input/output devices, entry or removal of informa-
tion from storage, and routing of data between storage
and the arithmetic-logic section. Through the action
of the control section, automatic integrated operation
of the entire computer system is achieved.

In many ways, the control section can be compared
to a telephone exchange. Data transfer paths exist, just

as there are connecting lines between all telephones
serviced by a central exchange. The telephone ex-
change has a means to control the movement of sound
pulses from one phone to another, to ring bells, to
connect and disconnect circuits, and so on. The path
of conversation between one telephone and another
is set up by controls in the exchange itself.

In the computer, execution of an instruction involves
the opening and closing of many paths or gates for
a given operation. The control section can start or stop
an input/output device, turn a signal indicator on or
off, rewind a tape reel, or direct some process of
calculation.

The arithmetic-logic section contains the circuitry
to perform arithmetic and logic operations. The arith-
metic portion calculates, shifts numbers, sets the
algebraic sign of results, compares, and so on. The
logic portion carries out the decision-making opera-
tions to change the sequence of instruction execution.

Instructions and Data

The only distinction between instructions and data in
core storage is the time when they are brought into
the processing unit. Information brought into the proc-
essing unit during an instruction cycle is interpreted
as an instruction. Information brought into the process-
ing unit during any other type of computer cycle is
considered to be data. Consequently, the computer can
readily operate on its own instructions if those in-
structions are supplied as data (that is, if an instruc-
tion is brought into the processing unit during any
cycle other than an instruction cycle). Also, the com-
puter can be instructed to alter its own instructions
according to conditions encountered during the han-
dling of a procedure.

It is this ability to process instructions that provides
the almost unlimited flexibility and the so-called logical
ability of the stored program system.

In the 7040 and 7044 systems, information (both data
and instructions ) is handled in fixed groups of 36 posi-
tions (bits) each. Each group is called a word. Each
position within a word is named with the S (sign) posi-
tion followed by positions 1 through 35. Computer
instructions with an address in the operand part indi-
cate the core storage location to be subjected to some
arithmetic or logic operation. This address part, or
field, always occupies bit positions 21 through 35 of
the word (Figure 25).

/////’Z/’ Address Field l

51 0N ELN

Figure 25. Word Address Field
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Capacity of the largest core storage available on the
7040 and 7044 systems is 32,768 words of 37 positions
each; 36 positions are for data and the 37th is a check
bit for the word. The 15-position address field (posi-
tions 21-35) is just large enough to hold or indicate
the largest core storage address. This address, ex-
pressed in the computer’s language (code), is simply
15 consecutive 1's (Figure 26).

111” ni ]

20 35 C

Figure 26. Word Address with Largest Core Storage Address

Other core storage capacities available with the
7040 and 7044 systems are: 16,384; 8,192; and 4,096
words. In a system with a 16,384-word capacity, the
largest address is contained in 14 positions of the ad-
dress field. The left-most position (position 21) is
ignored. Similarly, a 8,192-word system uses 13 posi-
tions (23-35), and a 4,096-word system uses 12 posi-
tions (24-35) as its address field.

The operation part of most instructions is contained
in word positions S, 1-11. Positions 21-35 of the same
word would then contain the address of the operand
to be used with the instruction. For example, assume
that two factors, A and B, are to be added. In the
7040 and 7044 systems, one of these factors is always
taken from core storage by the add instruction; the
other factor is already in a processing unit register
called the accumulator. The accumulator factor must
have been placed there by a previous instruction.
Figure 27 shows the format of an add instruction
when A is the contents of core storage location 00001
and factor B is the contents of the accumulator.

ADD Factor A

5

Figure 27. Instruction Format for an Add Instruction

When this instruction is executed, factor A is added
to factor B and the resulting sum is returned to the
accumulator. Actual computer coding is used (binary
code), and the 36 positions are shown in groups of
three for easier reading and conversion to the octal
number system.

As an example of computer operation, assume that
the accumulator contains the number +1. If the num-
ber in location 00001 is +2, the result of executing
the add instruction is +3. This is shown in Figure 28
(a 0 in the S position indicates a plus number; a 1
indicates a minus number).

Register
A register is a device capable of receiving informa-
tion, holding it, and transferring it as directed by con-
trol circuits. The electronic components used may be
magnetic cores, transistors, or similar components.
Registers are named according to function: an ac-
cumulator register accumulates results, a multiplier-
quotient register holds either multiplier or quotient,
a storage register contains information taken from core
storage or sent to core storage, an address register
holds the address of a storage location or device, and
an instruction register contains the instruction code
(operation part) of the instruction being executed
(Figure 29).

Core Storage
Location

i
YY1
L Storage Register

7N

A 00002
Instruction Address
Register Register

Figure 29. Register Nomenclature and Function

"0400" "00001"
ADD Instruction 000 100 000 Q0OPZZ//7ZZZ7////4A000 000 000 000 001
S, 1 n 21 EL}

Location 00001 contents (+2)

[000 000 000 000 000 000 000 000 GO0 000 000 010]
S 1

3s

Accumulator contents before

the addition {+1)

[ofo]000 000 00O 00O 000 000 000 000 000 000 000 001]
sQ P 35

Accumulator contents after

the addition (+3)
Figure 28. Execution of an Add Instruction
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Registers differ in size and use. In some cases, extra
register positions are used to detect overflow condi-
tions during an arithmetic operation. The accumulator
register is made up of 38 positions; 36 are used for
data and two positions (P and Q) are used to remem-
ber overflow conditions. If, for example, two 36-bit
binary numbers are added, it is possible that the re-
sult is a 37-bit answer.

In Figure 30 the accumulator register holds one
factor and the other factor, from storage, is in the

Accumulator [0007 00110111010001101010011100010101 01

1
Contents sar 1 35

Storage Register
Contents

[G11017000101000110110110001010010010]
51

35

Accumulator  [50101110100010001101011111111011100111]

Result - 35

Figure 30. Overflow Condition Resulting from Addition

Single Register Shifting:

storage register. The two factors are added and the
result is placed back into the accumulator register,
where the overflow is indicated by the presence of a
1 bit in the first (P) overflow position. The accumula-
tor might then be shifted right one place and a rec-
ord kept of the lost low-order bit.

The contents of other registers can be shifted right
or left within the register and, in some cases, even
between registers. The effect, when shifting from one
register to another, is the same as if the two registers
were one large register. Figure 31 shows three types
of shifting. With shifting within a register, data shifted
out of the register may, or may not be lost, depending
on the instruction used. With double register shifting,
data shifted out of the registers are lost. In the types
of shift operations where data loss is possible, vacated
positions of the registers are filled with 0’s.

In other uses, a register holds data while associated
circuits analyze the data. For example, an instruction
can be placed in a register, and circuits can determine

Before

(Shift right seven places)
Note: Left-hand positions

ﬁom 100010010011101101000111001 100ﬂ

are filled with zeros; data
shifted out of position 35
are lost.

N

--------- @
After RN

|60000000100HOOO]0010011101101000111 0011001

S

3

Before

IOIOOHOOO]OOIOOI 1101101000111001 lOO]l

Single Register Shifting:

(Shift right seven places)
Note: Data are not lost when
shifted out of position 35; the

R

data are re=entered in

position S. ‘1 1TT4

After \
IOO] 10010100110001001001110110100011 1]

Before

Double Register Shifting:
(Shift right seven places)

[o100110001001001 11011010001 11001 1001

W)OO]OOOlOOlOOI 1101101000111001 1001'

Note: Data are shifted from
position 35 of the first register
into position S of the second
register. Data shifted out of
position 35 of the second

A

AN

register are lost. Vacated
positions are filled with zeros.

IOOOOOOOO] 0011000100100111011010001 IJ

|00110010]00]1000100100]110110]0001H 0011001

Figure 31. Types of Register Shifting

Computer Data and Instructions 25



the operation to be performed and locate the data to
be used. Data within specific registers may also be
checked for validity.

The main registers of a system, particularly those
involved in normal data flow and core storage address-
ing, have small lights associated with them. These
lights are located on the operator’s console for visual
indication of register contents and various program
conditions. If a light is on, a 1 bit is indicated for that
position. If the light is off, a 0 bit is indicated.

Counter

The counter is closely related to a register and usually
performs the same functions. In addition, its contents
can be increased or decreased by some amount. The
action of a counter is related to its design and use
within the computer system. Like a register, it may
also have visual indicators on the operator’s console.

Adder

The adder receives data from two or more sources,
performs addition, and sends the result to a receiving
register. Figure 32 shows two positions of an adder
circuit with inputs from registers like the accumulator
and storage register.

The sum is developed in the adder. A carry from
any position is sent to the next higher-order position.
The final sum goes to the corresponding position of
the receiving register.

Accumulator
Adder 2 I

To Next Adder ;Carry Sum Sum
Receiving Register ulaa

Figure 32. Adders in a Computer System

Machine Cycles

To receive, interpret, and execute instructions, the
central processing unit must operate in a prescribed
sequence. The sequence is determined by the specific
instruction and is carried out during a fixed interval
of timed pulses. These intervals are measured by reg-
ular pulses emitted from an electronic clock at fre-
quencies as high as a million or more per second. A
fixed number of pulses determines the time of each
basic machine cycle.
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Within a machine cycle, the computer can perform
a specific machine operation. The number of operations
required to execute a single instruction depends on the
instruction.

All instructions have one instruction (I) cycle and
some instructions require only an I cycle for complete
execution. Other instructions require both an I and an
execute (E) cycle. Various machine operations are
thus combined to execute each instruction.

INSTRUCTION CYCLE

The first cycle required to execute an instruction is
called an instruction (I) cycle. The time for this cycle
is instruction or I time. During I time:

L. The instruction is taken from a main storage loca-
tion and brought to the processing unit.

2. The operation part is decoded in an instruction
register; this tells the machine what is to be done.

3. The operand is placed in an address register; this
tells the machine what it is to work with.

4. The location of the next instruction to be executed
is determined.

At the beginning of a program, the instruction
counter is set to the address of the first program in-
struction. This instruction is brought from storage and,
while it is being executed, the instruction counter auto-
matically advances (steps) to the location coryespond-
ing to the space occupied by the next stored instruc-
tion. By the time one instruction is executed, the coun-
ter has located the next instruction in the program
sequence. The stepping action of the counter is auto-
matic; in other words, when the computer is directed
to a series of instructions, it will execute these instruc-
tions one after another until instructed to do otherwise.

Assume that an instruction is given to add the con-
tents of storage location 00002 to the contents of the
accumulator register. Figure 33 shows the main reg-
isters involved and the information flow lines. ‘

I time begins when the instruction counter transfers
the location of the instruction to the address register.
This instruction is selected from storage and placed in
a storage register. From the storage register, the oper-
ation part is routed to the instruction register and the

(for E cycle)

ADD 0002

Storage

ADD 0002

I Instruction Register ‘F—liforoge Register —I_’ Address Register l
Operation Decoders llnsrrucrion Counter I

Figure 33. Computer I Cycle Flow Lines




operand to the address register. Operation decoders
then condition circuit paths to perform the instruction
while the address register locates the operand.

Execution of instructions does not have to proceed
sequentially. Certain instructions alter the process of
sequential execution unconditionally. In this case, an
instruction brought from storage indicates that the next
sequential instruction is not to be executed but that
one located in another position is next; the normal
stepping of the instruction counter is altered accord-
ingly. For instance, the instruction counter can be reset
back to the beginning of the program so that the entire
program can be repeated for another incoming group
of data.

This transfer (branch) to alternative instructions
may also be conditional. The computer can be directed
to examine some indicating device and then transfer
if the indicator is on or off. Such an instruction can
say: “Look at the sign of the quantity in the accumu-
lator; if this sign is minus, take the next instruction
from location 5000; if the sign is plus, proceed to the
next instruction in sequence.” The instruction counter
is set according to one of the two possible storage
locations (5000, or the location of the next instruction
in sequence ). The logic path followed by the computer
(that is, the precise sequence of instructions executed )
may be controlled either by unconditional transfers or
by a series of conditional tests applied at various points
in the program. The arrangement of instructions in
storage, however, is not normally altered.

EXECUTE CYCLE

I time is usually followed by one or more computer
cycles that complete the operation being done by the
computer. Execution of an E cycle results in bringing
a word into the processing unit from core storage or
in taking a word from the processing unit and placing
it in core storage. Any word brought into the processing
unit during an E cycle is treated as data for the oper-
ation decoded by the previous I cycle. Figure 34 shows
the data flow following the I time illustrated by Fig-
ure 33.

The E-cycle starts by removing from storage the in-
formation located at the address (00002) indicated by
the address register. This information is placed in the
storage register. In this case, the core storage factor
is then placed in the adders, together with the number
from the accumulator. The contents of the storage reg-
ister and accumulator are combined in the adders, and
the sum is returned to the accumulator.

(get the number located at 00002)

Storage

number at
location 00002

¥

Storage Register

Address Register

l Instruction Counter

Figure 34. Computer E Cycle Flow Lines

The address register may contain information other
than the storage location of data. It can indicate the
address of an input/output device or a control function
to be performed. The operation part of the instruction
tells the computer how to interpret this information.

Processing Unit Data Flow

Instruction flow charts are included with many of the
instruction descriptions to assist in understanding data
and instruction flow through the processing unit. Fig-
ure 35 shows a simplified processing unit data flow.
In this figure, the positions of the word that are placed
in a register or counter are shown below the com-
ponent.

L Core Storage l I

5,1 A 3B C

i
Tag L Storage Register I
Register
S,1 35, C
18 20
Index Registers
21 35
I | | Adders ]
Q,P,1 | EY

Shift LI | l Accumulator ] L MQ Register I
Counter

w5 S QAP 35S, 35

Figure 35. Simplified Processing Unit Data Flow
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Introduction To Programming Systems

A programming system enables the programmer to
communicate with the computer in a language closely
related to his own language. Thus, the business man
might communicate with a business-oriented language
and the mathematician might use a language based on
mathematical formulas. '

The aim of the programming system is to get com-
puter systems into productive operation sooner by
freeing the programmer from the intricacies of working
in machine language.

Since the BM 7040/7044 Data Processing Systems
are designed as fixed length binary machines, instruc-
tions to the computer must be given in binary notation.
However, there is an obvious advantage to the pro-
grammer in being able to write:

ADD DIVIDENDS TO INCOME
as opposed to writing in machine language:

000101000000000000000000000110000000
000100000000000000000000000010111000

The English language code is easier to learn and .use,
invites fewer clerical errors, and makes more sense to
anyone reading it. These advantages all add up to one
thing: high-level languages (related to the program-
mer’s own) allow the programmer to program the
problem instead of the machine.

Experience has shown that a computer can be pro-
grammed to recognize instructions expressed or written
in other languages and to translate those expressions
into its own language. This has led to the development
of a number of programming languages which are
easier to use and understand than the language of the
machine.

The first such languages permitted the programmer
to write convehient equivalents of machine instructions
using symbols (called mnemonics) to represent them.
Symbolic instruction representations include: App for
add, sus for subtract, piv for divide, Tra for transfer
control, rps for read, and so on. The computer, acting
under control of previously written machine language
programs, would then translate these symbolic instruc-
tions into equivalent machine instructions, which could
then be used in solving the actual problem.

These first languages resulted in a one-for-one trans-
lation. That is, each instruction written in the pro-
gramming language was translated into one machine
language instruction. For example, the instruction:

ADD 184
would produce the machine language instruction:
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000100000000000000000000000010111000

Later, “macro-instructions” were developed. That is,
single programmer language instructions could be used
to produce a whole series of machine instructions. This
development greatly increased the power of program-
ming languages. The art of programming has pro-
gressed to a point at which it is possible to give
directions to a computer by writing statements and
sentences in a language which is based on, and which
can be read in the same way as, English itself or even
mathematical formulas.

The translation feature of the machine language pro-
gram is perhaps the most important feature, but not
the only one. The computer instructions needed to pro-
duce a given result must be executed in a given
sequence. If an addition is to be performed, one of the
values involved must be in the computer before the add
instruction itself is executed. This is normally accom-
plished with an operation called cra, “Clear and Add.”
After this operation is executed, the add operation may
then be executed. The two-instruction sequence is
shown in both machine and symbolic language as: -

~Machine Symbolic
000101000000000000000000000101111111 CLA 383
0001000000000000000000000001 10000000 ADD 384

Each final machine language instruction must be as-
signed a particular location in core storage. If the cLa
instruction is to be assigned a location of 100 (its
precise slot in core storage ), and the App instruction is
to immediately follow it, the location of the app in-
struction must be 101. Therefore, the location of each
instruction must be known precisely. It is, in effect, the
“name” of the instruction. If an additional instruction
is to be inserted in a program of many instructions,
every instruction from the point of insertion must have
its previously assigned location changed. Since most
programs undergo changing or up-dating, instruction
location assignment becomes a tedious but necessary
part of programming. The solution, of course, is to have
the translating program do the actual assignment of
instruction locations in addition to its translating func-
tion. The programmer need simply tell the translating
program the desired location of the first instruction
and succeeding instructions are assigned sequentially
ascending locations.

The advantage of expressing a problem in symbolic
language over machine language should now be evi-



dent. This symbolism may be carried one step further
by using symbolic data addresses as well as symbolic
operation codes. The translating program can then be
designed to translate and assign these symbols to actual
core storage locations. Using the same instructions as
before, assume that the two values to be added are ex-
pressed as values “A” and “B”. Of course, in both
methods the values must have been previously placed
in core storage, but the problem can now be stated as
in Figure 36.

Instruction Instruction

Location ) Operation Part Address Part
CLA A
ADD B

Figure 36. Symbolic Operations and Addresses

If we now tell the translating-assigning program we
want the first instruction placed at core storage loca-
tion 100, the program shown in Figure 37 would result
(the program is expressed with symbolic operation
codes and decimal addresses and locations, instead of
machine language, for better understanding ).

Instruction Instruction

Location Operation Part Address Part

100 CLA 102
101 ADD 103
102 Value A
103 Value B

Figure 37. Assigned Addresses and Locations

In a basic sense, the translating-assigning program
is called a “processor program,” or, more simply, the
processor. In normal operation, the processor is entered
into the computer system and placed in some type of
storage. Next, the instructions, prepared by the pro-
grammer to accomplish a particular job as coded in his
language, are fed into the computer. The computer
then, in translating the programmer’s instructions into
machine language instructions, writes its own program.
The translated machine instructions are placed in core
storage and form the actual job program.

Operation
A processor is made up of at least two parts: a lan-
gauge, with associated rules of grammar; and a ma-
chine language program, whose main function is to
translate the language of the programmer into machine
language.

The input to a processor is called the source program.
This is written by the programmer in the language of
the programming system (processor language) and

states the requirements of the problem and the method
of solution. Before the programmer writes his source
program, he must have completely analyzed and de-
fined the problem.

The output from the processor is the object program,
the translation of the source program from the pro-
grammer’s language to the language of the computer
system on which the program will be used. Figure
38 shows the basic procedure for producing an ob-
ject program; this is called the assembly or compiling
run. In this case, the assembly (processor) program
has been previously recorded on a reel of magnetic
tape and is available to the computer for the assembly
process.

The source card deck may be fed directly to the com-
puter or recorded on another magnetic tape reel in an
off-line card-to-tape operation. Off-line means a sepa-
rate operation not controlled by the computer and may
be considered as a preparatory or set-up operation. The
information from each source card is translated by the
assembly program instructions into object (machine)
instructions. Each object instruction is then placed in
storage. When all source information has been trans-
lated and assembled, the resulting object program is
sent from the computer signalling the end of the as-
sembly run.

The object program is printed (program listing) and
an object program card deck is produced. This opera-
tion, as with source program input, may be produced
directly from the computer or by off-line tape-to-card
and tape-to-printer operations. Note that both the pro-
gram listing and object card deck are referred back to
the programmer for modification or correction if nec-
essary.

Once the object program is satisfactory, the execu-
tion run may be started ( Figure 39). Fed into the com-
puter with the object program are the data required
to solve this particular problem. As with Figure 38, the
information is fed directly to the computer from card
decks or from magnetic tape reels prepared off-line.
Subroutines ( standard programs used with many prob-
lems) together with rate tables and other constant
factors may also be available to the computer to assist
in the execution of this problem. Figure 39 shows the
use of a subroutine tape for this purpose.

After the problem is executed (solved) by the com-
puter, the result (output) may be recorded on mag-
netic tape for an off-line printing operation or printed
results may be received directly from the computer.

A proven object program may be used time after time,
with varying problem data, to produce periodic results
—such as production type programs of payroll or in-
ventory; or to produce different results to assist the
designer seeking an optimum design — such as the best
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wing air foil, or the most eflicient placement of steam
pipes within a boiler, considering all variables for each
application.

COBOL System

The copoL (Common Business Oriented Language)
system, unlike the first programming languages, is
“problem oriented.” That is, the language itself, and
the techniques for using it, are conceived in terms of
the problems to be solved and the results to be ob-
tained; not, for the most part, in terms of the technical
features of the computer. Of course, each problem
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Programmer

must still be solved by technical means; it is still nec-
essary to produce a machine-language program before
a problem can be solved. However, the language
written by a coBoL programmer bears little resemblence
to machine language, and the programmer has little
direct concern with the method by which the cosoL
language program is translated into machine language.

A simple example will best illustrate the basic
principles of the problem-oriented type of program-
ming system. Assume we wish to increase the value of
an item called incoME by the value of an item called
pivipenps. The coBoL language allows us to specify
this addition by writing the following sentence:

ADD DIVIDENDS TO INCOME.
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Before the processor can interpret this sentence,
however, it must be given certain information. For ex-
ample, the programmer will have to write the names
PIVIDENDs and INCOME in a special part of the program
called the “data division.” Here, facts about the data
represented by those names, such as maximum size,
how the data is expressed, and so on, are stated.

When the processor encounters the sentence, it has
access to certain information that will aid it in trans-
lating the sentence. In addition, it will be able to obtain
certain information “built into” the processor itself.
(The reader should note, however, that the exact pro-
cedure will vary from machine to machine and that, in
any case, the programmer is not directly concerned
with the details.)

First, the processor examines the word app. It con-
sults a special list of words that have clearly defined
meanings in the coBoL language. This list is a part of

the processor. If app is one of these words, the pro-
cessor interprets it to mean that it must insert into the
object program the machine instruction (or instruc-
tions) necessary to perform an addition.

The processor then examines the word DIVIDENDS.
Since it can obtain certain information about pIVIDENDS,
it will know where and how this information is to be
stored in the computer, and it will insert into the object
program the instructions needed to locate and obtain
the data.

When the processor encounters the word To, it again
consults the special word list. In this case, it finds that
to directs it to the value of iNcoME which is to be
increased as a result of the addition.

The processor must now examine the word INCOME.
Again it has access to certain information about this
word, and, as a result, it is able to place in the object
program the instructions necessary in locating and
using INCOME data.

We have indicated that the programmer placed a
period (.) after the word INCOME, just as he would in
terminating an English-language sentence. The effect
of the period on the coBoL processor is quite similar.
It tells the processor that it has reached the last word
to which the verb app applies.

The previously described steps are performed by the
processor in creating the object program. They might
not be performed in exactly this way or in the same
sequence, because machines vary and because each
processor is adapted to a particular machine. How-
ever, regardless of the machine, the same cosoL-
language sentence produces machine instructions that
will cause the object program to add together the
values pIviDENDs and INCOME.

FORTRAN System

The ForTRAN (Formula Translation) system is very
similar in concept to the coBoL system. One of the
main differences is in the language the programmer
uses to express his source program. Where business
English is used by cosor, mathematical language is
used with FortRAN. The effect of the coBoL sentence:
ADD DIVIDENDS TO INCOME
could be achieved by the FORTRAN statement:
INCOME = DIVIDENDS + INCOME
However, FORTRAN processors for some machines might
insist that the words be abbreviated to something like:
INCO = DIV + INCO

This would depend on the individual machine FORTRAN
processor. The statement, in effect, tells the processor
to insert the necessary instructions into the object pro-
gram to make the iINcoME data location equal to the
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pivipenp data added to the present iNcoMmE data. Note
that the computer is not merely instructed to find the
value of INcoMmE, but is also told where to put the result
of the addition after it is performed. If the original
incoME field (in core storage) contained 10000, and
the pivibenp field contained 15, the original iNcoME
field would be replaced by 10015 after the operation
has been executed.

If this result is not desired, the programmer could
change the statement to:

INCOME 1 = DIVIDENDS + INCOME

With this change, a new incoME 1 data field would be
generated in core storage, the result of the addition
would be placed there, and the original incoMmEe field
would remain unchanged.

Since only a few of the many features of the cosoL
and FORTRAN systems have been discussed, the reader
is referred to the COBOL General Information Manual,
Form F28-8053, or the FORTRAN General Informa-
tion Manual, Form F28-8074, for additional informa-
tion.

Programming System Segment Relationship

Thus far, the terms Symbolic Language, Programming
System, Source and Object Programs, and Processor
have been used. In actual operation these terms are
expanded to:

1. Programming System: Any method of program-
ming problems, other than machine language, that
consists of a language and its associated processor(s).

2. Symbolic Language: Any collection of symbols
used in programming to represent operation codes,
functions, addresses, with rules of usage.

3. Processor: A machine language program that per-
forms the functions necessary to convert a source pro-
gram into the desired object program.

4. Source Program: A program coded in other than
machine language that must be translated into machine
language before being used.

5. Object Program: A program coded in machine
language for use by the computer.

6. Compiler: A translation program that translates
macro-instructions of a symbolic program into one-for-
one symbolic instructions, and then passes the entire
set of instructions to an assembly program for final
' translation.

7. Generator: A machine language program used
during compiling to produce symbolically coded (one-
for-one) instructions that will perform the operation
called for by the symbolic coding of the source pro-
gram,

8. Assembly Program: A translation program that
substitutes binary coding for symbolic instructions, may
assign storage locations, and performs other activity
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necessary to produce an object program directly load-
able into the computer. This object program may be
self-loading or, in some systems, a load program is
needed.

Figure 40 shows the segment relationship in pro-
gramming systems.

@ Symbolic @ Programming System
Language
@ Processor

@ Source Program; 1 I

one-for-one sym- (® Compiler @Obiect

bolic instructions Assembly program;

and macro I B Program T instructions

instructions and data
are binary
coded

Figure 40. Programming System Segment Relationship

Program Checkout

After successful translation and assembly of a source
program, execution of the resultant machine language
object program with test data occurs. This is done to
assure that the program does not have logical errors
and that it is capable of producing a right answer when
using test data. Two results are possible, The first and
hopefully only result is that the problem (for which
the program was written) can now be attempted with
real data. The second result — the test run does not
function properly — may occur because of many things.
The most frequent cause is that the source program
has been improperly or incompletely stated.

Mistakes by the programmer are more difficult to
avoid than might be expected. It is, in fact, a rare pro-
gram that works correctly the first time it is tried with
test data. In most cases, several test runs must be made
before all mistakes are found and corrected. The pro-
gramming system itself finds most of the obvious mis-
takes during the translation and assembly run. Such
things as calling for a storage location by a name when
that name has not been defined, attempting to perform
integer arithmetic on floating point data (or the re-
verse), lack of defined alternative paths on testing
operations, and keypunching errors of all kinds are
detected and noted during the assembly and transla-
tion run of the program.

Computer mistakes are usually obvious. Built-in de-
tection circuits will normally reflect the kind of mis-
take the computer has made by turning on an indicator
and stopping the computer. Detection and classifica-
tion of the mistakes a programmer can make are, how-
ever, many times more complex.



Testing Techniques

As previously stated, a computer program may be ex-
pressed in machine, symbolic, or one of the problem-
oriented languages such as FORTRAN or coBoL. Source
program coding is harder and more error prone when
machine language is used, but becomes progressively
easier with symbolic and higher level languages. These
circumstances are reversed when source program de-
bugging is required. That is, it is easier to debug a
symbolic language program than a FORTRAN or COBOL
program. The main reason for this is that the symbolic
program results in a one-for-one translation (one
machine language instruction for each symbolic lan-
guage instruction), whereas high-level languages
usually result in 2 many-for-one translation.

Many techniques exist to assist the programmer dur-
ing the check out phase of his work. Each has its own
advantages and disadvantages. The one to be used for
a particular problem will depend upon the pro-
grammer’s thoughts as to what area of his program is
in trouble and how extensive the trouble is. Tech-
niques that involve extensive use of switches on the
operator’s console are very wasteful of computer time
and are not recommended.

Storage Printout

This type of utility program (routine) is most efficient
from a machine standpoint because practically the
entire contents of storage, plus the contents of working
computer registers and the condition of indicators and
switches, may be presented in printed form. Normally,
the register contents and condition of indicators and
switches are printed first. The contents of storage are
then printed. Each line of printing representing stor-
age begins with the starting location of that line ex-
pressed in octal format. Seven complete word loca-
tions are printed on each line. The print (dump) rou-
tine sometimes has provisions for dumping one or more
selected blocks of storage instead of all of it. It may
also have the ability to restore the dumped blocks of
storage back into their original locations.

Tracing

If visually checking a storage print-out fails to reveal
the program difficulty, a technique called “tracing”
may be used. The trace technique usually involves an
interpretive routine and, therefore, executes a number
of instructions for each program instruction being
traced. The print-out received while tracing normally
includes: the location of the instruction being executed,
the instruction being executed, and the contents of
the working registers after the instruction has been
executed. The printing of each instruction execution
in a program would result in excessive machine time

and should be used only when all other methods fail to
reveal the program trouble.

The basic tracing technique may be revised, how-
ever, and only selected storage locations can be printed
when program execution reaches a specified point in
the program. With this variation, a “snapshot” can be
obtained of a particular part of the program under
particular conditions. For example, the trace and re-
sultant print-out can be specified to occur only when
the program executes a transfer instruction. A whole
series of “snapshots” will then be obtained showing the
execution path through the program. Likewise, only
those instructions which altered the normal execution
path can be “snapshot,” to show the exception paths
the program has executed.

Summary

Successful program check out depends on many things.
The time consumed by this necessary but frustrating
phase of programming may be lessened if certain basic
rules are followed:

1. Document your program wherever possible so
that you (and anyone else) will know what you in-
tended to accomplish by a given program step.

2. Check the source program cards against the docu-
mentation before an assembly and test run is attempted.
This point cannot be overemphasized.

3. Leave space in your program for insertion of test-
ing or printing routines that may be used in the test
run of the program. Program space is useful also if
changes have to be made.

4. Be aware of the debugging techniques available,
and know how best to use them; avoid becoming a
slave to one technique, excluding all others.

5. Be absolutely sure that the program does what it
is supposed to do and nothing more.

6. A successful test run does not insure that the pro-
gram will run to completion with actual data. Actual
data may be too large for the storage area assigned to
it, too slow to be properly processed by the program,
or may not be in the planned data format.

Input/Output Control Systems

While macro instructions save much labor, the prob-
lem of organizing input/output operations in a complex
application could still involve considerable work on the
part of even the most expert programmer. From a
standpoint of simplicity, it is far easier to work with
one record at a time; that is, read a record, process the
record, and then write the resulting record. However,
efficient utilization of tape or disk systems requires
that records be grouped both on input and output and
that the processing of records be scheduled to best use
the available computing time.
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To solve this and other problems, the concept of
input/output control systems aocs) was developed.
Basically, adding 10cs to a programming system makes
it possible for the programmer to think of his problem
as a simple sequential operation. Given a description
of how the input and output files are organized, the
processor associated with the 10cs takes care of all the
machine language coding necessary to read and write
tape, card, or disk storage records.

It is important to recognize that the 10cs statements,
which give the programmer the facility of using these
techniques for input/output programming, are part of
the total language for an individual system. The impor-
tance of these subroutines and their relatively recent
inclusion in programming systems have led many to
discuss them as a separate subject. There can be no
argument with this sort of discussion as long as we
keep in focus the entire programming problem and
the relative place of input/output control systems.

The use of an 10cs, then, enables the programmer to
divorce himself almost completely from the physical
requirements of the data, the recording media on
which the data are written, and the input/output de-
vices on which the media are mounted, and permits
him to concentrate most of his efforts upon the process-
ing of the data.

With disk storage attached to data processing sys-
tems, additional complexities of input/output pro-
gramming have been introduced. Because of the
random access nature of these devices, proper sched-
uling becomes even more important and more difficult.

Where a tape 10cs can use the serial nature of tape
files to call in the next block from the tape before it
is requested by the user’s program, this is not always
possible when using a disk. Here, the “next” record of
the file may be physically located anywhere in the
disk storage, and several “logical” records may share
the same physical disk record. Many techniques exist
for solving this problem. Some are quite simple; others
are very complicated. Several of the latter involve seg-
menting the user’s program into two or more subpro-
grams. Each subprogram can process one type of rec-
ord or locate the new record of a given type. The
10cs, then, can enter these subprograms in a more or
less random sequence, depending on which of many
records being sought on the file is found first. This is
actually a simple form of multiprogramming, where
several different logical programs perform their com-
putation in a sequence partially dictated by a master
scheduling routine.

Important features found in most of the input/output
control systems in use are listed below. No one 10cs
contains all features listed, but all of them utilize many
of the procedures. Features not in universal usage are
included to show the great versatility of these systems.
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Input/output control systems have grown past the
point of merely handling the normal input and output
requests and are becoming an integral part of the
entire operating system for a data processing system,
in some cases handling the manipulation of data inter-
nally as well as to or from the input/output devices.

Input/Output Scheduling

Some computers handle input/output in a serial,
synchronous fashion. No computing can be done until
an input/output operation is completed and, con-
versely, no 1/0 can be done while the central proc-
essor is engaged in computation. Other computers,
however, achieve simultaneous input/output and com-
puting operation by simply allowing the central
processor to continue with its operation while the
input/output device locates data or reads it into or
out of the main storage of the system. This simul-
taneous (asynchronous) input/output for all types of
input/output equipment helps greatly to prevent
unnecessarily delaying the central processor while
information is being read into or out of main storage.

The use of an 10cs, then, allows the programmer to
easily make use of the complex asynchronous input/
output devices that permit a modern data processing
system to operate efficiently.

Blocking and Deblocking of Records

High density tape or disk storage units become rela-
tively inefficient when used to record short blocks of in-
formation. When recording 80 character blocks, for
example, over three-quarters of the file contains no use-
ful information; instead, it is made up of end-of-record
gaps. By grouping together or blocking a number of
such short records, all but one of the useless end-of-
record gaps can be eliminated. The result is that a given
length of tape contains several times as much informa-
tion as before. Since the tape passes through the tape
unit at a fixed rate, the tape unit now spends more of
its time reading useful information and less time spac-
ing over end-of-record gaps. The end result is a higher
effective input/output data rate.

Note that this technique fails if the records are not
requested often enough to keep the tape unit in con-
tinuous operation. In this case, the speed of the cen-
tral processor becomes the limiting factor and the
program is said to be process limited. If the reverse
is true, the program is said to be input/output limited,
and blocking may be used to decrease the time re-
quired to read an average logical record.

Since input/output units usually require that the
entire physical block be read or written once trans-
mission is started (there is no way to stop tape mo-
tion in the middle of a block), it is desirable to collect



together all records to be written as one block and,
conversely, on input, to unpack or deblock such a
physical block into its many logical records and release
them to the processing program as requested by it.

Standard Error Correction and
Unusual Condition Routines
Many conditions met in performing input/output are
exceptions to the normal case of simply reading or
writing a record. The programmer does not wish to
concern himself with all of these eventualities each
time he makes an 1/0 request. For example, he should
not have to perform a test each time a file is refer-
enced to determine if the end of the file has been
reached. Doing so makes the infrequent end-of-file
condition require as much programming, perhaps, as
the normal reading of the record. Many unusual or
exceptional conditions are of a general nature and, as
such, can be handled by common routines within an
10CS.

Listed below are a few of the exceptional conditions
detected or handled by input/output control systems:

ERROR CORRECTION PROCEDURES

If transmission to or from an input/output device is
not successful the first time it is attempted, cerfain
techniques can be used to attempt to clear the failure
and allow the program to continue uninterrupted. Such
standard error correction routines might involve an
attempt to erase a record recorded incorrectly on tape
and to rewrite the record correctly. Obviously, if the
rewrite is successful, the programmer need not be con-
cerned and need not provide additional instructions to
handle the resulc.

If the repeated erase and rewrite are not successful
in clearing the failure, only then does the machine
operator or the program need to be informed of the
uncorrectable error., Thus, most errors can be auto-
matically corrected without any additional program-
ming being required.

END-OF-REEL AND END-OF-FILE PROCEDURES

When all data records on a single reel of tape are
processed, the tape is said to be at end-of-reel. If, in
addition, all records of the file, which can consist of
more than one reel, are processed, the file is said to be
at end-of-file. Obviously, if an end-of-file condition is
met, the processing of that file is complete and the
user’s program must be informed of this fact.

IMPROPER LENGTH RECORD PROCEDURES

If a record is read that, through malfunction or pro-
gramming error, is not of correct length, this condi-
tion must be detected and corrective action taken.

If the error is such that the system cannot continue
processing the current job, automatic transition to the
next job can be initiated or the system may be stopped
after informing the operator of the nature of the error.
In some cases, it is enough to inform the user’s pro-
gram of the condition and allow it to make the deci-
sion as to how the condition is to be handled.

Tape Labeling

The maintenance of a large library of tapes containing
data costing thousands of dollars to generate imposes
a large responsibility of preserving the integrity of the
data. A careless operator, who inadvertently mounts
a master tape containing valuable data and allows the
tape to be written upon, can cause almost complete
collapse of the application using this master tape
(writing on tape automatically erases previously re-
corded information ).

To insure accurate library maintenance, a technique
of tape labeling has been developed. This technique
consists of recording, as the first block of information
on each reel, a header label containing information
that uniquely identifies the reel to the user’s program
or the 1ocs label checking routine. By comparing the
desired reel identification against the information re-
corded on the reel, correct reel mounting can be in-
sured and file integrity preserved.
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IBM 7040/7044 Programming Systems Programs

The 1BM 7040/7044 Operating System aBsys) is an
integrated set of systems, coordinated by the iBsys
Basic Monitor and using the 7040/7044 Input/Output
Control System. The basic monitor provides continuous
operation during a sequence of jobs, each of which
might involve a different system. The systems that
work with the Basic Monitor include:
IBEDT A systems library editor that maintains the sys-
tem library.
10cs A control system for efficient scheduling of input
and output.
IBSRT A generalized sorting program to sort and merge
data.
IBJoB A processor program containing the following
components:
1BjoB Monitor: Supervises the execution of the com-
pilers, assembly program, and loader.
1BLDR Loader: Processes and combines programs pro-
duced by 1BMAP to form one binary object program,
1BLIB Subroutine Library: Contains routines that will
be loaded if required for object program generation.
1BMAP Macro Assembly Program: Processes pro-
grams written in the map language (a machine-
oriented language with macro facilities) and the
internal language programs produced by the cosoL
and FORTRAN compilers. 1BMAP produces from each
compilation a binary program deck that retains
enough symbolic content to enable communication
with previously compiled program decks.
1BFTC FORTRAN Compiler: Processes programs writ-
ten in the FORTRAN 1v language (a scientifically ori-
ented language) and produces input to 1BMAP.
1BcBC coBoL Compiler: Processes programs written
in the coBoL language (a commercially oriented
language) and produces input to 1BMAP.

Figure 41 shows the relationship between 1Bsys op-
erating system components. The input/output control
system aocs) and the 1Bsrt, 1BjoB, and 1BEDT monitors
communicate directly with the basic monitor. After
control is taken by 1BsrT, 1BjOB, or 1BEDT, the individual
monitor of that component controls the system until
a new control card is encountered.

The 1BM 7040/7044 Operating System contributes to
the flexibility and economy of the computer installa-
tion by:

1. Significantly reducing machine time and human
handling when processing a stack of jobs. Specifically,
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the system reduces the number of tape reel changes,
provides a convenient method of updating and modify-
ing all system programs, allows storing all systems pro-
grams in one storage device, makes possible continuous
machine operation with a minimum of operator inter-
vention, and uses control cards to specify input/output
devices available to the basic monitor.

2. Providing for adaptation of 1BM programming sys-
tems to a wide range of input/output devices. This
enables a particular installation to gain immediate
benefits by the addition of new input/output devices
according to its requirements. An installation need not
be card, tape, or disk oriented.

3. Allowing the user to maintain up-to-date source
language statements of his jobs by modifying only seg-
ments of a program in FORTRAN or COBOL language. A
small section of a program may be re-compiled with-
out the necessity of re-compiling the whole program.

Figure 42 shows the operation of the 18joB Processor
on source language programs of different types.

The operation of the 18M Operating System aBsys
is automatic; once an input reel is mounted it should
not be necessary for the computer to be idle until the
output reel is dismounted, provided enough input/
output devices are available. It should not be necessary
for the operator to take any action other than dismount-
ing unloaded reels and replacing them with reels to
be used later in the job or on succeeding jobs.

The operation of each phase of 1Bsys is directed by
control cards, but the programmer has to use only the

IBSYS
Basic Monitor 10Cs
IBSRT 1BJOB IBEDT
Monitor Monitor Monitor
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Figure 41. 1Bsys Operating System Components
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Figure 42. 1BjoB Processor Flow Chart, Source Programs

parts of the operating system that apply to his current
job. Basic monitor control cards are ordinarily not
used by the programmer; they are the concern of the
machine operator. Thus, the programmer concerns
himself with a comparatively small number of control
cards to run any one job.

Over-all Operation

The basic monitor aBsys) acts as an intersystem moni-
tor that calls the appropriate submonitor according to
control card specifications. A portion of 1Bsys remains
in core storage at all times and permits return of con-
trol to the basic monitor, reference to the input/output
control system, and loading of the programming sys-
tems into core storage. This portion of 1Bsys contains
a set of common system routines and subroutines and
a communications region where common information
shared by the programming systems is maintained.

A supervisory portion of the basic monitor is called
in when required to transfer control between system
monitors, to initialize the first portion of 1Bsys, to
change the machine environment, and to assign exter-
nal storage devices to logical input/output functions.

Figure 43 shows a typical input to the 1Bsys operating
system. The input consists of a data card (handled

by the basic monitor), two jobs to be processed by
1BjoB, followed by the control cards for an 1BSRT ma-
chine run. The first job to be processed by 1BjOB is a
program consisting of two FORTRAN source decks, two
MAP source decks, a binary deck (from a previous com-
pilation ), and data cards. The second job is unspecified.

When the basic monitor (which is already in core
storage) encounters the siBjoB control card, it transfers
program control to the 1BjoB Monitor. The $ symbol
specifies that this card is a control card. The siBjoB
card is recognized by the 1BjoB monitor, as well as by
the basic monitor, and indicates the beginning of a
new job. Thus, the 1BjoB monitor will supervise job-to-
job transition until it encounters a siBsys control card,
which indicates that the next operation is not within
1BJOB’s operating scope. When this occurs, program
control is returned to the basic monitor.

When the basic monitor encounters a siBsrr control
card, it calls in the sort monitor (supervisory portion
of the generalized sorting program) and transfers con-
trol to it. The sort monitor controls execution of the
sort, according to specifications on the control card.
Successive sorting and merging jobs can be handled by
the sort monitor without relinquishing control to the
basic monitor. Control is returned to the 1Bsys basic
monitor when the next smBsys control card is en-
countered.
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Figure 43. Typical Input for the 1Bsys Operating System

Macro Assembly Program

The 1BM 7040/7044 Macro Assembly Program asmap)
is a versatile, general purpose assembler for the 7040
and 7044 Data Processing Systems. It accepts source
language statements written in the Map language.

A map symbolic instruction consists of four major
divisions: location field, operation field, variable field,
and comments field. A portion of the coding form used
is shown below.

Froblem 1
Coder Yoge]
. | Location omments ]
|
1 :2 5|7 (8
' (
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' ] \
..... _ b
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The location field normally contains a name that
other instructions may refer to when that instruction
is to be executed, the operation field contains the
machine operation (or pseudo-operation), and the
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variable field normally contains the location of the
operand. The comments field is for the convenience
of the programmer and plays no part in directing the
computer.

Symbolic instructions, expressed in the map lan-
guage, are punched one instruction per card. The card
format is:

CARD COLUMNS USE
1 through 6 Location Field: May be blank.
7 Not used, must always be blank.

8 through 14 Operation Field: Starts in column 8 and is
three to seven characters long. A blank col-
umn must separate the operation and vari-

able fields.

Variable Field: May begin in column 12 (if
operation field is three characters), but may
not begin after column 16. Each user nor-
mally assigns a fixed column as the begin-
ning of the variable field for all instructions.
The variable and comment fields must be
separated by a blank column.

Comments Field: Follows the blank column
after the variable field and may extend up
to column 71.

Normally used for identification of the pro-
gram being assembled.

12 through 71

17 through 71

73 through 80



Macro Assembly Program Language

In writing symbolic instructions, the programmer is
concerned with building expressions to represent the
address, tag, and decrement portions of the machine
instruction.

The smallest component of an expression is an ele-
ment, which is either a single symbol or a single inte-
ger. When elements are combined with operators
(symbols representing machine operations) a term is
formed. A term may consist of a single element, two
elements separated by an operator such as the * or /
character (* represents multiply and / is the divide
character), three elements separated by two operators,
and so on. A term must begin with an element and
end with an element. Two operators or two elements
in succession are not allowed.

In addition to being an operator, the asterisk is also
an element. In this use, the asterisk stands for the loca-
tion of the instruction in which it appears. Thus, the
element * will have different values in different instruc-
tions. There is no ambiguity between this use of the
asterisk and its use to denote multiplication, because
the position of the asterisk always makes clear what
is meant.

An expression is made up of terms separated by the
+ or — operators, ( + means add and — means
subtract). An expression may consist of a single term,
two terms separated by + or —, three terms sepa-
rated by two operators, and so on. The programmer
may not write two operators in succession or two
terms in succession, but an expression may begin with
+ or —.

An expression is terminated by a comma symbol or,
for the last expression of a statement, by a blank
column. A negative expression is represented in 2s
complement notation (See “Indexing Concept”). A
null expression is an expression that is indicated as
being present but has no value. It can occur:

1. When an assembly scan encounters a comma
rather than the first element of an expression. The
comma shows that a null expression is indicated. Two
consecutive commas indicate a null expression, or a
comma as the first character of the variable field indi-
cates that the first expression is null.

2. When a scan encounters a blank following a
comma. This character combination indicates that the
last expression of the statement is a null expression.

Operation Codes

The 1BMAP program recognizes all 7040/7044 machine
operation codes. Instructions consist of:

1. A symbol or blanks in the location field.

2. The appropriate operation code in the operation

field.

3. Address, tag, and decrement {or count) subfields
appearing in the variable field, each of which may be
a symbolic expression.

Literals

Often a programmer wishes to refer to a word con-
taining a constant. For example, if he wishes to add
the number 1 to the contents of the accumulator, he
must have somewhere in storage a word containing the
number 1. Pseudo-operations are provided to allow in-
troduction of data words and constants into the pro-
gram, but often this introduction is more easily accom-
plished by the use of a literal.

The appearance of a literal directs the assembler to
prepare a constant equivalent in value to the contents
of the literal subfield, store this constant in a location
at the end of the program, and replace the address field
of the instruction containing the literal with the address
of the constant thus generated. Three types of literals
are permitted: decimal, octal, and alphameric.

DECIMAL LITERALS

A decimal literal consists of the = symbol followed
by a decimal data item. For example, the instruction
MpY = —3 means “multiply the contents of the mQ by
the decimal number —3.” ( That is, multiply the con-
tents of the M@ by the contents of a storage location
that contains —3.)

Three types of decimal data items are recognized:

Decimal Integer. A decimal integer is composed of
one or more digits, and may be preceded by a plus or
minus sign. A decimal integer is distinguished from
other types of decimal data items by the absence of the
letter B, the letter E, and the decimal point.

Floating-Point Number. A floating-point number has
two components:

1. The principal part is a decimal number written
with a decimal point. The decimal point may
appear at the beginning, at the end, or within
the principal part, or it may be omitted if the
exponent part is present. If omitted, the decimal
point is assumed to be at the right end of the
principal part.

2. The exponent part consists of the letter E fol-
lowed by a signed or unsigned decimal integer.
The exponent part must follow the principal
part; it may be omitted if the principal part
contains a decimal point.

A floating-point number is distinguished from a deci-
mal integer by the presence of either a decimal point
or the letter E (or both). It is distinguished from a
fixed-point number by the absence of the letter B.

Programming Systems Programs 39



Fixed-point number. A fixed-point number has three
components:

1. The principal part is a decimal number written
with or without a decimal point. The decimal
point may appear at the beginning, at the end,
or within the principal part, or it may be
omitted. If omitted, the decimal point is as-
sumed to be at the right end of the principal
part.

2. The exponent part consists of the letter E fol-
lowed by a signed or unsigned decimal integer.
The exponent part may be absent; if present,
it must follow the principal part, and may pre-
cede or follow the binary-place part.

3. The binary-place part consists of the letter B
followed by a signed or unsigned decimal in-
teger. The binary-place part must be present
in a fixed-point number and must follow the
principal part. If the number has an exponent
part, the binary-place part may precede or fol-
low the exponent part. A fixed-point number is
distinguished from other types of decimal data
items by the presence of the letter B.

Literals are considered to be single precision num-
bers unless two E’s (Ep) appear in the exponent of a
floating-point number. Double precision numbers are
stored in consecutive storage locations with the high-
order part first. (See “Double Precision Floating Point
Instructions.”)

OCTAL LITERALS

An octal literal consists of the character =, followed
by the letter O, followed by a signed or unsigned octal
integer. For example, the instruction App =037 means
“add to the contents of the accumulator the contents
of a core storage location that has 000000000037,.”

ALPHAMERIC LITERALS

An alphameric literal consists of the character =, fol-
lowed by the letter H, followed by six Bcp characters.
For example, the instruction 1@ =H12aB would load
into the MQ the contents of a core location that con-
tains 0102212260605. When fewer than six Bcp charac-
ters are specified, the unspecified characters are as-
sumed to be Bcp blank characters.

Data-Generating Operations

These pseudo-operations (oct, pEc, and Bci) may be
used to introduce words of data into a program during
assembly. Numbers introduced in this way are often
referred to as constants. The pseudo-operation, pup,
causes a sequence of symbolic instructions to be dupli-
cated a specified number of times. pupr is often used
with vFD to generate tables of data.
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OCT — OCTAL DATA

The oct pseudo-operation is used to create binary data
expressed in octal form. It consists of a symbol or
blanks in the location field, the operation code ocr in
the operation field, and one or more subfields, each
containing a signed or unsigned octal integer, in the
variable field. The symbol in the location field is the
address of the pseudo-operation.

The subfields of the variable field are separated by
commas; any number of subfields is permissible, but
the last subfield must be terminated by a blank.

The effect of this operation is to convert each sub-
field to a binary word; these words are assigned to
successively higher storage locations as the variable
field is processed from left to right. If there is a symbol
in the location field, it refers to the first word of data
generated.

An example of the data generating function of the
oct pseudo-operation is:

OCT —23456777777, 63, 47, 5,
generates data in core locations as follows:

LOCATION DATA

5000 —23456777777
5001 400000000063
5002 400000000047
5003 400000000005
5004 400000000000

DEC — DECIMAL DATA

The pEC pseudo-operation is used to create words of
data expressed as decimal numbers. pEc is identical to
ocr, except that the subfields of the variable field are
taken to be decimal data items. It consists of a symbol
or blanks in the location field, the operation code pEc
in the operation field, and one or more subfields, each
containing a decimal data item, in the variable field.

The subfields of the variable field are separated by
commas; any number of subfields is permissible, but
the last subfield must be terminated by a blank.

The effect of this operation is to convert each sub-
field to a binary word; these words are stored in suc-
cessively higher storage locations as the variable field
is processed from left to right. If there is a symbol
in the location field, it refers to the first word of data
generated.

An example of the data generating function of the
pEC pseudo-operation is:

DEC 15, —24,9,107,,

LOCATION DATA

1000 400000000017
1001 —00000000030
1002 400000000011
1003  +00000000153
1004 400000000000
1005 400000000000



BCI — BINARY CODED INFORMATION

The Bcr pseudo-operation is used to create binary
coded character data. Each data word generated by
this pseudo-operation consists of six 6-bit characters
in standard Bcp character code. It consists of a symbol
or blank in the location field, the operation code BcI
in the operation field, two subfields in the variable field
— the count subfield, which consists of an integer fol-
lowed by a comma (a null expression specifies a count
of ten), and the data subfield, whose length is deter-
mined by the count subfield.

The number in the count subfield specifies the num-
ber of six-character words to be generated; the number
of characters in the data subfield is the number in the
count subfield multiplied by six. Since the count sub-
field determines the total length of the variable field,
the comments field is assumed to begin immediately
following the end of the data subfield, and no blank
character is needed to separate the comments field
from the variable field.

Thus, the Bar operation introduces data words into
consecutive locations, the number of words generated
being equal to the number in the count subfield. If
there is a symbol in the location field, it refers to the
first word of data generated. An example of the data
generating function of the Bcr pseudo-operation is:

BCI 2, BCD MESSAGE COMMENT

LOCATION DATA

0030 222324604425
0031 626221272560

Storage Allocation Operations

The following operations are used to allocate core stor-
age space:

BSS — BLOCK STARTING WITH SYMBOL

The operation consists of a symbol or blanks in the
location field, the operation code Bss in the operation
field, and any expression in the variable field.

The effect of this operation is to reserve a specified
amount of storage. This is achieved by increasing the
value of the current location counter by the assigned
value of the variable field expression. If there is a
symbol in the location field, its definition is taken to
be the value of the location counter before the increase.

BES — BLOCK ENDING WITH SYMBOL

This operation functions exactly like Bss, except that
a symbol in the location field is defined after the loca-
tion counter is increased.

BSS AND BES EXAMPLES

An example of reserved storage locations generated
with the Bss pseudo-operation is:

TRA START
BSS 4
DEC 97

With the TRa instruction located at 1000, the Bss re-
serves four locations, and the pEc is then located at
1005:

1000 TRA START
1001 BSS 4
1005 DEC 97

In a similar fashion, the Bes pseudo-operation appear-
ing in the instruction string:

TRA START
BES 4
DEC 97
gives the following result:
1000 TRA START

1005 BES 4
1005 DEC 97

Symbol Defining Operations

The following operations are .declarative in nature.
They are used to define symbols.

EQU — EQUAL

The operation consists of a symbol in the location field,
the operation code EQU in the operation field, and any
expression in the variable field.

The effect of this operation is to give the location
field symbol the same definition as the variable field
expression.

As an example, consider the use of the EQu pseudo-
operation in the following instruction string:

CLA  TMP1
FSTL  EQU *
ADD  TMP2

If the cLa instruction is assigned to location 102, the
symbol FstL would be defined as a symbol, which can
be relocated in the program, whose value is 103; the
add instruction would then be assigned to location 103.
Note that the occurrence of the QU between two in-
structions does not alter the sequence of locations as-
signed by the assembler.

MAX — MAXIMUM

The Max pseudo-operation defines the symbol in the
location field to have the value of the maximum of the
expressions in the variable field. The operation consists
of a symbol in the location field, the operation code
MAX in the operation field, and a series of expressions,
separated by commas, in the variable field.
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MIN — MINIMUM

This pseudo-operation is the opposite of MAX; it uses
the expression with the lowest value definition.

MAX AND MIN EXAMPLE

As an example of Mmax and MIN use, assume that records
of three different sizes are to be used in a program.
The routine is:

LOCATION OPERATION ADDRESS, TAG COMMENT
SIZE1 EQU XX
SIZE2 EQU xx  Addresses to be supplied by user.
SIZE3 EQU XX
BUFSZ MAX SIZE1, SIZE2, SIZE3

BUFFR BES BUFSZ

ERRSZ MIN SIZE1-1, SIZE2-1, SIZE3-1

The max pseudo-operation sets the maximum size
of the records and may be referred to by the BEs to
reserve enough storage space. The MmN may then be
used to find records that are too small and are, there-
fore, errors.

BOOL — BOOLEAN

The BooL pseudo-operation consists of a symbol in the
location field, the operation code BooL in the operation
field, and an unsigned octal integer in the variable
field. The symbol in the location field will be defined
as being equal to the integer in the variable field. For
example, in the statement:

START BOOL 1200
START is defined as being equal to 1200;.

Location Counter Operations

The programmer may use an indefinite number of lo-
cation counters, represented by symbols of his choice.
The operations use, BEGIN, and ORG control these
counters.

USE

The operation consists of blanks in the location field,
the operation code use in the operation field, and a
single symbol or blank in the variable field.

The effect of this operation is to place succeeding
cards under control of the location counter represented
by the variable field symbol. The location counter in
control at the time of the usk is suspended at its cur-
rent value, and will be continued from this value if
reactivated by another use. If no usk is given, the in-
struction will be assembled using the location counter
represented by blanks.

LOCATION OPERATION ADDRESS, TAG

FINAL
USE A
BEGIN A, FINAL + 47
CLA
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Instructions preceding use are under machine loca-
tion counter control. When the UsE is encountered, its
address (A) is used to set up a different control
counter. The BEGIN operation’s address of A is modified
by riNaL+47. This means that the location of the cLa
instruction is 47 locations after the location of rFINAL.
Succeeding instructions are located at cLa+1, cLa+2,
cLA +3, etc., until location control is changed to another
location counter.

BEGIN

The operation consists of blanks in the location field,
the operation code BecIN in the operation field, and
two subfields in the variable field — the first subfield is
a location counter symbol, followed by a comma, and
the second is any expression. The definition of the ex-
pression in the variable field is used as the initial def-
inition for the given location counter.

If no BEGIN is given for the blank location counter,
its initial definition is taken to be 0. If no BEGIN is given
for the nth location counter (considered in location
counter order), its initial value is taken to be one more
than the last (not necessarily the highest) value
reached by the n—1Ist location counter. A BEGIN may
appear anywhere in the program (under control of any
location counter).

ORG — ORIGIN

The operation consists of a symbol or blanks in the
location field, the operation code orc in the operation
field, and any expression in the variable field.

The orc operation performs the following functions:

1. The current location counter is reset to the defi-
nition of the expression in the variable field.

2. The symbol in the location field, if any, is given
this definition. If, in a relocatable assembly, the vari-
able field consists entirely of numbers, the orc will be
taken as absolute. Thus:

ORG 5
will origin at absolute location 5. To origin at the fifth
word from the beginning of the program (that is, for
the field to be relocatable), one must write:

ORG START + 4
where sTART is the symbol attached to the first program
location.

END

The END operation is used to signal the end of the
symbolic deck. It consists of blanks in the location
field, the operation code EnD in the operation field, and
a symbolic expression in the variable field. In both
absolute and relocatable assemblies, this pseudo-opera-
tion terminates (ends) the assembly. The Enp instruc-
tion must be present and must be the last card in the
symbolic card deck being assembled.



Instruction Specifications

A symbolic instruction consists of four major divisions:
location field, operation field, variable field, and com-
ments field. The location field normally contains a name
by which other instructions may refer to the instruction
named. The operation field contains the machine opera-
tion or pseudo-operation, and the variable field nor-
mally contains the location of the operand. The com-
ments field exists for the convenience of the program-
mer and plays no part in directing the computer.

Instruction Descriptions and Use

Symbolic instructions are printed on the coding form
(Figure 44) or are punched on a card in the following
format (one instruction to a line or to a card):

The Location Field, which may be blank, occupies
columns 1-6.

Column 7 is always blank.

The Operation Field begins in column 8 and is from
three to seven characters long.

A Blank Column separates the operation field and
the variable field, which may begin in column 12 but
may not begin after column 16.

Symbolic Coding Form

Problem
oder Date Page of
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Figure 44. Symbolic Coding Form
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The Variable Field does not normally extend beyond
column 71 and must be followed by a blank column
to separate it from the comments field.

The Comments Field follows the variable field and
extends through column 80. If there is no variable field,
the comments field may not begin before column 17.

Columns 73-80 are normally used for identification
and serialization.

This section defines the computer instructions. The
instruction format, shown in mar language, appears
with each instruction description. Preceding the format
is the full name of the instruction. For example, the
first instruction described appears:

Clear and Add — CLA Y, T

This means that the instruction is a clear and add in-
struction with its operation symbolically expressed as
cLA. The number of spaces between the operation part
«cLa> and the variable field «v, 1 is four on the coding
form. This gives the possible total of seven symbolic
characters for the operation code. If the operation code
were four characters long, only three spaces would
separate the code from the variable field.

The comma (,) symbol in the variable field may be
seen in the field heading in Figure 44. The Y symbol
is used when the instruction requires an address part.
A comma follows the Y symbol if indexing (specified
by the T symbol) is to be used with the instruction.
A second comma symbol follows the T symbol if decre-
menting or counting (specified by the V symbol) is a
part of the instruction. For example, the variable length
multiply instruction format is vLm v, T, v. If an in-
struction does not use indexing but does use the count
field, the T symbol is omitted and the instruction for-
mat becomes: vLM ¥, , v. Note that no blank spaces
occur in the variable field.

Instructions using indirect addressing are designated
by use of the (*) asterisk symbol immediately follow-
ing the operation code. For example, a normal add
instruction is expressed as ApD Y, T; an add instruc-
tion using indirect addressing is expressed as
ADD* Y, T.

Instruction descriptions use special terms and abbre-
viations:

1. ccv) denotes the contents of storage location Y,
where cao, comQ), and csr) denote the contents of
the accumulator, multiplier-quotient, and storage reg-
isters. For example, coMq@yg, ;.17 is read “the contents of
positions S, 1 through 17 of the MQ register.” When
subscripts are not used, the entire register is implied.
For example, ccac) denotes the contents of accumu-
lator positions S, Q, P, 1-35, inclusive.

2. When a register or part of a register, or a core
storage location is cleared, the cleared part is reset to
ZEeros.

44

3. The negative of a number is the number with its
sign position reversed.

4. The magnitude of a number is the number with
its sign position considered positive (a zero in position
S corresponds to a positive sign ).

5. In the alphabetic code of the instruction:

a. The letter Q designates the mQ register.

b. The letter X in the second or third position des-
ignates use of an index register.

c¢. The first letter of all transfer instructions is a T.

Fixed-Point Arithmetic Instructions

When dealing with fixed-point numbers, the first of the
36 data bits contains the algebraic sign of that number.
A 0 signifies a positive number and a 1 signifies a nega-
tive number. The remaining 35 positions contain the
magnitude of the number. When fixed-point instruc-
tions are used, the programmer must decide where the
point is to be located. On the computer, the point that
separates the integral part from the fraction part is
termed a binary point.

Before any arithmetic operations can be executed,
one of the numbers involved in the operation must be
taken from core storage and placed in the appropriate
cpu register. The arithmetic instruction is then given
and the second number is brought from core storage
and placed in the storage register.

The problem of A + B could be solved with two
instructions. The first would clear (or destroy) the
formed contents of the accumulator register and place
the first number in that register. The second would be
brought from core storage, placed in the storage regis-
ter, and then combined (or added) with the number
in the accumulator. The actual adding occurs in the
adders. When addition is complete, the result is placed
back in the accumulator ( which destroys the first num-
ber). The format of the first instruction (clear and
add) is shown to demonstrate relationship between
the symbols and the form. '

All succeeding instruction formats are shown with
spacing between the operation field and the variable
field. The location field is not shown.

Clear and Add — CLA YT

« | location Gperanion T TAddress, Tog, Decrement/ Count \
) !2 6|7 |8 ; i
I leca__ YT
IR N R
S S e —

The ca0 g, 1.35 (contents of the accumulator) are re-
placed with the ccv> (contents of the Y storage loca-
tion). P and Q of the ac are set to zeros and the
c(y> remain unchanged.



Add — ADD Y, T

The ccy> are algebraically added to the ccac). The re-
sulting sum is placed in the ac. The ccy» are unchanged.
Numbers of the same magnitude but different signs
give a zero result, whose sign is the same as the sign
of the original Ac. A carry from position 1 turns on the
ac overflow indicator.

To state the problem in greater detail, assume that
factor A is in core storage location 100 while factor B
is in location 101. The problem is then written:

CLA 100
ADD 101

If factor C (held in storage location 102) is added to
the problem, the formula becomes A + B + C and
the instructions are increased to:

CLA 100
ADD 101
ADD 102

After the result is obtained, it should be stored in
core storage so that it may be used later in the pro-
gram for further arithmetic operations or recorded on
an output device. A storage location is assigned by the
programmer to receive the result (assume location
500). The program instruction used to store the con-
tents of the accumulator register is:

Store — STO YT

The cac g, ;.35 replace the cov) and the cac) remain
unchanged. The program is then increased to:

CLA 100
ADD 101
ADD 102
STO 500

If the number to be placed in the accumulator (be-
fore the addition) has the wrong sign, a clear and sub-
tract «cLs) instruction may be used instead of the cra.

Clear and Subtract — CLS Y,T

The negative of the cy) replaces the ccaCg ;.35. Posi-
tions P and Q of the Ac are set to zero. The cy) are
unchanged. The negative of a number is that number
with its sign position reversed.

If the difference between the numbers A and B is
needed instead of the sum of these numbers, a sub-
tract (suB) instruction may be used instead of the abp
instruction.

Subtract — SUB YT

The cayy are algebraically subtracted from the cwac.
The difference replaces the ccac) and the cv) are un-
changed. As with the abp instruction, overflow is pos-
sible from position 1 of the ac to position P and from
P to Q, but carries from position Q are lost.

A combination of both arithmetic operations would
occur with the formula A + B — C and store the re-
sult at location 500, and would be written:

CLA 100
ADD 101
SUB 102
STO 500

Figure 45 shows a simplified flow chart for the crLa,

cLs, and caL instructions (discussed later).
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Figure 45. craA, cus, and caL Flow Chart

Figure 46 shows the flow chart for the app and sus
instructions. The terms complement and true form are
explained in the Complement Arithmetic section.

Problems

10. Write a program to solve: A+ B — C + D and
store the result at location E.

11. Write a program to solve: A — B + C — (D
— E) and store the result at location F.

Multiply and Divide Operations
The arithmetic operations multiply and divide are ac-
complished in much the same manner as with add or
subtract, except that the multiplier-quotient (mQ) regis-
ter is used in addition to the accumulator register and
the adders.

With a multiply operation, the multiplier factor must
be placed in the MQ register before execution of the
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Figure 46. app and sus Flow Chart

actual multiply instruction. This is accomplished with
a load multiplier-quotient (b instruction.

Load Multiplier-Quotient — LDQ Y, T

The cv) are loaded into the MQ and the ccy) are un-
changed. After the MQ register is loaded with the multi-
plier, the multiply instruction may be executed.

Multiply — MPY Y,T

The cy) are multiplied by the ca@). The 35 most
significant (high order) bits of the 70-bit product re-
place the cwc)ias, and the least significant (low
order) bits replace the caMQ)i3s. CACqqp positions
are cleared to zero. The signs of the ac and Mq are set
to the algebraic sign of the product. The number of
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bits to the right of the binary point of the first factor
added to the number of bits to the right of the binary
point of the second factor give the total number of bits
to the right of the binary point in the product. The
c(y) are unchanged.

The programmer must know the size of the product
that is possible for his problem. If this product cannot
exceed 35 bits, the complete product will be in the Mo
at the end of the mpy. In this case, a store multiplier-
quotient (sTQ> instruction may be used to get the
product into core storage.

Figure 47 shows the flow chart for the mpy, viMm,
and vMa instructions.

Store MQ — STQ YT
This instruction places the ca@) into the location
specified by Y. The ccm) remain unchanged.

For the formula A X B and store the product at C,
the program may be written:

1 location Operation [~ | Address, Tog, Decrement/ Caunt R
1 !2 &7 8 J :L

L g . A

.4 ... | MPY__ __|.B

IR 5T ___|ic __|

If the possibility of a product with more than 35 bits
exists, the higher-order bits of the product will end
up in the accumulator. The programmer may store the
high-order product in one storage location (using the
1O instruction) and the low-order product in another
location (using the stQ), or he may adjust the entire
product with shift and test instructions explained later.

The execution of a multiply instruction occurs as
follows and assumes that the mMQ register has been
loaded with the multiplier.

1. The ccy) are tested and, if the magnitude of the
c is zero, the ccac and com) are cleared to zero.
In this case, step 2 is skipped and step 3 occurs.

2. If the magnitude of the cy) is not zero, the
C(AC),p,1.35 are cleared to zero and the multiplication
proceeds.

a. If MQy5 contains a 1 bit, the ccyy;.35 are added
to the ccac). The cACq p.1.35 and the coMQy.g5
are then shifted right one position.

b. If MQs5 contains a 0 bit, the cacqp,1.35 and
C(MQ)y.35 are shifted right one position.

3. If the signs of the Mq and location Y are the same,
the signs of the ac and MQ are made positive. If the
signs differ, the signs of the ac and mq are made
negative.

As an example, assume that the ac, Mo, and location
Y are four bits long instead of 35. The following se-
quence of steps would occur during a multiplication.
The number 15 (13,9) is in the Mm@ (multiplier) and
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Figure 47. Mpy, viM, and vMa Flow Chart

the ccy) are 6 (multiplicand). Figure 48 shows the
actual bit configuration in each register (after the step
is complete).

Problems

12. The following quantities are stored in the sym-
bolic storage locations as fields of a pay record. Com-
pute net pay and store the amount in PYRCD+4. All
quantities are assumed to be plus, and results are not

larger than 35 bits.

SYMBOLIC LOCATION FIELD NAME
PYRCD Employee’s Number
PYRCD + 1 Base Pay
PYRCD + 2 Overtime Pay
PYRCD + 3 Deductions
PYRCD + 4 Net Pay (to be computed)

Contents of
AC MQ Y

K

Address through
the Adders to
Storage

!

Address of Data
is Located

!

Data Routed to
the Storage

Shift
Ctr

Register
=] =0
Add Storage Do Not Add SR
Register to AC to Accumulator
Take Result Shift AC and
to AC MQ Right One
Place
|

Set Signs

Y

Operation
Complete

Comments

0000 1101 0110

0110 1101
0011 0110
0001 1011

o111 1011
0011 1101
1001 1101
0100 1110

Initial contents of the registers. MQ (35) ready to
be tested.

C (Y) added to AC since MQ (35) isa 1.

C (AC,MQ) shifted right one place. Test MQ (35).

No addition, since MQ (35) contained a 0.

C (AC, MQ) again shifted right one place and
MQ (35) is tested.

C (Y) added since MQ {35) isa 1.

C (AC,MQ) shifted right and MQ (35) tested.

C (Y) added since MQ (35) isa 1.

C (AC,MQ) shifted right. At this point, the shift
counter (set initially to a binary 4 in this example)
has been reduced to 0 and the process stops with
the eight=bit product in the AC and MQ registers.
Note: In normal machine operation, the shift
counter is set to a binary 43 (which is equal to 35
decimal shifts) automatically.

Figure 48. Multiply Sample Example
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13. The following quantities are stored in storage
locations as fields of a parts inventory record. Compute
stock balance and availability.

SYMBOLIC LOCATION FIELD NAME

PRTIN Receipts ( + Sign)

PRTIN + 1 Withdrawals ( — Sign)
PRTIN + 2 Adjustments ( + Sign)

PRTIN + 3 On Order ( + Sign)

PRTIN + 4 Reserved for Service / + Sign)

Stock Balance = receipts — withdrawals + adjustments
Availability = stock balance, + on order, ~ reserved for service

Store Zero — STZ YT

The store zero instruction may be used to change the
contents of an entire core storage location to zeros.
The cov) are replaced by 0 bits (sign of Y is made

plus).

Variable Length Arithmetic Instructions

Three variable length arithmetic instructions are pro-
vided. Positions 12-17 of these instructions designate
a count (V) field. It is possible to express a count value
up to 77 with this field. However, counts of 603 or
larger result in placing 1 bits in positions 12 and 13 of
the instruction and cause indirect addressing to occur.
Counts larger than 574 should not be used with these
instructions.

The contents of the V field are placed in the shift
counter instead of the 435 (35;9) normally placed there
during a multiply or divide instruction. This means
that the time required to complete any variable length
instruction is a direct result of the V field contents. If
the count field of any of these instructions is zero, the
instruction is treated as a no-operation and the com-
puter takes the next sequential instruction and pro-
ceeds from there.

Variable Length Multiply — VLM Y1V

This instruction multiplies the ccv) by the V low-order
bits of the Mq register to produce a 35 plus V bit prod-
“uct. The 35 most significant bits of the product replace
the cacyy.35, and the least significant bits replace the
cMQ)r.y. The ccacy @ and p positions are set to zero.
The remaining 35 minus V positions of the MQ contain
the original 35 minus V high-order bits of the Mq.
The signs of the ac and Mq are set to the algebraic
sign of the product. If V is zero, the vLM is treated as a
no-operation and the computer takes the next se-
quential instruction and proceeds from there. If V is
not zero, but the c«v) are zero, the ccac) and como) are
set to zeros. If the M@ and Y signs are the same, the
ac and MQ signs are made positive; if the Mo and Y
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signs differ, the ac and MQ signs are made negative.
If V contains 1 bits in positions 12 and 13, indirect ad-
dressing occurs. Counts (V) larger than 35, are mean-
ingless.

Variable Length Multiply and
Accumulate — VMA YTV
This instruction is similar to the vLM instruction ex-
cept that the cac)q, p, 1.35 are not cleared before the
multiplication begins. Thus, the vma generates the sum
of the magnitude of the cacrq, ¢, 135 and the magni-
tude of 35 + V bit product. If ac positions p and ¢
originally contain 1 bits, a carry may be lost during
the accumulation, and the overflow indicator will not
be turned on. The V least significant bits of the prod-
uct replace the ccMQ);y. The 36 most significant bits
replace the cACp 1.35; ACq is set to zero. The remain-
ing 35 minus V positions of the MQ contain the original
35 minus V high-order bits of the MQ. The signs of the
Ac and MQ are set to the algebraic sign of the product.
If V is initially zero, the instruction is treated as a
no-operation and the computer takes the next sequen-
tial instruction. If V is not zero, but the ccy> are zero,
the instruction is interpreted as an Lrs instruction of
V places and the signs of the ac and Mq are set to the
sign of the product of the ccv) and the original cao.
Figure 49 shows register content, both before and
after a variable length multiply operation.

AC MQ

Before 1
Multiplication [ | L : l
[ ————
! 3 CBit Multiplier 35

1 | ——

35 - C Unused Bits of MQ —]

After |
Multiplication L

35 + C Bit Product

Figure 49. Variable Length Multiply Formats

Divide or Proceed — DVP YT

The divide operation assumes prior loading of the
MQ and Ac registers with the dividend. Maximum pos-
sible dividend is 70 bits. Dividend loading may be ac-
complished with a LpQ instruction if the dividend is
35 bits or less and it is known that the entire ac is
set to zero, or with a cLa and a oo if the dividend ex-
ceeds 35 bits.

The ctaC)gp,1.35 and the caMQy a5 are treated as a
70-bit dividend, plus sign, and the ccv) as a 35-bit divi-
sor. If the magnitude of cov) is greater than the



magnitude of ccao, division takes place. A 35-bit
quotient replaces the cavQyy.35 and the remainder re-
places the ccac;.35. The MQ sign is the algebraic sign
of the quotient, and the ac sign is the sign of the
dividend. If the magnitude of the ccy) is less than .or
equal to the magnitude of the cao), division does not
take place, the divide check indicator is turned on, and
the computer program proceeds to the next sequential
instruction. The c(y> are unchanged.

Execution of the divide instruction occurs as fol-
lows and assumes prior loading of the dividend.

1. The ccac and MQ»,.35 are shifted left one position,
creating a zero in MQss.

2. If the magnitude of the ccy» is less than or equal
to the magnitude of ccac, the magnitude of coy is
subtracted from the magnitude of cac) and a 1 bit
replaces the 0 bit in MQss. Step 1 is then repeated.

3. If the magnitude of the cv) is greater than the
magnitude of the cac, the computer returns to step 1.

These steps occur 35 times for each division instruc-
tion. As an example, again assume that the computer
works with only 4 bits. The problem is then 66 <+ 5. In
Figure 50, the binary numbers with each step repre-
sent the result after the completion of that step.

The programmer must remember the possibility of
a remainder after a divide instruction. He may decide
to disregard it, check for it and round the quotient if
a remainder exists, or use a sTo instruction to store
the remainder with a s1Q to store the quotient.

Variable Length Divide or Proceed — VDP YIV

The cAC)qp 1.35 and the camQ) ¢ are treated as the
dividend plus sign, and the cv are treated as a 35-bit

Contents of | Shift
AC M@ Y |Cir

Comments

0100 0010 0101 4 | initial contents. C (AC) are less than C (Y);

division takes place.

1000 0100 3 | C (AC and MQ) shifted left one place; C (AC)
greater than C (Y).

0011 0101 C (Y) subtracted from C (AC) and a | replaces
MQ (35).

0110 1010 2 | C (AC,MQ) shifted ieft one place; C (AC) greater
than C (Y).

0001 1011 C (Y) subtracted from C (AC) and o 1 replaces
MQ (35).

0011 0110 1 [ C (AC,MQ) shifted left one place; C (AC) less
than C (Y).

0110 1100 0 | C (AC,MQ) shifted left one place; C (AC) greater
than C (Y).

0001 1101 C (Y) subtracted from C (AC) and a 1 replaces

MQ(35). At this point, the shift counter {set to a
binary 4 in this case) has been reduced to 0 and
the quotient is complete in the MQ, with the
remainder in the AC. Note: In normal operation,
the shift counter would have been set to a binary
43 so that 35 decimal shifts could occur.

Figure 50. Divide Sample Example

divisor. A V bit quotient replaces the V low order posi-
tions of the MQ. The remainder replaces the cac, 35
and the 35 minus V high-order positions of the mq.
Figure 51 shows the flow chart for the pve and vor
instructions.

Problems

14. Write a program to solve:

AX* + BX* + %’5

and store the result in location ANS. All results are
assumed to be no more than 35 positions and whole
numbers.

15. X,, X,, Xs, X;, and X; are fractions in storage
locations X1, X2, X3, X4, and X5. Write a program
to solve:

X, X, X,
X, X,
and store the result in location XANS. Assume that X, >
Xy, X5 > X,, that results do not exceed 35 positions,
and that remainders (if any) are to be ignored.

Shifting Operations

Shift instructions are used to move the contents of the
accumulator and the MQ register either to the right
or the left of their original positions. Except for the
rotate MQ left instruction, zeros are automatically in-
serted in the vacated positions of a register. Thus, a
shift larger than the bit capacity of the register causes
the contents of the register to be replaced by zeros.

When a shift instruction is decoded during the I
cycle, the amount of the shift is determined by the con-
tents of bit positions 28-35 of the shift instruction. This
provides a maximum shift of 3775 places. Any number
larger than 377; is interpreted as modulo 400, which
means that, given any shift count, the actual number
of positions shifted with the instruction is the remain-
der after dividing the shift count by 400s.

When the contents of a register are shifted right, the
result is equivalent to dividing the original contents
by a power of 2. Likewise, shifting to the left is equiv-
alent to multiplying by a power of 2 (as long as no
significant bits are lost).

In the following description of shift instructions, the
number of positions to be shifted is specified by posi-
tions 28-35.

Accumulator Left Shift — ALS YT

This instruction causes the caGq, p, 135 to be shifted
left the number of places specified by Y. For example,
ALs 3 would shift the ccac three places to the left. The
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Operation is
Decoded
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Set V in the
Shift Counter

¥

Divisor Is in
Storage Register|

Yes

Shift C(AC and MQ)
One Place to
the Left

MQ(1) to AC(35)

Proceed

<2

Figure 51. pve and vop Flow Chart

sign position of the ac is not shifted (Figure 52). If
a 1 bit is shifted into position P from position 1, the
Ac overflow indicator is turned on. Bits shifted past
position Q are lost and vacated positions are filled
with zeros.

»]

s
“a.ra

Figure 52. ALs Schematic

Accumulator Right Shift — ARS Y, T

The ccacq, p, 1.35 are shifted right the number of places
specified by Y. The sign position is not shifted ( Figure
53), bits shifted from position 35 are lost, and vacated
positions are filled with zeros. Bits shifted from position
Q enter position P and bits from P enter position 1.
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No Yes

' I

0 1 to MQ(35),
fo SR Subtracted
MQ(35) from AC
#0 @
=0
Operation
Complete.

Quotient in MQ.
Remainder in AC,

ika,P,l—————~> 35

Figure 53. ams Schematic

Long Left Shift — LLS YT

The cAC, p, 1.35 and the caMQ);.35 are treated as one
register. The contents of this register are shifted left
the number of places specified by Y. For example,
LLs 35 shifts the covQy.35 to Aciss. Bits enter acss
from mQ; (Figure 54). If a 1 bit is shifted into or
through position P, the ac overflow indicator is turned
on. Bits shifted past position Q are lost, and vacated
positions are filled with zeros. The MQ sign position is
unchanged and the Ac sign is made to agree with it.

AC MQ

s| 10

»)

5
Tar

Figure 54. LLs Schematic




Long Right Shift — LRS YT
The cacyg, », 135 and coMQ); s are shifted right the
number of places specified in Y. Bits enter Mm@, from
Acy; and bits shifted past MQs; are lost (Figure 55).
Vacated positions are filled with zeros. The ac sign is
unchanged, and the MqQ sign is made to agree with it.
Both the 1is and Lrs instructions may be used to
move complete words from the Mq to the ac and from
the ac to the MQ registers. This results in a reduction
of stored instructions. The stQ and cLA instructions
could be replaced by an ris of 35 places, and the 1gs
could be used instead of the sto and LpQ sequence. LLs

S

£y
s~

s

S
e

Figure 55. LRs Schematic

or Lrs with an address of zero may be used to make
ac and MQ signs agree without shifting their data.

Rotate MQ Left — RQL YT

The ¢ (MQ) are shifted left the number of places speci-
fied by Y. Bits from Mg are routed to MQs; and
from MQ; into MQs, in effect, making the mQ register
a circular register (Figure 56). For example, RQL 6 takes
the six high-order bits (S, 1-5) of the M@ and places
them in the low-order six positions (30-35). With the
RQL, no bits are lost. Figure 57 is a simplified process-
ing unit flow chart for the ALs, ARs, 11s, 1Rs, and RQL

C—

Figure 56. rQL Schematic

Decode Inst
and Set Shift
Counter

LLS, LRS = Operation
Complete
ALS ARS LLS LRS LGL LGR RQL
. Shift AC and MQ ift AC and MQ
Shift AC Left [ | Shift AC Right | | Shift AC and MQ 1 | shift AC and MQ Left One Place :l.;:.: One Place Shift MQ Left
One Place One Place eft One Place Right One Place MQ1) to MQ(S); AC(35) to MQ(S); ne Place
MQ(D) 10ACES) | | ACE5) oMAM) | | \as) 10 ACES) | | MaIS) to MAQ) [ | MRS toMAGES)
Reduce
Shift Counter
= Shift
< LLS, LRS 0 Q: nr/ #£0
LLS LRS
Set AC(S) Set MQ(S)
to MQ(S) to AC(S)
L T I =0 Not LLS or LRS
y

Operation

Complete

Figure 57. ALS, ARS, LLS, LRS, LGL, LGR, and RQL Flow Chart
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instructions. The oL and LR instructions shown in
this figure are described under “Logical Operations.”

Shifting Problems

Use shift instructions for all multiplication and divi-
sion.
16. Compute 2 (A + B + C) and store result at
location P.
(A+B-2C)
16
18. Compute (A — B) X 8 and store result at P.

17. Compute and store result at P.

Control Instructions

Instructions that govern the flow of a program and, in
particular, those that cause an alteration in the com-
puter’s normal process of taking its instructions from
sequential core storage locations are called control
instructions.

Unconditional transfer instructions specify the loca-
tion Y from which the computer is to take the next in-
struction. Conditional transfer instructions also specify
a location Y; whether the computer takes its next in-
struction from location Y or the next sequential location
depends on the outcome of a test of some kind. This
test is specified by the operation code of the in-
struction.

Test instructions are similar to conditional control
instructions in that they cause some test to be per-
formed. Unlike conditional transfer instructions, how-
ever, test instructions do not specify a location Y to
which control may be transferred. Instead, the alterna-
tive location to which control may be transferred is
fixed relative to the location of the test instruction.

Halt and Proceed — HPR

This instruction causes the computer to halt. The in-
struction counter contains the location of the next
sequential instruction and is displayed on the operator’s
console. Positions 21-35 (Y), not used by the instruc-
tion but displayed in the storage register lights, may
be used to identify each particular npr. This is done
by placing an identifying number in positions 21-35 of
the HPR.

Divide Check Test — DCT T

If the divide check indicator is on, it is turned off and
the computer takes the next sequential instruction. If
the indicator is off, the computer skips the next instruc-
tion and proceeds from there.

NOTE: The DCT, LBT, and PBT instructions use the address field (Y)
for special purposes and no address may be specified. If the T field is used,
the operation code itself may be changed (See “Appendix, Instruction List
with Formats™).
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Low-Order Bit Test — LBT T

If the ccay; is a 1 bit, the computer skips the next
instruction and proceeds from there. If the cacs; is a
0 bit, the computer takes the next sequential instruction.
This instruction may be used to test for an odd or even
accumulator.

P Bit Test — PBT T

If the ccaop is a 1 bit, the computer skips the next in-
struction and proceeds from there. If the cacp is a
0 bit, the computer takes the next sequential instruc-
tion. This instruction may be used to test for ac over-
flow. If the ac overflow indicator is on, it is not turned
off by execution of the pBr instruction. Figure 58 shows
the flow chart for the pBT, LBT, and pCT instructions.

Sense Switch Test — SWT YT

This instruction tests the status of the sense switch (on
the operator’s console) specified by Y. If the cor-
responding switch is down o, the computer skips
the next sequential instruction and proceeds from there.
If the switch is up (oFp), the computer takes the next
sequential instruction. For example, swr2 tests the
status of sense switch 2. There are six switches on the
operator’s console that may be tested by the swt in-
struction.

Execute — XEC YT

This instruction causes the computer to execute the
instruction at location Y. Since the location counter is
not altered (when Y contains any instruction except

P8T
No \AC(P)=I/ Yes
LBT
No AC(35)=1 Yes
On DCT
Turn Off ivide Off
Indicator : C':’“k
M@m
Advance Instruction

Counter to Skip the
Next Sequential
Instruction

Do Next
Sequential
Instruction

Figure 58. pBT, LBT, and pct Flow Chart



a successful transfer or test instruction), the program
advances to the next sequential instruction following
the execute instruction after performing the instruction
at location Y. If location Y contains a transfer instruc-
tion, it will be executed and program control is altered
from the sequential process. If location Y contains a
test instruction, the instruction following the execute
instruction will be located relative to the execute in-
struction rather than to the test instruction. Thus, any
instruction that changes the instruction counter alters
program control when that instruction is executed by
the xec instruction.

Transfer on No Zero — TNZ YT
If the caC)q p,1.35 are not zero, the computer takes its
next instruction from the location specified by Y and
proceeds from there. If they are zero, the next sequen-
tial instruction is taken.

Figure 59 shows the flow chart for the TNz, TPL,
1OV, TZE, and T™I instructions.

Transfer on Plus — TPL YT

If the sign position of the Ac is a zero, the computer
takes its next instruction from the location specified by
Y and proceeds from there. If the sign position is a
one, the computer takes the next sequential instruction.

Decode the
Instruction

1

Address Switch

Transfer on Overflow — TOV Y, T

If the ac overflow indicator is on, it is turned off and
the computer takes its next instruction from the loca-
tion specified by Y. If the indicator is off, the computer
takes the next sequential instruction. Note also that
the BT instruction may be used as an overflow test
instruction.

Transfer — TRA YT

This instruction causes the computer to take its next
instruction from the location specified by Y and pro-
ceed from there.

Transfer on Zero — TZE YT

If the ccaC)q p,1.35 are zero, the computer takes its next
instruction from the location specified by Y. If they are
not zero, the computer takes the next sequential in-
struction.

Transfer on Minus — TMI Y,T

If the sign position of the ac is negative (1 bit), the
computer takes its next instruction from the location
specified by Y and proceeds from there. If the sign
position is positive (0 bit), the computer takes the next
sequential instruction.

to Address
Register
TNZ, TZE l TOV
Comp AC to Adders,

Adder QCarry to
Adder Position 35

Transfer

On Off

Transfer

Transfer

Execute the
Next Sequential
Instruction

Figure 59. 1NZ, TPL, TOC, TZE, and ™I Flow Chart
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Compare Accumulator with Storage — CAS YT

If the ccac are algebraically greater than the ccp, the
computer takes the next sequential instruction. If the
CO are algebraically equal to the cv), the computer
skips the next instruction and proceeds from there. If
the ccac) are algebraically less than the cov, the com-
puter skips the next two instructions and proceeds from
there. A plus zero is considered greater than a minus
zero. Note: The comparison is made on all positions
of the ac (including positions P and Q) and the con-
tents of location Y.

Decrement Field

Some instructions use the decrement part ( Figure 60)
of themselves or the decrement part of a register or
core location in their execution. With some instructions,
a portion of the decrement field (positions 15-17) is
used as a part of the operation field. Another group of
instructions is used to test or alter the contents of index
registers. The number or value used to test or alter an
index register is contained in positions 3-17 of these
instructions.

Decrement Part

5123 17

Figure 680. Decrement Field in a Word

Set Sign Plus — SSP T

The sign of the Ac is set plus (0 bit). Since the address
part of the ssp instruction is a part of the operation
code, address modification may change the operation.

Change Sign — CHS T

If the ac sign is plus, it is made minus; if minus, it is
made plus. Since the address part of the cus instruc-
tion is a part of the operation code, address modifica-
tion may change the operation.

Make Storage Sign Minus — MSM Y,T

The sign position of the location specified by Y is re-
placed with a 1 bit (made minus). The remainder of
the location specified by Y is unchanged. The decre-
ment part of the Msm instruction is a part of the opera-
tion code.

Make Storage Sign Plus — MSP Y,T

The sign position of the location specified by Y is re-
placed with a 0 bit (made plus). The remainder of the
location specified by Y is unchanged. The decrement
part of the Msp instruction is part of the operation code.

NOTE: The SSP and CHS instructions are not exactly control instructions
but are normally used with or after control instructions. These instructions
use the address field for special purposes and no address may be specified.
If the T field is used, the operation code itself may be changed (See
“Appendix, Instruction List with Formats”).
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Storage Minus Test — MIT YT

If the sign position of the location specified by Y is
minus, the computer skips the next instruction and
proceeds from there. If the sign position is plus, the
computer takes the next sequential instruction. The
decrement part of the MIT instruction is a part of the
operation code.

Storage Plus Test — PLT YT

If the sign position of the location specified by Y is
plus, the computer skips the next instruction and pro-
ceeds from there; if the sign position is minus, the
computer takes the next sequential instruction. The
decrement part of the pLT instruction is a part of the
operation code.

Enter Keys — ENK T

This instruction places the contents of the console entry
keys into the MmQ register. Since the address part of the
ENK instruction is a part of the operation code, address
modification may change the operation. A depressed
switch is interpreted as the not-zero or ox condition.

Problems

19. Three numbers are stored in symbolic locations
A, B, and C. Determine which is the lowest number
and store this number in location LOW (none of the
numbers are equal).

20. The fields of an inventory parts record are ar-
ranged in storage as follows:

LOCATION FIELD NAME
PARTN Part Number
PARTL Part Location
UCOST Unit Cost

FIND Master Part Number

Compare the master part number against the part
number of the given record and:

a. If master is higher than the given record, transfer
to QUIT.

b. If master is equal to the given record, transfer
to PROCS. '

c. If master is lower than the given record, transfer
to MORE.

21. There are four numbers in locations A, B, C, and

D. Program the following:

a. Add the four numbers and check for overflow on
each addition; if an overflow occurs, keep a count
in location OVFLW adding 1 for each overflow.

b. Take the sum generated in step a and shift it to
the right until a 1 bit appears in AC,;.

c. Take the result of step b and test for a one in ACp.
If there is a 1 bit, shift right one position and store
a 1 bit in location PBIT.

NOTE: Other control instructions than those covered in this section exist

on the 7040/7044 systems, but they are more concerned with other features
of the system and are described with their own feature.



Indexing Operations

Several techniques may be used to increase program
efficiency. One technique is address modification; an-
other is indirect addressing. Two approaches to address
modification are considered here: the destructive type
and the indexing type.

Destructive Address Modification

The term destructive means that the original address
of the instruction being modified is destroyed as it is
modified. Regardless of the computer used, this is the
method of address modification used unless the com-
puter is equipped with index registers and indexing
instructions. If an application required an instruction
to be repeated many times, that instruction would have
to be duplicated in the program and stored in core
storage. For example, if the contents of 50 word loca-
tions were to be added together, 50 add instructions
would have to be placed in the stored program. Each
add instruction would have, as its address part, the
storage location for one of the 50 words.

The technique of modifying an instruction’s address
may be used to reduce the number of stored instruc-
tions. This technique, however, does increase over-all
execution time for the problem. Using the same exam-
ple as above, assume that the 50 word locations. are
designated FIRsT, FIRST + 1, etc. Figure 61 shows a pro-
gram that could add the contents of these locations.

Note the use of the * (asterisk) symbol in the address
part. When used this way, the * means the location of
the instruction itself. Thus, the cLa *—2 means to
bring into the accumulator the contents of the location
that is two locations in front of the cra instruction
location (App FIrsT+1).

Indirect Addressing

The concept of address modification may be extended
for a large group of instructions for which indirect
addressing is provided. This is accomplished by using
the V field of the instruction. Positions 12 and 13, when
they contain 1 bits, signal indirect addressing.

When indirect addressing is specified, the instruction
is executed as follows. Instead of using the address
part of the instruction to designate the storage location
to be used in the operation, the address part of the
addressed location tells the program which storage
location is to be used. For example, assume that the
address part of location 54 contains 273. If the instruc-
tion App 5¢ (with indirect addressing specified) is exe-
cuted, the contents of location 273 would be added into
the accumulator.

Indirect addressing is specified in symbolic language
by placing an * (asterisk) after the last character of
the operation field. Thus, the App 54 instruction, when
specifying indirect addressing would be expressed as
ADD* 54, Figure 62 shows a sample program using in-
direct addressing.

The contents of the instruction counter are stored in
location 12. Location 13 is designated as symbolic loca-
tion BTRAP in Figure 62. After execution of the channel

Comments

Location Operation Address, Tag

BTRAP Store instruction counter at 12 and
get next instruction from location 13.
RCT Restore channel B.
TRA* 12 Go to 12 for address of next instruction.

Figure 62. Indirect Addressing Example

Figure 61, Address Modification Example ( Destructive)

. I[ Location Operation T | Address, Tog, Decremont/ Count Comments [~ Tdenmicotion

) 12 sl7 s j’ :L izin 80
__1_ ....... —_ gf_@____l :r Locate the program. ,I
| START CLA_ ... \EIRST Location of first number. 4:
_I,__ ....... | d,Q._Q.*._._,_i' :FIKST"I‘J. The address of this instruction is changed. :

| 11 .

_lr_<_,_._._ f;’f%w_w_} ﬂp ;e‘mpo‘rcvty stfo‘ruge? location. I 1:
_I'—‘— SR A D.E IS _1| : -1 Lli';:::u;r:s ruction into accumulator. ;
- | - B— ]
e | 87T 12e-4 Store altered instruction. |
_L_ _______ | |svse_._ _. _I icoonT Reduce the number counter. }
_E_‘_ ] Izﬁ___J IE/V.D Test for program end. l
T Q_A‘A‘_______l !TEM ) d Temporary storage location. l
_:_ _______ I |ICRA ... ~_1' :5'77’” +1 Return to add next number, :
_l;EQAEJ_V.I ﬁf;?__ ___3' %FIRST+47 g.;):;fant for number counter. ;
PR 1) |
_}E/__g_g_r §§§____ﬁl :5‘0 Reserved storage area. :
/J/\.—’é ND_ . o Last symbolic_instruction. |

Instruction Descriptions and Use 55



B trap routine, a restore channel traps (rcT instruction
is executed to restore the channel indicators to a non-
trap state. An indirectly addressed Tra* 12 will then
transfer program control to the location contained in
the address part of location 12.

Indexing Concept

Indexing instructions are available as a part of the
optional extended performance instruction set. These
instructions may be used to modify addresses of exist-
ing instructions, reducing the number of core storage
locations used for instruction storage.

Indexing is the ability of a computer to combine the
contents of an index register with the address portion
of an instruction before the instruction is executed.
There are two main reasons for indexing: (1) the
instruction as it appears in core storage is never
changed and therefore its address never has to be
initialized (set at the beginning of the program run),
and (2) many addresses can be modified by the same
index register’s contents.

The index registers may be loaded with either true
or complement numbers. When combined with the
address part of an instruction, the address may be
either increased or decreased depending on the type of
number (true or complement) the index register
started with.

The 7040/7044 systems have three index registers.
These registers are termed A, B, and C or 1, 2, and 4.
The latter terminology is more convenient for the pro-
grammer working in machine language because the
numbers 1, 2, and 4 are the octal representation of the
addresses of the registers. Index register addresses are
specified in a part of the instruction word known as the
tag field. The tag field tells the computer whether an
instruction is going to use an index register and, if so,
which register is to be used. The tag field is located
in bit-positions 18, 19, and 20 of the instruction word
(Figure 63). By having more than one tag bit in the
tag field, two or more index registers may be used by
a single instruction. Thus, the contents of the index
registers would be combined and the resultant or (see
“Packing and Unpacking”) would be used. With some
indexing instructions, the omission of 1 bits in the tag
field simulates an index register of all zeros.

Register Operation Part Tag Field Address Part
Aorl ojoj1
Bor2 o[1jo
Cor4 1000
s.1 mn 1718192021 3

Figure 63. Index Register Tag Bits
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The 7040/7044 index registers are 15 positions long
— large enough to hold the largest possible storage
address. Instructions are available to test index register
contents and control program instruction execution
depending on that content. The contents of index
registers may also be reduced or increased by variable
amounts,

Complement Arithmetic

When index registers are used for address modification,
the contents of an index register is always subtracted
from an instruction’s address. Since neither the address
of the instruction nor the contents of the index register
is associated with any algebraic sign, it is not possible
to accomplish effective address modification by addi-
tion in any direct manner. However, addition is accom-
plished by using complement arithmetic. The following
definitions apply to this type of arithmetic:

The I's Complement of a binary number is the num-
ber that results by replacing each 1 in a number with a
0 and each 0 with a 1. For example, given the binary
number of 101; the I’s complement would be 010.
Also, the sum of a binary number and its I's com-
plement is a binary number composed of all ones
(101 + 010 = 111).

The 2's Complement of a binary number is defined
as the 1’s complement of a number increased by
one. Thus, for the preceding example, the 2’s comple-
ment of a number (101) would be 011. If the 2’s com-
plement of a number occupies an index register and is
used to modify an address, the effective address is the
sum of index register contents and the address portion
of the instruction. If the true number occupies the
index register, the effective address is the difference
between index register contents and the address part of
the instruction.

Note that since both the contents of an index register
and an instruction address are 15-bit numbers, all
carries out of the leftmost position are lost.

As an example of the arithmetic involved when index
registers are used, assume that index register xr> 1
contains the binary number 2 and that an App instruc-
tion with a tag of 1 and an address of 200 is to be
executed (Figure 64). When the app instruction is
decoded, the tag bit in position 20 specifies xrl. The
contents of xrl are complemented (2's complement)
and placed in the adders. Note that index register con-
tents are always automatically (2's) complemented
when taken to the adders. This feature results in sub-
tracting the contents of the xr from the address part
of the instruction. The address part of the App instruc-
tion is also placed in the adders; after adding the two
numbers, the result (called the effective address) is
used in execution of the App instruction instead of the



actual address. In this case, the effective address is
1765.

If the programmer wishes to increase the effective
address, the number placed in the xr is inserted in 2’s
complement form by instruction. Thus, when the ad-
dress of the instruction and xR contents are combined,
the result is an additive process. Using the same facts
(as in Figure 64) with the xr contents in 2's comple-
ment form, the effective address is now 202; instead of
176, (Figure 65).

Multiple Tags

As previously stated, an instruction may refer to more
than one index register by placing multiple 1 bits in
the tag field (Figure 66). Thus, a tag of 3s specifies
index registers 1 and 2. Care must be exercised when
multiple tags are used. The use of multiple tags re-
sults in a “logical or” (see “Packing and Unpacking”)
of the contents of the specified index registers. For
example, if a tag of 3 is given, the 15 positions of index
register 1 are matched against the corresponding 15
positions of index register 2. If corresponding positions
of each register contain 1 bits, the resultant logical sum
is a 1 bit. If both positions are 0 bits the logical sum
for that position is a 0 bit.

Assume that index register 1 contains 032045 (000
011 010 000 100) and index register 2 contains 030615
(000 011 000 110 001). The instruction ApD 065215, with
an index tag field of 3, causes the “inclusive or” (see
“Packing and Unpacking”) of the contents of the two
registers as shown in Figure 67.

Tag Field Index Registers Specified
Binary  Octal Octal Alpha

000 0 None None

001 1 1 A

010 2 2 B

o1 3 1 and 2 A and B

100 4 4 C

101 5 1and 4 Aand C

110 6 2and 4 Band C

111 7 1,2,and 4 A,B,and C

Figure 66. Multiple Tags

The effective address received from the subtraction
is 032344, which the Apbp instruction uses.

Partial Store Instructions

Two store type instructions, sta and s1p, are available
which store only parts of a word instead of the whole
word. With both of these instructions, the check bit
(position 36) of the word stored is automatically
changed if necessary.

000 011 010 000 100
000 011 000 110 001

Index Register 1 Contents
Index Register 2 Contents
Inclusive OR‘ed Result 000 011 010 110 101 or

032658

Figure 67. Inclusive or Example

Operation Tag Address Index Register 1
foo0 100000000 000000 ] 001 | 0000000 10000000
Address Part of Add 0000000110000000 (2's Complement)
XR1 Contents ILRARARRARRRERIY IRRRRARARRRRRERLY)
Effective Address 000000001111110 = 176 Octal
Figure 84. Index Register Arithmetic, Subtracting

Operation Tag Address Index Register 1

fo00 100000000 J000000] 001 [0000000 10000000]

(2's Complement)

Address of ADD 0000000 10000000
XR Contents 0000000 00000010 =
Effective Address 0000000 10000010 = 202 Octal

Figure 65. Index Register Arithmetic, Adding

)00000000000010
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Store Address — STA Y,T

The ccAC)y; 35 replace the cyizrgs. The covig 20 and
the ccac remain unchanged.

Store Decrement — STD YT
The c(AC);.17 (decrement part) replace the c(yy3 17. The
C(¥)g,1,2,18.35 and the cac) remain unchanged.

Index Register Servicing and Testing

Computer instructions, when tagged, are subjected to
address modification; exceptions are instructions that
load, store, modify, or test the contents of an index
register. These instructions use the tag field to specify
the index registers affected. The following instructions
are used for index register xr» servicing and testing.

Address to Index True — AXT Y,T

The value specified in the Y portion of this instruction
replaces the contents of the index register specified by
the T portion of this instruction. For example, AxT 30,1
places the decimal value 30 (coded in binary format)
in index register 1. The instruction itself remains un-
changed. A tag of zero results in a no-operation.

Load Complement of Address in Index — LAC Y, T
The 2’s complement of the cy),;.35 replaces the con-
tents of the specified xr. For example, LAC 5,2 takes
positions 21-35 of core location 5 and places the 2's
complement of this value in index register 2. The cx»
remain unchanged. A tag of zero results in a no-
operation.

Load Complement of Decrement in Index —LDC  Y,T
The 2's complement of the c(y»3.17 replaces the contents
of the specified xr. The cty) are unchanged. A tag of
zero results in a no-operation.

Load Index from Address — LXA Y,T

The cyy2;.35 replace the contents of the specified xr.
The ccy) are unchanged. A tag of zero results in a no-
operation.

Load Index from Decrement — LXD Y,T

The c)s.17 replace the contents of the specified index
register. The ccy) are unchanged. A tag of zero results
in a no-operation. Figure 68 is the flow chart for the
LAC, LDC, LXA, and LXD instructions.

Place Complement of Address in Index — PAC T

The 2’s complement of the ccac)s;.35 replace the con-
tents of the specified xr. The cac) are unchanged. A
tag of zero results in a no-operation.
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Place Address in Index — PAX T

The ccasy.35 replace the contents of the specified xz.
The ccac are unchanged. A tag of zero results in a no-
operation.

Place Complement of Decrement in Index — PDC T
The 2's complement of the ccac3.17 replace the contents
of the specified xr. The ccac) are unchanged. A tag of
zero results in a no-operation.

Place Decrement in Index — PDX T

The ccacyz.47 replace the contents of the specified xr.
The cac) are unchanged. A tag of zero results in a
no-operation. The flow chart for the rac, rax, poc, and
PpX instructions is shown in Figure 69.

Place Index in Address — PXA T

The entire accumulator is cleared to zero, and the
contents of the specified xr are placed in ACyy.35. With
a tag of zero, the ccao are set to zero. The cxm are
unchanged.

Place Index in Decrement — PXD T

The entire accumulator is cleared and the comtents of
the specified xr are placed in Acs.,7. With a tag of zero,

SB (18-20) to
Tag Register
LXA,LAC XD, LDC
SR(21-35) to SR (5,1-35) to
Adder (P-17) Adder (P-35)
I I
Y
Adder (3-17) to
Index Register
Y
Index Register
to Adders with
Carry to Adder
1Z
LAC,LDC
Inst
LXA Adder (3-17)
to Index
LXD Regi
egister
Next

Instruction

Figure 68. LAC, LDC, LXA, and Lxp Flow Chart



AC (5,1-35)
! to Storage
Register
PAX, PAC PDX,PDC
SR (18-35) to SR (1-35) to
Adder (P-17) Adder (1-35)
L { |
Adder (3-17) to
Index Register
PAX, PDX PAC, PDC
Index Register to
Adders with Carry
to Adder 17
¥
Adder (3~17) to
Index Register
I
¥
. Next
Instruction

Figure 69. pac, PaX, poc, and ppx Flow Charts

the ccac> are set to zero. The cxr> are unchanged.
Figure 70 shows the flow chart for the pxa and pxp
instructions.

Store Index in Address — SXA Y,T

Positions 21-35 of the location specified by Y are re-
placed by the contents of the specified xr. The cc¥yg,1-20
and the cxm) are unchanged. With a tag of zero, the
C(Y)2;.35, are set to zero.

Store Index in Decrement — SXD YT

The c(¥)3.17 are replaced by the contents of the speci-
fied xr. The cvrg1,2,15.35 and the cxr> are unchanged.
With a tag of zero, the decrement (positions 3-17 of
the specified Y) is replaced with zeros. Figure 71 is
the flow chart for the sxa and sxp instructions.

Transfer on Index — TIX YTV

If the ccxr) specified by T are greater than the value
specified by V, the contents of the xr are reduced by

XR to Adders
and Adders (3~
17) Back to XR
XR
fo
Adders
PXD PXA
Adder (Q-35) Adder (3-17)
to AC to AS

!

AS to SR (21-25)
and SR (5-35)
to Adder (P-35)

!

Adder (Q-35)
to AC

Figure 70. pxa and pxp Flow Chart

Index Register
to Adders

y
Adder (3-17) to
Index Reg and
Index Reg to
Adder (3-17)

SXD SXA

Adder (3-17) to
Add. Swand
Add. Swto Stg
Reg (21-35)

Adder (P-35) to
Stg Reg (5-35)

!

Adder (3-17) to
Index Register

! !

Storage Register
(21-35) to
Storage

Adder (3-17) to
Index Register

Storage Register
(3-17) to

Storage

Figure 71. sxa and sxp Flow Chart

V and the computer takes its next instruction from Y.
If the cxm are less than or equal to V, the cxm) are
unchanged and the computer takes the next sequential
instruction. With a tag of zero, no transfer occurs.

As an example of the use of the 1Ix instruction, as-
sume that 50 words are to be added into the accumu-
lator and that the result is to be stored in location
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ToTAL. The words are located in the symbolic loca-
tions worp. Figure 72 shows two possible instruction
sequences.

Transfer on No Index — TNX \ARY

If the cxm specified by T are greater than V, the cxm
are reduced by V, and the computer takes the next
sequential instruction. When the cxr) are equal to or
less than V, no reduction is made but the computer
transfers to location Y. With a tag of zero, a transfer
occurs.

Transfer on Index High — TXH Y1V

If the cxm specified by T are greater than V, the com-
puter takes its next instruction from location Y. If the
cxp) are less than or equal to V, the computer takes the
next sequential instruction. With a tag of zero, no
transfer occurs.

YTV

V is added to the cxr) specified by T. The computer
then takes its next instruction from location Y. With a
tag of zero, only the transfer occurs,

Transfer with Index Incremented — TXI

YTV
If the caxm specified by T are less than or equal to V,
the computer takes its next instruction from location Y.

Transfer on Index Low or Equal — TXL

If the cxm) are greater than V, the computer takes
the next sequential instruction. With a tag of zero, a
transfer occurs. Figure 73 summarizes the transfer, test,
and modify actions of indexing instructions and gives
the conditions on each instruction.

Figure 74 shows data low between storage, accumu-
lator, and index registers (for index transmission in-
structions ). Both true and complement lines are shown
with appropriate instructions.

Indexing Problems:

22. There are 24 numbers stored in locations N to
N+23. Compute and place the sum of the numbers
that are positive in location PSUM. The sum will not
exceed 35 bits.

23. There are 31 numbers stored in locations M to
M +30. Compute and place the sum of the numbers

Actions Conditions
Test and Modify If XR >V IFXR< V
TIX C(XR)=XR-V and transfer to Y Take next instruction
TNX C(XR)=XR-V and take next instruction| Transfer to Y
Test Only
TXL Take next instruction Transfer to Y
TXH Transfer to Y Take next instruction
Modify Only C(XR) = XR + V and Transfer to Y
TXI|

Figure 73. Index Transfer Instruction Summary

« [ Tocation Operation T~ | Address, Tog. Decrement/ Count Comments T Taeniicarion |

! [ |

b 6718 ' n'n [
| WoRD_| BEs__ _ _,| &0 Reserve storage locations. !
| AXT. 492 Put 49 into XR 1. 0

N CLA . _._!  'WorRD-8&9 Put first word in accumulator. I
L llesAa_ | |
| START APD_._. _._| |WIRD,L Get next word, i

| I~L~)L_._._.__1' }_STﬁI?T.J..J Check for equal XR and V; if I

| SR N I, I | unequal, reduce XR by V i
L e j : and transfer. IT
_JI_._._._._‘ éAI._Q._._._._: TOTAL When equal, store result. :
I I R !

_i_._ S N ___,; ; Another program variation could be: ;

+ S ; !
L AXT 184 Put 50 into XR 1. [
ﬁl_A_,_ _ 1 \PXD_ . _. __: Ir Clear accumulator. |
__;_&[AR 7N ADD . . _1iworRD. L Put first word into accumulator. :

i T
] I.L.A._._._.J :S‘rﬁ RT;1,1 Check for equal XR and V; if i

[ - 1

) _._._,_._._._1 : unequal reduce XR by V '
_:_._._._._ . _.__A__l' { and transfer. :
4_._._~_._ 21.’2____1' li_-I:C’T/'L- When equal, store result. !

I KPR I Stop. l

'w_g,gﬂ_ _&EQ____: &0 Reserve storage locations. |
_;_ ....... | END .. _1' ! End of symbolic instructions. :

T
,*/\—"WVW\,'—W

Figure 72. Tix Instruction Uses
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St 3 17 21 35
R:;:?; r] Decrement Address
LDC‘\\ SXA / AXT
\ LXD
PARY
Index True
Register ——= Complement
,
PDC PXA
/PXP
// pbx PAC
A/
Accumulator L
Register [ I Decrement Address
3 17 21 35

Figure 74. Index Transmission Data Flow

that are positive in location PSUM and the sum of
the numbers that are negative in location MSUM.

24, One hundred numbers are stored in consecutive
locations starting with location HUND. Find the loca-
tion of the number with the largest absolute value and
store the location of this number at LARGST. Assume
that there are no equal numbers.

25. Examine the numbers stored in locations DATA
to DATA+49. Determine how many of these numbers
are greater than zero and store the count of these num-
bers in the decrement field of the location ANS. One
of the locations contains all zeros. Find this location
and place the address of this location in the address
field of the location ANS.

96. Given ten numbers: Al, A2, A3, . . AlO, and
two other numbers Bl and B2 where B1>0 and B2>

B1. Write a program to compute how many Ai’s satisfy
the following conditions (A+0>—0).

a. 0==Ai<Bl
b. B2=Ai<B2
c. Ai=B2

27. Sort one hundred numbers algebraically in as-
cending sequence. Stop when no interchange occurs
(natural sequence), or when all numbers are sequenced.
Numbers are stored in locations NUM through NUM
+99.

28. Write a program to compute:

32 (Xi = Y))?

i=1
where X; and Y, are integers. No overflow is to be ex-
pected.

Complement Magnitude — COM T

Although not actually an index transmission instruc-
tion, the complement magnitude instruction is often
used with indexing instructions.

All 1 bits are replaced with 0 bits and all 0 bits are
replaced with 1 bits in the caCq p,1.35. The sign posi-
tion of the ac is unchanged. Since the Y portion of the
coM is a part of the operation code, address modifica-
tion may change the operation.

As an example of com use, the program shown in
Figure 75 shows a table look-up. Given a group of

Figure 75. coM Instruction Program Example

T tocation Operation T rxmmumraw Tomments T Tderthication

| 11 {

) ol7is ' ! w
| ORG | loka _ | 100 Begin program at location 100. '
_;_ ....... ] ﬁ.L.I._._._._: !rov Zeros to XR 1. !

H CLA .. _._ | |ARRCUE Place argument into accumulator. |
_sL.Q.Q.S _@.J,QA_,__._.__} 'ILJ': 2 Compare first T number with argument. :
T IX._L‘_._,_._: LO0K, 1 -1 AC>T !

! TRA_.__._| | £EQUAL AC=T !

L X4 .. _1490k,2,-1 AC<T |
L_iﬁ.g.lli L PXA_ : :0_.1 Address of equal T in complement form. !
—L~_ ] eem_.__._ __: H Complement this address. !
_:_ YY1 ADD_ . _ _; = 1 bit in position 35 to obtain 2's complement. :

; ApD_ . _._\1L06K Instruction with address of first T number. !
L | |STA__ __|ICATCH Address of T number which agrees )

! HPR_._._. ' with the argument., |
| ARG UE BSS ¥ :

__Jll. ...... 1l8ss_._._._, 00 )

CATCH BsS _.__,_,__,' { !
.0 — !

/MWVW‘M
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numbers in storage locations T1 to T99, find the Ti
that agrees with the argument (number being searched
for) and store its location in storage location carca.
Figure 75 shows both the instructions and comments.

Transfer and Set Index — TSX Y,T

The 2’s complement of the location of the Tsx is placed
in the specified xr. The computer takes its next instruc-
tion from location Y.

This instruction may be used to set up a return ad-
dress to the main program when it is necessary to trans-
fer to a subroutine and, after finishing with the sub-
routine, to come back to the main program. For ex-
ample, assume that arithmetic operations are tested for
error conditions and, when these conditions are found,
a transfer to a fixup routine is to be executed. The
last instruction of the fixup routine could be a Tra 00001
instruction tagged for the same index register as used
by the Tsx instruction. If the 1sx is located at core
location 1000 and program return to location 1001 is
required, the program could be as shown in Figure 76.

Main Program Index Register

Inst 111 111 000 000 000
Inst '
Inst

060 ~TSX, FIXUP, 1 ew—ed>Fixup Routine 2's

FIXUP Inst Complement
Inst Inst
Inst Inst 000 001 000 000 000
Inst TRA 00001, 1 000 000 000 000 001

000 001 000 000 001
Program Return 007

Figure 76. Possible Use of the Tsx Instruction

Indirect Addressing

Indirect addressing extends the concept of address
modification for a large group of instructions. This ex-
tension is carried out in a simple way: just as index
registers are “addressed” with a tag, indirect address-
ing is specified or addressed by a flag (1 bit in both
positions 12 and 13 of the instruction). With a flag,
the instruction is executed as follows:

1. An effective address is computed in the normal
way, by subtracting the contents of the specified
index register (if one is specified) from the address
part of the instruction. This is called an indirect ef-
fective address.

2. The computer then examines the location spec-
ified by this indirect effective address and uses the
tag and address parts of this word to compute a direct
effective address.
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The instruction is then executed as if its address part
had contained this direct effective address with no tag
or flag. The following examples illustrate this process.

Assume that the address part of location 000545 in
core storage contains 002735, If the instruction App
00054y is executed, the contents of location 000545 are
added to the contents of the accumulator register.
However, if this same instruction has flag bits, the
contents of location 00273; instead of 00054, would be
added to the accumulator.

Now, assume further that index registers 1 and 2
contain 4 and 3, respectively, and that core storage
location 000505 contains a 2 in its tag field and 00167,
in its address field. If the instruction app 00054z with
an index tag of 1 and flag bits is executed, then the
indirect effective address equals 000505 (address field
of the app instruction minus the contents of index regis-
ter 1). The direct effective address is 00164 (address
part of location 000505 minus the contents of index
register 2), and the contents of this location are added
into the accumulator (Figure 77). Remember that
flagging always requires positions 12 and 13 of the
instruction to contain 1 bits. In text and in program
examples, an asterisk represents these 1 bits and indi-
cates that indirect addressing is called for.

Logic Operations

Logic operations provide means for working on a 36-
bit unsigned word or an individual character within a
word. All logic operations interpret the sign position
of the storage location addressed by the instruction as
a numeric bit corresponding to position P of the ac-
cumulator. The sign position of the accumulator is
either ignored or cleared. The instructions to clear,
add, and store logical words are:

Clear and Add Logical Word — CAL Y, T

The cav replace the ccacp 1.35. The sign of Y appears
in acp and accumulator positions S and Q are set to
zero. The ccy» are unchanged.

Add and Carry Logical Word — ACL Y,T

The ccy) are added to the cacip 1.55 and the resultant
sum replaces the caCp 1 35. The sign of Y is added to
Acp and a carry from acp is added to acs;. Positions
S and Q of the Ac are not affected and the ccv are
unchanged.

Logical Left Shift — LGL YT

The cuacqgp1.35 and cMQyg i35 are treated as one
register and are shifted left the number of places
specified by Y. The sign of the ac is unchanged. Bits
enter the MQg from M@, and go from MQs to acys. If a



Instruction

Index Register 1

Flag Tag Address
ADD [11] Joot | 00054
51 111213 14 1718 2023 35
"00054
00004 =

00050 Indirect Effective Address

Core Location 00050

Tag
[ [or0] | 00167
00167
00003 =

Index Register 2
00003]

00164 Direct Effective Address

Figure 77. Computing Indirect and Direct Effective Addresses

1 bit is shifted through ac position P, the ac overflow
indicator is turned on. Bits are shifted from P to Q and
bits shifted from Q are lost. Vacated positions are
filled with zeros ( Figure 78).

35 l<—|s,1‘ 35]
AC MQ

S
“ar

Figure 78. oL Schematic

Logical Right Shift — LGR YT

The GG p135 and CMQg 135 are treated as one
register and shifted right the number of places spec-
ified by Y. The Ac sign is unchanged. Bits enter MQg
from acss, and from mQg they are placed in M. Bits

shifted past mQs; are lost and vacated positions are
filled with zeros (Figure 79).

35 |—| s, —

S
e

AC MQ

Figure 79. LGr Schematic

logical Compare Accumulator with Storage—LAS Y, T
The ccAG)q p,1.35 are treated as an unsigned 37-bit num-
ber and are compared with the c(Yg .35, which are
treated as a 36-bit unsigned number. If the cac are
greater than the c, the computer takes the next
sequential instruction. If the cao are equal to the
¢, the computer skips the next instruction and pro-
ceeds from there. If the cac) are less than the cov,
the computer skips the next two instructions and pro-
ceeds from there.

Store Logical Word — SLW Y, T

The caCp 135 replace the covy. The P position of the
Ac is sent to Yg and the ccac) remain unchanged.

Parity Checking Instructions

Two instructions, cap and sLp, check the parity bit
checking circuits to allow operations on an invalid word
in the parity trap routine without requesting another
parity trap and to enable a program to force a parity
trap, thus inhibiting parity checking during special
programming situations. Traps are explained in the
Trapping section. The format and description of these
instructions are:

Clear and Add Logical Word with Parity — CAP  Y,T
The ¥ g,1.35 replace the cACg p 1.35. The parity bit
(C) of location Y appears in Acy and the sign position
of Y appears in Acp. Position Q of the ac is set to zero.
The can are not parity checked and cannot cause a
parity trap request. The ccy> are unchanged.

Store Logical Word with Parity — SLP YT

The ccac)g 135 replace the C(Y)q g 1.35. Position S of
location Y is replaced by acp. Unlike all other store
operations, parity is not generated during the store;
instead, the parity bit of location Y is replaced by acs.
The cac are unchanged. Parity is not checked during
the store operation. If an even number of 1 bits are
stored in the ccv, any reference to location Y other than
a full word store operation or a car instruction will re-
sult in a parity trap request.

Logical Check Sums

One of the principal methods of keeping a check on a
block of information in storage is to attach to this block
a sum value of all the words in the block. This sum is
called a check sum. When computing the sum through
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use of logic instructions, the check sum is called a
logical check sum. It is normally not equal to the alge-
braic sum of the block since no overflow occurs with
logic instructions.

An example to compute the logical check sum for
a block of 300 words in core storage is shown in Figure
80. Normally a symbolic location is assigned to the
block of words. For example, the symbol rirst could
be used to designate the location of the first word of
the block. The symbol cksum could be used to specify
the location where the computed check sum is to be
stored.

Another example of check sum computation is shown
in Figure 81. Assume five blocks of nine words each.
The first block starts at symbolic location BLoCK + 1,
the second at BLock + 11, the third at BLock + 21, and so
on. The problem is to find the logical check sum of each
block and place it in the first location preceding that
block. If the program is started at symbolic location
START, the instruction sequence could be as shown in
Figure 81.

Packing and Unpacking

There are many cases where the information to be
handled by the computer is made up of individual
items, each of which is less than the 36-bit computer
word. For example, it may be necessary to work with
numbers no larger than three decimal digits. To con-
serve storage space, three such numbers could be
stored in the same word (Figure 82), where positions
S, 14, and 25 are the sign positions of the numbers N1,
N2, and N3, respectively.

[ NI | N2 [ N3

512 1314 2425 35

Figure 82. Diagram of Packed Word

Handling information in this way is called packing.
In addition to conserving storage space, packing also
increases the entry and exit speed of information by
reducing, for instance, the amount of magnetic tape to
be read or written.

| Location Operotion T~ | Address, Tog, Decrement/ Count Tomments T identfication
| [ 1

1 !2 §|7 |8 f [ 77:73 80
e AXT . 299,1 Load 299 into XR 1. i
r_;_,,.,.,.A QAQ‘__,_: ;FIRS I Clear accumulator and add 1st word. ;
4_,_._._._ AQL____} :FIRS T'f’JOOY,I Two instruction loop to compute check J!
_;,.7.?.7.* I_I_l_ —'—'ﬁl :*—1 N I N 1 sum and test for end condition. |

o 7 +
L hsLw ICKSUM Store computed check sum. !
f HPR i End of i
—._y PR nd of routine. |
_FIRST BSSs____|i300 Reserve storage !
CKSUM B8SS 111 locations. i
!

Figure 80. Check Sum Sample Program

« T tocation Gperation T T Address, Tag, Decrement/ Count Tomments T~ Tdentication

| 1 !

1 17 8|7 18 : ll 721173 80
| \START AXT . __| 49,2 Put 49 into XR 2, !
AT _ 19,1 Put 9 info XR 1. !
-———:’—~—-—-—-— BX.QW._A_._} e Clear accumulator to zeros. |
L |ACL | \BLOCK+IO,2 Addtheblock. !
_:_._._._,__ INX____.: i*+4", 2,1 Test all blocks for end condition. !
b_,},,._._._‘_ T 1.X_ _,_; k. o ZI, 1 P Zz Reduce word count of the block. !
__:‘,_,_._4_ S LW 1 {B LOCK+40,2 Storethe check sum for that block. ]|
| TLX. _: :S TAR 7—"‘1’,3 1 Test for end of block. :
| L | |Sew . .| IBLOCK+4O Store check sum (last one). !
_l;_‘_._._‘_¢ EEBAA‘_J Il Stop. :
| B8L0cK BSS | S0 Reserve storage locations. i

: ! End of symbolic instructions.
m——

Figure 81. Check Sum Sample Program
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The anp and or concept is used, together with a
process called masking, to accomplish the packing and
unpacking of parts of words. When two numbers are
combined with an aND operation, they are matched
bit-for-bit. If the same position in each word contains
a 1 bit, the result is a 1 bit. If in one word the position
is a 0 bit and in the other word it is a 1 bit, the result
is a 0 bit. If the same position in both words is a 0 bit,
the result is a 0 bit. For example:

101101011011 logically added to
101001001101 gives the resulting ANp sum of
101001001001

An or function (sometimes called inclusive or) also
matches two numbers bit-for-bit. The difference, how-
ever, when compared with an anp, is: (1) if the same
position in either word contains a 1 bit, the result is a
1 bit; (2) if the same position in both words is a 1 bit,
the result is again a 1 bit; (3) only if the same position
in both words is a 0 bit, is the resulting position a 0 bit.
For example:

011010110101 combined with

001100100100 by the or operation gives the resulting or of

011110110101

To summarize, mask contents when using the anp
operation are 0 bits to unpack and 1 bits to leave data
“as are.” Mask contents for the or operation use 1 bits
to pack and 0 bits to leave data as are.

\

AND to Accumulator 1/— ANA,’Z YT

Each bit of the c¥)s 135 is matched with the corre-
sponding bit of the ccacp 1.35. The sign position of Y
is matched with the acp. When the corresponding bits
of both Y and the ac are 1 bits, a 1 bit replaces the con-
tents of that position in the ac. When the correspond-
ing bit of either location Y or ac, or both, is a 0 bit,
a 0 bit replaces the contents of that position of the Ac.
The S and Q positions of the Ac are set to zero and the
cay) are unchanged. Figure 83 is the flow chart for the
ANA instruction.

OR to Accumulator — ORA YT

Each bit of the ccvg 135 is matched with the corre-
sponding bit of the c(AC)p,1.35. The sign of Y is matched
with acp. When the corresponding bit of either loca-
tion Y or of the ac, or both, is a 1 bit, a 1 bit replaces
the contents of that position in the ac. When the cor-
responding bits of both location Y and the ac are 0 bits,
a 0 bit replaces the contents of that position of the ac.
The ccv> and the S and Q positions of the ac are un-
changed. Figure 84 is the flow chart for the ora in-
struction.

Complement
Accumulator

!

Contents of Y
to SR

Exchange SR
and AC

!

Complement
AC

!

SR to AC, At the same|
fime gate SR to SR
land ACto SR{AND

IComplement in SR)

{

Exchange SR
and AC

!

Complement
AC

!

Figure 83. ana Flow Chart

AC (P,1-35) to
Storage Register,
and at Some Time

SR to SR

SR (5,1-35) to
Adder (P,1-35)

Adder (Q-35)
to AC

Figure 84. ora Flow Chart

ANA Example

As an example in the use of the aNa instruction, assume
that a word in core storage has the format shown in
Figure 82 and the number N2 is to be operated on.
Before arithmetic operations can be performed with
this item, it must be separated from the other items in
that word location. This separation is called unpacking
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or extracting. Since items N1 and N3 are not to be
destroyed, the unpacking will be done in the accumu-
lator, leaving the other items intact in core storage.
The symbolic program shown in Figure 85 will accom-
plish this. The mask used in the program contains 1 bits
in positions 14-24 (177744) and 0 bits elsewhere. The
result of using this mask with the ana instruction places
the N2 number in AC;4.u4. By varying the format of the
mask, any of the three numbers could have been un-
packed from the packed word.

After performing the desired arithmetic operations
on the number N2, a new number, N4, is the result.
This number is the same size as N2 and is to be packed
(inserted) in lpcation rakwb, replacing N2, while N1
and N3 are to remain unchanged. The program shown
in Figure 86 will accomplish this.

Adding BCD Coded Numbers

CALIGEe A

. . AL Lapp B
Both the aNa and ora instructions may be used to per-4¢.

form addition of numbers coded in Bcp format. Figureve st
87 shows the instruction string that accomplishes the., |

3

addition and the actual bit patterns within the com-
puter.

The bit pattern for the cus instruction is shown insci

G

complement form because changing the sign of the
accumulator and then adding ca results in a subtract

ANA  SIXTY| 110000 110000 110000 110000 110000 110000
$t©  CB 000000 110000 110000 110000 000000 000000
ARS 3 000000 000110 000110 000110 000000 000000
ORA CB 000000 110110 110170 110110 000000 000000
ieHs 111111 001001 001001 001001 111111 1111114
ABB  CA 001010 111110 171011 111111 000100 000101

Problem

29. Two packed words, X and Y, contain several
small numbers that are distributed within each word as

follows:
X1 (S, 1-10) Y1 (S, 1-10)
X2 (11-17) Y2 (11-17)
X3 (18-28) Y3 (18-28)
X4 (29-35) Y4 (29-35)

The signs of these numbers are in positions S, 11, 18,
and 29 of locations X and Y. Write a program to satisfy
the following conditions:
a. If XI = Y1, put a 1 bit in location TEST. If
X1 <Y1 put a binary 2 in location TEST.
b. Same conditions for X2, X3, X4, Y2, Y3, and
Y4, using TEST+1, TEST+2, and TEST +3.

Bit Patterns
001010 000101 000010 000100 000111 001000 (052478)
001010 000011 000011 000100 000110 000111 (033467)
110110 110170 110110 110110 110110 110110 085945 Ans
001010 1111710 111011 1171111 000100 000101

Instructions

ABB

001010 001000 000101 001001 000100 000101 (Carry)
0 8 5 9 4 5

operation. Figure 87. Bcop Add Operation Using aNa and ora Instructions

B Localion Operation [~ TAddress. Tag, Decrement/ Count Tomments T~ dennhcation ]

| [ !

i :2 é 8 l‘ E 77:73 80
| leAz .| PAKwD Place packed word into AC positions P, 1-35. I ]
*;L_.__ P A.N.A.,ﬁ._._‘.*; :MASK N2 is left in AC as a result of ANA operation. :

___1~A,_ ] Aéﬁ;‘__: :14 Shift N2 until the sign occupies position P. :
,,_lr_.._ e §.L.ﬂ_‘_.‘,ﬂ LOCN2 Store N2 in location LOCN2. i
! T
L] H,f.ﬂ__**; ! Stop |
MASK | l0oc.T o {0000 17774000 Mask configuration to unpack N2 only. :
|
Figure 85. Unpacking Program Instructions
T Tecarion Operation [ TAddress, Tag, Decremont/ Count Tomments T Identfication |
b [ {
! l s|7 8 : L 77!73 8
I Agﬁéﬁ___; :14‘ Shift N4 (N2 after arithmetic operations) to AC 14-24. :
_SLQJ_____: ;L0c N4 Place N4 in temporary storage. J‘I
CAL . |'PARWD Bring packed word into accumulator, |
= — t
ﬁ4ﬂ.A.__._._._1' :LMASK Erase N2. ;
ORA . . L ILOCNA Place N4 in old N2 positions. :
SLW _: {PA KWD Store new packed word. ;
HPR | : Stop. :
_} i 777760005777 Mask configuration to erase N2. :

Figure 86. Packing Program
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Character Handling Operations

Three character handling instructions are used to ex-
pedite six-bit character operations. In each of these
instructions, positions 15-17 of the instruction itself
specify which character of the word located at the
effective address (Y) is to be used in the operation.
Valid bit patterns for the position field are octal num-
bers from zero to five and specify the following char-
acters within the word:

WHERE THE CHARACTER TO BE USED
IS LOCATED WITHIN THE WORD
S, 1-5
6-11

12-17

18-23

24-29

30-35
See MsM and MIT instructions
See Mmsp and PLT instructions

OCTAL POSITION FIELD
prTs 15-17

Positions:

SN UR WD —=O

Compare Character with Storage — CCS Y1,V

The character specified by V and located in Y is com-
pared with the cacyy0.55. If the ac character is greater
than the character in Y, the computer takes the next
sequential instruction. If the ac character is equal to
the Y character, the computer skips the next instruction
and proceeds from there. If the ac character is less than
the Y character, the computer skips the next two in-
structions and proceeds from there. The caCis g p,1.20
are ignored and the ccac and ccy) are unchanged.

Place Character from Storage — PCS YTV

The character specified by V and located in Y replaces
the ca®30.35. The CaCs g.p.1.29, and the coyy are un-
changed.

Store Accumulator Character — SAC YTV

The caG)30.35 is placed in location Y in the character
position specified by V. The remaining bits of Y and
the ccacy are unchanged.

As an example in the use of the pcs and sac instruc-
tions, assume that a word consisting of six alphameric
characters (9-code) is located in storage location
FRWRD. The instruction sequence shown in Figure 88
would create a word of the same six characters in re-
verse order and store these characters in storage loca-
tion BKWRD.

Problem

30. A parts purchase record in core storage consists
of three words:

Word 1. Part number (six alphameric characters,

9-code)

Word 2. Quantity (binary integer)

Word 3. Price per unit in cents (binary integer)
There are five types of parts, distinguished by the last
character (positions 30-35) of the part number. Write a
program to compute the total money invested in each
part type by summing the individual calculations of
price times quantity for each part type. Parts types
are A, C, F, ], and R. There are no invalid part types.
There are 9,000 parts purchase records located in stor-
age locations INVPR through INVPR 8999. Place the
part type totals in locations ATOTL, CTOTL, FTOTL,
JTOTL, and RTOTL.

Data Transmission

The ability to move blocks of information from one
series of storage locations to another set of storage
locations is provided by one instruction, TMT.

Transmit — TMT Y, T

This instruction uses the ccacy;17 as a FRoM address
and the cACy,; 35 as a To address. The contents of the
rrOM location in core storage replace the contents of
the 1o location and the carroM» remain unchanged. The

Tomments Tdentfcation

Character in FRWRD positions S, 1-5 are

placed in BKWRD positions 30-35.

FRWRD position 6-11 are placed in

BKWRD positions 24-29.

FRWRD positions 12~17 are placed in

FRWRD positions 18-23 are placed in

BKWRD positions 12-17.

FRWRD positions 24-29 are placed in

BKWRD positions 6-11.

FRWRD positions 30-35 are placed in

I
|
|
1
!
}
i
{
i
:
- T
BKWRD positions 18-23. ]
T
|
|
L
|
1
|
1
I
T
|

BKWRD positions S, 1-5.

Ol Location Operation T [ Address, Tag, Decrement/Count
[ Pl
IJ|2 6|7 (8 Ji Il
. __||Pes | \FRWRD,,0
i |l|sac_ . ! BKWRD, .5
R | fgg_.__A_i FRWRD, , 1
L _||sae____'Bkwep, ,4
IR Bci__.;_ﬂl FRWRD,,2
| lsac_ . IIBK\NRD,.J
o | lpes___ ) \FRwRD, ,3
I | lsae___ 1 \BKWRD, ;2
] B.Qi.*_._*.*._J IFRWRD' 4
: SAC__ _ | |BKWRD,, 1
IR | lPes_ I IFRWRD,,S
L |lsac ! BKwRD,,0
e

Figure 88. pcs and sac Instruction Use
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c(rrom+1) then replace the c(to+1) and the
¢(rroM + 1) remain unchanged. This process continues
until the total words specified by the Y part of the
T™T instruction have been transmitted.

Positions 28-35 of the T™T specify the number of
words to be moved and provide a maximum transfer
of 3774 or 255,, words. Any number larger than 3774
is interpreted as modulo 4005, Modulo 4003 means that,
given a transmit count, the actual number of words
moved will be the remainder after dividing the count
by 4004. With indexing, the count number is modified
(positions 28-35 only) by the specified index register.
A step-by-step description shows that:

1. Positions 28-35 of the vt are modified by the
specified xr (if any) and then are placed in the shift
counter.

2. If the contents of the shift counter are zero, the
instruction ends.

3. With a non-zero value in the shift counter, the
C(AC;. (7 are used to address core storage.

4. The ca» specified by the ccacy 7 are placed in
the storage register.

5. The ccaC; .45 are used to address core storage.

6. The csr are placed in the location specified by
the Ay 35,

7. The ciay47 and caCw 35 are both increased by
one.

8. The shift counter is reduced by one.

9. Execution returns to step 2.

At the completion of the t™rt, the cacy;. 7 contain
the address of the last word read, plus one. The

C(AC)21 .35 contain the address of the last word stored,
plus one. Another T™™T instruction can be given if it is
desired to transmit more than 3775 words. As an exam-
ple in possible use of the T™T, assume that 512 words
stored in locations AREA1 are to be relocated to storage
locations area2. The program could be as shown in
Figure 89.

Problems

31. Given a block of 100,, words in core storage, in
storage locations 17505 through 21145, move the first
25,, words to locations 100, 101, etc.; move the second
block of 25,, words to locations 200, 201, etc.; the third
block of 25 words to locations 300, 301, etc.; and the
fourth block to locations 400, 401, etc.

32. Given three blocks of data located in storage and
containing:

Block 1 = 45,, words

Block 2 = 30,, words

Block 3 = 15,, words
Make one block of 90,, words in consecutive storage
locations.

Floating-Point Operations

When the range of numbers anticipated during a calcu-
lation is either large or unpredictable, it becomes diffi-
cult to work with fixed-point arithmetic instructions.
An alternative set of floating-point instructions is avail-
able for such calculations. These instructions maintain
the binary point automatically.

Comments

Tdentification

72

Put 512 into XR1

Get Starting oddress,

Transmit one word,

Test for end; if not end, reduce and repeat.

End of symbolic instructions

Get starting address

Transmit 255 words,

Tronsmit 255 words,

Transmit 2 words

I
i
|
Il
I
1
|
I
f
5
AR A Start addresses for From and To !
|
1
|
|
1
|
|
1
1
i
L
i

ol Location Operation | 1 Address. Tag, Decrement/Count
I I
) !2 6|7 |8 ! L
L AXT_ .| 512,12
LA . sTADD
IR TmT_ 1
L Taax I %-21,14
_..JL..A.A.‘. ﬂE_@____; ; Stop.
'S TADD \PZE_ _._. ||
b | IEND . 1]
I ______ ] ___7__7_7_v.7.j IAnother variation might be:
L |eLA ) isTADD
| |rMT___ 1255
L |lrmr____| 255
L rmMr iz
L] Hgﬂ_ffv,ﬂ' L Stop.
t/ﬁhM

Figure 89. Sample Transmit Programs
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A floating-point decimal number X may be expressed
as a signed proper fraction (N) multiplied by some
integral power (n) of 10. The number is normal if the
power of 10 (n) is chosen so that the decimal point
is positioned to the left of the most significant digit
of N. Examples:

X N 10"
-~.010 = -.10 x 10
140 = 14 X 10°
4600 = .46 X 10
88.000 = .88 x 10°

Likewise, a floating-point binary number (X) may
be represented as a signed proper fraction (B) times
some integral power (b) of 2. In the normalized case,
the binary point is positioned to the left of the most
significant digit of B. Examples:

X({ BINARY ) B( BINARY ) 2" ( DECIMAL )
-.001 = —-.100 X 22
100 = 100 X 20
1.100 = 110 X 2!
110.000 = 110 X 28

The algebraic addition of two floating-point numbers
in the computer is analogous to the ordinary algebraic
addition of two signed numbers with decimal points.
An example is the algebraic addition of the numbers
100 and —0.1009:

100.0000
-000.1009

99.8991

Note that the second number must be shifted to
the right to line up the decimal points, and that the
first number must be supplied with additional zeros.
The same addition performed with. numbers expressed
in floating-point decimal form is:

1000 x 10°
—.1009 x 10°

Again, before the addition, the lower number is
shifted to the right with a compensating .change in the
exponents, and corresponding zeros are added to the
number on the upper line:

1000000 x 10°
—.0001009 x 10°

0998991 X 10* = 998991 X 107

Note also that the digits of the answer must be
moved to the left to be in normalized form (no zero
in the position to the right of the point) and that the
final fraction contains more digits than either of the two
numbers involved in the addition.

In the computer, the two numbers are expressed as
binary fractions, each having an eight-bit binary char-
acteristic to represent the exponent 2. The “lining}&p”
is done by shifting from the ac into the MQ. The result

of an addition or multiplication is normalized by shift-
ing the fractions in the ac and Mm@ left while making
compensating changes in the characteristic of the sum
or product.

In the computer, a floating-point number is stored
in a word location as shown in Figure 90.

[SlChcructeristic] Fraction I
O] 39 35

Figure 90. Floating-Point Word Format

The fraction is contained in bit positions 9 through
35. The sign of the fraction is contained in the S
position of the word, and position 1 of the characteristic
may be considered the sign of the characteristic. For
example, an exponent of —32;, would be represented
by a characteristic of 2005 minus 40y or 140y. An ex-
ponent of 100, would be represented by a character-
istic of 2004 plus 1444 or 3444. Since 128;, is equal to
200y, the characteristic of a non-negative exponent al-
ways has a 1 bit in position 1 of the floating-point word,
while the characteristic of a negative exponent always
has a 0 bit in position 1. A normal zero has no bits in
either the characteristic or the fraction, and is the
smallest possible zero available in this notation.

Conversion

A procedure for converting numbeérs to floating-point
notation can be illustrated by the problem: Convert
the decimal fraction .149 to floating-point notation:

1. Convert to binary form:

149, = 11425 = .001 001 100 010.
2. Enter the binary number into the fraction part of
the word with a zero (2004) characteristic:
10 000 000. 001 001 100 010 or (200. 1142},
3. Normalize:
01 111 110. 100 110 001 or (176. 461), = answer

Now, convert the decimal integer 149 to floating-
point notation:
1. Convert to binary form

149, = 225: = 010 010 101
2. Strike out leading zeros
10 010 101

3. Enter this binary number into the fraction part
of the word with a zero characteristic

10 000 000. 100 010 101 or (200. 452).

4. Add the octal number of binary digits in step 2 to
the zero characteristic of the computer word

10 001 000. 100 101 010 or (210. 452)s = answer
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Examples of equal exponential ( binary ) and floating-
point numbers are:

EXPONENTIAL BINARY FORM FLOATING-POINT FORM

( BINARY EXPONENTS ) S 1 8 9 35
d xan 0 10 000 011 100 000 000..0
1 x2" 0 10 000 100 100 000 000..0
—101 xX2'=(—-0.101 x2'™) 1 10 000 100 101 000 000..0
A1 x 2° 0 10 000 000 110 000 000. .0
1 x2=(1x2") 0 01 111 110 100 000 000..0
—.101 x 27" 1 01 110 101 101 000 000..0

The fraction does not always have a significant bit to
the right of the binary point but, when it does, the
floating-point number is said to be in “normal” form.
The exception to this rule is a “normal” zero. A normal
zero is a floating-point number whose characteristic
and fraction are both zero. If a floating-point number
does not meet either of these qualifications, it is called
“unnormal.” The single-precision floating-point instruc-
tions are divided into the two general catagories:
normal and unnormal. The difference in machine oper-
ation between the two is that normal operation always
attempts to produce a normal answer and unnormal
does not.

Examples

Multiplication: Example 1. Add characteristics and
multiply fractions.

S I 8 9 35
0 10 000 011 .11....0 Multiplicand.
0 10 000 001 .101....0 Multiplier.
100 000 100 .O1111.. Add characteristics and mul-
tiply fractions.
10 000 000 Subtract extra 200s factors
10 000 100 01111 0 from Ch.aracteristi'c..
10 000 011 .1111...0 Normalize by shifting frac-

tions left one place and de-
creasing characteristic by
one; this does not alter the
value of product.

Multiplication: Example 2.

S 1 8 9 35

0 01 111 011 101..... 0
1 10 000 110 1100....0

Multiplicand.
Multiplier.

1 100 000 001 .01111 Add characteristics and mul-
tiply fractions.

10 000 000 Subtract extra 200, factor in
1 10 000 001 .Ol1l1 characteristic.

Normalize by shifting frac-
tion left one place and re-
ducing the characteristic by
one.

1 10 000 000 .1111

The sign of the product is negative because the signs
of the two original factors were different.

Normalization of one place is automatic on the Fmp
instruction, whether or not the multiplier or multi-
plicand is in normal form. If both factors are normal,
floating-point multiply will produce a normal product.
Normalization is not performed by the computer on
unnormalized floating-point multiply curMm> operations,

70

regardless of whether the factors are normal. uFM can-
not produce a normal product.
Division: Divide fractions and subtract character-
istics.
S 1 8 9 35
10 001 010 .1000..... 0

0

0 10 000 101 .1000....0

0 00 000 101 1.000....0
10 000 000

Divide fractions and sub-
tract characteristics

Add 200, (FP factor)

Shift fraction right one place
10 000 101 1.000....0 (point must be to left of
10 000 110 .1000....0 most significant figure)
Proof: (Decimal) .5 X 2 =1 X 2° = 32

5 x 2
(Binary) .1 X 2° = 2° = 32

Preceding the division, the dividend is in the ac and

the divisor in the sr. The MQ is automatically cleared

before division takes place. After division the quotient
appears in the M@ and any remainder in the ac.

If both the dividend and divisor are in normal form,
the quotient will be in normal form. When the dividend
or divisor is not in normal form, the quotient will be
normal only if the fraction of the dividend is greater
than half but less than twice the fraction of the divisor.

Addition and Subtraction: As in fixed point, sub-
traction is accomplished by inverting the sign of the sr.

Floating Point Binary: Example 1.

o0

S 1 8 9 35
0 10000011 .101....0 Signs different; subtraction is
1 10000011 .100....0 implied.
0010...0 Characteristics are equal;
10000011 .001....0 therefore subtract.
10000001 .100....0 Fractions assign same charac-

teristic.
Normalize: Shift fraction left
until A bit appears to right of
point.
Decrease the characteristic by
the number of shifts.

2% X .625

—23 x .500
22 x 125 =8x%x.125=1.0
1.0 = 10000001 .10....0

Proof (Decimal)

Example 2.
S 1 8 9 35
0 01 111 000 .001010....0
0 10 000 101 111000....0

Signs are alike; addition is implied.
LOWEST CHARACTERISTIC

01 111 000 .001010 The characteristics must be made
01 111 001 .000101 equal by shifting the fraction of
01 111 010 .0000101 the lowest number to the right and
01 111 011 .00000101 increasing the characteristic by the
01 111 100 .000000101 number of shifts.

01 111 101 .0000000101

01 111 110 .00000000101

01 111 111 .000000000101

10 000 000 .0000000000101

10 000 001 .00000000000101

10 000 010 .000000000000101

10 000 011 .000000000 0000101 The characteristics are
10 000 100 .00000000000000101 now equal; therefore
10 000 101 .000000000000000101 add fractions and affix
10 000 101 .111000000000000000 common characteristic.
10 000 101 .111000000000000101



In addition or subtraction, the characteristics must
be made equal before the fractions can be combined.
The number with the smallest characteristic is auto-
matically placed in the accumulator. Then it is shifted
right a number of places equal to the difference in the
ac and sr characteristics. Bits shifted past acs; go to
MQy, and bits leaving MQz5 are lost. Normalization of
the total occurs on Fap and Fss.

Summary

Floating-point arithmetic is used to reduce program-
ming complexity and increase the range of numbers
available for calculation. The only disadvantage is the
loss of two and one half decimal places of accuracy
(lost in accommodating the characteristic ).

The only major difference in exponential and floating-
point arithmetic is the treatment of the exponent. Neg-
ative exponents are implied by floating-point char-
acteristics of less than 200s.

Multiplication:

Add characteristics and reduce by 200

Multiply fractions and normalize

Division:

Subtract characteristics and increase by 200

Divide fractions and normalize

Addition and Subtraction:

Equalize characteristics by shifting the fraction
having the smallest characteristic right, at the
same time increasing the characteristic propor-
tionately. Combine fractions (add or subtract)
and normalize.

Sign Control:

Multiplication and Division: Factors signs alike;
answer plus.

Factors’ signs unlike; answer minus.

Addition and Subtraction: Answer always has sign
of largest factor.

The possibility of floating-point overflow or under-
flow during execution of a floating-point instruction is
indicated by an (*) asterisk in the following descrip-
tions. All conditions of underflow and overflow are
discussed following the last floating-point instruction
and are also included under “Trapping.”

Single-Precision Floating-Point Instructions

Floating Add — FAD YT

The floating-point numbers located in Y and the ac
are added together. The most significant portion of the
result appears as a normal floating-point number in
the ac. The least significant portion of the result ap-
pears in the MQ as a floating-point number with a

characteristic 33 (octal) less than the ac character-
istic. The signs of the ac and MQ are set to the sign of
the larger factor. The sum in the ac and mq is always
normalized whether the original factors were normal
or not. If ccaci.35 contain zeros, the Fap may be used
to normalize an unnormal floating-point number.

1. The MQq register is cleared to zeros.
2. The cv) are placed in the sg.

3. If the characteristic in the sr is less than the
characteristic in the ac, the csr and ccg ;35 are
interchanged, as the number with the smaller char-
acteristic must appear in the ac before addition can
take place.

4. The MQ is given the same sign as the ac.

5. If the difference in the characteristics is greater
than 63, the ccac are cleared. If the difference in the
characteristics is a number N less than or equal to 63,
the ccacyy 35 are shifted right N places. Bits shifted out
of position 35 of the Ac enter position 9 of the mq. Bits
shifted out of position 35 of the Mm@ are lost.

6. The characteristic in the sgr replaces the cao; g,

7. The csRyg.35 are added to the cacigss and this
sum replaces the c(ACy.35. If the signs of the ac and
sR are unlike, the csryg 35 are added to the 1's com-
plement of the ccacyy.35. Since the cacyy.35 represent a
pure fraction, the magnitude of their 1’s complement
isequal to (1 —227) — caC)g.35.

8. Regardless of the sign or relative magnitudes of
the sr and ac, the result appears in double-precision
form with signs alike in both the ac and mQ. If the
signs of the ac and sr are the same and the magnitude
of the sums of the fractions is greater than or equal to
one, there is a carry from position 9 into position 8
of the ac. Thus, the characteristic of the ac is in-
creased by one. In this event, the fractions of the ac
and MQ are shifted right one position and a 1 is inserted
into position 9 of the ac. If the signs of the ac and sr
are different, there are two cases, both depending on
the difference between the sr and ac fractions.

Cask 1. If the magnitude of the sr fraction is greater
than the fraction in the ac, the ac and Mq signs are
both changed to the sign of the sr. If the fraction
of the mg is zero, the difference between the frac-
tions of the sr and ac is placed in the ac. If the
fraction of the mq is not zero, the difference be-
tween the fractions of the sr and Ac, minus one,
is placed in the ac; the 2's complement of the MQ
fraction replaces the fraction in the M.

Case 2. If the magnitude of the sr fraction is less
than the fraction in the ac, the difference of the
two fractions replaces the fraction of the ac. The
sign of the ac and the entire MQ remain un-
changed.
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9a. If the resulting fractions in both the ac and
MQ are zero, the Ac is cleared, yielding a normal zero.
If the fractions are in normalized form before the Fap
is given, this result can only occur if the signs are
different and the ccy);.35 are equal to the cao; 35. The
signs of the ac and mq will be equal to the sign of
the number originally in the ac. If the resulting fraction
in the ac is zero and the two numbers were not in
normalized form before addition, the signs of the ac
and MQ are equal to the sign of the original number
having the smaller characteristic.

9b. If the resulting fractions in the ac and MQ are
not zero, the fractions of the ac and Mq are shifted
left until a 1 appears in position 9 of the ac. Bits
enter position 35 of the ac from position 9 of the mq.
The characteristic in the Ac is reduced by one for each
position shifted. No shifting is necessary if the fraction
of the Ac is in normal form at the beginning of this
step.

10. The mMqQ is given a characteristic which is 27
less than the characteristic in the ac, unless the Ac
contains a normal zero, in which case zeros are left
in positions 1-8 of the mQ.

If the P and/or Q positions of the ac are not zero
before the execution of the rap, the result will usually
be incorrect. Non-zero bits in P and/or Q which are
initially interpreted as part of the ac characteristic
make it larger than the characteristic in the sr so that
the interchange in step 3 will always take place. Dur-
ing the interchange a 1 will be placed in position S
of the sr if there is a 1 in either S or P positions of the
AC, so that the sign of the number may be changed.
Any bit in Q is lost during the interchange and both
P and Q are cleared when the csr replace the cao.
The difference between the two characteristics is com-
puted after the interchange occurs, so that in step 5,
N will not be equal to the difference between the
original characteristics. In step 6 the characteristic in

the sr, with its Q and P bits missing, replaces the char-
acteristic in the ac. Consider as a sample problem the
addition of:

2?2 X .1001 = (SR) + 10000010.1001
28 %X .1001 = (AC) + 10000101.1001

First, the exponents must be equalized and then the
addition may proceed. The characteristics are checked
and found unequal, with the largest in the ac. The
numbers in the ac and sr are then exchanged, giving:

SR +10000101.1001
AC +10000010.1001

The MQ content is zeros at this time. The cacyy.s;
are then shifted right the number of places needed to
equalize the exponents. (Remember that the binary
point is located between positions 8 and 9 of all reg-
isters.) The registers then appear as:

SR +10000101.1001
AC +10000101.0001
MQ +00000000.0010
The fractions ( positions 9-35) may now be added.
SR +10000101.1001
AC +10000101.1010
MQ +00000000.0010

ac position 9 is checked for a 1 and no normalizing
occurs. The MQ characteristic is now set. It is equal
to the ac characteristic minus the number of places in
the ac fraction (27 in the computer, 4 in this example):

SR +10000101.1001
AC +10000101.1010
MQ +10000001.0010

Decoding the results into the original format, we
find:

2° x .1001

2° x .0001001 AC =

2° x .1010001

MQ = 2' X .0010 = 2° x .00000010
2% x .1010

= 2° x .10100010

resultant sum

The rap instruction may be used to convert a fixed
integer to a floating integer of less than 2%7 through
use of a program as shown in Figure 91.

Figure 91. rap Conversion Sample Program
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. | Tocotion Operation T TAddress. Tog, Decrement/ Count Tomments T 1denthication
[ )
i [ I
12 678 B 7'n 0
__4'_ _______ ] QLA__A_: ?/I[p Put fixed integer into accumulator. !
b ORA_.__._, CHAR |
O | FAD_._._ | \CHAR !
_:_._.,.;.A S To _._._1' 'rFL"‘T Store converted integer. Tl
T HPR .. _. | i
— —— r T
| lcuar | loeT . | 1253000000000 (Octal number) r
\/\//




Floating Divide or Proceed — FDP YT

The cae are divided by the cty). The quotient ap-
pears in the M@ and the remainder appears in the ac.
If the magnitude of the ac fraction is greater than or
equal to twice that of the c(v)y.35, or if the magnitude
of the c(yy.45 is zero, division does not occur and the
computer takes the next instruction in sequence. The
quotient is in normal form if both the dividend and
divisor are in normal form. The sign of the MQ is the
algebraic sign of the quotient. If the ac fraction is zero,
the c(AC)o p.1.35 are cleared and the ac sign is set plus.
The cy) are unchanged.

Floating Multiply — FMP Y, T

The ccv) are multiplied by the caMg). The most sig-
nificant part of the product appears in the ac and the
least significant part appears in the MmQ. The product of
two normalized numbers is in normalized form. If
either of the numbers is not normalized, the product
may or may not be in normalized form. The cy» are
unchanged.

Floating Subtract — FSB Y, T

This instruction albegraically subtracts the number
located in Y from the number in the ac and normalizes
the result. The c(y» are unchanged.

Unnormalized Floating Add — UFA Y, T

This instruction algebraically adds the two numbers
contained in the ac and located by Y. The sum is not
normalized and the ccy> are unchanged.

The ura instruction may be used to convert floating-
point numbers to fixed-point numbers if the magnitude
of the floating point number is less than 2%7. The in-
struction sequence could be as shown in Figure 92.

YT

This instruction multiplies the number at Y by the
number in the MQ. The result is not normalized and
the ccy) are unchanged.

Unnormalized Floating Multiply — UFM

YT

This instruction algebraically subtracts the number at
Y from the number in the ac. The result is not normal-
ized and the c«v) are unchanged.

Unnormalized Floating Subtract — UFS

Trapping

Automatic trapping of the program is used with the
7040/7044 systems to signal unusual conditions to the
program without special test instructions. With trap-
ping, system status is constantly monitored and, when
special conditions are detected, normal processing is
interrupted and the program is transferred (trapped)
to a trap routine.

To identify the causes of trapping and to allow for a
return to normal processing, the instruction counter
contents are automatically stored at a fixed location
in storage, usually with some trap identification data,
when a trap is initiated. The program is then auto-
matically transferred to another fixed core storage

Figure 92. ura Conversion Sample Program

. : Location Operation T TAddress, Tag, Decrement/Caunt Tomments T dentification
i J|2 8|7 (8 ; i 7?;73 80
_}_ _______ | _QEQ__‘.__J L Start of program. !
__L_._.__A_‘ QLA___J ;FLOA T Place FP number in accumulator. H
I | lweAa__ __|cHar '
| JALS_ O i
| |ARs. .| :10 !
L | 8TOo | UNT Store integer. !
e ] L,Q.L._._._.*: :8 !
e ] AAE.JW._A_._: :0 Put AC sign in MQ. :
_lg._._._‘_ $.7Q . . . _ | FRAC Store fraction. l
I PR ___ || ;
4i_c,ﬂ,ﬂ R_jloC€T | '23%000000000,0,0, :
[
i f— |
I, S5 SN Ty E e S T
FLQAT) | i '
L END !
l e —T N T T S U
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location for its next instruction. Many types of trapping
are used and each type is assigned a priority with re-
gard to the other types. Only the floating-point trap
is presented here. All other traps and the special trap-
ping instructions are described under “Trapping.”

Floating-Point Trap

During the execution of floating-point instructions, the
resultant characteristic in the Ac and MQ may exceed
eight bit positions (result is too large for storage).
The capacity is exceeded if the exponent goes beyond
1775 or below —2004. Beyond 1775 is termed overflow;
below — 200y is termed underflow. Overflow and under-
flow may occur in either the ac or the MQ registers.
The computer, on sensing an underflow or overflow,
will put the address, plus one, of the instruction that
caused the condition, into the address part of location
00000. An indication of the actual cause (a spill} is
stored in the decrement part of location 00000. The
decrement bit positions used and their meaning when
they contain a 1 bit is:

BIT MEANING
S Double-precision instruction on system with single-
precision only.

12 Double-precision address error

14 Single-precision divide instruction

15 Overflow in AC or MQ or both

16 AC overflow or underflow

17 MQ overflow or underflow

After the storing of the trap information, the com-
puter automatically executes the instruction located
in location 00010.

If a trap to location 00010 occurs and the contents
of location 00000 are 0000120000375, the instruction
that caused the trap was a floating-point divide instruc-
tion (a 1 bit in position 14). The cause of the trap itself
was an underflow in the accumulator (0 bits in posi-
tions 15 or 17 and a 1 bit in position 16) and the next
instruction following the floating-point divide in nor-
mal sequence is in location 00375 ( positions 21-35 of
location 00000 ).

Double-Precision Floating-Point Instructions

Four double-precision floating-point instructions are
available for applications requiring higher accuracy
than possible with single-precision instructions. These
instructions increase floating-point precision from 8 to
16 decimal digits by working with two full 36-bit words
at a time. All double-precision numbers in core storage
must be located so that the high-order word is in an
even address core location followed by the low-order
word in the next higher odd address location. If the
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effective address of a double-precision instruction is
odd, the instruction is trapped (explained under
“Trapping”).

All rules described for single-precision floating-point
instructions also apply to the double-precision floating-
point instructions. For overflow and underflow, the
exponent of the major or high-order word of the result
(in the Ac) may not exceed +177; and the exponent
of the minor or low-order word (in the MQ) may not
be lower than —2005. Double-precisions instructions
executed on a system with single-precision option only,
cause a trap operation.

Figure 93 shows the format of double-precision
floating-point words, both in the processing unit regis-
ters and in core storage locations.

LN T afga | ~no7 [ 8 (8 |
51 89 351 89 J
AC MQ

Bl m Jcifc [mor [ 0 §fo0
‘S,l 397 KL 89 v 351
Y 2

Figure 93. Double-Precision Word Format

Double-Precision Floating Add — DFAD YT

This instruction adds the number located in Y and
Y+1 to the number in the ac and MmQ. The result is a
normalized double-precision number with the major
answer in the ac and the minor in the mQ. The signs of
the ac and mQ are the algebraic sign. The contents of Y
and Y+1 are unchanged.

Double-Precision Floating Subtract — DFSB Y,T

This instruction is equivalent to pFap with the sign in
Y inverted.

Double-Precision Floating Multiply — DFMP YT
This instruction causes the number in Y and Y+1 to be
multiplied by the number in the ac and MQ. The result
is a normalized number in the Ac and Mo, with an asso-
ciated algebraic sign. The co» and c(y+1) are
unchanged.

Double-Precision Floating Divide or Proceed —
DFDP YT

This instruction causes the number in the ac and M
to be divided by the number in Y and Y+1. The result
is a double quotient in the ac and MQ, with an asso-
ciated algebraic sign. If the magnitude of the ac frac-
tion is greater than or equal to twice that of the ccv)y.g;,



or if the ccy9-35 are zero, the divide check indicator is a. Place a correctly signed zero in location 01000

turned on and the computer takes the next sequential if there is an underflow in the most significant
instruction. portion of the answer.

b. The routine should halt if there is a double-
Problem

precision address error or if there is an overflow

33. Write a trap routine to be used with a floating- in the most significant portion of the answer.

point arithmetic program. The program is only con-

cerned with the quotient in division and with the most c. Both the AC and MQ should be left unchanged
significant portion of the answer in other floating-point if the indicated error occurred in the least sig-
arithmetic operations. The trap routine should: nificant portion of the answer.
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IBM 7040/7044 Input/Output Control System

With the high internal processing speeds of modern
computers, most applications involving large amounts
of data handling are input/output limited; that is, the
time consumed by input/output devices in transmitting
data to and from core storage is very large when com-
pared with the time necessary to process that data.
Therefore, much effort has been expended to make
input/output as fast as possible. In the 7040 and 7044
systems, such features as multiple data channels, over-
lapping input and output with processing, and data
channel traps are direct results of the need for rapid
input/output.

These advanced concepts require careful program-
ming for efficient use. Even the simplest program re-
quires extensive coding if all input/output facilities of
the computer are to be used. Moreover, the resulting
routines resemble one another, so the programmer is
often duplicating work already accomplished else-
where.

To avoid this duplication of effort, a standard set of
input/output routines has been written. These routines
contain features that no single programmer would
have time to write on his own and are thus more flexi-
ble than an input/output routine written for a single
application, The aggregate of these routines is the
Input/Output Control System aocs).

The most important feature of 1ocs, aside from sim-
plification of input/output operations, is the provision
for symbolic reference to input/output units. Instead
of referring to a specific input/output device on a
specific channel, the programmer refers to a system
unit function. The device assigned to perform this
function can be changed by reassembly of the 1Bsys
Basic Monitor, under which 10cs operates, or by the
programmer. Thus, the uses made of input/output
devices may be varied to increase efficiency and speed
job-to-job transitions. 10cs also provides standardized
error recovery routines for each device that can be
attached to the 7040 and 7044 systems.

Basic Concepts

The data that the programmer manipulates is usually
in the form of a file. A file is a collection of related
information arranged in logical records. A logical rec-
ord may consist of a single number, may be all of the
information pertaining to a given business transaction,
or may be a record of the value of several parameters
at a given point in an experiment.
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The main problem in the usual data processing ap-
plication is that of performing certain calculations with
the data contained in the files for that application.
Most files, however, are much too large to be held
entirely in core storage; it is necessary to read part
of the file, process it, and write out the results. Since
a logical record is the smallest amount of data that
a program can read and still have enough information
to begin calculating, the program is mainly concerned
with the handling of logical records. Sometimes logical
records are too small for efficient recording on tape or
disk storage. It then becomes necessary to block rec-
ords, by putting two or more logical records together,
before recording them. 10cs provides routines that
simplify the problems of blocking and deblocking logi-
cal records.

Labels

A label is a single block, at the beginning or end of
a data file, which describes the file. The label at the
beginning of the file is the header label. The trailer
label, the last block in the file, comes after the end-
of-file mark which indicates the last data record has
been read.

10Cs contains routines to verify and create standard
120-character 1BM header and trailer labels on input
and output files. All header labels begin with a file
character code and contain information such as: the
name of the file, the date of creation of the file, the file
retention period, and the parity and density at which
the file was written. Trailer labels begin with other
codes to indicate that the file continues on a different
input/output device or that the end of the data file has
been reached. :

Labels are also used for checking, to insure that the
right file is read, that it is read in the correct parity,
and that files containing data that should be retained
are not erased.

Overlap and Data Channels

Data channels control transmission of information to
and from an input/output device selected by the proc-
essing unit. When channel A is in operation, all process-
ing is delayed until data transmission is complete.
Channels B through E, however, allow the processing
unit to continue with calculation while data are being
transmitted. All four of these channels can carry on
input/output operations simultaneously, overlapping
channel operations and those of the processing unit.



Channel Traps

The most efficient use of overlapped channels is ob-
tained when they are kept in continuous operation.
Although the main program can determine by a trans-
fer instruction whether an input/output operation has
been completed, periodic checking of the channel-in-
operation indicator takes time and complicates pro-
gramming. To avoid this situation, the 7040 and 7044
systems can trap the program as soon as any channel
operation ends.

A trap causes the operation of the main program to
be suspended, and the contents of the instruction
counter to be stored in the address portion of one of
the first few words of core storage. Indications about
the reason for the trap and the conditions encountered
by the channel during the operation are also placed in
the same location. The next instruction is then taken
from the location immediately following the one in
which the information was stored. This instruction
transfers control to a supervisory routine, which chooses
the select and error recovery routine for the device
concerned and causes it to be executed. This routine
checks for errors in transmission, institutes error correc-
tion procedures if necessary, and starts new activity,
if possible. The supervisor then restores the traps and
returns control to the main program.

A fundamental part of 10cs is a trap supervisor, which
makes it unnecessary for the programmer to write
supervisory routines. In fact, the trap supervisor and
the trap locations in lower core storage are under
storage protection, and any attempt to modify them
halts the offending program.

Buffers

Effective overlapping of data transmission with proc-
essing requires at least two input/output areas (buffers),
for each file. At a given time, one buffer holds the
logical record or records being processed, and the other
holds the record or records being read or written. Be-
cause the buffers reverse roles as soon as the process-
ing and input/output operations are complete, buffering
involves switching procedures within the main pro-
gram. This may become complicated if several files
from different devices are being processed against one
another.

Also, since each buffer contains a single block, it may
contain several logical records. Separating these rec-
ords for individual processing can also make the pro-
gram more involved. 10cs contains routines that handle
the use of buffers and the blocking and deblocking of
logical records within the buffers.

I0CS Organization
The input/output control system is divided into four
sections:

Input/Output Buffering System — IOBS: Routines
necessary for buffering input/output and for blocking
and deblocking logical records.

Input/Output Operations — IOOP: Routines for
starting activity and error correction procedures on the
devices attached to the data channels. 1o00p is also
responsible for the scheduling activity of individual
devices.

Input/Output Labeling System — IOLS: Routines
that read, write, check, and construct labels.

Input/Output Executor — IOEX: A trap supervisor,
a channel scheduler, a series of conversion and utility
routines, and a scheduler of special routines to be
executed as soon as an input/output operation is com-
pleted.

10CS Level Concept

Although each section of 10cs performs a specific op-
eration, the sections are not independent. 10Bs, 100P,
1ors, and 10EX combine in various ways to form three
distinct levels of 1ocs.

The 108Bs level involves the existence in core storage
of all four sections of 10cs. The lower levels are all used
by 10Bs and, if 108s is used on a given file, none of the
lower levels may be used on the same file. The program
specifies the file characteristics to 10Bs and then can
view them as continuous strings of logical records that
enter or leave core storage on demand. 10Bs uses 10LS
according to the specifications of the file.

At the 100P level, the programmer loses the block-
ing, deblocking, and buffer supervision facilities of
10Bs. He communicates directly with 1oop, and also
with 1ors. The purpose of 100p is the reading and writ-
ing of blocks.

The 10Ex level, although it still permits the program-
mer to use 10Ls, mainly provides him with trap super-
vision and channel scheduling. The programmer must
provide the select and error recovery routines normally
provided by 1o00P.

Relationship of 10CS Levels

10Bs contains most of the coding necessary for efficient
use of all input/output capabilities of the 7040 and
7044 systems. If the 100p or 10Ex levels are used instead
of the 108s level, machine coding must be supplied to
make up the deficit between the facilities available at
the level being used and those necessary for efficient
operation of the program.

At the 100p level, blocking and deblocking and buf-
fer supervision routines necessary to handle the blocks
obtained through 100P must be supplied. This may be
the most efficient course if the files being handled do
not require elaborate blocking and deblocking. It is also
possible that the data are not arranged in sequential
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files, as on disk storage, in which case 108s is not appli-
cable.

At the 10EX level, routines to take the place of 100p,
in addition to the routines necessary to replace 10Bs
must be written. The extra routines include a unit
scheduler and a select and error recovery routine for
each type of device that the program uses. The 10Ex
level is useful to reduce the amount of space taken up
by input/output routines to the minimum possible for
the particular application. It may also be used in cir-
cumstances for which 100p is not appropriate.

Relationship of 10CS to IBSYS

10Cs is part of the Bsys Operating System. The input/
output executor and the parts of 100p required by the
systems library loader are kept in core storage at all
times, along with the nucleus of the basic monitor.
These two programs are storage protected to avoid
damage to them from untested programs (if the
memory protect option is a part of the system).

The remaining sections of 1ocs are loaded by the
monitors and left in core storage for object programs.
Any part that is not required by an object program may
be overlayed except where that part is storage pro-
tected. These sections are used by the program through
calling sequences to the entry points of the various
levels of 1ocs.

In using 10cs, the programmer refers to the devices
being used by the logical name of the function that they
perform, not by their actual machine addresses. When
10Cs receives a request for some input/output operation,
it obtains the machine address of the attached device
that can perform the system unit function specified.
This address is used to carry out the instructions re-
ceived from the main program. 1ocs itself is entirely
device-independent, and allows for the possibility that
any one of a large number of devices may have been
attached to a given system unit function. It is the re-
sponsibility of the operator to insure that the physical
devices attached to the system are compatible with the
use to which they are being put.
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Random and Sequential Processing

I0CS contains facilities for both sequential and ran-
dom processing applications. In sequential processing,
the files have a fixed sequence and are read in and
processed according to that sequence. Card and tape
files are naturally sequential, and 1ocs provides for disk
storage to be used for sequential processing.

In random processing, the data files being processed
are not necessarily in sequence with respect to each
other. One file is read sequentially, and the sequence
of other files that must be processed at the same time is
indicated by the records of that file. All files that are
in a different order from the file being read sequentially
must be held on some random access input/output
device such as disk storage. 100p includes routines to
facilitate random processing. These routines are device-
oriented, since they require that a random access de-
vice be attached to the system unit function to which
they are applied. Also, the program must give 100p
the location on the device where the logical record of
data can be found.

Summary

The user of 10cs must determine at what level the best
use may be had of the 7040 and 7044 systems and of
the monitor facilities provided with the system.

The greatest programming flexibility (and conse-
quently the greatest effort required) and the least
core storage space sacrifice are available at the lowest
1ocs level. The closest approach to logical data han-
dling and the greatest storage space requirement occur
at the highest 1ocs level.

The intermediate levels of 10ocs may be the most
satisfactory for programs whose record format is com-
pletely known and whose buffering requirements are
easily coded, but which are completely independent
of the input/output devices available.

10cs, therefore, provides each user with a program
package that can fulfill his individual application re-
quirements. To use 10cs, a 7040/7044 Data Processing
System must have the extended performance instruc-
tion set option.



To use the fast, versatile processing ability of the
processing unit, the user must be able to put raw data
into the computer system, tell the system what to do,
and take the processed data from the system and record
it in a form that can be used. This chain of input, proc-
essing, and output always begins and ends with some
input/output device.

An input/output device is a machine linked directly
to the data processing system. Each device operates
under control of the processing unit as directed by the
stored program. In some cases, a separate unit, placed
between the processing unit and the input/output de-
vice, serves as a control or synchronizer unit. The syn-
chronizer not only controls the devices attached to it
but serves as an assembly-disassembly device for the
data passing through it. This is necessary since the
internal processing speeds are much faster than the
input devices that read data or the output devices that
record the results. Figure 94 shows the relationship be-
tween processing unit, synchronizer, and input/output
devices.

Input devices sense or read data from 1M cards,
magnetic tape, paper tape, or may simply supply data
to the processing unit in the form of electronic pulses.
The data are then placed in the core storage of the
system. Output devices record or write the data from
storage on 1BM cards, magnetic and paper tape, or
prepare printed copy. Output may also be in the form
of electronic pulses (for transmission over communica-
tions networks ).

Reading and Writing

Reading takes place as the input medium physically
moves through an input device. The information is
sensed or read and is converted to a form that may

Input »| Output
Device Unit

Synchronizer Unit

Processing Unit and Storage

Figure 94. Input/Output Device Relationship

Input/Ovutput Devices and Operations

be used by the computer system. The information is
then sent to core storage.

Writing involves converting data from storage to a
form or language compatible with an output medium
and recording the data using an output device.

Most input/ocutput devices are automatic; once
started, they continue to operate as directed by the
stored program. Instructions in the program select the
required device, direct it to read or write, and indicate
the storage location that data will be put into or taken
from. A few input devices are manually operated, and
no medium for recording data is involved. Instead, data
are entered directly into the computer using a keyboard
or switches, which are usually a part of an operator’s
console.

Data Buffering

All data processing procedures involve input, process-
ing, and output. Each phase of the procedure takes a
specific time. The usefulness of a computer is often
directly related to the speed at which it can complete
a given procedure. Ideally, the configuration and speed
of the various input/output devices should be so ar-
ranged that the processing unit is always kept busy
with useful work. The efficiency of any computer sys-
tem can be increased to the degree in which input,
output, and internal processing can be overlapped or
allowed to occur simultaneously.

Figure 95 shows the basic time relationship between
input, processing, and output with no overlap of opera-
tions. In this type of data flow, processing is suspended
during reading or writing operations.

Figure 96 shows an overlapped time relationship.
The figure assumes that there are two buffers, one for
input and another for output. With this type of data

Figure 95. Non-Overlap Time Relationship
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Figure 96. Overlapped Time Relationship

buffering system, data are first collected in an input
buffer. When called for by the program, the contents
of the input buffer are sent to core storage. The trans-
fer takes only a fraction of the time that would be re-
quired to read the data directly from an input device.
Also, while data are being assembled in the buffer,
processing can occur in the processing unit. Likewise,
completed data from storage can be placed in an out-
put buffer at high speed. The output device is then
instructed to write out the contents of this buffer.
While writing occurs, the processing unit is free to
continue with other work.

With the 7040 and 7044 systems, both the nonover-
lap and overlapped types of operation are available.
For small computer applications, requiring only card
and printer equipment, the basic or nonoverlap system
could be used. If higher input/output volume is re-
quired, magnetic tape can be attached to the system,
still using nonoverlapped operation. If still higher job
completion time (throughput) is needed, the over-
lapped data buffering method may be used. Magnetic
tape units, Tele-Processing® equipment, and other
types of input/output devices may be attached to the
overlapped system.

Actually, input/output devices of the 7040 and 7044
systems are linked to the processing unit with a data
channel. Registers within the data channel control the
quantity and the destination of all data transmitted be-
tween storage and the input/output devices. The basic
system of the 7040 and 7044 computers includes one
input/output channel, data channel A, whose opera-
tion is not overlapped with processing unit operation.
Overlapped input/output and processing unit opera-
tion is available by using the 18m 7904 Data Channel.
Figure 97 shows a 7040 or 7044 system, using only data
channel A and some of the available input/output
units. By using the 7904 Data Channel, a multiple
channel system is possible, which expands to include
many different input/output devices in various com-
binations (Figure 98).
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Figure 97. Channel A Systems
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Figure 98. Multiple Channel System



Devices and Control Units used on A maximum of ten tape units {all models) may be
7040 and 7044 Systems attached to any 1414-1, -2, or -7 Input/Output Syn-

Many optional input/output device configurations are chronizer. The mm 1622 Card Read Punch and the

available on the 7040 and 7044 systems. Both the con- M 1401 Data Process'ing System do not require' an
trol units and actual input/output devices are pre- input/output synchronizer. A console typewriter is a

sented in list form; the input/output devices are then
described in Figures 99 through 108. Some channel A
devices do not require a control unit but are con-
nected directly to an adapter of channel A.

CONTROL UNIT DEVICE

BM 1414-1 1BM 729 1t Magnetic Tape Unit
1/0 Synchronizer 1M 729 1v Magnetic Tape Unit
1BM 729 v Magnetic Tape Unit (with
800 cp1 Feature)
M 7330 Magnetic Tape Unit (with
Tape Intermix Feature)

M 1414-2
1/0 Synchronizer 1BM 7330 Magnetic Tape Unit
1M 1414-3 mBM 1402-2 Card Read Punch
1/0 Synchronizer 1BM 1403-1 or -2 Printer
M 1414-4 1BM 1402-2 Card Read Punch

1/0 Synchronizer 18M 1403-1 or -2 Printer
1BM 1009 Data Transmission Unit
18M 1011 Paper Tape Reader
1M 1014 Remote Inquiry Unit
Telegraph-type Units
Column Binary Feature (for 1402)
M 1414-5 1M 1009 Data Transmission Unit
1/0 Synchronizer 18M 1011 Paper Tape Reader
M 1014 Remote Inquiry Unit
Telegraph-type Units

Reads 800 cards per minute

BM 1414-7 1BM 729 11 Magnetic Tape Unit .
1/o Synchronizer ~ 18M 729 1v Magnetic Tape Unit ;u:; 'L?visgo?:;d: ;:,:;"F:f:,u,e
1BM 729 v Magnetic Tape Unit Attached to 1414-3 or -4
1BM 729 vi Magnetic Tape Unit One 1402 per 1414
1BM 7330 Magnetic Tape Unit (with
Tape Intermix Feature) Figure 100. 18M 1402 Card Read Punch

Maximum of 132 printing positions per line

Reads 250 cards per minute Prints 600 lines per minute
Punches 125 cards per minute Tape controlled carriage
Attached directly to Data Channel A Attached to 1414-3 or -4

One 1622 per 7040/7044 system One 1403 per 1414

Figure 99. 1M 1622 Card Read Punch Figure 101. 1BM 1403 Printer
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standard feature on both the 7040 and 7044, and it
does not require a synchronizer.

Input/output control units (or devices) that may
be attached to channel A include one each of the
following:

W N

. One console typewriter.
. One 1BM 1414-1, -2, or -7 Input/Output Synchronizer

and its attached magnetic tape units.

. One 1BM 1414-3, -4, or -5, Input/Output Synchronizer

and its attached units, or one 1622 Card Read Punch.

. One 1BM 1401 Data Processing System, Models B

through F, and its attached input/output units.

Four 18M 7904 Data Channels may be attached to
the 7040 or 7044 system. Each 7904 has one input/

Character Rates (characters per second):
729 1l and 15,000 cps, or

729 V 41,667 cps, or
60,000 cps

729 IV and 22,500 cps, or

729 VI 62,500 cps, or
90,000 ¢ps

729 11 and V move tape at 75 inches per second

729 IV and VI move tape at 112.5 inches per
second

All 729 models attach to 1414-1 or -7

Maximum of ten units per 1414

Figure 102. BM 729 1 Magnetic Tape Unit

Character Rates (characters per second):
7,200 cps, or
20,016 cps

Tape moves at 36 inches per second

Attached to 1414-2 or the 1414-1 or -7 with
Tape Intermix Feature

Maximum of ten tape units per 1414, including
729 tape units on 1414-1 or -7

Figure 103. 1BM 7330 Magnetic Tape Unit
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Data rates of 75, 150, 250, or 300 characters per
second

C ts two puters; each computer must have its
own 1009

Attached to the 1414-4 or -5

Figure 104. 18M 1009 Data Transmission Unit

Character rate of 500 paper tape characters per
second

Either 5-track or 8-track paper tape

Tape may be chad or chadless in strips, reels, or rolls

Attached to 1414-4 or -5

One 1011 per 1414

Figure 105. 18BM 1011 Paper Tape Reader



output control adapter. This control adapter allows
attachment of any one of the input/output devices
designed to the input/output control adapter interface
specifications. Interface is defined as the actual lines
and functions designed into such devices, including
the actual signal, data, and control lines (and their
precise cable connections), together with the necessary
internal functions. This means that future input/output

Maximum data rate of 15 characters per second
Maximum of 78 characters per message

Used to interrogate computer from remote location
Maximum of 20 units per 1414

Attached to 1414-4 or -5

Figure 106. 1BM 1014 Remote Inquiry Unit

Considered as an input/output device by the 7040/7044 system

Except for input/output instructions, each computer’s instructions function
normally

Both systems can operate together on a single problem or independently
(with the 1401 off-line) on different problems

Each system may interrogate the busy status of the other system

Attached directly to Data Channel A.

Figure 107. 1BM 1401 Data Processing System

devices designed to these same specifications may be
attached to the 7904 with a minimum of effort. In
addition to the one input/output control adapter, each
7904 Data Channel may have one of the following
devices:
1. One 1BM 1414-1, -2, or -7 Input/Output Synchronizer
and its attached tape units.
2. One Direct Data Connection (Explained later). This
feature provides for connection of non-1BM input/output

devices, such as analog/digital converters, radar, micro-
wave links, etc.

The 7904 input/output control adapter allows at-
tachment of any one of the following devices:
1. One 1BM 7631 File Control and its associated 1BM 1301
Disk Storage.

2. One 1BM 7750 Programmed Transmission Control and
its attached input/output devices.

Data Channels

Data channels of the 7040/7044 systems use a com-
mand word technique. With this technique, control
of an input/output operation passes logically from
the processing unit to the data channel. The com-
mand word is the means of transferring control from
processing unit to data channel and, therefore, the
data channel must have enough registers and counters
to exercise this control. The channel is required to
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Maximum of five 1301 units per 7040/7044

Maximum capacity of 55,800,000 characters of storage
per 1301

Controlled by one or two 7631 File Controls

Attached to the 7904 input/output control adapter

Figure 108. 1BM 1301 Disk Storage

perform such functions as word counting, address
changing, and (with some devices) the assembly and
disassembly of words of data.

Data Channel A Operation

Data channel A uses registers and data paths of the
processing unit to perform the input/output device
control function and therefore, no overlap exists be-
tween input/output and computer operations. Figure
109 shows data flow for channel A.

An input/output operation is started by execution of
a select instruction, which is decoded by the processing
unit. The output of the decoders is sent to the channel
to select the input/output adapter and the input/
output device specified by the select instruction. If
the device is busy with other work or is not ready for
operation, the select waits until the device is free.

Upon execution of the select, the input/output de-
vice called into use actually starts moving. When
selection is successfully completed, the channel ends
operation on the select and the processing unit gets
the next instruction for execution. This instruction is
normally a reset and load channel cr) instruction.
The rcH specifies a storage location that contains the
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Figure 109. Data Flow for Channel A




data channel command for this input/output operation.
One reH exists for each data channel.

Understanding the relationship between the select
and the rcH instructions is very important. The speed
of input/output devices is much slower than processing
unit execution speeds; however, the program must
have executed a rcH instruction by the time the par-
ticular device being used is ready to read or write.
This is shown in Figure 110, using a read select in-
struction for a 729 1 Magnetic Tape Unit. A maximum
of 4 milliseconds may exist in the program between
execution of the rps to a 729 11 tape unit and execution
of the rca. The rRcH may, however, immediately follow
the ros or be placed anywhere within the time allowed.
To further point out the time relationship: the 4
milliseconds needed to get the tape unit moving and
actually reading data into the processing unit is enough
time for execution of 500 machine cycles on a 7040
system or about the time required to execute 200
average-time instructions.

Comments
Execution of the RDS starts physical motion in

Operation
RDS 729 1l Tape

the selected tape unit.

Four (4) milliseconds after the RDS is executed,
the RCH must be executed; otherwise, the tape
unit is disconnected from the read operation.

Figure 110. Time Relationship between Select and rcH
Instructions

Execution of the reset and load channel instruction
places the data channel command in the accumulator.
The command (Figure 111) specifies the number of
words to be moved (word count — positions 3-17) and
the first storage address (start address — positions
21-35) to be used for the read or write operation. Read
operations are defined as input; write operations are
defined as output.

IOperafion I Word Count l | Starting Address
51 23

1718 2020 35

Figure 111. Data Channel Command Format

The word count portion of the command is tested
for zero count and, when it is zero, the channel ends
operation on the command and disconnects the input/
output device. Disconnect means that the input/output
device is no longer needed (has finished its operation)
and may be released for further use. When the word
count is not zero, the starting address part is placed

in the address register (Figure 109), and the shift
counter is set to six. At this point, operation differs
for read and write operations.

READ OPERATION

The input/output device sends seven-bit bytes (six
data bits plus a parity bit) to the channel adapter
where the parity of the byte is checked. If a parity
check is detected, the channel redundancy check indi-
cator is turned on but the input/output operation
continues. The six data bits are sent to the multiplier-
quotient register oM@ and placed in positions 30-35.
The contents of the mQ are shifted left six positions and
the shift counter (set to six initially) is reduced by
one, This procedure continues until the shift counter
is reduced to zero, which indicates that a full 36-bit
word (six bytes) has been transferred to the mQ. The
contents of the MQ are then placed in the storage reg-
ister and stored at the address specified by the starting
address.

Command modification is now accomplished by rout-
ing the starting address to the adders, increasing this
address by one, and returning the address to accumula-
tor positions 21-35. The word count is likewise reduced
by one and returned to accumulator positions 3-17. If
the word count is zero, the channel stops reading into
storage and, when an end-of-record signal is received
from the input device, ends operation on the channel
command and disconnects the input device. If the word
count is not zero, the shift counter is again set to six and
the channel repeats the procedure.

As input bytes come to the MQ register, the parity
bit is removed and accumulated to check word parity.

‘WRITE OPERATION

A word (36 bits) is brought from the location specified
by the starting address and is placed in the MQ. Posi-
tions S, 1-5 are sent to the parity generating circuits,
and the parity bit is added to the six data bits. The
complete byte is then sent to the output device, through
the channel adapter selector. After transmission of the
first six data bits, the Mq is shifted left six positions and
the shift counter is reduced by one. This procedure
continues until the shift counter is reduced to zero,
indicating that 36 data bits have been transferred (as
six bytes) to the output device.

Command modification occurs as with a read opera-
tion and the word count is tested for zero. If it is zero,
the channel ends operation and disconnects the output
device. If it is not zero, a new data word is required
from core storage; therefore, the modified address is
sent to the address register and the shift counter is
again set to six. This procedure continues until the
word count equals zero.
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IBM 7904 Data Channel Operation

The 1M 7904 Data Channel is used with the 7040 and
7044 Data Processing Systems to provide an overlapped
compute and input/output program operation. Up to
four 7904 Data Channels may be attached to the com-
puter and are designated as data channels B through E.
These data channels incorporate four registers to per-
form their function. Figure 112 shows data flow within
the data channel. The registers used include:

Channel Data Register: This 37-position register
acts as a buffer between core storage and the assem-
bly register. The data register has inputs from the
storage bus, direct data, and assembly register on a
full-word basis.

Word Counter: This 15-position counter contains the
number of words to be transmitted to or from the data
channel. The counter is loaded from the storage bus
( positions 3-17) before data transmission begins and is
decreased by one for each word processed.

Address Counter: This 15-position counter contains
the starting address in core storage of the information
to be stored or transmitted. The counter is loaded from
the storage bus (positions 21-35) before data trans-
mission begins and is increased by one for each word
processed.

Assembly Register: This 36-position register serves
as a buffer between the channel data register and input/
output equipment. Data are assembled and disassem-
bled in the register for transmission.

Read and write operation, using the 7904 Data
Channel, is much the same as with data channel A. The
outstanding difference is that central processing unit
registers are not used with the 7904 and, therefore,
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the cpu and the 7904 Data Channels can operate inde-
pendently. The operation is simply started by the cpu
and taken over by the 7904. The cpv is then signalled
when the 7904 has completed the operation or when
an error signal is received by the 7904, so that the
cpU can use the data from the input device or put
the channel to work on other operations.

Core Storage

Storage Bus

Positions 3-17 | ] I Positions 21-35

Y Y

Word Counter

Data Register Address Counter

i

Assembly
Register

F———. Parity Controls

Input/Qutput Device
Control Adapter

!

Figure 112. 18M 7904 Data Channel Data Flow




IBM 1414 Models 1,2, and 7

These models of the 1414 perform a magnetic tape
control function for the 7040 and 7044 systems. Up to
ten magnetic tape units may be attached to any 1414
Models 1, 2, or 7:

1M 1414-1 BM 729 1 and 729 1v tape units; 729 v (if
the 1414 is equipped with the 800 cer fea-
ture) and 7330 if equipped with the Inter-
mix Feature.

BM 1414-2 1BM 7330 tape units.

M 1414-7 BM 729 1, 1v, v, VI tape units; 7330 if

equipped with the Intermix Feature.

The tape units operate in either binary or Bcp modes
under program control, as specified in the address part
of the select instruction.

Magnetic Tape

IBM magnetic tape is similar to the tape used in home
tape recorders. It is a plastic tape, ¥ inch wide, and
coated on one side with a metallic oxide. Data are
recorded as magnetized spots or bits in the metallic
oxide. Information recorded on tape is permanent and
can be retained for an indefinite time. Previous record-
ings are destroyed as new information is written. This
means that tape can be used repetitively with signifi-
cant savings in recording costs. Several types of mag-
netic tape are available to meet varying requirements
of strength, durability, reliability, and cost.

For handling and processing, tape is wound on plas-
tic reels containing up to 2,400 feet of tape (lengths
as short as 50 feet may be used). The magnetic tape
unit, which functions both as an input and output de-
vice, moves the magnetic tape and accomplishes the
actual reading or writing of information on the tape.
Data are recorded in seven parallel channels or tracks
along the tape. Seven bit positions across the width of

IBM 1414 Input/Output Synchronizers

the tape (one in each channel) provide one column of
data. The spacing between columns of bits is auto-
matically established by the magnetic tape unit used
in writing.

Records of data on tape may range from one or two
characters to several thousand. The size of the record
is limited only by the length of tape or the capacity of
the storage units that data will be placed in or removed
from.

Seven-Bit Alphameric Code

The seven recording tracks or channels on tape are
labeled C, B, A, 8, 4, 2, 1 and correspond to the seven
bit positions of the seven-bit alphameric code. A char-
acter is represented by the presence or absence of bits
in the seven channel positions of one column, across
the width of the tape. Figure 113 shows characters in
the seven-bit alphameric code as they appear on tape.

To verify tape reading and writing, each character
is checked for even parity. In addition to this vertical
parity check, a horizontal (longitudinal) parity check
is made on each record. At the time a record is written,
the bits in each horizontal row are counted. At the end
of the record, a check character is recorded. This char-
acter has a bit corresponding to each channel row with
an odd bit count. Thus, when the record is read, each
channel row of the complete record, including the
check character, should satisfy the even parity condi-
tion. The check character serves this purpose only and
is never included as part of the record when data are
transferred to the computer system.

Tape written in the seven-bit alphameric code can
be used by several data processing systems, providing
a means of intercommunication from one system to
another. There are instances, however, where special

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ & .0-§%/, %+#@
Check € I (N o 11 11 (N | [ 1
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| |

~N

Nomaric 4 4 I 1 |
umeric
1 i 1 Hl Il
1| I

(I (I I

Figure 113. Magnetic Tape — Seven-Bit Alphameric Code
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characters, peculiar to only one system, are written on
tape. For this reason, consideration must be given to
the characters used when tape written on one system
may be used on another.

Binary System

Binary information recorded on tape is related pri-
marily to the 1BM 704, 709, 7040, 7044, 7090, and 7094
Data Processing Systems. With these systems the basic
unit of information is the word — 36 consecutive bits —
compared to the character or digit of other systems.

To record a word of data on tape, the seven bit posi-
tions of each column on tape are used; however, the
C bit position of the column is for parity checking
only and is not considered a part of the word. Thus,
six bits of information can be recorded in each column.
A word of 36 bits is represented in six consecutive
columns on tape (Figure 114).

1 3

]
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1112 1718 2324 2029 35

Check Bits —<_ 1 0 1 0 0 0
sO 60 121 180 241 301
o 0 1 0 0 1
1 1 1 0 1 1
Data Bits o 1 0 1 0 1
[V 1 1 1 0
st 110 170 231 290 35l

Figure 114. Magnetic Tape — Binary System

To verify accuracy of tape reading and writing,
each column of bits must consist of an odd number
of bits and is tested to insure odd parity. As tape is
written, check bits are automatically added to the
columns that have an even number of bits. In addi-
tion to this vertical parity check, a horizontal (longi-
tudinal) parity check is made on each record. At the
time a record is written, the bits of each horizontal
row are counted. At the end of the record, a check
character is recorded. This character has a bit cor-
responding to each row with an odd bit count. When
the record is read, each row of the completed record,
including the check character, should satisfy the even
parity condition.

Tape Records, Inter-Record Gaps, and End-of-File Gap
Records on tape are not restricted to any fixed length
of characters, fields, words, or blocks. Records may
be of any practical size within the limits of available
storage capacity.
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Records or groups of data are separated on tape by
a record gap — a length of blank tape about 34 inch
long. During writing, the gap is automatically pro-
duced at the end of the record. During reading,
the record begins with the first data sensed after a gap
and continues until the next gap is reached. The blank
section also allows for starting and stopping the tape
between records. A single unit or block of information
is, therefore, defined or marked by an inter-record gap
before and after the data (Figure 115).

One One
I‘slock *Block"
3/4:- 3/ " 3/ "
R
{ Gap Record Gap ecord Gap
One L_One
Record Record
r— One Block —bl
3/4" Record Record Record Record | 3/4"
Gop Gap
l¢—————— Four Records ——————————

Figure 115. Single and Multiple Record Blocks

An inter-record gap, followed by a special single-
character record, is used to mark the end of a file of
information. The character, a tape mark (Figure 116),
is generated and written on the tape following the last
record of the file.

Tape Mark
i Gap [ Record| Gap [ Record | Gap | Record | Gap Record}

Tape Motion —————=

Figure 116. Tape Mark at End of File

More than one file may be placed on a tape, pro-
vided these files are separated by the end-of-file char-
acters (tape marks). This is shown in Figure 117,
where three files of varying numbers of records are
recorded on tape.

/ Tape Marks\‘\*

EGap Record | Gap | Record | Gap |Record | Gap | Record S

Figure 117, Multiple Files on a Tape



Instructions

Input/output instructions select and control input/
output operations. They contain information neces-
sary to:

1. Identify the device or channel adapter required
and the data channel to which it is attached.

2. Determine if the operation transmits data to core
storage (read) or takes data from core storage (write).

3. Select appropriate code translators for the serial-
by-character input/output devices.

4. Prepare the channel to accept a channel command
word, which is sent to the data channel by execution
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