'..Q...CC“CC.QC.Q."

\/

00

IBM Confidential

7094 DATA PROCESSING SYSTEM

System Fundamentals

7110 Instruction Processing Unit
7109 Arithmetic Sequence Unit
7151=11 Console Control Unit
7606 Multlplexor

‘ R23-25350-1

REF=L530.

Customer Engineering

Instruction—ReferEnce

Preliminary Edition

2 3 4
Main

,(Addcrs 205.1
Individual Adder 205, 1
Lookahead Feature 205,11
Lockahead and Carry 205, 2
Adder Carry 205, 3
Group and Section Carry 205,4
Index Adders 208.1
Index Registers 209.1
Instruction Backup Register 210,1
Accumulator Register 210, 2
Multiplier- Quotient Register 211.1
Address Register 211,2
Program Counter 212,1
PRodram Register 213.1
Sense Indicator Register - 214,1
Shift Counter 215,1
Stepping the Shift Counter 215,2
7094 Double Latches ‘ 217, 1
Read-In Sequence 217.3
Tag Register ' 219.1
Floating Point Tally Counter 220,1

K

eobhooooooococtecocsocsceococc®ocde

O O g0 00000 0900000 00 O @9 00O

7094 TIMING

Timing Function

Master Clock Pulses

Computer Set Pulses

Timing Cycles
Instruction Cycle
Execution Cycle
Logic Cycle
Buffer Cycle

Master I Time

Master E Time

Master L. Time

Master B Time

7094 Lookahead Capability

3

300

301

307

310

310

310

310

311

312

320

322

323

324

7094 ARITHMETIC
Binary Arithmetic
Addition
Subtraction
Complement Method
1's Complement
2's Complement
Signed Numbers
Multiplication
Devision
Fixed Point Arithmetic
Addition
Subtraction

Multiplication

7094 Multiplication

Decoder Network
Fixed Point Devision
Variable Length Arithmetic

Variable Length Multiply

Variable Length Divide or Halt

Variable Length Divide or Proceed

A

401.1
401.1
401.3
401.4
401.6
401. 8
401. 8
401, 9
401, 10
404. 1
404, 3
404, 8

404,13

404, 44

404, 26
404, 34
405,1
405,1
405, 3

4@5, 3

NN N N N NN ENE NEENENEREEEREXEX

Floating Point Arithmetic
Notation With the Binary System
Fleoating Point Data
Double Precision
Floating Point Spill
Normalizing
Zero Fraction
Arithmetic bf Floating Point
Floating Point Arithmetic Timing
7094 Single Pricision Floating Point Add
E Time

RACTH
Floating Add Control Triggers

FACT 1
FACT 2
FACT3
FACT 4
FACT 5
FACT 6
FACT 7
FAD End Op Conditions
Floating Point Multiply
E Time

L Time

406, 1

. 406, 2C

406, 2D
406, 2H
406,27
406, 2K
406, 2N
406.3

406, 4

406,13

406,13

406, 14
406, 14
406, 14
406, 15

406, 15

406,15

406, 16
406, 17
406, 24
406, 30

406, 33

406, 34

7094 Double Precision Floating Point Add
DPS O
DPS 1
DPS 2
DPS 3
Double Precision Floating Point Multiply
7094 DPFM
E Time of DPFM
Second Multiply
Third Multiply
Double Precision Floating Point Devide (DPF D)
Fir st Step L. Time
L Time Second Step

L Time Third Step

408,0.1
408,0.1
408,0, 1
408,0.2
408,0.2
408, 30
408, 33
408, 36
408, 38
408, 39
409.1
409, 3
409, 6

409.7

® 0 9P 0000000 000000000 O Q9 0O

1 2 3 4%
INSTRUCTIONS
Word Transmission Instructions 500, 1
Store 500.1
Store Logical Word - 500.1
Store MQ - 500.1
Store Zero 500.1
Store Prefix 500.1
Store Decrement 500.3
Store Tag 500.3
- Store Address 500.3
Store Left Half MQ | 500. 3
Store Instruction Location Counter 500, 3
Load MQ 500. 3
Exchange Aq and MQ 500.3
Exchange Logical AC and MQ 500, 3
Enter Keys 500. 6

Shifting Instructions

Accumulator Left Shift 500.6
Long Left Shift 500.6
Logical Left Shift 500. 6
Accumulator Eé##Hkift Right Shift 500.8
Long Right Shift 500. 8
Logical Right Shift ! 500. 8
i
Rotate MQ i 500. 8

Transfer Instructions

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Skip Instructions

on MQ Plus

om Plus

on Minus

on Overflow

on No Overflow

on Quotient Overflow

on Zero

on No Zero

on Low MQ

on Channel in Operation

on Channel not in Operation
on Data Channel Redundancy Check

on Data Channel End of File

P Bit Test

Low-Order Bit Test

Storage Zero Test

Storage Non-Zero Test

Compare Accumulator with storage

Loogical Compare Accumula.or with Storage

Plus Sense

500,11
500,11
500. 11
500, 11
500, 11
500, 11
500, 11
500. 11
500,13
500,13
500,13
500,13
500. 16

500,16

500,17
500, 17
500, 17
500. 17

500, 17 J&

500, i¥ 20

500, 20

NN N EENEEEEE EXEEEXXX XX XXIEKYS

OO PO O OO OO O 000000000 0 0 ° 0

Minus Sense
Input-Output Check Test
Divide Check Test
Beginning of Tape Test

End of Tape Test

Control Instructions

Halt and Proceed
Halt and Transfer
No Operation
Execute

Set Sign Plus

Set Sign Minus

Change Sign

Sense Indicator Instructions

Load Indicators

Store Indicators

CR Stprage to Indicators
Invert Indicators from Storage
Reset Indicators from Storage
Set Indicators of Right Half
Set Indicators of Left Half

Reset Indicators of Right Half

——

AX

500.22

500, 22

500,22

500, 25

500, 25

500,25

500, 25

500, 25

500, 25

500, 25

500, 29

500, 29

500. 30

500, 30

500, 30

500. 30

500. 30

500. 30

500,33

500, 33

2 3 4
Reset Indicators of Left Half 500, 33
Invert Indicator s of EeItHaif Right Half 500. 33
Invert Indicators of Left Half Half | 500, 33
Place Indicators in Accumulator | 500, 33
Place Accumulator In Inddicators | 500,33
OR Accumulator to Indicators 500, 35
Reest-Accurmiator_Tram
Reset Indicators from Accumulator 500, 35
Invert Indicators from Accumulator 500, 35
Transfer if Indicators On 500, 35
Transfer if Indicators Off 500, 35
On Test for Indicators 500, 35
Off Test for Indicators 500, 38
Righ Half Indicators, On Test 500."38
Left Hald Indicators, On Test 500, 38
Right Half Indicators, Off Test 500, 38
Left Half Indicators, Off Test 500, 38

Index Instructions 500. 40
Load Index from Address 500,42
Loac Index from Decrement 500, 43
Loa’ Index From Address Complemented ' 500, 44
Loac Index from Decrement Complemented 500, 4.‘":

® 000000000 0000000000 900

OO0 PoOOOOOOOOSEQIWNOOEOOOOOSOPUQTOEET

—

Address to Index True

5} Address to Index Complemented

Place Address in Index

Place Decrement in Index

Place Address in Index Complemented
Place Decrement in Index Complemented
Store Index in Address

Store Index in Decrement

Store Complement of Index in Address
Store Complement of Index in Decrement
Place Index in Address

Place Index in Decrement

Place Complement of Index in Address
Place Complement of Index in Decrement
Transfer on Index

Transfer on No Index

Tr;nsfer on Index High

Transfer on Index Low

Transfer With Index Incremented

Transfer and Set Index

AND and OR Instructions

OR to Storage

OR to Accumulator

500, 47
500,48
500, 50.1
500.50. 2
500, 50. 3
500, 50. 4
500, 50. 6
500, 50, 8
500, 50,9
500,50, 10
500,51,0
500,51, 2
500,51, 3
500,51.4
500,52
500, 54
500, 55
500, 56
500,58

500, 61

500.63

500,63

AND to Accumulator
AND to Storage

Exclusive OR to Accumulator

Convert Instructions
Convert by Replacement from Accumulator
Convert By Replacement from MQ

Convert by Addition from MQ

500,63
500,63

500. 63

500, 68
500. 69

500.71

' 500,73

coofPooooooocoocioceocococooc@eoec

7094 TRAPPING
Trap Modelnstructions
Enter Trapping Mode
TRA in Trapping Mode
Leave Trapping Mode
Trap Transfer

Store Location and Trap

601,
601,
601,
601,
601,

601,

INSTRUCTION OVERLAP

Data Lookahead

Transfer Lookahead

Store lL.ookahead

700

707

715

735

G 0 5O O OO O OO 00 000000 0 9 0

1 2 3 4
IBM 7151 CONSOLE CONTROL UNIT 800
Operator's Panel 802
Indicators 802
Internal Registers 802
Trap : 802
Simulate 802
Accumulator Overflow 802
Quotient Overflow 802
Read-Write Select 802
Divide Check 803
Channel Selsect (A-H) 803
Command Word Trap (Chan A-H) 803
Tape Check Trap (Chan A ~H) 803
Channel Tape Check 803
Trap Control 803
Program Stop 803
I-O Check 803
Ready Light - 804
Automatic 804
Console Power-On 804
Central Components Power Check 804
I-O Power Check 804
Power 804
) Marginal Gheck +6 804

X7

Marginal Check -12v

Manual Controls

Power On

Normal-Off

Emergency Off

Reset

Automatic-Manual Key
Entry Keys

Manual Control Keys
Start Key

Clear Key

Didplay Storage

Display Indicators
Display Effective ...ddress
Single Step

Multiple Step

Enter MQ Key

Enter Instruction

Load Cards and ".>ad Tape Keys

Sense Control

804

805

805

805

805

805

807

807

807

807

807

807

811

811

811

811

811

8l1A

814

e 0o 0Doo0oo0oo0o 00 0080 00000090 90 0o

NN YN NENNNNNN' NNNNMNMNMNMN NN

Customer Engineer's Test Panel

Indicators 814
Address Register 814
Cycle Time 814¢
Tally Counter : 814(
T-2 814¢
FP 8144
9 Carry 8144
9 Overflow : 814y
Q Carry 81414
Master Stop 816
End Operation 818
AND 818
CAQ 818
X Carry 818

Switches
I-O Interlock Switch 818
Continuous Enter Instruction - 818
Multiple Step High and Low Speed 819
B Cycle Controls 819
Machine Cycle Key 819
Suppress TLA 821
Suppress DLA/SLA 821
&Display IBR 821

XVl

Memory Diagnostic Mode
Machine Cycle Jack

Auxiliary Start and Reset Jack
Phone Jack

16K/24K Mode Switch

DC On

Marginal Check

XV
_

821

821

821

822

822

822

822

NN NN NNNNNENEN FENNNNENENNNNENX

bb

1INA 3dV1 ¥ T3INNVHD vivd YOX3dILONA LINN 9NISS3004d TVHIN3D
.
o2 {QV4Q) ~ _
[kL] Qv3H - 2
- N .
_ v _ e -9 STINNVHO OL f=] _\|M T_
% $ [se—6d 631205 U 3 u 3
M N R _ HOLYINANY ¥2151938 NI
H-3 w4<uhm<nm<o.m “ SS340QY WYES RS
SH3990L t
SIRY Jyd \
Uina] O W-3 o-v [
HOLIMS s sng w p A
ss3¥0a¥ TINNYHD TINHYHD
sV i t L '
338 NS
ot —Ij02—
S8 39VHOLS
GNVANCD Vi ® RAL
28V 8y 2 1) YOG WLINA
S0d L
WIUSI93 A-Y SAIN AIND b E|
_ ﬁ s m TTSY !
[ok
39v¥01S SN SR
st 1S 103 B u 3 X308
3151934 10N A WD)
3dvl TBNNYHO NOLLY20Y
I [se Is
I 1 _ 934 vivd [Ho1v onz 934 wous
[13 1S 6l 2 IS 2 € 1] B] £ Sod 3
¥3ILSI9 3151934 ¥IINNOD 13 BV ¥ILNNOD
viva NOLLVH340 QoA 1INV NOI1¥201 91t 8 o) 403
L — St ¥
M‘ ﬁ 3 U P
[[3 3 13 [2 € —
e—g] 'sl'w ~ | 0 ofe 1
IICERAL) ux3 v T3NS 1INNVIO RN 3151934 I 1) | 934 e 9]
— ~ T ¥4 ¥ANO vl 934 dNXIVE LSNi ¥0 LNdN! 93Y BOLS 1315 | 90ud SHOLYIEH
¥30v3y yILNING HINO 39 N < \M_H _
o _ 9L o¥Y) 12L HIAR A
) U—I1H—¥ =3 Is
~ _ L 5§owg SAIN 1INV
¥aY WIN
SINIHOVA QYYD J9YH0LS 380D Yoivuid0

604

IBM 7094 DATA PROCESSING SYSTEM

FUNDAMENTAL PRINCIPLES

Modern methods of accounting, measuring, testing, rescarch, and design generate
huge quantities of information that must be processed quickly and accurately. A
vast amount of data constantly pours into such places as retail establishments,
weather stations, insurance companies, and tax bureaus. In addition, our rapidly
expanding scientific investigations into rocket and missille design, atomic research
and missile tracking need faster and faster methods for carrying out increasingly
complex calculations. To meet these demands, machines have been developed which
can compute, select, and correlate data at electronic speeds.

Automating paper work is possible because the actions involved are sufficiently
repetitive.' The variety of steps necessary in processing business records or in com-
puting scientific problems, for example, is small, indeed, compared with the
number of times these steps must be taken. One of the first paper work machines was
the ink stamp, possibly because applying a data or name was 'so obviously repetitive,
As additional mechanization was applied to paper work, machines beg;ln to take over the
long and pains-taking task of accounting,

Although accounting applications of business machines require a certain amount of
arithmetic, such as accumulating totals and balances, the problem is principally one
of processing data. A large amount. of information is fed into these machines (input)
and a relatively small amount of in: >rmation is produced (output). The machines
are therefore called data processi-g machines.

The first data processing macl.nes handled information in a series of individual

operations. These included punc'ing information into cards, sorting and classifying

cards, producing totals and bala; :es, and printing the results. Intermediate results

/99 . /

NN Y NN NN RN REEEEEEEN XX

from one machine were transferred to another, many human decisﬁons and interventions
were necessary for a complete accounting procedure.

With the application of electronics, the rate of calculation was vastly increased.
But, more important, a basic new technique was introduced which might be called
intercommunication. Electronic devices were able to make decisions, and, on the
basis of these decisions, to provide internal transporting of data and intermediate
results from step to step. Data are fed into one end of a data processing system and
final results come out the other, This machine system, as we know it today, is the

modern computer, or data processing system.

GENERAL COMPUTER FORMAT

A modern computer has five distinct functional sections: input, storage, arithmetic

and logical, control and output, These same general functions exist, to some degree,
o0

in all IBM card machines. Figure l illustrates these functions as they appear in an

IBM card machine accounting system.

—I;P-[-J'I-’__-, r_ - -S‘TC-)—RA.—G; vT r‘ |

Source l : [1 [, {
Docu-~ 7 KeypunCh_rl_{ i I t l
ment | | IBM Punched [i
1 - Cards l

|| \ | '

} | l Punched [

| (| Cards]

—_———— d

N/

| ' | ARITHMETIC and —}
, l | ' LOGICAL {
[tyen Punches, I | Counters, Relays ‘
' Control Panels|, | Comparing Units, |
" Etec. | I Etc. |

l] 1]
— el e — ————d

Figure 120 Functional Parts of a Card Accounting System

/o/ _

All information that is to be involved in any mechanical method of accounting must
be made available in a language and format that the machines can understand. This
function is provided in the card accounting system by the keypunch. The printing on
source documents such as billing or various account statements is converted to
code holes in the punched card. The keypunch is, then, the input to the card accounting
system. Once the card is punched, it serves as a storage device. The information
stored on the card is now available for future use by all portions of the accounting
system. Exactly how this stored information is to be used in the accounting system
is controlled by several factors. These factors include such items as control
punches in the cards, the order in which the cards are used, the machines in which
they are used, and the wiring of the control panels on the machines. The summation
of these factors represents the control sectionof the card accounting sysfem. Items
such as counters, ’comparing units, selector units, and certain relay ;:ircuits consti-
tute the arithmetic and logical section of a card accounting system. Which of these
units operates on the information from the cards, and in what manner is dictated by
the control portion of the accounting system. The results or output obtained from
the accounting system are usually delivered as printed listings. If the results are
to be used, the output is also punched into cards.

It is important to realize that the machines which comprise a card accounting
system must receive detailed directions from the control portion of the system. The
control section in turn, is directed by cunatrol panel wiring, control punches in the
cards, and the card routing to the partict ar machines.

It will be secen that a computer

must receive even more specific directior s than those used in a card accounting system

© 00000 000000000009 00

because a computer does absolutely nothi g unless directed to do so by its control

section. The control section of the com) ter receives its directions from a programme.

/O .

N

- who plans the operations to be performed by the computer,

The five functional sections of a generalized computer are illustrated in Figure/ﬁ./
In general, the computer is similar to an entire card accounting system, The advan-
fages to be realized by using a computer include greatly increased processing spe‘eds, a
higher degree of automation, and greater flexibility.

All information used by the computer must pass through the input section where the
incoming information is interpreted and converted to the language that the computer
understands. The input section includes such devices as card readers and magnetic
‘tape units.

From the input section, information is directed to the storage section. As their
main storage unit, most computers use an information-holding device composed of
magnetic cores. This magnetic core storage may serve as the source of all infor-
mation to be used by the computer. Core storage has some very important advantages
over punched card storage. Most important of these is the high speed at which infor-
mation may be placed in, or removed from, core storage. The highest degree of per-
formance from core storage and many other types of storage can be realized only when
the information is arranged in specific order. Once the information is located in core

storage, it may be called for instantly in any sequence.

»

Input
(Data and > Storage Output
Instructions)
/'\ 4,21 : struc—‘,_ %—-_Data N
——¥ tions 7 '
Arithmetic l
Control and I
Logical l
‘3, 701/ - | |
I ' — [

/703 Ly e e N I | !

The control section of a computer directs :i.c operation of the entire computer.
Unlike the card system, the control section of a computer receives its directions as
units of detailed information from core storage. These units of information, which
tell the control section what operations are to be performed are called instructions.
That portion of the information in storage which is to be operated on is commonly
referred to as data. A single piece of data used in an operation is often called an
operand. From the above, it may be seen that instructions as well as data must be
delivered to storage from the input section. Notice in Figure 2 that the control
section receives instructions from storage and then exhibits the necessary control
over all other sections of the computer.

The actual operations are, for the most part, performed in the arithmetic and
logical section. The control section directs exactly what operation is to be performed
and what operand is to be involved in the operation. The instructions that may be
executed by a given computer includes such arithmetic operations as add, subtract,
multiply or divide, Some instructions may place the results of the arithmetic oper-
ation back in core storage. Subsequent instructions may tell the control section to
deliver the information to the output section. The output section may include
printers, punches, or magnetic tape units,

From the above description, it may be seen that a single instruction causes only a
specific operation to be performed by the computer. If a complete problem is to be

performed by the computer, a number of instractions are required to direct the com-

puter. A group of such instructions, and any 1ecessary constant data used to direct the

computer to the accomplishment of a job, is (1lled a program. Because, in modern

computers the program is contained in stora 2, the computers are called "stored

/0¥ |

o0 0000000000000 0O0C0OCOG OO

® 0 9 OO0 0000 O 000000 OO O @ OO

program computers. ' When operating under stored program control (or any other
method of control), the computer executes one instruction at a time. After executing
one instruction, the computer automatically proceeds to the next instruction. It is
important to realize that every computer must be directed by some type of program
during every step of its operation,
/8¢

A generalized stored program computer, as illustrated in Figure/f, operates

in the following manner. A program of instructions to direct the computer in every
v

step of its operation is punched into IBM cards. All ofjdata upon which the
computer is to operate are also punched into cards, The cards are placed in the
card reader, and a key on the computer console is pressed which tells the control
section that the information located in the card reader is to be read into storage.
The control section then starts the card reader and delivers the information from the
card reader to the proper locations in storage. Information contained in the last

card tells the control section where to find the first instruction. The control section '

then calls for and decodes the instruction to determine what operation is to be per-

formed and where the operand that is to participate is located. Next, the control

section causes the operand-also located in storage-to be delivered to the arithmetic
and logical section. The arithmetic section then performs the operation as called for
by the control section. After the first instruction has been performed, the control
section calls for the next instruction from storage. This instruction may very well
be one that causes the results of the previous instruction to be stored. This process
continues until such time that an instruction is encountered that causes the results

(now located in storage) to be delivered to the output section.

/08 X .

THE 7094 FORMAT
103

Figure]\ illustrates the organization of tne 7074, rlthough there is a slight change in
terminology, components and functions are cssentially the same as previously

described for a general computer. Tlic central porcessing unit (CPU) of the 7094 is

actually made up of two sub-units -- CPU 1 and CPU 2, CPU 1 is the IBM 7110

Instruction Processing Unit and CPU 2 is the IBM 7109 Arithmetic Sequence Unit.

Condaine all aniThimise, ond M/W) am/

As these names imply, CPU l4acccpts, decodes, and’routes instructions to the

ol pyition afteallon conTloky s ol enotsclom dhocp?

rest of the computer. CPU 2, contmns rosivters—to—pe Ptird—a-rttt

/W/Jé% o iThrelts wnd O conlirls

There is a'great deal of interplay and overlap between thesc two units, and in some

sequences iti is difficult to determine an accuratc {functional boundary.

Note that a multiplexor has been added in Figure 3. The multiplexor processes
most of the intercommunication witl;in the system. Some kind of multiplexing is
required since it is possible for the CPU to be in an arithmetic sequence, not re-
quiring reference to corc storage, at which time information may still be brought
in from the input section. As will be explained in detail later, such simultaneous
operation is highly counditional.

Priefly, computer information flow in Figure 3 is froin input through multiplexor
to CPU, to sct up the stored program. Instructions then come [rom core storage,
through the multiplexor to CPU for decoding and reference is made back to core gstorage
to the address specified in the instruction. Finally, core storage instructions are
necessary, to place the answers in core storige to be read out to the output cquipment.

Figure 4 is a block diagrani of the 7091 showing a possible combination of u its
making up a 7094 system. Of course, not all units are recquirced in ¢very installatiow,

The final selection would be determined by customer need.

/06

1
~

o 000000 00 0000 0000000 00 o

® 0 9O OO 0000 O 0g0 00000 0 O p 9

THE 7094 COMPUTER WORD

Before a computer can be told what to do, a common language is necessary between
programmer and computer. The 7094 is a binary machine, so all inputs and outputs,
internal processing, and internal communication is in terms of 1-bits 0-bits. These
1's and O's are combined in a 36-bit word, in such combinations that are meaningful

to the computer.
For example, the combination of 000100000, properly placed in the computer

word, instructs the computer to perform an addition. Another portion of this particualr

36-bit word tells the computer which word in core storage is to be added (the operand).

The next instruction might contain the combination of 000110000, which, in the proper

location within the word, instructs the computer to store the sum just obtained. Again,

this address portion of this word will instruct the computer where the sum is to be

placed in core storage.

From the foregoing, two types of words are apparent -- instruction words and data

words. A third type exists, the channel command. Channel commands tell the com-.
puter which input or output device is to be used for a particular operation, such as

read or write. These three types of words -- data, instruction and command --

are arranged by the programmer into a logicallsequence that will result in problem-
solving or data processing to a desired end result,
With three kinds of words, made up only of 1's and 0's, it becomes apparent that

the computer must be made to distinguish between them in order to perform the

proper operation. Some reference must be established against which the computer

can compare the word to tell immediately what action it is to take. This reference

is established by timing.

/7

A word occurring at a certain time is recognized as an instruction or an operand or
a channel command. Timing is established by a 3-megacycle oscillator in the mul-
tiplexor, —thewomprter~clock: Output pulscs from this clock are shaped, inverted,
and gated to become clock and sct pulses. Twelve clock pulses constitute a computer
cycic, having a total duration of 2 microseconds. Each pulse, therefore, is ¥6d /87
nanoseconds long.

These groups of 12 clock pulses are gated by appropriate circuits to become
instruction, execution, logic, or g@éles. Now, a word coming into the CPU at
the beginning of an instruction, or I cycle, is immediately identified as an instruction.
The execution, or E, cycle instructs the computer to refer to core storage for an
operand. A logic, or L, cycle means no reference to core storage is necessary but that
arithmetic. or logic operations are to be performed. B time always means the use of
input or output equipment.

Timing in the 7094 is critical, and for this reason a section of this manual has
been devoted to timing secquences, gating, and the development of permissive and
non-permissive circuits which allow the computer to function properly. A thorough

understanding of computer timing is essential to understanding operation of the 7094.

COMPUTER SECTIONS

The input section of a computer system accepts information from any outside source
and places it in the storage section. This information may come from punched
cards, magnetic tape, or manually operated keys. The information may be instructions
data (numbers for arithmetic calcula:tions), or alphabetic characters for printing page

headings, comments, and so forth.

/0 8 <

' E X EEREEEEENEENE XEENEENENEENE NN

O 0 QOO 00000 0g0 00000 0 0 @ 0O

The storage unit accepts and stores information that comes into the
system through the input section. When any portion of the information in
storage is needed, that portion is located and seant out to the section requesting
it., All information in the system is at one time or another, in storage; therefore,
computer speed depends on storag® speed, The storage scheme of most computer
systems today is random access -- any portion of information can be ik
located directly without searching other locations.

The arithmetic se ction is the calculating section of the computer system.
Here, portions of information, either instructions or data, canbe transformed,
combined, or altered.

The control section directs the other sections. It tells them what to
do and when to do it. Instructions come into the control section from storage.
The control x3x section also controls itself in that it keeps account of the in-
struction it is using and the one that it will use next.

The output section takes calculated informatkon from storage and presents
it to an outside user. Commonly used forms of outputs are : information on

magnetic tape, punched cards, printed reports or indicttor lights.

7094 SYSTEM MAKE-UP

The 7094 system includes all five of the sections previously mentioned,
Figure 103 shows the general grouping of these sections in the 7094 system.
Arrows indicate the general flow of information, Although t};e sections can
be neatly separated physically, there are many functional combinations
not shown in this grouping. Inputand output are combined with a portion
of control in a data channel, and arithmetic with another portion of control

109

CPU Data Channel
== =
Control Input = Ouiput

and Mvhiiplelor and
Arithmetic 4\ " Control /D‘ Control q D

Storage

S ——

Figure 103, 7094 System Functional Arrangement

Up to Ten 729 II's, IV's, V's or VI's

L

7607
Data
Chan

1l Fian B ¥ saw Nouw il
é;:m W o Tv v 79"09, [_71;0‘1]'

I 1 4
1 t 1
[7606 7302
7110 7109 Molri- Core
I IPU "\&U plexor Stor
7151-2 nm
Console Card
Reader
7
. f
T
721 716 !
Cord Punch []~ "!
Printer
| Powor (400 208v, 3O) 1o All Fiames

 Figure 104. Block Representation of 7094 System

110

0e00oo0oo000000% 000000000

€06QgQe0c000000gpp0000000 00

in the computer. Storage is the only functional section that is a separate machine
unit, The multiplexor controls routing information into and out o storage.

The arrangement shown allows input-output (I/O) to operate somewhat
independently, sharing storage with the computer. The highest order of £»
controls is in the computer, where control béxgk is delegated to the lower order
controls in the data channel and multiplexor.

Figure 102 is representative of a 7094 system, showing the grouping
of 7094 functions with machine types. The 7110 Instfuction Processing Unit
and the 7109 Arithmetic Sequence Unit are jointly referred to as the computer.

The number of machines applicable to 7094 input-output (I/O) operations

is variable and includes the following :

7607 Data Channel 7607 Data Channel 7909 Data Channel
Models 1/3 Models 2/4

716 Printer 72911 Magnetic Tape Unit 7631 Disk Storage

721 Card Punch 729 IV Magnetic Tape Unit 7640 Hypertape

711 Card Reader 729 V Magnetic Tape Unit 1414-6 1I/0O Synchronizer

729 Tape Units 729 VI Magnetic Tape Unit 7750 Programmed

Transmission Control
The reader, punch and printer can only be used with the 7607 Data

Channel models 1 and 3. The :129 II and 729 IV tape units can be intermixed
on any model data channel. The 729 V and 729 VI tape units can only be used
on the 7607 Data Channel models 3 and 4.

The computer is the control center of the 7094 Data Processing
System. The computer also performs all arithmetic and logic functims.
The computer receives information from storage, decodes it and performs
the necesaary operations. Even thoug' 1/0 is an independently functioning
section, its operation must be initiate by the computer.

The IBM Magnetic Tape Units 'rite information mu magnetic tape or

111

® 0 P O 000000 00000000 0g¢9 090

uotyeandiyuon weiskg Burssesorg B +60L INGI © GOT 2andrs

st O/1
ydeadoral
—— nrg 101y
s3dex10g sjtupf} sjtuf} nld 1101, s3r103g
Mstd 10€1 ade], 0%€ pdel 0beLl N1d 6001 PISTA 10€T
N
N
J 9 4 ‘ qoung
[013U0) Ho.ﬂcoﬁ [oxyuo | pied 1ZL
ang bdeyaadAy] pdejradiy 13ZTUOIYIWAG [013U0n sjtup adey,
1£92 0592 | ov9L| | O/f 9-%iw1 STTd 1€9L 62L WAl S X
3 \ . } 7y 1opeay ~
[paeo 112 N
4 \ 4 m
. T
(uorrmssreuuey>) _(y23tms ; (auuey0) 1PuUUEyD [puueyD 2 1outag
ouueyd '1eqd 606 [suu'YD Tieq 606 Ble(606L B1®d LO9L grL
\ A - T
4 y Y 4
. _
xoxs1dnImniy _ ade103g 2109
191ndwo) > 909, ; 20¢L
QﬁmCOU \ Ly L
Z°1ST1L

read information from magnetic tape. The higher model numbers indicate
advanced versions of the basic unit -~ usually referring to an increased
character rate capability.

The IBM 711 Card Reader reads information from punched cards at
250 cards per minute.

The IBM 716 Printer prints information from core storage at 150 lines
per minute. The typewheel echo pulses are available to the 7094 system,
where they may or may not be used to check the accuracy o printing.

The IBM 721 Cad Punch punches information information from core
storage at 100 cards per minute.

The IBM3Z% 7607 Data Channels control the flow of information
between the I/O units and core storage. The model 1 can control any com -
bination of ten 729 Il and 729 IV tape units and up to me o each reader, punch
and printer. The printer must be present if either a reader ar a punch are
to be used. A 7607 Model II can control ten tape units, but neither card
machines nor printer. The 7607 Models 3 and 4 perform the same functions
as models 1 and 2 but with the added capacity for handling 729 V and VI tape
units. The 7094 Data Processing System may include up to eight data chanpels.

Each data channel can be regarded as a subsystem, with its own ma;\dxi\
control console and indicator panel (not shown on the drawings). Once a data ’
channel is set ;in operation by an instruction in the computer program, it
can call its own instructions (called commands in channel operations). These
commands make up what is known as an I/O program. This program controls
the operation of the I/O unit. Information received froin an 1/0O unit is placed
in core storage, or information is taken from core sto:age to be supplied toa

113

.Q.QQOQ.QQQ'QOQOQQOO'..

C..Q.Q.‘QQQ‘.,Q‘,«..Q.C.QQ

-
;oW

4 * ﬂ.w..sm.:i

m [

L

}

'

1

: .

4 :

00 Qgoeoooo0OO LPOOEONOONONO QOO

The IBM 1414-6 Input - Output Synchronizer permits the attachment of

communications and paper tape devices such as :

IBM 1009 Data Transmission Unit
IBM 1011 Paper Tape Reader

IBM 1014 Remote Inquiry Units
Telegraphic Input-Output Units

The IBM 7302 Core Storage is a fast, random-access storage unit. A
unit of information can be read into or out of any o its 32,768 starage locations
in two microseconds. Storage serves both the computer and the data
channels. The only restriction is that no two units can be using storage at
exactly the same time. If a data channel calls for storage while the computer
is using storage, the channel waits until the computer permits storage
priority to ﬁ;‘sq to the channel.

The IBM 7606 Multiplexor is a time-sharing and switching device.

It provides‘ a path to and from storage for the computer and the data channels.
The multiplexor also performs certain anticipatory, or lookahead functions
associated with data channel operations.

The IBM 7151-2 Console Control Unit provides a manual means of
controlling kthe system and displaying, by indicator lights, the contents of
various registers, or any one of the storage locations. Several registers
are continually displayed. The console also contains a CE test panel
and a marginal voltage check panel,

The IBM 7750 Programmed Transmission Control isoax links a
central computer with telecommunication equipment such as telegraph
machines, IBM 65/66 Data Transceivers, and IBM 7701 Magnetic
Tape Transmission Te - minal.

115

© 05 © 0 0 . 9:9.0.0.90.0.0000 0 09 QHW

S

e

€5td

_...\».

. MS Wiy
h LI o
s¢ (ovaq]
[+ 43# ,AUL,
sl JIEL b CSP]
Py ——rF] R b3b8——1d0 5] p———— [z L 3
Les Tl S T ALEL I Cerer wvereey
K] A A
o)m/ .04 .
- N - JF'M» N o B8-S
B 3 -
- =
. 8
4 S S0
M > [WMo
Y I
[sc bak'o8 1470} .
L t¥3cTv S |
A »rl » ql ’./llll
T M T
3ant I% ——
T~ ————0]} o
[=
L Swloyzioni 3HNIC)|
3 N \ O
R , Q
»

\

<

AN =
O i S . 1rei70 57
e \ ke ‘WoLS 1INK
e 1c oL

. T ¢2) fo=bE 1
Py e-F wwa 29YwoLS e e

set
i-c
§¢-T73
Y
t 2
IR
L.}
L2
&5

[se =—————1's] [se————
T T3y ar<i-e_wCizoopisni) [T 0 indwr 533 30wwiil]

N N
™N v

e
g
R s’ 2 I
- RO
339 owior_ oc v] - 1
[5] e ——
{ PLETOME 1ot 80 31 TIPS AFSLIH | EPEPI#?KHE

aaw_ b60L

® 0 g OO OO O OO 0 g0 000000 0P OO

@,

201 709,"1. /:’_QUC770A)/4L— CO/"//'JdA)EN-)—S

[7094 COMPUTER WORD

1

A 7094 word may be a numeric quantity, an instruction to the
computer or a data channel command. In all cases, the word contains
a full 36 positions or bits. The contents of the word become significant
according to the cycle of operation the computer is in. Thus, a word
coming into the computer during an instruction cycle is treated as an
instruction. Also, a word coming into the computer during an execution
cycle is treated as a numeric quantity.

The computer is incapable of distinguishing kinds of words by
their content alone but it will be shown that bit positions vary in significance
according to the computer cycle.

Data Word

T When the 36 bits are expressing a numeric quantity the word is
referred to as a data word. Figure 20l-1 shows a data word. Notice
the numerical value is expressed in positions 1 through 35 and the sign

of the value is expressed in the 0 or S position. When S is a 0, the value

is positive. When S is a 1, the value is negative.

Ty T T T T

- _ L. " " -

Figure 201-1 7094 Data Word
Instruction Word
A computer instruction word is shown in Figure 20l1-2. Because

this word is coming into the computer during an instruction cycle it will,

in effect, be segmented, and the various segments interpreted to determine
what action is expected of the computer. The 36 bits of the computer word
are now broken into significant sections -- prefix, decrement, tag and
address.

201,1

<
[
)
©
H
2
3
)
w

Figure 201-2,.77094 Instruction Word
The sign position is always a part of the operation code, Along with
the sign, either the remainder of the prefix field, or the decrement dictates

the function to be performed. Ifpositions 1 and 2 contain zeros, the sign

and decrement determine the operation code., If either or both positi ons
1 and 2 contains a 1, the prefix contains the entire operation code and the
decrement is used for another purpose.

The address field usually contains the address of a data word in
core storage. This data word is brought into the computer as a part of
whatever arithmetic orlogic function is called for by the operation code.
Thus, the instruction not only dictates the operation to be performed,
but also specifies the address of the data to be used. In some instances,
the address field is a part of the operation code. When this is the case,
the address field is not used to address the data in storage.

The tag field causes the computer to calculate a storage address

different from the address field of the ins truction,

Following are variations of the computer instruction word,

Oecrament
P A ——
Fio, Ton
—T * Y] *—vﬁ-—ﬂ—r] T T T LA S
S 2IJ 112058 e 20 Addies, }
; bk 4 | i " ! N i "
[[t
Iroseegt (frective
Adaess Acdreuw

Figure 201-3. Instructio» Word address Modification Fields

Vacionle Login Shifr
Misor L5 Toum
(_J_._\
T ¥ T T i T 1 ¥ T M R J T T
S0 2(3 0 2 a 21 28 35
. e e i i A N
S [—

Convert

Count

Count

Figure 20l-4. Instruction Nord Count Fields

201,

o0 oooo0o0oe0e® oo oocoe oo

®© 0§ © 000000 0g0 0000 OO O QOO

Data Channel Command Word

Similar in format and application to the computer instructio;m word,
the data channel command word , Figure 201-5, gains its special significance
by being called out of storage by the control function in the data channel, This,
as in the computer, occurs when one operation has been completed and the
data channel must be directed to perform the next operation. The two major

differences are :

1. The prefix is always the operation code in the data channel.
2. Positions 3 - 17 are a word counter. Whether the operation
is reading or writing, once the command is in the channel, the
word count must become one less each time a word is handled.

Thus, when the count becomes zero, the channel must ask

for a new command.

Pretin Tna
M S B S M A A S B H I IS Sl S SN S S S SR SRS S R S S

1 2103 Word Count RS 2002 Address 35
LN WIS U N N U SV S A SN LA U SN S S N O S W L AL SN SN N S A 1

Figure 201-5. Data Channel Command Word

201. 3

IBM 7302 CORE STORAC . .. 4-usec)
Some of ‘the 7302 Core Storage Units {2.0-usec) have been modified to accommo-~
date the 7094 Data Processing System.. As a result, the storage cycle time of the
modlfied machine has been reduced to 2.0-usec. In addition, it is possible to gate
out two words (72 bits) to the computer on one storage cycle. Thus, full advan-

: tage is taken of the 72-bit readout feature 6f the 7302. Because these innovatlons
represent comparatively few circuit changes, this section will cover only the af-
fected circuits. It may be assumed that the descriptions of the remaining circuits,
as presented in the previous sections, are applicable to the modified machine.

WORD PATTERN (7094)

The word pattern used in 7094 operations differs from that used by the 7090 system.

In the 7090, the lower word (planes 0-35) and the upper word (planes 36-71) are a
mirror image of each other, i.e., bit positions 0 and 71 represent sign, and bits

35 and 36 are the 35th (last) position of each word. In the 7094, however, the sign
positions are 0 and 36, and bits 35 and 71 a re the last position of each word. This
can be determined by Figure 94, which shows the MDBI to MDR cabling for the
modilied machine. The typical cabling circuit (Figure 94A) gives all the connectlons
between the MDBI, and MDR positions 35 and 71. Because they are jumpered to-
gether, the status of positibns 35 and 71 are the same in their respective words.
Compare this clrcult with the typical MDBI to MDR cabling circuit for the 2. 18-usec
machine (Figure 62). F{guré 94B givea the jumpering arrangement for all positions.
STOKAGE LOCA ().~

Recall that when an address was presented to the 2. 18-usec machine, the two words

subsecquently read out of storage consisted of the requested word, and the nonselected

w/ord
Alocuted in the same relative position in the opposite half of memory, but displaced
by 400008 . For example, if the word in locuiion 00 “TOc wae requested, the word

g:;/ﬂj/']

o0 Dooooooooe®ocooocoocoocooe foeo

INIWISNYYIY oNi¥Idwnl YW °)\

(Qxom ¥3d4n)

SrNottisod 34w

-

Amt.:uqi 2§7-0°2) HNI1MQV o YaW ol 1944 F§

18AaW gLs ayas/+ _

(4¥9™M M2amoa) SNoILIS0d VAW

ATANIII$3IN £E -2
Ol ¢I¥3wnl Juv

N1A1122957Y 69 -4 €
04 I¥Towp L IWY

3Ynal4

A_.mm '$0°20)
PLIRT
8s
L EA S RPIFR Y AW

T

1L |oL
63 -8¢ swoljisog Le)9e sefve €€-T sNorLisod Y
“ | i ONIO g
| N 3 Yyoxany
b e e = -~ B _ -11nw
€€ -
[33 wey 4
Sg /
) // ANNCBYI TAAW YD IHAL Ypg Iyor14
¢ ,,,“ ="
~ 4 // _ —
-~ t'rotgrnie Neowi vio ! N R EI R TR
* ~—r+ 194 '
Lof : A-HS§ T10 103643 3:0 { { WA EILLY
) } !
¢ ’ I_A%4]
94 1|
10460 o
L - <>
YyawW HEOYE Vio H-HGS W19
44— Y3IJWwnp
\
_ \ €0 °%! ‘1o ¥€ov vio
e N-HLP 30 3350 310
€
9%
§¢€ -~ 09MT SE T94W g
Bdw HiovZ Vio H-WLlY 310 31350 310 M
vV live
J N roryannos — /Iéowu.uzzou‘\ N rtoiui
31ddug ..:;3 J.(._. ’ —

eefeccceccececocococcce o

Ls

21962 4%o

Yox uJo. P—.J)I

2 J_<r

209, 2

in location 401768 was also read out; if <1 17n .5 requested, 001768 was brought

out a3 well. Because the 7090 used only one wovrd 2t a time, {t did not matter that

wibr4
the word held in the nonselected location had ro relation to the requestcd/\. Both

words were rawritten into storage on the sccond hnlf of the cycle; a duplicnte of

the requested word having been sent to the computer, the nonselected word return-

ing unused. It made no difference, then, that storage locations were numberd con-

secutively:locations 000008 through 377778 inclusive in’ lower memory (planes

0-35), and locations 40000g through 77777, inclusive in u er memory (planes
8 8 PP

36-71).

In the modified 2.0-usec machine this storage arrangement has not

l.e., to request a particular storage location, the cane specific combination of 1's

and 0's must be presented to the address circuitry of the 2. 0-usec machine as was

rciuired by the 2. 18-us‘ec machine to read out that location. In addition, the two

words read out will be displaced by 400008. However, by means of a crossover

newwork in the multiplexor, the 7094 causes the 7302 to act as though lower mem-

tne
ory contilned only,even-numbered locations (OOOOO8 through 777768 inclusive) and

upper mermory only the odd-numbered locations (OOOOI8 through 777778 inclusive).

for example, it has previously been shown that if locztion 0017éb,is requested, the

nonselacted word from location 401768, which is in the szme relative position {n

upper memory, is also read out. However, as far s the 7094 computer 18 con~

cerr.ed, the nonsclected word come from Crper memory, thereiore it must have

c¢ome from an odd locztion. In cddinion, becauzs the ro

e nonselected wond wasg brought

out with the word from locaticn 001‘7(’,,%, it must have come from the 1. xt highesg¢

odd location, or 001778. Figure 95 depicts core siertpge a9 seen by the 194 come
il s Coeee L,
puter. Notice that each even locazion is shown in whe zamoe relative position ¢ * the

d

been changed,

P P R IR X X Y ¥y x

® 0 g O OO O O OO 0g0 06000 60O § o O

36
BINARY

POSlT\aNS

LocaTion

36
BiNAFY

POSITIONS

NOTE . on 4 STaRAGE Cydig, Twe
BT B WONDY ARE REAS ovr, onk

SR T NTNUMBEKED ~0CA T 0N,

ER FRom THE NEXT
‘DKQCHTIOMIC.G-., Lo-

CoegToe 10 +wD ¢

~0

°. STCRACE ARRANGEMENT (ns SCCw

T oI«

next highest odd location in upper memeory, e.g., locations OOOOO8 and.OOOOlB.
Bear in mind that the computer considers the first location in upper memory to

be 000018, wher: actually it is 400008. Therefore, when the computer sends out an
address requosting location 000018, this address must be converted to 400004 be-~
fore it is presented to the 7302 . This is the function of the crossover network in
the multiplexor which will be discussed in detall later.

Unlike the 7090, the 7094 computer may request two instruction words on one
storage cycle, one from an even-numbered location, and the other from the next
highest odd-numbered location. The even instruction is gated out of the MDR first,
and the odd instruction follows shortly after. While the even instruction is being pro-
cessed by the computer, the odd instruction is examined (partially decoded) in the
instzuction-backup register (IBR) to determine whether or not it meets certain cri-
teria for an overlap operation. If overlap is possible, the odd instruction may be

£ ol Tome of He
acted upon duringftre even-numbermd instruction cy<la; because decoding has al-
ready been initiated. This substantially reduces (up to 50%) the number of instruc-
tion cycles required. If it is determined that an overlap operation is not possible,
the register {s reset, and the odd {nstruction destroyed. It is brought back on the
following storage cycle and proce8sed as a single instruction.
STORAGE ADDRESSING
T:e crossover network in the multiplexor enables all even addresses sent out by
the computer to request locations in lower memory, and all odd addresses to re-
quest locztions in upper memory. This is accomplished by gating computer address
position 3 into positidn 1% ofthe 7302 MAR, and computer address position /Zinto

=
MAR 7, In this way all addresses sent out by the computer are made compatible

with the storage arrangement of the 7302, and changes to the addressing circuitry

Zod S

T R R EEE L K EEE LY

O O J OO OO O OO Bgh 000000 o

ol (i¢ 7302 have baen avoided.

Fizure96 {5 a logle diagram of the crossover network, During normiil anenie

- o

-2 memory diagnostic gwitch on the 7151 Conzole Contro! (nit i-
A3 & result, the converter partially conditions -Aa and eA,, and dissbi.c -4, aad
~4,. U computer address position 3 holds a 1, the output of +O, is minas. wed Ao

ditloniuy ¢of -AB is completed, This causes -MAR line 17 to coiva . Lo winh

et WYGREL WILG

Yot Rpha i

cointidonce ¢f an active + memory select lne, a 1 i3 get in MAD positive 17 ol e

72032, In the come manner, a 1 in computer addrecs poaftion 17 vesults tu o 1 s

AR pooiticn 3 of the 7302,

& crdor to run memory diagnostice , the 7094 ig placed in 2 7090 meda, L. e.,
tho ¢crocoover notwork must be disabled, This is the function ¢f the memory diag-

. RPN e
TAu

nesiie switch (Figure 96), When this switch is clesed, the convuiia: pamtinii;

Clolonmn "Al ord -A4. end disables -AZ and -A3. As a rosult, the censsaver nate
wouk 13 dncporative, and computer address positions 3 and 17 can now onty 2ffoct
MAR pesitione 3 and 17 redpectively. The memory diagnestic ow!

el opoynting o

cenjunction with the crossover network affects the syetem 8o follnws:

-

Switeh Open Switeh C locad

Y. Cemmp, 2dd, position 3 gates MAR 17. l. Comp. &dd. pesition 2 nries MAR 3.

2. Com, add position 17 gates MAR 3, 2. Comp. add. position 17 gutes MAR 17,

3. Plonss 0«25 contatin el evenenume 3. Planas 0-35 contabn 22 locayiuns hoe
Lo d losaiions, ‘ low 400008.

4, P 50 56«71 contain all odd-num e 4. Planes 36+71 corinis ait fooniiang
o d lcections. abova 37777

8.

v,:c;.:”(’ Q 'vr':é"

PO PO OOOIOOOEPOOOEOGOEOEOSIEOSQGEOOS

Ty

{'ro

41 INIY PV M.

0VINGDY YJA0SSOND LI Wi - € JViY

_ ASYGPAVE L BN]

_.Ialwl

I3} . ;
_.HW L1 wvW R TN
L WV -324 wo j0g + | «n.uo«..

€ YYW Avg-

PPN |
s N

‘3§ IYns1 4

5

©
v-

o

ROW 91§ Wi~
9
MOW 4vig WIW *

L1yl MY e

dosr.tct |

| S— !
! 941 4
| |
| !
|

> | |
! |
_ |
| |
| |
| !
| |
| |
| I
| |
| |
! . I
_ 404 VW _
| - _
| {
| b
| [

€ 3V Yusi=

_
w
_
_
_
|
_
_
_
_
_
_
_
|
l
_
_
I

MOXIVSJILINW

1094

16} YIL e
2y
= T R R
e S TR VR T u«.‘uo-»»ous.,

!
!
|
!
|
_
|
!
_
_
_
|
|
il
!

e 390w Avid wive _

g WM

(etnvor 33)
l1Mn 0WINOD 3NIM) :..U

NN

The block diagram in Figure 97 illustrates addressing procedures during an
instruction-overlap operation, In the example, the computer sends out address
00176g. This address passes through the multiplexor, and enters the MAR unaltered
by the crossover network:{)ecause positions 3 and 17 both hold 0's. The MAR sends
positions 4 through 17 to the core selection circuits, and MAR 3 to the gate-out
circuits. As a result of the specific combination of 1's and 0's in positions 4-17,
the instructions held in locations 001768 and 401768 are read out of core and placed
in the MDR. Because of the 0 in MAR 3, the lower word (001768) is gated out of the
MDR and sent to the computer. Shortly thereafter, the "eplit DOG'' line comes up
and gates the upper word (401768) to the computer (the modification to the gate -out
circuits that permits two words to be sent out on one storage cwucle will be covered
later in '"Gate-Out Circuits'). Remember that the computer considers storage lo-
cation 401768 to be the next highest odd location, 001778.

While the instruction from location 00176g (even) is being processed byﬁth‘e com-
puter, the {nstruction from 401765 (odd) is partially decoded in the IBR to determine
whether overlap operations are possible during the current storage cycle. Assuming

that overlap is not posesible, the odd instruction I destroyed in the IBR. A second
storage cycle is necessary, therefore, because the odd instruction must' be brought
back to the computer and processed as a single instruction.

Because it requires that only the odd instruction be returned, the computer

sends out address 001778. Note that 0017’78 actually corresponds to storage location

401768, and must be presented to the 7302 as such if the same odd instruction is

to be returned to the computer. When address 001778 passes through the multiplexor,

the 1 held in position 17 is gited into position 3 by the crossover network. Thus,

the address that enters the MAR in the 7302 is 401768. Although locations 001768

Zod., §

O 00 00 0 00 0O 00 000000 0 ¢ 0

! L
A
N\
m e .
FNOILV YISO oYTINMIAQ-NOILDOPIINI Vot $3¥NTIIVYY INITSIVAQY ‘L - 0n9t$
! 1349 :«_.jo.._or tvy 92100 SMOLIVOON (YY) »C.\, 85004 ety SoLI00
| . \
' S — — . m— G - Gtn Wt S S Sy mam e s G w— G e G W GED s WD R e e o me A D R e amw T s — — II' et = - e —— - - —
—I- (k2 twesss) Ao S3L10h mnwivap O1shy aweas) Sacioy I.“
" I
| |
' . !
! t |
_ _ #od Livd® 208 Li1¢Y
! ~ A1 _ .
1 1§ 2003 m | [
| hxx!a wae) " WOXIVGHLINW -~
| §3%30y Oriiva MIRZIE F 1T B [TTS) |
) bino-ave | |
_ Lo 3 I
| |
| ° !
| %
(Hei11vao1 aquyels —.I —_———— - - sse nwo
—_—— —— _— - - TG 49 NYILlv~MaIvg .‘— J
-_ﬂ_ﬂvvl_‘ln.rc..n |— ‘.ln .r;umld —Iu J— —I I— Twalrw sy a..::-uv I_ ﬁ-o 3ynaiz Ml ?_;u o..o:& nird
TRy $Livy wotivo o sinerg | Fsunao _¢..I$.‘ o --- REYSYT i umems Yivie) k- Y, (760 Tiscav |
baLiod l.,wl —_—— 140 winb me | b— = — b —oas] No1198T38 — ssavgav | FWOMmIIN | ¥Iingwa)
se-o 0 viy s cwre u, 08 se-0 Y L-pravw N " _ o " (34> L:.\w
- - S LIV —d ¥1A0 55082
—A SheILIS0g rqlo:I'l,Loc YT SIN¥1g I | 3303 | | Rl {vinwsa) Telioe = Y9100 Ss3saty Y6oL
1000 5 N L N L N L | | Liwvw 5w |
23V vivd Yavvois _l J
Avomiu 3wod —_— e -
LIND 394¥0LS 340D 10gL

‘PN1S31O0Ng NO4 MO VIEN

€10 344 ~Mynidy L Ayuta3IM Svm 3124
PIvurs3 €033 v "2y0ddwina 31 A atwed 3wy
A U A XV ENT T PR ERTTI NI R FE- ITAFSIY)

S ANLINHLTNL PV el tunl OPuntty SO AL L JLON

I - F R L. A

and 4»01768 are both subsequantly read out of core, the 1 held in MAR 3 causes the
gate-out circuits to select and gate to the computer only the word f}'om upper mem -
ory (401768). The split DOG line has no effect on the lower word.
GATE-OUT CIRCUITS
It was stated earlier that the 2.0-usec machine is capable of gating out two 36-b{t
words On one storage cycle; one from an even location, and the other from
the next-highest odd location. This is the result of a modification to the data-out
gate circuits, and to the presence of the "'split DOG" signal from the computer.

| Assume that an address has been presented to the 7302, and by virtue of the
combinat‘ion of 1's and 0's in positions 4-17, the two words sharing the designated
storage address have been placed in the MDR (Figure 98). Assume also that MAR
position 3 holds a 0. Because of the 0 in MAR 3, the -MAR 3 input to the 1RG cir-I
cuiti-i{s plus, therefore, its output is alsoplus. As a result, the the minus out-of-
phase output of Cl causes the in-phase output of -O1 to be minus. Both inputs to
-A2 fare minus. Conversely, both inputs to tAq are plus (split DOQ is not active at
this time). The resulting plus output of +O1 is applied to the output AND circufts of
MDR positions 0-35, and the word from lower memory (even) is gated out to the

computer.

Shortly after the even word is gated out, the split DOG line comes up and causges

the output of ~t-02 to go positive. This output completes the conditioning of the output

AND's associated with MDR positions 36-71, and the upper memory word (odd) is

gated out to the computer.

When MAR 3 holds a1, the output of the IRG is minus, and the out-of-phase
output of Cl is8 plus. Because both inputs to -Ol are plus, its output remains plus

throughout the entire cycle, thus preventing the even word from being gated to the

computer. Notice, however, that both inputs to -A3 are minus, insuring a plus

A O,/

O 0 00000000 000000000 09 5

. . - . [P aadt . . .
/ (/] co? L— -7 / ‘
- . e
. (mioww 2aed 0°2) sandv) 1h0- v g€ dunory c
. .- - * » 'y
. [}) LML YT [7Y
. . SLM 4N 0 S A) VoW s....
. - .< A I s.!z-::,z..t i m Qivogcwyyy
MY . oo
F1LI1) INLY RYANI Tm——ee—e R L BN URTIWEE TR N 5 T VIR 579y »
“wayy N
\lﬂJ . \
]
: ~ . A 231
1o ‘) 909 LW ¢ ey
[V T I LT 3 d
“ - \
14 sy _ T “ ¥el
oz H hode .
v oy ° '™ YO ' 08 ~ (0] 4nodely - r.::
. ™" \‘ v]
i ! W)
e L, 2&:»..2 T { : - ve e
uov.
L N PR TR § a3 i ..\xm =
v Vedat ' N e
TR L 1§ ‘
[SYIPRYN 3 aw ;uﬂq..- 1 -3 a0t ® 8] .’~) [$>] TCyvu . [$3]
o ,: -4 os 1 v v- L Al o
“ ~4~
]
1
L]
L]
.
b " _
. M .
{ i [,
: o
. []
v . NIV ¢
SE N Tc ' ® Vno3 § Gedi - woug
Fe.
YT 3 vew T H 2
, 291 - L.
' L]
KNJENY . '
[SR] ..cnor. — 11 i
LALU R S ooy AL LU IF BN -
A T$N
§ Wy M
.:n..-— . ! TS vad .
!
_ e
i ®) %) [T (0 O] VIS WRIE [g
| o4+ v v- .I..‘ 0~ 2 2 - s
. EEXE
! . YD 100 Viwq ———e Mo VXTI 308y A0 NI ey
! s
_ . AT e vro.nhﬂ;
@r11tm0 Sunnrwed 3yeus)
r Q Weidised YW Yy |—

. -~ —— e

0§ OO OO OO O 0g0 000000 0 o

output {from +O2 and gating of the odd word to the computer. Fromn the foregoing
discussion it can be concluded that:

1. When MAR 3 holds a 0, two words may be gated to the computer during the

storage cycle.

2. When MAR 3 holds a 1, only the odd word can be gated out.

The timing chart (Figure 99) gives the gate-out times for MDR positions 0-71,
with respec to the first and last strobe pulses. All timings are a pproximate, and
are referenced to the rise of memory select. All MDR positions are reset at 400 ns,
therefore, no data exists in the MDR until the first plane is strobed at 800 ns. It is
assumed‘that data from the entire 71 planes will have been read into the MDR by
1050 ns, which corresponds to the last strobe pulse. If MAR 3 holds a 0, the data
from MDR positions 0-35 (even word) is placed on the MDBO lines and sent to the
computer by 940 ns. At 1500 ns, the split DOG line comes up and places the odd
word on the MDBO lines. If MAR 3 holds a 1, only the odd word is placed on the
MDBO lines, and this is considered accomplished at 1050 ns.

7094-7302 ADDRESS CORRELATION

Half of the possible 32, 768 different address combinations from the computer will
have been altered by the crossover network in the multiplexor before being pre-~
sented to the MAR in the 7302. This will be true whenever positions3 6r 17 (but not
both) hold a 1. Therefore, the address exhibited by the MAR indicators on the CE
test panel may not be representative of the address originally sent from the com-
puter. To correlate any address shown on the CE test panel with the computer ad-

dress required to produce it, use the following chart:

> 051/ 2

e T .

0P OO OO 000 050000000 0g¢g o0

I

S S e e i it SRR l-..lqu S rli%lf--l e 4

]
.
304! '»Hv — -t - - ¢ — e
i : !
9C 8! - NI S S B STt GuU: VIV RPN SNV SN AU ST
] _ ! _ .
0oL —— ¢ - —— -y e el B }
_ ; I
i }
0091 4—-— b |of.H - - rs_c..% M_ - - lulhwnql., N
{ i ! by
00SGt 4 o - — .lf“yo‘! - = i!Tl.ifl.! e e S S eI T (NN HUS G <
' |) j -
1 " ‘ !
; S S S S S| .} S -
H u n ' . i B [\
. i . ! <
[li..l'lﬂ,, e S i . l‘wls i e — [U S, ,L_ AU
, A ! ! ! ; _ =
{ - + L S U SR S — -
i

. B !
i i _ ' - -)) . (

\IIL,IIJI«.I'A —— e e i e e e REERERE S SN I S -
s T F ,wHM.JH“_,VIii CE -
T e e . S
— — o - . T -1 '

L35 0°S0d ~ % < :

,»J. - S SR S
m

(=

TIMeE (NANQLECHIDS) K #&

R
x - : .
T ..lliqll.l;ﬂllrtj‘:; e e -
NM) | W o -y
—— ¢ w wL'll S CEE U W . <
« . .ﬂY} | SO S | [< -
£ | i { 57 o
- - S S SR S, SR) v
1 . iy
I ; « C v -
" a = -
- — H [S, —- —— ey hd 3 . A
| : * >
! i Ny " -
- —t- et St e R - .- =~ .
| A < —
P - ke e e v <

- e R S e b
| :

g ;l,l:.ﬁ N SR A # g

A

6-7i

2
i

A e
|
f
|

[ad sl all NoT ST

Gy 940ns.
GHTE" ool

1S O, THE LoWER worp (0-25) 15
/

l/ THE UPPPEK WORL 1S PLACIY oty
By 1056 ns. TWl Lowin werpCanwir B vhsiy ¢ T,

- sed
-~ “w
w r > @ wunl > ™
[g O o & = L g x g
g% 5 3 v o ° P 3 :
19 2 3 u ¥z w52 ¢ S)
2 -) L Ky 3
- o > € 3 < 0 ..lh R
LS S W - N 2 > £ 1
S Lo = 9 - - £ .2 0 - < P -
- 2 5 3 .
i 5 = - 5 2 FIU o] a3 :
x € w £ - n » O < S A v 1 .
°c U2 1 D e Yoo g a - N
MN o W < T g - < o o P 3 o~
) ~ - [o —
= o« <« C @ ~ a ‘ o < Lo T
L~ & e [TM n.ruk RS LS e
¥ «- N 5 W @« 2 1% WY tu
o “ v « =W » o ~ - .
= L T - x
N >
LSS SV -
o a4 o T »U
zZ x = & K -
* # -

®© 0 g ©0 00000 0g0 0000000 9P o>

MAR Indicators Address From Computer
000008 to 37776g (All Even). As indicated.
00001g to 377774 (All Odd). Subtract 1, and add 40000g.
400008 to 777768 (All Even), Subtract 400008, and add 1.
400014 to 777778 (All Odd). As indicated.

To determine the address that will be presented to the 7302 MAR for any address

sent out of the computer, use the following table:

Address From Computer Address Presénted to MAR
000004 to 377764 (All Even). Same.
000018 to 377778 (All Odd). A Subtract 1, and add 400008.
400004 to 777764 (All Even). Sabtract 40000g, and add 1.
400018 to 777778 (All Odd). Same.

SENSE AMPLIFIERS

The isolating pulse transformers used in the sense amplifiers of the 2. 18-usec
machine are too slow for 2. 0-§sec operation. In the modified machine, these have
been replaced with a suitable type. Figure 49 shows a portion of a typical sense
amplifier. This {solating pulse transformer is T1, and the differential amplifier.
that: feeds the transformer, consists of transistors Tl and T2.

A diode clipping network has also be;en added. This network limits the noise in-
duced in the amplifiers by inhibit current. Recall that the sense and in.hibit windings
in a core plane are wired perpendicular to each other to reduce the noise induced
in the sense windings by the Z drivers. However, the noise that gets through to the
sense amplifiers is troublesom=:. Even though the sense amplifiers are not used
during Z time (rewrita), the vo}tage induced in the sense windings makes it difficult

for the ampliiiers to recover before read time on the following cycle.

203505

These modifications to the sense o - lifiar: have resulted in a change in the

card type designation. The ZN-- cards {F/" 395454) in the 2. 18-usec machine

have been changed to DDQ- (P/N 380081) in the 2.0-usec machine (Systems 01.17. OO;.

‘through 01, 17.13. 1),

STRODBE CIRCUITS i

oz i
The manner in which the strobe circuits are turned on in the modified 7302;diffctcr

from that of the 2. 18-usec machine. RECAIIHT: strobing in the 2. 18-~usec machine

is initiated by the strobe level pulse. This pulse, which results from a matrix
switch flipping in the selected Y switch Ssegment, is applied to the basic strobe de-
velopment circuit shown in Figure 37. In the modified machine, however, strobing

iz initiated by the same circuit that turns on the Y driver-timing trigger. This is

shown in Figure 100,

The combination of + memory select from the multiplexor and + select gate
from the timing error trigger produce a plus-level pulse at the in-phase output of

the +AND circuit. After a delay of 200 nanoseconds, the + strobe pulse {8 developed.

This pulse is applied to the basic strobe development circuit (Figure 37) at the in-

put to the converter (line A), replacing the strobe level pulse and DLY 1, Operation

of the remainder of this circuit,as well as the strobe generation circuits (Figure 38),

is the same as that described for the 2. 18-usec machine.
This change to the strobe circuits is significant in that the basic strobe is no

longer dependent on the true-one driver for the selected Y switch segment, This

greatly expedites the process of determining the cause of missing or late strotos,

For example, i the strobe pulses 2o one particular

i group of sense amplifiers is mia-

sing, it is safe to assume that the trouble is probably in that portion of the strobe

oo, /S

\

o000 o0o0c0c0o0ecc®ocococcoco

2w 23S HylImS XIylvw A 23423139

Iy Weud RNJUINO Ny SO LUTNSIY ¥ S§ NO-NYnL

g9o#ss sminsyw S35d g1e IHL NI "T A1g VY

3510y TIAIT 3909ss IHL DNIGYTSITY \m«n 2yno1s Ny

?u?:.b N2019 LY3ANOD wx.n o) 1ndml 3HL S3in1ligNOD
INi1 38 0y1S + IHL {305V *33S A 2 3HL NI : 310N 3

(% Le 912 339)

‘001 3unol4

1A 1rihedP1IN3Q
speals ~sbg of § J90¥IS F . 390¥1S+
A4 ISTE - Ad k1a
sugz su ooz (Grsvrvva). su ooz
[-
T35 935 _I Yi+
N A o1 HrawiL YINYa A~
. 01+
d¥iy A NO N¥NL4
49l
Sp1wid
NELL I]
A

v+

WA L9¥3
ANWILL
woyt

}

|

3Ly "13S +

135 WAW +

gl
woY 4

.

N
N
‘D
Q
R

PN PORTN

generation circuits responsible for providing sirobes to the sense amplifier group
concerned. If the strobes to all sense amplifiers is missing, ths basic strobe de-~
velopment circuit is the probable cause. In addition, early or late strobes may now

be traced directly to the strobe generation circuits.

MAIN ADDERS

The adders in the 7094 CPU are made up of the basic building block shown in Figure
205-1. The adders perform all arithmetic functions and are involved in most internal
transfer functions within the computer. Note in Figure 205-1 that inputs to the basic
adder circuit may be from the accumulator or from the storage register. Other input
lines may be selected by programming. Outputs from the adders usually go to the
accumulator although, again, programming may select alternate routes.

The adders are comprised of 39 individual adder units, or bit positions. These
include 1 through 35, Q, P, 9P and 9Q. Positions Q and P are used for overflow which
might occur during certain arithmetic operations. Positions 9Q and 9P are used during
floating point arithmetic.

Individual Adder

The adder unit shown in Figure 205-1 is for bit position 33. The four outputs, singly,

or in combination, indicate the sum of the incoming bits, whether a carry has been
developed to the next high order bit position and whether the group of adders (bit positions
31 through 35) will result in a carry to the next higher group. The combination of bit and
group carry indications constitute the lookahead capability of the adders.

Lookahead Feature

To facilitate lookahead, the adders have been divided into ten groups, according to the
following chart. A carry-out of each group and the levels required for lookahead are
developed in two sequential logic blocks of OR and AND circuits (Figure 205-3). Groups
one through five are combined into a section and the section carry lookahead is developed
in two sequential blocks of AND and OR circuits. The outputs of groups one through five,

and six through nine are combined in an AND circuit to develop the carry into group ten

2087/

(Figure 205-4). Provision has also been made for a generate output to be developed
from groups six through nine, indicating that addition within the adders is going to result

in a carry into group ten. The total number of logic blocks involved in carry development

or lookahead is six. With 20 nanoseconds delay encountered in each logic block, the

total delay between the time a one is injected into position 35 until it is felt in group teﬁ

is 120 nanoseconds. Without this lookahead capability the carry one would have to ripple
through each bit position, resulting in a two-level delay of 35 times 40 or 1400 nanoseconds.

The speed of the 7094 cannot tolerate this delay.

Bit Positions Group Number

35, 34, 33, 32 1

31, 30, 29, 28 2
Section 27,26, 25,24 3
23,22,21,20 4

19,18, 17, 16)

15, 14, 13, 12 6

11,10, 9, 9P 7
Section

9Q,8,7,6 8

5,4,3,2 9

I,P,Q 10

Chart of grouping of bit positions into groups and sections.

Lookahead and Carry

To understand the development of lookahead and carry it is necessary to understand the
meaning of the terms propagate and generate. As used in relation to the individual bit
position, refer to Figure 205-1, the term propagate means that the sum of the inputs
(exclusive of the carry input) is at least one, i.e., atleast one of the inputs must be a
one (the other may be a zero). Accordingly the +P Propagate 33 line will be up whenever
the conditions of the exclusive OR (a 1 and a 0) at the adder input are met. The chart on
Figure 205-1 shows this to be the case. However, the chart also shows that if both inputs
are one's, the propagate line will again be up. By definition the sum must be at least
one, therefore, a sum of more than one (1+1 =0 and 1 carry) will result in an up level
on the propagate line,

With a one on both inputs, a generate condition exists. The generate signal means that
the sum of the adder inputs (exclusive of carry) must be two (1+1 = 10) and a carry to the
next high order bit will be developed. The generate line must be high whenever both
inputs to the adder are one's. Because the complement of the signal is used, the chart
shows that the +P Complement Generate 33 line will be up for all conditions other than
the addition of two one's and down for the generate condition.

’fhe Complement X or 33 output develops the sum and carry of each bit. This should
be read as "complement of the exclusive OR condition at the input of bit position 33''.
Therefore, when an exclusive OR exists at the adder input, i.e., a one and a zero, this
line will be down (complement). Note that the sum is developed through a negative
exclusive OR.

Assume the input from the storage register is a one, that from the accumulator is a

zero and there is a carry from position 34 (+P Carry in 33 is high). With these conditions

2053

we would expect to have a sum of zero and a one carry to the next high order bit, position
32. Inputs to the negative exclusive OR are -P (+P Complement X or 33 is down) and +P
(Carry in 33 is up) so the negative exclusive OR conditions have been met and the output
will follow the sign of the function -- a negative output indicating a sum of zero.
Adder Carry
Refer to Figure 205-2 to see how the carry out of a bit position is developed. A carry
into position 33 means that bit position 34 adder either added two one's from the primary
inputs or added a one to a one carry from bit position 35. With either condition the three
OR circuits into the AND circuit are conditioned and the carry output from the AND logic
block is high, indicating a carry into position 32.

The foregoing discussion illustrates the arithmetic function of addition and carry within
a group of four adder bit positions. Figure 205-3 shows these same propagate and
generate outputs develop carries outside the group, as part of the lookahead function.
The propagate output will be down for the condition when both inputs to the adder are zero
and up for all other conditions (1, 0 or 1, 1). The complement line will be up for 0, 0;
down for 1, 0 or 0, 1; and up for 1, 1. Witha 1 input to each of the four bit positions and
a carry into position 35 logic circuitry causes the Generate G1 and carry into 31 outputs
to be high.

Figure 205-3 also shows thata 1, 1 input to adder 32 must always result iv a Generate
G1 signal and carry into 31.

Group and Section Carry

Figure 205-4 illustrates how the group generage signals are tied together to advance the
lookahead into group ten which contains the 1 bit and two overflow powitions (P and Q).

For a carry into group ten there must be a generate condition in bits 2 through 15 OR a

7xH 4

0§ © O 00000 000000000 g o

section carry from bits 16 through 35 AND a propagate signal from bits 2 through 15.

These logic circuits then predict that if there is a section carry out and each bit position

in adders 2 through 15 has a sum of at least one, there will be a carry into group ten.,

Also, the logic circuits predict that if the sum in each of the adder positions 2 through 15

is two, there will be a carry into group ten.

Special applications of lookahead and carry will be covered in those sections on

multiply, divide and floating point operation.

20554 A

W“\CV\ R«f‘g;g*cvs Holc((ﬂ)o Gdrry)i

SR 0+ 0O |
At o o [/ |/
S'l\’sv\a\s Rve’
- + + 1 onpagajc 33
+ + + = Comp Gen 33
t - - % CoWP X ov 33
- r + - AD 33 (Suwm)
SR I3 -PDI? t Propanale 33
SR 34~ H023|. C Ao
AC33 - # 033 c | —_ lomp Gen 33
© — /QO , (‘tw»pXori’:’

+Qarry 27 |-

+ SUPACAD33)

Fiquve 205=1. Adder Detar! 187 22)

JoS, &

008 00000000000 loece

n\Bka ~ «\\ka\\ﬁ..kx.\u..&\\n\\»*v\b \.\gc.u \Q\ \Qﬁw%e*ouN -t x..\..(._\\

—
ﬁ e TUTRE gimedby) ;
| _ e TLITEVY Yskoy'-
5 2 e vy dup| _SETH T
: SE NIFD Jwo) L0 SER
o¥
S
¥
g Qf _SE YI0o & Ly 44
h
- Vi
fe 325970 W -FESH
€ JoX W0y \«M ﬁma\ €
o4 "
\ _ AE FTIT; AT FiviS
SEau < »S.woml
ot ~S
< Ty
AdYH3I v)
0 Q
S %
Yy ! €t QMWM oY+ o T.mi%.umwm%
: € VIy daa)
&€
s J0-
oyt e
£e EF LT O JEeva- €95
ANddTdD

CARRY IN 3/

10A

"\ Lrepogate 33 Gegeratesl
F 2 | J
] Comp X o 33

&‘;"’?‘7{533
| 33 (’:m;,o ¥ ar33

m : s ——=fhencral G/
: - C LpaRP ciecy 1

- ﬁo;pqlmfc 96/ o -
[; Y ». C'am'/? Yor3Y |+ 081" — —=PORP CARRY L |
e - e C L‘ P 4Rp chkRy 4

|
|

A = = Propagate 35 .
v 7 P f i
S - l
R (A e L= ,

/,.'f;h" 0 - ;A Grou/a /oOA’ 0/]“14;_ aﬁd’ qur/j
Z 05,7

0 5 OO OO OO0 00000000 0§ 0

-4

=

05 8

It

l é'A’f"qucL?
- -_[Q;' @ Gepeete G0
GRP 1D [p]
-‘—-—_E] ".-, [
(7] (&) _Geoerste 69
(2]
P
GRP 9 E’]
_______ L] e Bl Lrorasas 61 N
{/, '; E facnemre oT 0 - .
u] OW .Cenerole PBrrs -
Grr & J . e-/5
— S o W 2 Y WK ~ I e U U
K/ rle b1
g
GRP T
E @ loro'gz;:le 47 q A
]A] écy:ﬂe“" -
[
CRP 6 v}
. el (o) Propogarc Gilo |
16 A, _Geacrarg 65
17,
CRP S [ie,
,I7J [0} Propagere a5
2o (Al Leacrare G ¢]
i
GRP Y EJ i
______] ffﬂ_ﬂgeré"CiY“" ’——E_r = ol [
[24] A L besecsc 63 | Secvron Coarey 1e-38
%
ARP 3 E‘—l .
R . s === Ly
: 6 nere,
bl A et | - |
291 ;;
GRP 2 b Has
s Ca LTT] |
,:BJ— Aldeacate 7
133 o
(/\RP J 3‘/f e P
A
Erlll=am - Fioure 2054 -

©0 Q30000000 OCELNOIGISISIOGIIOQGTOT

RY/2V63
\\ sAWV \vaN

vt Ayyed d+

_|| ayX -od 4+
gyt — JX d+

. d A , \ N o
LY d0yd 4+ - v+ D

| wnsS A+ :
gt d A N d .
g+ | 7754 n Fo- .vn.l.‘.. JoX wo)d d+
S [— ayi-3> 4t
qut-yal df

A= S PR v d|
N— . o
Y+ | 9 [qtl-yy I+

2Lty 7D oD 4t

00 gOOOOOOOEOERRLOIOIOIOGIOGOEOGNOINGODS

C’apg cor/e [ICZ(AS///E ﬁ/ﬂ

Fruc

o LT | Ty
A~ qop [oTp P=REERE AT [+ -]+
7w AVB Bi—-|—|*t]|+ |
B —c¢ L v - - | =+ +—|Ivd
. | g C AB;HB plal—=]—|4+ od‘(f
A¥ B

IV foad put # LhEN ETHER Input o+ BUT A0T BoTH ToGtTHeR

{

/”/WUS
7 || |Ty
- = h Al=l+]—|*
P —Ioeb— wtd po(r8)(EE)e C1 T T1]
p WV AvB el +|—| = +|mwf
B _i | — /”%Q:(Z-I-B)(A‘f‘g)“‘ Di—1+] +]| - Ouj'%

A+8

v foaTpat — coher ETHER IWPUF < BT NoT BoTH ToGE THER

208, | B ,‘S
A mr .

JWPEY dsii (i 17
(IREY Gealgiveir wild v £ Glav P

FP Comp for 14

FN Coar® Gl w /S

+A -of

+F Comt 2 for)S 1+~ WAD 14
+0 - s I —

W oue Gety 76

N -0
72 Comp Mgr /6 40
), .
| c ” +N Xpo IS
’-#f/ Pier 179 + 4 PJ ' —or
P LomP Xor 17 c |tV xAD 16
-~ +p e

TE Cricry T)7

C -0f
- N CARYY T2 0 +V XED 17
C S——
+P Xor 17

}
-+
he
o 0 oooo 000 0% 0000000 Qeo

o5z

o wis oy @

IWOEN ADDER (19-77)

-l e ’, T
EratiF Copd foied

TP chkRY TO 17 PN Prer Gl 1y
Compe %OC 17 JOA |- m - - -

+r/ GlouP 6En 4

X

7 Pror |77 Y
i? CunpXor 16 L

P _Prop /6

+0A

1P CompP Yor 1S

1 LLP L5 +0A

1> ComP for 14

§ 000000000000 0008g00
|

+¢ A C
P Prop s
Pl iz +P CARIRY Gfow P 4
KGAi
‘7, 244 ¢ 7/—/,’;.’ K" C’ull/"w“ W o LRI) J ' | By
2083 mFs 5/7/ 6

JWDEX il K .
Criviy CiébtbiTion (]
@
-+r/ Qgg_ 0 ‘
N P
VGG @
@
GRewP 2
o
o
o
° S
MGG 3 vop %
o
v

v PG2 ’ .
o
o

GG/ 1 hA
tv P2 v P | ¢
+iy PGS +P KG3 ‘
@
Re 1.4 ‘
| //7/"5 ‘./ //'.__ ‘

+P SET AP 2 Chrky T30

® N
JWDEX SIDLCP
® AD =2 (’/;/e/ey
o
@
. +/v Frop 3
Q® - /s
$P GEN 3 to
+P Génw 4
' +p Gev &
o
o
‘ +5
. +P Prop 5
o
. +a
. TP.PFOPJ‘
[
FNV SET CAKiy TER
o
o
@
@
@

Y XA 6/ ","Zz

209 Index Registers (XR) Systems 03.05.00.1-03. 05.14.1

There are seven XR's in the 7094. Each XR consists of 15 single triggers with a delayed

output labeled 3-17. All seven XR's are identical in their operation and are used for

address modification. Individual positions of all seven XR's have a common output.

The outputs of the XR's are gated out by a specified tag (see section on tag registers)

to the XAD's where the actual address modification is performed. The XR's are read

out in their complement form and by addition of this complement number to an address,
the address is effectively reduced by the contents of the XR.

There are many instructions which operate on the Index Registers, thereby making

these registers useful programming tools for counting, word alteration, program loop

coniral, and so forth.

209,)

P ‘

oo Boeoovcccee®ccecocccclece

©
o

Instruction Backup Register (IBR) Systems 03.08.00. 1-03. 08. 05. 1
The IBR is a 36 position trigger register whose positions are labeled S1-35. The IBR
is used during Instruction Overlap operation and contains the next higher odd address
which will be brought out if the instruction reference was to an even location. (See
sections on DLA, SLA, and TLA for operation of the IBR during these operations). The
IBR is loaded from the Multiplexor Storage Bus, with the odd address after the even address
has been placed in the Storage Register. The IBR is also loaded from the Storage Register
durin g Double Precision and also while performing the instruction ERA.

Outputs of the IBR are gated to the Program Register for decoding and also to the

Tag Register for indexing. During TLA with TIX, TXI, TNS the IBR 3-17 is gated to

the XAD. (See section on TLA,)

210) -

2¢1 Accumulator Register (AC) (Systems 02.03.00.1-02.03.19. 1)
The AC is a 39 position register each position consisting of a double latch (See
scction on 7094 double latches). The register positions aro labeled (8) (Q) (P) (1-8)
(OP) (9-35). Position S1-35 accommodates the word in standard operations. Positions
(Q) and (P) are used as overflow positions because the sum of two 35 position numbers
can be greater than 35 positions. Position (P) also holds the S bit of a word during logical
operations. Position (9P) is also an overflow position which replaces the 9 overflow
trigger which was used on previous systems.

The term accumulator is somewhat misleading since the register is not able to
accumulate. The AC can contain only one word at a time. When adding, the AC and

addcers work as a unit to perform the addition, and the AC merely holds the result.

(PPN

Y

/

0§ 6000000 000000000900

211 Multiplier - Quotient Register (MQ) Systems 02.04.00.1-02.04.09.1
The MQ is a 36 position register each position consisting of a double latch. (See
section on 7094 Double Latch). The MQ receives its name from the functions it performs
in the CPU. During a MPY operation it contains the Multiplier; after the MPY it contains
the least significant half of the product. During a DIV, it contains the least significant
half of the dividend, after the DIV it contains the Quotient. Due to its shift cell makeup
the MQ has the ability of shifting left or right. In addition to this it also has the ability
to perform a function called Ring Shift. This means bits can be shifted out of the S
position and into MQ 35.

The entire MQ can be operated upon as is the case with the instruction STQ, In
this case the entire MQ is gated to the Storage Reg and then to memory. There are
instructions that only operate on portions of the MQ such as in CRQ where SR S1-5
are gated to the MQ 30-35. In this case only these positions are affected. During CRQ
and pAQ MQ S1-5 are gated to the XAD 12-17. During Floating Point operations the
ACC and MQ are shifted right and bits leaving ACC 35 are gated into MQ 9. There is
another gating line which is only used during DFAD which gates MQ 35 to ACC 9 while

shifting the MQ and ACC right. This is effectively a ring shift.

A1

ADDRESS REGISTER (AR) SV . .0~ u.. . - 03.00.04.1

Tiae Address Register is a 1D posivion “risrer register whose
positions ave labeled (3 -~ 17), Tho conwers s ol e Address Register
are sent to the storage adaress ¢ croun the sroeper storage

location to L uacd oran the case of ndcxin, rhe contents may be

gated to the lndex i -
mation from the Storane Register, Index Addor or IBR., The Address
Register is resel prior to recading new inforrnation into it, There is

a delay block on the cutput of each position which is used during

indexing to prevent you from affecting the XAD's while you are

resatting, Tho Address Register and P. C. outputs are DOT ORE'D
tegethor and dopending upon certain condcitions being met will determine
whether the FO or AR will be gated to Memory . Example - On success-
ful txransfers the AR will bo gated toe Memory. I the transfcr was

not successful then the P. C, contains the location of the next instruction
and {t will be gated to Memory.

At e . n C i e ey
SNOLC T n ’j },L(‘ S A R esLer rec
-

eives its infor-

G g

00 8 o000 000 0% 0000000 0eo

0O PgO OO OO O O 000000 000 909
5

PROGRAM COUNTER (PC) SYSTEMS 03,06.30.1 - 03.06.34.1

The Program Counter is a counter in name only due to the fact that
when it is to be stepped the information in the counter is read into the XAD
tho counter is reset, a hot one is added to the XAD and the information is
then placed back into the counter. The P, C. consists of 15 triggers
labeled 3 - 17, with a delayed output to prevent the reset of the counter
from affecting the contents of the XAD which are going to be placed back
into the counter., The content of the program counter is normally stepped
at each 17 time and gated back to the counter at 8 time and is used
to tell the computer where in storage to obtain its next sequential instructions.
Under these conditions the PC is sent directly to memory. When a success-
ful transfer instruction is executed the new address is located in the Address
Registor which is sent to Mar, In order to change the contents of the P, C.
the A, R, is gated to the XAD at 2 time and then gated to the P, C, at 3
time. At 7 time the contents of the P, C, are routed through the XAD's,
stepped and brought back to the P, C, There are instructions which cause
the computer to skip one or two instructions. These special conditions will
be covered during the discussion of these instructions.

When performing an STL the compliment of the P, C. will be gated to

the XAD's where it will be recomplimented and gated through the Storage
Registor to Memory.

2/, /

21!

PROGRAM REGISTER (PR) SYST N & viv v venl - 03,04.06.1

The program register is a ten position register, cach position consisting
of a single trigger. The program register receives the operation code of
the instruction from the SB which can be brought up {rom a storage address,
the Instruction Back-UP Register (Sec Section on IBR) or from the Entry Keys.
‘The output of the Program Repister is docodea to initiate and control the
computer so it will execute the instructicn, Positions (1-5) contiin the
primary operation part of the operation code and positions (6 - 9Y) contain the
secondary part. The Program Register is loaded during I time which dis-
tinguishes an instruction which is only brought into the computerx during 1
time and Data which is brought in during £ time. The program register is
loaded normally with an 16 (L2) pulse. It is reset the following 16 DI, During
manual operation we have a special I0{D3) reset.

Note: See section in Instruction Overlap for special conditions of satting P. R,

Y R EEE L XY XX

0 goeocooeoooe 00000000 gQgO0OO0

214 Sense Indicator Register (SI) Systems 02, 06.00.1-02.06.11.1

The Sense Indicator Register is a 36 position register labeled 0-35. Each position

is a single trigger with a delayed output. The SI register is controlled completely

by the program and is not used by the computer as a part of its arithmetic operations.

It can be used as a set of switches which are set and tested by the program to check the
progress or direction of the program. The SI register may also be used to store words
or parts of words temporarily and, in this way, it is useful for altering and testing words.

The only path for information into or out of the SI's is by way of the SR.

214.)

215 Shift Counter (SC) Systems 03.04.14.1-03.04.17.1
The Shift Counter is an 8 position count down counter labeled 10—17; each position
consisting of a single trigger with a delayed output. The delay prevents interaction
between groups when stepping the counter. The SC counts the number of shifts taken
during a shift operation (MPY, DIV, ALS, ETC) and is also used as part of the decoder
for operations that have a primary operation of 76.

Because the SC is a step down counter, a number must be gated into the counter.
The time at which it is gated is controlled by the operation being performed. During
a primary operation of 76 the XAD are gated to the SC during Itime. During a
Variable Length MPY-DIV the XAD are gated to the SC during E time and during a Convert
insuruction during L time. The SC is used during FLOATING POINT ALSO. While
periorming a F AD instruction it is used to line up our characteristics. At E11 time
tic characteristic difference between the SR and ACC which is computed in the Adders
Is gated to the SC to keep track of the number of shifts necessary to align the fractions.
Adders 3-8 are gated to the SC 12-17. .

During a MPY-DIV operation a number must be gated into the SC to keep track of
the stifting but it does not come from another register. It is a constant which is used
during these operations and will always be the same. In the case of a DIV operation 338
is set into the SC and for a MPY operation 438 is set to the SC during E time.

Lae SC is stepped every clock pulse providing a gate called SHIFT Gate is conditioned,

Sco Figure an generation of 3hift Gate and Figure for stepping of the SC.

y \

N E R R E R L XX

0 g © O 00000 000000000 g o0

e
) STEPPING THE SHIFT CTR
In Figure B we have shown only 4 positions of the SC for simplicity.

Let's assume that the SC is loaded with 178. Initially all the -T.O's are on in
Figure B and all input AND's 1-8 are deconditioned until the step pulses come.
Figure A shows the formation of the step pulses which uses a form of lookahead.

When the 1st step pulse comes the +A at 5 in Figure A will be conditioned and bring
up the outputs of the C at 9 step SC 17. The +A at 8 in Figure B will now be conditioned
resetting SC17. The out-of-phase output of the DLY at 10 will be minus preventing the
reset of 16. The -A at 5 and -A at 7 can not be affected because the output of the DLY
at 9 and 10 were plus when the step pulse came. The next step pulse will again condition
the +A.at 5 and bring up step SC 17 again. Notice that the Step SC 15 line cannot come
up because it is conditioned by 16 and 17 being off. When the second step to 17 comes
the +A at 6 (Figure B) and the -A at 7 will be conditioned due to 17 being off and 17
will be turned on and 16 turned off. The third step pulse will again bring up STP SC 17
which will reset 17 thru +A at 8 but cannot affect 16 because the +A at 6 is deconditioned
by the output of the DLY at 10. Note use of delay here. The 4th step pulse will condition
the +A at 5 Figure A again but this time the -A at 3 will also be conditioned bringing
up the -A at 8. The purpose of the delay at 4 was to prevent the step pulse that stepped the

counter to 14 from affecting the Stp SC 15 line.

The stepping process continues in this manner until the SC = 0. Notice that STP

SC 13 cannot be conditioned until 14, 15, 16, 17 :re off.

252

+PSsc 17

13_AND_5¢ 12 cd Ta o sTe sen
WA GLL
. VA TR H‘\J’_:_;v” e i
' -
!
e norr (P s sve se g
VA GY2
4 T c Mo
(jj -~ STP gc '3
___J
A GT r:;\ + 3TP 5¢ /1§
3
® - $TA 3¢ 1§

TP _LET [~]

+ A
SIP_SC.

3¢maTzO ®

IS AN S L
et

(/‘-—/(7 A)

E: - sTP s
@ 4 STP 3¢.,7

- N OLTP e F

4N CTP CC s

M sTP scay

oLy

| L

+ N OSTP SC AT

(;/r'. 8)

o0 0 o000 000 0% 000000000

19-21-2) o "S-

V-a¢ ANdLa0 Hhi D6

b-ah hl IS LIS LLL0 Ay
I-dn AZRLNNOD LAIHS dFLS

; ; _ A oM s/ 08
e w : A, \ - ! a-ah ofra il O
| | h “ | M o
r—— . m \WEIEED e § D-2h At IS LF534 LdL0 ANY
T : L ” w 3-74 ehia e os |
—\ L U T ” -9k ofa o5
w w . / Ad-2h YLD LAIHSdT LS |
| ” / \ H-4¢ indino S1 75 Yo
, _ . o ~ - g-4dh S/ 35 135 ddlo gV o
m T T —) 1 @-4F N3LMa0D L5iHS 431S
M / \u /~ \ _ . O-A4h FMG 5/ 05
m ; - | = !
” : —\ ;) S g-5t 5155 1353y {dla aQny
T TN 7 |\ ' a-5h oa s 0S5
\ 4 ; y ‘ 2-Dfr YNNG LIIHT dFLs
QT , : : sameo ‘V_Soqo\ SwilsAs [“AhCEQ
\\,x\‘\\\ V$0N N,.lﬁ .Nt\\. : a \FN\ . JQ\ \\<\N. . »Q\\N\\\N
£ o 1 I e = /Ei\% D LAIHS
TTDAD < \x\%v {HTHS

o000 oo0o00o0o00e occ0o00c0008eo

/7 o

7094 SHIET-CZLLS

Shift cells usad in the 7094 storage register and accumulator and multiplier-quotient .

registers have been especially designed to: .
-- increase system reliability,
-- reduce component cost and space requirements, and ‘
-- roduce the number of logic blocks required for the storage-shift function. .

Accomplishment of thesc design goals resulted in shift cells affording simultancous .

rcad-in and road -out; a double latch configuration in which inputs can be sensed prior

to being ''locked~-in'' and faster rcad-in and read-out as compared to the double

trigger configuration prcv{Ously used, .
The 7094 shift cells usc third and split level logic. Arecview of these different logic '
blocks is contained in TRANSISTOR COMPONENT CIRCUITS Formy 223-68+9-1,
F.r thig discussion it will suffice to recall the following:
1. A split lovel AND circuit functions normally when the split level applicd is
up (active). The in-phasyc output is up and the out-of=-phase output down when the

leval is down.

- mmrum——————— ST

Jp/,sl

ll’uf/ 4]

2, A split level OR circult functions normaliy when the split lovel input is down.
When the split lovel {s up, the in-phase cutput ia :lways down and tho out-of -phase

output is always up,

Lot

L
|
oo o000 00 0 0%

277/

C e e e ———— et ke 4 —— 7

0§ OO0 00000 00000000 0 g0

_—1+0

Split S‘L Il VO

level 1n

3. A third level AND circuit functions normally when the third (supervisory)
level is up. When the supervisory level is down the logic block is deactivated and

both the in-phase and out-of-phase outputs are down.

— s

Superrisery <E
W,Mé: Leaton
4. The bRG4A third and split level circuits is determined hy sérzxit

233« i.e.,”external or internal. The symbology for a third level, positive AND

circuit follows.

'fﬁ/wf /.(,1/(/ " -

The shift cells function as temporary storage units and provide for transferring
information from one register to the other, or to adjacent pogitions within a register.
2/72=1
In the following example, Figure » & single shift cell of the storage register is

illustrated. Note that inputs r.ay come from the MQ, AC or AD, Outputs may 5_e

gated to the SB, AC or back ar:und to the SR,

277, 2

Splir Level éoaf/c BLocks
IIAF/J \

AR VEREL
A B , Al=f=|*{*+]cotre
OATA g] A [out @ Bl-|+| =1+ pars
WV Pl pB Ci{+|#F| -+ /77
sPLT A —3 — N ;5 Di-|=|+|—=]our ¢
LEVE L ContiRol L 1C

CoTROL + ,0uTPUTS Follow PATA
ComTROL —)//Vﬁf /5 7‘-/ aa(?' ?/-J DODAHTH HAE w0 EFFECT

0% 0o 000000 Qoo

UOP \!
| o A+ 5
2TH BT our g 7T
4 Hli=|—|*
SPLIT /q____s I /”/ 8| - + | -
LEVEL CONTROL b0 cl=1+1-
RE OD|+|—1i+

ConwrRrol - ,ouT Pte TS Fotiow DLOATH

ConTROL T /Nfﬁls = oa.Tﬁ >, DATA MHAHS NO

7%//';/ Ze/e/ ZOJ/C B/ac/fs

“PBwd’

T T T,
PATA B—+4|— D our 7‘ A .8 Rl— =+ | +]cwmrir:
VP Bl=|+ |~ |+|pPrrs
3rd level A ‘“% — ¢ v ¢ AB el =l =l=1]#]| w4
QowTROL ’—1— £ 3rd Level — D~ —|+|—|ouryg
| out g A 4|+ | =] |outsa]
Conikok +, OUT PuTs Follow DATA

(orviRol = v ¢ AVD oa'rgf -, DRTH HAHS w9 EFFiCT

e A l‘-'v r~
A ?’ T v \vr/lﬂT'u

/xmé,oo Wp/m W (/e -Wmmnjmﬁr‘/p/m Lo

4] Or\l

- (7 |7 |G| T
— — + 4
DATA B #o0 o Ow,?g AR 1 = =T+ 21 comiest
P v 3
/ Bi— 1|+ =1t 4+ | vos14
p—— g W
3r level ﬁ‘iz - /v ¢ AB el =+ +]+] vy
CovThoL E 3dlovel A pl4|=|+4]+] outy
Out Fl+ |+ | ~-}— Ou:f'c;»
3)-\;}
ConwTihoA -, ouT PauTS Fillow DHTH
JenwrTRelL + /iVQ" Al CaT f 'f‘, DHTH HE WwI 2007
BTt L B S Pt
Ten & 4s WM//«,W (/c W%waqp%m%m 4
W)
2 = Al in Theo Alock
.O:/\/a/m/w% \—\3 / ;/707 6
Aok L
‘) PLTER V) TF /09/6 5‘/ - P///)S[

e.f g/('(‘

lFS
@ | | o . e

p/ﬁj"f/‘éd: /L)F

3rd leve: Aooic

ConTRiL E — psu,—i‘- ;?E GATED
GATES D — "~
o C N P ; A —C': D/‘)TA
o /) B —— T AB ouTPuTS
Prus N
. DRTH A —3
L
7 s | | | T e |] s
PATA A | =] = | S F [F B
gl + __\\:,L +41 + 1+ ’A‘“* 1t
ConTRUL Ci+|* \ AR ‘.\:\\i\ :
GATES ARSI AR B A
El+|]|+ Fla|t | £+ P
i e\ (U S B N ¢ S N
CATED 5 Q\ <\~X
DATA LTI ZICeseT
OuT PuUTS AN IS
. el =l—-i-1- 5 Bl Bl Bl NN

ADDER 3 DL/ST.

- A0 -AC e B }—— tPAD3-AC3

CULN AD-PURTY TV p=—= P AD3-ACY

Lod ewabfpearr v BT fr e RPRRBEACE L e

TVAD 3 —— 3 R

‘ PR Lv.\ ce” LN
p ”DTE:I

LT T oniy GwE CemTROL GATE Doww. AT A TImE

MIFS

oy 2/7. 20 | s/ /e

-

. '

Read-In Sequence
‘Positive OR number 1 (OR-1) and Positive AND number 1 (AND-1) comprise the

. LTH logic block of the shift cell (so designated on the ALD pages). Some of the

. positive OR number 2 (OR-2) and positive AND number 3 (AND-3).

flow diagrams relating to the CPU show this as the first latch.

The second latch or register (REG) is made up of positive AND number 2 (AND-2).

. The terms first and second latch refer to the sequence of read-in to the shift cell.
For the following discussion assume the shift cell has been storing a zero and a
| _ L . Al
onc is read in at time T1. Refer to the timing diagram, Figure . to establish the
. time relationships of the following events.
. 1. At Tl, the input at X rises, indicating a 1 is being read in. This input has
a duration of one clock pulse or 167 nanoseconds.

2. The split level input to OR-1 is down (AND-1 is disabled) so this logic block

. functions as a normal OR:

. 3. The in-phase output at pin Z rises and the output at pin V falls.
. 4. The pin G input to AND-2 is down. This circuit is disabled because the
supervisory level is down.
® | : : RS
5. At T1l+ the set SR pulse is applied to the storage register. This ®0 nanosecond

‘ pulse is bracketed by the 167 nanosecond read-in pulse.

. 7. The input to pin M of AND-1 is up, and, because this is now functioning as a

6. - With the set pulsc applied, supervisory levels are applied to AND-1 and AND-2,

enabling them to function as normal AND circuits.

‘ normal AND circuit, the output at pin F is up. Note that pin ™ is tied back to pin X,
. at the input of OR-1, forming a holding circuit. The input could now be removed with-

out affecting the operation of the shift cell.
) ,
/7.3 ' o
h

A
the V output ﬁ;;«m This scquence constitutes the first latch. .

.

8. The pin H output of AND-1 is down and fed to pin K, the split level input of

OR-1. OR-1 continues to function as a normal OR circuit, with the Z output &:mfn and

9. The pin V output of OR-1 is applied to pin G of AND-2, Becauseo the set pulse ‘
is still up, this AND circuit functions normally and the output at pin C-will be down,
output at pin B will be up.

10. The pin B output is applied to the split level input of OR-2, causing the pin
E output to go down and pin D output to go up. y

11, The up level at pin D of OR-2 is applied to the ;é& level input of AND-3,
When the gift level is up, the pin R output is down. Thig forms the holding circuit
for the register,

12. At the end of the set pulsc OR-2 functions normally and the down input at
pin N (from AND-3) results in 2 down level at pin E'and an up lavel at pin D, | This
sequence constitutes the second latch. The one may bé read out of the register by
pulsing any o.g"qﬁ of the three -N gate input lines to the register.. With AND-3
functioning normally, these negative input pulses will result in up levels at the out -
of -phase output. Conversely, when the register is holding a zero.' supervisory
input down, the register (AND-3) is cut off and the negative input pulses V\'/ill result
in negative output pulses -- zeros.

The time sequence is such it is possible to read into the first latch of the shift

cell while reading out of the second latch.

2777

~!

T F R R NN

\\\\mv U\\NA\.\ R

= A.\\) A5 NS
\ .
v+
AL W
F4 > v 2 v ¥ f«d
e] 1€ /)
ot Vs o~ — .U
o M A x[1 - —
Y
WA
r— —_
|
&
€ _
- soxZ :
cbe - ¥3 1 N‘&V (4 24wy N- NQQ&.K \w 2 ¥s Jos
TR A Il s/a —) VW
ent ¥EF Ho oo) —s =T tg——=7=va= . [Z¥3-aU
. | —2fedsL 3y H——=r5w= Al HL7 | Flwlw‘lw‘m\\.
— R Y T S > 4%y N— -

P\Q..NB\\ HN w\h\h,\hwu% hh\%nho \%“\

o080 00000000 00000 Beco

/A/OU'/'

CRSeT

Pk kP FPEMNKFRK

lo

mo R

Note : Waveforms shown are idealized,
Timing shown is approximate,

2/7-1
. Sequence Chart For Storage Register Position Read-In

Figure

2776

\l“ ~

008 o000 00000000 loeo

7, [7 oy, /) .
/07 STV e /. YL TEF / SO Sy
o . ;

s

i
(//7/ ‘r 2//:/“/ Jeries)/l :'/, i’;,'/'
/ 14

>E L - o
geser o] T on? 1 ZERO INPUT Lh T
X F ,

¥ Heb D

K)H I 1 1 CBi0K

uh# 1 1 1 1 CP sSETS

owT PUT £ mimul Lopfe n ré’yf/.ff'.‘;(‘ Cov7artns QA owf

00 ;)’?.(a@

P

s , .
ALY/

0 g OO OO OO O 00000000 0 g o0
™
L
(—I
Q{

P 0 HD OO OO0 00 800 00OCOGOOOOGOOPS

-

OF LI® YuSIVIY I9&Yess £ ~tic247biy o

o Yo7 L5 | Y Yo7 7F £77I5 5779

e

o &S IS PPy
LA} 0P S S/
" p —— “ -
Y Ad 4 Y4
. <
] L..M\CQ\ MWNWWH T(ﬁ kh\ XS £°S —”
ov o 7o
Ot -8 Sw-) 2f%Y .
G0 G-0CF< 53 ‘—mrrseaiaE HL7 OCys <« 0ra¥
ocCg8 SU g5- Y5 OC XS <« OC OV
OC drdvw) Y5 s — gL
O s — o 0dl
OC ¥S °£4 OC /8
1 O y5or ol a7
%o
O 4
o€ %3y o

- —
'

TAG REGISTER (Systems 03.05.20.1)

The Tag Register is a three position trigger register numbered 18, 19, and 20, Itis
fed directly from the Multiplexor Storage Buses and is used to hold the tag portion of an
instruction during the instruction execution. The Tag Registers are used to inform the
system which Index Register (XR) or registers are going to be operated upon. The
outputs of the Tag Register may be used singly or in combination to specify the XR

needed. Index Register tag coding is:

Index Tag Column Index Register Name

18 19 20

0 0 1 A (XR1)

0 1 0 B (XR2)

0 1 1 D (XR3)

1 0 0 C (XR4)

1 0 1 E (XR5)

1 1 0 F XR6)

1 1 1 G XRT7)

The seven index registers use all the combinations of these tag bits for individual
addresses. Therefore, the presence of more than one tag bit does not mean the OR'ing
together of the addressed XR contents.

The 7094, however, does provide compatibility with previous systems having only
3 XR's. The 7094 is normally operating in the three XR mode; but by giving the

~~tion LMTM (-0760---16) the computer is placed in seven XR ‘mode. It also turns
off the Multiple Tag MODE Indicator on the CPU Console. In order to return to normal

3 Index Register mode the instruction EMTM is given.

219.1

220 Floating Point Tally Counter (Systems 02,10.21.1-02. 10.22.1)
The Tally Counter is a three stage counter whose output is ANDed with L time to
direct various phases of Floating Multiply and Divide. For a more detailed description

of the Tally Counter and its uses see Floating Point Section.

220,)

(SX)
AN
<

7094 TIMING
301 Timing Function

All computer functions are directly related to a master computer
clock, This master clock, located in the multiplexor, establishes a basic
rate of performance of two microseconds for each machine cycle,

Machine cycles are determined by gating the output pulses of the
master clock, twelve for each two microseconds, to allow certain distinct
functions to be performed during the cycle. These permissive circuits
are the ;ogic building blocks of the computer, AND and OR circuits and
triggers. By gating the master clock pulses under specific circumstances
and sequences the computer operates in E , I, L or B time, or, the computer
is performing an I, E, L or B cycle.

Computer logic limits performance during any particular cycle
to the following :

1. During an I cycle the computer i%:fil)s"{/é{;/ak%sa reference
to core storage to bring out an instruction.,
2. During an E cycle the computer must be executing
an instruction requiring amwoperand-fuem core storage.fz-a//};w& .
. 3. During an L cycle the computer must be performing
a logic or arithmetic function, not requiring a reference to
core storage.
&. During a B cycle the computer must be accepting or
delivering information to the input-output equipment. |

From these definitions it can be seen the abbreviations refer to computer

activity, thus, I for Instructicn cycle, E for execute cycle, L for Logic

300

cycle, and B for Buffer cycle.

The computer's cyclic sequence is fixed, always beginning with

A
N e rerio

N

’ “an instruction cycle and progressing to an execute)fnr logic'\cycle, determined

by the instruction. The computer will go to B time as the need to use I/O
equipment arises.

Although the sequence is fixed, the number of cycles allowed, exclusive
of instruction, is not. The number of cycles required for each function is
determined by the number of steps to be performed before the answer
is complete. The number of cycles for each instruction can vary from as
many as 19 to as few as one.

A clear and add (CLA) instruction requires two cycles, an I and an E.
During the instruction cycle the computer will locate the instruction in
core storage and bring it into the program register for decoding. At the
end of two microseconds the computer will begin the E cycle, bring the »ope_a.“z"nd
out of core storage and into the accumulator. After the two microseconds of
E time the computer will go back to I time and locate its next instruction
in core storage.

‘302 Master Clock Pulses

The clock pulses used throughout the computer are developed in the
multiplexor. The output of a three megacycle oscillator is cathode-coupled
to the clock pulse-shaping network. All negative signal excursions are lost
because of cathode coupling so the output is a string of positive pulses at
the three megacycle rate as shown in Figure 30l. These pulses are applied
to converter blocks to become set drive pulses and N- and P-level clock
drive pulses. The set pulses ’will be discussed in a later section,

301

\

MI0MIaN 19319Au0) pue ndinQ 1031e[12sQ o194de8aN-¢ °*T0g 2and1g

L] 2]

Le fel 1]
S7TAY w\ys\ﬁ\ 2 v s
)
UQ«\Q NMQ\Q YrXZ) \ﬂ*
oA w\\Q\\ .\&\a,Q o — U

| ¢ _Inmul._ \~ DA 4G 7 29p a0 oM
. [€ 1L 1]

F O X

$IS5/ng >ai4g 1%

sl z1 71 S

[|

_%AM_WJ__ S

[\

The odd and even clock drive pulses are applied to a 12-stage ring
of triggers making up the actual multiplexor clock, Two triggers are
shown in Figure 302, with their inputs and outputs, The clock is started
(trigger 0) by turning on the trigger with a start clock pulse. The AOQ(Dl) *
clock pulse output is obtained by gating the last half of the zero clock
trigger with the negative portion of the even clock drive pulse. Rise of the
AO(D1) pulse turns on clock trigger 1. The Al(Dl) pulse output is obtained
by gating the last half of clock trigger 1 pulse with the negative portion of
\the odd clock drive pulse.

Rise of the Al(Dl) pulse turns on clock trigger 2. Clock trigger 2
produces the A2(Dl) clock pulse and also turns off clock trigger 0, This
sequence continues through clock trigger ll. Rise of the All(Dl) pulse turns
clock trigger O back on &nd the sequence repeats. The following chart shows

the conirols significant to each stage of the ring.

Clock Turned Gated
Tgr on by Turned off by Duration Output Qutput
0 A11{DI1) Clock tgr 2 All(D2) All(D2) A0(D1)
1 AOQ(Dl) Clock tgr 3 A0(D2) A0(D2) Al(Dl)
2 AL(D1) Clock tgr 4 Al(D2) Al(D2) A2(Dl)
3 A2(Dl) Clock tgr 5 A2(D2) A2(D}) A3(Dl)
4 A3(Dl) Clock tgr 6 A3(D2) A3(D2) A4(Dl1)
5 A4(Dl1) Clock tgr 7 A4(D2) A4(D2) A5(Dl)
6 A5(D1) Clock tgr 8 A5(D2) A5(D2) A6(Dl1)
7 Ao(D1) Clock tgr 9 A6(D2) A6(D2) A7(D1)
8 AT7(D1) Clock tgr 10 AT(D2) AT(D2) A8(Dl)
9 AB(DI1) Clock tgr 11 A8(D2) AB(D2) A9(Dl)
10 A9(D1) Clock tgr O A9(D2) A9(D2) Al0(Dl)
1 Al0(D1) Clock tgr 1 Al0(D2) Al0(D2) All(Dl)

Note that the pulse width of each clock trigger is twice that of an
individual clock pulse. This slower switching of the clock triggers provides

increased reliability in clock operati n.

% the D1 in pe 'entheses refe *s to pulse duration in terms of pulse width.

303

QQ.OQQOQCQ”.OQQ.Q‘...'

Systems 08, 00, 40.1

Even (lock Diiye

Alock.
Tir O
AUDL) ~ |-T0 | puyco2 7 Ro(D/)
Start Clock
!)
g I
t | !
| 1
| :
-7TA
Cluck Rese? A1 LDI)
Clock |_A0(03) ‘
Tgr 644 Click Drive A1 CD7)
7 _ :
4 Ay (D7)
(03 RR
rem
C/oué fjk o?

Figure 302, Triggers 0 and 1 of Multiplexor Clock

304

A timing sequence of the clock pulses is shown in Figure 303. These
clock pulses are distributed to the computer and to the data channels., Because
of inherent delays in logic blocks and cable transmission, clock pulses to the
computer arrive about one clock pulse late, For this reason, computer clock
pulses are labeled one pulse higher than those in the multiplexor. Therefore,
an AQ(D1) pulse going to the computer would be labeled Al(Dl). This pulse
leaves the multiplexor at A0 time but by the time it arrives at the computer
the Al pulse is rising in the multiplexor., Al pulses in the computer and in
the multiplexor are now in coincidence, although developed from different
clock triggers, This provides continuity in the timing relationships between
the computer and the multiplexor,

Although the AO(Dl) through All(Dl) are the prime outputs of the
multiplexor clock the D2 pulses are also distributed and used throughout
the computer and the data channel, '

In the computer thses pulses are gated during cyclic operation
and then labeled I6(D1) or E5(Dl), depending on the particular cycle of operation,
Whenever an A pulse is encountered in studying the computer, for example
Ab, it means this pulse is used directly off the clock, independent of the
cycle of operation the computer is in, This pulse will alvﬁ{a/b occur at
6 time and will alwas be available, Later on it will be shown it is p ossible
to force the computer to leave one time for another, as, for example, to go
from the middle of . time, 16, to E time, E7 and continue the cycle in E time,
It is imperative theie be A pulses available for gating or other logic operat.ions

during such transi ‘onal periods,

305

000 o000 o0ocoocoeteosooocooooo0oon

Even Ring Drive
Odd Ring Orlve
Start Clock Pulse

0 Clock Trigger

ApD) Clock Pulse

1 Clock Trigger
A) D} Clock Pulse
2 Clock Trigger

2
A2D) Clock Pulse

"3 Clock Trigger

A30y Ciock Pulse
4 Clock Trigger.
A¢Dy Clock Pulse
5 Clock Trigger

AsD) Clock Pulse

6 Clock Trigger -~ *

’
A40) Clock Pulse
7 Clock Trigger
A70) Clock Pulse

8 Clock Trigger

AgD) Clock Pulse
9 Clock Trigger - :

AgD, Clock Pulse

40 Clock Trigger
A10D; Clock Puise
1Y Clock Trigger

A1107 Clock Pulse

[RYS
o

n mn
e Tl
inl n I
L = o L
L L [(I
al |y M
= I 1
M il
o L
Iy M r
Sy L] g
1= n
- led T d
M M

Figure 303 xMRWKKIEX MUTIPLEXOR CLOCK

.Q‘.C...OC,Q'..C.QQOC..C

306

303 Computer Set Pulses

Computer set pulses (CP set pulses), developed off themaster oscillator,
are used in the computer to set triggers and latches; as supervisary inputs to
third level. logic circuits and to ¢ontrol much of the gating and shifting within
the computer. Width and timing of the CP set pubse, as related to the clock
pulses, are extremely important to successful machine eration. Both of
these factc;rs are variable and will be set for each installation. Therefore,
the timing discussion presented here can only be approximate.

pevelopment of the CP setpulses is shown in Figure 304. The numerals
refer to waveforms on Figure 305, indicating this waveform will be found
at the numbered location on the functional drawing. Figure 305 also shows
how the final CP set pulse is derived by inverting and delaying the clock
pulses and then comparing them through AND circuits, as noted on Figure 304.
The result is a string of positive pulses, occurring towards the ené of the
clock pulse and completely bracketed by it. At this point the CP set pulse:
is about 80 nanoseconds wide. Figures 2 and 2 show how the CP set pulse
is applied to one stageof the storage register and its timing relationship

to the read-in clock pulse (inforanation).

T R R R R E R I Y

sosmnd 195 dD jo judswdoraaad ‘pog 2andrg , N

<7 W\ e/
Y24
+4°S d2 o
7 4 Z7l
&
al 1 71 S O
2 Ka P 0
4pim 2spng s=+70
SERRELI
I‘—I‘MI.N%M'_.I - . \W D M. ,A—Q W 1d .Ca\Q 2914 F2S .
2]q 01 49()
Nu\:\,Q 25|04 RS o £954dP NQ:P:Q_NQ. 3_:3\\\ 1

cso0ooo0eceoceeeo0000000foeo

;0173

/0

/]

/|

/3.

—————d

u L_Q“—"L___cp Se7 pll/.s'e_s

Figure 305. Developinent of CP Set Pulses from Clock
Drive Pulses -- Shc'vn Idealized

3o

ecoBocccccoc®ccccccocfoce

so.‘otoocotmaqoooooooc

304 Timing Cycles
The four cycles of operation used by the computer indlucde:

a. Instruction (I)

b. Execution (E)
> c. Logic (L)

d. Buffer (B)

Instruction Cycle -- during an I cycle the computer perfarms the following:
a. Locates and obtains the instruction from core storage.
b. Establishes the efecution control circuits for the instructim.

c. Locatesy the operand, if any, in core starage as specified
by the instruction's address field.

Execution Cycle -- during an E cycle the computer wilt makesreference

to core storage under the following conditions :
a. All instructions requiring an operand must have an E cycle
following the I cycle.
b. Indirect addressing of an instruction always requires an
extra E cycle. An instruction that would normally go from 1
to E for execution will go to I, E (for IA), and again to E if

ic it is indirectly addressed.
c. Instructions with coding from 0200 to 0667 have an E cycle
immediately following the I cycle. The remaining instructions
usually go from I to L.

Logic Cycle -- an L cycle does not require a reference to core storage. Many

310

-

instructions use both E and L cycles, when information is required from

core storage and the instruction cannot be completed xmmemuuopals during an

E cycle. Those instructions not requiring a reference to core storage use
only I or I and L cycles.

Buffer Cycle -- the computer goes to B time whenever it is necessary for

the data channels to get information from or put information into core storage.
Such information may consist of data or data channel commands. Because of
the nature of input-output devices, all demands for a B cycle must take pre-
cedenc? over an instruction being performed in the computer. Otherwise,
information coming from or going to a data channel might not be transmitted
in time. A request for B time is honored during the’cyc‘le in which it is received.
If the following cycle is an L cycle, the computer will share B and L time in
simultaneous operation. If the following cycle is an I or E cycle, computer
operation is interrupted and B time bupplied to the channel requesting it.

Data processing always begins with an I cycle, thé computer must have
an instruction to work with, The nat;xre of the instruction will determine sub-
sequent operating cycles, i.e,, whether they are E or L and how many cycles
are necessary to complete the operation. When an operation has been completed,
the computer starts again with an I cycle. B cycle demands are honored at
any time,

The sequence of cycles is determined by logical gating circuits. For
example, when the master I time trigger is on,the master clock pulses are
gated as I pulses, providing there is not a B cycle demand, and the normal
insfruction cycle sequetce takes place. Near the end of I time an E cycle
request may be initiated. Should this oocur,] time will fall at I11 and E time

will start at E 11 and continue for 12 pulses.

31

o0 0 o000 00 000000000 OC0OC 0ec0e

0 90000000 000060006000 00909

Master I Time

Note : In this and following discussions it is important to bear in mind that

although a trigger amm may be on,the output m&y not be gated to control

the machine cycle,
Figure 306 illustrates the master I time trigger. Notice that the
trigger is turned on when two conditions exist :
a. There is a ''go to I time' signal.
b. Itis All time.
The trigger called out by the double asterisk shows an end operation
trigger is necessaryto get the 'go to I time' signal. As shown in Figure 307,

the end operation trigger is turned on at Al0 when the computer has completed

a full instruction. In other words, if the computer is completing an instruction

during an E cycle, the end operation trigger will be turned on at E10. Notice
the end operation trigger can be turned on during I, E or L time.

Referring back to Figure 306, notice that the AND circuit controlling
the output of the master I time trigger can be disabled at any time bya B
cycle interrupt (demand).

Assume the computer is completing an instruction and the end operation
trigger is turned on at 10 time. This will bring up the '"go to I time" signal
(Figure 306) and on the next clock pulse (All) the master I time trigger
will be turned on. The following sequence of events takes place during I
time ¢ refer to Figure 308) :

1. The program counter was stepped during the preceding
instruction cycle and at AlO this new instruction address was sent

to the memory address register (MAR). By I -6 the instruction has

312

\

»

/}.70:7‘84 z 'ﬁme (f/;/(ms 47.00'/f: /)

* N ~

tmsl T time 6‘0/,
- /)):7'[77'me g"/'y
'N-f[ime eak/'i_

= 78 v
— &“‘z ‘h‘mczgy
ek L
Go To _.;C Trme
Alpr +A ' '
s ra
"T LZad
_(,un\t [‘ fA
L on SLA
R
R
£ #
Notl Go o T Time fA A
7' T 7_.’ - >
* .
NPT time borly[nr v \eL LT E time Aata
* *

gg 54 ﬁl‘ﬂ”

J — reL rime
‘c“—@“@‘——f-rrdm

o toZ Time

& |

'”n 4‘”’ ”L

—

\

-

Figure 306. Master I Tiit e Trigger

313

&+
- MsT L Frme C’nr/\L
r m.‘rrfl»f"‘)/y

» m‘ré :r‘m(‘!x ‘24&2
M5t Lfime Chlnk!

oo.ooco‘\oioamooccaoaoco

End Olocra/;:j'ion —’—"—"33‘“ (Jyn‘(m; 08,06.07.l>
.f—

I

Time
Z T'me Late —
X E£nd _Op

I et e o7 | +A D

Ao LI

€E7ime

Elmmelatel pp

E End op &

End Op Ind

+T

L77me

L Timelate | ' Eud Op Jar On

Nelaropr pird |+A —
Yobl_plLe 0 . = ;/w Ter OF,

KY¥s End 0’p

V.

I Time Late
e O/

Ao B AcBs Ay Ac s Ar As’ﬂ; B i Ro A1 s Bs By As P ARy #s o fou

Ao D¢

314
:/ X ?‘\/\ﬁ-‘- 307 é‘/vs J D Ja‘v._o,.:/,’..c:-..& 7.1\,& 9 %c---\"

L E EE o s e

INSTRUCTION CYCLE

0000000.000‘0'0000000'00.

¢ . Nove §
Wos It @ wocossful
XFER, XEC, or
l No Skip on POO M4
No Yu
Gorol [Note 1
Time
AlQ - 19 PC = MAR AR == MAR
{ A10 Dely'd A1D Dely'd -
. 03.08,15.0 03.08.13.0
MST | Tims
All - AN}
,00.18.1
No Yes
MAR 1 7=
Set Lood 1Bk
To Al Al
03.08.15.1
{

Get Instruction

from Memery
e
S——— —
tar 5C imTogteo] [saeteg oo v o8 PC = XAD
ond Prog Reg| {0 1o Rag 17 1) 19 @1 Hot 1 to 17
16 ©1)) 8 O © 17 02)

No Yes SR == AR
7 1)

SB(S3-11) to S8 6,12 e
PR (51-9) P (5,8,9)
i6 (02) 16 02)

1]

No / Op Code Yos
200 - 677
vo e Net L Time Call
08.00,16.1 08.00,16. 1 XR & XAD XR & XAD
.00, 6. (Comp) 19 (D2) All Ones 19 (D2

l ' 03.06.07.) 03.04,07,}
Go 1o L Time Go to E Time ’ 1 -
19 [©3) 19 (A7)
08.00.12.1 08.00.12.1 1 & XAD 17

1? ©2)
; 03.06.07.}
No A Yo 1A You No

___/ Crele ni'ggl:‘b Ye /. Mo
l \=/

! A <00

19 D2)
TmOngor | Y® Ore No Yos 03.06.06.1
A0 (D) Cycle brun

J— é i 3

Cycle brwn

MST L Time MST E Time XAD = SC XAD -
Tor (M) Tor (Al1) 110 02) o m)_“
08.%0.20.1 08.00.19.1 03.06.11.1 03.06.08.1
No Yes
{iorom) @
Next C:cle

214/ | . ' 7l

Q.'.OQ.OQOMQQ.QOQCQO'

been located and brought to the output of the multiplexor (multiplexor
storage bus input on the sys@em flow diagram).

o 2. Also at 16(D2) the information in bits S,1-11 is gated to the
program register for decoding., Decoding will bring up the necessary
control lines to perform the function specified. These control lines will
remain up until the next instruction is brought in and decoded.

3. At I7(Dl) the incoming information is gated from the storage
bus input to the storage bus and into the storage register, Bits 21-35
‘continue through the storage register to the address register. These
bits contain the address of the operand needed to complete the instruction.

4. At I9(D2) the contents of the address register have been gated
through the index adders for address modification, if any is specified. By
the end of this two-pulse period the modified address is in the address
register, ready to be gated to the multiplexor address switch., When this
address is received in core storage the information at the address will
be brought to the computer.

5. By I9 the information in the program register has been decoded
and the appropriate control lines brought up to perform the specified
function. The computer, therefore, knows whether an E o L cycle
is needed to complete the instruction or whether this is a one cycle
instruction and I time will be called for again.

6. AtI9an I, L or E time call is initiated which determines the
next machine cycle. Figure 309 shows the conditions necessary to -

initiate E and L time calls. Figure 210 shows how these set the ''go

316

®© 00O 000000 000 00060000 090 00

, .
oo~

. ...|:/.

770 7w 7 prT e bos %:\W

\\9‘& Iy y 74

€04
v 4 4

\\QM o) T AN NS

4

» e sAN?

LYY dAV s D

No «byie) vl

£ dJ
T &S
194

o+

/™2 2™ U 3 S

v+

PEVY sWoT F

T 4% Y0 puy

€o &t

| ol
I 24 PWIET

(721 o040 surafshg v

———J

F97 S

mf

%\\h \ﬁ‘kdi

I/ > 7 rev 3

.Q\QU iy .N *:

AV

(o) |.N [2] R.t#.N
JIo 57077

'3/'

0 g OO OO O 00000000000 g o9

41001

End 0aTer 6 FF|
A

L timelate |
Nol b Trmp (alh

G|° TO I E a wnd L_ f'.'mc CS)S*’TMQ 09.00. I:,I)

ZAG? Tor oy + A

E Time (afl

anvel fp to € +1pmae

Converl Adr Cntl

End 0pT3r 1FFY
rA

S Goto B

NoT 3 7:'-£ [

+A

BTl me

rareed ds € ‘

Ch Bnu

roceed tof
Ch 8ak

+0

+A

+0

+£! Ae #OI'E

Time

+0

ll‘

A Not Go fod

Jor 50 e L fime

ETimelate
AL 03 |
End Op T, r OFF

Il(.r/fz, OFF|

f’ or

+A

Zr 74/,4,(,. S/

AN GoTs b Tione

e te L fime

Alinvg Y-y

-T0
+0 |
: !
.
{ '
) 1
‘ﬂd ORTar ON -TA
E7 01
{
LTtme Cal/
+0
Ead Op Tgron |
+7T0
: 0
))
! !
! |
|
+T4

CJ 2 /‘0

T

Z .

to I, E and L time" circuits to bring up control lines for the next mime cycle.
To summarize -- the following events occurred priar to and during the
instruction cycle just described :

1. End operation trigger on at previous AlO.

77 2. From All to I5 the new instruction is being located in
storage.

3. Master I time trigger turned on at All,

4. At 16 the new instruction is brought to the multiplexor
sgorage bus input. Also at 16(D2), bitsS, 1-1l of the new instruction
are gated to the program register for decoding.

5. At I7(Dl) the incoming information is gated intothe storage
register. Bits 21-35 continue through the storage register to the
address register.

6. At I9(D2) the contents of the address register have been
gated through the index adders for address modification and back
to the address register.

7. At I9 ang I, E or L time call is initiated, as determined
by computer needs for the following cycle.

8. At I10 the end operation trigger is turned on @f thi%is a
one cycle instruction),

9. At Ill the master I time t1 'gger is turned off and "
the next machine cycle is started.

..mmaInstruction cycle timing is more comrplex than has just been

described. The 7094 has a lookahead capability, enabling it to look at two

319

N PN IR X X X X xxxrx e

0 g OO 00000 09000000 00g oo

u;/mc/:ln; at once, one in the storage register and the other in the instruction backup

register. The computer will alw&@’s bring two instructions from core storage,
one at the even-numbered address and the other at the odd address. Under
certain conditions these two instructions can be procwss®d under overlap
conditions, reducing the number of machine cycles required. In general,

this feature results in a savings of . 4 of a cycle per instruction. Lookahead

is presented later inlthis section.

Master E Time

’Fhe computer goes to E time when a reference to core storage is
needed. For example, the instruction clear and add (CLA), requires two
cycles of operation, an I and an E. At the completion of the I cycle the
instruction has been decoded and the computer has the core storage address
of the operand.

To complete the instruction it is necessary to locate and bring the
operand out of core storage, to the storage bus, into the storage register,
through the adders and finally, into tixe accumulator. When the operand is
in the accumulators the instruction cycle for CLA is complete.

The first step in this sequence is to set the master E time trigger,
Figure 3ll. This was begun at I9 by an E time call. Decoding the inforr;mation
in the gy program register determined the need for an E cycle. The E time
call signal, applied to the ''go to I, E or L time' control circuits (Figure3l0)
brings up the go to E time control signal line. This is one of the three inputs
necesaary, as shown in Figure 311, to set the Master E time trigger. The
othe-r two conditions are:

1. Not go g to I time.

300

/77“/4’ é‘ 71‘)”6 (Srt)‘ﬂ"l'éﬁoﬁ.(%/)
4 f
Lot Ge AT lime ¢
Lo te F time | ¢ A Dot OR
Aupl T = A/ T& L, 2 ar
* ror é‘fp'bnl
LA S § TIMQ‘ PwJ és'ly
R ’A DT € fimelh &kt
- R € time
Ml & bime CA Bnk 2
&l[z: £ tr’"(fk:‘x
1Gote £orge |*A LeLE bome farly Foame 3
e L *ime ¢
Zaterrspr
Lol T Tars on Clegr |

/7/“‘

' .3//.%4,41:» é ‘TM

N
. N

o~

oo!ocooo'ooo’ooccocdo.oo

S0 gooocoooogppo0000O0O0O0OgQgOEe

2. All(D1)

""Not go to I time'' is determined by instruction decoding and the
three input condx@tions are met when the All{Dl) clock pulse rises. This
sets the fmaster E time trigger and the computer will operate in E time
for at least one cycle.

As occurre;d during the I cycle, the computer uses the time from EIll
to E6 to locate the CLA operand in core storage amd bring it to the multiplexor
storage bus input,

At E6(D2) the data word of the ywmammadx instruction (operand) is gated-
through the storage bus to the storage register. At the end of E8 the information
is in the storage register.

At E9 action for the next cycle is initiated. This, again, may be an
I, E or L cycle as determined by computer needs. For the CLA example, the
next cycle would be an I cycle.

At ElO the end operation trigger is turned on (figure 307) and at Ell
the computer willp go to the next cycle. It is during this next cycle that the
computer completes slak the action begun by the E cycle. Information in the
storage register is taken throizgh the adders into the accumulator and the
instruction CLA is completed.

Master L Time

L cycles are used by the computer during arithmetic and logic
operations. For example, normalizing during a floating add instruction,
i.e., shifting the AC left until position 9 contains a 1, is done during L
time., Any computer function in which the contents »f a register are
manipulated, without a reference to core storage, i done in L time.

Figure 309 shows the vonditions necessary t. generate an L time

322 - !

.'..Q"OQC“Q.Q.‘..‘......

Sers f 7 ao45OY) s 4ably

Cyosgyy) oy 7 TNt

1YY T T NE
\.V\\.w Rl Y [k 'V~
RT3 0L TR

L\.WIvt-\. \ N

5wy 7 NN

v+

*w)) W -\\i.k Zy 1Yy
l‘nh ‘H~N ¥ Nﬁls

~—

322 /7

e+

Y+ Wi T-T % %5

\\~QN ‘oo ‘g0 »\&\%\h\.m.w

+
PYIT ol v I3 N- 0L

\Q.\\L\x 77 L\&g N

Pty |N %u\h\g

10 1l
Quusf 7 e+ vy

oW ok 99 I°N

e gooocoocoocoocogppo000000QgOES

call. Figure 310 shows how L time call results ina "go to L time '' signal,
This signal is one of the three requisites to turn on the master L time trigger,
Figure 312, The other two requisites are not go to I time and All(Dl).

Once in L time, the computer will continue in L time until an internal
request is generated to change to and I or E cycle. Generation of such a
request is usually contingent upon the completion of an arithmetic or logic
function.

For example, the shift counter is set, during a gioetx floating add
instruction, to the number of shifts necesaary to equalize the characteristics
of the numbers being added. The shift counter is sensed after each shift (one
for each clock pulse) to see if it is equal to 1 or 0. When either condition
exists, and at L9, the end operation trigger is set and the instruction
completed.

Other conditions for L time are given in thés manual in the sections

on arithmetic and logic operations.

Master B Time

During a B cycle a data channel is either taking information from,
or putting information into a core storage location. Data channel demands
must be recognized immediately by the computer because o the high speed
I/O devices used with the 7094, Should a data channel encainter excessive
delay, data might be lost.

A request for B time is recognized by granting a B cycle at the end -
of the machine cycle in which the request occurred. An exception to this
occurs, as shown in Figure 31;, when a B cycle der-and is made at 9 time

323 j

S ashen B Timee [S/./rms o9, 00.2/./>

+ N
+A
ATD 3
J&dzﬂtmn;#
n Shanne Zap +A M8 Time I_hr/(—-/v)
/ s L7 B ipme (+HN)
W o B TZme (rN)
don _ L2ime (¢ P)
S A
- i m0 X J‘:‘:“Dr’ R el B Time (AN
R

L2237 8 I7 e CAN)

 MMinve on Brrmel~N)
LB Toome Lp)

NOTE : A B cycle demand and A9 time, whin no channel trap exists, 1s q priorlty

condition and will Initlate B time without on ¢nd operation trigger.

Ry fe #1 ﬂf_/?j Rio Bo Ho By He 15 11 ﬂ:'y”‘ R 41 Be Mo Au

_—

-

eco00oo0oeccecececcccccloeco

F;‘jarc_' S/ 3
IR3 K

0 g®O® 00000 0g0 0000000 g o

and the computer is not processing a channel trap. Note, also, that B
time cannot be initiated when a channel trap exists.

If the cycle following the B cycle demand is to be an E or I cycle,
computer operation will be interrupted until such time as no more B cycles
are required. This is necessary because only one computer component can
use core storage at any given time. Notice that even thaigh the Master I
time trigger is on (Figure 306) or the master E time trigger is on (Figure 311)
aB cyc}e interrupt can block the outputs.

If the cycle following a B cycle demand is an L cycle, howe.ver.
both B and L times occur simultaneously since the computer does not
make reference to core storage during L cycles.

Fiigure 314 shows the conditions necessary to initiated a B cycle
interrupt. This is the signal referred to above as contrdling the mgx outputs

of the master I and E time triggers.

~

323B

EYNEREEEEEEXEEESNENNNXNNNE NN

.

A e =240 L\

feraaryug suaif g o1 . ST 5 _pel
v+ v- 1011 L°N

PWI NS N+

J23C

Jlrrerpuy 27X NN oL+

Vo <4 745 Tl

v+

Vo xﬂk\Q\t.w

Qg 94 °H

x\.M\.QQ 'R m&\»\w\Q \0\§\\\\A\IN| b\U\U AQ

0 goeccsccssegeosssccogoe

7094 Lookahead Capability

The 7094 always brings two instructions out of core storage, the
even-numbered instruction called for by the program counter, and the next
highest odd-numbered instruction. The even-numbered instruction is gated
to the storage register and the odd-numbered instruction is held in the
instruction back—u.p register (IBR).

instruction

While in the IBR the odd-numbered/is partially decoded to determine
if itmeets certain criteria of overlap operation. If the logic circuits determine
overlap'is possible the computer performs a store lookahead (SLA), transfer
lookahead (TLA) or data lookahead (DLA). If the instruction in the IBR cannot
be overlapped, it is ignored and will be brought into the computer through the
storage register on the next instruction cycle.

Because the IBR instruction is partially wsexze decoded during the
even-numbered instruction cycle sequence the computer can act upon it
eérlier than usual and substantially reduce the number d cycles required
for two instructions.

Suppose the instruction clear and add (CLA) were in storage
location 100 and the instruction Add (ADD) were in location 101, Without
lookahead the computer would bring in CLA, perform the instruction, and

then bring in ADD and perform the instruction. This would require a total

of four cycles, anft I and E cycle for each instruction.

With lookahead, the full 72 bits of the two instructians are read out
of core storage, CLA going to the storage regisier and ADD to the IBR.

324

the ADD instruction is decoded and, because the instruction calls for data
from core storage the computer will enter the data lookahead mode. Ag soon
as the CLA instruction is complete the computer will switch to ADD and
bring the ADD operand out of storage. This overlapping reduces the number

of cycles required for the two operations from four to three.

Notice that the total elapsed time for the two instructims is three
cycles. In the middle of the second I time, at 16, the computer was forced
to go to E time. This was made possible by decoding the ADD instruction
while it was in the IBR, a sequence normally rgggiring a full I cycle(this
includes the time necessary to bring the instruction ait of storage).

Timing rules for these instruction overlaps are as follows:

1. Data lookahead -- if the next instruétion in the even
location has a cycle simmme time of two or more cycles(excluding
0bxx store type codes) and is indexable; and the instruction in
the next higher (odd) location requires a data fetch (not a store
operation) from core storage, the execution time of this next

instruction is reduced by one cycle,

2. Store lookahead -- if the instructim in the even location

o0 000 0% 0000000 0 oo

has an octal code of 06ux (store type), the execution time of the next
instruction is reduced 3y one cycle. If the instruction following
an 06xx octal code inst:ruction is a one cycle instruction it is

axcdx executed in overlipped operation and requires no cycle time

b3
('

324

A AN NN NN "IN N R NN NNY R

3. Transfer lookahead -- if the instruction in the even
location has an octal code of 02xx, 03xx, 04xx or 05xx (except
052x and 053x) and the next instruction is TRA, TTR, TXI,
TIX, TNX, TXH, TXIr or TSX; this instruction is executed
in overlapped operation and requires no cycle time.

There are some exceptions to the above rules because of logical and
compatibility reasons. For example, if the address of an 0bxx instruction
located at address 2n is 2n+1, no overlap is possible. If a multiple tapged
index mo'dification instruction is in an odd location, no overlap occurs.

Overlap is not effective for rules 1 and 3 if the instruction in the even location
is DVH, XEC, FDH, VDH, HPR, LCH, is non-indexable, ar is a double
precision floating point instruction, Research on instruction mixes indicates
that out of 100 instructions executed, between 40 and" 45 instruction fetches

are eliminated if the above rules are ggrapplied. A rule of thumb is to reduce

e

cycle time for all instructions executed by 0.4 cycles (0.8 microseconds).

A more complete discussion of lookahead, complete with flow and

. Overla/.
sequence charts, is given in this manual in the section on Instructiong=nd—5Bsr

—Eiow

326

#o/l

DOGH BRITHMETIC

o/
BINARY ARITIIMETIC

Dinary arithmetic includes addition, subtraction, multiplication and division. Each is

discusscd in detall {n the following paragraphs,

4o/, /
v+t ADDITION

Binary addition ts simplc, Its rules urc as follows:

0+0=0
1+0=1
0+1=1

p- 1=0+1tocarry
Theso rules operate in all cases of nddition and apply to bpt.h addition of intogers and
of fractions. Binary numbers aro added from right to left, and the carry is added to
the adjacent bit on the lcft. The following ox:aumplos illustrato the rules for binary

addition. Noto that the carry is placed in tho column, to which it will be added, in

parcnthesos,
[| (11 (1) "
0 1 10 11 100 101
+ 1 | | + 1 (| + 1
1 10 11 100 101 110

The techalcal terms In addition are defined as the augend, addend, and the sum.
Tho augend s the term that is to he increasced; the addend is the term,to e added to
the augend; the sum is the result of the operation. TFor example:

101 Augend
+ 011 Addend
1000 Sum

In adding more than one number, the addition of the first sct of numbers is performod

and, to the sum, s added the thipd numbe:, To the sum of the succceding additions,

add the next number until all the numbers iave been totaled, For cxample, add:

al)

cooDooceocecoocoelosnocoocoocsococso oo

a. 011
111
+ 110

Addition of the first
sct of numbors
First Sum

Addition of the third
number

Final Sum

b, 1101
1001

0010

+ 13111

Addition of the first
sct of numbors

First Sum

Addition of the third
number

Sccond Sum

Addition of the fourth
numbor

Final Sum

1101
+1001
10110

+0010
11000

+1111

100111

© O OO OO OO0 000000000 g0

Binary fractions are added {n accordance with the rule that governs whole numbers.
The binary point is fixed as in the decimal system. The carry from the addition of the
binary fractions in the first position to thc right of the binary point is an integer. For

example, in addition of the following fractions:

8., Decimal Binary
1/8 . 001
3/8 __.011
4/8 or .5 . 100
b. 4/3 .10
6/8 .11
10/8 or 1,25 1.01
c. 53/8 101,011
67/8 110,111

12 2/8 or 12,25 1100.010

<o/ 2

“of. L
£4+2 SUDBTRACTION

The rules for binary subtraction are as follows:

o
0-0=0 Read ar et zer

0-1=1 (borrow 1 and make 0 = 10)
1-0=1
1-1=0

Tho technical definitions of the terms used in subtraction are minuend, subtrahend

[
and differcnce. The minuend is the number to be decrensed; the subtrahend is the
quantity of the decrease; the differcence is tho result of tho operation., Thus:

0110 Minuend

100 Subtrahend
010 Difference

The similarity which exists between decimal and binary arithmetic whon a carry
is Involved 18 analogous to the similarity which exists when a borrow is involved. Whon
subtracting a 1 from a 0, a 1 must be borrowed from the next higher order, diminishing

that order by 1,

Tho following examples llustrate tho rules for binary subtraction and tho method

of borrowing from the next higher ordor.

1101 1110 1100
- 0100 -.0101 -1001
1001 1001 0011

In tho first example, tho subtraction of 0 from 1, 0 from 0, and 1 from 1 produces
tho difforence. In the sccond example, a 1 must be borrowed from the second ordor
whon attempting to subtract the 1 of the first ordor from 0. The 1 in the sccond order
then diminishes to 0, In the third example, a slightly different borrow situation arises.
The 1 to be borrowed must como from the third orler of the minuond, That 1 then

diminishes to 0. The 1 of the first order of tho mi- uend can then be borrowed from

“ol,3 : "

A EEEEEEEREE X EEXEXEXX KX

©0goo000OOOORLOIEOGOOIOGOOIONQGEOO

the 10 which appears in the second order. Borrowing the 1 from 10 lcaves a 1 in the
sccond order of the minuend. Applying the rules of binary subtraction then produccs

the difference shown.

«ol.2.)
218+t Complcment Method

Tho preceding discuésion delincated the methods of dircct subtraction. The complement
method of subtraction is a‘mcnns of subtracting by addition. Design requirements of a
processing unit do not allow for borrowing, so the complement method of subtraction
fits in with processing unit design and capabilities.

A disadvantage of dircct binary subtraction is that the direct subtraction of a number
from a smaller number yiclds an incorrect result unless the sﬁbtraction is done by sub-

tracting the smaller from the largor and then changing the sign of the difference. For

examplo:
5/16 0.0101
- 9/16 - 0.1001
- 4/16 ¢

The difﬂculty encountcred with negative results and the problem of providing for
bc;rro“dng in circuit dosign are climinated by correcting the subtraction to an addition
of negative numbers by means of the complement process.

Tho comploment system of subtraction i8 possible because it is possible to liimit the
number of significant digits to be used in any one problem or machine. The problew is
then said to have a modulus, which {s the count of the maximum number of numbers i:
would be possible to represcnt in this problem. Tor instance, supposc that a binary
machine has facilities for handling 4 places. The machine could represent 16 differnt

numbers {rom 0 to 1111, Such a machine 1as a modulus of 16 and is said to perform

modulo 16 arithmetic.

The significance of the modulus of the machine is that each time an addition results

. oY
in a number cqual to/i grcater than the modulus of the machine, an integral multiple of

the modulus {8 lost. An example of this action in everyday life is given by the automobile

specdometer., When it reaches 100, 000 miles, it resets to zero and starts over. The
specdometer has lost 100, 000 by resctting to zero. This property of machino-counting
methods 18 important in the use of complements for subtraction by addition,
The complement method of subtract may be derived from the following identity:
P-M+(M-N)=P-N

P = Minuend

N = Subtrahend

M = Modulus of the machine

P - N = Difference sought

To derive the complement systcm of subtraction, let (M - N) equal a number called the
complement of N, Let C stand for this complement so M ~ N = C, Now substitute C In
tho identity:

P-M+C=P-N
or (P+C)-M=P-N

I[M {8 moved o the other side of the identity, it becomes:
P+C=M+(P-N)

It s now evident that the minuend plus the complement of the subtrahend is equal to the
difference of tho minuend and subtrahend plus the modulus. It should now be recalled
that when two numbers are added to obtain a sum greater than the modulus, the modulus
is lost, Therefore, P+ C = P - N in any system with a fixed modulus, provided only
that the sum P + C {8 greater than the modulus of the number system used,

The abovo {s a derivation of what, in binary arithmetle, i3 called the 2's comple-

ment systom, A similar derivaton of a 1's complement system may be derived using

(M = 1) in place of M. In this case, the final equation is P - C;-1=P-N, which

Yol S

-
-

{

TR EXEEREEEEEEL XXX

0 g OO OO O OO0 0g0 0000 00 0 g o9

implies that the difference sought will be found by adding 1to P+ C;. Note thatC, is

equal, in this case, to (M - 1) - N,

&G6r.2.2
G138 1's Complement

Every processing unit has a modulus which is one greater than the largest mgnber the
processing unit can register. For example, a 68 place binary counter can express all
the numbers from 0 to 111111, The modulus of such a counter is 1 000 000,

To obtain the i's complement of a number, it was shown in the derivation above that
the number must be subtracted from (M - 1), Therefore, to obtain thé 1's complement
of a number in a 6~-place machine, the number is subtracted {roxp (1000 000 - 1); that
is, from 111 111. As an example, find the 1's complement of the binary numbers
101 001 and 001 10]:

111 111 Modulus - 1
101 001 Number
010 110 1's complement of number

111 111 Modulus - 1
001 101 Number
110 010 1's complement of number

A close examination of the numbers and their 1's complements shows that the 1's
complement in binary arithmetic 18 nothing more than the original number with its bits
reversed., That is, the original number's 0's are made 1's and the original number's
1's are made 0's. The way to get the 1's complement, then, is by inspection; just
exchange 0's for 1's and 1's for 0's. For example:

100 101 = Number
011 010 = 1's complement

To perform subtraction by the 1's complement method, proceed as follows:

1. Find the complement of the subtrahend.

Holt b

2. Add the complement o the munuend,

3. Perform "cnd-around carry” if there is a carry out of the highest position of
the difference (explained below).
Tho reault Is the diffcrence in comiplement form f it 1s nogntive and in true form if it
18 positive.

Thore aro four possibilitics, ns shown by the examples below, All except tho last

arc treated exactly tho same. The lrat requires the extra step of end-nround carry,

which {8 a carry from the highest order around to the lowost ordor. This carry is
roquired beoauso of tho cyclicnl nature of the number system. The only time {t is
requirod 18 when the minuend I8 larger than the subtrahend, that is, when the answer
will como out a truc positive answer, TFortunately, whcnavorvit is required, there is

a carry from the left~most position, which serves as a rominder.

Examples Direct Subtract Complemont Subtract
Minuend <C Subtrahend + 011 011 Minuend 011 011 Minuend
- 101 010 Subtrahend 010 101 Comploment
- 001 111 Diffcronce 110 000 Complcmont of
Dif(eronce
Minuend = Subtrahend + 011 011 Minuend 011 011 Minuend
T =011011 Subtrahend 100 100 Complement
000 000 Diflcrenco 111 111 Complement of
Difforence
- Minucnd > - Subtrahend - 011011 Minuend 100 100 Minucnd Complement
- 010 011 Subtrahend 010 011 Subtrahend
- 001 000 Differcnco 110 111 Complement of
Difforence
Minuend > Subtrahend 011 011 Minuend 011 011 Minuwond
=010 101 Subtrahend 101 010 Complemont
+ 000 110 T-flerence 000 101 Differenco - 1
with a1l ond carry - —.. ..»1

000 110 True Difforence

40/, 7

o'}é.occooooo'oo.ooooc.co

©0 300000000000 00000¢g00

vor.2.3
2125 2's Complement

In the dorivation of the complement system, {t was shown that a 2's complement of &
number ts equal to the modulus minus the number, (M - N). Therefore, to obtain a

2's complomont in a 6-place machine, thic number is subtracted from the modulns,

. 1000 000. As an example, find the 2's complement of the numbers 101 001 and

001 101:
1 000 000 = Modulus 1009 000 = Moduwlus
101 001 = Number 001101 = Number
010 111 = 2's Complement 110 011 = 2's Complement

An oxamination of the numbers and thcir complements shows that the 2's complement
of a number 18 the same as the 1's complement with a 1 added to {t. The 2's com=~
plement is thereforc formed by obtaining the 1's complement and adding 1 to it. .For
oxample, to form the 2's complement of 001 101:

001 101 = Numbor

110 010 = 1's Complement

110 010 = 1's Complement
+ 1

110 011+ ¥ Lopriims /t
To perform subtraction by the 2's comploment method:
1. Tind the 2's complement of the subtrahend,

2. Add this complement to the minuend,

The result 18 the differcnce in conplement form {f it 18 nogative and in true form if it

is positive. In the 2's complement system, there is no need to end-around carry.

? ‘/. 2 ‘{
Sl Signed Numbers

llow can negative nwmbers in complement form be distinguished from positive numbeors

in true form. In this regard, also, hinary numbers offor an advantage with respoect to

<o/, 8

representation, The sign of a x.uunbm‘ is bloovy innature; that is, a nunberis either
positive or nzpative. Thus, a bil vepresenting the sigm can be used {n addition to the
hits representing magnitude. A 0 in the sign bit position can be interpreted to mean that
the number {5 positive. A 1in the sign bit position can be tuterpreted to mean that the
number {8 negative. Dy treating the sigms sceparately from tho magnitudes ty each
operation, the rcsulp sign can be predicted. Therefore, the rules of algebra apply m

determining the result sipgn,

Yol 7
#++3 MULTIPLICATION

The rules for binary mutiplication are similar to those of decimal mulliplication. The

rules for multiplyving two single digits ace the same in both Sysl,cms. These rulos are:

Ox0 -0
O0x1=0
1x0:=0
1x1 1

The general procedure when multipdyvings two multiple dipit binary numbors ts the same
as that in declmal arfthmetic, That i, the multiplicand s n'.ul.tipliod by a digit of the
multplier, and the partial product obtained js aced so that the lcast significant digit
s under the muddplier digit, When all the pactial products have heen found, they aro
added together to find the final product, The only difference between decimal and
hinary multiplication, therefore, s in the stwaming of the partial products, In binary,
the binary addition table is used while in decimal, the decimal table 18 wsad,

As can be scen from the following examples, the method of obtalning partial products

and then adding them to obtain the tina! product is identical to that of decimal arithmete,

“ o, 9

o0 8 00000 000% 0000000 oo

00 gooecoo00e00000000g00

Maltiplicand 1010 10.11 : 1111
Multiptier 1101 100.1 1111
First Pariial Product 1010 1 011 1111
Second Partial Product 0000 00 00 1111
Thivrd Partlal Product 1010 000 0 1111
Fourth Partial Product 1010 1011 1111
Final Product 10000010 1100, 011 11100001

Note the placement of the binary point in the second examplo, Tho same rules hold
for its placoment as hold for placement of the decimal point in declinal arithmotic,

The third example also illustrates an intevesting point. This 18 the multiplication
of tho two largest possible 4-bi; numbers, The product i8 8 bits long. In other words
tho largest product that can result from the multiplication of two numbers will be no
longer th;m the sum of the number of bits {n the multiplier and multiplicand,

If a number 18 multiplied by the radix of tho number eyétom. this multiplication
has tho cffcct of shifting the number one place to the left with rospect to tho radix point,
This 18 truo in any number systecm. For cxample, multiply 13, 5110 by 10 (the radix

of the dcelmal system) and multiply the numbor 10. 11, by 2 (the radix of the binary

system):
Number 12,51 10,11
Number Times Radix 120, 1 101.1

Dinary multiplication thon is nothing moro than a series of add and shift opcratlbns.
An oxamplo of such an operation is glven under Fixed Point Arithmetic. .

?o/. V
21t DIVISION

Dinary divisfou {s the prucess of counting the numbor of times a divisor goes into a
dividend. The count of the number of imos tho divisor may be subtracted from the

dividond before a nogative remaindor occurs s called the quotiont,

«es/. /0

Dircet binary division is performed by a series of subtractions of the divisor
(actually a multiple of the divisor), just as itis in the decimal system, Tor example,

divide 100 011 100 by 111'0:

b ehi ;’{k
10 100, 01

L s

1110 ‘ 100 011 100. 00

() 11 10
(e) 1111
(fy 1110
{8) T 100 007
(1y 11 10
(m) 10

In th6 example, the first step is to place the divisor below the dividend in a position
which {8 as far rcmoved to the left as possible (n), but whiéh will allow a position
differenco to result when the divisor is subtracted from tlie dividend. Since tho divisor
will go into this many bits of the dividond once, a 1 i8 placed in tho quotient at b in the
samo column as thec lowest order digit of the divisor, Tho divisor is thon multiplied by
tho quoticnt digdt, and the resulting product 18 subtracted from the dividend to produce
the positive differcnce (¢} called the current remainder, The next digit in the dividend
is brought down to linc c¢. Compare the divisor to line ¢} note that the divisor is largor
than line ¢, or that the divisor gocs into linc ¢ 0 times., Thorefore, placo a 0 in the
quoticnt at the d position, The next digit of the dividend is then brought down to line c.
Comparing the divisor to linc ¢ shows linc ¢ to be greater. Place a 1 in tho quoticnt'at

the ¢ position. Multiply he divisor by the last quotient bit to form: line [, Subtract

line € from lino ¢ to start line pr. The next dight in the dividend {s brought down to lino g.

Compare the divisor to line g; the divisor is greater, so place a 0 in the quoticnt at

powition h. Tring the next digit of tho dividend down to line g; by coniparison line g is

o/ [/

o0 000000000 cocococcococloece

® O g ©0 00 90 0 0500000000 goS

still smaller than the divisor. Place a 0 {n the quotient in position {, and place the next
dividend digit on line g. Still, line g is smaller than the divisor, so a 0 {8 placed in the
quotient at position j, Placing the next dividend digit on linc g now makes line g greater
than the divisor. Place a 1 in the quotient at position k, and multiply the divisor by
this 1 to form line l. Subtract line 1 from line k to start line m. Assuming a quotient
has been developed of éufficient length, terminate the oporation, The quotient is
10100.01 with a remainder of 10 (line m).

Bince the quotients bit 18 always either 0 or 1, the division process oan be reduced to
& serics of subtractions of the divisor, multiplied by the power of the quotient bit being
sought from the dividend. Eaoh time a subtraction resulted in a positive current remainder,
a 1 would be placed in the corresponding qﬁouent bit p%‘i'mon. and the process is im~
medlately repeated for tho next quotient bit, Each time the subtraction results in & nega-
tive reméinder. a 0 is placed in the corresbonding quotient bit. In thi} case, the current

remainder i{s restored to & positive number by adding the divisor back to it, Following

_ ' this, the next quotient bit 1s obtained by the subtraction of the divisor multiplied by the

power of the next quotient bit.

Since the quotient bits are generated from left to right, the power of each quotient
bit 18 one smaller than that of the last bit generated. This means that as the divisor is
successively subtracted from the dividend (or current remainder), the divisor is shifted
to the right in relation to the binary point. The division process can therefore-be

reduced to & process of successive subtract snd shift steps. An example of such a

proocess is glven under Fixed Point Arithmetic,

406112

FIXED POINT ARITHMETIC

Fixed point arithmetic is the most basic form of arithmetic. Simply
stated, it is the process of computation using quantities whose magnitude
is completely expressed by a single value field. The relationship of the
magnitude to zero is expressed by a sign position. In fixed point
arithmetic, the length of an operand is generally determined by the
smallest unit of data that can be accessed in core storage. Inthe 7094,

fixed point arithmetic operands have the following basic format:

'

S VALUE FIELD
1 35

The sign bit S determines whether the magnitude is positive or negative.
When S is a 0, the magnitude is positive; when S is a 1, the magnitude is
negative. The value field is 35 bits long and states the magnitude of the
number. A fixed point operand can then be defined as a unit of data 36
bits long, containing a sign bit and 35 magnitude bits.

Fixed point arithmetic in 7094 includes addition, subtraction,
multiplication and division. All operations involve only two operands.
One operand is explicitly addressed, and one operand is implied. In

addition and subtraction, the explicitly addressed operand is obtained

from the core storage location specified by the instruction word effective

address. The implied operand is obtained from the accumulator. The

former is generally known as the addressed operand; the latter, as either

the implied or accumulator operand. In th: computer, the addressed

404,/

-~
v

o0 o000 d2000% 00000008 eo

AR XA EEREEEXKEE"ENENNNNN YN

operand is placed inte the Storage Register, which has the format shown

above. The implied or accumulator operand has the folloewing format:

VALUE FIELD
m——————— Ao S

1 89P9 35

The accumulator value field is 38 bits long. The additional bits, Q and P
and 9P are provided primarily to handle conditions which result in a carry
of 1 out of position 1 and pesition 9. Bits P and Q are therefore known as
overflow bits and are treated as the two highest order accumulator bits
during the execution of fixed point arithmetic. Position 9P is not used in
fixed point arithmetic.

The actual arithmetic takes place in the adder which has the following

format:

QP Note: 9Q and 9P not
1 89Q9P9 35 used in fixed point

Basically, the contents of the storage register are transferred into the
adders simultaneously with the transfer of the accumulator contents to the
adders. An addition or subtraction is effected, and the result is transferred
into the accumulator.

In multiplication, the addressed operand is obtained from the core storage
location specified by the instructieon word effective address; the implied
operand is obtained from the multiplier - quotient (MQ) register. In the
computer, the addressed operand is placed in the storage register, which
has the basic format of a sign bit and a 35-bit value field. Storage register
contents become the multiplicand. MQ register contents form the multiplier,

which has a format identical with the multiplicand. Multiplication is effected

w92 -

5y a combination of right shifts and simple additions. A multiplication
result is placed in the combined accumulator - MQ register, with MQ
register bit 35 the lowest order bit. Multiplication is algebraic, and the
result sign is placed in both the accumulator sign position and the MQ
register sign position.

In division, the addressed operand is obtained from the core storage
location specified by the instruction word effective address; the implied
operand is obtained from the combined accumulator - MQ register. The
addres;ed operand is placed in the storage register and becomes the
divisor; the combined accumulator - MQ register becomes the dividend.

Divisor format is the basic single sign bit and 35 value field bits. The

dividend format is a single sign bit and 72 field bits:

S Q| P S
1 35 1 35

| Accumulator —»| |e—— MQ Register ——»|

The result or quotient is placed in the MQ register and has a format
identical with the divisor. Remainder bits, if any, go into the accumulater,
with a format of one sign bit and 37 value field bits; accumulator bit 35 is
the lowest order remainder bit. Division is effected by a combination of
subtractions and left shifts.

Addition

In performing addition in the 7094, the general rules of algebra must first
be applied to the signs of the quantities involved to determine whether the
sum or difference of the quantities involved is to be obtained. Therefore,

when adding two positive quantities, the result is the sum of those quantities

Y043

0000000 o0co0oe®oooocoococscleco

0§ OO OO0 00 0 0500000000 g oo

with a positive sign. When adding a positive and a negative quantity; the
sum is actually the difference of the two quantities with the result- sign
being the sign of the larger magnitude. Finally, when adding two negative
quantities, the result is the sum of the quantities with a negative sign.

Assume the quantity +200g is to be added to the accumulator, which
contains +75g. The result is +275g. To satisfy machine operand fprmat,
convert the quantities to their binary equivalents:

a. +200g = +010 000 000

b. + 75g= +000 111 101

Insert these binary numbers into respective data words with the lowest

order bit going into bit 35:

0 | 0« » 0 0 1 0 0 0 0 0 0 0

a. S 1 26 27 28 29 30 31 32 33 34 35
Storage Register

0]0 |0|0= — 0 0 0 0 1 1 1 1 0 1
b. S Q P 1 26 27 28 29 30 31 32 33 34 35
Accumulator

Bits 1 through 26 are not needed to express the quantities and are therefore
all zeros. Because accumulator bits Q and P are treated as part of the
value field and the accumulator value is assumed as +75g, bits P and Q are
zeros. Since each number is positive, a 0 is placed in the respective sign
bit S.

Fixed point addition in the 7094 is identical with that described in binary
addition: 0+ 0=0; 0+ 1=1; 1+ 1=0withal carry to the next higher

position. Adding the two operands produces a result magnitude of

Yot

!}

010 111 101, with a result sign of 0. In machine operand format the result

is illustrated as follows:

0 0 0 0~ » 0 0 1 0 1 1 1 1 0 1
S Q P 1 26 27 28 29 30 31 32 33 34 35
Accumulator

If the same magnitudes are used but the signs changed to negative, the
entire handling of the magnitude remains unchanged in performing the
addition. The 7094 treats the sign bits separately. To correctly represent
the negative values, simply insert a 1 in the sign bit position of each of the
operands and the result; this is what is done in the computer.

Since algebraic principles are employed, addition of two quantities with
unlike signs is effectively a subtraction. Using the same values, but
changing the sign of the accumulator operand to a minus, the problem becomes
(+200g) + (-75g). To accomplish addition, line up the octal points and
subtract:

+ 2004
+

- 0758

+ 1038

To satisfy machine operand format, convert the values to their binary
equivalent:
a. +200g=+010 000 000
b. -0755=-000 11l 101

Insert these binary numbers into their respective data word with the lowest

order bit in each value going into bit 35:

404,585~

00 0 o000 00 00% o000 8eo0

o goeceocoooocoo 00000000 goo0

0 0« » 0 0 1 0 0 0 0 0 0 0
'S 1 26 27 28 29 30 31 32 33 34 35
Storage Register
1100 Qoo 0 0 0] 1 1 1 1 0 1
S Q P 1 26 27 28 29 30 31 32 33 34 35

' Accumulator

Bits 1 through 26 are not needed to express the quantities and are therefore

all zeros. Accumulator bits Q and P are implied zeros by the assumed

accumulator value.

'

The machine effects the addition of values having unlike signs as follows:

1.

2.

Complement the accumulator value field.

Add the complemented accumulator value field and storage register

value field.

Place the result in the accumulator,

Compare the accumulator and storage register sbigns:

a. If alike, check for a carry out of value field position 1. The

coincidence of like signs and a carry out of position 1 indicates

an overflow,
b. If unlike, check for a Q carry:
1) If there is a Q carry, add 1 to the accumulator in the lowest
order position (bit 35), invert the accumulator sign, and
place the resultant operand in the accumulator.

2) If there is no Q carry, complement the accumulator value

field.

Y04 ¢

Following the above procedure, the addition is performed as follows:

1-

Storage Register = +200g = +010 000 000
Accumulator =-0758= -000 111 101
Complementing the accumulator value field results in its containing

111 000 010, with bits Q - 26 all ones.

Add: 010 000 000

111 000 010

001 000 010 with a 1 carry propagated throughout the
Irest of the bits (Q - 26) and out of Q.
Placing the intermediate result into the accumulator, it now contains
-001 000 010. Bits Q - 26 are all zeros because of the propagated
carry.
Checking the accumulator and storage register signs reveals they
are unlike.
Checking for a Q carry reveals one.
Adding 1 to the accumulator lowest order bit makes the value field
001 000 011, and inverting the sign makes it positive (0).
The resultant value in the accumulator is + 001 000 011, which

equals +1 038.

Repeating the problem with +200g the accumulator operand and -75g the

addressed operand causes the following:

1.

Storage Register = -758 =-000 111 101
‘Accumulator =+200g3=+010 000 000
Complementing the accumulator value field results in its containing

101 111 111, with bits Q - 26 all ones.

S 4047

f

o0 0oo0o0c0ococ®oc0ocococclec

® O g OO OO OO0 0500000000 g9

3. Add: 000 111 101

101 111 111

~110 111 100 with bits Q - 26 unaffected,

4., Placing the intermediate result into the accumulator, it now contains

+110 111.100. Bits Q - 26 are all ones.

5. Checking the accumulator and storage register signs reveals they

are unlike.

6. Checking for a Q carry reveals none.

7. Complementing the accumulator value field yields a final result of

+001 000 Oll.

The term overflow means that the capacity of the machine has been
exceeded. The arithmetic result cannot be represented by the machine,
because it contains more than 35 value field positions. It was previously
stated that accumulator bits Q and P are called overflow bits. The name,
however, only provides an easy means of identifying these bits as a pair.
Because they could originally contain 00, 01, 10, or 11, their significance
depends on the problem. When dealing with values having like signs, a
resultant 1 in either bit or in both bits indicates an overflow. In this case,
the overflow is recorded, but subsequent action depends on the program
being executed. When dealing with unlike signs, the overflow bits are
significant as a pair, and in this sense, they either generate a Q carry or
they don't generate a Q carry. If a carry is generated, it indicates (1) that
the accumulator operand was the smaller operand and (2) that the number

presently in the accumulator value field is a true number equal to one less

194, ¢

than the correct answer. If a Q carry is not generated its absence indicates
(1) that the accumulator operand was the larger operand and (2) that the
number presently in the accumulator value field is the correct answer in
complement form,
Subtraction
Subtraction in the 7094 is algebraic and is accomplished by complement
addition. The procedure is as follows:
1. Complement the storage register sign.
2. 'Compare the accumulator and storage register signs:
a. If alike, add the accumulator and storage register.
b. If unlike, complement the accumulator, and then add the
complemented accumulator and storage register.
3. Place the addition result in the accumulator.
4. Compare the accumulator and storage register signs;
a. If alike, check for a carry out of value field position 1. The
coincidence of like signs and a 1 carry out of value field
position 1 indicates an overflow.
" b. If unlike, check for a Q carry:
1) If there is a Q carry, add 1 to the present accumulator value
field in the low order position, and invert the accumulator sign.
2) If there is no Q carry, complement the accumulator value field.
Assume the problem (+ 6068) - (-558) where +6OO8 is the addressed operand
and -55, is the implied operand. The result is ~6555. To satisfy machine

8

operand format, convert the quantitie; to their binary equivalents:

 Ho4 VA

—
Y
N

0o00oo0o0c0cecece®cececcocooco dec

©0 goeoeoeooOOOONLOIOOOGOIOGIOGQGEOOT

a. + 6008 =+ 110 000 000
b. - 55 =-000 101 101

Ingert these binary numbers into respective data words with the lowest order

bit goint into bit 35,

a. 0|0 & ' > 0|1 |1|ofofojo]ofo]fo
s 1 o 26 27 28 29 30 [31 32 33 34 35

RIS LG 376 L
b,“j_‘o:'ﬁ,’o(> olojofolr]ofrlr}o]n
s QP 1 26 27 28 29 30 31 32 33 34 35

. PP DTN

Bits 1 through 26 are not needed to express the quantities and are therefore all
zeros. Because accumulator bits Q and P are treated as part of the value field
and the accumulator value is assumed as - 558.,bitu Pand Q are zeros. The
addressed operand is positive, so its sign bit {s a 0, whereas ths implied operand
is negative, 8o its sign bit is a 1.
Following the procedure, the subtraction is accomplished aé follows:
1. Storage Register = + 600g = + 110 000 000
Accumulator = - 55g = -000 101 101
2. Complementing the storage register sign results in its containing
- 110 ©00 000.
3. -Comparing *he operand signs reveals they are alike.
4. Add: 110 000 000

000 101 101!

110 101 101 with bits Q = 26 all zeros.

5. Placing the addition result in the accumulator, it now contains

- 110 101 101

70 g

Comparing the accumulator and storage register signs reveals they
are alike.
Checking for a Q carry reveals none.

The final anawer in the accumulator {s = 110 101 101 which equals

- 65580

Repoating the problem, but with - 55g the addressed operand, the operand

‘;iormatu are as follows:

—

1{o0 < \,ooo‘o‘l‘yo'leOI
s 126 27 28 29 30 31 32 3334 35
AR A RERASTE L.
olofo]o <« > o|l1{1folofo]o]ofofo
sQ Pl 26 27 28 29 30 31 32 33 34 35

PPCEIrIL R T AL

In accordance with the procedure, the following takes place:

l.

Storage Reglster = - 558 = - 000 101 101

Accumulator = +600g = + 110 000 000,

M
CompleAenting the storage register sign results in its containing

"4+ 000 101 101

Comparing the accumulator and storage register signs reveals they are
alike.
Add: 000 101 101

110 000 000

110 101 101 with bite Q - 26 all zeros.
Placing the addition result in the accumulator, it now contains

+110 101 101

Comparing the accumulator and sto:age register signs rcvcalslthcytare
alike,

So of. 4B

P

06000000000 0% 0000 coelece

00 gOeOOeOOo0OeOOOOLOOOO0O00O0O0QGOS

7.

8.

Checking for a Q carry reveals none.

The final answer in the accumulator is + 110 101 101, which equals + 65%3.

Note the identical manner in which the two problems were handled. In each case,

the arithmetic was addition. In each case, the sign of the subtr:{p;hcnd (storage

register opera'nd) was inverted. Subtraction of unlike signs becomes addition,

and it is not significant whether the accumulator is the larger or smaller operand.

Although not {llustrated by the example, generation of a Q carry when dealing

with unlike signs represents an overflow.

Assume the problem (- 247g) - ({ ~ 1338) where -~ 247g is the addressed operand

and - 1334 is the implied operand. The subtraction {s accomplished as follows:

1.

Storage register = - 2475 = - 010 100 111

Accumulator = - 133g = - 001 011011

Complementing the storage register sign results in its containing

+ 010 100 111,

Comparing the accumulator and storage register eign§ reveals they are
unlike. 1

Complementing the accumulator results in {ts containing - 110 100 100,
with bits Q - 26.all ones. |

Add: 010 100 111

10 100 100

001 001 011 with a l carry making bits Q - 26 all zeros and
resulting in a Q carry.
Placing the addition result in the accumulator, {t now contains =« 001 001 011,

Comparing the accumulator and storage reglster sifns reveals they are

Ty,
\mj;hke.

0 7 4

8.

9.

Repeating the problem, but with - 1334 the addressed operand, the action is

as follows:

l‘

Note that the Q carry serves to indicate the accumulator was the smaller

operand and that the prescent accumulator value field Is in true form and 1 less

Adding a 1 to accumulator value field position 35 and inverting the sign

“Accumulator = - 247g = - 010 100 111

Checking for a Q carry revecals one.

results {n a final answer of + 001 00l 100 in the accumulator.

Storage Register = - 1335 = - 001 011 011

Complementing the storage register sign results in its containing

+ 001 0Ol1 Oll

Comparing the accumulator and storage register signs reveals they are

unglike.
’
1ol
Complementing the accumulator results in its containing - 0,30 011 000,

with bits Q - 26 all ones.

S 00000008 ee

Add: 001 011 o011

101 011 000

110 110 011 with Q - 26 all ones.
Placing the addition result in the accumulator, it now containa -110 110 Oll/"
M R-26 ol I'= .

Comparing the accumulator and storage register signs reveals they are

m@ikc.
[

Checking for a Q carry reveals none.

Complementing the accumulator value field results in a final answer of

-001 001 100 which equals - 1148.

“a v /A

,/
oolocoocooo

00 9000000000000 00000¢900

than the correct answer, when dealing with operands having like signs. The

absence of a Q carry, on the other hand, indicatﬁs the accumulator was the larger
operand and the present accumulator value field is the correct answer in

complement form,

404. 3 Multiplication.

Binary computers perform multiplication by repetitive addition and
shifting. The process is similar to that used when performing binary multiplication
using pencil and paper, The basic rule is to add and shift when a 1 is encountered
in the multiplier, and to shift, without addition, when a zero is encvountered,

Assume the problem is to multiply 15g by 58. On paper we would do the

following :

1101 (multiplicand)
101 2 (multiplier)

(&
"

1101 (first multiply by 1)
0000 {multiply by zero -- no add -- shift)
1101 (second multiply by 1 -- shift and add)
1000001 = 1014

Proof: 155 x 58 =1310 X 5lo = 65

10

Notice in the first step we had a 1 in the end position of the multiplier. This
is the positibn scanned in a binary computer, With a one in this position the

404,13 : e

multiplicand is put down as the first partial product, The second step calls for
a multiplic-ation by 0. No addition takes place, but the zero, and its relativé
position in the multiplier, is noted by kpiacding placing a zero one place left
of the first partial product, followed by the number of zeros equivalent to the
number of places in the multiplicand,

The third step calls for am multiplication by 1, hence a shift and additionx.
Once again the multiplicand is shifted to the left -- in recognition of the relative/
po sition of the multiplier bit. With this third shift and addition the problem is
complete. This same procedure is followed in most binary computers. Shifting
moves the partial product into the high order bit positions of the AC and, at the
same time, moves the bit in the multiplier into position for sensing.

W§ Binary computers use three registers to accomplish multiplicatio
/
The contents of the SR are the multiplicand, the contents of the M@ the
multiplier and sthk the partial product or sum is placed into the AC, The AC and
MQ are shifted simultaneously so on the first shift bit 35 of the AC bew mes

bit 1 of the MQ. Bit 35 of the MQ is lost and bit 34 becomes bit 35, The {final

answer will be contd ned in both the AC and MQ with the AC containing the most

oo 00000000 0% 0000000 feo

48ddx 404, 14

0 go0oOoOOOOOGRLOOEONOEOOEOGQG OO

significant portion of the answer and the MQ the least significant.

Computers have no place to store partial products so each partial
product is added to the contents of the AC and the answer gradually b}lilt
up in this manner. Also, the computer cannot recognize when multiplication
has been completed and will continue multiplying until told to stop. For this
reason a shift counter (SC) is used. Usually, the shift counter is set to
contain a count equal to the total number of positions in the multiplier. In
the 7094 this count would be 43g or 35;9. When a multiplication is to be
perforxlfned that does not use all positions of the MQ the variable length mode
of ;nultiplica.tion is used. In this mode the programmer inserts the proper
count into the instruction and the SC is set to this value. When the SC= 0
the operation is complete and the computer will go on to the next instruction.

Assume we are to perform the same problem (158 x 58), using a binary
computer with five-position registers. At the start of the problem the
registers would contain:

SC=101 (5 SR =01101 AC = 00000 MQ =00101

10)
Bit 5 of the MQ is sensed to determine if it contains a 1 or a 0. Because
it is a 1 the contents of the SR are put into the AC. The AC and MQ are
shifted right one place to align the registers for the next step. This puts
bit 4 of the MQ into position 5 for sensing and also puts the least significant
bit of the answer into MQ position 1. The registers now contain:
SC =100 SR=01101 AC=00110 MQ =10010

The bracket around the first bit in the MQ indicates this bit is part of

the partial product. Bit 5 of the MQ is again sensed to determine if it

Ho4 18~

contains a 1 or a 0. Becauv. - 0 i - i.ntered, no addition takes place

] N

but the AC and MQ are shittud rignt oo place, The registers now look

ST - Ui SR~ 01101 canl Q00T My i
The 1 in MO vosition 5 reguice oo nddition and a shift. The conrer is

of the SR arc added to the AC and the registers now coatain:
SC =010 SR = 01101 AG = 01000 MQ = 001} 00

MQ positions 4 and 5 now-contain the last two bits of the original

3

ultiplier -~ both zeros. These zerces will result in shifting without
addition and at the end of the problem the registers will contain:
ZC=0 SR = 01101 AT =00010 MQ = 00001
The operation is halted because SC= 0, The answer is contained in
both the AC and MQ which cqual OOOIOOOOOlZ: 1018 = 6510.
Most binary computers perform a multiplication by examining the low
order position of the multipliesr to determine whether that iteration of the

‘

muliipiy eycle is to be a multiplica

by zere or one. If the contents of
MQ 25 contains a one, a mulitiplication by one is indicated and the
multiplicand (storage reogisier) is added to any previous partial product in

the AC. The contents of the AC and M{) are shifted right one place to

S own the new partial oo, cad to ot ooes 0 nes low vodor position of
the cnnltiplicr dn i sl BT oo et Do s detectad o MO 35, a
ok rzation by cor s o ddd b vsen cudicnted and accomplished hy

fang the partial croeduet and janltiplier vathous adding the multiplicand.

i \»(’]
054,15 |

N E RN EEEEEEELEEEEEEXEXE X

0§ © 0 00000 090000000 0 g o9

Thus, by examining one position of the multiplier and adding and shifting
for the proper number of iterations, the multiply is performed. Because
one position is examined, each iteration performed may be considered as a

multiplication by either zero or one. The result of each multiplication is

added to the partial product which, in turn, is shifted to maintain the proper

relationship between the partial product and the multiplicand.

If it were possible to look at two bits at a time and multiply according
to the sum of the two bits, machine time could be halved -- doubling the
numbez; of add iterations that could b'e performed during a machine cycle.

Two bits could have four possible configurations -- 00, 01, 10, and 11.
The 00 combination is a multiply by zero, the same as in looking at a
siﬁgle bit. However, since we are looking at two bits the partial product
would have to be shifted two places, rather than one.as outlined above.

The combination of 01 results in a multiply by one and the computer
would add the multiplicand to any partial product already formed and shift
right two places.

The combination of 10 is a binary multiply by two. Any binary number
is multiplied by two when it is shifted left one place. For example, the
number 101, (510) is doubled when it is shifted left one place to become
10102 (1010). Decoding a 10 bit combination, then, would result in shifting
the multiplicand left one place, adding it to any partial product in the AC
and then shifting the AC right two places. For example, multiply 1012
by 00102 (510 x2 =10). Atthe start the registers would contain:

10 10
SC=4 SR =010l AC = 0000 MQ =0010

4, 17

On the first iteration the last two bits of the MQ indicate a multiply by
two. The contents of the SR are shifted left one place and put into the AC

At this point the AC contains 1010. Nextthe AC and MQ are shifted right
two places and the registers now contain:
SC = 2 (after two shifts) SR =0101 AC =0010 MQ =1000

Decoding the last two bits of the MQ indicate that a multiply by zero is
required. Addition does not take place and at the end of the iteration the
registers contain;

SCI--O SR = 0101 AC =0000 MQ =1010

The answer, 1010, (128 = 1010), is contained entirely within the MQ and
a maultiply by 210 has been effected.

It is only the last configuration of the two bits, 11, that indicates a
problem area. This is a multiply by 310 and cannot be achieved by shifting.
Any shifting in a binary machine affects the answer by factors of two which
makes it impossible to use the shift technique when multiplying by an odd
integer. However, because 011, =100,-1, it is possible to multiply by four
and then subtract one to effectively multiply by three. Assume the problem
is to multiply 510 by 310. The correct answer is 1510, of course, and,
using our four-bit registers, they would look like this at the beginning of
the add iteration:

SC =4 SR = 0101 AC =0000 MQ =0011

In this multiplication we ar: going to utilize two extra positions in the

AC =- Q and P. While these are normally used for overflow they will be

used this time to remember tl.it a complement addition has.been performed.

Mg)Y

Y E EFE R EEE R L X I re

this new 1 is in the binary four position (100, = 4

...Q.Q..Q..'...C.Q..‘-CQ

Decoding the last two bits of the MQ reveals that a multiply by 310 is
required. Because we are actually going to multiply by four and then
subtract one, we will do the subtraction first. The SR is complemented
and added to the contents of the AC. A 1 is added to the last position to
make this a true subtraction (addition of the 2's complement)., Following
is the state of the AC at the end of the addition:

SR complemented 1010
I's to Q,P and 4 11 1

Sum 111011
The'AC and MQ are shifted right two places and the registers\rggw contain:
SC=2 SR = 0101 AC =1110 MQ =1100

Decoding the last two bits of the MQ calls for a multiplication by zero.
However, since we performed a complement addition we will, in fact,
perform a multiply by 1. Because the AC has been shifted right two places
10). Another way of.
expressing this would be to say we added the two 1's that initially were in
the MQ and the result was a carry (1 + 1 = 0 and 1 carry). The carry goes
iptn the next high order position and becomes the 1 which will accomplish

the multiply by four. The multiply by 1 results in the following addition:

AC 1110
SR 0101

) 0011
Notice that a carry out of the AC resulted. Following shifting, the
registers contain:
SC=0 SR =0101 AC =0000 MQ=1111

The correct answer is contained entirely in the MQ. 1111, is equal

to 17g which equals 1510.

' Mﬁ il

To summarize -- the multiply by four and subtract one is accomplished
by adding the 2's complement of the SR to the AC and bringing hot 1's into
positions Q and P. The two 1's in the configuration 11 are added and the
resulting carry placed in the next high order position to indicate a multiply
by four. Had the decoder encountered another 11 configuration the carry
would have rippled through and the multiplication to take place would, in
effect, be a multiply by 16 (100002). The carry resulting from a 11 bit
configuration will be propagated through the multiplier so long as 1's are
encountered. At the first 0 a true add will be performed and this is the

first real partial product to be placed in the AG.

Multiplication

.The 7094 actually multiplies as outlined in the examples given above.
The increased operating speed of the 7094 required a departure from the
vstandards of single, repetitive additions and shifting. IBM design engineers
have incorporated new techniques in the 7094 that enable the computer to
sense two MQ bits at a time -- resulting in multiplication by 0, 1, 2 or 3
(equivalent to MQ bits 34 and 35 containing 00, 01, 10 or 11, respectively),
Also, in the 7094, addition and shifting are accomplished simultaneously.
Lines between the AC and AD are kept ""hot'" during the multiply cycle so
adder inputs (sums) are immediately available in the AC. These advances
in computer design make it possible for the 7094 to perform six additions

every machine cycle, or an addition every two clock pulses, a total elapsed

time of some 330 nanoseconds per addition.

04 20

~
-
y

o0 B o000 0000 0000000 Beo

® O) O O 0000 O 00000000 0 9 0

The heart of this new multiply concept is the decoder (Systems 02.13.75.1)
which examines the last two bits of the MQ and also pre-senses the next
two bits (positions 32 and 33). Although the results of sensing bits 32 and 33
are delayed, the effect on the next add iteration is noted and the computer
conditioned for this next add cycle. The following table lists the various
multiplier triggers that may be set during an add iteration.

MULTIPLIER TRIGGERS
Definitions --

Hi ixlxdicates the high order position of the two bits of the multiplier in the
decoder.

Lo indicates the low order position of the two bits of the multiplier in the
decoder,

EXC denotes the Boolean exclusive OR condition.

S indicates the string bit and is used in remembering that a complement
addition had been performed during the previous iteration. Setting the string
bit causes the multiplier to appear to the decoder as though a 1 had been
added to it.

The term ''cycle begin' refers to the condition of the string bit (on or off)
at the beginning of the add cycle.

The term '"cycle end'" refers to the condition of the string bit at the end of

the add cycle.

“Yot.2 |- a

Hi Lo S (cycle begin) S (cycle end) Multiplier Trigger
1.1 1 1 1 0X
2. 0 0 0 0 0X
3. 0 0 1 0 +1X
4. 0 1 0 0 +1X
5. 0 1 1 0 +2X
6. 1 0 0 0 +2X
7. 1 0 1 1 -1X
8. 1 1 0 1 -1X
Where:

0X = multiply by zero, SR to AD lines blocked.
+1X = multiply by one =- add multiplicand to partial product.

+2X = multiply by two - shift multiplicand left and add to partial product.

-1X = multiply by three -~ subtract multiplicand from partial product
' and set the string bit trigger.

The multiplier trigger set conditions are defined by the following equations:

1. +1X=(Lo EXC S) (Hi)

2. +2X-=(Hi EXC Lo) {Lo EXC S)

3. -1X= (Lo EXC S) (Hi)

4. S =(Lo EXC S) (Hi) + (L o EXC S) (Hi EXC Lo) (Hi)
To demonstrate the practical application of this chart, assume the MQ
contains 00010111 in the last eight positions. Positions 34 and 35 will be
decoded first, yielding a 1, 1, configuration. The condition where Hi =1,
Lo =1 and S = 0 (cycle begin) is fulfilled by line 8 on the chart. With these
conditions we would set the multiplier trigger to -1X, a multiply by three.
By definition this would cause the computer to subtract the multiplicand
from the partial product and to set the string bit trigger. The string bit
trigger will be set at the end of the cycle as indicated by the 1 in column S
(cycle end), Notice that these conditions also fulfill the equation on line 3
of (Lo EXC S) (Hi). An exclusive QR exists between Lo and S because one

is up (Lo =1) and one is down (S =(), and Hi = 1.

“o4.22

-~
B
¢

doloocooooo‘ooo0-0000000

© 0)OO OO0 00 0 090 00000600 g 090

This first iteration is complete when the complement addition has been
performed. The computer will remain in L time for the rest of the
multiplication.

MQ bits 32 and 33 were sensed in the decoder during the process of their
being shifted intolMQ positioﬁs 33 and 34. Actually, decoding of these bits
is complete before the shifting stops and the output is immediately available
for the next iteration. From this point to the end of the multiply operation
the computer will continue to look at 32 and 33 and decode them before they
are shifted into MQ 34 and 35.

MQ bits 32 and 33 contain a 0,1, configuration. Because the string bit
is set from the previous iteration a 1 will be added to the multiplier.
Decoding produces the sum of 0, 1, +1, or, 10. This configuration fulfills
the conditions set forth by line 5 of the chart and a +2X'multiplication is
called for. This also satisfies the equation on line 2. The +2X requires
that the multiplicand be shifted left one place and added to the partial product.
The AC and MQ are then shifted right two places and the iteration is complete,

MQ positions 32 and 33 now contain a 0,1, configuration. The string bit
was not set during the previous iteration and the condition satisfies the
requirements on line 4 of the chart (also equation on line 1), Decoding calls
for a +1X multiplication and the multiplicand will be added to the partial
product. Shifting again takes place and the iteration is complete.

The last two positions of the MQ contain 0, 0. This is a multiply by zero

Pt
i

as indicated on line 2 of the chart. No addif?xon takes place (SR to AD lines

'
are blocked) and when the AC and MQ have been shifted right two places the -

multiplication is complete. H

I
Ho4.23 'l

Whenever a complement addition is performed during a multiply sequence,
"hot'" ones are brought into AC positions Q and P to remember that the partial
product is in complement form. This reminds the computer to put 1's in
adder positions Q and P to account for the missing positions of the SR. (SR
is in complement firm so use 1's). Recomplementing takes place on the first
true add and the partial product will again be meaningful.

Decoder Network

The MQ decoder network is shown in Figure 404-1. The E and L callouts
on the '-AO blocks indicates the cycle in whiqh the outputs are valid. Recall
that a multiply instruction will result in I, E, and then the required number
of L cycles to complete the operation. During the E cycle the original contents
of MQ positions 34 and 35 are decoded. During subsequent L cycles, MQ
positions 32 and 33 are decoded. Figure 404-2 shows the various triggers

~set as a result of decoding the contents of the MQ. Notice there is no 0X
trigger and, in a sense, the 0X callout on the chart is a misnomer. Actually,
there is no gating of the SR on a 0X so, in effect, gate SR to AD is blocked.

One other trigger is important to the multiply sequence. This is the
multiply cycle trigger, shown in Figure 404-3.

Solution of Typical Problem

Computer sequence for solving the problem of multiplying 33g by 274 is
.sho‘wn in Figure 404-4. This chart is to be studied in conjunction with the
flow diagram, Figure 404-5,

Notice in the second iteration on the problem chart that a one is put into

AD Q from AC P. This is the reminder that a complement addition has

oo .24

—
.
-
A

o0 0oooovoooce®oecccscscselece

©0 Q0000000000000 00090¢g00

been performed. It is vital to keep this string of one's in the high order
bits so that when a true add is performed there will be a ripple out of the
results of the complement addition.

Figure 404-6 is a print-out of an actual problem performed by the 7094.
Notice that the shift counter is stepped twe counts at a time. Notice also

the setting of the multiply triggers as a result of decoding bits 32 and 33

of the MQ.

htas

©0goeoooo0ec00000000g00

700tk h
ﬁlnl.t& v%e\

V\oa* n/ \v\vnva‘ /= koA h\\“\\\

» n oy 7] P
-44
2
|4
XE + Wé w72 YVioTew 153
>0~ X
-4 ~
S ER MO
-+
o ik AL
|~ 7z e =
[T TS5
oy-|_ EZTSE
'H 1
Fe-]
v Y4Z RAZET S o7 uw..«h
[ERT 05> g
5 7R v e =
oY - vz 25
X 7 @ L7y L O.~ J
Iy~ "o 4 T 3 v
4s
2)

%.Z\bkx&blﬂ \\\Q\WA\ A hbo - \
P e W A2 4 0\3%\\
des =soN10/)00 /09
0.-“& ﬁ\mbvw: E
0_~Nn~ \)lj
¢ L u\wmm . .
Le = ¢ O
7 7370 .
ol ot TS /)0 /0090
aw <« py | X0 & , W.w\\a\\q. ——
ae < < —A)/ 0/]/ 90 o RN
E 19Fe pf oS /07071 /10/0000 3
ppro o of NS | : (1110107 X
O ey % J0Y | y o
>
Q%Qw\m\ QNM \m:\\\QMU(/
at f LAY IS| XE olrliol1t1o
Ye =0/ = S+ 19 * /107170 7
e ybie gfigs pus "
o of wwns Goy<-0a /01l0/0V700/77 79
7 %ot/ / \\Q\sq\““
CY - JS purisydusdy i S 00/ 00/
X-/ /1107000000000 7710779 9
Stex feg s DS ATl IS AS /IO SAECCE/dOIoSAEET
= STy y _y A249: 62
Wsﬂ\\\p k \N\% «Mnhw\\\N %\N\ \x\\\w\\&:\umw\ . W\U\..\..\% ‘ ~LM§\Q\,W. kw\&\\\ww

N AN EEEEEEENEEXEXIXKEKXXEL X

"o
N
N
~
e

VR

I 7ime Flow OharvT
POD 0
E Time
¢ "OU’?'/'/le Ae voried
en VL)
E7(h2)
‘.?f-f,/s_?c Clear L ke /77@§J onl ke
To . . :
03,0000 AcC SR Sipas
| %-’%/9(;5’ 52-7',9('5’
lu’ NG stgns
02,2931 ’”'/"U,g;;,/
L
|
SE>SR

g7 0O/

JJ,/?.-mf//Zcro Check
Tes T "

s
es (sr =35 _HNo_

I Sh

"7 o1 .
o4+ /J[/Y/
Encl Op cs| seodd Ve ME3IS \fes
1h & Cortral = /
22,09, 4/4./

£l

ST 50 Sk I1-35
pdc/ Tgr ;T?éc‘fr/
0213, 73, 02:73,7

/ =
[yes E)
Set /X

o008 o000 0o o 0% e 0 TEEXEXRE

— b/ SC’erX
55/7;5/;;’ 52735‘/ s €157 Vel DI
05,03, 75 M0, 13.23,1 03,73, 73] a3, 13,75/
B | 7 . fig 4a4-5"
B

£ /7"7675/P
9 | MPP § VLM Carnr'd)
Tors s &7
o2432.27.)
']] /y,/c,'/ SC SH~- /ﬂiryrr/é !/ac/!
pulse, Jreratien Peogr»5
Sop~8 HO 7-35"| |fo P-4 At LO & MQ sairres Ruene
. Sy — A0 T
62,/3,719./ 82./3,723./ ©2.13.79./
® 1
L Time
. (/'7;’0/3;/01\/ \/‘Z
T) &
23)X Torn o | e
R) {2 ot T
. ¢ < yZa —Oncl (’(9
/ 25 - C
Mo <
® ~ "
| I ¢ .
® /éﬂPQ'PJ 15 7035 | | (rmp SR || sp[-38
I~385pPD||-> ¥D
&2.13,77.) 62:03,97.0] 162,¢3,37.7 |lez,13.971
o C l 1
Q}DCLoh RX C
,A/
® Yo s02p yLeS "
“C
o I =)
#09-7eA [ga | [rozrss oN(sc odef \oFF 4
® Right 2 Fmal L i
02./1-77-/ v,73.29,/ 7//31 7Q. l
#o35” ADG -39 |#O/=-35
‘ -0/ b HC RT/ fo Pl -3
011/3/7Z/ 02:/3,79./ 62./2,79. 1
' L { |
2 se =)\ NI
_ ,8/:514/7/4
. 32-33 4o
decodey
‘ [
Y A
;r\amp 0/0.3 /C/j 704 - 50
@ 03 p ¥09.33

7"00/02

Set r/X

03,/3,25 [

p3 I : @
SVFY g////ﬁ/ //J////f'/)‘ ¢

G/oc &

ALY o

es meL‘?\ Ao

Strin

ceZ /X
0-7//3175:

®
@
@
@
@
@
@
@
1
o
.
o
o
o
¢
°
®
®

404, 33./

I I B B B I I B R RS- - R 0. RS- . BV, [[|

dNWLL

d40
NO
A40
J40
NO
Jd40
NO
d40
d40
NO
Jd40
JJ40
d40
NO
NO
NO
NO
JJ40

LI ONIYLS

Z'Ec ok

LAOLNIYd XdIN ¥60L

oS

TPGEETESELLO
0€L.9292L910
TIPSEETESELO
LY0995S¥69G¢
G€208LICILTL
SOTIVSEETESE
LZLY09955¥Se
S€G€20€L9292
LICGOTIPGELTE
98LELY099GS0
TLGESEZ0EL92
LY L9G9TTIVSEE
9€9€L2LY0991
CLILSESET0ES
TGLYLISOTIVI
LY9€9€L2LY02
LETLTLSESETO
LLISLYLIGITT
LLLYIEIELELO

Gge-1

LLLPIEIELZL0 - OIN

+ 4+ 4+ttt 4+ o+ o+

wn

*9-$0p 2an3rg

O

TI¥L9G2900L0
¢G0LSESTTOIT
CIPSE0CEETIEE
LOESOTI0CTET
00290S2L9T9T
70€2L59500V¢€
¢990190€0%91
YI9V0SLY90SE
12€2vEVLL9CE
TT0ESLS9%P9T
9VESTOVE0ESE
TL0S009TLLES
IG9G91PL10ES
L¥SOLOSOPTLI
IPIV0S0E0LLE
S0902vePIvLE
920€0121909¢
0ET¥IV0S0€0E
000000000000

Se-1

OrMr ™M OO0 O M OO MO HOO~MOO

A

COCOCOO0OO0COCOO0OO0OODOOOCODOOCOD

€
0

LETLILGESE9E - S HILIM AdN

T4+ + 4+ + ++ 4+ 4+ 4+ A+t 4+ o+

ov

HLI

X
X3
X1~
X1
X2
X1-
Xz
Xt~
Xg
X2
XI1-
X2
Xz
X2
X0
X0
X0
X1-

LXIN

000 00000000 00000008 eco

404. 4 Fixed Point Division
Fixed point binary division in the 7094 is accomplished by dividing
the contents of the AC and MQ, taken together as the dividend, by the
contents of the SR, the diviedr. A 35-position quotient is developed in the
MQ with the remainder, if any, left in the AC. The mimgx sign of the MQ is
set to the algebraic sign of the quotient, as determined by the SR and AC
signs. The sign of the remainder remains the same as the sign of the
dividend. The size of the registers restricts the size of the factors to be
divided.. The quotient can never exceed 35 bits, the maximum length of the
MQ. If the AC portion of the dividend is equal to or greater than the divisor,
the quotient - would be too large for the MQ. In this case, division cannot
take place and the computer is stopped with the divide check indicator
on.
The following demonstrates binary division :
0110 Quotient (Q)
11011000010 Dividend (AC and MQ)
1011
01011
1011
00000

0000
0000 Remainder (AC(

Notice that the divisor will go onf¢ or not at all into the high order
positions of the dividend. Therefore, it is only necessary to determine if the
divisor is equal to or smaller than these positions of the dividend, If the divisor
is equal to or smaller than the =iwobemdx selected positions of the dividend, a one
is put into the quotient and the divisor is subtracted from that portion of the

dividend. If the divisor is largei than the selected portion of the dividend, a

zero remains in the quotient, Anc her position of the dividend is now taken into

00 oo0o0o0o0o0e0e® co0o0ccoeoelec

404, 34

/5\.
@

© 0 g OO OO0 OO0 O 00 0000000 g oo

account, and the procedure starts again., This continues until all positiqns in

* the dividend have been tested,

In the 7094 the SR and AC are complement added to determine if a raéuction
of the high order positions of the dividend is possible. If a reduction is possible,
these pesitions of the dividend are reduced by the amount of the divisor and
the difference put into the AC. If a reduction is not possible the AC remains
the same. A successful reduction results in a one being put into the MQ (position
35)., Following the reduction attempt the AC and MQ are shifted one place left
to briné the next position of the AC into alignment and another reduction
attempted., This repetitive process continues until all positions of the MQ
portion of the dividend have been moved to the AC. The SC will equal zero
when the division is complete.

The following steps constitute a divide iteration in the 7094 :

l. Add oesmpinssdiery® AC to SR and check for Q carry.
MCZ. Complement bit pesition 1 of the MQ and shift AC and

MQ left one place.

3. If a Q carry results, leave contents of the AC unchanged

and put a zero in MQ position 35,

4. If no Q carry results, reduction has been accomplished. Put

sum of reduction into AC and insert a 1 into MQ position 35,

A 7094 divide iteration takes two clock pulses so six iterations can

during
be performedsih a machine cycle. The maximum number of cycles for
any divide problem is eight, the minimum (variable length) is three,

Figure 404-7 is a flow chart of a DVH instruction sequence. During E
time the contents of the AC are put i-to complement form and added to the

404, 35

T Time
Pri Op
23

£ Trime

s$E-SK
'E£7C07)
2.12, So. !

Comp
Ac - A0
E702)

°02.13. &4/

435> SC

E£7(D 2)
02,06 1]

HO-=> AZC
L eCo)
o2, /3. 8%/

:

SR> A0
E8C03)
02.12.14.1

b

e =+ AO
£33
03.72.24./

/,vo ¥, 379

[
.

YES

Y

OYD Shifr
Encoid

page 3

'hj

Lok, 3l

vie #04-7 A
DVH Flow.Cher?

'

-

o
0000000000 0% 0000000 0 oo

© O g OO OGO 000 000000000 g¢g o

From 424~ 78

uyde
(’;f)/}rt/
Comp /781 stift Ao
—~ A 35 ,3//./77?43£f//f
2.72.42.1 272, ¢a.7
L Time
\ \
Sg—» AD At —»AD
L Time o Trme
2.12,14./ 12,249,
Stz J—ILES se=/
No yes
A
Q \
Cavrvy) No A9CD07)
J ! i [R 9“
Comp MQU) | |Shift m& ITep SC Shifd A¢ Shift porme| | 1 —»wg Y
= Be(ss) Lol A Codd) y ,ém(.«é/) ACocdd) Alodd)
?;'/f‘ o 1 V109003, 89,0 2:03.99,/ 2.02.29. 1 2.02,29,1 202,29,/
4 y
y J 7—0‘-
€nel 0O
f % V4 ,ﬂ—l.l 73/? Jé’/f/; fc " P
Z - ¢
toure S0 7 &/ ,
J 02,73, %% 1 ”,”,5,@9)./ " vwy-7C

frem 5 /7 yod=-72A SRV S v~26

L 7Tome
Ve x7’

L nst?e

4

Divide \
theek

oF F

© T“j v

o

Torn on
8T ST P
Tor XI5
cy.20./6./

B o\ﬂc\f

TatevvrueV
I ©
88.00.13.1

//('/0(//5' vof — 7C

o4 38

\

Comp AL-HD
To¢b3)

OD,/2,22,7

A0 > 20
Za ol

.72, 307

N N R EEE R L XY

0§ OGO 000 O 00000000 0¢go

contents of the SR, This first addition s determines whether the quotient will

be small enough for the MQ -- the result of the addition is not recorded. A Q

carry indicates that division is possible. Lack of a Q carry indicates that
division is not possible. Also during E time, the SC is set to 438.

When a Q carry does not result mm from the addition mentioned above,
the divide check trigger is turned on and the computer signalled to divide
check end operation, During the I cycle of the next instruction, the master stop
trigger is turned on, causing a B cycle interrupt to be activated. The B cycle
interrupt prevents I, E and L c;'cles.

A Q carry result from the E cycle test addition allows normal divide
operation to take place. During the end of the E cycle MQ (1) is complemented
and the combined AC and MQ are shifted left, This lines up the registers
for the first reduction attempt and the computer goes into L time,

If the reduction is suscessful (no Q carry), a 1 is put into MQ 35 and
the resultant sum of the reduction attempt shifted to the AC, MQ (1) is again
complemented and the AC and MQ shifted left for the next iteration,

If the reduction is not successful (Q carry), a zero is entered into
MQ 35, MQ (1) is complemented and the AC and MQ shifted left one position, |

Notice from the flow chart that lines from the SR to the AD and from the
AC to the AD are kept ""hot' all during L time., Refer to the section on
the adders (functional description) to see how fast the Q carry is felt during

«x a divide operation,

The above sequence of divide iterations continaes until SC = 0 when
divide end operation is actuated,

During the I cycle of the next instruction the AC is again complemented

to make the remainder a true numb:r,

4)4. 39

The following chart of an actual problem should be studied with
reference to the flow chart. The problem is to divde 178 by 38' The registers
have this configuration at the beginning of the operation :
SCm 6 SR = 000011 AC = 000000 MQ = 001111
Divide Check Test :

AC to AD 111111
SR to AD 000011
Q carry «-000010

Turn on Divide Trigger
First Reduction Attempt

ACto AD 111111 MQ 001111
Complement MQ 1 and shift left

AC 111111
SR 000011

Q Carry« 000010 no reduction so 0 to MQ 6 and MQ now -011110
--------- End of first iteration and divide check ~~-ccmmcacoucaco_-

Second Iteration

SC =5 SR = 000011 AC =111111 MQ = 011110

Complement MQ 1 and shift left

AC 111111
SR 000011

Q carry «--000010 no reduction so 0 to MQ 6, MQ =111100

Third Iteration

SC = 4 SR = 000011 AC =111111 MQ =111100
Complement MQ 1 and shift left

AC 111110
SR 000011

Q carry &----000001 no reduction 30 0 to MQ 6, MQ =111000

404, 40

i

Y P R R R X XX XL rx

Fourth iteration
SC=3 SR = 000011 AC =111110 MQ = 111000
Complement MQ 1 and shift left
AC 111100

SR 000011
NO Q carry ---111111 successful reduction so 1 to MQ 6, MQ = 110001

Fifth Iteration
SC =2 SR = 000011 AC = 111111 ‘MQ = 110001
. Complement MQ 1 and shift left
AC 111110
SR 000011
Q carry ---- 000001 no reduction so 0 to MQ 6, MQ = 100010
-------------- End of fifth iteration ~--cc-ccccanacacaaaaaaaa
Sixth Iteration
SC=1 SR = 000011} AC = 111110 MQ =100010
Complement MQ 1 and shift left
AC 111100
SR 000011
NO Q carry ----111111 successful reduction so 1 to MQ 6, MQ = 000101

............. End of sixth iteration ==------memcacooonooaea-

SC = 0 s0 begin end op . The AC is complemented to the adders and

returned to the AC so AC = 000000 at end of problem, The answer 000101 (=5)

is in the MQ.

404, 41

405, Variable Length Arithmetic

Variable length arithmetic is fixed point arithmetic with operands of a
length other than 35 bits. Variable length operations include multiply and
div;dc. The decrement of the instruction is used as the count field in variable
length instructions. The count specified is usually a value less than 43g4.

If a count of 434 is used, the instruction is handled exactly as a fixed
point instruction, A count of 608 causes an indirect address cycle because
the count field (12 - 17) will OR with the 12 - 17 positions of ’the IA word,

Variable length instructions are used to conserve machine time., For
example, if the contents of the MQ during an MP‘Y instruction are less than
435, say, 30g,-- it would be pointless to mgltiply by the last 1l zeros if
it was not necessary., By setting the SC = 308, the computer will halt

when the last meaningful bit has been used.

405, 1 Variable Length Arithmetic Instructions

Variable length multiply VLM +0204 (Min I, E) Figure 405- 2
(Max I, E,3L)

This instruction operates the same as MPY except that the number of
multiplier positions to be tested is specif@i by the count in the decrement
portion of the instruction. The difference between MPY and VLM occurs
during the E cycle when the shift counter is set, Usually, this count will be
less than 435. A count of 60y or greater will cause an I/A cycle. The following

: e
illustration, Figure 405-1, shows the AC-MQ rﬁlationship before and after

multiplication, ye¥d m Q
bé{o,t "
[N e)
= \
/ I : Chir moltiplre?”
Hflrk f T .
VL L Py .
m T5+rC bt pred :16'57 — S5 =0 a-r«cltr(!//5
- | 4 ®
//] eSS -/ Varial le [e 7//! //}-7"/'/,l'/\) I/:/ / . =

% Q- | p

\

yww Yo ”
YoS. X

r

7

_

)

<
55
| -

voH ¥

g
- >
=
N
= ~

o000 o000 o0o00e® oo oo

Variable length divide or halt VDH (MinI,E) Figure 405-3
(Max I, E, 7 L)

This instruction operates tle same as DVH, except that the number of
reductions to be taken is specified by the count in positions (12 - 17) of the
instruction. The number of positions in the quotient is equal to the count and
will be contained in the low-order positions of the MQ. The count should be
restricted to a number between 0 and 438. A zero count ends operation in
E time and prevenfY/the shift at the end of the E cycle. A count of 435 will’
give thé same result as DVH, A count greater than 435 causes part of the
quotient to be shifted into the AC, where it can be altered. A count of 608
or greater will a cause an I/A cycle, and the count field (12-17) will OR
with € 12 - 17 of the IA word.

Variable length divide or proceed VDP (Min I,E) Figure 405-3
(Max I,E,7L)
The execution of this instruction is the same as VDH, except that the

computer will not stop for a divide check, but will proceed to the next instruction.

PR E R R R e X X XX xrrr Kx

405, 3 /

—

FLOATING POINT ARITHMETIC

Arithemetic operations previously discussed used data in fixed binax:y point
form, i,e., the binary point of the operands remained fixed throughout the
calculations, When a large number of operands are required for a calculation,
or the magnitudes of the operands are unpredictable and do not vary within
known parameters, fixed point binary operations become exceedingly difficult,
When - such problems are encountered, an alternate mode of arithmetic is
available in the 7094 - the mode of floating point arithmetic.

As the name implies, the binary point is not fixed during floating point
operations; rather, it '"floats', or is repositioned according to the operands
involved in the calculatin, Computer action is much the same as that taken when
calculating with paper and pencil. Floating point arithmetic instructions cause
the computer to automatically position the operands used and to deliver the
result in correct form,

The principle on which floating point arithmetic works is basic to
mathematics and is known as scientific notation. Scientific notation is used
when a numerical expression becomes unwieldy as the result of being extremely
large or extremely small., Small quantities are ususlly expressed direct, such
as saying that something is ''"four feet high" or weighs '"one hundred pounds'.
Direct expression becomes impractical when stating the unit for static charge,
for example, which is one coulomb and equal to 6, 300, 000, 000, 000, 000, 000
free electrons. This numerical value is not only cambersome, it could easily
be expressed incorrectly by inadvertently dropping one or more of the trailing
zeros. To avoid direct expression of this quantity, a coulomb is usually defined

as the unit of static charge present when 6.3 X 1018 free electrons are collectéd

406./

on a single body.

i
The expression 6.3 x 1013 denotes exactly the same value as the number

written out with all the trailing zeros, but it is much easier to state and not
so susceptible to error. As shown by the example, scientific notation is
arrived at by taking the maghitude digits (coefficient) of a particular value
and multiplying them by the radix of the number system being used, raised to
a power (exponent) which will correctly position the decimal point, thereby
accurately expressing the total magnitude involved.

Other examples of scientific notation include the velocity of light, expressed
as 2.998 x 108 meters per second, and the angstrom unit, expressed as
1 x1078 centimeters. All these notations, if multiplied by the indicated power
of 10, will give the value commonly associated with the measurement of the
given quantity.

If the significant digits of a value expressed by scientific notation are
shifted so that the decimal point falls in a different place, the accuracy of
the expression can still be maintained by a corresponding change in the power
to which the radix is raised. For example, all of the notations below will

yield exactly the same result if multiplied out:

“40¢.2.

,-'Q‘COOCQ.'QOCCCQ.Q’OC

2.998 x 10° .2998 x 109

29.98 x 107 . 02998 x 1049

299.8 x 10° . 002998 x 10°!
5 2

2998 x 10 . 0002998 x 10

It can be seen that for each shift left of the number (assuming that the
decimal point stays in a fixed position) the power of 10 must be reduced by 1
to maintain the equality of the expression. Similarly, for every shift to the
right, the value of the exponent is increased by one. Shifting the significant
digits ;f a value back and forth and making the corresponding changes in the
power of the radix can be utilized to perform addition or any other arithmetic
function. For example, assume that it is desired to add the following
expressions:

3.75 x 103

+ 445 x 10°

Because the exponents of the radix terms differ, a direct addition cannot be
performed. However, one of the terms can be shifted until the exponents
are of the same value; then the significant digits may be added, and the radix
term may be carried to the sum. If the first expression is shifted, the result
is as shown below:

3.75 x 103 shifted right one place 37.5 x 10'2
37.5 x 10°

+445 x 10%

482.5 x 10°

oc. 25

Multiplying this notation out yields a result of 48,250, the same as would
be obtained by adding the true value of each expression. If the second
expression were shifted, the result would be:

445 x 102 shifted left one place 44.5 x 10°

44.5 x 10°

+3.75x 10
48.25 x 10°
Multiplying 48.25 x 103 out also yields 48, 250, the correct result. From
this sinlmple example, it can be seen that it is necessary only to make the
exponents of the radices the same value by shifting the significant digits
one way or the other and then performing the desired arithmetic operation.
The principle of scientific notation can be summarized by stating that it
utilizes two factors to indicate the magnitude of a measured value. One
factor is the radix raised to a power (either positive or negative), and the
second factor consists of the significant digits of the value. Changing one
of these factors requires a corresponding change in the other to maintain -
the validity of the expression. These same rules may be applied to the

binary number system.

Notation with the Binary System

Because the binary system uses a radix of 2, all forms of scientific
notation will be expressed in terms of powers of 2. In addition, since
‘only symbols of 0 and 1 are employed in this system, the significant part
of the notation will consist of a combination of 0's and 1's. For example,

the value 25610 expressed in binary is 100 000 000 (4008). If this binary

Y00, 28

number is considered to be an integer, scientific notation of the value
would be as shown below:

100 000 000 x 2°
Of course, this expression could be given in many forms, all of which
are equal in value, by shifting the bits of the expression and changing the
exponent of the radix 2, For example, all of the following expressions are
equal to 100 000 000:

010 000 000 x 21

000 001 000 x 2°

000 000 00.1 x 29
Thg last expression has shifted the number so that it becomes a fraction,
iaut no difficulty is encountered, since a binary fraction of this magnitude
equals 5,,, or 1/2. The 9th power of 2 equals 512,,, and 1/2 x 512 yields
a result of 25610, the original value.

This type of notation is adequate for paper and pencil, but in a cémputer
a different way of expressing the power of the radix is necessary. Since
the 7094 is a binary machine, the power of the radix must also be expressed
in binary. Thus, 29 power will appear in sofne other form inside the machine,

although the power indicated is still 27.

Floating~Point Data

It has already been stated that floating~point arithmetic in the 7094 uses

.operands expressed by scientific notation. Also, scientific notation has been

defined as consisting of the significant digits of a value multiplied by the

power of the radix. All that r:mains now is to show ‘exactly how the power

P04, 2¢

of the radix and the significant digits (or bits in binary) are expressed in

the 7094. The format for a floating-point data word is as follows:

S CHARACTERISTIC FRACTION
1 8|9 35

Bit positions 1-8 are referred to as the characteristic of the word, and

they indicate the power of 2 to which the significant bits are raised. It can
be assumed that 2 is the radix involved, since the binary system is being
employed. If a characteristic of all zeros is arbitrarily chosen to represent
20, the 'range of exponents possible with 8 bit positions would be 29 --2377.
However, this arrangement is impractical because it allows only positive
exponents to be expressed, and it is desirable to express negative exponents
as well. Therefore, the midpoint between the total number of exponents that
can be expressed (400g) has been arbitrarily chosen to represent 20. This

value is 2008;. Thus, a positive power of 2 will be between the values 200

8

and 3774, whereas a negative exponent will be between 08 and 1778. For
example, to express 29 as it is done in the machine, it is first necessary to
change the exponent from decimal to octal form. Thus, 29 in the decimal

system equals 211 in the octal system., The radix is understood to be 2,

80 only the power (l1) needs to be expressed. If 20 equals 2008, then 211
211

8

equals . The actual appearance of the characteristic (in binary) which
indicates 29 is as follows:
10 001 001

The characteristic part of the floating-point data word thus constitutes one

of the two factors employed in scientific notation.

Yoc.2p

0 g OO 00000 0000000004900

Bits 9-35 of the data word are called the fraction, and they constitute
the significant bits of the value, or magnitude. The term fraction is used
because the data contained in this part of the word is considered to be in
fractional form, that is, a binary point is effectively located between bit
positions 8 and 9, making all bits to the right of this point represent a
value somewhere between -1 and +1. This fraction should not be confused
with the fraction represented by a fixed point data word. It is true that the
numerical significance of these fractions is the same in that each position
represlents a power of 2, but the actual magnitude of the floating-point data
word can be determined only after the fraction has been multiplied by the
power of 2 indicated by the characteristic. In fixed-point data words, the
magnitude of a number can be determined after the various powers of 2
present in a given word are added together.

The sign bit position of a floating~-point data word represents the sign
of the fraction; that is, if the sign bit is 0, the fraction portion is positive,
and if the sign bit is 1, the fraction portion is negative.

A characteristic in the range 08 to 177g does not in itself indicate that
the quantity is negative. To express a very small quantity may require a
negative power of 2, but the quantity may still be positive. For example,
to exp-ress the value of 1/8 in floating-point form requires a negative
exponent (assuming that the fraction is 1/2). The srhallest position
exponent that can be expressed is 2004 or ZO, and multiplying this by 1/2
still yields a result of 1/2. To obtain the quantity 1/8, a characteristic

of 1764 is required when the fractional part of the data word is 1/2.

Yoc, 2&

The characteristic of 1768 represents 2-&, and multiply this by 1/2 yields

the desired quantity:

2

27%x1/2 - 1/22x1/2- 1/4x1/2=1/8

Similarly, a value of =1/8 would be shown as follows:

CHARACTERISTIC FRACTION
1 175 4000000008

This value is known to be negative because the sign bit is a 1.
Thus, it is the sign bit and only the sign bit which determines the polarity
of the value expressed.

As an example of a fleating-point data word, assume that it is desired to
express the value 25610. This value may be represented in octal by 400 or
in binary by 100 000 000, This term may be expressed in scientific
notation by 100 000 000 x 20 or 000 000 000.1 x 29. Taking the latter case,
and placing 29 (2" in octal) into the characteristic bit positions yields a

result of 2118. The fraction remains as is, and the sign bit is cleared;

so the floating~point form of 25610 is as follows:

S CHARACTERISTIC FRACTION
0 211 400000000

Arithmetic operations with floating-point data words are performed in
much the same manner as the addition of terms in scientific notation. The
characteristics are made the same by shifting one of the fractions and
making the corresponding change in the value of the characteristic, The
two fractions are then added (assuming acdition is the operation called for),
and the charactertistic is assigned to the sum., While it is true that a

certain amount of "lining up'" may be neceisary before a floating=-point

o, R F

o0 0ooo0o00000% 0000000 o0

operation may take place (the characteristics must be made equal), .this
process is performed automatically by the machine and is not the concern
of the programmer. Also, the result of the operation will be a value which
does not require further manipulation before another arithmetic operation

can take place. Thus, the "floating' operation which occurs in floating-

point arithmetic is really nothing more than an adjustment of the characteristic

to keep the value being expressed in the proper order of magnitude.

Double Precision

Wh;an a fixed point fraction is changed to floating-point form, the
resulting characteristic and fraction may exceed 35 bits. In this case
additional hardware is available to accommodate the longer length fraction.
The addressed operand is always placed in the storage register. When a
double precision addressed operand is required, the low order fraction
bits are housed in the IBR register which is associated only with the
storage register. In the case of the implied operand, the accumulator and
MQ register combine to house the double precision number. The MQ
register is assigned a characteristic which is 2710 less than that of the
accumulator because the fraction contained in the MQ register in bits
9-35 is displaced 27 positions to the right of the accumulator binary point -
the point just to the left of accumulator bit 9. No characteristic is assigned
to the IBR because it serves either to hold the low order addressed operand
until it can be operated on or the partial result developed during an
arithmetic process. However, the MQ register always reflects the result

of an operation; a separate characteristic must be as signed because it is

104, XG

required to be very accurate in a floating-point operation, and these low
order bits must be dealt with separately.

The double precision operand contained in the combined storage-IBR

register is as follows:

S | CHARACTERISTIC | THGH ORDER LOW ORDER
FRACTION FRACTION
STORAGE REGISTER IBR

Bit S, the sign bit, is the sign of the entire fraction. When bit S is 0,
the fraction is pesitive; when bit S is 1, the fraction is negative., The
characteristic indicates the power of 2 to which the fraction is raised.

In double precision, the fraction is 54 bits in length; storage register bits

9-35 on the high order fraction bits, and the IBR, which is only 27 bits long,

forms the low order fraction. The accumulater - MQ register double

precision operand is shown as follows:

CHARACTERISTIC | HIGH ORDER
S N FRACTION

[] CHARACTERISTIC | LOW ORDER
| N-27 FRACTION

The only difference between the accumulator - MQ register operand and
the storage-IBR register operand is the existence of a characteristic for
the low order fraction. Notice, the MQ register sign bit is not used.

Floating-Point Spill

During the execution of a floating-point operation, the resultant characteristic

in either the accumulator or MQ register may exceed eight bit positions in

length. The existence of such a condition means that machine capacity has

been exceeded: machine capacity is :xceeded when the exponent goes

beyond 3778 or below 08' When the ¢1aracteristic goes beyond 3778, a

400, 2 '

eoBoooecocecec®occcccoctfoc

condition known as floating-point overflow is said to exist. Similarly, if
the characteristic tries to go below Og, a condition known as floating point
underflow exists. These conditions are referred to collectively as floating-
point spill,

Overflow and underflow may occur in either the accumulator or the
MQ register. Upon sensing the existence of either condition, the processing
unit places the address of the instruction causing the condition plus one into
bits 21-35 of location 00000. In addition, one of the bits 14-17 of location

00000 is set to record the cause of the spill.

Normalizing

When a floating-point data word is being dealt with, it may be in one of two
forms: normalized or unnermalized. A normalized number is one that
contains the binary point of the fraction just to the left of the most significant
bit. Since the binary point of the fraction is considered to be just to the
left of accumulator bit 9 in a floating-point data word, bit 9 must contain a
significant bit if the number is to be in normalized form; that is, bit 9 must
contain a 1. Therefore, the absolute magnitide of the fractional part'of a
floating-point data word must be greater than »r equal to 1/2, but less
than 1 if the number is in normalized form. L!the most significant bit is
not contained in bit 9, the number is said to b¢ unnormalized. Normalizing
eliminates leading zeros from a fraction.

At the completion of an arithmetic operatinn, the result may be in either
normalized or unnormalized form. Certain nstructions in the floating-

point arithmetic class of the 7094 contain th(option to normalize the result

if so desired. When this is done, the fraction is shifted left until a
significant bit is contained in the accumulator bit 9 position. However,
to maintain the equality of the expression, the characteristic must be
reduced by 1 for each shift to the left that occurs. As an example,
assume the result of an arithmetic operation appeared in the combined
accumulator-M(QQ register as shown;
0. 10001 011 000111 ..uvveuvees O,
The first eight bits of the accumulator contain the characteristic, 2138;
bits 9-35 of the accumulator and 9-35 of the MQ register contain the
fraction, 0700000000000000008. This expression is in unnormalized form
because the fraction contains leading zeros. To normalize the fraction,
the fraction is shifted left three places, with the bits leaving accumulator
bit 9 being lost. To maintain equality of the expression, the characteristic
is reduced by three. The normalized number becomes:
0.210. 7000000000000000008

The value of the expression is maintained in both cases; however, leading
zeros have been eliminated from the fraction in the normalized form.
When the result of an arithmetic operation is to be normalized, the
normalizing process takes place automatically after the final result has
been computed. Normalization is specified by a positive sign (S bit is 0)
in the floating-point instruction word.,

At this point, it may seem desirable t> always have results appear in
the normalized form. This would seem true because, as leading zeros are

shifted out of the fraction, low-order bits enter the accumulator from the

Y06,3

MQ register, thus increasing the accuracy of the answer. However,
there are instances when it is desirable to perform an unnormalized
operation. For example, if the values being dealt with contained very
small characteristics (large negative powers of 2), a series of operations
could cause accumulator underflow when normalizing takes place. If the
magnitudes of the numbers are known to be very small, accumulator
underflow may be avoided by leaving the answer in unnormalized form.
Consider the M(Q register after a floating point operation. It may
containla.n expression whose characteristic is always 27, less than the
accumulator characteristic. To maintain the difference in characteristics
between the low order MQ register fraction bits and the high order
accumulator fraction bits, normalization is performed before the MQ

register characteristic is computed.

Zero Fraction

A floating-point number having a zero fraction can be treated in a
variety of ways because the significance of a zero fraction operand depends
on the arithmetic process to be performed. In addition and subtraction a
zero fraction operand just means that the fraction portion of the anéwer
is identical with the non-zero fraction operand. The result of the arithmetic
ié meaningful. Inthe machine, a zero fraction operand has no effect on
the operation; the arithmetic is performed, allowing normalization of the
non-zero operand fraction if specified. Naturally, should both operands
contain a zero fraction, the answer has no meaning and can never be

normalized. The probability of such a situation, however, is almost nil.

Hoo. 2K, . .

In multiplication a zero fraction has a vastly different meaning and is
therefore treated quite differently. In multiplication a zero fraction
multiplier results in a product containing a zero fraction: anything times
zero equals zero. Likewise, a zero raised to some power is still zero.

It serves no purpose to perform the operation because the result will be
meaningless. Also, a zero fraction can never be normalized. Consequently,
in single precision multiplication a zero fraction multiplier causes the
operation to be terminated and the characteristic portion of the accumulator
and Meregisters, which receive the result, to be cleared. In double
precision multiplication and multiplicand is checked for a zero frac;tion.
Effectively, a multiplicand with a zero fraction has the same meaning as a
multiplier with a zero fraction: the result fraction will be zero. Consequently,
a zero multiplicand fraction in double precision multiplication causes the
operation to be terminated and the accumulator and MQ register characteristic
portions to be cleared. In addition, a better use of hardware is realized by
checking the multiplier in one case and the multiplicand in the other. The

end result is a shortening of the time necessary to accomplish fleating-point
multiplication.

When dealing with division, the divisor or the dividend could contain a
zero fraction. Each case has a different meaning and is therefore treated
differently. The treatment, however, applies to both single and double
precision operations. If the divisor has a zero fraction, the quotient cannot

be determined; a divide check condition results, and the operation is ended.

406. 2L,

AR L AR NENEENEEENENENREN KN

The dividend, however, remains unaltered in the case. When the dividend
contains a zero fraction, the quotient will be zero. Since the quotient will
have no meaning, the operation is ended. However, in this case, the
associated characteristic positions of the accumulator and MQ registers,
which hold the result of a division, are cleared.

The above discussion pertains only to zero fraction operands. There
remains the condition of the result of a floating point operation containing
a zero fraction. Since in multiplication and division the result is also
influenc;ed by zero fraction operands, these cases have already been covered.
Only addition and subtraction, then, have not been discussed. In either of
these operations, a zero fraction result causes the associated characteristic

to be cleared and the operation terminated.

Arithmetic of Floating Point

Addition of floating-point numbers is done by adding the fractions of floating-

point numbers which have equal characteristics. The characteristics are

set equal preceding the addition by placing the number with the smallest
characteristic in the AC. The fraction is then shifted right, and for each

right shift one is added to the characteristic, When the characteristic of

the AC equals the characteristic of the SR, shifting stops, and the fraction

of the AC and SR are added. Bits shifted out of AC (35) enter MQ (9). The
sum appears in the AC and forms the most significant part of the answer.
The least significant part is the bits that were shifted inte the MQ. The
MQ characteristic is set 27

10 less than the AC characteristic to complete

an unnormalized floating add. If it were a nc tmalizing instruction, a check

$06. 2/

would be made to see if a 1 were in AC position nine. If AC (9) does
contain a 1, the operation would be complete; if not, the AC would shift
left until a one did appear in position nine. Shifting increases the number,
so to keep it the same, the characteristic is8 reduced by the number of left
shifts taken. Floating-point subtraction works the same exéept that the
fractions are subtracted.

Floating-point divide is accomplished by dividing the fraction of the
dividend by the fraction of the divisor and subtracting the characteristics.
During Ithe subtraction of the characteristics, the 200g that is added to all
exponents is lost. Therefore, before the answer is final, 200g must be
added to the quotient characteristic,

Floating multiply is accomplished by multiplying the fraction in the SR
by the fraction in the MQQ. The exponents in multiply are added, so in a
floating multiply, the computer adds the characteristics. Because 2008
had begn added to each exponent originally, .2008 must be subtracted from
the characteristic. The most significant part of the product is the AC and
the least lignificant part in the MQ.

Sign control is as follows:

Multiplication and Division Signs of factors alike; answer plus

Signs of factors unlike; answer minus

Addition Answer always has sign of the
largest factor

Subtraction After sign of SR is inverted, answer
always has sign of the largest factor

400, 2N

oo Doocooocoeoecoec®roooo0oo0ooooe oo

7
1]
i

QC'OQ.Q.C.C.Q.O..C..

Floating-point Arithmetic Timing

Because of the shifting, comparing and normalizing operations involved

in floating-point arithmetic a fairly complex timing sequence has been
designed. A three-stage tally counter and seven floating add control
triggers accomplish the necessary time references. The tally counter is
used during multiply and divide instructions to keep count of the L cycles
required to complete the arithmetic functions, the floating add control
triggers are used in all arithmetic operations.
The ’tally counter, Systems 02.10.21.1, is stepped by pulses developed
as first step multiply, or first step divide; second step multiply and so on,
up to a count of three, at which time the operation may be terminated or the
counter reset to zero and counting continued. The tally counter is conditioned
by the arithmetic functions being performed, i.e., the continuing demand
for L cycles to complete an operation. Once the operation is concluded,
the tally counter is reset to one.
The implication here is that the output of the tally counter is continued
so long as additional L cycles are required by the arithmetic units. This
is the case, as well, for the floating add control triggers (FACT) 1' through 7.
These triggers are constantly being set and reset at the end of odd clock
pulses. Note in Figure 406-1 that the FACT trigger shown has a trigger
immediately beneath it. The purpose of the additional trigger is to remember
which of the FACT was on at the tirae of reset. These FACT will be reset,

and continue to be set so long as they are needed.

“oé, 3

BCT L
2P OPSO SeTFPCT !
pP5et FRT | pPpiomgegrr tTo
+TAH
N 0dd FACT Resel 1P AACT |
—-A
- <
—-TO0
-7~ ¥N FRCT So7 +A0
pmm———]

fP[Vf’) Fﬂ(rfzugf

72 3¢ Rcre
+0
tP SCone
F/'g. Yok -/
4;9:#::'5-:/’7*06,3.1

~

och"lcooa.ooo‘goccooco".c

During the even and odd clock pulses following reset, the FACT control
adder inputs and shifting. During the odd clock pulse, the FACT control
adder outputs and new FACT settings. Each FACT except FACT 5 remains
on only two clock pulses, although FACT 1 and 4 may be set repeatedly as
they are needed during pre- and post-nermalization. Following is a brief
description of the FACT:

FACT 1: used during pre-noermalization when the characteristics of the

operands are made equal. U"VW«S o Ao Wl (hoecbds e e ol oA e

FACT 2: controls addition of the operands.

FACT 3: complements the AC or adds one to its contents depending on

the previous 9 carry.

FACT 4: controls normalization, including adjustment of the characteristic.

— R

FACT 5: controls fraction overflow shifting, MQ characteristic

development and end operation.

FACT 6: controls complementing of the MQ fraction for those cases

where the SR fraction was greater than the AC fraction, their data was not

normalized to start, and significant data was shifted into the MQ and signs

unlike.

FACT 7: controls placement of the MQ data corrected in FACT 6 back

into the MQ.
AR

Floating Add FAD + 0300 (Min 2 cycles) Figure 406-2
(Max 12 cycles)

This instruction algebraically adds :he floating-point number stored at the
location specified by the address, t: the floating-point number in the

accumulator. The most significant >art of the result appears as a normalized

0 9 OO0 00000 000000000 g o0

406, 4

floating-point number in the accumulator. The least significant part of

the result appears in the MQ as a floating-point number with a characteristic
2710 less than the characteristic of the number in the accumulator. The
signs of the AC and MQ are set to the sign of the larger factor. If both the
resulting MQ and AC fractions are zero, the registers will be reset to
contain normal zeros with the signs corresponding to the original factor
having the smaller characteristic. If the characteristics were equal, the
resulting signs will correspond to the original AC sign.

The‘result in the AC is always normalized, whether the original factors
were normal or not. No attempt is made to normalize the MQ.

In any floating point addition the first step taken by the computer is to
equalize the characteristics. Assume the problem is to add 165 and
142010. The correct sum is 1585,3. Upon conversion to binary these
operands become:

16510: 245_=010 100 1012

8
and
1585, 4= 26148= 010 110 001 100,
As floating point arithmetic expressions these numbers become:‘
010100101 =.,010100 101-2% = 1001.010 100 101
010110 001 100 =.010110001 100 * 212 =1100.010 110 001 100
Notice that the characteristic of the smaller number is 11g and that of
the larger is 14g. To equaliée these two operands the smaller number
must be shifted right three places and the characteristic increased by 3;.

The smaller operand then becomes:

1100.000 010100101

$06. 8~

~

oo Dooooooooe®ocococeocoocooeBec

0 PO O OO OO O 00 0000000 9o

The two operands may now be added as follows:

1100.000 010100 101
1100.010 110 001 100

1100,011 000 110 0O1

This sum =.011 000110 001 * 212 =011000110 001, = 30618 = 1585]‘0
The above example illustrates a basic addition of two floating point
numbers. Actual machine operation is contained in the following pages.
While the floating add instruction is a simple one and basic to the 7094
arithmetic operations, complications do arise because of unlike signs,
fractioﬁ carries and shifting significant bits into the MQ during equalizing.
Figure 406-2 illustrates a basic FAD instruction. The problem has been
specifically selected to illustrate one of the shortest routes to completion.
of a floating~add instruction. The letters in the lower left corner of each
step in the flow diagram refer to the explanation below. At the start it is
assumed the number in the storage register is 2316070000008. The number
in the accumulator is 231370000000g. Recall that the adders contain the
positions 9Q and 9P and the accumulator contains 9P. None of these positions
exists in the storage register.
I“.xe’ following sequence of events takes place for the instruction IFAD with
¢iie numbers specified above.

A. E7 time the primary operation code has been decoded as 30.

B. The C (SB) are gated into the SR. The various registers now contain
(in positions S through 17):

S 1 2 3 4 5 6 7 8. 9Q 9P 9 10 11 12 13 14 15 16 17
SR0O 1001 1001 | 110 0 0 0 1 1 1

ADOOOOOOOOOf{OOOOOOOOOOO

ACO 1 0 01 1 0 0 1 | ©0 011 1 1 1 0 0 0

C. Al is injected intoe position AD 9P, this will later develop a 9P
carry if the sum of the fractions causes a carry into the characteristic.

D. Al is injected into position AD 8 to furnish the 1 needed for the two's
complement of the accumulator. AC positions Q - 8 are complemented and
gated to the adders at the same time the contents of the storage register are
gated to the adders. The registers now contain (sum in adders):

SQP 1 2 3 4 5 6 7 8.9Q 9P 9 10 11 12 13 14 15 16 17
SR 0 1 0 01 1 0 0 1 11 0 0 0 O 1 1 1

ADO 00 0 O OO O OOWO o0 011 0 00 0 1 1 1
(the carry out of the adders is lost)

AC000 1 001 1 001 0 0 11 1 11 0 0 0

E &F. AC9=0but SR 9=1 so the normalized data latch (a reference
for later shifting) is not set.

G. The characteristic difference of zero is checked by sensing the
exclusive OR outputs of adder positions 1 - 8 (see Systems 02.13.47). Note
that if a characteristic difference exists the contents of adders 3 - 8 are
transferred to the shift counter.

H. Sign of the AC and the SR are checked and found to be alike.

I. SR 9=1 as we had previously determined.

J. FACT 2 is set as a result of the check made at point G. FACT 2
controls addition. The end operation trigger is also set and addition takes
place during the next two clock pulses.

K. The C(SR 1 - 35) are once again brought to the adder input. Recall
that previously we had brought the C (SR) to the adders to check fo;' the

characteristic difference between the operands. We are now ready for the

actual addition to take place.

oty

coBooooocoocoooe®ocscsccscsoclaece

S0 goeococcoegppoeoeecooogooe

L. Again signs are checked and found to be alike. This seems
repetitive but as will be shown on the master flow sheet for floating-point
arithmetic, each time the signs are checked, more than one possibility of
subsequent action exists.,

M. The C(AC 9 - 35) are gated to the adders and addition of the C(SR)
and C(AC) takes place. The carry developed from bit position 10 will
cause a carry into 9, therefore a carry into 9P. Because we injected a 1
into AD 9P in step C, the carry is continued into AD position 8.

N. ’Positions AD 9 and AD 10 are checked and found to be 0.

O. The check made in step N causes the pre-post shift trigger to be
set. The pre-post shift trigger will control shifting if normalization is
required.

P. Signs are alike.

Q. The C (AD Q - 35) are shifted to the accumulator and AD 9 Q is
shifted to 9P. The accumulator now contains:

SQP1 2 3 4 5 6 7 8., 9P 910 11 12 13 14 15 16 17
coo01 0 0110 01 1 001 11 1 1 1 1
Except for shifting due to the carry, this is the final answer.

R. Adder position 9P is Sensed for a 1 and, since it does contain a 1,
FACT 5 is set. We are not in L time so steps S and T are bypassed.

U & V. FACT 5 is set at the next odd clock pulse to control shifting of
the AC -- as a result of the 1 in position 9P.

W. AC positions 9 - 35 arg;shifted right one place. At the same time
the contents of AC 1 - 8 are in%:reased by 1, to compensate for shifting the

fraction.

40,8

X. A zero check is made to determine whether we have a true answer.
Y. The C (AC) is not zero.
Z, AA, BB. These operations would set the accumulator characteristic,

less 27 into the MQ.

10
CC. FACT 5 is reset at 15 time and the end operation trigger is turned off.
The answer to the problem is in the accumulator in normalized form.
The foregoing description of a FAD instruction covers one of the least-
complicated examples of this instruction. It is possible that many other
decisions and actions might take place during a FAD instruction involving

other numbers. Figure is a flow chart showing all the possible contingencies

that might develop during a FAD instruction.

Y40¢. 9

Y R EEEEEEE L XX EEEKEKEKXKER X

Fra

&6l — 2

FAD 0300

POD 30"

s8— SR
¢ E(DI)

l

Q

/ te AOTP
POO 30
oa./z2. 111

i

/ ¢

ADS
8 ¢ AD

AC Q-

SR1-35 4 AD
E time

Sheer)

Se7 NOL
E8(D1)

”n OA. 42,011

v .
- A e Characlersstre ﬂrffcoeoug

e

J .

From Sheel !/ Shea!

VIR WY XY $]
=/

SRI-35 4o RO

g "47;& e

,C‘

AC C—235 o AD

P 9P Cave
M _ca, Y. 231 4

Ade =
RO /e
o

Se7” 7PPS
t"r” ¢r

AN

VRSN

ne

ADQ-35 44 AC
AD2Q » Ace P

so SheaT 3

o000 0000000 0%c0o0o0oooelece

Set FRCT 5
vdd clock

y

FRCT S .
v 0a2.13.87./

ShifrAcy-
&R

maoq-315 —»3R2,
MI-35 >R ~2ere
I dtree

At mQio\ yod

Y

ne

REQ-8-"40Q~8
12 A40Q7% 1,348

z racoa)d

oL/-8 -‘7:1/-‘3
R Y A 04)

b

. Do SRI-2 >ompr-8
S . Aes —» Mmeos
' : rsCoen)

<L

. ReseT . —
- » Faer S /‘,‘j

.‘_‘ : ‘ i) s lec o)

L sola®

\ 3

® O .QAQ‘_..O Q.C'Of..‘. O 00000 ¢ 0 0

ShHee7 3

N
Qy’ 7094 SINGLE PRECISION FLOATING POINT ADD

This instruction is asynchronous in operation and is controlled by I time, E time
and 7 floating add control triggers (FACT | - 7). Theee FACT are @lways reset
and set the latter part of each odd clock pulse. They serve to control adder inputs
and shifting during the following even and odd clock pulses, adder outputs and new
FACT setting during the odd clock pulses. Each FACT except FACT 5 v;ill remain
on only two clock pulses; however, FACT | and 4 may be set repeatedly as they
are for pre and post normalization. FACT 5 will be reset only at I5 time. The

following is a brief description of the functions of each of these controls.

E Time

E time is used for sign mixing, determination of characteristic difference and
register swapping if necessary to place the smaller operand in the accumulator and
the larger in the storage register.

If both operands have normalized fractions the normalized data latch (NDL) is
.turned on for reference during subsequent FACTS., If the characteristic difference
is greater than 778 and larger of the two operands is normalized, it is placed in the
accumulator, FACT 5 is set, and the operation is terminated. If the characteristic
difference is equal to zero, either of the operands is normalized and the signs are
alike, FACT 2 is set for addition and the operation is terminated. In all other

cases FACT 1 is set for pre-normalization and the characteristic difference is

placed in the Shift Counter.

The following extended description of floating add control triggers is to be used

in conjunction with the flow chart to determine computer activity at any stage of the

flow chart.

#ob. 13

0'05000000000000000000000

EN EREE XX EEEENNFNFRNNN RN

Floating Add Control Triggers

FACT 1

FACT lis q_sied fpE‘px;e::‘n'qrmaliz_;tioxfx. The contents of ACC (9 - 35} and MQ (9 - 35)
are shifted right each clock pulse until the shift counter goes to zero. ACC 35
shifting to MQ 9 is determined by the NDL.,

If the NDL is not on ACC 35 is shifted to MQ 9. If it is on and the signs are alike,
a bit in ACC 35 will set the pre-post shift trigger (PPS) and ACC 35 will be com-
plemenrsh’ifted to MQ 9 after this first bit has been shifted, thus placing the two's
complement of the value shifted out of the ACC into the MQ. This will save recom-
plementing the MQ after the addition. FACT 1 is set repeatedly until the shift counter
is zero or one on an odd clock pulse at which time FACT 2 is set and shifting is
completed. If this occurs at L. 9 time (9 or 10 pre-shifts) and the NDL is on or an
unnormalized instruction is being processed, the operation will be terminated.
FACT 2
"FACT 2 confrols the adding of the operandg as fpllows:r '

TRUE ADD

If an overflow results from the add it is allowed to ripple into adder eight position
to increment the exponent, the contents of the adders 9 - 34 are placed in the ACC
and FACT 5 is set. FACT 5 is also set if no overflow occurs but adder 9 sum is one.
The instruction is terminated for either of these cases or for an unnormalized
instruction if the odd clock pulse is at L. 9 time. FACT 4 is set if there is no over-
flow and adder 9 sum is zero.

COMP ADD

If no AD 9 CARRY results from the addition, FACT 3 is set for recomplementing

the ACC, FACT 3 is also set if there is an AD 9 CARRY and the MQ is zero; this

is done to complete the two's complement of the ACC by adding one to its contents.

A1

FACT 6 will be set if there is an overflow, the contents of the MQ are not zero,
and the NDL is off. This is for complementing the MQ. FACT 5 will be set if the ND!
is on and normalization is not required, or FACT 4 set if normalization is required. ‘

In either true or complement add the PPS trigger is set if AD 9 and AD 10 are '

FACT 3 is used to complement the ACC or add one to its contents depending on the '

[i

zero.

T FACT 3

previous 9 carry. FACT 4 is set if normalization is required or FACT 5 if nor- ‘

i

malization is not required. If this occurs at L 9 time the operation will be terminated

if the NDL is on or the instruction is unnormalized.
FACT 4

FACT 4 controls post-normalization. The contents of the ACC and MQ are shifted

= {

left each clock pulse with MQ 9 shifting to ACC 35 until ACC 9 contains a one. If

e% o

L 9 time occurs during FACT 4 and the ACC contents indicate less than six shifts are

required the operation is terminated. FACT 4 is also used to adjust the characteristic
by an amount equal to the number of shifts. This is done by subtracting 1 or 2 from
the characteristic each FACT 4 depending on the PPS trigger which was initially
conditioned in FACTS 2 or 3. If this trigger is on, it indicates that AC 9 and 10 are
both zero and the characteristic must be decreased by a factor of two. The PPS
is reset eachodd clock pulse of FACT 4 and set again if AC 10 and 11 are both zero.
FACT 5
FACT 5 controls fraction overflow shilting, MQ characteristic development and
s o \

end operation. . Existing 7090 trap checks and procedures are used during this

operation.

.

Kil il S

00 goooooooeocgee000000gQg00

FACT 6

FACT 6 controls complementing of the MQ fraction for the cases where the SR

fraction was greater than the ACC fraction, their data was not normalized to

T {

start, the significant data was shifted into the MQ.
FACT 7

FACT 7 controls placement of the MQ data corrected in FACT 6 back into the

MQ. FACT 4 or FACT 5 is then set depending on normalization requirements.
—_

L e e

“o4. /6

FAD -

fop 30
I7cRET7

t

oy

FIRST CASE
(S1gNS ALIKE = EcULL CHARS.— AT LEAST One OPERAND NoRraL)

ALLcw

Pop 30 170 AD YF 9 Carry 70
P dsE T 'puf,7
2./3.97.1 CASE
AT FACT 2
S CemP AC Q-84 AD PYTIRYD
£ Tome 7 > AD8 CHAR. DiF,
12 SR i-35 »AD (a)
2./3 47/ (54)
EB8 -
ET
41,/%.5 2. IMQ(}/A)
ACY ok SRY=1 _SET F/QCTZ TukN ON
Signs AUKE L END OF oF £y of
- £ NoT GATE
LAk Dt 20 2./3.4297./ (26%24) By %o
SR I-25 3 AD y
LACT 2 £ okt C2y HAADGATE
2.13.5/4 7
5 AC 9-35 3 AD

S 1245 ALk E

E/0DME (2)
2.13.541 (2¢)

N
PPG 9P Carry
£/¢ 418
2.02./2.1
v
AD G- ¥AC 404G »ACYD
CDO CiotK

243020 (34)

TN LK

SHIFr 4C7-38 AT
SHiET MGPIS RT
P.13.571 (50}

ADI-& > SR I3
2./3.57%) (20

RESET FacT &
5Dy

706,17

SENDS GRP
CakPy To A28
T 0o /AT REMeNT
cnAk.

GRouP 7= 97 9,19

Ao DILECTED
9L TS SigNal
ALACTIGN OVAL,

REMEMBERS
FRACT. OvFL.

Deveie?
MG CHAR

SENSE ADP

A

Qo000 0000% 00000000

FAD-SECCND ChsE
(BoTH S7TcAsrG&e+AC NOKARL)
EXFONENT DipfeEdence p 77

D50
N

] CemP ACG=8 5 4D
E T/ME /3 AD3R

SR 1-35 = AD
2297y (54)

FESET MG FG
£./3%7) (4D

(SKZAC) Yes G carry™ /\/()\L (A SR)

A D SwAP L —SR
/0R2 £9 Dr
= 2.13.47) (4446

YES (8)77)

YES ' YE

FNL op
2:4142/(81)

SET FACT 5
£/l Bayp

AL G-t > AD |2 357 (2¢)
1940 4,542,368

AD ~£ » SR -8
T30/
L2137 (22

}

SKI=5 3 My i-§
/ics+7/1c.s
R IL ST (26)

RESET FACT 5
5 D/

PTG/ 2

NO

FLOATING ADD

\

[POD 30 \
\ E7--E11
!
Y.

1 TO ADDER 9P

COMP AC Q-8 TO AD Q-8
1 TO ADDER 8
S.R. 1-35 TO ADDERS

E TIME
52.13,97,1C2 B)
SET NDL | ST 4 xkr{r{’«\%*
E8D1 " sk »AC
4] .
>
G

ESD1

SET FACT 2
END OP

¥

NExT 7865

“106.19

60.00000000‘00000000000

AHO1:42

W
<

©0 goeoeoOeOOOOEQMLOIEOGIOIOGIOGIOSGIOGSNQgOIO

*

rMeTEr

SIS

REscr HOL

(&)

" idou, 194

oy GOBGT g

éy?,/}:

2 Yes & ChkRy N0 5047 AL-SR
N 1// (ALLR) £ D,(N';,T:')
Y£S (A4C)5R)
AY77,
T i N
LeseT ROD

VS

(jum Megasni)

SET /3'/(95 Y YES /c;.—, No
c‘,
£792 (21) (¢
7 \ Ao

,‘ R P YES
AD 9-35 7o AC]
21387/ SK S, -8 To #e
: £s0 02 (2¢)
S¢ rC_/F/;b;' S
(30)
\f
70 FAT &
I APt

EY DECI1Sriws A7
AFFETED £ y SwA P.

AcP¥ SK S
Acs »SLs
AN 9357 > AC
SiA -8 2> He
A 1R S
S5 - ACS

Ce b W —

7/

FACT - 1
02.13.49.1

=

SET END OP
LoDl

vES. SET PPS FOR

NO
sC=0
YES YES
YES
L9
NO
SET FACT 2
ODD CLOCK

¥

Te FAT 2

PRE ST SHiFT

NO YES
PPS
NO
SH AC 9-35 RT AC 35 - MQS | |AC35 «» MQ9
;’:S‘{Q %;ésc;“ EACHCLOCK | | EACH crock
J

—

S7ep S.C.
LAcH CAcch

SETFACT -1

* E\)D Gf’ Cowoi TIexS

L Sigus Rutkd HvO NDL eV

2. Y NERMALIZED

10870 Al

(5/7‘\/5 Ghike oK L M)

60.00000000‘00000000000

~

FACT 2
2.13.51.1

2;13.52.1

STORAGE REGISTER

i=35tw AD

ALIKE

SIGNS

. BTL‘ SR
ZER .

PPG 9p CARRY

AC 9-35to0 AD

!

MQ 9-35 to SR
ZERO TEST

T
N4

-

comp AC 9-35 AD

.Ctj_‘lg“.“.'.ﬁ..

. -, '
T—————J =y
& SET SR g
00D CLock !
AD9Q to AC 9P
|
YES /\\ NO 9P
IGNS ALIKE. CARRY NO
S
NO ORMY
INST. siT SR . go{ Cs
YES
YES
TuAw O~ Keyer
/’;t'(-‘"”f ~r PosT SHET NO
o (oA
NO
YES
\ YES
\ ‘ NO
197 f
YES E
END OP
? |
. Y ‘
SETFACT S SET FACT 4 SETFACT 6 SET FACT 3 {
ODD CLOCK ODP CLOCK ODD CLOCK ODD CLOCK }

“'0¢, 24

kv

FACT-3
02.13.53.1

AT3-35 — AD

!

AC 9-35 —» AD

}--- AD 35 ‘
AD 9-35 = AC
ODD CLOCK ‘
END OP *
4
| @
YES AQORM ‘
\ o
RE
NO SENSE
Clo
YES
R?S e7 SET POST .
PosT SHIFT TGR
SHIFT ToR ODD CLOCK .
: o
SETFACT - § SET FACT -~ 4
ODD CLOCK ODD CLOCK ‘
L0523 | @

CQ‘C..‘_C..‘.‘0.0Q.CC..C'

FACT 4
2.13,55.1

AC Q-8 to A}
ONES TO AD
1) 2’ 3l 4’ sl 6!

Lo m

AD Q-8 TO AC
ODD CLOCK

|

AC 9-35 to SR
MQ 9-35 to SR
ZERO TEST
ODD CLOCKS

SET FARCT
5

MO and
AC=0
YES
RESET AC
SET FACT 5
ODD CLOCK

AD9= 1

YES

SET FACT 5

SHFT AC 10-35
SHFT MQ 10-35
LEFT

CoDD
CLOCK

NO

L9 YES ‘
No
YES

END OP

\

SETFACT S

ODD ClOCK

RESET FACT
4

TO FACT §

706,23

/?(se7
Posi SHIFT
7ER

l

TO FACT S

SET POST ;al

ODD CLOCK

FACT S
2.13.57.1

SAS = 4C S

Z3 D¢

SHIFT AC
9P-35 RT

Sy

7

~ ﬂ’ (///j' i’/éu’zw<’ Q\a(}(

<4

END OP

N

AC Q-8 TO AD Q-8
ONES TO AD 1

Q' P' 1’ 2' 3' 6l8

MQ 9-35
AC 9-35

ZERO TEST

NO

AD 1-8 to
SR 1-8

13 Dt

SRI°8 &

MQ 1-8

ACStoMQS
14D1

RESET FACT §

ISD1

S0k, A4

SET MQ
OVERFLOW

P

5
A
<
[
1)’/

RESET
ACEMQ
CHARS.

ACS>
MRS

I3/

oo 8 o000 0o000%cscocsocseceBec

FACT- 6
02.13.59.1

Y 'LL,*’
: &W\,(n *‘Cv’ﬁ’ /UQ‘ C»w‘i{/

RO — AD R

l1--- AD 35

AD 9-35 —» SR
SET FACT 7

<

| FACT - 7
02.13.59.1

9

SR 9-35 —e MQ
FACT - 7 ODD

@ YES
NO

YES

SET FACT - 4 ET FACT . S
ODD CLOCK ODD CLOCK

']

©0 3000000000000 0000GgOEO

Yos: 7+ 4

00-300..oo.-og!-co..oo.-o..-o

GRRAT N =I5 9) oF -7 i F

g ! _
%NQ&Q.S , _ | (onda IT7) O <dy Y
8298199 041 ¢ | [H 7o WS daf 577007 oL Lid//
(1§ 1@
¢ L :
<7 mnw\m\a,&m ¥ SYICeY 11 Lasat S STV Z 197 7 1057 5135 O 49 41 I¥H ~ jll‘l.
J h& M. 0 . N TG ST vi] 39gU e of Log N
LssIto L Lo ST _ S LYd d*
o) 70 - A (L) (amat) ¥9L TWEsdF
, (37ddn) 9L 21064 d + M/
T Hz+%¢ | N
b el 20 -
\J Z ¥ 175 44 wd/

I e I A o W

' 2 o — 3 %) dollf QoI N

R AV © _ ﬁs_ lew._”‘»w‘.wuw LigTd M
— - A

gg\wmwwwwﬁ T|._ _ -_ : _w a %L

/ 13 4V M~
) e dgH \ i) a
438 Joawy o/ [0] /I o7 L [3avg qiIn
FAya QQQ %‘\Q\Q < B SR ~ - alg @ J~ _

r

N.;xr.wo(PN IND Ly I T LY =TT Yy) — FEITY mzm\mv

g¥4 —SSH WIL 27dWYS

D

FRET™ SEQPUENCE
L E -5
ZE=/-2-5"
LE-/-2-3-5

T E-/)-2~-3-Y-5

IE=]-2-H4-5

LE-/-2-6 -2-5—
Z2E)-2-C~0-4-5

0 OO OoOOOOOEMLOOIOOIOOEONGQEOES

/22 %, o

PHRL —SH/FTS BSr-SHI<TS

9-/0 -

7-8 -

£4
&Y
70
y 2
4
& 4
A
[
L0 Y
20 %

PSR 2 9) T U W W

/-2 £ H

N
1
N

¥06. 25"

CYLES

Wl huwlwwuewwwe e byl

FLOATING POINT MULTIPLY

In floating point multiply the contents of the storage register are multiplied
by the contents of the multiplier quotient register. The product of the
multiplication is placed in the AC and MQ. AC positions 1 - 8 contain the
characteristic and positions 9 - 35 céntain the 27 most significant bits of
the fraction. MQ positions 1 - 8 contain the characteristic, less 27,.

The 7094 computer simultaneously performs two distinct operations
during a floating point multiplyfinstruction: |

1. ’Addition of the characteristics.

2. Multiplication of the fractions.

The characteristics are added because they represent logarithmic
notation. The fractions are multiplied as in a true binary multiplication.
An example of this kind of multiplication would be the problem to multiply
510 by 510, which would yield the answer of 25,,. Conversion to binary
gives 1012 X 1012. In logarithmic or exponential notation the binary
expression 101 becomes 011.101 (binary point to be moved three places
to the right).

Adding the characteristics:

011
+011

—————

110
Multiplying the fractions:

. 101
x .101

101
1010

————

.011001

40l 31

oo Dooooooooe®oooocoocoocoe feco

© 0§ OO0 0000000000000 g o0

Adding the two products gives the floating point expression:
110,011001

The characteristic 110 indicates the binary point is to be moved six
places to the right and the fraction .01100]1 becomes 011001. This is the
correct answer because 011001‘2 =250

Handling the characteristic and fractions separately is exactly the way
the 7094 performs this kind of problem. As previously stated, the action
occurs simultaneously. The characteristic is computed during the first L
cycle, at the same time part of the fractions are multiplied. Fraction
multiplication is completed during subsequent L cycles and the two separate
products added and the sign fixed during I time of the'following instruction.

As in floating add, the value 200g is the dividing line between pesitive

and negative numbers. Because both characteristics have this value, 2008

‘is subtracted during the multiply sequence.

In the previous example it was assumed both numbers were unnormalized.
Therefore, normalizing did not take place. Had both numbers been
normalized, the product would have been normalized.

Following is a summary of computer activity during the execution of a
floating point multiply (FMP) instruction:

1. Bring multiplicand into SR.

2. Check signs and set sign of AC to the algebraic sign of the product.

3. Add the characteristics of the MQ and SR.

4. Subtract 200g from the sum of the characteristics and place the

remainder in the AC.

Y0632

5. Multiply the SR fraction by the MQ fraction.

6. Set MQ characteristic equal to AC characteristic less 27).

Other steps taken by the computer but not covered in the summary
include zero checks and normalizing. These will be shown on the flow

chart of the instruction.

Figure 406.2-1 is a flow chart of the floating point multiply instruction
sequence.
The following summary is based on the cycle of operation the computer
is in dx;ring execution of the instruction.
E Time
The following steps are performed during E time:
1. Set SC to 334.
2. Bring the multiplicand from core storage and into the SR.
3. Bring up data gates between the SR and the AD. These will remain
up during E time. |
4. Perform a zero check onthe MQ. Refer tothe functional description
of the storage register for the mechanics of this zero check.
5. Clear the AC and load AC positions 1 - 8 with the contents of SR
positions 1 - 8.
6. Because SC 17=1, set SC odd trigger.
7. Check contents of MQ positions 34 and 35 and set appropriate
trigger for first fractich multiplication.
At the end of E time the computer is prepared for the first fraction

multiplication. Multiplication takes place during subsequent L times, at

406,33

0000000000 ce®cococcclaece

Q.'.OQ,O\.Q.C'QQCQQCCC'QC

.

NN

~.

a rate of 12 bits each cycle, i.e., 12 bits of the MQ are processed each L.
cycle. If the full 27 bits of the MQ are to be used, three L cycles will be
required. This fixed the maximum number of cycles required for a single
precision floating point multiplication at five -~ one I, one E and three L
cycles, The characteristic is processed during the first L cycle.

L Time

During the first L cycle the computer simultaneously processes the fraction
and the characteristics. Notice on the flow chart that the tally counter count
must be one to enable the computer to add the characteristics. TC is one
during the first L time of FMP. The tally counter will be stepped at the end
of the first L cyclé. When TC = 2, the computer is blocked from fﬁther

processing of the characteristic.

e, 31/

e

‘ ’ ‘ v 2
N YR N s o . - H L”;A ..-v - . .
e e e bt et g AT T T e s g & sl e o s b e sy o l TIPSyt e vy ¢ - . : L etme ==
. B R Ly
{ “u /,'31{?,{9‘ T “)L‘ POD

i

INTHR RN £

7‘7/1‘ }
i 1 | .
Set SC spSR sg;-AD
(1’ a [} &7 o1 & n ‘.‘g
0).06. 4./ ©02.12.50.» 2 ;o.Ja(/
ﬂ0~ SR Zeore Chocd on NQ ;
’A"'} / F
\ _*a !
s ATgger W ¥ o Meteny of gl
— P ! bis Prigged st
ad £ <t SR =D ! av ey ,,’c’o-o
2 TV / 02.12.%81
- /1, Y./ : | Redagprmehore moq
teedei > (Uic ecdew el ove M0 |
SRr0O (; i
' ' Féio so aelva - ' ~ ¢
. . roe valve of m‘;'n < S£R,DOI 1 . :
' Toan Ow lt
’ﬂs;ﬁb
I
| Reset SC A-u ["
I 3224
J\ I .
Cloars A0 and pots | : !
S8 I~8 mre #CI-D . .
! AD~> @(s ; l
Aol : :
on./9. .4 _ \
b 7o End Op 10 € Thme ! l
; A . i . i
|
Sa? SC i
. odd Tgr :
, ' L. it JEN
foa . sc-_:_>-m- - - :
‘. e
| 3 ;
End Op '
‘| #fter Ona
N e T mg
¢ N .
; Torm On ;
i Praveitrratn .
: " TLEE1 avactoprnt Tebnd 0p ,
! - X VS IWININ] B D . i
! . o - :
‘ ‘ :
. |
i i NG35=/ No :
i ! B
| l
i ves .
' I Ser r/X|| Ser #2X
H ' & ser &t tov
: ! Sel? '/X SeC Stramy TR N Aasd 1L
! i €1 Set ot
g °r. 3. 781 LTINE Be 3 Wi
'
i

. Yyl 2~
7y v

+ BT

%L ?,lnv mPY Cyale

s ” P

e MEMCA A e et AN Tt LAUA Wit LA it LA e 0 -
‘ il
}

Q',_; VIR 1‘ M_LLAA QRIS A W

Ecom fg.i
L TimeE
. MPY Cyee
® ! o
AC 9@ > AC §-35-
Ap 9°,94Q AD7-85
MPY CYeLE MrY ek
Qe d3V 2.1
. 2:13, 7%, 2.43.28.¢
FRoM
SHT 3
. NO YES
TO
. CHRROAC TELIST
TEVR LoPMENT
® L
ro & rimg NO ‘
Fr° TRGR owl ‘ C
@
h Y 7
1=»10 7894 IR0 85 Come §r SR 9-35 SR 9-35»
‘ 9-35 4 40 2 509-36 A0 934
43.29.1 2,/3,22.1 2.43.,27.1 213,711 1/8,22./
o s "
BLOCK
® o
LAST
?u vEN)Y (&vau)
| 13, 79 4/3:791]
o @
o _
o To Sheel 3
//
‘ SaLe PRECISION
FLonTAG MULT;PLY
‘ SHT & 3
‘ Loe, ¢
T

AN, =X, F2K

Ho¢, 3e R

Froanaé 1MoeTi L Y

SHT *¥3

S
~

{ T
Al 35— AD Ig-34 STer 5C
maq9 - /&Q Cry (obD crock) YES r/C
213,791 2.3,79.1
: I .
¥ l 1]
SHIBT MQ AD 3y NP onzaﬁc‘? AD 733> ADIQ >
RESET 9-38 Rrr 4 {#~Q %10 40 9F-> ACId | AC /1788 [AL9r
MPY CICLE (z—vzﬁ%z rr‘:fj
'(ur.xr('x:»/zzm 2,/3,13.¢ 2.03.7%. 1 2,/3.79./ =2./2.79./ 2.2,79. 1
2.3,23.4 .
Y
yes/ 3C=/ ‘
?
— ™ ®
BLoCkK
! Mm@ 31-33
8 DECODE
. YES / s¢c=2) .
?
‘ Ve |
Berocr
mIIa2 ®
TECOREFR
s @
MO/ pg 32 \YES o
; @
ves / M4
33
4B > ‘
™y N \
ISTEC SC SET S5 S&ET
c SET S7ECIVG
(ODD LOCK) +/ x —l)< " f::x 8,7‘
201279/ 2,/3.2S5.1 2137501 | 2,103,285,/ 2,018,781
N | | ¢ L ®
e SINGLE Peec)Sion ‘
SHE:ET 2

o

0 gooooooeeLOOOOIOGIOIOQgEOETE

c 8

_JA
&l

e e /M

cuce onlf
14\ '.@M /\,‘«'.(
k”ugﬁﬁ% AT 1—=A0Q f I
. . g,-l’l/' 40 03
7 o%./2.27, {
» al e
ADR-8 prnbhplec*
—»{9 (hor
A2 O
lea.)3 0oy, /
]
RO /- 8 c%‘ QoA 3
- v ‘\ Y
or./3.0%/
=08 | m4
2. 1D NLI
heo-e ey
Rl EpT
tis s 2803
[ID.2 Y. 7 JEe3
‘ e~
A [
LL(»LQ-(‘J
90681 o e
f}LS $rey? ”/o DI) “/q/l'CLVLL
//ML/ C]f / O‘Z;;;-———_~_0 1.49.3101 Ao
A D T k/\/ on
i "
T2
B o]
(k‘\u:ﬂv.‘ut
ccv‘uuluf‘- Sf;'// 02
Charaeteristic Developmenl — AP

“o6,3

i

¥

9
Frim End Op
e €& Trme

L Time
Ff?}ral

X denvles tanditiancd by *umu/i‘;r/ NP

o2 (Y9,

Serpad §
e g

yes 0
. 7CQ-§ /-~
t’o ~”0 » Q- £ *
Sr03
OS.43.0Y.7 2,70, 2Y.
4 *
AD -85 FP Shifr shmp 10-33F moa=
o A v i i9.id
23.72. 3.1 22,3, Ya.d 02./3. 2./ oa.n.]va,
N T T
_ B
L
End Op
1
1
L Time
HesT nsT |
| 1 I
w2 72 gemp K | |/~ P DIT
- 5.~
777 T Op Om ¢nd Op On
03.42 22,1 c5.13.27./
Lesct me ‘
/—354, ‘
L":g:,vogl.f,l 0,70, 28]

&

Vet

’

IFewn

/L{L AlS

¥ N LT/ME

4018 P
S Zaer

02./3. 0Y./

1

SeI-&
,60{)70

el i s

/ﬂ? Plus
rior
0>./3. 9/./

Se7 pCf

. W ‘/_zf_.CofiS(.

I3
02,/3. Y/.1
=

N '

|

YR EEEXEEREEE L EEEEKEEEXXX XX

)0 §©0 0000000000000 00Q0¢F¢

AP =
€ o4n FHCE
® I 7TimMg
Tl oY e ’ ‘
SINGULE FrRxCISs)Ion)
\’ FLor mitG OO
Do & =
J Duves)
S/NGer ?%éc,;s/ou e
oLy [
'3 Y
JIWESET 335 > SC
MY S, 1-35 EED)
/53901 DiviOor RY o
2. ' P '; ’ ’ ‘
5L ,.a_&§§_J,4
1 Su/ﬁ?" r°r 3‘ S r;&" L 03} > /P@EU‘EUT’ ikl
FPrP SHIFT AL B5—> 111~ M 3" or mg Bs
E/o D/ AC 9-3¢ Yz MO /-34 mo s
° E0D/ E?go/ sQ;o ol p,ﬁ:./ Z)uﬁ-.)/ddluz?gué’ké
2.13.92,1 2.3,33.1 413,42, 1 2./2.93.4 Q8. 85,1 LIV k&
L I []
175 oBccrives £ TImE
L DIV tHik TRST FIRST 7K
a, 55T M SIGH 2.00. 9/ 1
3, &0 OF IF ACz=/MQ=O
4, Dt ACC 1~ MOT
DIVIOE CHE & h & L4
< 3K 9-35 > Com > [Hce ACLSR
AD G-35> A D YE S
PO B3 [o P23 |
2,113,310} 243,23,
L 1 \ f 1
rUeN ou FURY OM ruorey o
PR TG - :ol/ FPA gg/’cuh
S0
A / 210,38, 1 :14/015‘3"
L |
)
A
SeT M EESET
S mipNU nie s
AEOIL HB?)/ v
| 243, 9. 2,07, 8571 e SDEE DiviREMA
l - 3’1 Pm/o/(:’/c‘uum_ Foem
£
¥ ¥ r ¥ 1
FR SHIFT A SHIFr «T g9 SWiET T mgs >
ARDY we /0-38" s 38 me 2-85 mey 35
AS Ll 73 O/ A 3D » 30/
2.3, 93¢ £.42.34.1 2,17, 4S8 | 2003980/ 2./3,85,
L I | {
-) Al 9"3.5-30
'/‘ ' Y — i Y
. (Xt s -8 2 QoM CAR/wE 5
)(Ll L/q A0 (D=2 A —= /2 25 O ES
[A4D3 £ (A3 A3
e © 2013, 24,1 2,733,321 = /3.37. 1 S&r- Ca 9
¢ Crnwo 7GR
R Aed/
£ 1l)
cv‘(A ¢ *
N 70
SHEET 2 217

...CCQ““:.Q.Q.'...'.

QC.Q.Q...."QC..C.Q.Q.

SHeErT R
FROAY
PAGE 1
|
ADG-8 2 AC
IS XX N
’ i t3.34 1
TV WV ofFF
SINGLE [FACEc;ss04/ COL 9 charny A
Fronral, Divioe AT0!
A 132, Q&
L -
on COL 9 FF
Y
TrEGR
\ 4) 4
rue;_u o Ser AC S A0 G- ssPAC \—* =/ FA
> /2] M0 D O~)
710 D] oo oy g EtseF TG
2,00,3%) 2,039 (=.138.2/.4 |AC
| ! Evo 6/~
, 0,387/
70 = "
I TIME NEXT =<

SHT 3

¥

L rimE
TEST FelR
2 ST
2= STET QUoTIEMT P |
91/0:‘/2; /
CompP AC
@-85s"> 0
0032
23]v-a ./
Y K 4
VRN OFF Z‘;fé&r
FrmReR | 1 73%,
10,29, 4 2 //3.[3’/, {
1
{ ¥ ¥
SR ?—3.s—mq /364%’&“—9 /—’/90:57 COL, g \YL"S 4uar)ﬂ)r</
AYO3I 403 id CG"W‘//
2,03,3/. 1 =,13.29.) 2,03, 3%)
{erpovaare ;7 | }’VO
Cruw lau -t =2mnq Q>
INCREA SO 52‘3‘3‘5
N zyyrsy 213,98}
2.16,92,)
e ppe— |
PR SHIFT AC Jo-38~
L EFT méi_a-s.s’
2427 LEET 190
\ 2!’3"/3!/7 ;3,/},l{2~/
l ¥ b &
To
L rimE ,’()8/
37 Srep

EYERENENNNNN "CI NN NN N NN NN

SIWGLE FIEC)Sion) P \ }'\i A7
. FZCWI‘/U(, CIIOE (‘,\\ "\X;_ ~'u'-{:'r.’-\L"2—-
SHee T S) \L\,\;" \\\',\ L M 2 NEQUC epds YSHFET S
o v Y COrNrFIrE GuortElr GHrire)
. 15 [\Q\ CL B SrE~ ,/r'&a/;m/ouré ORIG A o L OED LA N ¥
v ST rsec.
r I 0 O~ ‘;
¥ ¥
PN ac 03573 /0] |<€ 9-35— AU g 9
o)
/ éﬁow 3d Ssrer 2 srep s q
2.13.55,] ;
120241 At 2 24,
\W (2. *yég
' j 12801 ﬁw 20% Fodp0 9-35-»| [1emeq 35| lac 9-;::52; mo -3~ |STer gc [HC B
| ERL G R, K1 Lr 7 ol [eT")
\ aw0 s T 0 " 1 d oo 4 o0
* 2:(Z, 27/ 2.2 85, 213,88/ L 2.2.85. LRI 212951 2.3 851
' e . |
AR S -g - O] R >S5 ok
v N o) N VG RIS
3![‘//1/ 1/3.]€‘7"/ ' TCc o
Y | /
SQ-Ermq | Mm@ /-89S ve s
70/ WA o) Y .=
e e rukm on | | e A3l imie T
Y Fr G| | T R70) #/C;;gf’
SE)-85r7 0 R /3.88%/) |0/ 382)
PRE 2T Lok our Fol SRDN
CARD . TS Ry Ley,
v R & C *
~ P
TRGKE
on
vES
4 B 3 ‘ ' .
) 1S
END or° 10 @-E 19C] OR2161UAR L DiIvIQEVD Clv
Wow W RC, 1 QUONEUTD
AIO R/ ey
2‘/013-“’/ 2'13’3/'/ // A/OOU OG/G/UO‘ > /.
L — S |
FARomm
Eao oV ’i

0§ O OO0 000 O 090 0 00

SHr 2

:4'0 Corn P
=7

SET ICENAiNOEIE H LRSS THSU 021 GIVA L

oF

I 7iMeEk B}
VExT DIVIRERID CHP AT TG RIS T C EW0 DIV CHE
ST IF Dy, b CHK
DI/ CHik o2 on/ > 2 OFF
/7)? ¥-[AC = O
y Y
comr~® AC N rrYyYe Loy 130
Dcl‘if’/‘i‘e £ 3= mo ~ ./',fja 3615
TG A2 Lovs ol > ind
e 2./3.a2./ 2,13,24,) L Eat
Yol C jl
TVIROK) ok) :
ST ’/ulgc':’..s'i—;
LEIAT. Lavs
R STNINIINN
B CyeLE >
/T
A0/
rzﬂﬁt/;?/l

2187

Y R E X EEEKESN KK ENENNNN NN

0§ OO OO OO0 g0 0000000 Qo

This instruction adds A- 2™ + B- 2n-27 t5 c. 2M 4 p. 2m=27 ang places

their sum in the ACC and MQ with the resultant characteristic in the ACC
and a characteristic smaller by 27]ginthe MQ. It assumes that A- 2% and
B.27-27 have been previously placed in the ACC and MQ respectively and
that C- 2™ and D-2™M-%(are in consecutive even and odd locations in mem-
ory.

There are two sets of controls used to implement this instruction. First

are the double precision synchronizer controls (DPS), three position step
ring used to control data movement before and after additions. The second
set of controls are the single precision floating add control triggers (FACT)
that are used with some modifications. The following is a general description
of these controls.

DPSO

DPS O controls the E time and first L0 and L1 time movements of data in
preparation for the first add.' At the end of L1 time the larger of the two
operands will be in the SI and SR, the smaller in the MQ and ACC so they -
will appear in either of these configurations.

- SI SR ACC MQ

1 A B-2n D-2m C
2 Cc D.2? B.2D A

An E time end operation may occur if the characteristic difference is
greater than 77g and the larger of the two operands is normalized. I

this occurs the larger of the two operands is placed in the ACC and MQ
and FACT 5 is set to complete normal I time operations. If the char-
acteristic difference is not excessive as described above FACT 1 is set
for pre-normalization or FACT 2 for addition. All E time single precision
o;2rations are blocked except SR to adder gating, E9D1, ACC and SR
exchange, AD to SC gate and the operation mentioned above. The DPS

is stepped at L1 time.

LSl ,

DPS1 controls pre-normalization (FACT 1) and first add (FACT 2). The
special end operations of FACT 1 and 2 and the FACT sets of FACT 2 are
blocked. During FACT 1 MQ 35 is shifted to ACC 9 and the ACC 35 to
MQ9 gates are blocked. During FACT 2 a two's complement add is per-
formed if the signs are unlike instead of the one's complement add of
single precision. Single precision controls place the contents of MQ 9-35
in the SR during the odd clock pulse of FACT-2. The AC and SR fractions
are swapped during the even and odd clock pulses following FACT-2 and
the DPS is stepped to complete the operand relocation in preparation for
the second addition.

DPS2

DPS 2 is used to complete the operand relocation in preparation for the
second add. On the odd clock pulse SI 9-35 and SR 9-35 are exchanged,
the DPS is stepped and FACT 2 is set for the second addition.

DPS3

DPS 3 controls the second add, MQ adjust, normalization and end operation
functions. During FACT 2 any 9 carries that were generated under DPS 2
control are now treated as carries into AD 35. If a true add is being per-
formed the operation will proceed to FACT 4 for normalization or FACT 5
if normalization is not required. All single precision decisions during these
controls are valid. If a complement add is being performed in FACT 2 the
single precision decisions do not apply as they are based on a one's comple-
ment addition. If a 9 carry occurs during this complement add it indicates
that the answer in both the MQ and ACC are in true form except that their
contents must be checked for zero to determine the sign. If this condition
occurs FACT 4 is set for post normalization. If a complement add is being
performed and a 9 carry does not occur it indicates that the. MQ and ACC
are in two's complement form and must be corrected, so MQ 9-35 is set
into SR 9-35 by the single precision controls of FACT 2 and FACT 6 is set.
During FACT 6 the complement of SR 9-35 is gated to AD 9-35 along with

a carry AD 35 and on the odd clock pulse AD 9-35 is gated to SR 9-35.
The carry save trigger is turned on if a carry resulted and FACT 7 is set.
During FACT 7 SR 9-35 is gated to MQ 9-35 and ACC 9-35 is gated to AD
9-35 along with the carry save trigger. On the odd clock pulse AD 9-35

is gated to AC 9-35 and FACT 4 or 5 is set depending on normalization
requirements. The instruction is then completed under single precision
controls.

R

L)

B

S N R Y Y

©0g0000000000000000g00

L AD

ProBier: ADD AN BV 7
_/__ CM +D/‘7'27

FoRsT STEP: ADD B
- D

Stcono STEP: Ao 4 8

REMc~8eR Cox Ry

PLACE

‘AOO IN THE /Pt’/wf,w/’u’r() (ma

SuM oF B+0 N G

JAACE SIM EF A4C s AC.

{\

L

e
/-J,

DFAD = SimPs:060 DATA fLov/

SWAP R&gisT&RS

.S/ﬁ,v\s' ALixeE SR> AC
DFAD /’Ci’é

MG =

DPS © 5/?:(:
rB3:=0D

AOR
FIRST AHOD
i
N2 ¥ 4
o B D
SR > ST AC > MG M@ = AC I8%>SK
[[l
Y
DPS 1 OPS 1 = FACT /-2,
AT 2
Abo B+0 PEr1EniBER CARRY K6k PPS 3
DPS 42
SWrP KE9s57eRS
Fed 277 ADD

3 2
B+ D A C
AC —=>MQ MG —> AC Sz = SR
l T
DFS 3 PPS3= FRT 2-4-8,

ADD A#Cr Coniy

NEXT
ZTASs7.

708, 0. 4

AFAcT 2-5%

oo Doooooeceo0o0% coocceoooe oo

® 0§ OO 00000 0gd 0000 00 0 g oo

DFAD - SiMPLIF120 DarHd £hew

SigNS ALIKE SR AC
DFA D goza
MGz 8
ORPS O SR =C
IAR=-p
Swalf A’Ej/.sfc'(s
FeR
FIRsST ALD
I
: : ; :
IBR> AC A 5
SR > MK AC> ST MO > SR
- | |]
DPS 2= £4cT 1,2
DPS -Z AHcr 2 ’
ADD D+B Rerremiek Corty Fog 075 3
» -~ !
L
DFPS /2
SwWAP Kigrs7eRs
Lok 240 4pp
¢ 1
DOr8 C A
AC > MQ ME > AC ST - Sk
L]
DFS 3 DPS 3= racr 2—4—5;
ADD C # A AT 2-8
[LYS_CARRY
14
NEXT
INST.
. & ! W ‘
FOF 075~ o

DFAD
DFS O

SWAr /Qcy/sfc‘A’g
FeR 8r D

L

STEP DP> >z
|

DFAD = S,mPL 5150 fFie CHANT

NO £ QURLIZING R
STEP DPs»Z
SE7 FACT Z
v
SHIET ,P;&-/,/r
UNDEX CenTheh
ce S C.
{ J{ — '. \L
SHIFT SHET MRISHACY
AC 7-35 MG 7-35 e i
AT RT ACIS 316
2 | l l /7\
MRz Wi cyra
SET FACT 2 J
YES Signs HLIKE Ao
\/ J/
TRUE Avo 2's COMPEMnT
ADD)T 704
T
STALT §wWAP .-
R=o5. Feon A+
S7e,° DPS .

CorpPhere Swiips
STEP DPS > 1

U

Hog O,

e O

/

eco0 o000 o0coe®cecocccocet

00900000 0C0OO0KBROLOOOOODOOOEOQEOO

|

'7'4’05 ADO ArC

FACT 2-4-5,
2-5

3

NEXT
INST.

Sigvs Alike

~_

No -

Y

Z's

Comibt ren7
AHOO 1T re~

A+C

Corvvtere w7
UNDeL J/NU/_:
PREC. FACT 4=

MEXT
ZwST.

GP CARRY No

P —

RECcMAALenrewT
714
2% Conrtp

RECC At ente.T
#C
s Comtr.

Comphele INST.
Caey S10 Gl

-~

W LT AT

NEXT
INST.

? e

SR/-35 >AD <«

ACQR-8>2 A0 £
TIME

1
|
| 2 A0
L 273»/7.

SeT
CA,OPy T6R
E7 D)

_ ALl oF brso

SR S, -E>AC
A CS,-82SR

£90/

2}

YES

S
! o
\w
TuRy (SRYAC) YES CAavk Tukw ‘
oN nZ od
RESET . RESET
Ab TG6p b (5#< Ac) SET AD Tl
i AD 9-35 > AcC gno OF £9
| AC 9-35 SR £9 ®
! £/0 D)
EsET SR 7-3>5I
PDT*AD 9-38 < 4¢C Z8R YES 'Q:45§> ’ £ 10 ‘
AC G35 SR £ /0 & [
- N L.
£ 12 Oy \ TBR 935 SR SRI-35 S MR .
A _ Mg 935> SR
sR 7-35 =» ST S s -A
L/ £/ .
M
RESEPN_YES SR S,-§ Ac
g SET FACT & '
& £ //
SR =38 = MQ
MQ 9-35 > SR No .
Lo b/
¥ N YES
AD 9-35> AC ®
ITRR 9-385>» 35K A 9-3S 3SR A0 G-35=>Ac
SR §-35 > sT L1 D) Ac T-38»5K
£10] — SR 3,087 ®
— l ' Zz/) O}
- (/\
e sQ*>f - ,
‘"’wa V\Go SET FACTL NO VEs SET FacT & .
IR L2l OFS SC=os sTe” »PS v
e A\j/ u¢ 7o FacT & ®
Jo PPS Z 7s DF '
: Dfiz

DFAD

. NETE: ALl FAT 1,2 6/t Tiees PPz L
2./367./

ARE Lhecered Lxcepr THeS L
INCICATAD,

\l; N
STEP SHIFT Ac RT
S.C. SHIFT MG BT
MQIT>ACY

- YES
SET LACT 1
LeXo2)]
ChoCK SET
FACT 2
_J 00D creck
SR 1-359A40 | —

/‘—4C7'- 2 \

- Ac 9- Ao
C 5. 4D Ac 7-3577
AC 735 124035
1 T J
\p e
I
MG 5-359SR Ab Q-352AC
ADGQIACGP |15
ODL}ﬁ;ac/(00) Clock "l Ry
- \]j 1
SK 1-IsHH0 o
CoPs-1(AT 428 T b H_ A
i i G b
A
—w SR
9D 9-35% 4¢ r
4 9-35PSR ko BLock SET To AcC 9
S7EP 0PS (Nﬁ/ Qe A’f‘env:»«de('/vj CArry-ov7 fiem

T ACw -~ oR0e AOB:flo-v)

$oy, 2. 70 DPs 2.

Q Y NV N N
§35I74m>5c SK §-35 »mg e SET STEP
O F FACT 2 DPS
0NP Cleck ODD . CieCk oD ChocKk O 00D Cieck
I I [|
DFPS 3 ¢
21371 , ;Ju”
<y
¥ N2 N@ "
SRF353 4D / Mat-353sR | y@”
: 4C v
QQ&\/»» ACIP > AD3S Facr 2ot i §
C Facr 2 0D CAK SET]

|

!
D
YES SI9NS NO

Follew Singie
FRECIS 168
FALT 2-4-37
2-5

ACT-362A30 Ce ©

FACT 2 NKJN’V

A4C=E RE
ADI-35> AC
FAcT 2
oD (Lo
YES 4D 9P
CArRY
NoO
N J |
SET SET SET
WSk s e FALT 4 FAT 6
cDTk)ngcc old Chock OO CLK
7o FACT 4 7o FACT &

/\/on: AL SinghE PReCisiov
FAT 2 DECISsevs Fok
SIgvS uNLIkE ARE Blocke).

NN EEEEEEEE"EFENNNNNEN KN,

DFAD
FACT 6
|
AV o7 ¢
Y 5K a5 ap KU T
nr\\”»(«‘ /A 35 N pe 4 A
[HCT @ © o £ -
SET
CA/(’,"Y
TR
L
v
ADG-38>SR SET
FACT & FACT 7
- DO Creck 000 Ulock o i
- rLEM/ |
(:’M(w (et
S£7 E . N HL it
;/457 3 i /{L i (‘IHLAJ'
(Lowe(’) f"\‘
J
I
A v e
wﬁ SR G-I5IMY ACP-3534D YES
LM&% FAT 7 FACT 3
&
¢ oW NO
1% 1->40835
AD 9-3554¢
FAcT 3
YES UNAR M
InsT
Ao
\
SET fRcT SE7 FAeT
é +
000 Cleck od. Chocy

]

v

Fo/low Siwgie Phicisron

0%

“.““.““.....‘Q....

z _ z -
a\-| oo |v y a\ay¢\|ag ..v.|. , ;
al- 1212 \¢ o <LEEEI

- ¢ | al|v
h J | g w a\|\o M - p
¢|-1812|¢ o/ _ agi|g v/
al-\gl|2¥ .,.,m. el -lg|oi¢ 5
—1-17]1 Y 4 o g/»)www- 71712 «\i\ 3 ~
_1T-lol2\# PR i) | =102 ¢ v
VA TR TV N I B 74 \ ‘ &MMVW L.. =1 -12¥¢ ¢ xm i
Coge wed 7 AN .) !
~ arlzslzs|ém ¢ ‘ . - |ez|zs{zsTow| oY | N
SRS & L SYIIWON TYAY N —— A b, Pg N\
- Jo and_7 - I ~

Z — ‘ “
JAEIEIri a|2lz\vig| |
a\via|2|d| . al-|o\|¥ W o m
i a| - > ,ﬁ
HIAEEEI © 1 W

- - o) !
a vy 2\g or &g y |
al -1g| 2| v 5 al- |2 |o|¥ . M
~-|-lgl2olv &. —|-lz|2| ¢ p oot
gie © | v |
b SARN .\\ S 9 CNu —l =t 7 .
. grlzs|zs| & ¢ - G\ Z5 |28 oL o7
¢ =
2 70T O e

- D T LD BTy TEAT N -

05 OO0 00000 0500000000 g¢g o

408, Double Precision Floating Point Multiply

As stated in the beginning of this section, the purpose of floating point arithmetic
is the handling of very large or very small numbers rapidly and accurately. Double
precision further extends this capability by doubling the fraction-handling capacity,
ihereby doubling the precision of the numbers involved. The end result of a double
precision floating point number is a product consisting of characteristic and fraction,
the fraction being 54 bits long. This range enables programmers to work with
numbers as small as 2793, Such a number would have the following format:

. 0001

The most significant 27 bits of the answer are contained in the AC and the least
significant in the MQ. The characteristic is contained in positions 1-8 of the AC and

this number (-27), is repeated in the first eight positions of the MQ.

When using double precision floating point numbers the largest of the two numbers

must be in the even-numbered core storage location and the smaller number in the
next higher odd location. Alsoi the largest fraction of the multiplier must be in the
AC and the smaller fraction in the MQ (this number \:vould have been brought into the
computer by a double load instruction).

The computer would then perform three multiplications and two additions and place

the sum in the AC and MQ.

Y0 %30

Multiplication is performed as follows:

AC (A) MQ (B)
1-8 9-—35 1-8 9—35
SR (C) IBR (D)
1-8 9—35 1-8 9—-35
where
AC = AR

.-

MQ = B~ 27
SR = c™
IBR = po™ - 27
and the addition is performed as follows:
A" + B -27

c™ + p - 27

AC™™® | (B + Ap)(m*0) =27

/
For convenience, /b%é'rsegroup the numbers into characteristic and fraction:

where

AD = A characteristic A fraction
B = p characteristic B fraction
C =C characteristic C fraction

D =.D characteristic Dfraction

000 c0e0c0co0ceoc®ococsccsococloec

© 0§ OO0 00000 0000000 00 4¢goo

In performing the multiplication the computer will add the characteristics of
A and C and multiply all four fractions., Two distinct fractions are apparent -
processing the characteristic and procﬁ*ﬁng the fractions,

Following is the number handling sequence in the 7094 during a double precision

floating point multiply instruction:

1. A characteristic ' p fraction
+ C characteristic x C fraction

A+C characteristic BC Iraction

2. A fraction
¢ <D fraction
AD fraction

3. AD {raction
‘ ~ + B¢ {raction

AD+BC Iraction

4. A fraction
_xC fraction
AC fraction

5. AD+ BC fraction
+ AC fraction
A+C characteristic AD+AC+BC fraction

Only the most significant 27 bits of BC fraction gng ap fraction g.o retained,
These are then added to the least significant bits of AC fraction,

Note the first step shows simultaneous operation. This is possible because we
are using one of the low order portions of the miltiplicand, i.e., the fraction in the
MQ. No carry out of this operation is possible ani the A c¢h@racteristic gnqg
B characteristic o he added and temporarily hel: pending completion of the problem

Much general housekeeping and checking must e done during the processing of a

F0 yg;g

DPFM instruction. The computer uses the following five registers during DPFM:
AC
MQ
SR

SI
IBR

The AC - MQ combination contains the original multiplier and the SR - IBR
combination contain the multiplicand, The SI is used primarily for register swapping
and temporary storage.

This procedure can be demonstrated by a small decimal problem. Assume the
problem is to multiply 2.57 by 3.42. This calls for a simple multiplication of the
multiplicand by each number in the multiplier:

2,57
3, 42
14
1028

7 71
8.78 94

The computer handles the problem slightly different, . by performing three multi-

plications (as we did above) and then two additions. The term:

A B
2,57 =2,50+ .07 (tocorrespond to AC - MQ)
C D

3.42 = 3,40+ .02 (to correspond to SR - IBR)
the problem will be performed by:
l) B*C= X

2) A*-D=+Y
zZ

3) A+ C+2Z=Sum

00 0ooo0o0000 0% 0000000 leco

The first step (B » C) yields
1. 3.40- ,07 =,2380
(0]
the last two digits would be 1‘St, giving .23. This is saved.
2. The second step (A- D) yields,
2,50 - ,02 =,0500
The .05 of this is added to the first partial product and the sum is ,28.
3. Step three (A + C) yields,
2.5 3.4 =8,50.
All of the fractions are added and the final answer = 8,78, which compares with the
answer obtained by the longhand method - 8.7894., Some accuracy was lost because
of dropping two digits but‘this"'z would not occur in the computer. Notice that we did
not add the 2 and 3 - but multiplied them since they are true numbers and not

characteristic expressions.

SRR FM
Compyter tim

regi

yo& ¥ ..

7094 DPFM

A DPFM instruction to the 7094 results in multiplying the conten.ts of
storage location Y and Y + 1 by the contents of the AC and MQ. Fi.ve registers
are used in executing this instruction’ the fifth (sense indicator) being used
primarily for temporary storage during swapping and multiply iterations,

The following discussion pertains to the flow chart on page 408. 40 which

can be briefly summarized in the steps below :
h 1. Add characteristics of the two floating point operands.

2. Multiply Large fraction of Y by small fraction in MQ. € & :C)

3. Multiply Large fraction in AC by small fraction of Y + 1. £ 4+ 2)

4. Add the products of steps 2 and 3. ¢ 4'C+ ¥4 »)
5. Multiply the large fraction of Y by the large fraction in the AC, (4 C')'

6. Add the product of step 5 to the sum of step 4.[/?!(’ 7‘/5'4 19 D)]‘

7. Adjust MQ characteristic. .

The format at the start of the DPFM instruction, showing register

contents is as follows

sz | | SR LER
E N D
g EE g 7 3] —Xs~
m A a1l A
7 33”7] ¥s”
AC 7 &

The algorithm for the DPFM function is :
(a7 + B 2Ty (4 DA72T) 2 AC™*R 4 (BG4 AD)™HR-27 , (pp)m*n-54

In performing a DPFM the computer will first multiply B x C, then A x D
and finally, A x C. The three products are added and the final sum placed in the
AC and MQ ;with the AC containing the char.:cteristic and the 27 most signifisant

bits of the answer;and the MQ containing the characteristic - 2710 and the

27 least significant bits of the final answer. This double precision number may

408, 35

be stored as such or it may be used in the next comnputation the computer
performs,

Recall from previous discussions on floating point that the =&
émall order number of the two operands contains a characteristic that is
27,y less than the characteristic of the high order number or data word.
Although this characteristic will be brought out of core storage as part of the
second word, the characteristic is ignored by the computer. The same is
true for the characteristic in the MQ at the beginning of the DPFM instruction.
For this reason, the diseussion on the flow chart will not attempt to keep track
of these two characteristics. The characteriétics of the high arder numbers
are added early in the DPFM sequence and once in the AC thexxamm sum is
not disturbed until the end of the instruction when it is adjusted by -2710

and placed in the MQ.

. E Time of DPFM

The following steps are performed during E time of a DPFM instruction :

1. Set SC to 338

2. SB to SR -- brings in the contents of storage loaction Y. and places
the contents in the storage register,

/-8 (R)
3. SR,to AD === -- done all during E time to add the characteristics

A
of the SR and AC., This will be the characteris;tic of our final answer.
4, AC to AD, 1 - 8 -- brings the characteristic of A (m) to the AD
to be added to the characteristic in the SR, the characteristic of C (a).

5. Zero checks of MQ and SB -- if either the MQ or the SB (SR data)

is zero, the instruction is terminated.

6. Reset MQ -- this is done so the characteristics won't be added twice,.

408. 36

the results of the first multiply.

point the registers contain :

S/

7. SR 9 - 35 to SI -- stores fraction of C in the SI.
8. AC 9-35to SR -- puts fraction of A in the SR.
9. D read from SB into IBR.,

10, AD 9 - 35 to AC -- this resets AC 9 - 35 in preparation to receive

11. SR and SI swapped -- puts A in the SI and C in the SR. At this

A

t

iteration.

At the end of E time the registers contain :

trigger set,

The sum of n + m in the AC is too large by 200g because both characteristics
contained this number. One of the first steps taken in L time will be to subtract

2008 from the sum of the characteristics.

The computer will now go ;5 L time for the multiply cycle -- refer to the

Sk /OR
n) ¢ D
m 3eres 3erss 5

A g

12. Decode last two bits of MQ ;in preparation for the first multiply

A\

SI-- A (9 - 35)

SR -~ C (9 -~ 35)and n (1 - 8)

IBR -- D (9 - 35)and n-27 inl - 8,

AC -~-n+ minl - 8 and zeros in 9 - 35
MQ -- zerosinl - 8 and B in 9 - 35,

Bits 34 and 35 of the MQ have been decoded and the appropriate multiply

408, 37

..‘OOQ.OQC.‘.....QQ..QO

discussion presented in MPY for a description of the multiply cycle.
The objectives for the first L time include:
1. Continue mulitply iterations until SC = 0
2. Subtract 2004 from AC1 - 8.
Upon completion of the first multiply the registers contain :
SI --Ain 9 - 35
SR -- Cin9 - 35
IBR --Din9 - 35
' AC --n + m in 1 - 8 and the most significant portion of B x C in
9 - 35,
MQ -- least significant part of B x C.

Second Multiply

The next stage in processing the DPFM instruction requires the multipli-
cation of A x D. Before this can be carried out, the registers must be realigned
until the SR contains A and the MQ contains D; Also, the results of the previous
multiply, B x C, must be temporarily stored. The following steps are per-
formed during the second multiply :

l. Set SC to 33g.
2. IBR to SR -- puts D into the SR
3. SR to MQ -- puts C into the MQ and destroys the least significant

bits of B x C.

4. AC to I BR -- this stores the results of B x C in the IBR. Although

n + m will also be transferred in 1 - 8, the characteristic is also left in

the AC. IBR 1 - 8 will never be used.

5. MQ to SR -- puts C in the SR

408. 38

6. SR to MQ -- this puts D into the MQ.

7. SR to SI -- this puts A into the SR

8., SIto SR -- this puts C in the SI

9. Reset AC 9 -~ 35 preparatory to accepting the results of A x D,

At the end of the register swapping and resets the registers

contain :
57 SR /&R
c P pim| B C
, nem eves D

Ae | ¢

10. Turn on MPY cycle trigger,.
11. Continue multiply iterations until SC = 0, When SC = 0 the
AC contains the most sighificant portion of A x D and the MQ contains the

least significant. At the end of the second multiply the registers look

like this : ;
o7 S R / CGR
a K~ 4 ¢
wml gD 2.0 %7
AC 77 @

Third Multiply

Recall that the algorithm of the DPFM shows three multiplies and two

m+n m+n-27

additions are necessary to complete the DPFM (/j}C)e

+ (BC + AD)
Note - one mre add /,, chosacleric fres, P

Py add fx\p\’ EAAL \WPH
During the third and final multinly the product of A x C will be developed
as well as the sum of B x Cand A x D. Upon completeion of the second multiply

the double precision sync (DPS) trig;er was stepped and now DPS # 0. Note

4.8. 39

000 cc0cv0cecec®occocccsetoece

\ :

on page three of the flow chart that when DPS # 0, an addition is performed
while register swapping is taking place for the final multiply. This addition

places the sum of B x C and A x D in the AC, This sum is left there during the

adding the least significant bits of A x C to the sum of B x C and A x D. Also,
if a carry develops from the fraction addition DPS will be set to 1 and a 1
added to RC 35 to increment the product of A x C.
The following steps are performed during the third mult1p1y
' 1, Set SC to 33g. S ’ : : ‘ - .
J. IBR to SR -- puts B x C in the SR “
3. SR to MQ -- puts A into the MQ.
4, AC to IBR -- puts product of A x D into the IBR.
5. SR 9 - 35 to AD -- brings product of B x C to the adders..
6. 1 to AD9P -- this will propagate any fraction addition carry,
7. AC to AD -- brings product of A X D to adders.
8. AD to AC -- puts sum of B x C and A x D inte the AF.
9. Turn on pre end op. |
10. Step DPS to 1l if there is a fraction carry.
11. SR to SI -- puts B x C into SI (not used any more).
12. SI to SR -- puts C into the SR

At the end of this register swapping the registers contain :

. J/ SR /O R
|l £ C [y fal ; A D
mm| B¢ + B D R
Ac 7P

13, Turn on MPY cycle trigger,

408, $6 39/

.'...C'...'.‘..Q.....Q.

multiply cycle and,as the product of A x C is developed, addition is performed,

14. Continue n/)}@}iterations until SC =),

As the product of this final multiply is developed it is placed into the
AC which already contains the sum of B x C and A x D. Addition taks place
80 that the sum of B x C and A x D is modified by the low order bits of A &« C.
The AC and MQ are shifted right during multiply. Upon completion of the
third multiply the high order & product of A x C is in the AC and the MQ
contains B x C plus A x D and may also contain portions of A x C,

The sum of the characteristics, n + m must be modifiedton + m -27

10
and placed into the MQ.

At the completion of the third multiply the MPY cycle trigger is off and
SC = 0 (page 3 of the flow chart), The computer now :

1. Takes AC to AD with a 1 to AD 35 -- this is to pick up the
fraction carry bf DPS had been stepped. If DPS was not stepped the
result is left in the adders. If DPS was stepped the result is taken
back to the AC and is the final high-order answer,

2. Turr; on FP trigger.

3. Turn on FACT 5 -- this is to adjust the MQ characteristic as

shown on page 4 of the flow chart,

4. Reduce AC characteristic by 27, and place the result in the MQ.

END OP

400]2 3173

~_

T AR R rrryy ry

S
.P: SEquemé DP ,E'LOAT'INj MP)’
L 7/mE 2 O
‘ W Tes 2 /
LIO prTel 7 M// :
ALTep 2049 ﬁly 2/ {', A Creciion ‘Pao —_i 20 Fokmt zede FesTs,
OF R Tt et I PREPARS Fek BxC
. Qbiry berpp) —
TIME F
@ ' ' ’
| o ¢
e e e — ey — . C
335 5c. | SBY 3R | (sRyA0 Ay [AcyavArs, zevoch 4 g !
£702 . E701 £ 7omeE | £me BENTE
el) gangel | (2eRn lensss | SR e Tex
. A ' hN{c cu. gA J)
S P) P
ol - N €=0) yes _~S8=0
. MQSR $ /%escll' " [—f/z;ajf_l ﬁgaﬁ_&) /[___(.‘__Z e
- oy t IR >
'z'(o TesT b £§01 l £2 0l ‘ £F D3 8-0 S YEs(Ds 0) 4"
@ Vi LEdisl) L 2ot _/_.:—1.._‘_'3 L
* S8 Tik ol
. } EQ DI P /8R '
: 2orhi2.] z0)
’. ' Yes. L
~; (48-0)
) ES A’-
I ey £9
‘ cHa ‘};}. AD-)/JCQ-.K b N
t?fsz' ACE £/0 01 ‘7‘we4 o~ '
2.03.81-1 174’1 £~o of | l
® Wi {
T
@ ;
'265?’,0 REG3TERS ,gg‘: ﬂcr_t‘m(‘.
‘E{L 1Rz D FoPCHAL
Spz C Fycaad
‘ M& B F.
o i
38y
e
7Yes
S S A S K.
\ [SeT AIX el 2X
‘ ' 7 rE i
TU@N/ ‘IIA/ l '; - v -4 - { .ot
® [T
513{731_‘. | ?\ i
e L SRR RS- i e + - -
o »
v
7o Pase 2
. L TIME 405740 [

™

|

A1Q & HSR S sy Ma
AbL2 ané »/
AILAS 2./3.41./

L TAE
‘/v”')\ ((Lf .
— ——t
AC 9P Tc AL 9-3¢
AD 95, 9 & To 0 §-25
Yaldi Cyc] L pmly cpcde ‘
| J
' T
0/“7 oW . I ,3 1 | ‘
FINs T Cye < 38> AD SR A 12AC & /= A0 35 Com P SA
1A L yae |YES e r T ’ 0) e 40
] 2:43.77./ 2.47-77./ 23771 2.1377-| 2.23.27./ ‘
,__.__L___. I 1 1 1]
AC&-53A0 EEEENA
- AoD3 40D3
' 2,2y 2.413.27./ ‘
E| 1
‘ No Block
STEP S.C .
YES FyvEwn CAK.
_ |] !
0= 3) TS yme A0 3-8 AD> AC | [AoTgr ACT] | A0FQ2 4
g ‘-b/lc 7@0/1?23;1/ AvTImed To/‘IZ‘i‘/“ Ar & AOTPpA 10 (:zumoﬂ
2.13:7%/ | | 2.13.79.4 2.03.79.1 2:02.79-1 €323 j 82223/
= —]
ST€P
AOR-EH5AC | cHas 5¢
2 2o) " AL v OUVD CiA. ‘
g2el] ?ﬂE56
YT ‘
/‘}D /'?‘? S& Ze"peg MQ 33_3‘/
4w Ll Te ok I7¥ 2./3.751
2.12004./ .

| Caar oy 2ok

Ry RN)
i os
2.432) 4

CHeK
Y

AC

A0 G5y AC |

PRI

>, 13.%/-/

|

Sun/’
Zekees

SET + 1x

YET <X
ERMYAYY

2.73.728/
1

i

|
t

|

Y057 4/

~ .

||~

(\‘ +

. "‘ r\)

e goeoooeosoocg00000000goOO0

pug, FL.PT MRY PAGE 3

——)
T

L riME
+oU Ab
N e :
\ o
PR ettt wo -
& - : - \
% <%xf,“\fu§ - | TP RC Y
. e

o W ~ASCTI —

’ AR P ELS
eran ATl g2 T | —»AD 35
R e LS D2

— U 1 R B
.
T » 2 |l '\‘;‘ YES
SE=MIQ | N
oyt ~NO
3.0 AD = iiC
AC—» TAS/E- o 203.81.]
~70¢ Iy >
23 81/ N TUGN O
) C\ﬂj' 3 \ A | FP reoay
MG > 5K, SR A = AL3P| [AC=AD U
?1\-5(00(9-25 M =36
EsET A LS O3 PR O3 ~E DI
~B 0| FOY. R AT .t gt eog.mnd
PONENETH) J Lol
}s/ ‘(\&
Py
3 Y Y
AD>® AC TUIRN oN
PRE EUO
L0/ L/
g 2.\ 211381
) - L_— i J
Y ol S
A
S s STER LRS
SIS k10 DI
AtOO/
T o i o, 2,850 13,2
ey Cree & . |
PyyNey; eyl <
2./2.9),
(2901 TUrRN ov/
» : Fher &
Loy
Ppeen. . a2 iy
‘W
" Y ~ -
TO A~ Timks ¥ L~ ENC P

mET LYl 0 FRGE o

EARLY EOU
OF FreT s

AC G290 |
1> BLQ L 3E

©.c .c;ugl

A I-K->5R
T =D

Sr S NQ
ILE20QY

{&T i3 'MML

[ARRWVAVAN
T ol

:‘(:’:Jql"

SET '#m
_PRIS
Ja7avat
=2.90,.0

LR, FL,. VT Mo THOGE %
L ENGoR
Y
L TimMz
Fr Telie. cad
~NO
Y X
AC Q-G | = AO
> L CEEY Q-%
[RE L3
Sotf.oayd -1 102 Y\
{ T T
Y] Y IR
AR -% 2,30 FiI® SHiFT SHIFT MQ e~ 3B MQQ‘5[T3
A%fn M ST AC i0-85 &T ABDI
Aio Dy
> t- 2
s l2.,31.} 212,431 OIS
I < | 1 i —]
3
7
ENG Ow
FAaCT K
X
L Tme
NExT
INSTE.
Mg 235
ALANSKE
G ST
1-5

o000 o000 000c® occocccoeBeoc

0) OO0 OO OO 0g0 0000000 @ 090

DOUBLE PRECISION FLOATING POINT DIVIDE
(DPFD) (Flow Chart on 409.10)

A double precision floating point divide instruction to the 7094 results in
dividing the double precision floating point number in the AC and MQ by

a double precision floating point number in core storage locations Y (even
numbered location) and Y + 1 (odd numbered location). The answer appears
as a double precision floating point number in the AC and MQ. The AC

Zn-m

contains Q, - » the high order bits of the quotient. The MQ contains

Q, 2»"m=27 (1 low order bits of the quotient,

The algorithm for the double precision floating point divide function is:

. -N ., =27
A2+ B2 =q, +Q,
C.2mg4p . 2m-27
Let:
A=A 2"
B= B - 2n-27
cC=C:+2m

D= D - 2™m-27

Then:
A+ B
C+D

Where:
Q + R1 (remainder)=A + B

C
,QZ=R] - QD

The sequential steps taken by the computer in processing the DPFD

:Ql +Q2

instruction includes the following:

1, Divide A+ B

C =QI+R1

2. Multiply Ql x D= QID

6‘09‘ /yw i

—_—

3. AddR, + QD
4. Divide R—l + QD
1
:QZ
C

5. Add Ql + QZ

As can be seen from the above, the processing of this instruction requireé
single precision division, multiplicatien, subtraction and addition, In fact,
all of the arithmetic capabilities of the computer are used in processing a
DPFD instruction.

E Tim; ‘
During E time the following events take place:

1. Y toSR.

2. Y + 1 tolIBR.

3. Set SC to 33,.

4. Divide AC and MQ by twoe. This is accomplished by shifting the AC
and MQ right one place. AC 35 is saved by shifting to MQ 9. MQ35 is saved
by ring shifting it to MQS.

At the end of E time the registers contain:

SI SR IBR
E 2™ C 22 D
N [l i
1]
2" A 2n-27! B
AC MQ

L. Time First Step

The objectives for first step L time are: (‘ee single precision floating point

divide flow chart).

1. Divide check test.

4092

0eo00oco0o00o0c0o0coeccccscoclece

® O © O 00000 0g0 000000 04gooo

2. Set MQ sign.

3. Endop if AC and MQ fractions =0.

4. Put characteristic difference in AC if not divide check.

The divide check test determines if the dividend is greater than twice
the value of the divisor. The AC was divided by two during E time. The
new value of the AC (one-half the original) is complemented and added to
the contents of the storage register. No carry out of bit 9 means the
dividend is greater than the divisor by twice as much and the divide check
trigger ’is turned on. If the dividend is more than twice as great as the
divisor, this means the quotient will be greater than two. Because we are
dealing with fractions, the whole number value of two would exceed register
capacity.

With the divide check trigger on, the instruction is terminated during
this L cycle. The divide check trigger cannot be turned on if the divisor
(at least) is normalized. If the floating point numbers are normalized to
begin with the answer will be normalized.

The AC and MQ are shifted left one place (MQ 9 to AC 35 and MQ S to

MQ 35) to restore the dividend to normal.

MQ sign is set following comparison of the signs of the AC and SR, If

signs are alike, MQ S is reset (0). If signs are unlike, MQ S is set to 1

(minus),
The zero check of the AC is made by complementing AC Q - 35 to the
adders and adding 1 to AD 35. A carry out of bit 9 indicates AC = 0 and the

column 9 carry trigger is turned on. Tbhe column 9 carry trigger will

H$07.3

terminate the instruction later in the cycle if MQ=0. The contents of

SR 1 - 8 are brought at the same time as AC. The result of this

subtraction is the characteristic difference between the AC characteristic
and the SR characteristic (n-m). This characteristic difference is returned
to the AC, The value is incorrect by 200g (recall this is the 0 value between
positive and negative numbers) because both numbers carried 200g and the
value was lost during the subtraction. During third step L time, 200g will
be added to the value of n-m in the AC.

The ,MQ is checked for zero by taking the contents of the MQ to the SR
zero check circuits. If MQ =0, the column 9 carry trigger is left on,
assuming it had been turned on because AC = 0, and the instruction is
terminated. If MQ =0, the column 9 carry trigger is turned off (if it was
on) and the instruction proceeds.

If AC=MQ =0, or the divide check trigger is on (FP trigger off), the
instruction is terminated at the end of the first L time. With termination
the following takes place:

1. Initiate End Op.

2. Turnon T2 Trigger.

3. If divide check, set AC and MQ to original dividend.

4. If AC=MQ =0, set AC and MQ to +0. (AC reset by ADQ-35 to AC).

L Time Second Step

The objectives of second step L time include: (See single precision flow chart).
1. Increase the characteristic d.fference by one if the dividend fraction

is equal to or greater than th: divisor fraction.

o

oi!ocooooco‘oooooooo!oo

2. Shift the dividend fraction left one place if the dividend fraction

is less than the divisor fraction (quotient will be less than 1),
These objectives are accomplished in the following manner:

1. Complement AC Q - 35 to AD.

2, AD Q - 35to AC (the AC now holds the complement of the dividend).

3. SR 9 -35to AD and AC Q - 35to AD. This step is the actual
comparison of the divisor and dividend.

4. Carryto AD 8. This one to AD 8 will increment the characteristic
!by one. If there is no column 9 carry, the incremented contents of
AD Q - 8 are returned to the AC,

5. I there is a column 9 carry the dividend is less than the divisor and
the quotient will be less than one. Since the comparison is a valid
reduction, a column 9 carry also calls for shifting the AC and MQ
left one place and putting a one in AC 35 if MQ 9 is a 0.

Upon completion of second step L time the registers contain:

SI SR IBR
i T !

e ; C i D
=200 | :

gnem | B P B

AC MQ

L. Time Third Step

The objectives of L time third step are to:

1, Perform the divisionof A + B
C

2. Compute the quotient characteristic.

3. Recompute the original dividend characteristic and set into AC.
(Could be + 1 - see flow chart),

yo?lé-—_r I3

To accomplish the above objectives the computer performs a single
precision floating divide. For details of this operation refer to the flow
chart on single precision floating divide preceding this section,

At the completion of L time third step the computer has performed the
first divide operation. The next step is to perform the first multiply
function. At the end of this division the registers contain: (See page 409.7A).
MULTIPLY Ql + D
The flow chart indicates the register swapping required before the multiply

step of a DPFD instruction takes place. (See page 409.13). The purpose

of the multiplication

A

‘ .

1

0)OO0 0000 05900000 0 009

T le o eod 8} W diwcole
S / S £ J 2R
O | @ | D
9"%’ TQT l oy —_
AC (P Q
407,78 -

is to develop the product QD for use in a subsequent subtraction (R} - QID)'

(priov e m P‘f')

At the end of the register swapping,/‘the registers contain :

ST S R | BR
¢ Q. | 7
Qnm O D

AC]

Following multiplication the registers contain :

SZ S R /O R

C Q1 R4

> QD QO ow order)
/2 C I Q@

ADDITION OF R, - QID
Prior to performing this addition the AC contains the product QD
and the other operand, —R—l' is in the IBR. The IBR is gated to the SR and

the addition performed. Upon completion of the addition the registers contain:

S 7 S R 1 8BR
C l Q L —é—\-
JH—M\Ri—@‘D \ O

Hc N &
wr g dllrmimadion chadt onp $09.79
With addition complete the computer will perform the second and final

division -- Ry - QlD .
C

409. 8

.

oo ooooooococ®ocooooocoocoe

0 J O O OO OO O 05000 00 00 g 00

SECOND DIVIDE -- R1 - ;D
C

The computer performs a single precision floating point divide to
find the quotient Q,. For details of this operation refer to the single
preE:ision floating divide flow chart preceding this section. At the end

of this division the registers contain :

S S R [ECAR

Q, | ¢ o ®,

, 7™ R.-9.D o Q2
AcC 77 @

The computer is now ready for the final addition of Q1 + Q), which is the '

final answer in double precision floating point form.

FINAL ANSWER -- ADD Q) + Q)
In order to perform this addtion, Q is gated from the IBR to the SR and
the FACT 2trigger is turned on (see section on floating add), At the end of

the addition the registers contian the final answer as shown :

ST S R /O
Q, Q, o K,

n-m-d

QN-M:: Ql 2 { Q. :
AC /7 R

The final answer may now b= stored or retained in the registersfor

further arithmetic operations.

409.9

DCUBLE PRECisi104 /:ZO/«;r/A/ﬁ DIVIOE

T Time ‘
el a4
¢ " hs ~ .
\,G‘f: Ry rRSE)
W pps o .
De¢ S/nGL : BLC‘C/\/ ME ‘
F’A’ecu//zi/) RESET
£8 DI
Divicé 2 12885/
_/:)g_é = G +R, ‘
SB>IBR
EY D .
3.0%.25°/
RESET ST ‘
E/0 D)
2.73.8%1 AC=A ‘
«—z—— MQ =8
- SR =C
F.R bwioe I8R =D
2K sT£p
¥) “—= Ac: R,
N&A’/MLL-)I INDICATES B‘LO(‘K ToRN ,\\,?} & M8z G
Divisten ys 7 on FF T6R \‘v{/)@ SK= ¢
ComPirTE 2./3.87./ I8€= D
o
ES -
R ! DPS=z0 SWAP REqisTES, 5
TURN oW / Piepaie se® QoD ‘
M/D - D P R
Ym«’ AG C 7 Y D
2./387/ 5/64 ST B8R 9'%35 ‘
7o S
7 45 o1 5
13,87 21387
Allows InTran STers w £.13 L7 4 Lﬂ/? §z/ ‘
e MmPy wHIN ARE Q ¥ D7 % X v '
N&A’H,.'Liy f((foA’HiD MQ "?SR Sf r/_ 35" AD C"? To TUR'/ ON M .
Dukivy £ Tim8 A7 O/ 7o 14 AC G-8 VW8leck Aoy
A s Aqor 78
357 L A9
2./ _ -/ 21357/ 2./3.87.1 2.13.87.1 .
SET ORI inAk
MutTiPlieR DiviDEnd
TGRS CHAPACTELISTIC .
Ao
2.13.75./
I
L N I NS X " N % .
AC 93 RESET INHIBIT SET X RESET 33 ReseT STEP
70 AC 735 AC>»AD MmFy ¥~ CARR
rBR Yy, A1 D/ T'(J’/{ qTG-Qy e S.C Z;//C;N gpi .
AN Di AN D) A1 01 ' Q[O,
2.13.87./ 2.03.87.1 243871 2.13.821 243871 2.13-57./ 2387/ 2./3.57./
T T I] | I T T .
PREVENTS Douide
Gﬁ?‘/-«j ok AC DSy, 7—0 SHEET 2 . .

4#09. 10

DCURLE DiviDe

9000000000 00000¢g00

~rre &y

Q—.f

DP5=1
RESET Block FP
MP;;-G_%N Dwviod
Aq 2.13%9./
PERFoRM
MPy Cyclés
N QU 1R/
33g5S5C | SR 9-35 TR 735
A5 DI > MQ 2 4o
2/3.85./ 27645 2.13.8%./
N VAR N} T R
/> 4D 9P AC 9-35 Carry 7o SA 7-35
Afp2 - AD “AD 35 > A0
A7 D3 AT 02 A703
2.3 841 L4329/ 2./3.5%./ 3. L7/
N Ri~G Qi
fﬁi? \.\,0“"“ AD §P~3¢ ME 7-35
o0 24 ' rgp = A G-35 -5 S/g
A9 A0/ 4990/
2./1/1. 32./ ,/3,137,/ 2.13.829./
1
1 .
5 K P
 {Comp AC 8 CARRy > Q035 —
/ o
> AP Al D2
2.13.89.) 2./2.89./
o] !
SN £
v C Q. 5 3
A 939 [AD 7 AD 25 SI63s SR S REseT VEsET
ey : STep AES
-~ i Riowri = 4 /03] > 149 - SR —> ST P Mm@ 938 rc
(s) AL 35 oy 'y > Aflo: o
oy e A A4 o1 70 2 , ¢ a1
Mi_«)‘,‘?—r.}f A1 Yy .
1189,/ Y 2.13.89.1 2.1387./ 2./35.35./ 2.43.59./ 2.13%%./ 243790
| [1 1 1 l |

® 0.

/4/’

/OA"IJAM"c Fol Divive
CWNewt TesT

Y Jo SHeET 3

LDOUBLE Liviye

SHEET 35

DPsS=z-2
"
e
3 A
3 5 PerForr
o 2 SiveLe D1v1de
33 (KLzQuD)
N
Se7 @2/ -
rg/2> s " -
At -0752 SC-o g DiviDe SHiFTS
2./3.93./ onE STeP 700
YES FAR.
v v ¥ N
CHR 1 AD 1-8 /Block % SHIET acTPYy INHIE T
QJ"') AC Tokv on N, RIHT L A 935240
! ASDI oF £ P TedSi / A7 D/
21387/ e 2.13.05.1 21297,/
| 1 I I |
MQ: Q2
— TR~ \]:v AC = Ry FhwTiw + CHK G
Szegs \“}A“;CA’ /700 11”
a5 A (caTE FO)
2.43.93./ 2.12.87.1
l I
DPs5=3
v Y
ReSET MESSACS ;
AL 07;35' AG D) £3
2./3.93-/ 2.73.93./
T —y
Qg T 1 N’ N —
0-35 KESET OrS TuRN onf PNV, SHIFT A& A& T-¥AC
3£ 53’/ ”';‘)7 5‘," /z;.{su el /:ﬂczl 2 G-35 AT 4 470
A6 legs / 7 770!
2.13.9%/ .fJ.,P‘;- / 2.03.95./ 2.13.93./ 2.73.93./ 2.73.93./
| 1] [T I B
9 FPeLFe Ry pnd BA/ ClA
SA = Ql U adon mind 12 0 Fed Ed
AC =z O T F+Qi CHw, FAHD 20970,
MQ 2 Q&* IV AT
A LA GLK
iv,: “How og umiecstin g S| 43) G- F
) A4t ClCvlep —)ﬁc .
wWHen Oevedefyye CHAR
OF &)\ 7ie 17+ Q

N
LiTS Mus T Be Sdved sy
AC, SR ConTams CHma® 0F

\;' =LA () (9/?

'

)

bo!cooaotoohoocootoloo

DouvsLr Precision Divive KesrsTeER SHIFTING
C MQ SR__ | sr | 18R
: 1-8]9351' S |-819:35" $|/-6|9:25 S1i-8/9:35
BB IC :
C
¢

(e) £ |
F3 B|B|
B|B

Elo O

END JsT DIV 0

L8 c
L9 AKIR |0 fﬁl o'lclelcippip

' c

C

C

' @ Q| QL

LIl

®
@
@
@
@
@
®
[
@
@ L[ND MPY
“ L7
@
@
®
L
@
®
®
/v
@

L9
L]
END 20 DIV &
YR

]
A7 o 03 O’ Q’ Qi@ Q' Q ‘O O\ A
) | 1 |j | : ;,1 : _
FAD e G2 Q101 Q QG Q0O R
LI I
. ¥ o
| g 1o
|

grtt (1 WEes 29L sy g Ay 2HH
u\\,.?:Q bzﬁ\x »\\\x\ SrQ/\m\.QLi m\&JQQ .I»SQ/_‘\.deCE\,UTUAH Sms.m
_ 7 ~+ — — - + — —
+ — + — — — — vi -
+ — — a 7 * — — +
—_ - — -+ + 7 + + —
a'yy gl O dO | a'u<
RV, Jao="d U v J O 2 Y

oy, ~r¥

00

5+3+-00- INSTRUCTIONS

Te !

5+3+01 Word Transmission Instructions®

Word transmission instructions are necessary to move information into and out of
the . Factors must be brought in from core storage and results must be returned.
Instructions are available to move parts of words or whole words to or from core stor-
age.

s01—=1
Store STO +0601(I, E) Figure 53t FLA

This instruction moves a full word to core storage. The contents of the AC(S,1-35)
replace the contents of storage location X. The AC is unchanged. The store prefix,
decrement, tag, address, and MF store control lines are activated so a full'word can
be put into core storage.

sol =1
Store Logical Word SLW +0602(I,E) Figure 63—t S/~

This instruction replaces the contents of storage location X with the contents of the
AC(P-35). The AC is unchanged. Execution of this instruction is identical to that of
store except for the routing of AC(P) to the storage register sign position. AC(P-35)
is gated to SR(S-35) on Systems 2.12.02.1.

sol-1
Store MQ STQ -0600 (I, E) Figure &-3=1 5.k

The contents of core storage location X are replaced by the contents of the MQ(S, 1-33)
register. The contents of the MQ are unchanged. This instruction operates similarly
to store, except that the word sent to the SR comes from the MQ rather than from the
AC.

$el-/
Store Zero STZ +0600(I,E) Figure 5-3=t 5 A

This instruction causes zeros to be placed in all positions of storage location X.
The operation of this instruction is similar to store, except that nothing is put on the
SB. Therefore, when the storage bus is gated to core storage, zeros are put into that
location of storage.

s0/-2
Store Prefix STP +0630(I,E}) Figure 5-3~2 5L A

This instruction places the contents of AC positions (P, 1 and 2) into core storage
location X, positions (S, 1 and 2). The contents of the AC and storage positions (3
through 35) are unchanged. MF store prefix and MF store control are activated to cause
core storage to store what is on SB(S, 1 and 2). To get the information to the storage
bus, it must be moved from the accumulator to the SR.

—>—*%5ee-Stare Location and-Trap—and Figure-Sr3=34.

s04 /

' ~
~
N

209 + M1S ‘0090 + Z1S ‘0090 - OIS ‘1090 + OIS "$v€% 3¥NODId
]~105

o pu3

6ay vioQg
Aowayy «gg

& 7S N

(ea)r3

"‘ 85 +— ¥S
1 10°60°C C *. T 1
ss21ppyY [(WAORAMA 1ozl 1°20°ZL°¢
21015 JW (1a)13 (1a)13 A (10) 13
¥ e SE-5) A

(GE-S)OW (SE~1‘S)DV (se-d) ov

17107602
6o)
21045 JW

M1S

1"10°60°C

93
0I5 JW

SO0 d

1"10°60°C 170076072
1244
JI0iS 4W 144D 91045 IW

f

suwi] 3

1

1
1°00°60°Z

143 2301

i
09 do 144

awill

©0gooocecococegeoc0e000goo0

so/l~
Store Decrement STD +0622 (,E) 547 Figure 632

The contents of AC(3-17) replace the contents of positions (3-17) of core storage lo-
cation X. The remaining storage positions are unchanged, and the AC is unchanged.
This instruction operates similarly to store prefix, except that MF store decrement
rather than MF store prefix is made active.

£o/=2
Store Tag STT +0625(0,E).J4A Figure 5-3~2

The contents of AC(18-20) replace the contents of positions (18-20) of core storage
location X, The AC and the remaining positions of core storage are unchanged. This
instruction operates similarly to store prefix, except that MF store tag rather than
MF store prefix is made active.

52/-2
Store Address STA +0621 (I, E)JAR . Figure 5+3=2

The contents of AC(21-35) replace the contents of positions (21-35) of core storage
location X. The remaining positions of storage and the contents of the AC are un-
changed. This instruction also operates similarly to store prefix, except that MF store
address rather than MF store prefix is made active.

sol-3

Store Left Half MQ SLQ -0620(I,E)§4 ¥ " Figure 5-3=3

The contents of positions (S-17) of the MQ replace the contents of positions (S-17) of
storage location X. The remaining storage positions and the contents of the MQ are.
unchanged. MF store prefix, MF store decrement, and MF store control lines are
activated so SB(5-17) can be read into storage. The word is sent from the MQ to the
SR so it can be put on the SB.

sol-4Y

Store Instruction Location Counter STL -0625(I, E)S{ 4 Figure 5-3—¢

The contents of the program counter, which contains the location of the STL instruc-
tion plus one, replace the contents of positions (21-35) of storage location X. The
contents of the PC and the remaining positions of storage are unchanged. The MF store
address and MF store control lines are activated so the address portion of the storage
word can be changed. The PC contents are sent %o core storage on the SB. The con-
tents of the PC are sent to the SR through the and the output of the SR feeds the SB.

’ 50/—.('
Load MQ LDQ +0560(I,E) 74A orDLA Figure 5+3=5

The contents of the MQ are replaced by the contents of storage location X, The

' storage word is put into the SR, and the output of the SR is sent to the MQ.

so/-C

Exchange AC and MQ XCA +0131 (I) Figure &38=6
The contents of the AC(S, 1-35) are interchanged with the contents of the MQ(S, 1-35).
AC positions Q and P are reset. The SR is used for temporary storage while routing the

MQ to the AC. r/-7

Exchange Logical Accumulator and MQ XCL -0130(I) Figure 537

This instruction interchanges the contents of AC(P-35) and the contents of the MQ
(S-35). Positions (S) and (Q) of the AC are cleared. Execution is identical to that of
XCA except for the handling of AC positions (S) and (P). The contents of the MQ are
put into the SR. The contents of the SR(S, 1-35) and the AC (P,1-35) are interchanged,
putting the original MQ in the #C. Gating the output of the SR(S, 1-35) to the MQ(S, 1-35)
places the original AC contents in the MQ. AC positions (Q) and (S) are cleared because
of normal shift cell operations.

06,3 - o

STL

o~

Y N
\
. A}
~\ '
\
P ‘

T
Py Op L2

E Tivme

MF Stove Ctvl

Q-0 . 00:L

V ’ S —
Block AR > XAD C""\P PC —>XAD ME S.t(”t
R202 Cote .o Address
E Time Eo D3
3.06.09:1 €31) 02.09.01./

cAv'wf XAD> SR

E2 D1
03061114 €48)

!
"TTSR—> S8 \

E4 D3 o o
2:.09 .08/
M e :

(i

Yo s
Adv Povytlionw
of SB —¥ MDR

7f<50

S0, 3.)

il~20 -6/ W EK

ST90- 1S “#=£°C WNOIY
5 ~re5

0290 - OIS =826 IWNOI4

=728

242/

g78

100 602
[(ca)w3
g5+ ¥S
/1 1 _
CZU90¢€ | [700°60°¢
(€Q)¥3
p——
-12)¥S+SY 95€AS
b)
‘60 L 140217
(1Q)13 ¥ <
. SV 4 Dd (SE-S)OW
b1 ¥
17107602 1'§0°60°C t10°60°2 1°10°60°C 17007607
$39.ppY 14D 1239 X134 14D
31045 4W 31045 4w 2105 4W 21015 JW 21045 W
f 1 1
UE/W UEP_. W
B; 3
7940 !4 29 40 14
dwiy | swly |

1290+ V1S ‘SZ90+ L1S ‘ZZ90+ Q1S

‘0€90+ diS "TEE=% 3N OIS

-
105
-1°00°60°Z
(eq)¥3
45 ys
L]
1°20°¢1°2
)
do p3 (ta)s3
IS+ (SE-d)OV
1 z
Bay ojog 1700°60°C
Aiowayy +-gS 14>
0 uoyoy 2,045 JW
¥
1 i awl] 3
[— |
1'10°60°2 1'10°60°C 1" 10°60°C 171076072
XCU&L »CDEO;UOO mow aﬁhmug
21045 W 2105 JW 21045 JW 24015 JW

iroe
2940 14

auny)

-t
s09:§

000 0000000000000 08 oo

$000° * " 0920+ N3 "8~£*€ 3N Ol

0€10- 10X "Z-8*6 3WNOI

1E10+ VDX "o~2'¢ ¥NOI4

©0gececccoeee0ecccsssgoc

0950+ D31 "S-85 WNOI

~

& =105 L=12F 9 =05 Y
W TR AR
{(ia) 91 .
snid) (S)OV 49§
vor e Torere Tor i e TovF T
(la)s 1 (10) €1 OW (10)¢1 OW (1a)e1 DW=
DW= S <« (56-5) %S -« (5E-9) ¥S (s€-5)¥5
vy 1 _1 : RN WA
eI lezee .
(o) z| (1a)21 Dv+ (a1 ¥se oy a g |
s+ 4O (19) Z1 (Se-S) (se-D)Xav (§€-1°S)DV (S)Ove(5)¥s)
¥S+- (§€-d)OV A L
||||||— A
e rsizre vvlzte 1700°00°8 (v
15U ixaN .
awij | (1) z1 ov (9Q) o1 (S€-d) (eq)ol do pv3 3 . d
« (5£-0) av ave(SE-S) ¥S av(se-1)¥s ﬁ Q
——— N
ros el f\c
do py3 isU] PN 15U] XN
swiy | awiy | g1+ (10)£3 ¥s+85
1 y 40
g 19
eui do pu3 do pu3 awyy 3
[
UZ020C r07e j
9 0 144
9£d0 14 (1gjotl (tajou 2wy)
swiy | A+ OW S+ OW
g1 9o 14 zZ1 b0 14
awt] | awiy |

’

90 ww@Poe

{

]

o0 ®

y © “\\‘ - ®® '

DBL PREC. STo =—0602 1

1 Tieme

, ¢ The tsT € Time
Pvi 0p GO Note e s ™

allows «ll the &T0 Centyel
lines and blecks STQ .
The 2LND & Time allowg
the $TQ Contvols and
blocks the $TO contvols.

Set DBL PKEC This $low chavt &wouwld
STo Tgv be wsed 1w 2owguuction
ST0 £T !

03.06,17.1_C5A) thavts,

— L

E Time IsT Block PR 8
e 1
Allew 2 Ec»{cks Bleck End OP Bleek +P- PR gstoC.K 270 M@ Centwvel
On $X,5X,X S Pilus
i + 6ol
,01.60. 1 N, 04%.00. L (20),
r_._,_..___\(._.._. o
AR — XRD Ca.'v-n(Toe XRD !
AP L
Too QATWMESS
AT D2 E2 D2

0304 Ql-d 1)

N’

. .
. .
’|\ 4 LS

XKAD—» AR

F2 D1

e

Go Toe £
Tt;ﬂc

oz e 681 (QANE

03¢0 f&d- D

e e Y
Reset DBL | Block™+ P PR
Prec STo Tgv ; 9 Ltn 1

£ 1) All 2ND E Imc A are
¢3.00.177-1 {58 (9.3.04..06, G

A AR - :
r_-E Tivnie N Ewnd OP P

—_—

]

e e - ~m.1'

seg.5/

DBL LoAD ToF%OS

=

I Tim e
PoD 44« PR
Qecode 3

’ 06-0’._1 (i”)

R I S
DBL PREC ©OPS PR Decode 3
(Enables a Tvap Bloek IIS,LOY
1 odd addvess) 05T

02:13,9%, 1 2.6 8.0 (SE)

E Time

; _ R
SBE—> SR

Ay

| | En DA
20251 04m&)

NPt L BrT

SR (1=35)—AD

En 02 .
2.0 9, %44 (3¢))

AD(Q-35)~¥» AC
AND SRS AC,S

2.09, $%.1 (3P)

S

58 —» SR End Op
\

£E9 DL
02,12 511 (4&)(D)

) SR—> MQ ;

Eilo 01
0209 94

l=1-¢y WEK" £ m' SR

H

\

o0 00000000 0% cc0ccccoePec

AN

O 0O) OO OO0 O 00 0900000000 g0

Sol- ¢
Enter Keys ENK +0760...0004 (I,L) O¢m Figure 53-8

The word represented in console keys (S, 1-35) replaces the contents of the MQ. This
is a primary operation 76 instruction. The word in the keys is put into the SR and the
output of the SR is gated into the MQ.

sol
&=3-92 Shifting Instructions

Shift instructions are used to align words, or for fast multiplication or division by a
power of 2. Shifting moves the bits of the AC or MQ, or both, to the right or left within
the registers. Bits shifted out of the end of a register are lost and bits shifted away
from either end of a register are replaced by zeros. Because the shift counter receives
only the last eight positions of the instruction address, the maximum number of shifts
possible is 25510 (11 111 1119).

The number of shifts to be taken is indicated by the address portion of the shift in-
struction. This address is gated to the shift counter at I11(D1). Shifting starts at the
next L1 time and continues to shift at the rate of one position of shift for each clock
pulse until the shift counter has been reduced to zero.

The cyclic makeup of a shifting instruction is an I time followed with as many L times
as required to complete the shifts designated by the address portion of the instruction.
Eleven shifts may be completed during the first L time, and twelve shifts may be com-
pleted during all succeeding L times. The "end operation condition is signaled by
having the shift counter at seven or less at any L10 time of a shift instruction. This
means that up to five shifts may be made in the I time of the following instruction.

Shifting to the left is the same as multiplying by a power of 2; shifting to the right
reduces or divides by a power of 2. The number of shifts is equal to the exponent.

s02-~/
Accumulator Left Shift ALS +0767 (I, L...) D4 A Figure 53-8

This instruction causes the contents of the AC (Q-35)* to be shifted left a number of
places equal to the eight low order positions of the address. Zeros replace any bits
shifted away from position (35). Bits shifted past Q are lost., A "1" shifted into the P
position turns on the AC overflow indicator,

Ser-t
Long Left Shift LLS +0763 (I, L...) O& Figure 5+8=10

For this instruction the contents of the MQ and AC (except the sign positions) are
shifted left the number of places designated by the eight low order positions of the ad-
dress. The MQ (1) position is shifted to the AC (35) position. The AC sign is set to
agree with the MQ sign. Bits shifted past Q are lost and bits shifted away from MQ(35)

are replaced by zeros. Bits shifted into P cause the AC overflow indicator to be turned
on,

Sor-3
Logical Left Shift LGL -0763 (I, L...) Q4L A Figure &=

This instruction shifts the contents of AC(Q-35) and MQ(S-35) left the number of
places designated by the address. Bits shifted from MQ(l) enter MQ(S), and from MQ
(S) enter AC(35). Bits shifted into AC(P) cause the AC overflow indicator to be turned
on. Bits shifted past AC(Q) are lost and 5its shifted away from MQ(35) are replaced by
zeros. The operation of LGL is similar o LLS except for handling of the MQ sign.

* This text section uses (Q - 35) to represent (Q,P,1 - 35).

&

©0 9000000000000 0000¢g 00

€-708
£9£0- 197 €90+ ST 26+-€°% INOI

Fs|ngy20)) Liang
Pay1us OW-DV
pup paddag Og

/- tas
£910+ STV "6=8%6 J¥NOI4

| 1"Zvzte
1y e Ltez12 1L
41 (5€-2) tes e
Avcia OW Pup (SE-d) as|ng #20[D
v WV HI4S PUD 43S yo03 D daig
L I
ot . X
19e01¢
isYow -—(1)YoW 8150
DV uQ wny
e
¢£)ov < (DOW
(R AARA
(S)OV=—(SYOW
435 YA
0=25 0%
_®~ 17 2409 4145
s5u) s T
L
SAA
191
1))
sy 1
i
|74 ¥ 54
11100078 (1a) 111
(1a) o1v - DS < (£1-01)sV
40 P31 f
9, 40 d
aunj |

of
TR 5|nd 12°(D
1107008 K143 paiys SV
(1g)otv pup paddaig D5
40 P31
L'yeZie el iz
o ore 1oy as|ng 20|
8] 20 114$ puo 43 yo03 g daig
U< —.-O :L.th
1°0£760°C
4D STV
1"6L711°e
0=2%
o1 17 2109 Hig|

"8 t1°e

(aaty
D5 (£1-01)sV]

|

9L S0 144

awil)

~

309,]

© 0 g OO 0000 0 000000000 ¢go00

So2-3
Accumulator Right Shift ARS +0771 (I, L...) P4P Figure 6+3~tt

This instruction causes the contents of AC (Q-35) to be shifted right the number of
places indicated by the address. Bits shifted away from Q are replaced by zeros; bits

shifted past position (35) are lost. ARS is similar to ALS except for direction of the
shifting,

sor-¢
Long Right Shift LRS +0765 (I, L...) DA K Figure 5812

The contents of the MQ and AC (except the sign positions) are shifted right the
number of places indicated by the address. The MQ sign is set to agree with the AC

sign. Bits shifted away from Q are replaced by zeros and shifted past AC(35) enter
MQ(1). Bits shifted past MQ(35) are lost.

so1-¢
Logical Right Shift LGR -0765 (I, L...) DL i Figure-p—3-i2

This instruction shifts the contents of the AC(Q-35) and MQ(S-35) right the number
of places designated by the address. Bits shifted out of AC(35) are entered into MQ(S)
and from MQ(S) to MQ(1). Bits shifted past MQ(35) are lost, The operation of LGR is
the same as LRS except for the handling of the MQ sign.

oL~
Rotate MQ Left RQL -0773 (I,L...) DLF Figure 6+3—33

This instruction shifts the contents of the MQ, including the sign, left the number

of places designated by the address. Bits shifted out of MQ(1) enter the sign position
and from the sign position enter MQ(35). .

500. 8

“.‘.CQOQQ‘C.‘C'C‘.Q.'Q

$9L0- ¥DT '§9/0+ S¥1 “Ft-pid JWNO)S 1L£0+ S¥V * H=g"6 33N OIS
A-oe .

s-105

(g
12010 Aiaag
P24j!4s OW-DV
pup paddaig 5¢

TG 1y paisas o
(ta)oty o padda;
do pu3 puo p s O
. — —
H YA Leezie
h _ ~ revere as|ng %20 14OV
UEvzie Lreezte A/ Leeze R ARA el 1Lz 4203 D5 dajg 43145 puo 4ag]
1¥ (pe-1)OW puo o5ing 5013 -
¥E-D)OV
pow= (5JoW [[sIow=(se)ov | [(iow5e1v] | isiow 51w i pon e] | 4203 35 deig ol 0% \
w i 124D SyvY =
resire Q
r sy el 11
= 0,
407 SN ouum ._: 0= 55 011
100 i1ys A
1107008 !
(lajoty o
N
40 pu3 1 on
ey L3008 N
Wi} dwr 3
4
1 '8 11z
18 11°Y
(ta)iut - (ta) 1y
DS«(£1-01)SV u?:_wo:?.
N 92490 144 9 £dO g
swy) | swi |

R L

I 7/ mE
PRI OP 7¢

SE OP I3

v

-0773

SK—>#R
L7 SET

¥

0 0 © 000000 0g0 0000000 g0

NO/ I END OP ON
ONE CYSLE
SHIFT INST
y
AR=XHD
I9v2
y I
03.0G.[-] — | KAD—=SC
o) I/0 SET
)
L 7IMmE
OR
T TIME NEXT
@ Se< N YES
NoO *
s SHIFT GHTE kL ZHpoP
NoT I7D6 09.4.%)1,/
2,11.79.1 (2F)
¥
RQL ¢TRL
'A.09.70.1
(;LLH)
b | i
mqdil) 1o SET AND mas) Te 37FP S¢
meS) SHIFT MQ LEFT mq (3%) EV’-‘%Y ST
v
2. 12.42.1 L AL A2 2, 1242 0304121 (3F)
Se STEF2ED AND
MQ SHIFTZ D EVERY
CLroex ST puksE
5(-‘8«/«-4 S8

0. /0

Transfer Instructions

Transfer instructions are used to alter the sequence of instructions, The condi-
tional transfers allow automatic testing of problem conditions without stopping the

computer. The transfer instructions greatly reduce program length by allowing program
loops and subroutine operation
sod -1

Transfer TRA +0020 (I) Figure -9—27

The transfer instruction causes the computer to take its next instruction from loca-
tion X and resects the instruction counter to X. The addreas portion of the transfer in-
struction is substituted for the instruction counter when setting the address register to
locate the next instruction. The instruction counter is then set to this new address,

and the instruction sequence continues from the new location, 3-0
Jo3-
Transfer on MQ Plus TQP +0162(I) Figure 5+9=28

If the sign of the MQ register is positive, a transfer will be taken to storage location
X. If the MQ sign is minus, the computer proceeds to the next instruction in sequence.

Transfer on Plus TPL +0120 (I)

If the sign of the accumulator is plus, atransfer is taken to storage location X.
If the sign-is minus, the computer proceeds to the next instruction in sequence. TPL
is executed in the same manner as TQP, except that the AC sign rather than the MQ
sign is tested. See Systems 2.10.08.1,

Transfer on Minus TMI -0120 (T)

If the sign of the AC is minus, a transfer is taken to storage location X. If the AC
sign is plus, the computer proceeds to the next instruction in sequence. The execu-
tion of this instruction is the same as TQP, except that the AC sign rather than the
MQ sign is tested. See Systems 2.10,08.1.

Transfer on Overflow TOV +0140 (I)

If the AC overflow trigger is on as a result of a previous operation, a transfer is
taken to storage location X, and the overflow trigger is turned off, If the overflow
trigger is off, the computer proceeds to the next instruction in sequence. Execution
of TOV is much like TQP, except that the overflow trigger rather than the MQ sign is

tested. See Systems 2.10.08.1. The AC overflow trigger is turned off on Systems
2,10.36.1.

Transfer on No Overflow TNO -0140 (1)

If the AC overflow trigger is off, the next instruction is taken from storage location
X. If the overflow trigger is on, no transfer is taken, and the overflow trigger is turned

off. Operation of this instruction is the same as TQP, except that the overflow trigger
rather than the MQ sign is tested.

Transfer on Quotient Overflow TQO +0161 ()

If the quotient overflow is on because of a previous operation, a transfer is taken to
storage location X, and the quotient overflow trigger is turned off. If the quotient over-
flow trigger is off, the computer proceeds to the next instruction in sequepce., This is
a 704 compatibility instruction.

s03-3
Transfer on Zero TZE +0100°(1, ¥) Figure 5+8=29

If the contents of the AC (including the overflow positions) are zero, a transfer is
taken to storage location X. If the contents are not zero, the computer proceeds to
the next instruction in sequence. In either case the contents of the AC are not changed.

. BZ ‘
s00. 1/

0000000000 0% c0c0o0cccoelece

§-gas

0010 - ZN1 0010 + 3Z1 "62-2"S INON4 : Z910 + dOL 8-t°S 3NOI4 0200 + Vil ‘4Z=e*€ J¥NOIJ
1"10°00°8 < -£085 /-895
do pu3 1

1°50°90°¢
(10)6% d
Jd«¥v]
¥ 150790 € /_.8.8."
%) \ ,?m:n_
1'c0°01°2 o) IV pd v

W uoyipuoy

[u — .

Bl x o
up $xo N | %3N .
. oE_/ \

L \ 1 _/ /

a VAN

1720700 ~6Q°S0° € L1"81°90°€ 1"91°90°¢ 1'81°90°¢ 1760750 L1"91°90° *20°
| 90°¢E 1°20°00°8
dopuft-1 sv (gHTy| 17 (ca) 61 (1ot /«\\mm\ £Q) A1
J V»\ w:o\,oi A»l S 7 %TQQ(W s Huaag ICFE (/[-€)a @ Pul |
6T razTie | 5 p
(9a) 61 swe) q " 1 ﬁ »/ > » = &\ a .

(SE)AV « Koy QV <Dy dwo) 1°60°01°C - * N\/N M
[}) SY+Qv ,W
Y/ : 1puD J95x ,r&b\ﬁx /D

(€Q) &) (£1-4d)

\ % ﬂ//o,xfﬁw‘m:ﬁ
wif 7 p.ommmwon_ 1"80°01°Z 1ot ez // * /

778000 9150
. f SV Qv | Lew puod suoyl (80)61 (£1-d) \»«%T (€a)él | -
1 ousien sj20)g 21243 sug Qv (Se-81)us — < av) mrseaadl
81508 o 90°E]) S{1ipu3 Jagx [owioN 329(g
() (eq) 61 (+) » N »
¥V < SY SvY<(/1-€) Qv £ -}
f ¥ 1807012 .
* - ubig oW [1"ss 1z
&0 012 pued "o doif puo 2.0
SV -« av 324D vy 10 suos| Auy
{ipuD) suosp) P D
I'ss (z

|

USS 12 au:._ucuu»o.m T ﬂ/ i \~
J0 suoy
&0:. puo au04g a4 20 &O Ha I \—«
10 suos] Auy . % oEF !
» = 91 do 14 @

0t 40 14 Swi

awy |

e

000 o000 o0o0o0e® 0000000 Beo

\I17D2
~03-

T TIME
TRA
{ 1 N N T
P’C > XAD CARKY = SKR-21- PST XAD 3
(Aa@ [;AD /7 — AR 3:53 cAR TR = |
_ /702 . I17SET 01004 | TAS REGI?D

i
NOEMAL ADUANCE j

XAD3PC
1gby) 20
oIS

A T >}
CAPRY XAD YR - XAD P = XAD
17 I2h2 Ii;gz : Qso:/! -
03.06.02/ 48 yF
2.8 030420) 03.06.0¢.1
INDEX ﬂ T S
XAD "-)rAQ
110 SE
02.00.081 2&
R0
T/l deyo
2085 A
SET PC LT Qﬁko—-:)g}_o“
CORRECT NMNTW ? Aaﬁ%aa;AVz
ADDRESS —
¢
S60. /A Revs

cofoooocecoococ®Nocscsccscsc oo

TZE TNZ

I TIME
PRT ©OPR. 10

sB — SR
I 7D

4
SR~(21~3%)
To AR

I701
02 04.10, 4

Ac @R -35 NO SET PuLsE RERO TEST CHT
To SR INPUT :

‘I §Dy
02,72 03.)

® 0§ © 00000 0 0g0 000000600 @ 9 «

TAST TNZ Sk T2E QST
T2E TNE
N
SET TR ConND
NET T&R.
030649,/
AN
J
Pe~ MmaAR AR- MAR
Alo by AlD Dy
l 1]
END ©OP,.

F'/'é- sD3-3

$00. /3 8

To test for a zero condition, the accumulator is complemented to the adders, and a one
is added to position 35. If a zero condition exists, a carry results which ripples through
all of the adders and turns on the Q carry trigger. The Q carry trigger is used to condi-
tion the transfer circuits.

> ox -3
Transfer on No Zero TNZ -0100 (I, L) Figure ie-zs

e
If the contents of the AC are not zero, the next instruction is taken from storage lo-

cation X. If the contents are zero, the computer proceeds to the next instruction in
sequence.
sor -
Transfer on Low MQ TLQ +0040(I, L) Figure 5.3~30

An algebraic comparison is made between the MQ and the accumulator contents, If
the MQ contents are less than the accumulator contents, an instruction transfer is
made to storage location X. If the MQ is greater or equal, no transfer is taken. For
this instruction a +0 is considered to be larger than a,-0. The contents of both registers
are left unchanged.

The operation is performed by adding the contents of the MQ to the complemented
accumulator contents. The Q carry trigger is then matched with the register signs to
determine whether the conditions for transfer have been met, To prevent transfers
when the factors are equal, a one is added to AC(35) to produce a Q carry when the AC
factor is plus.

The following table illustrates comparisons which might be made, along with the
desired result:

No. in AC No. in MQ Q Carry Transfer

-7 -6 No No

-6 -6 No No

-0 -6 Yes Yes

-0 -0 No No

+0 -0 Yes Yes

-0 +0 No No

-6 +6 No . No

-0 +6 Yes No

+6 +6 Yes No

+7 +6 No Yes

. . . &0y

Transfer on Channel in Operation TCO +XXXX (I, L) Figure 5433t

This instruction causes a transfer to storage location X if the particular data channel

is in use. Operation codes +0060 through +0067 are used to check data channels A through

H, respectively.
-
S0 2)
Transfer on Channel Not in Operation TCN -XXXX (I, L) Figure 5.3-3%

TCN causes a transfer to storage location X if the data channel is not in operation,
Operation codes -0060 through -0067 are used to selec” data channels A through H,
respectively.

o4
£00.13 ,

D>

cofooo00000e®c00c00o0oe Boc

t

t Time

Pri Op 04

Any Trans or
Store and Trap

AC(S)Plus
2.11.55.1
Condition
Trans Cndtl o e Met
| rme——
= AS 2.10.07.1
10,091

! l —l Minus on TR
Met
L9(01)
AD(Fz AS | AS - AR 2.10.09.1

19 (D3) TTT D]
06.16.1 .06.18.1

AR > P

5.06.05.1 | ~t—

L Time

End Op

MQ(5-35) ==SR
L2 (D1)

2.12.07.1

Comp AC(Q-35) SR+~AD Carry—m
+AD L Time L5 (D6) AD (35)
2.12.22.1 212,141 2.09.30.1

® 0§ OO 00000 0g0 0000000 g o0

No Transfer
on Equals

., Ser-¢
FIGLRE 5.3+, TLQ + 0040

50074

A

—
e
)
—
0o
Z
Y

SR (21=35)
—>

AR
I7 D1
03.0G 4o, {(5A)

N

\ |)
62.16-67. 1 LCh Tn Htes '
& T

No

SL{ T‘VQ de Yes
Met T%Y

ﬁevfsca =1-61 WEgK

”\01000ootoooc‘oooooooalcc

*243 ‘1600 + ‘0E00- ‘0600 + J1L 4. Y™
*243 900 + ‘TZ00- ‘TTO0 + Dl °Te~e+E IWNOIL

2°20°2€°09
(za) z1

196613] jouuDyD)

#O wnl

b
t 1
1"81°90° “91°90°€
1 Y61
IV «— SV SV (Zi-B)av

60012 =

{puD) subsj u
1 ~—"_ 1
1°6s° t°T BN 2 20 14
doi) puo esyg ao._/.v puo as0i5
0 suoy| Auy BV»E_. Auy

N
do v 90 dO M4
@ .e:g_ oscv_/

eoo8oocococooc®oecooococococBece

sv2-6
Transfer on Data Channel Redundancy Check TRC +XXXX(I, L) Figure 573=32

If the data channel redundancy check trigger is on, a transfer is taken to location X -
and the trigger is turned off. If the trigger is off, the computer takes the next sequential
instruction. Operation codes +0022, -0022, +0024, -0024, +0026, -0026, +0027, and
~0027 are used to select data channels A through H, respectively.,

so2-6
Transfer on Data Channel End of File TEF tXXXX(, L) Figure 5852

If the data channel end-of-file trigger is on, a transfer is taken to storage location
X'and the trigger is turned off. If the trigger is off, the computer takes the next in-
struction in sequence. Operation codes +0030, -0030, +0031, -0031, +0032, -0032,
+0033, and -0033 are used to select data channels A through H, respectively.

P

v

o0 o000 0000 0000000 oo

\

\§

‘e AN

S0 g OO OO OOOELOOGOEONOGENOSEOSNGQG OO

Ry
307 Skip Instructions

The skip instructions allow the programmer to alter the program to meet special
conditions without stopping the computer. These instructions are similar to the condi-
tional transfer instructions but, instead of transferring, they cause one or two instruc-
tions to be skipped. Skipping is accomplished by supplying an extra advance pulse to
the instruction counter. ’

Most skip instructions cause the computer to skip when the condition being tested is
met. The exceptions are the error testing and I-O testing instructions, which cause
skipping when the condition being tested is not met; e.g., when there are no errors.
This exception (skip on no error) allows a straight-line program until an error is de-
tected. To process an error, an instruction transferring to an error subroutine usually
follows the'test instruction. Another exception, the CAS instruction, has three possible
results: it can fail to skip for AC greater, skip once for equal, or skip twice for AC less.

SoYy-/
P Bit Test PBT -0760...0001(I,L) D/# Figure &+3=35

A bit in accumulator (P) position causes the computer to skip one instruction. If
there is no bit in (P), the computer takes the next instruction in sequence,

Sov-/
Low-Order Bit Test LBT +0760...0001(I,L) 0tA Figure 5-3=3%

A bit in accumulator (35) causes the computer to skip one instruction. If there is
no bit in (35), the computer takes the next instruction in sequence.

-1
Storage Zero Test ZET +0520(1,E) TL B P~R Figyre gﬂs

If the contents of storage location X, except the sign, are zero, the computer will
skip one instruction. If storage is not zero, the computer proceeds to the next instruc-
tion in sequence. Storage is unchanged. The information from storage on the SB is
tested for zero as shown on Systems 2. 12,52, 1,

§2Y-3
Storage Non-Zero Test NZT -0520(L,E) T4 # DL Figure 5=3=3%

If positions (1-35) of storage location X are not zero, the computer skips the next
instruction. If the contents of storage location X are zero, no skip is taken. Storage
is unchanged.

svy—3
Compare Accumulator with Storage CAS +0340(1,E, L)) Tplfp Figure 6-3=3%
The accumulator is compared with the word at storage location X. Comparison is
accomplished by taking an algebraic difference. If the accumulator is greater than the
word in storage, no skip is taken. If the accumulator is equal to the word in storage,
one instruction is skipped. If the accumulator is less than the word in storage, the

next two instructions are skipped. Neither the accumulator nor the word in storage is
changed.

©0g0000000000000000g° 0

00 - LZN 0250+ 132 "99~2*8 IaNOId
E-pas

Z100°° 090+ 125G *1000° “ "09£0+ 187 {1000" * *09.0 - 184 ‘S2=£3 3NOI4

do pu3

(=125

Les-or-e

(1a)o17 85 x>
AlQ HO wn)

owy 7

990 14
swll

B

. 200
.»5‘0a//€

Pop 34 PoD 34 NO OVER LAP QONDITIONS
' T_ CAS ACH SR No SKIP
| TimE Ac : SR SKp |
" i Acg SR S 2
o :
TIME
® I
S %
Pc - xAD XAD AR
® eyoz | M,S0P | ey
3.06 09./ 3.06.08.1
K
' Pc— XAD CARRY To
EC D2 XAD 7
. 3.06-09./ 106.09.1
L
N
. ‘ XAD - Pc
E7 D1t
3.06.08.
@ 1
SB-8R
. ET DI
l _d
* N
Pc —~—XAD CARRY T
% Eg D3 x,an-yw ° LAS CAS
D3
roeont | |FE2%, ,
@ | , \ |
SR gr Xy R 1-38 comp Ac CARRY To
' °35 To =35 ToAD| | AD - 357
AD p-35 J3x Q-39
| @ £9 D3 Y ¥EX £6 D3 £8 D3
‘ YES I l |
XAD ~ Pe 2D 1-35 | Do ST PuLse To ¢R
‘ 3oco8. |APPR £y D3
¥
. X! CHECKING EQUALS conNDiTioN i
. X2 CARRY ¥ EERO COND,
SET Pog
2 $
‘ X3 CARRY + NO ZERO coaD 1;;(E""'op,
. | GATE AR
To MAL
. g 10 drY
v
CAS 40340, LRS - 0340 - 273
7
‘ Flguxc
o300, 19 Yyfea EAx

CAS and LAS SA/p Zir ﬁéqa’/rpm,?mfs

Sk/,D One /jr

/IVST cws s > -
s | et | T | 2Ly
CAS ALIKE YES o
AR S . _ —_— Yés o
SKyp [wo 7}%
CAS RLIKE > \/ ES o)
CAS ALIKE - NVo
CAS UNMLKE +
Zﬁs yf:g —o-

AC 2 STerpce w5 f//p

AC = S7T0RHEE SKIP Ot L
AC K S7eRAGCE SK P Two

TR

S0, 9 A4

e T
T e W LA v e e a
v R N
."‘ X , t pr
v 0(g ' - DL
» . R . .
Ce e m e e e e e e X, _ e

o000 0o0o0e® o000 c00e oo

o

4

4 "’fy s/

N
b

¢

To execute this instruction, an E cycle is required to bring the word in storage to
the storage register; then an L cycle is used for two comparisons in the adders. For
the first comparison, the SR and the complement of the AC are fed to the adders; the
Q carry and sign conditions are matched to condition the first possible skip. The sec-
ond comparison is made after a one has been added to the difference, to differentiate
words of equal magnitude,

The following illustrate some of the possible combinations:

Number in Number in Q Carry Tgr

Accumulator Storage 1st Comp 2nd Comp Result
-6 -7 On * On . Next Instruction
-6 -6 Off On Skip 1 Instruction
-6 -4 Off Off Skip 2 Instructions
-6 +6 Off On Skip 2 Instructions
-0 +0 Off On Skip 2 Instructions
+0 -0 Off On Next Instruction
+6 -6 Off On Next Instruction
+6 +4 Off Off Next Instruction
+6 +6 Off On Skip 1 Instruction
+6 +7 On On Skip 2 Instructions

s0Y~3
Logical Compare Accumulator with Storage LAS —0340519,E, L)Figure &3=37
JTLA - 04

This instruction compares the contents of the AC(P, 1-35) with the logical word (S, 1-35)

stored at location X. The sign of the AC is disregarded; the contents of the AC and
storage are unchanged.

If the contents of the AC are greater than the contents of storage location X, the
computer takes the next instruction in sequence. If the AC equals storage, the computer
skips one instruction. If the contents of the AC are less than the contents of storage,
the computer will skip the next two instructions.

This instruction is executed the same as CAS, except that the signs are not used for
an algebraic comparison and AC(P) is compared against SR(S).

Plus Sense PSE +0760. .. XXXX(I, L) LA

This instruction provides a meadns to test the status of any of the six sense switches,
to turn on or off the four console sense lights, and to permit the transmission of an
impulse to or from the exit or entry hubs of either the printer or punch.

The address portion of the instruction determines whether a light, switch, printer,
or card punch is being sensed; further, it determines which light, switch, or hub is
being sensed. The octal addresses for the different sense instructions are:

Address Instruction
S2Y-Y
0140 TAF Turn off all sense lights (Figure Sua=38)
0141-0144 §$.L A/ Turn on sense light 1, 2, 3, or 4, respectively (Figure
fr.-s-:are_) =
go04-

[-

SI OFF
I1ws 7
T rm¥
SL-5SRKR SR-SI
IgPrl Ied)
02, /2. 13./ 0d, 12.64.1
i
SR - AD
F705
02,123,331
1
ADP23R
Iz 01
062, 0%.1%:)
= 1
SRAST sT»3R
I o I ol
oa. 164 | 02,142,131
]
L TIimE
T7rmE l
sIT-sRk SR-ST
i pl i1 ot
aa.rIz. 13.} PY AN YA
58 »AD
Iob e
aJ-Il-lJo,
AD > SR
I3pl
0d.09. Y49,]
sR} [
-52’ -
I4q 0! ;{a p:sR
02.12,64,) 02,12 ,13,)

$20, 20 4

T TIME SEWSE OFF ZhDronrvR i Jws];

F 7ININE DETERRMLD BY SEWSE OFF DECONE LINE whicH)S Fob poT L Tiv

298 P

[y

% .
(RN

L®S . nN1S 175

*D13 “T910 ‘1910 *"09£0+ IS’ ~ Om=4® N OIS Y710 ‘E¥10 ‘Z¥I0 ‘1710° " 09L0+ w&?&)mk NOI 0v10° " 090+ w&?oo..vm 3N Oid

) -rlS \w-\vnh h-peS
do pu3
1"os"11°T
Dd $ouoApy -
t
10960 wa 1°09°60°Z :
(19)61 Py ’ () v—ﬁ . :
f—dig osusg | €771 BN 1a) L1 syen -
- osuUag U wnj sUSS 3O uiny . ey
®) 5 »
1O é 1°70° 60"t 1°10°20°€ 1°00"€0°€ 1'10°Z0°€ / B ...h
1°10°€0°¢ r
o YLV v s> Y1V Py =01 Ly
- ¥ ‘e Ivn jud dO #suag 00 vN Jud dO ssueg oy
el e IL Q -
1"10°€0°€ m 3
98 9Lg PV 550D
‘982t v jud dO susg oL suiL
t N
swi) 7 e o1 9%0° 81t 1"91°90"
()it (eq) 6 | (gt (eq) é)i
O5+(£1-Z1)sVY SV<(/|-E)av DS (£1-Z1)s SY< (L1-€,

o~
by

(1a)tu (€a) ¢ 1

«{/1Z1)SY SY<(/L-€)aV 61 (£1~d) ~——— Y61 (£L-d)¥
} } Qv (SE-81)¥S av < (se-8l)

1 1

S~ (£1-4) - 9L mw_ﬂ 92 40 144
Qv (GE-81)¥S suwty |
t
9440 14
ouyy |

N AR RN R EEEEE R X EXX XX EXFEF LYY

Address Instruction

0161~ 0166 If the corresponding sense switch is down (on), the
Jwr computer skips the next instruction. If the sense switch
is up (off), the computer takes the next instruction in
sequence (Figure .

1341- 1342 The computer causes an impulse to appear at the specified
2341- 2342 S /DU exit hub of the control panel of the card punch attached to

3341- 3342 Data Channel A, B, C, D, E, F, G, or H respectively
4341~ 4342 (Figure b3~¢t),

5341- 5342 soY-7

6341- 6342

7341- 7342

10341-10342

1360, If an impulse is present at the entry hub of the control '
2360 S panel of the printer attached to Data Channel A, B, C, D,
3360 § /D/ E, F, G, or H respectively, the computer skips the next
4360 instruction, If there is.no impulse, the computer takes
5360 the next instruction in sequence (Figure 5+3-42).
6360 STy ~8§
7360
10360

1361- 1372 S P/a The computer causes an impulse to appear at the specified

2361- 23172 exit hub of the control panel of the printer attached to Data
3361- 3372 Channel, A, B, C, D, E, F, G, or H, respectively

4361- 4372 (Figure 5+8=%3).

5361- 5372 So¢ '%

6361- 6372

7361- 7372

10361-10372
sey-/0
Minus Sense SLT MSE -0760. .. XXXX (I, L) oL Figure ra—tt—

If the sense light, on the operator's console, corresponding to the address portion
of the instruction is on, this light is turned off and the computer skips the next instruc-
tion. If the sense light is off the computer takes the next instruction in sequence,
Addresses 0141-0144 correspond to sense lights 1-4, respectively,

SeY =1/

Input-Output Check Test IOT +0760...0005(1, L)DL 5 Figure 5+8=¢%

If the I-O check trigger is on, the indicator is turned off and the computer takes the

next instruction in sequence. If the I-O check indicator is off, the computer skips the
next instruction.

So09-/
Divide Check Test DCT +0760...0012 (1, L) A Figure 3-3=35

This instruction examines the status of the divide check trigger. If the trigger is

off, the next instruction is skipped. If the trigger is on, it is turned off and the computer

takes the next instruction in sequence.

ADE
7092

L

o000 000 0%B 0000000 feo

~.
.

Ay
o @

24

e
-

D13 ‘TX “I9ET “TLEL “(9E1" " 09L0+ 3Sd __.\Qum.u NI *D13 “09€Z ‘09EL" 090+ 35d R«“ﬂw o4 *DL3 “LYEE “TYEZ “L¥EL" 1090+ u._,\._'\\.uu 014
b-%as S-ras L-hoS
ECAYE Lds ‘ nd s
do pu3
do pu3
do pu3 ros itz) .
Dd ®ounapy
¥
qAH |aung [14e-ept
18D #tueg U4 To |9y
(19) 61 {oung |4 esueg
dixg os young wouy ynd
=inQ #30poy
o m
TELTES u;
18430]85 14 °N o> .
2 Q
1 _.B.wo.oA. e - _.Swoo.f» _.No.Mo.n 1700°20° € 17£0700°9- Q
rzicoe<] [11020°¢€ 1°60"00°9 17007g0%e 1 1 1710 anm 1°50°00°9 1"10°60°¢ »y te0o'e (a
DO || et | | s s wvn | | vs o] | o o eoivn] | apenss| | oo
. t [} ¥
f 1 ¥ 1
owiy 1 sy 3
swy q

_— vesnz] [rosoe TR 1'909Q°¢
1'8, HEITTT < (32 (1)1t DS« (€Q) 6 1 3v
Q)L O+ (L1-o1)sv| |+ (21-€ (21-01)sV ~(Z1-€
(L1-01)sY 1 . T 1
FJL AR \ ¥
o1 cl’e - ‘
- 0ve- (SE-81)¥S 61 (£L1-d)
e Toe-g1)us Qv+ (SE-81)¥S
f . 1 I
94 90 tu 9240 1n
onhm_u‘_._”m swif | awyy |

eoboceccccccloccccsccc®oec

| Time

Pri Op 76

.
SR(18~33)=>AD

2.12.16.1

AD(3-7) » AS(12-17)»
AS, IN(D3) SC 111(D1
3.06.1 ;

L Time
[
? }
Sense Op Pnl UA1,2,30r4
Class Adr Al4 3.03.00.1
3.02.01.1 ‘3-09‘-104]
No
Yes
Sense
L9(D1
\
2.0y.59.1
Turn Off Sense Advance/PC
Light L11(D1)
2.09.60.1 2,17.50.1

End Op

Soy~10

FIGURE M.VMSE -0760...0141, 0142, 0143, 0144

SLT

| Time
Pri Op 76

l

SR(18-35) —»

—

2.12.16.1

2

Turn Off I/O
Ck Tgr LII(D1)

2.10.53.)

)
AS(12-17) =]
S :

2.01.78.1%
)

ey

1

L Time

!

UA 05

3.03.05.1

To Sense Skip
DOT Or

2.09.58.1

|
Sense Ski
L9(

2409.59.1

P]

vance fC

2.77.50.1
|

B

End Op

S04 =77
FIGURE 5«85%5. 10T +0760...0005

3 .
,53?0.,91}/

Trre s P

N\

' @

'S o000 0000% 0000 ocoo0oe oo

OO0 9 O OO OO OO0t 000 00 O0O0OGgG OO

5 09-13
Beginning-of-Tape Test BTT +0760...XXXX (I, L) DLR Figure =3=d6

This instruction tests the status of the beginning-of-tape indicator in a particular
data channel. Address 1000-10000 selects data channels A-H respectively. If the
beginning-of -tape indicator for the selected channel has been turned on by a previous
instruction, the indicator is turned off and the computer takes the next instruotion in
sequence. If the indicator is already off, the computer skips the next instructionL oy-12

End-of-Tape Test ETT -0760...XXXX (I, L) oL B Figure ;-HO

This instruction uses address 1000-10000 to select the data channel in which the
end-of -tape indicator is to be tested. If the indicator is on, it is turned off and the
computer takes the next instruction in sequence. If the indicator is off, the computer
skips the next instruction.

Sos
&8+68 Control Instructions

Control instructions are provided so the programmer may change the problem condi-
tions or service the computer,
DS~/

Halt and Proceed HPR +0420 (I, L) Figure 373—3%

This instruction causes the computer to stop at the end of I time. When the start
button is depressed, the computer proceeds to the next instruction in sequence. When
halted, the PC contains the address of the next sequential instruction, 082

Halt and Transfer HTR +0000 (I, L) DL K Figure a=d=d8

This instruction causes the computer to stop at the end of I time by turning on the
master stop trigger at I7o(D1). Depressing the start button causes the computer to
proceed in L time of a transfer operation and the computer takes an instruction trans-
fer to location X. When halted, the PC contains the address of the HTR instruction.

No Operation NOP +0761 (I, L)

The NOP instruction performs no active function, but is used to reserve space for
other instructions. Since this instruction has a primary operation 76, an I and an L
cycle are required. The only function of this instruction is to turn on the end operation
trigger to allow the computer to proceed to I time of the next sequential instruction.

SOD O1 on Systems 3.07.01.1 causes L END OP on Systems 8.00.09.1,
s05-3

Execute XEC 40522 (I) p1R ovThL ¥ Figure 6329

This instruction causes the computer to perform the instruction at location X. The
program counter is not altered; therefore, after the instruction at location X has been
executed, the computer proceeds to the next sequential instruction (instruction in next
position beyond the XEC instruction).

If the instruction at location X is an unconditional transfer or a successful conditional
transfer, the computer does not proceed to the next instruction following the XEC, but
proceeds to the address specified by the transfer. Another exception occurs when the
instruction at location X is a skip type, and the conditions are met for this skip. The

PC is stepped and the skip is in relation to the location of the XEC instruction. sy
SPS~
Set Sign Plus SSP +0760...0003(I, L) O LV Figure 57350

This instruction places a zero (a plus) in the accumulator sign position. Positions
(Q-35) of the accumulator are unchanged.

. - ﬂo.aé’

A

QQ.Q.."Q.:".‘.;.‘Q

,) . \
0ZY0+ ¥dH =57 3WNOI4 09£0- 113 ‘09£0+ 118 “9v=2*§ 3NOI4
7=Cas tr-pas
1
4o pu3
1705 112
a ﬁ 131
uw
1"8(°00°6 1°02°00°8 S
Liv 5] wﬁ._:a__.w L1y 461 M.—:n_u.w 1°€0°ZE° 09 ;
1 #5W uQ win VIISW HO ung N
O uany Kzq) 17 461 dusg I
_ Pyl =o wny
1 Q
| B
1243 2. e .> Ly
inO ooy o .%_ 1°0Z°00°8 0 . .
L9 | [ctayun 1 461 ouwy
_.I— 1 1 4W uO win)
1oz 1"€1°00°8 1760°00°8 . .a - ez 1°20°Z€ 09 "Z0°zE
196611 doig| | (10) 11y 19nasmauy By dopug| |[TEL008 h"o_v_owm 5 t'zozer09 1750 0269 50702 09
Boig 530 uingf | 24D 8 44O wny vo wing owiL 7 doig s 4O winy (@) z1 Pyl (za) z1 pyl PV (2uuoyd Py Jouu
T 3 5 0% °9 S 103 30 winy 108 40 win) puo 113 puo 1y
i _ y 1 H
ey oy 1'91°00°8 A H
(1a)ov 15 doy (ea)6 1 01t1) 46) doig v
W 3O .Ew 1953y |4y 119D swy g Boig uQ win K 118 rs000TY
- : 7 ¥ 1 o
ey _.nmﬂs.m
gve-ov 5] .
HD§g U wang (R RIL 0] .
)
2y 90 g o e 1'ol10°9 1'ol" 10°9
ewyy | awyy 113 1149

OO0 O OOOOOONOCRIOGIOSIOIOSIOGIOGNGOIOIES

| Time

Pri Op 00

L_____...

Halt Ctel

8.00.33.1

e —

L Time Call

8.00.16.1

!

Turn on Mst Stp Go To
Tgr 110 (D1) L Time

8.00.12.1
4.20.11. %

o

¥ Y

B Cycle Turn On Mst L
Interrupt Time Tgr 111

8.00.13.] (on
8.00.20.1

AS —» AR
111 (D1)

>

Turn On Stort
Tgr AO »A8

4.20.07.1

Turn OFf Mst
Tgr AS(D1)
4.20.11.1

intlk Reset
4.20.12.1

Cond Met Up
from | Time

2.10.07.1

1

Minus on TR

/CL‘)(DI) 5 e

i
End Op

£o5- 2

FIGURE $v&=48. HTR + 0000

B ﬂd

.27

\
-

e
\

‘. i\.
"\ ~

N\

Z000° " " 090+ SHD "+6ug2C INDIA

_C=sa®
1°z6%zLe 1°26°21°¢
(1Q)91 snig (10)91 soumy

(S)Ov 495 (S)OV o5

1su) ixeN
oung

80 pu3

swy) 3

92 4O 144
swiy |

£000° " *09£0 + dSS ‘E000° * " 09L0 ~ WSS .ﬂ“m.ﬂn..quO_m

,

A -Sar
'z e
(ta)s1
(S)OV i8¢
[]
1" £5°60°T 1°45°60°C
snutyw snig
(s)ov 4os (s)oV 495
Wss dss
U] IXON
ouwyj |
90 pu3
swyj
92 dO 1d
auw] |

0000 @
=\
Q)

2250 + D3IX &FTT PNOIY

E—-sos
G090 ¢
\&aﬂﬂ.lV\
Dde-3y.
gﬂ d
1°20°00°8
do pu3
1°81°90°¢ 1°91°90°
Q)i (€q
W3V SwE={-1Ia

rot-zite

(€Q)61 (£1-d)
Qv-(SC-81)¥S

Z6 dO 14

awil

J00. 25

.

0§ OO OO OO 0 0500000000 g o0

So5~ Y
Set Sign Minus SSM -0760...0003(I, L) Figure Se-e=i?o’
IL R
This instruction places a one (a minus) in the accumulator sign position. Positions
(Q-35) of the accumulator are unchanged.
SO -6
Change Sign CHS +0760,,.0002(I, L) Figure =3=8%3
DL i
This instruction complements the sign position of the accumulator. A one is re- -
placed by a zero and a zero is changed to a one. Positions (Q-35) of the accumulator
are unchanged.

| A1
S26. 29

Sk
S5+=3709 Sense Indicator Instructions

The sense indicator instructions are a group of instructions which operate on the sense
indicator register. These instructions enable the computer to set and test the indicators
under program control.

s06-/
Load Indicators LDI +0441(1,E) Fifure ==
DLA o TA

The contents of storage location X (S,1-35) are placed in indicator positons (0-35).
The contents of storage are unchanged.

Store Indicators STI +0604(I,E) s/ &

The contents of indicator positions (0-35) replace the contents of storage location X,
The indicators are unchanged. Execution of this instruction is the same as STO
(Figure 3. 5-1, Section 3.5.01) except that S1(0-35) is taken to the SR rather than AC
(8,1~-35). SI(0-35) to the SR(S, 1-35) is shown on Systems 2.12.13.1,

S26-/

OR Storage to Indicators OSI +0442(1, E) Figure f=3=82

D4k) TLAR

This instruction places the logical OR of the word at storage location X and the
contents of the indicators in the sense indicator register. Storage is unchanged.

526~/

Invert Indicators from Storage IIS +0440(1, E) Figure =52

OLBs TLA
This instruction inverts the positions of the SI register which have corresponding
"1'" bits in the word at storage location X,
306~ 4
Reset Indicators from Storage RIS +0445(1, E) Fjgure f=83353
DULA gr T #

This instruction utilizes the word at storage location X to reset the sense indicator
register position. A "1" bit in any position of the word causes the corresponding sense
indicator trigger to be turned off. Indicator positions which correspond to ""0" bits are
unchanged. Storage is unchanged. .

S?6 -3

Set Indicators of Right Half SIR +005:(T) Figure &8=5%

For this instruction, the control field (18-35) of *he instruction is OR'ed with the
right half of the sense indicator register. A "1" bit in either the control field or the
indicator places a "1" bit in the corresponding sent.> indicator. Because the only

L g0, 0

N~

>
N

0o 0 o000 0 000 0000 oo

-
——

<
|
@

CC.QO...C.‘.‘..QQQCQ'C.

II 6 - INVERT

IND!CATORS F‘Rom STORAG-E -
I Time
prI orf yy
{ E Timeg >
Y
SB » SR
EL (o)
02.12.50.)
Yy
i} ¥
INVERT oR INVERT SET
RESET (EioDr) OR LOAD
eiol(o)
oz 1z.L2.| 02.12.64.|

Figure 506-1

page 500, 31

+0 440

2494

LDI-

Loap JLINDICATORS +~ 0441

T TIME
PRI op 4

QE TIME D

S8 » SR
EL (o)
02.12.50.1
h L J ‘L
INVERT SE&T
ELECTRONIC .
REGET OR zOA)D sT (Lo;)\o SR (s 3s) >
o:E.\q';(A?.‘}.} 0343 LY. o> 12.6Y4.) ¢

Figure 506. 1A
page 500, 31A

\2
=
~

o0 0 o000 0000 0000000 B ece

0S1- Og

QrorAGE 1o LNOICATORS

RIS - RESET IND\CATDQS

FROM STORAAE

T TIME
PRT of 44

)

O 442
0445

S8 2> SR
g (o)
0a.i1a.50:1

N

INVERT SET
oR
Loap (eiom)

02.2.LH.

© 0§ OO0 00000 0900000 00 09y

o5 /<£>\ms

Figure 506-1B

page 500 31B

ST INVERT
OR

RESET (E1001)

02.12.44.)

1 Time

Pri Op 04

¥
End Op |

!

[Time
Next Inst

SR,RIR, IR SIL, RIL, NIiL

SR(18-35) - AD SR(18-35) = AD|
18-35) I(D3) P-17) 10(D3)
2,141 2,12.16,1
! <
AD(P-35) > SR
(5-35) 12(D1)
2.12.04.1

IR, HL
.
[Reset SI Invert Si Set SI
14(D1) ll(Dl) 14 (D1)
2.12.62.1 .12, 61 1 .12.63.1
\ |
H
Reset S| Position Invert SI Posi- Set S| Postlon
for Bit in SR tion for Bit in for Bit in SR
Position SR Position Position

solr~3
FIGURE 50054 SIR + 0055; SIL - 0055; RIR + 0057;
RIL - 0057; (IR +0051; IL - 0051

<

o0 0ooo0oo0o0o0o0e0® 0000000 oo

(«)

.T I L*IMVERT IND\CAToRs

Or leer Haur O0f%l1

T TiMe
PRy OF oy

v
QEMD oP j
@TIME NE)HD

¥

SR 13-35 »
AD (P-11)
To (p3)
02.12.14.)

15
Ao (P-35) »
SR (S-35)
12 (OV)
caa. oy,

LN I

ST INVERT
OR RESET
Ty(o)
02.12.68.1

© 0 5 OO OO OO0 0500000000 goo

¥

INVERT SET
OR LOAD

Iv (o)
62.12.0LY. |

Figure 506-3f

page 500,32 A

(WA
(92
“

W
_‘j

RIR'RESET IND\CATORS FRoM P\IGHT HpLF = OO§7

I TIME
Pri. Op - OY

A

SR (18-35) % AD (P-35) >

AD (19-35) R (5-35>
Ao(p3) T2(o1)

621214} oc2.12.04.4

S. I INVERT

OR
ReseT IJ@)
02.1%.62.])

Soocooc000000° o000 o0o0o0 feo

j.\ {0(0-28
gra‘r soo. 32\

[

. Y R
o

®

0§ © O OO0 O O 0500000000 g oo

input to the sense indicator register is from the SR, the control field must be placed in
the right half of the SR, and the left half of the SR must be cleared before setting the
indicators. This is accomplished by gating only the right half of the SR to the adders
and then gating adders (P, 1-35) to SR(S, 1-35).

506-3
Set Indicators of Left Half SIL -0055 (I) Figure Sc3=5+

This instruction OR's the control field (18-35) of the instruction with the left half of
the sense indicator register. Execution is the same as SIR except that the control field
must be switched to the left half of the SR, and the right half of the SR must be cleared
before the indicators can be set. This is done by routing SR(18-35) to AD(P-17).

506 -3
Reset Indicators of Right Half RIR +0057 (I) Figure a==8%%

This instruction causes the reset of the positions of the right half of the sense indica-
tor register which correspond to ones in the control field (18-35) of the instruction.
Indicator positions corresponding to zeros are unchanged. Execution of this instruction
is identical to SIR, except that the reset-indicators input is used instead of set indicators.

sob -3
Reset Indicators of Left Half RIL -0057 () Figure =S=5t

For this instruction, the control field of the instruction is used as a reset mask for
the left half of the indicator register. A one in the control field resets the correspond-

ing indicator position. Execution of this instruction is similar to that of SIL except that
the reset-indicators pulse is used.

s06 -3
Invert Indicators of Right Half IIR +0051 (I) Figure 3253

This instruction inverts positions of the right half of the indicator register which
correspond to ones in the control field of the instruction. Indicator positions corre-
sponding to zeros in the control field are unchanged. Execution is identical to that of
SIR except that the invert-indicators pulse to the indicator input is used.

s26-3
Invert Indicators of Left Half IIL -0051 (1) Figure I=3=34

This instruction inverts positions of the left half of the indicator register which
correspond to ones in the control field (18-35) of the instruction. Indicator positions
corresponding to zeros in the control field are unchanged. Execution of this instruction
is identical to that of SIL, except that an invert-indicators pulse is used.

sob =Y
Place Indicator in Accumulator PIA -0046 (I) Figure =3=36

The contents of sense indicators (0-35) are placed in positions (P, 1-35) of the
accumulator. The sense indicators are unchanged. AC positions Q and S are cleared.

s06— Y
Place Accumulator in Indicators PAI +0044 (1) Figure &=3=88

The contents of the accumulator (P, 1-35) are placed in the sense indicator register.
The accumulator is unchanged.

bt
52083

II A - INVERT
RTIA- Reser

IIA

N

—lND\C ATORS FROM

Acc.uM\JLAToR

IND\CATORS FRoM AccuMuLATOR

I TIME

Pri Or oy

ST INVERT

- -4 OR RESET

Ty (01)
03.12.L2.)

¥

END OF j

ms:R—L RTA

¥

Y

+ 0041
- 0042

ST INVERT ©R
ReseT Id(m)

02.12.46%.)

INVERT SET

OR LOAD
'zw(mg
oa.1a. LY !

Figure 506 - 4

page 500, 34

i
i
I
'
i
i
i
!
)

©0 90000 OOOORMRLOEOIOIOIOEONONQOO

PAI - PLACE

/'\CCUMLJLATOR IM IND\CATORS"

T Twme
Pr1 OP 04

Y
CEND oP j

AC (P-35) »
s R (s-35)
3T2(0V)

c2.12.02.!

+ 0044

¥

¥

Y

ELECTRONIC
RESET LINE
IB(D\)
02 .12. LY. |

INVERT SET

oR
LOAD Ia‘(ou)
ox.1a. LY

SET LOAD
T3 (o)

0212 LY.}

SR (s-35) 2
sI (o-’sS')

Figure 506-4/4

page 500, 34A

PIA - Piace JLusicators In AccumuLaTor

OAL-

OR Accumurator o

P1A

I Time
FRI oP o\.'

¥
QEND oP)
—

Y

ST » SR
Io0(03)

6213 1.}

)

SR (s.1-35)>»

1'ND\C.ATORS

OAXL

— 0046
+ 00 43

Ac(p-35) >

SR (s-35)
x2(01)

o2.12.02.]

¥

ST INVERT

e FENNNNNN NN

ﬂDéPq,\(-g? SET OR SoAD
o3 Iy (o
021213, 02.12. LY. |
[
Y

Ao (e.1-33) ROQ » AC
e (P 1-35) T (o)
o:f:gﬁ\? o3 13,311

fijar(5‘06""/6 . ‘

/a7c o0, 3% ¢ %4 ,
"o

el
OR Accumulator to Indicators OAI +0043 (I) Figure 33=85

The logical OR of the contents of the accumulator (P, 1-35) and the indicators is
placed in the sense indicator register. If a position in either register contains a one, a
one will be placed in that position of the indicator. The accumulator is unchanged, Exe-
cution {s accomplished using the sequence of PAI but omitting the indicator reset.

so6 -4
Reset Indicators from Accumulator RIA -0042(]) Figure 5-8=8%

The positions of the sense indicator register which correspond to the positions of
the AC(P, 1-35) having '"1" bits are resetto zero. Indicator positions which correspond
to ""0" bits are unchanged. The AC is unchanged.)

) S26 -4

Invert Indicators from Accumulator IIA +0041(T) Figure 5=3=3%S5-

,This instruction inverts any sense indicator position for which there is a corre-
sponding "1'" bit in the accumulator (P,1-35).

S-S

Transfer if Indicators On TIO +0042 (1, L) A Figure 33-5%

DL
If all of theones in the ACare matchedby ones in the indicator register, an instruc-

tion transfer is taken to location X. AC positions containing zeros are not compared with

indicator positions. If all of the ones are not matched, the computer takes the next

instruction in sequence. To execute this instruction, the complement of the AC is

OR'ed with the indicator. If the ones match, the result will be all ones. The result

of the OR is stored in the SR and fed to the adder. A carry to adder (35) will ripple

down the adder and carry out of the AD(P). The adder (P) carry is used to condition

the transfer.

SVl -6
Transfer if Indicators Off TIF +0046(1, L) DL @ Figure 6356

If all of the ones in the AC are matched by zeros in the indicator register, an instruc- -

tion transfer is taken to location X. AC positions containing zeros are not compared
with indicator positions. If all of the ones are not matched, the computer takes the
next instruction in sequence. Execution of this instruction is identical to that of TIO,
except that the complement of the indicators is OR'ed to the complement of the AC.
Test procedure remains the same.

o¢ ~-b
On Test for Indicators ONT +0446(I, E, 2L) Figure é:s:z
DLRA o+ TLA

If the ones contained in the word stored at location X are matched by ones in the
corresponding indicator register positions, the next instruction will be skipped. If all
of the ones are not matched, the computer will take the next instruction in sequence,
Positions of storage location X which contain zeros are not compared. Execution of
this instruction requires an E cycle to obtain the test word from storage and two L
cycles to complete the test, The test is accomplished by moving the test word to the
accumulator, where it can be complemented, The complement is OR'ed with the in-
dicators and returned to the SR. The result of the OR will be all ones if the ones in
the test word match the indicator. To test for all ones a carry is added to the OR which
will result in an adder (P) carry to condition the advance instruction counter. The

contents of the accumulator are saved and restored to normal during execution of the
instruction.

. oE
S00.35

'\
i;l

I Time

Pri Op 04

!

Any Trans or
Store ond Trop

2.11.55.1

!

Trans Cndtl

2.10.09.1

i

Y

i i

o i

<35) —=
19 (03)

19(03) (MDY
3.06.16.1

Mllé.]

‘.‘—-——""

L Time

!

Comp AC(Q-35)
*AD LO(D3)

2.12.22.1

TIF Inst
/ TIO

Com,
L Tim:
2.1

1SR Sl » SR
L Time
12,1 2.12.13.1

/

AD(P-35) = SR
(5-35) L2(DY)

2.12.04.1

1

l__]_‘l

SR(S-35) =AD Carry —»=AD(35)
P-35) L5(D6) L5(D8)
2.12.15.) 2.12.%.1

Cond Met

2.10.07.1

L? (D

:05.1

$06-5

FIGURE §&3=56. TIO + 0042,

5@003(0

\

1

L

LA

\
N

\ .
. B _ e i _ H.,I e -. I ‘ . . .‘ . .

~

@
-
B e

© 0 HH OO0 00000 000000000 g o

TRANSFER IF IMD\CATORS OFF

I Tme
PRI oP oYy
S8 » SR
Tu(o1)
Oa.IG-SO-I
oy SI » SR
SR » ST SR » AD
I g(o1) CUR NG 13(0)
02 1264} I TIME 021343,/
N
AD » SR
Tio(DP)
ox.094Y.}
12 3R s; :(Soxu)
T u(o)
02.12.13.) IYREVL
L T]
C\. TIME)
81 » SR
L TwmE
03.12.13.1
)
AC » AD
Lo(o3)
0313 39,
Y
AD & SR
Lz(DQ
63 .13 .04,
Y : ¥
SR WD CARRYI AD2S
Ls (ou) Ls(ou)
02.12.15.1 03.13.99.}

I

©32.10.07. |

Cond

MET

AN

A 4

+00460

3
=

TIF (con't)

SI » SR SR »5T
T4 (D) Ti(0})
62.13.13.) ©2.13.6M.
l)|
EE <% RD
T 2(03)

03.12.13.)

AD P SK
I?(bl)

02 .09 H\v.|
ST PSR SR »sXT
TH(o) T4(0\)
021203 62.13.44.)

1iq s0¢ §A4 cz)

page SO0 368

[)

O

~

Ly

000000000 oo0c0oc0ccoeBeoce

—
YPP0+ 140 ‘OFF0+ INO "ZE3S INOId
- 905
rsrzie
(£0)81 (5€-d)
qv < (5¢-5)
4
t/~
Uicl e
oStz) 91 09
(se-0) aV]
Dd @oupApy a
[‘ AT
o Ze
_ﬂn_oov_om A (€a) r1 gve
Se-D duwo,
dixs 1) DV dwop
rzee _._n_ﬁ.a ™~
(1a)21(se-5 ‘©) (10)21 Dv< 140
¥+ (SE-0)OV (se-D)av] -
— I
'sizie 9
PP T (ea)o1 (se-4
TR Lstizre Qv < (5£-5)¥
(5a) 51 (s¢) / (50) €1 (5€~d) bi
Qe AuoD ey« (5£-5)ug)
auwyy
14
105zt ¢
(1a)3
¥« 95
——— f 1 t
AR TErZle paoree TRl BT /
(€q) 61 (eq) 61 @) 011(se~ ‘D) (@) o1 |) o171 v eull 3
Y5« 15 dwod S < | ¥S+(SE-D)IV | (D) dve(D) ¥S| | < (5e-0) a /
140 6\-40 »
. vy 4O 144

\ M

oo o000 e®ocooccoceleco

s06-6
Off Test for Indicators OFT +0444 (I,E, L, L) Figure
DL B or TLAR
If the ones contained in the word stored at location X are matched by zeros in the
corresponding indicator positions, the computer will skip one instruction. If all of the

ones are not matched by zeros, the computer will take the next instruction in sequence.
Positions in the test word from storage which contain zeros are not comparced. Execu-

tion of this instruction is identical to that of ONT, except that the compliement of the
indicator is used for the OR operation instead of the true indicator.

, Sob ="
Right-Half Indicators, On Test RNT +0056 (I, L, L) Figure x=—3=H8

This instruction matches the ones in the control field (18-35) of the instruction .
against the corresponding positions of the right half of the indicator register. If all of
the ones are matched by ones, the computer skips one instruction. If all are not

matched, the computer takes the next instruction in sequence. Positions of the control

field containing zeros are not compared. Execution of this instruction is the same as
ONT except'that only positions (18-35) of SR are used.

s26 -7
Left-Half Indicators, On Test LNT -0056 (I, L, L) Figure 3=3=88

If the ones in the control field of the instruction are matched by ones in the corre-
sponding positions of the left half of the indicator register, the computer will skip the
next instruction. If all ones are not matched, the computer takes the next instruction
in sequence. Execution of this instruction is the same as ONT, except that the SR
(18-35) is compared against SI(0-17).

S06 -7

Right-Half Indicators, Off Test RFT +0054 (I, L, L) Figure &=X=38

If the ones in the control field of this instruction are matched by zeros in the right
half of the indicator register, the computer will skip one instruction. If all ones are
not matched by zeros, the computer will take the next instruction in sequence. Posi-
tions of the control field containing zeros are not compared. This instruction is exe-
cuted the same as OFT, except that only positions (18-35) of the SR are used.

§26 "7
Left-Half Indicators, Off Test LFT -0054 (I, L, L) Figure 3=3-538-

If the ones in the control field of this instruction are matched by zeros in the left
half of the indicator register, the computer will skip one instruction. If all are not
matched, the computer will take the next instruction in sequence. Positions of the
control field containing zeros are not compared. The control field and the indicator
register are unchanged. Execution of this instruction is the 8ame as OFT, except that
SR(18-35) is compared with SI(0-1 7).

500.3¢

o080 o000 0000 oooeococeooe Beo

AR SN
A~
500 - L1 ‘¥500+ 143 ‘9500 - LN 9500+ LNY ° BSWe™® 34NO!l4
2= 725
stz e
(£a) 81 (se-d)
av={5£-5) ¥S
RN
(1N
«(sE-O)av
(SR 2AFA B4
(6Q)P1 AV
(se-D)Iv duwod o~
T ~
| _ S
AR
rieae m Q
- (1a)21(5€-5 ‘D) (g _O
& 21e Lsireleo ¥+ (SE-0)OV Sv + (SE-D)aV .
(9a) §1{s1) (9Q) §1 (s€-d) L] ¥
Qv <« Auc) av < (SE5)¥s R
[1
r||~l|._ TN rrizie
1°80°zL°2 (£)01 (£1-d) (£0)01 (s€-81)
ouny 1 puz av -« (Se-81)3s Qvee (SE-81)3S
\»\\ INT ‘1A 138 IN¥
f] To0z1°z
rzrargl-frera e Teeere ez
61 (ea) 61 (1@)o11(se-5"D) (1a)o11 (o) |(1q) 011 d¥ R
Tl |5 dwory ds 1S ¥+ (56-D)DV v+ (D)us] | +(se-O) av
@‘ INT q
T 14y INY R voao g
. awy

INDEX INSTRUCTIONS

The 7094 has seven 15-position index registers and can operate in one of two index
modes. Multiple tag mode (set by the EMTM instruction) causes the computer to work
on a 3 index register basis and provides compatibility with 7090 programs. Instruction
positions 18, 19 and 20 indicate any one or any combination of the three index registers.
Multiple bits in these positions cause OR'ing of the index registers and therefore
defines the mode of operation.

Use of all seven index registers can be accomplished by leaving the multiple tag
mode. (LMTM instruction). Instruction positions 18, 19 and 20 are decoded to indicate
a specific index register; index OR'ing is not possible.

A 3-position tag register accepts and retains the tag bits from either the storage bus
or 1. B. R. depending on the various conditions of overlap. The output decoding of this
register is dependent on whether the machine is in 3 or 7 index register mode.

A separate set of 15~-position adders (index adders) have been placed in the 7094; they

s
are similar in function but completely isolated from the normal 39-position,adder
circuitry.

:';ég adblbra 4n 15

The output of the index registers is always gated to the, - complement
form. The 1's complement output is converted to a 2's complement by a carry into index
adder position 17. An indexable instruction may not be tagged; however, its address is
always gated to the index adders and operated on by having an all 1's output from the
index registers sent to the adders together with a carry to position 17. The net effect
is to add 0's to the instruction address and no logic is performed.

Six index instructions are provided fo test the various registers and transfer if the

specified conditions are met. In addition, 16 insi -uctions are provided to transfer data

STO, 4o

W
=y
G

\

®© 0 5 © 000000 0500000000 9o

in true or complement form to or from the various index registers and the accumulator
or core storage. In each case, either the address or decrement portion can be specified.
Two instructions also load the index register in true or complement form from its own
address positions.

A summary of these later index instructions is as follows:

A - To Index Register

1 - From core storage

LXA +0534 - Load Index from Address

LXD -0534 - Load Index from Decrement

LAC +0535 - Load Index from Address Complemented
LDC -0535 - Load Index from Decrement Complemented
AXT +0774 - Address to Index True

AXC —057 4 - Address to Index Complemented

2 - From accumulator

PAX +0734 - Place Address in Index

PDX -0734 - Place Decrement in Index

PAC +0737 - Place Address in Index Complemented
PDC =0737 - Place Decrement in Index Complemented

B - From Index Register

1 - To storage

SXA +0634 - Store Index in Address R
SXD -0634 - Store Index in Decrement
* SCA +0636 - Store Index in Address Complemented
* SCD -0636 - Store Index in Decrement Complemented

2 - To accumulator

PXA +0754 - Place Index in Address -

PXD -0754 - Place Index in Decrement

PCA +0756 - Place Index in Address Complemented
PCD -0756 - Place Index in Decrement

* New 7094 Instructions

So00.4) =

+053¢
Load Index From Address - LXA 0543 I, E TLA (Figure 507-1)

This instruction makes reference to a core storage location and loads the specified
index register with the contents of positions 21-35.

At I7 time, the storage bus is gated into the storage register and positions 21-35
routed immediately into the address register. At the beginning of the next E cycle,
this address is sent to MAR. Address modification is not possible; gating circuitry
which normally takes the address register to the index adders and back ag:ain is blocked.
Decoding from the tag register gates index registers' outputs into the index adders
together with a carry to position 17; no logic is performed, however, because the index
adder outputs are not gated back through any circuitry.

During the E cycle, the storage bus is set into the storage register at 7-time and
positions 21-35 are routed to the address register at 11-time. At the beginning of the
hext I cycle, the address register contents are routed to the index adders by an 10 (D3)
pulse and from there, set into the index register by an 12 CP set pulse. The set pulse
resets the index register to clear out old information; the same pulse, delayed by
circuitry (03.05. 33. 1), then overides the reset pulse and causes the index register to
be set to the new value.

At the same time that the 10 (D3) pulse is gating the address register to the index
adders, an A2 (D2) pulse is also bringing up ""gate AR - XAD'" on 03.06.06.1. This line

however, performs no logic in this operation.

STO4 2

o®o 0o 000000 feoe

\,

X

NS

X

0 g0 00O00OOOOCKRLIOGIOIOGIOGIOGIOIQGEOTS

Load Index From Decrement - LXD -0534 I-E TLA (Figure 507-1)

This instruction makes reference to a core storage location and loads the specified

index register with the contents of positions 3-17, The initial phase of the operation 18

similar to LXA; positions 21~35 of the LXD instruction are gated to the address
register and out to MAR for the E cycle core storage reference. Address modification
is blocked as previously explained in LXA.

During the E cycle, the storage bus is set into the storage register at 7~time and
positions 21-35 routed to the address register at 11-time. The routing to the address
register at this time, howevermc during this operation.

At the beginning of the next I cycle, storage register positions 3-17 (decrement) are
routed directly to the index adders by an IO (D3) pulse;circuitry from the address
register to the index adders is blocked. An I2 CP set pulse resets the selected index

register and samples in the new value from the index adders to complete the operation.

0.

't

|

Load Index From Address Complemented - LAC +0535 I, E TLA (Figure 507-1)
This instruction makes reference to a core storage location and loads the specified index
register with the complemented contents of positions 21-35,

The initial phase of the operation is similar to LXA; positions 21~35 of the LAC
instruction are gated to the address register and out to MAR for the E cycle core storage
reference. Address modification is blocked as previously explained in LXA.

During the E cycle, the storage bus is set into the storage register at 7;time and
positions 21-35 are routed to the address register at 11-time. At the beginning of the
next I-cycle, the address register contents are routed to the index adders by an AO (D3)
pulse and from there, set into the index register by an I2 CP set pulse. This pulse
accomplishes both the resetting and setting of the selected index register.

At the same time that,iIsD (D3) pulse is gating the address register to the index adders,
an A2 (D2) pulse is also bringing up ""gate AR - XAD" on 03.06.06.1, This line, however,
performs no logic in the operation.

At 12 time the index register contains the true value. In order to replace this with
the 2's complement, the index register (which always comes out in 1's complement form)
is returned to the index adders with a carry to position 17 at 14 (D2). An I5 CP set pulse

places the complemented value back into the index register and the operation is completed.

st .

\,

N A R R EEEEE R R EEEKEX R KX

Load Index From Decrement Complemented - LDG -0535 I,E TLA (Figure 507-1)

This instruction makes reference to a core storage location and loads the
specified index register with the complemented contents of positions 3-17,

The initial phase of the operation is similar to LXA; positions 21-35
of the LDC instruction are gated to the address register and out to MAR fo;.'
the E cycle core storage reference. Address modification is blocked as
previously explained in LXA,

Dyring the E cycle, the storage bus is set into the storage register at
7-time and positions 21-35 routed to the address register at 11-time. The
routing to the address register at this time, however, performs no logic
during this operation.

At the beginning of the next I cycle, storage register positions 3-17
(decrement) are routed directly to the index adders by an I0(D3) pulse;
circuitry from the address register to the index adders is blocked. An I2
CP set pulse resets the selected index register and samples in the new
value from the index adders.

At I2 time, the index register contains the true value, In order to
replace this with the 2's complement, the index register (which always comes
out in 1's complement form) is returned to the index adders with a carry to
position 17 at I14(D2). An I5 CP set pulse places the complemented value

back into the index register and the operation is completed.

- JimvE

Frsmnry Cp 52
0%.0/ 1))

¥

x7(p1)

EarE S8 > SR
.0%. /2. 50./

¥

I?Mm:)

olog 20,/

S8 /8-20 ~» TA¢ ©re

|
B /1//

TIR Pesimir

E1(o1)

SR 2/-05 - AR
03.06./0.)

{xAa/xo/
lAac/Loc

I 7imE !

ZocD3) Zo(D3)
AR = XHD SR 7~/7 —» X~AD
.03.06.06. 1 03.0¢.73,1
T j
M
Z2 CP Sar
XRD -+ XR
.02./2.20./

LA/ txn/
Lxe/LDe

Z¢(pa)

LXR ~» XAD
WCARRY +o X3D 17
03.0¢.07./

y

s cP Ser

XD =» xR
oa. /2 701

|

LXA/Lxp/lhc/lpe Fleo CHART

Freuee 507-1)

e

SN0, A6

R R EEEEE - X XXX X x

\

©0gooooeoOOOOLOIOOOOOONEQEOOT

Address to Index True - AXT +0774 1 (nooverlap) Figure 507-2

This instruction loads positions 21-35 of the AXT into the specified index register in
true form.

At 17 time, the storage bus ia gated into the storage register and positions 21-36
immediately routed into the address register. Address modification is not possible (due
to bits in PR 6 and 7); no gating is generated to take the address register to the index
adders and back again (03.06.06. 1). Decoding from the tag register, however, gates
the index register to the index adders with a carry to position 17. No logic is performed.

AXT/AXC decoding forces an "end opn XR cntls" (02. 15. 64. 1). The incremented
program counter is sent to MAR and the computer takes a next I time. During the initial
portion of this cycle an 10 (D3) pulse gates the address register to the index adders and
from there into the index register at I% CP set pulse time. An A2 (D2) pulse (03.06.06, 1)
is also gating the address register to the index adders, producing an OR'ing condition
with the 10 (D3).

As this is a primary Op 76 instruction, the index adders are unconditionally gated into
the shift counter at I10 time. The value in the shift counter will be the 2's complement

of the indicated index register.

)

500.47 —

!

Address to Index Complemented - AXC -0774 1 (no overlap) Figure 507-2 .

This instruction loads positions 21-35 of the AXC into the specified index register in 2's .

register and positions 21-35 routed to the address register at I7 time. The incremented '

complement form.

The first I cycle is identical to AXT -- the storage bus is gated into the storage

program counter is gated to MAR and the instruction ends operation and proceeds to the '

next I cycle. Address modification is not possible. .
During the next I cycle, an I0 (D3) pulse gates the address register to the index adders.

An I2 CP set pulse places the value into the index register in true form. Complementing ‘

is accomplished by routing the index register (which always comes out in 1's complement ‘

form) to the index adders with a carry to position 17 at I4 (D2) time . An I5 CP set

pulse gates the complemented value back into the index register and the operation is

complete.

o000 00 0 0% o

(NN
"
>

—

Iy

0.4

0§ © 000000 0y0 00000 0 0 9o

L TimE
Fripry 0P 76
(soD 14)

03 0702 /

v

Z7(ps)
S8 §~-3> R
02.12.50.)

¥

Z7(s)

B 18 -20 > Tis 7OFG,

OF 05, R0,/

y

I?(D/)

SR 2/-32¢> AR
03,04,/0,]

g

es| 7 77/"/5 o]

(NEXT)

—

Zo (D3)
RBR > XKD
030¢,06./

v

T2 CP ST
XRD > XR
02,/% 70.]

¥

v
£L!</7>(T/ AC >_£LC_

Z 4(D2)

/. xR > XD

2, CARRY To XAD 17
03.0¢.07,/

Y

}
THocEED

AXT/AXC FLOW CHART

TS5 cP s&T
XAD » X772
02, /2.70.]

i

Figu-:e 507-2

T o009

'
NS S

PLACE ADDRESS IN INDEX - PAX +0734 I No Overlap - (Figure 557'6)
_These next four instructions are concerned with placing information from the
accumulator into specified index registers, They require only one (I) cycle and,
therefore, cannot be overlapped by an instruction in a next higher odd address.

The object of PAX is to place positions 21-35 of the accumulator (the address

Z602) and 71 /Lufl‘cmé_
portion) into the specified index register. At ﬁ:ttme)\ the storage register”and tag
register are set from the storage bus,and SR positions 21-35 immediately routed
to the address register, Setting the storage register and gating 21-35 to the AR has
no logic at this time but functions because of normal I-time circuitry.

Addfess modification is not possible; gating circuitry which normally takes the
address register to the index adders and back again is blocked. Tag register
decoding, however, does gate the specified index register to the index adders along
with a carry to XAD 17, This occurs as a normal I-time function and performs no
logic because the XAD outputs are not gated back again,

The accumulator contents must be placed in the storage register in order to obtain
routing paths for data-flow to the index register. To accomplish this, the accumulator
is routed to the storage register at I10 time; at I11 time SR positions 21-35 are routed
to the address register. Theﬁ)reliminary routings and functions during the first I cycle
are common to all four POD 72 instructions (PAX, PDX, PAC, PDC).

During the next (I) cycle, the address register contents are routed through the index
adders by an 10 (D3) pulse and set into the specified index registér at 12 CP set time to
complete the operation.

At the same time that the 10 (D3) pulse is gating the address register to the index
adders, an A2 (D2) pulse is also bringing up ''gate \R~-XAD" on 03,06, 06, 1. This

produces an OR'ing condition to the I0 (D3) but per:orms no logic in the operation.

500,50, 1

9 o000 000 00% 0000000 oo

. W
S I~
-

<

0 g O O 00000 0g0 00000 90 oo

PLACE DECREMENT IN INDEX - PDX -0734 1 No Overlab - (Figure 507‘0)
The PDX instruction places positions 3-17 of the accumulator (the decrement portion)
into the specified index register. All of the initial I-time functions occur as explained
for PAX; the accumulator contents are routed to the storage register at 110 time.
Positions 21-35 of the SR are routed to the address register as a nofma} POD 72
function but performs no logic during the PDX mstructioh.' |

At 10 (D3) time of the next (I) cycle, positions 3-17 of the storage register are
routed di/rectly to the index adders and set in the
specified index register at 12 CP set pulse time., 10 (D3), "gate AR-XAD', circuitry

(03. 06, 06, 1) is blocked by a PDX condition.

S00, $0.X

(N}

oG4
T
-l Ty

PLACE ADDRESS IN INDEX COMPLEMENTED - PAC +0737 1 No Overlap
(Figure so7-6)

The PAC instruction places the complemented contents of accumulator positions
21-35 (address portion) into the specified index register., All of the initial I-time
functions occur as explained for PAX., The accumulator contents are routed to the
storage register at [10 time and SR 21-35, then, immediately routed to the address
register at I11 time.

During the initial portion of the next (I) cycle, the address register contents are
routed through the index adders by an 10 (D3) pulse and set into the specified index

register at I2 CP set time. This places a true value in the index register.

- Complementing is accomplished by routing the index register (which always comes

out in 1's complement form) to the index adders with a carry to XAD 17 at 14 (D2)

time. AnI5 CP set pulse gates the complemented value back into the index register

to complete the operation.

S00.50.3

AN
~
X

 ENENERNEEENL NENNNRENN NN

(V84

S0 geoocooccsoocgppocoosoogooe

PLACE DECREMENT IN INDEX COMPLEMENTED - PDC -0737 I No Overlap
(Figure £07-¢)

The PQC instruction places the complemented contents of accumulator positions 3-17

(decrement portion) into the specified index register. All of the initial I-time functions

occur as explained for PAX; the accumulator contents are routed to the storage

register at I10 time. AtI11 time, SR positions 21-35 are routed to the address

registet; as a normal POD 72 function but performs no logic during the PDC instruction,
At 10 (’D3) time of the next (I) cycle, positions 3+17 of the storage register are routed

directly to the index adders and set into the specified

index register at 12 CP set pulse time. This places a true value in the index register.
Complementing is accomplishe;d by routing the index register (which always comes

out in 1's complement form) to the index adders with a carry to XAD 17 at 14 (D2) time.

An I5 CP set pulse gates the complemented value back to the index register to complete

the operation.

S00. 504

W)

R

FE R S

Z - Timr

Y

Primaiy v 72 Té(pa)
2 N ININ . SB» SR

1 02.12.50.[

. I?20D1J
SB #-20 > Tas)

0v.0f 20./ .
1 : i

Zrelor) :
ACS/I-35 —> SR

o /2,04) . |
3 .
T (01) ‘

SR 2-35 —» /R
o3, s0./

\

@
i
oL
1
°
1 v
Jo(ps) To(ps) §
AR = XRD SR /7 + xn0 3 : '
03. 06.85./ 03.0L./8.7 !;
‘ 1
! ;
T2 CP St ; '
XD » XR ;
o2./2.70./ » \
I2roF) T4(02) ‘
I XB —» xaD o
2. Canry - x40 17 T
038.06.02./7 .
!
TS5 CcP Ser : .
XMD > X% . ‘
o2.12.70,7) .
| !
Feocsed To .
Ay
| o ST T/ ON .
i .
-.. N "":'.\1\ “
FRxX [Poy [P80/P00 " Faow Cpmer '
Fisvres _____S072-¢ .
;
500.50.5 , .
: %30 ®
Pl

OO0 J O OO OO O O 0g0 0000000 ¢ o0

500‘50. "
STORE INDEX IN ADDRESS - SXA + 0634 I, E NO OVERLAP (FIGURE %

These next four instructions are concerned with taking information from the specified
index register and storing it in true or complemented form in either the address or
decrement portion of the indicated core storage location. Two cycles are required

(I and E) for their execution and overlapping is not permitted by an instruction in

the next higher odd location.

s

The object of the SXA is to store the true value of the index register into the

16(D2) and I7(to 1) time respectively,
ithwa, rage

address portion of the specified core storage location, At
register and tag register are set from the storage bus and SR positions 21-35
immediately routed to the address register. At the beginning of the next E cycle,
this value is sent to MAR for the E cycle core storage reference. Address modification
is not possible; gating circuitry is blocked which normally takes the AR to the index
adders.

Also, during the first I time, tag register decoding gates the specified index
regiéter contents to the index adders with a carry to XAD 17. This occurs at I9 (D2)
as a normal I-time function; however, no logic is performed during the SXA instruction
because the adders are not gated beyond this point.

The index register contents must be routed to the storage register in order to
obtain a data-flow path to the storage bus and core storage. A routing path is available
from the index adders to the storage register but it must be remembered that this path has
the capability of routing only the complement of the index adders.

During the early portion of the E cycle at EQ (D3) time, the index register is again
gated to the index adders. Because the contents of the index registers are always

brought out in 1's complement form, the adders now contain the 1's complement of the

value desired. An E1 (D1) pulse gates the complement of the index adders to positions 21-35

3500, 50. 6

®

of the storage register; the true index register value is now in the SR and ready to be
sent to core storage via the storage bus. "Store fddress" controls are active
because of SXA operation decoding, and the address portion of core storage is modified
without distubing the remainder of that data word.

Multiple tagging is possible with this group of instructions. Inéder to maintain
compatibility with previous systems, the specified index registers must be ORed

together. Therefore, (for the SXA instruction) at the same time that the index adders

\

 E N R EEEEE LY

are being gated to the SR, the ORed output is set into the specified index registers.
The index registers now contain the 1's complement of the ORed values. (If multiple
tagging is not specified, the index register contains the 1's complement of the

original value.) The index register (or registers) is returned to a true value by gating

the output to the index adders and back again during the following E4(D2) time.

R
\

500.80-7 v

0 9 OO0 000 0O 0gh 00000 00 ¢ oo

L
0. 57
STORE INDEX IN DECREMENT - SXD -0634 I, E NO OVERLAP (FIGURE {%)

The SXD instruction stores the true value of the index register into the decrement
portion of a specified core storage location. All of the initial I-time functions occur

as explained for SXA, Positions 21-35 of the storage register are routed to the address
register for core storage reference during the next E cycle.

During the early portion of the next E cycle at E0 (D3) time, the index register
contents (which always come out in 1's complement form) are gated to the index adders
where the complement of the index adders is routed and set into positions 21-35 of the
storage register. Double complementing produces the true index register value in the SR,

The ORed complement of the index register (or registers) also replaces the original
contents at E1 time; the truefsz:{:le is restored during the following E4(D2) time.

Positions 21-35 of the storage register must be moved into positions 3-17 in order to
accomplish storing the desired value in the decrement of a core storage location. " This
swapping of the address and decrement is accomplished by routing 18-35 of the SR to
P-17 of the adders; the adders are then routed back to and set into the storage register.
Positions 18-35 of the storage register are reset.

41The storage register is gated to core storage to complete the operation.
""Store decrement' controls are active because of SXD operation decoding, and the

decrement portion of core storage is modified without disturbing the remainder of the

data word.

S$00.50. ¢

"’é'

OocoecccecooeNococscsccocleco

STORE COMPLEMENT OF INDEX IN ADDRESS - SCA +0636 I, E NO OVERLAP (FIGURE m)
The SCA instruction stores the 2's complement of the index register value into the address
portion of a specified core storage location. All of the initial I-time functions occur as
explained for SXA but with one addition; the 2's complement is gated from the index adders
and set into the index register at 110 time. The address register contains the core storage
reference for the next E cycle.

During the early portion of the next E cycle at E0 (D:3) time the index register contents
are gated to the index adders. The index register contains the 2's complement of the
original value; the output, however, is the 1's complement of that. The complement of
the index adders is routed and set into positions 21-35 of the storage register. This double
complementing effectively places the 2's complement of the original index register contents
into the SR where it is placed on the storage bus and sent to core storage., 'Store Address"
controls allow modification of the address portion without disturbing the remainder of the
data word.

At this point the index register contains a complemented value. Restoring the original
‘contents is accomplished during the next I~time when the index register (or registers)
is gated to the index adders with a carry to XAD 17, Taking this output back to the index

register completes the operation,

500,50,9 | -

e goeoooeoooeoegoecoeoooogoo

7
STORE COMPLEMENT OF INDEX IN DECREMENT -0636 I, E NO OVERLAP (FIGUREQ:?)
The SCD instruction stores the 2's complement of the index register value into the

address portion of a specified core storage location. All of the initial I-time functions
occur as explained for SXA but with one exception; the 2's complement is gated from

the index adders and set into the index register atI 10 time. The address register

contains the core storage reference for the next E cycle.

During the early portion of the next E cycle at EO (D3) time the index register contents
are gated to the index adders. The index register contains the 2's complement of the
original value; the output, however, is the 1's complement of that., The complement of
the index adders is routed and set into positions 21-35 of the storage register. This
double complementing effectively places the 2's complement of the original index
register contents into the SR. Positions 21-35 of the storage register must be moved
into positions 3-17 in order to accomplish storing the desired value in the decrement
of a core storage location. This swapping of the address and decrement is accomplished
by routing 18-35 of the SR '}‘?3 P-17 of the adders; the adders are then routed back to and
set into the storage register, where the contents are placed on the storage bus and set into

Positions 18-35 of the storage register are reset.
the MDR. A "'Store decrement' controls are active because of the SCD operation decoding and
the decrement portion of core storage is modified without distrubing the remainder of the
data word.

At this point the index register contains the complemented value. Restoring the

original contents is accomplished during the next I time when the index register is gated to

the index adders with a carry to XAD 17, Taking this value back to the index register

completes the operation,

S0, 350, 10

PXA 1

PLACE INDEX IN ADDRESS PXA +0754 I No Overlap e

50"
(Figure 1%)

These next four instructions are concerned with taking information from the

specified index register and placing it in true or 2's complement form in either

the address or decrement portion of the accumulator. These are one (I) cycle

instructions; therefore, overlapping is not permitted by an instruction in the next

higher odd core storage location.

The object of the PXA instruction is to place the true value of the index register
1n'to the address portion of the accumulator. The data flow path to the accumulator
is: from the index register, through the index adders, to the storage register, and
through the main adders into the accumulator.

16(D2) and I7(D1) time respectively,

At Aﬁ:ﬁ::w, the storage register and tag register are set from the storage bus;
SR positions 21-35 are imléediately routed to the address register as a normal I-time
function, but performs no logic in this operation.

During the first I-time, the tagc register decoding gates the specified index
register contents to the index addfgs with a carry to XAD 17 at 19 (D2) as a normal
I-time function; however, no logic is performed during the PXA instruction because
the adders are not gated beyond this point. The normal 19 (D2) gating of the address
register to the index adders at this time is belocked because this is a non-indexible
instruction,

During the early portion of the next (I) cycle at I0 (D3) time, the index register

is again gated to the index adders. Because the contents of the index registers are

always brought out in 1's complement. form, the adders now contain the 1's complement‘

of the value desired. An I1 (D1) pulse gates the complement of the index adders to

$00,57. 0

\

S

o0 0 ooo0oo0o0oo0e% o000 o0oo00loeoe

[

~

0 g OO 0000 O 0g0 00000006 ¢ o090

positions 21-35 of the storage register; the true index register value is now in the

storage register and ready to be sent to the accumulator via the main adders.
Multiple tagging is possible with this group of instructions. In order to maintain

compatibil ity with previous systems, the specified index registers must be ORed

together. Therefore, (for the PXA instruction) at the same time that the index

adders are being gated the SR, the ORed output is set into the specified index registers.

The inde;c registers now contain the 1's complement of the ORed values . If multiple
tagging is pot specified, the index register contains the 1's complement of the original
value. The index register (or registers) is returned to a true value by gating the
output to the index adders and back again during 14 (D2) time.

With the index register value in the storage register, the operation is completed
by routing the SR through the main adders and setting it into the accumulator during
14 (D3) time. The accumulator is cleared prior to the setting; therefore, if no tag

is specified, the accumulator contains all 0's, at the end of the operation.

S00.5/./

Place Index in Decrement - PXD -0754 1 No Overlap (Figure

The PXD instruction places the true value of the index register into the decrement portion
of the accumulator. The data flow path is similar to the PXA instruction; the initial
I-time functions are identical.

During the early portion of the next (I) cycle, the index register is again routed to
the index adders and from there to positions 21-35 of the storage register. The OR'ed
1's complement of the index registers (in the case of multiple tagging) also replaces
their original contents at I1 (D1) time. The true value is restored again during the
following 14 (D2) time.

With the index register value in the storage register, the operation is completed by
routing positions 18-35 to positions P-17 of the adders and from there into the

decrement portion of the accumulator. 'The remaining positions of the accumulator

are cleared.

o0 0oooo0o0o000% o000 000 foeo0o

s0.$1.2

L iom e

110

VY) S
R VA

v

E2Emr T6(02)

—
-

sHE SF >
Ox. /RSO

§E

!

z7(p))
ST /5-20 —> TBG VES
oB.aT/

-

) &

P
2.

Z7(p2)

X2 > XRL
LCRreny Fo XAHD /7

A9 / J

. Ao

SxA, XT

¥

7001
SR 21-385 > AR
3306./D,]

|

A
SHAY 532480k 3ED — LR

\ /-
i AE) LT
i 0y
i NAL D
|
|
R ICH I /
! B
£ (:\T'x’/ i
‘q, [PV P ~ =/ Z ’
2B eI |
1
N
/
/ .
— L fax L ,,__/S)'//a /-:1,)(1 i (:‘”' e S
! Y ; —
| /
B Cov , —
i
o |
R |
I
sx8 /S0 / . Ixp/<cp
L BEmRCr R s : '
| \
k A
! F e (T !
; Droe
N
. ! s PR
: : N O
’ e R ;
e, 1
V
Ty
D) A Y Sl ARG S

OO0 P OO OO OO OOGREOOOOEOOYy -~ -

O T
WP A/

b

-
Sva/Sco

éxe/sxa/s cq&g

\
\

\

MF SToBE ADprRESS
02,09,/ /

| .

|
/‘7/5. :’:mj[Z)R—;f._‘"'/ AP
Oz P24/

_ I

v

£

X2 P XPBD
DE. 06072/

Sxpfsxo_ (Sxasxn/Sos /o)

/

—

£5 0% SFr

XEL > XE

o2 /X, 70,/

Ses/sen

T oD

5/

= H
]
A 1
A
LA DT
r r
Tl e NAS T
Al TN e !
;j : _"/ - ‘
. -
—— s |
Lo vy ¥
’ !
or Jx 7D '
e e e e o

O 0O PP OO O OO OO o & 00000 O oo

80

TN R EEEXEEEXEX" FFFEE RN NN XK.

PCA 1

PLACE COMPLEMENT OF INDEX IN ADDRESS PCA +0756 1 ¢
.5I.

No Overlap (Figure %500)

The PCA instruction places the 2's complement of the index register into the address
portion of the accumulator. The data-flow path is identical to PXA; the initial I-time
functions are identical with one exception. When the contents of the index register
(or registers) is gated out at 19 (D2) time with a carry to XAD 17, an 110 CP set
pul se sets this 2's complement value back into the index register. This is necessary
that the complemented value will be available to be sent to the storage register.

During the early portion of the next (I) cycle the index register is again routed
to the index adders and from there to the storage register. The 1's complement of
the index register coming into the ‘adders and, complement of the index adders being
sent to the storage register effectively places the present index register value in

’

the SR. The present value, however, is the gidscomplement of the original index
register contents. The true value is restored again during the following 14 (D2) time
when the index register and a carry are roued to the index adders and back again.

With the 2's complement index register value in the storage register, the operation'

is completed by routing the contents of the SR through the main adders and into the

accumulator.

v il

500, 5/.3 S

PCD 1

PLACE COMPLEMENT OF INDEX IN DECREMENT PCD -0756 1 <

gh
ﬁ.
No Overlap (Figure b)

The PCD instruction places the 2's complement of the index register into the
decrement portion of the accumulator. The data-flow path is similar to the PXA
instruction; initial I-time functions are also the same except that the 2's compiement
is generated and set into the index register during I9 (D2) time.
During 10 (D3) time of the next cycle, the index register is routed through the
index adders and set into positions 21-35 of the storage register. The storage register
now contains the 2'd complement of the original index register contents. The
true index register value is restored again during the following I4 (D2) time when the index
register and a carry are routed to the index adders and back again to the index register.
With the 2's complement index register value in the storage register, the
operation is completed by routing positions 18-35 to positions P-17 of the main adders

and from there into the decrement portion of the accumulator.

SO0, 8/, 4

X‘ o3

AN 3 t

-

o0 0oooo0o 000 0% 0000000 oo

®© 0 9 O 000000 0g0 000000 0 9o

T TImE

TRimarry Op 74
03.0/./2./

y

B2 ¢ (D)

5uF ST > S7°
02. 12 .82.)

!

Z72(01)

S B /8-20 > TG TESC/ISTER
03, 05 20.)

v

I9(pz)

!/ XR —> XAD
2 Carry > x8p /7
03.06.07, /

v

XA [PxD ém/m /Pm/}’cp\ Pes [PeD

T/ CP SeT

XAD > XR

02)2 70

|

73/%2

28 /PXD [Pes/Ped Frow CrarT

) SURE

SVO, 7.5

_;'\
TRANSFER ON INDEX' TIX +2000 I No Overlap (Figure <))
These next four instructions are concerned with comparing their decrement
portion with the contents of the specified index register, High, equal, or low
indications cause the computer to either proceed to the next sequential
instruction or transfer to the core storage location specified in the
address portion of the instruction being executed. These are one (I)
cycle instructions; therefore, overlapping is not permitted by an instruc-
tion in the next higher odd core storage location. Bit recognition in
positions 1 or 2 of the storage bus (02,11, 40. 1) blocks sending positions
3 - 11 to the program register; instead, positions 1 and 2 are gated to
PR positions 8 and 9. Decoding at this point recognizes these as non-
indexable instructions (02. 12, 76. 1).

The TIX instruction compares 8 decrement with the contents of the
speciﬁed index register. If the number in the specified index register is
greater than the decrement, the contents of the index register are
reduced by the amount of the decrement and the computer transfers to

location Y. When the number in the decrement is equal to or less than the

decrement, no reduction is made and the computer takes the next instruction

in sequence,
16(D2) and 17(Dl1) time respectively,

At}-?:tm, the storage register and tag register are set from the
storage bus; SR positions 21-35 are immediately sent to the address

register to provide a transfer acdress if the decrement value is not

greater than the index register.

S00. $2. : R
-~

B
.

ec0o0oo0oco0o0ooo0eocscsoccocscsdecs

o e e e

[| (fhov s

ey

ro(>3)
X752 > XAD

n3 02,07/

I/ (p/
domoL XARD —=» SR Ri-f8
DFoc.

__i__\

PBED [Pxe frxo/roky/ Dy _pes /Pco
\
\

Z/(D/s)
XHD > X~
oz, /2 70.1

l

r4(nz)
NE = XAD
0% 5 LT

Pxn /Px D /"’)/P//)‘/E,“'/’2%:;'"9&'\ ﬁ))m;’ﬂ: >

Y
74 (D2)

- ——— PR,

BN Y e T
o) BN DA l

;o i

e

i AED > XA

ll D2 k720

, v
// \‘-
Pua [Pcs | PxR/xD)Pos R, PXD/PCL

| /
Y o N ’ S

IT4(r*.
Q¥ S-35 —» AD =5
cl/2 85/ B

|

L

. , :
T 5 - . -) PN
N s AT Ay By e
/ /(/ ; "/"V.', ')" ~ 40/ “

aln

e e

IR R EEEEEEEX" NN NENNNE XX

18(D2) time delayed,
Atﬂi&(ﬁ%“ﬁﬁm& positions 3 - 17 of the storage register are routed to

the index adders. At the same time, the index register and a carry to
XAD 17 are also gated to the adders. (Because this is a non-indexable
instruction, circuitry is blocked that would normally take the address
register to the index adders.)

A ripple carry out of XAD3 sets an XAD3 'carry trigger and indicates

equal to or
that the decrement value is, greater than the index register. Under

A
these conditions the program counter is gated to MAR and the computer
continues with the next sequential instruction, No carry from XAD3
indicates that a successful reduction is possible, and the adders are
gated back to the index register. The result from the adders is the 2's
complement of the true value; this is corrected during the next I14(D2)
time when the index register and a carry to XAD 17 are gated to the

index adders and back again.

With no XAD3 carry, a "set condition met" trigger is turned ON

. which causes address register gating to MAR, and the computer proceeds

at the transfer address. During the following I2(D2) time the address
register is gated to the index adders as a flow~-path to the program
counter,

If multiple tagging is specified with this instruction, a successful
reduction replaces the index registers with their OR'ed values minue
the decrement. If a successful reduction is not possible, the index

registers retain their original contents.

50083 et

1
&
TRANSFER ON NO INDEX TNX -2000 I No Overlap (Figure)
The TNX instruction compares its decrement with the contents of the
specified index register., If the number in the index register is greater
than the decrement, the contents of the index register are reduced by
the amount of the decrement and the computer proceeds to the next
instruction in sequence. When the number in the index register is
equal to or less than the decrement, no reduction is made and the
computer transfers to location Y.
The sequence of operatio# for this instruction is similar to TIX

except that the conditional transfer circuits are activated when there

is a carry from XADS3,.

b
]
ot
——

S00. S

<

eco00oo0o0c0c0co0oc®oecoccccoclec

0§ OO 00000 0900000000 ¢ o0

51

D)

TRANSFER ON INDEX HIGH TXH +3000 I No Overlap (Figure %500)
The TXH instruction compares its decrement with the contents of the
specified index register, If the number in the specified index register
is greater than the decrement, the computer transfers to location Y.

If the number in the index register is less than or equal to the decrement,

the computer takes the next instruction in sequence. Index register
contents are not altered,
18(D2) time delayed,

Execution of TXH is similar to TIX; at1m5%-ﬁano SR positions 3 - 17
are added to the 2's complement from the index register to determine
if there will be a ripple carry from XAD3. This carry is the only
indication needed; the index adders are not returned to the index
r;gister. A carry causes the program counter to be gated to MAR
and the computer proceeds in sequence; no carry (index register high
condition) causes the address register to be gated to MAR and the

computer transfers to location Y by gating the address register through

the index adders and into the program counter during the next I time.

S00,8%"

TRANSFER ON INDEX LOW OR EQUAL TXL -0300 I No Overlap (Figure)

R 52057
The TXL instruction compares its decrement with the contents of a
specified index register. If the number in the index register is greater
than the decrement, the computer takes the next instruction in sequence.
If the number in the index register is equal to or less than the decrement,
the computer transfers to location Y.

Execution of this instruction is similar to TNX except that the index .
adders are not returned to the index registers, An XAD3 carry (index
register equal or low condition) indicates a successful transfer and
causes the address register to be gated to MAR. No carry causes the
program register to be gated to MAR and the computer proceeds to the

next instruction in sequence.

o000 0000% c0co0o0co0eloece

ol

j‘v-,-ﬂ./

S0.S56

Ne

Z/0 CPRSET
XHD =9 XK
eV

PN

1

[

X
2L T6(D2)
GrrE S8 —> SR
02./2.50./

1
Z7(ps) _
B /520 > IA¢ Kre
03 0% 20,/

4

T 7(vs)

SR 2/-36 > AR

Zv (D2) Dermyep
SR 3-17 5 xAD
03.06./3

3

Z9(pza)
L XR >XAD
2 (rery o XBD//S

03 . 0¢,07,/

XAD 5 Crwrey

03, 0¢. /0.1

]

vis (xr € pee)

TNRATXL,

\

@ TIXLTXH

Tz
| Ser TR4 CowD
CoMer TR
02,12 76,/
T

|

|

N

o\
ZRX[Xk \77¥/7Wy/§y/71771_\ TIX/ T

\

TZ2oF se7

.
NI

|

TRA (Conp

Ne
e

L

ERYED
I¥rz

G > MR
AR

I3tz
PC <> mar

L2208 13) IL OF, OF,)5/

l
|
|
|

]

Al

SNt
(roEx7)

v

\

T Y 2

Yo D XML
DAuiy Ao xil 17

C2oe)/

I

T 1 e~
XA L > MR

R O AN,

[

/ YAD 3)\ YES

Y

T LTNY_{77y oy Sfrenfrxi

—

.,
JGK ON

\
.

®S O P O OOOIP OO PO OOOOO QOO

.

TRANSFER WITH INDEX INCREMENTED TXI 41000 I No Overlap (Figure(b)

TXI is an unconditional transfer to the location specified in positions 21 - 35
of its address field. In addition, the decrement portion is added to the
specified index register. This is a one (I) cycle instruction; ther-efore,
overlapping is not permitted by an instruction in the next higher odd
core storage location, Bit recognition in positions 1 or 2 of the storage
bus (02.11.40. 1) blocks sending positions 3 - 11 to the program register;
instead, positions 1 and 2 are gated to PR positions 8 and 9. Decoding
(02.12,.76.1) recognizes this as a non-indexable instruction.

16(D2) and I7(D1) times respectively,

At,]m, the storage register and tag register are set from the
storage bus; SR positions 21 - 35 are immediately sent to the address
register to provide the transfer address when the AR is gated to MAR
at I10 time. Because this is a non-indexable instruction, normal AR
to XAD gating is blocked.

Index register contents always come out in complement form and if
added to a number at this time would effectively accomplish subtraction.
Because of this, it is necessary to cycl? the index register through the
index adders with a carry to XAD 17. This is accomplished at I19(D2)

time and places the 2's complement of the origional value into the

index register,

/YP Because this is an unconditional type transfer instruction, the "transfer

conditions met' trigger is turned ON at I10 time and the contents of the
address register are gated to MAR. During the following I12(D2) time
the address register is gated to the index adders and from there into
the program counter. o

L0,

During the next (I) cycle incrementing of the index register is
accomplished by gating positions 3 - 17 (decrement portion) of the storage
register to the index adders together with the index register and a carry

to XAD 17. Setting the index adders back into the index,czmpletes the

operation.

S00,$9

G\

~oa

oo foo T X EEELEEXK. QOC Q. o

[y

03, as. 10,/

1

»sT ITe(D2)
GwrE S8 » SR
02, /2,590, /

¥

Z2(D7)
SR /15-20 > 7BG KFf6&

03.50. 20,

—

Y.

Z9 (pz)
/. X% > x»D
2 Carry fo XAD /7
03.0¢.07./

v

r7(m)
S 2-35 - AR
03.0¢,70.1

|

y

/0 0P Ser
XAD = X~
o? 270,/

y

Z /o

"s (omp Mer
02 /2. .7¢,/

S

T g
AFA

v

ZL/C -T2

AR > PIBR
03. 0%)1

Ty (D2?
Cr 317 =2 XKD
23 o¢. 7./

T a0 De

ik

®© 0§ OO OO0 OO 0500000000900

I EXEEEEXEERE"NNNNNNNN W N

7"

TRANSFER AND SET INDEX TSX 40074 I No Overlap (Figure {"6)
The TSX instruction places the 2's complement of the program counter
(the location of the TSX instruction) into the specified index register and
transfers to the location specified in positions 21 - 35 of the TSX
instruction. This is a one (I) cycle instruction; therefore, overlapping
is not possible by an instruction in the next higher odd core storage
locationv. Decoding of PR 6 and 7 (02,.12.76.1) defines this as a
non-indexable instruction,

16(D2) and 17(D1) times respectively,

A_tAm the storage register and tag register are set from the
storage bus,and SR positions 21 - 35 immediately sent to the address
register. This is the transfer address which is used as the core storage
reference for the next cycle.

To store the present value of the program counter, the normal
stepping circuitry which occurs during I7(D2) time must be blocked.

The program counter is gated to the index adders in the usual manner
© but the index adders are blocked from being routed back again to the
program counter.

The program counter can be gated to the index adders in either true
or complement form. The 2's complement is made available to the index
register by gating the complement of the program counter to the index

with a carry to XAD 17. Normal gating of the address register to te index adde
adders,at I9(D2) time is blocked by TSX (03. 06. 07. 1); normal gating of

the address register to the index adders is blocked because this is a non-

indexable instruction (03, 06, 06. 1),

s00,6/

{
&v/‘.

At 110 time the '"transfer conditions met" trigger is unconditionally
set ON and the address register is gated to MAR. During the early
portion of the next (I) cycle, the address register value is gated to the

"index adders and set into the program counter to complete the operation,

500,62

1

O N,

o0 0csooceececoe®ocococeccoecloeco

, s o/ 1T

!

BREoTS I4(DR)
SB > &R
02)2,40)

v

I2ms)
S8 17— 20 —» 7H6 &6
o3 o5 vo. |

L

i A
Z9(Dz)
Comp PC > XAD
O3 vé 09/

Z7¢o0
SE 21-35 > /R

03 06./0.1

]

v

I9(p2)

Chrry = XAD /7
030602,/

v

L/O CP Se7

¥ABD > x~
oOX.)2 7o,/

|

Z /0
Toran OrM Frrn (oo
rMETr TR

n2.)z, J7(;./

S > Agp
A &, 1</

Zro Delayed => T2

s/ 7 Tnre) Ma_|

‘),___.
L (uExr
A\ /
— —
i 72 (m2)
/;/': = XKBZ

03 Ve 26,7

XAp = J°C
(.73. 0(9 .O;(, /

TSX [Frow _ppRT

©0 Qo000 OOOONPOIOCONONONOSINONQGEOOPO

05
53711 AND and OR Instructions

The AND and OR instructions are used to produce logical combinations of bits. These
are useful for masking or matching words,

so8-/
OR to Storage ORS -0602 (I, E) Figure 5=3=87
SLM
This instruction stores the logical OR of the word stored at location X and the AC
(P,1-35) in location X. The logical OR is obtained by matching the two words and stor-
ing ones in all positions which have ones in either word. For this instruction, the OR is
developed in the memory data register during the E cycle. The words from core stor-

age and the SB both go the memory data register and the result in the memory data regis-
ter is put back into core storage.

5?82
OR to Accumulator ORA -0501 (I, E) Figure 5=3=%8
7L or DL A
This instruction places the logical OR of the word stored at location X and AC(P-35) in
the accumulator. The OR is produced by matching the two words and placing ones in all
positions of the AC which have ones in either word. The OR is developed in the SR by

gating both the storage and AC words into the SR at the same time. S and Qremainunchanged.

©vE -3
AND to Accumulator ANA -0320 (1, E, L) Figure
TLR eor LA
This instruction places the logical AND of the word stored at location X and the AC
(P, 1-35) in the accumulator (P,1-35). The logical AND is obtained by matching the two
words and placing ones in all positions of the accumulator which have corresponding

ones in both the AC and storage. This instruction is executed by OR'ing the complement
of both words and then complementing this sum,

s28-3
AND to Storage ANS +0320 (I, E, L, E) Fi ure’}-.m
T«B o DL

This instruction stores the logical AND of the word stored at location X and the
contents of the AC(P, 1-35) in location X, The logical AND is obtained by matching the
two words and placing ones in all positions of storage location X which have corre-
sponding ones in both the AC and storage. The contents of the AC(,Q, P,1-35)are un-
changed. The AND is accomplished the same for this instruction as for ANA. An addi-
tional E cycle is requiredto put the AND in storage. The complement of the original AC
(P, 1-35) is returned to the AC and re-complementedto restore the contents of AC (P,1-35).
During the execution, the original AC(Q) is saved in SR(Q) and then returned to AC(Q).

sTE- Y
Exclusive OR to Accumulator ERA +0322 (I, E, L) Figure 639G

7LHB o DL A
This instruction matches AC(P, 1-35) with the logical word stored at location X. Zeros
replace all positions of the AC which match the corresponding positions of the logical
word. Accumulator positions (S) and (Q) are cleared.

~2A0=

528, 63

{ Time
Pri Op 60
E Time
AC(P-35) =» SR MF Store MF Store MF Store MF Store uppress
($-35) E1(D1) Prefix Decr Tag Adr SB=SR
{0y
2.32.02.1 2.09.01.1 2.09.01.1 2.09.01.1 2.09.01.1 2,12.50,1
SR+SB
£4 (D3)
2.09.00.1
]
by
SB-» Mem
MF Store Ctrl Data Register
2.09.00.1
Allow Core
Word to Get to
Mem Data Reg End Op
5081

FIGURE $e0=87. ORS -0602

I Time
Pri Op 50
E Time
S8 —» SR AC(Q,P=35}—
E7(D1) ¢~ +SR(Q, 5-35)
- ’ E7(D1)

2.12.50.1 2.12.01.1

SR(5-35) =AD
(P-35) E9(D3)
2.12,15.1

—

AD(Q-35)+AC SR(Q) +»AC
£11(D1) (Q) E11(D1)
2.12.31,} 212,381

End Op

g-1
FIGURE 3x3x88. ORA - 0501

NN R EEEEELEEEEEEXXEEXXEZXYX)

225
.f7ﬂ'9§/

—.
v

| Time
Pri Op 32 ACIP=357 = 3R BRT5-35] 3R | Form Comp of
(s-35) L7 (DY) (5-35) L7 (D1} | "and® in SR
| - I 2.12.02.1 2.12.11.1
Turn On
ANA-ANS E Time
Tgr 19 SR(5-35) —=AD
L09.46,1 (P-35) L8(D3)
Comp AC(Q-35) 2.12.15.1 Exchange SR & ACC
. ~-AD E4(D3) Comp Acc Content
2.12.22.1 AD(Q-35) »AQ [ac(p-35) =R
Comp of AND [L10(D1) (s-35) L10(D1)
‘ in AC 2.12.31.1 2.12.02.1]
AD(Q-35) »AC] [aC(Q)*SR(Q) | I
E6(D1) E6(D1)
. 2.12.31.1 2.12.01.) ANA (‘ ANS
L—T—l Reset ANA
P ANS Tgr
SB == SR Ead Op E Time L (o)
‘ E7(01) 72.09.43. 1 2.09.06.1 2.09.46.1
2.12.50.1 !
Comp AC(Q-35)
I Time - ADEO(D2) Recomplement " And"
SR(S-35) +AD
(P-35) E9(D3) 2.12.22.1
Exchange SR & AC
2,12.15,1 9 Comp ACIOE3S AD(Q-35) +AC
‘ +AD 10 (D3) E1(D1)
2.12.22.1
[AC(P-35) *=sR AD(Q-35)~=AC 2.12.31.1
(s~-3s) EN(D1)| [eni(D1)
IAD(P-35) —=AC]| Set Acc |['SR(S-35)»AD
2.12.02.] 2.12.31 Plus -
. ANDInAC 12(D1) EZ)(DIU) (P-35) E2(D2) X @ acC
. *_xﬁj 2.12.30.1 209.401 |12.12.15.1 Exchonge
. { Timd BG-351+AC P-35) = SR
ime A - -, AC{P-35) » .
: ND in SR
l £3 (D1) (s-35) €301) |AND N
‘ o AT 2.12.31.1 2.12.02.]
»AD LO(D3) Comp SR Content
2.12.22.1
SR =SB
E4(D3)
AD(Q-35) =AC 2.09.00,1
L2(D1)
2.12.31.1
End Op
2.09.46.1
SR(S-35) —~AD
P-35) L4(D3)
' 2.12.15.1 Exchange SR & ACC | Time

Get Comp of Comp AC(Q-35)
AD(Q-35)>AC AC (P-35) >SR Orginal AC *=AD 10 (D3) | Restore Original ACC
/ L6(D1) (s=35) L8(D1) |\yoopoon 212221
/ 2.12.311 2.12.02.1 to AC to Allow T

Restoring of Acc

S

FIGURE §=2=397 ANA - 0320; ANS +0320

For "ANS"
AD(P-35) »AC | [SR(Q)>AC(Q)
12(01) 12(01)
29°3 2,12.30.) 2.12.38.]

P2

5279,0 £

ERE +0322 l o
T 7imE | et et SR(S-38) T
AP A
PRI OP3R2| & AD(P-35) .
L 2 .{'/?‘PaH)
NENEE
; ®
E TImE . X ¥ .
/ C9n1’P oF __| AC (P-3%5) To A D(P-35) To +
LN SR SR (g3 re 3 |OF TR
4 o LcDI LéDI
RESET IBR 22,021 (RE) 2.12,30.1 ‘
ESD/ (2E Y
02,0937/ S Y o
HIFT
R
; . Pz spr |20) IN A @
SB —-=>IBR SB-SR L9DI
E 7D (36) E7DI 272 24.1(5F) .
;l.oqi39,I 2,12.50./
"
END OP
¥ X 7N 2 09.43,/ ‘
AC(P1-+35) TO SR (S,1=35) 70| /0% w (2F)
SR INE’UT 3 IBR(S, =-35) I
Cani” £ZDI TR ! ®
oa,./gl,/.oii.l 02.,12,30.1 I TIME 2(0R) - suM .
¥ , [
FCG-25) 4o
,2./2.2/3?’1_,_ Ao - 25) | 3 ,L
@s) @) £9D3 SR(S-35) 7o Fc@-35) To CHRRY TO t
1, Fb (P-3%) AD (@-35) Hb(35) . .
I4D3 403 I4D3
2.2, 15 SRG.1-35)T0 4 22081 (2 H) 202 241 @B)) |2.4229.1 (4-A)
GH) | AUPRI-35) | 00 =y
P21 - SO N Re @
N J]
\ FDQP-:{()TU SET ! S) N
ﬁ? 17BR» SR HD(p~35) }/ SET FcE) HeE (P-3s) <l ~ .
i | Si-3 To Bp-2) | 242921 () TeDl T DI
L/ E”%’ =ue ’E’”f' 2.2 3.1 242321 (1D) e
‘Ka’é?__.)/o.l Y =EXCISIVE OR K AC
L TIME ; o
‘\I"\A ,
v RESET IBR LD TGR Y/ @
ComP He(q-35) AND1 AND ZRH v/
70 HD(G-35) N Z o/ .
LoD3 - - - N
2122212 2) A+B = 2(7 ¥ UHé) e /
! @
AD (P-38)70 | ConP OF Sum
A< (P-35) FOR SABTRACTION
£2D .
2,12 .730.1
70 H —;‘*f’
S00, b6 @

Logically speaking, the EXCLUSIVE OR is the result of OR'ing bits from either one
word or the other, but not both. The computer, which can only AND and OR, makes
use of the following logical equation to develop the EXC LUSIVE OR:

The derivation of the above equation can be shown with the following adder table:

From the table it can be seen that the EXCLUSIVE OR is equal to the sum output of
the adders with all carries blocked. The carries cannot be blocked, but the EXCLUSIVE
OR can be obtained by subtracting an amount equal to the blocked carries from the sum

EXCLUSIVE OR = 2 (A or B) - (A + B)

Factor A 010 0|1 |1
Factor B 010 11{01]1
A + B (carry not blocked) 0100 {0
Carry to be blocked 0 0|1 {0
A + B (carry blocked) 0 1{110
EXCLUSIVE OR (A + B carry blocked) (0|0 |11 |0
Aor B 0j0 411 |1
2 (A + B) 1{o]o0]|o0]|o0O
2 (Aor B) 0jl1 131 {0

of two words:

1.

w Y

EXCLUSIVE OR = (A + B) - blocked carries

The blocked carries can be simulated by subtracting twice the OR from twice

the sum of two words:

Blocked carries =2 (A + B) - 2 (A or B) = 10000 - 01110 = 00010
.Substituting the equation 2 in equation 1:

EXCLUSIVE OR = (A + B) -[2 (A + B) - 2 (A or B{] = 01000 - 00010 = 00110

And simplifying equation 3:

EXCLUSIVE OR =2 (Aor B) - (A + B) = 01116 - 01000 = 00110

0. 67

y

L
7‘:1"("

Convert Instructions

The three convert instructions can materially reduce the time required for many
"housekeeping' and table-look-up routines. They can be used for number conversions,
for preparing print fields, and even for adding numbers in systems other than binary,

The convert instructions, like variable -length instructions, include a count field as
well as the operation code, address and tag bit., The convert irstructions cause a series
of references to be made (usually six) and the address specifies the starting location
of the first storage table. The register (accumulator or MQ) f:om which the refer-
ence is controlled is considered to be made up of six 6-bit grots, The first of these
groups is added to the instruction address to give the location ¢ the first storage refer-
ence. The word stored at this location must contain, in additic1 to its.conversion in-
formation, the starting location of the next storage table. The convert-by-replacement
instructions shift the controlling register six places, clearing he six places on the

o

so86 8

i

N

| \ .

~

~.

0 g OO0 00000 000000000 4g00

opposite end of the register. Positions(S-5)* of the table wordare entered into the six
cleared positions, and the next group of six bits is in position to add to the starting lo-
cation of the next table. The process continues until up to six references have been

made. The controlling register is gradually replaced by six-bit entries from the stor-

age tables. When the number of references specified by the count has been made, the
conversion is complete.

The tag of the instruction has a unique function for the convert instructions. Positions
(18) and (19) are not used, but a bit in (20) will cause the storage table starting location
contained in the last reference word to be stored in index register A.

Convert by Replacement from Accumulator CVR +0114 (MinI, L) Figure 5871 S0~/

(Max I, L, 6E)

This instruction treats the contents of the AC(P, 1-35) as six 6-bit representations.
The instruction replaces a number of these representations, equal to the count of the
instruction, with the contents of positions (S-5) of a like number of words from storage,
These words are found by adding AC(30-35) (the first six-bit group) to SR(21-35)
(initially the instruction address) and directing storage to this modified address. The
word thus found is brought to the SR; the AC is shifted right six places; SR(S-5) re-
places AC(P, 1-5). SR(21-35)adds to the next six-bit group in AC(30-35) to locate the
next word in storage. The process is then repeated. After the required number of
replacements, the address portion of the last storage word can be stored in index
register A by including a "tag" bit in position (20) of the instruction.

The following illustrates the use and operation of CVR:
Direct Addition of BCD Numbers:

A + B = C
134589 + 691593 826182

Table required in storage for this example:

Storage Contents Storage Contents
Location (8-5) | (21-35) Location (S-5) | (21-35)
1000 0 1000 1010 0 1001
1501 1 1000 1011 1 1001
. 1002 2 1000 1012 2 1001
11003, 3 1000 1013 3 1001
1004 4 1000 1014 4 1001
1005 5 1000 1015 5 1001
1006 6 1000 1016 6 1001
1007 7 1000 1017 7 1001
1008 8 1000 1018 8 1001
1009 9 1000 1019 9 1001

Instructions required for operation:

CAL A (First BCD word)
ADD B (Second BCD word)
CVR 6, 0, 1000 (Convert sum to BCD word)

* This text section uses (S-5) to represent (8, 1-5).

35

O

QO.QQ.O“C’Q.'...Q“.:‘.

¥110+ ¥AD =4 3NOId

/-bes
1'81°90°€
(1gt
Ay s
L'6¥°60°Z U6re0z \
4o Pu3 do pua 7
Fal €
/ (ea) 61
«(/1-EXV
sap 0Z 41 4
1 ‘€
oz ¥l 118 (©
Q
S av ST 02
» \ (€0)61 ™~
{ } (L1-Z1)aV = N
sjaor || 1ost-otvz ozl rstore v {se-0g)ov 9rzre N
Ul $531ppY 104 quaw 3|qp] Ui SS3IPPY
o PPV |1 (eO)63 (2121 | | (£Q)63 (£1-d) (10) 113 (5-d)| 1 -2ocidey possaq dojarag %QHM%.V.%
Paitsaq A3 | g ve(ce0EDY | |aV(SE-8L¥S OV +(55)¥% 089 ¥
oN 4
0= 5>— i
- — 170821 ¢ I ewwer-y e S S 4 TR
s Ta)a T s Sg v | (1021 05 < (£0).034—="""
y5+— 9 5UO519AUOY JO ON] TZT=0TRY = | Sv={/i-EXv
el ti'e ~|a|||__
das (1Q)93 stz
Js deis (6q)01 (5€-d)
1 Qv (5E5)¥S
reeere ¥
s 9 (9a)03
OV NS auny
UE_‘_v w
oL 4O !4
t sunl |

0 g OO 0000 O 0g0 0000000 g 00

Development of Program CONTENTS OF ACCUMULATOR
’1-5 6-11 12-17 -23 [-29 -35
CAL A(Clear AC, add logical word A)—| 1 3 4 5 8 9 |lst
Add B +6 9 1 b} 9 3 |Char
(Cnconverted binary sum) 27 12 8 10 17 12 _lconv
CVR 1000, 0, 6
ARS 6
Series of Steps within CVR
Table Next
C(AC) Start Table C(-) Start Loc
30-35 Loc Refer 1-5 C(-) 21-35 \ \
) + 1000 -1012 21001 2 7 12 5 |10 17 |Count =5
17 + 1001 - 1018 g 1001 o 8 2 7 12 5 10 =4
+ 1001 - 1011 1 1001 1 8 2 7 12 5 =3
5 + 1001 -1006 6 1000 6 1 8 2 7 12 =2
12+ 1000 - 1012 2 1001 ol 2 6 1 8 2 7 =1
7 + 1001 -1008 8§ (7000) 8 2 6 1 |8 2 =0
Count = zero: if Tag = l,XRA
SLW C (Store converted BCD sum as logical word)
The exccution of CVR requires one L cycle to set the count in the shift counter and
to calculate the initial table location. The instruction is completed in as many E cycles
as specified by the count.
Convert by Replacement from MQ CRQ -0154 (Min I, L) Figure 5=83=72 S 29 — <

(Max 1, L, 6E)

This instruction operates on the MQ, considered to be composed of six 6-bit repre-
sentations, The instruction replaces a number of these representations equal to the
count of the instruction, with the contents of positions (S-5) of a like number of words
from storage. The location of the first of these storage words is found by adding the
contents of MQ(S-5) to SR(21-35) (intially the instruction address portion). The word stored
at this modified location is brought to the SR, and the MQ is shifted left six places.
Positions (S-5) of the stored word are placed in MQ(30-35), and the location of the next
storage word is computed by again adding MQ(S-5) to SR(21-35) which is now the ad-
dress portion of the previous storage word. The process continues until the required
number of replacements have been made. At this time the presence of a tag bit in
position 20 of the instruction will cause the address portion of the final storage word
to be stored in index register A.

The following illustrates the use and operation of CRQ:
Prepare a BCD number for printing be replacing leading zeros with blanks:

Convert BCD number 007109 to BL BL 7109
Instructions required for this operation:

LDQ A (BCD number in storage)
CRQ 6,0, 2000 (Convert from MQ)
STQ B (Store converted number)

o= 550.7/

1"é6v°60°C
do pu3

T -4
¥510- D¥D "ZZ=LS NI

0C 31 '8 A

|

91750 ¢

\

BARAE 4

i

i

A

Lsrrolr-e
3|qo] u! 3PPy
pansaq dojasag (ea)e3(LL-21)
AV =+ (5-S)OW

t'e1'zi'e
(€@)63(£1-d)

st ore
(1Q)1t3(se-08)

OW +(5-5)3S

°N

SRX

dagg |

ou\V

av-(SE-81)¥S
[

f

1roszi-e

— TV VT

¥S <4 8§

t

(O YAR R O 4

(10)93
5 daig

i

SIS 9

(B4 Ar4 SFA
(sa)o3
11 OW HIY4S

1

w3

OW %4

juawado|day
Hg 9

0Z ¥i ¢4

3|90) u! ss3uppy
paJisaq dojanaqg

€

(ea) &1

v={/l-£)av
L'si-ore 1oL-zie
(€Q)61 (£1-T1) (€Q)67 (£1-d)
av «+ (5-S)OwW av(Se-81)¥

SN
os vt

ﬂCO?LO)COU jo o

(o]
N Lo =08 _
ot o

58,
[{le)74] | et

S LT Y_ | 1-€)av

st zite
(€a)01 (SE-d)
Qv=-(5€-5)3S

1

awyy 3

vt 40 14

awt] |}

".."..“.‘.....‘.Q..J

r/'

[

436

0 g O O OO OO O 0g0 0000000 ¢ 0

Storage table required for CRQ (in decimal):

Storage Contents Storage Contents
Location |(S-3) | (21-35) Location (5-5) (21-35)
2000 BL 2000 2010 0 2010
2001 1 2010 2011 1 2010
2002 2 2010 2012 2 2010
2003 3 2010 ©2013 3 2010
2004 4 2010 2014 4 2010
2005 5 2010 2015 6] 2010
2006 6 2010 2016 6 2010
2007 7 2010 2017 7 2010
2008 8 2010 2018 8 2010
2009 9 2010 2019 9 2010
Development of Program CONTENTS OF MQ
S1-5 6-11 112-17 | -23 |-29 | -35
LDQ A ' st *(0 7 1 0
Char
CRQ 2000, 0, 6 Conv MQ
Shift
Series of Steps within CRQ Left 6
Table Next Count
C(MQ)s Start Table C(-)s Starting Loc
1-5 Loc Refer 1-5 C(-)21-35 | __)
*0 + 2000= 2000 BL 2000 0 7 1 0 9 BL | 5
0 + 2000= 2000 BL 2000 7 A 1/Co “jgjjBLJk BL| 4.
7 + 2000= 2007 7 2010 1 ‘(L 0 :j/ 9 BL", BL 7 3
1 + 2010=2011 1 2010 0) 9 BL BL)(7 1 2
0 + 2010=2010 0 2010 9) BL BL 7)(1 0 1
9 + 2010=2019 9 @ BL“| BL 7‘{,1 L 041 9]o

Count = 0; if Tag = 1, @010 *XRA

The execution of CRQ is accomplished in one L cycle and a number of E cycles equal
to the count.

S99 =3

Convert by Addition from MQ CAQ -0114(Min I, L) Figure 3=%:=23

(Max I, L, 6E)

This instruction treats the MQ as six 6-Dbit representations, as does CRQ. This
instruction does not replace any of these representations, but uses them to locate a
number of storage words equal to the count of the instruction. The storage words are
located at the address developed by adding MQ(S-5) to SR(21-35) (initially the instruc-
tion address) and are brought to the SR. The storage words are then added to the
contents of the accumulator. The MQ is not replaced, but is merely rotated left six
places to allow the next six-bit representition to be added to the address portion of the
previous storage word. The process con:inues until a number of additions (to the AC)
equal to the count have been made. The >peration is then complete. The address por-
tion of the last storage word used can be stored in index registers for future reference
by adding a tag bit in position 20 of the ir.struction,

a3
5‘919,73

S
¥

¥LI0- DVD "22=¢% 3uNOI4 . -

&-4e3 . :
, Y\ -
T &0 awyy .
4 1oL 21z
U
O Pu3 ann 1
vix Ao
0z ¥l 418 t 1 RO\ 4 \a
\ [tayly
A IR SY
607 —F
do pu3 LU A0 €
(€a) &1
1"6Y°60°C S (£1-£)aV
113 461 _||.v
DY uQ wing o
rsiore rorere 2190] u! rsi'ot’e R
ssauppy (€0)61
2(9PL WL PPV || (py)e3 (£1-21) (€)63 (£1~d) | | paiseg (L1-21)ave- ON
paiseq 901330 | | gye— (s-5)OW| v~ (5E-81)¥s dojanag (65) oW Ny
}en }
T om 4%t torae
ez Ga)a (£0)61 (£1 -d)
(5E-81 145
(10)91 ¥Gr g8 9V~
Iv-(S6-D) AV s~—18
w0> .
[“FBIT0C
WGEAR TS
Qa1 @y
e e N . S)
ez si-zre (10192 (10)93 40 TON 1 D5« (ZI-01)SY [fsv ‘E.mﬁ.l\
(£Q) ¥1 (€Q)¥1 (5€-d) uorpPY (c£-2)qY S5 daig
Ov< (se-00v | av=-(sc-s)us
*I.IM-I } TS AN
uoHIpPPY
185244 84 1815434
0 id (€Q)07 (SE-d)
(€Q)v3 (€0)¥3 (5€-d) av=— (S-S)4S
10O av=-(se-D)V| | av=—(se-5)¥s I
“o eral e L
Ut XNy (9a)o3 *
awt) | 3O 11 OW 2ipi0y
SHIYS 9 f
01 40 1d .
i Y

.O.CQCO‘QQQ,‘.Q0.0..'..

To illustrate the operation and use of CAQ, a program which will convert BCD to
binary follows.

Convert BCD Word to Binary
709542 (BCD) converted to 2,551,646 (Octal)

Instructions required for this operation:

LDQ A (BCD word)

CLM {Clear AC)

CAQ 6, 0, 3000 (Convert to binary)
ARS 16} (Position result in AC)
SLW B (Store result)

Storage table required for CAQ:

Storage Contents Storage Contents
Location (5-19) (21-35) Location (S-19) (21-35)
Decimal Octal Decimal Decimal Octal Decimal
3000 0 3100 3300 0 3400
3001 303,240 3100 3301 144 3400
3002 606,500 3100 3302 310 3400
3003 1,111,740 3100 3303 454 3400
3004 1,415,200 3100 3304 620 3400
3005 1,720,440 3100 3305 764 3400
3006 2,223,700 3100 3306 1,130 3400
3007 2,527,140 3100 3307 1,274 3400
3008 3,032,400 3100 3308 1,440 3400
3009 3,335,640 3100 3309 1,604 3400
3100 0 3200 3400 0 3500
3101 23,420 3200 3401 12 3500
3102 47,040 3200 3402 24 3500
3103 72,460 3200 3403 36 3500
3104 116,100 3200 3404 50 3500
3105 141,520 3200 3405 62 3500
3106 165,140 3200 34086 74 3500
3107 210,560 3200 3407 106 3500
3108 234,200 3200 3408 120 3500
3109 257,620 3200 3409 132 3500
3200 0 3300 3500 0
3201 1,750 3300 3501 1
3202 3,720 3300 3502 2
3203 5,670 3300 3503 3
3204 7,640 3300 3504 4
3205 11,610 3300 3505 5
3206 13,560 3300 3506 6
3207 15,530 3300 3507 7
3208 17,500 3300 3508 10
3209 21,450 3300 3509 11

135

: —
520,78

“".‘.0".'C'.C.CC...‘,«,_‘

'

mIs
[4 13 1—
9%9 ‘186G ‘g = (jusreambyg Areurg) 91 SUV
00S9T 9%9°1S8°‘2|=
2 ¥ S 6 0 | 7L 0 - 2 + - 4 20S€ = 00Sg + z
\\ v \\ \\ A 00S9T FP9°‘18G°2|=
v g 6 0 \é . 4 1 00ge 0S + 00S¢ 0% $0¥€ = 00%E + T
\\ \\ vy e 000€T ¥LS‘1SG ‘2= .
G 6 07 L 2 | a¥ 2 00¥E P9L + 00%€ P9L S0€E = 00€g + S S
P \\ e 0096 019°0S5°2|= ~
6 0 L z 12 S € 00S€ 0GP ‘13 + 00€€ 0SP°TC 602E = 002¢€ + 6 .
\\ \\ e \\ \\ 00£9 0PI1°L38°2|= _ m
0 L 271 v g 6 ¥ 002€ 0 4+ 002 0 001E = 00Ig + 0
\\ \\ \\ \\ L\\
L Z i g 6 0 S 001€ O%T1°L3S‘T |+ 001§ O¥1°L3S°‘S LO0E = 000§ + L
™ \ unoH (ce-12 (-)O 61-1 ‘S(-)D 192y 207 S-1°'S
207 11BI8 alqerL alqe], 11e18 dOWo
XN
OV wyim sdag jo satrag
|
9 TOY 9 '0 ‘000¢ BVD
< 00 00 WD
Z F & 6 0 L+ XX XX aaom add dat
sg-1 62- | se- L1~ 11-9{ S-1S G¢-12 G1-1 ‘d
OIV 0 SINILNOD HOLVININNDOV JO SLNALNOD

pIoA\ 409 juareAlinby Lreulg . wexdoxd jo juswdorara(g

0 QOO0 00000 000000000 goo

7094 TespPPIN &

to
&=3.068 Trap Mode Instructions

The 7090 can be operated in either of two modes, normal or trapping. Entrance to
trapping mode is gained by executing the ETM instruction. Exit is accomplished by
using the LTM instruction or the clear or reset keys on the console. Trapping mode
affects the operation of transfer instructions except TTR., Intrapping mode, the location
of each transfer instruction is stored in the address portion of location 0000. Successful
transfers are not executed; instead, an instruction transfer, or trap, is taken tolocation
0001. One instruction, trap transfer, is immune to trapping mode. The locating of
successful transfers and the trap to a common check point make trapping mode useful
for debugging program flow. Unsuccessful transfers have their location stored in the
address portion of 0000, but do not trap to 0001.

Enter Trapping Mode ETM +0760...0007 (I, L)

This instruction places the computer in trapping mode by turning on the trap mode
trigger on Systems 2,10.53.1. The computer remains in trapping mode until a LTM

instruction is executed or the clear or reset buttons are depressed. ETM is a primary
operation 76 instruction and requires an I and an L cycle.

»

TRA in Trapping Mode TRA +0020(1, E)

The effect of trapping mode on a transfer is shown in Figure 5+3238. (0 &= /

Leave Trapping Mode LTM -0760...0007 (I, L)

This instruction returns the computer to normal mode by turning off the trap mode

trigger on Systems 2.10.53.1. This is a primary operation 76 instruction, and an I
and an L cycle are required.

Trap Transfer TTR +0021 (1)
This is the only instruction which provides an instruction transfer to location X

regardless of the operating mode of the computer. The TTR instruction nullifies the
transfer blocking circuits of trapping mode (Systems 2. 10.53. 1) and operates like TRA.

Store Location and Trap STR -1000(I,E) Figure5-3=3¢ & O/ ~

This instruction stores its location plus one in the address portion of storage loca-

tion 0000, It then traps or transfers the computer to loaction 0002 where the instruction
sequence is resumed, STR does not place the computer in the trapping mode,

bel |

©0 9 0000 00O G

o000 0000ggooe

1
LS
, Y
! k]
o
~ -
e
-
JQOW dVil 0200+ V¥l $e285 JINOL4
54 deig stz _1__ _ .
(10)63 1'0s°z1°Z 1700°60°Z 1'81°90°€
2d Fuorpy (103 (ca) r3 (10) 113
i S8 uenald g5 ¥S WSy .
] ~
vl 90 1°60°00°8 }
(za) 013 (1a) 013 ~.
2] Syt uJ pu3 NS
T 0T QO
SV« Dd AN
juaaaly
2 sap - s\N‘\. &
oN QU
(#0212 1°21°90°¢€
(1Q) 23 ¥5= (ta) 23
(se-1) ppv | [{SE-12)¥5+ sV
* 80°S0° 1'10°60°¢ 1700°60°2
RTRAR 1760°60°€ 60
JusWaI>ag puo (€Q) 03 (€Q)03 $s3.ppy IR
3poD dO utoidy | s19pPY=¥S SV=—2d 21015 JW 21015 4w
) 1 I i
T
awy 3
1"8190 ¢ 1'20°00°8
¥V ul osaz (g d0
Y~ SV puj | tuasaly
Uise 1'60°01°
od S+ Qv HpUD
jo Qw.m udAdIY 134) judady
1
- 20 90 14
aunp |

Trans Qtvl

22, ({551

Ad vance !0:

!

Nete: T4 STPR

15 Mot bye wghf

€L P \oY an mitvucetion | but bY

a. ‘t\m(x orermtro
thwe PC s bloe

nj the step ¢o
ked

-~ E\ ~ N Vs N PR LT EEAN PR - N N Vi)

Reset AR
ra D1
.—_———
. 3
\‘L‘ — - = Fovce Bt Teo AP — :‘V""'f
. Chawn. — snhe
E Time AR pev Trap Se&:{ — AR 3
. Fixeld Addrecss Copy AR 3
Iio b Tairpt-AR I EN
v Y RN
H t
s . MF Stowve MF Stovre Comp PC —2xAD Block AR-YXAD
\‘ Addvess ctv i A2 D2 Gate
ot
*‘La?. LA 2.09.00: |
v A e ey
. 1Cemp XADSR
C ' Y
® — N Y N S
SR—>» sB I Pyveveut Reset PCQ
.‘ ‘ $BP LR
E4 D3 E D1 1 EC D1
12:.09.00.1 2.42.50, s .
h Fp — Pe1y%
.‘ Joog bO/— R + | Fevee Bit To| qpau— P Not Alteved .
‘ 7/ e b | FPC pey Tvap Select— P23 ¢ 17 /'
: ‘ W b 0/.3 Fixed Addvesses) Cepy — P3¢ /6 o
.’ . E]O{)‘z In£1ft_r‘_‘5

INSTRUCTION OVERLAP

The instruction overlap feature of the 7094 significantly reduces the
number of machine cycles required for computer operation. Instructiin
overlap reduces the number of cycles for certain pairs of instructions
fram four to three. Certain other pairs of instructions may be performed
in full overlap, 1.e., no cycle time is required for the second instruction
and the two instructions are performed in the time narmally required for the
first one. Proper programming techniques are necessary to realize the
full benefitw of the instruction overlap feature. "

Instruction overlap takes advantage o the fact that core storage
(memory) always offers two full words to the computer -- those words in the
even 'and the next highest odd address location.It is the nature of memory
that the full 72 bits of two loca,ttions, even and odd, must be strobed on every
request to a core storage address. After strobing, the 72 bits are sent to
the memory data register (MDR).

Either or both of the words in the MDR may be gated to the storape
bus, as determined by the contentsb4he MAR (memory address register),
bit position 17. If MAR 17 contains a 1, the reference must have been to
an odd address { MAR 17 is the ZOposition). and only the word in the odd
address location will be gated out by the memory internal data out gate (DOG).
When MAR 17 contains a 0, the reference must have been to an even addreés.
The internal DOG will gate out the £ first word (even address) and a split
DOG control line, originating in the :omputer, gates out the second word.

This sequential gating aat of two wor:is occurs whenever the reference is to

709

ool ooo0eoe oo 0%

© 0 QO OO0 OO O 000000000 Qoo

an even address and the computer isnot in a channel operation. When two

words are gated to the computer, the first word comes off the storage bus

into the storage register. The second instruction is gated into the instruction

backup register (X (IBR) for partial decoding. Occasimally, two words

will come into the computer and that in the IBR will be ignared --to be destooyed
5%

th.e next time the IBR is reset. This occurs when the word in the IBR,does nat

meet thecriteria established for instruction overlap.

Three kinds of overlap are possible:

1. Data lookahead (DLA) -- in which the need far an operand

from core storage is an£icipated.

2. Store lookahead (SLA) -- in which the need to refere to memory
for a store operation is anticipated.

3. Transfer lookahead (TLA) -- in which a transfer function is
anticipated.

The sequence of an instruction overlap begins with with an instruction
mxexkagx cycle reference to an even address in core storage. Notice from
Figure 700 that bits 0 - 35 will be gated out of memory by the DOG. When
the split DOG comes up in the computer the data out gate far bits 36.- 71 will
be enabled and the gate for bits 0 - 35 disabled. The even - address word is
gated into the computer at I6 time, the odd-address word at I9. Figure 701
shows the timing for the split DOG control line. Notice the split DOG is
controlled by B time and the inputs at OR circuit 3G. These functions relate
to data channel operation so it is impossible to have the split DOG control
li1’1e up when the word from memory is destined for the data channel,

With the word on the SB it is still necessary to gate from the SB to the

701

"‘0‘0“.."‘...““.,,..

3

HOILYIZIO he0L YOS SALINODwis Pwiixs Ln0-YiWd oQlL Tun3d

AN

— <2eg 11ds 4+ ~ a0y}

¥you
USEPSY
woYy3

]

-
v

| ©20- X _
| Y- | W+ S

(6f 913 3352 ! uv,,:._mz

1-9% Seornvy r£ve) réol — woy 4
NG 40 o]
o 4

sery NS ~
g Gocve (1z-5€) <00+ IH SCBYM -
o4 Y+

7«

/

(¢S 213 31%)
X-0 s~iosey

¥iw s0
Whemw Jfodno T (5t-0) 900 + 1|_ STYVW + — =
541

Ing SSIivD
L) v¥yu -

VI AR

Woy

—— —et
Jive sno-vive —— Y $S2UETY AYOWTIH e

5)/.5/fms 03,08, /5,/

oLY
W ALDR ~ 0
_ BT me y SELT 020G
/] F
VA7 DA
24

PoD $3aud 8 Tovwe | -0

B8RS s d DL P Tsy

Pop 54 Rlik Sp['-‘f Gl S

-/ryu/a; 7o/ QS/@LO'/ ﬁfs féﬂ/ﬂ’/ //*00"/5‘

703

0 Qg OO0 00000 000000000 ¢goo

IBR. This function is dboedity directly controlled by the load IBR trigger. Figure

702 shows the load IBR trigger will be set when :

1. AR 17 is not a 1.

2, PCl7is notal,

3. It is Al(Dl) time.

4, Itis CPU 1 time.

5. The block load IBR trigger is not up.

With the load IBR trigger set, the SB is gated to the IBR at I9 delayed.

The 70 nanosecond delay prevents gating out any of the even-address word.
Note on Figure 702 that at I9 time the set IBR LDD (loaded) trigger is also
s’et. Setting the IBR LDD trigger is one of the conditions necessary for
enabling anyof the three kinds of instruction overlap operations. The conditims
for setting and resetting the IBR LDD trigger are shown in Figure 703.

Up to this point the sequence is the same for every even-address

core storage reference. After the second word is in the IBR and partial
Becd decoding completed, the sequence varies according to whether a DLA,
TLA or SLA is going to be performed. The sequence concerning working with
twe words during double precision arithmetic will not be considered in this
section. It will suffice here to say that the condtiion of double precisim

operation is sensed and none of the instruction overlap consrol lines come

up. The controlling factor here is I time -- instruction overlap is performed
during I time while double precision operatioms are perfarmed in E time -~

therefore the computer must be in an E cycle in order to accept a double

precision word.

NN R EEEEE L EEEXE XXX EKX XX

704

)

{
4

\NWW\.HN N%N \\N\Q U\A‘Qmw .\v\b\ u\ %ﬂ\{au \WOQN U\Q\.\.\

(/00 6
o0L H7E I

YU CaT FI/ L=

ISP/ L2320 v
SWIif T \
0
TFTT IS 775 (rajee | O ~
J 707077 ™~
¢ BE: R
A0 #
-0/l
be)) 4
M3 sdg 4T
Al ey
mlgﬂi ¥
>vw &w: 13@4 ‘J%ﬂﬂm 7 ,fk;.,,ttf»b;
o N
Y (777
/ PWSL g D>

N AN EEEEEEE X EKEIEEEXEXXAYXX

©®0@9go0000000000000000g00

d ‘NuWIWWN AL 7LiY!
m UYL OQT IS IDTSY
9L T ST I3S
ge7 97
\.AHY TTY
hT God
|*orsee ov WXST ST
dad
oV NoSTYd
S
TgY w
O W
1y
QWY /m—/
OV AT ST %
T 33T LS AT
AT "SI AES r~ed 90 IIFRT TR aTIIETY
oYL TS AoN
L @At Qo [eARanm
O
|'Si80'E

SIS Y

TALS ST EOYITANG
QORI O I0N

210 >HEY

Y2991 9T FET ECE

0§ O O OO0 OO0 00 0000000 @ o0

701, Data Lookahead
The timing rules for data lookahead instructim overlap require
that the next instruction in the even address have a cycle time of two or more
cycles (excluding obxx store type emmxk codes) and that it be indexable, It is
further required that the instrnuction in the next higher odd address requires a
data fetch (not a store operation) from core storage. When these canditions
exist, the execution of the odd-address instruction is reduced by one cycle.
Figure 704 illustrates the sequence of events for a typical DLA
instruction overlap. The instructions chosen for this illustration include a
clear and add (CLA) instructikn at location 100, and an add (ADD)xixxkéu
instruction at location 10l. Without overlap these two instructions would
require four machine cycles, ang I and an E cycle for each instruction., With
overlap it will be shown the total cycle time is r8duced fram four to three.
In the following discussion the paragraphs relate to the items called out on
the illustration :
A. MX to SB -- the even addr4ss instruction from the
multiplexor is available on the storage bus for two clock
pulses, from 6 to 8 time. During this first I time the odd
address instruction is also being gated out of memory to the
storage bus and this is available from about 8 to 10d time.
Although the split DOG control line comes up in the camputer
from 6 through 9 time, circuit delays result in its being
felt in memory from 7 through 10 time.
B. SB to SR -- The even address instruction is gated from the

storage bus to the storage register at I7, The msmsm odd address

707

Lo

O 0 5H OO OO O O O 00 0 O

’ S 0L

eo0ecogoe

%\(\\\\,M. QQ\IU\\M V.24 v\§h~\
Wi M SR IMes vl S 540007 C 3
= v ~ Ll MLegor-3r¥0/ 1001 :.j.)
col \r\ r’Yz L ' DY f Q| TEEITOTTT
! weer ro G
j E— , g oy hECt 7
J— ! Q& >t IS\ 2l €2 TT
' _ L Sy ¥y aux| (010 ie[XH
| _I_\. Qux e\ 49 503 39
” »

LI SE-ICIUDL 1o eE et A

_ L. _

_ durr 3o 3 bery)

{1 8@ §C

L& e VI MG
A I L A RV a2

tvxnlr.\aﬂ ;"

Qo ruz

° J

7760 2032 7

! a0 Y

> a9 v
Fle 17 FYSF f L VY 4t oy | 112 cree] A
| ﬁ_ J _, O H IS 1m gt S A
_ _ N v+ X b ST Fel L
3 d —_—
: | P f T LS [Fury PUSK| 1 btIeso] T
1 | —_ . .
; . 1 Yoo co ¥P/ _. 48) qav ol 1scae vo o
4 1
A8 aryer 125) sese s
t E' >
Yol Y9Ssyey 15 5000 g

! \§, E “ ¥ T +o73d g0 dr i
T A S X Reond : ! gl [Twes 992 pm 15| s2s0 80 Fo] T
“ M ‘ [(20 »44Q { 2w ST
—
_IL ' W R HH Y op o Sloae sl T .
—ise L 1] | Yo w o+ gyl s se ta[
< \VV.\ » . v - -
wn\.‘.\. ce. PP oyt M rov jﬂ oo/ avprnc wniboy] tog 208l T
. ' P
| , rl_\ od sz /5o 1089
G L . Sy dwct qux| 119 298| K
[L] i e AR AN TR AN
» L] s t

_ L oo ye T mVeedn [T) Soe[T sy sy | 0o a0 sel TR
YY P FE-ICYS) 10 oo =
!
! ,, gre T w 70 [T e) fvwd | tarns to [T
kw.ﬂ\n&}\/. | ¥ P \,/ . iRl BT ey ?\\>r verpruepiiy tarisay oo Jao 19 =0 »;
A,_ — ! U L yS oF 95| yas ercolT A
,_” L] L L T] @5 et ad Jrieooie 17
, / -
Ty s 1AMV S S G A S S SIS SRy Gl SR S S S A AY- BN S AP Sk M6 TV R QR TN A A/ AN S N A R R A AE TP EGELE
3 N@\\ou\ ! 5.0 = oy s/ = >y Saw | —r ird PASEDTIN

0§ OO 00000 0g0 00000 00 g o090

will be gated to the IBR at I9 time (see P).
C. SR -- at the beginning of the I cycle the storage register
contained infor’mation relating to the previous instruction. Between
I7 and 18 this is replaced with the CLA instruction. Between
E7 and £8 the SR contains the data word (Operand) for the CLA
instruction. At the next E8 time the SR contains the operand
for the ADD instruction.
D. Primary Op Decoder -- from I6, through the E cycle, and
to the following I6 time the primary operation decodee (program
register) contains the @X®X CLA instructian, Control lines
are conditioned to perform the clear and add instruction through-
out this period. When the program register (PR) is reset, during
the next I time, the contents of the IBR (S.19) are gated to the
PR.
E. SR 21-35 to AR -- the SR contents, 21-35, are gated to the
address register.
F. Address Register -- at this time the AR contains the un-
modified core storage address of the CLA instruction .
G. AR to XAD -- at 19 the contents of the address register are
gated to the index adders along with the contents of the specified
index register (this last line is not shown),
H. #x XAD to AR Rst -- at I10 the contents o the index adders
are taken back to the AR, resetting the AR to the ma® modified
address of the CLA instruction.
Iand J. The program counter (PC) is stepped at I7 and again

»r BN 709

0
_.u——“?

at I0 to contain the address of the ADD and the next instruction.
The count of 101 is never used since this instruction was brought
in with the instruction at location 100. Item L shows the PC

is not gated to the memory address register (MAR) until the
computer is ready for the instruction at location 102,

K. AR to MAR -- the contents of the address register are gated
to MAR to bring the CLA operand out of memory. Note that the

out
AR is again gated to MAR at Ell to bring =gt the operand of the

ADD instruction,

L. PC to MAR -- the contents of the PC are gated to MAR for
the instructions at locations 100 and 102, The contents of the
program counter are not used when the count is 101,

NOTE: Whether the memory address register receives the contents of

the PC or the AR is determined by the overlap conditions as shown in Figure 795.
M. E time Call -- E time call is initiated at I9.
N. Set Load IBR Trigger -- the set load IBR trigger control
line is brough up at Il and remains up through I11l. The conditims
necewsary to set this trigger are shown in Figure 702.
O. Reset IBR -- the IBR is reset at I9, preparatory to
receiving the ADD instruction from the SB,
P. G4te SB to IBR -- at I9 (delayed) the contents of the SB are
gated to the IBR.'
Q. Set IBR LDD Trigger -- at I9 the set IBR LDD Tgr control
line comes up and set the IBR LDD =y trigger. Conditions

necessary to bring up this control line are shown in Figure 702.

Qo000 000 0% 0000000 B eo

710

Voo
-
@

I R EEEEEE N ENNEN XN

Clewy f‘lnkl;Q cr_ heny Fosl finp e

Dy 7R il v ST €

ot Mord pre7 164

/"”// 4’9 Vs

A0

el XEt

Nel DLA »r 71 P

QD ¢r FOU3IY

AO

Po23Y skip Ty

A0

Gate PR 44 IVHR

L

Nl /‘?’[/75'751,;/,’79/

TR LLEDE Copelrt 7
1243

Pr D 2%

A O

A7(22)

CF ST Sven

a7 B Tipne

pLy

Ga fe

et MAR

WER Gafe

AC¥%

P02

-

Fer 8 Tinge

N

ﬂj ure 763,

PCond AR Gatmg to 1 AR

77/

R. IBR LDD Tgr -- the IBR LDD trigger is set at 19 and will
remain on until the second Ell time. The IBR LDD trigger ;is
one of the requisites for setting the necessary control circuitry
to perform a data lookahead. The IBR LDD trigger is shown

in Figure 703.

S. Mst E Time -- master E time comes up at I11 and remains
up to Ell. During this E cycle the QXX CLA operand will

be brought from core storage (refer to items A and C).

T. IBR to PR -- the contents of IBR S, 19 are gated to the
program register at E6 for decoding of the ADD instruction.

U. SR to AD -- during the preceding E cycle the CLA operand
was brought to the storage register. Now, at I0, the contents of
the SR are gated to the adders.

V. AD to AC -- At I2 the contents of the adders are gated to the
accumulators and the CLA instruction is complete.

W. End Op -- at El10 the end operation trigger is turned on
making it possible for the computer to go to an I cycle,

X. DLA Tgr ON -- at I0 the DLA trigger is turned on. Turn-m

conditions necessary for the DLA tirgger are shown in Figure 706.

This output is vital to computer operation during the transition
at 6 time, i.e., when the computer is forced to go from I time
to E time.

Y. Change Ito E Time -- the change Ito E time pulse resets
(turns off) the master I time trig;er (see Figure 306) and turns

on the masser E time trigger (Figure 3l1). By reverting to E time

712

o000 c0o000%oc0co0ceocoelece

@

/73

. LLrr § Skrr oS o3 . 0¢. 1/ /
. [Tanie ey)
L TwiE Frly O £or L IME
Mo iR _ TR
. Ney oD AX
it DX T SESX /1
. DL} BD AP
‘ LB DL ey Fon L7Twis
SAC [Mor £ppoiEss
SN
& Cim o8 Lo s s fe
' Nor MDD SHANDP Lmg 7 10 DL BEAD,
VD TE7 r y
NoT PR_Sienk 7 /7
' Q46 e) CARE /BR 3~/ ;é priI-9
Nor 2)\ lor 2 |
’ IBR [z 2 [
' L P IGEN] /ﬁ}
_ (5 TErR - PR |-
T A LB T W CHIE IBR (-2 Yo Z
. Ao(p3) 7
DA Tt ON
. A1) -, L
BST LR -YP| Toes _on) TRAP ﬁ
: Chomse I To E
s regy
. /4 GrXe /BeS b RS
L =
. oD 4y DB ok SLAA IR
Nor Serise| LnNE
_Neor DGl 75& ’
. £ 7ima S PERD AVD
& JImE
. Fo(D3) 7 7__
SIA 7612 1E
. /4 CEYERAE ﬁ
. : - b Z TmE Nor SLA
A
C N (5
{
I\(“l)(\/ \,“S'E/—lf— =0 /9 E’
N~ V:1A¢e)D)! | A
Sejac o . Crorse £ Yo T
. : oN SLM
o / A0
£72(n) . GHIE /Br <-3r FoSE
r
‘ /rlyz/rc 704 0/0&7”5/ -(‘//9 77/77:‘)'{ £LSK 0 aft.f

the computer can once again accept a data word from core
storage (refer to item A), The I time portim of the cycle

was necessary to complete the CLA instruction. E time is
necessary to execute the ADD instruction.

Z, F¥, AA and BB. This portion of the E cycle is similar to
operations performed during I9 to Il1,i. e., modifying the
address portion of the ADD instruction.'

CC. SR to AD -- the contents of the storage register (the ADD
operand) are gated to the adders at IO0.

DD. AC to AD -- at 10 the contents of the accumulator (CLa
operand) are also brought to the adddrs and addition perfornreed.
EE. AD to AC -- at I2 the sum of the two operands is gated to the
accumulator and the comxedutex computer will perfarm the next
instruction.

NOTE : The above procedure was jpetfrarxe performed in three cycles--

an I, E and a composite I/E,

The following flow chart summarizes the activity during a data

lookahead, beginning with the DLA request,

714

‘o0 00000000 000000 loo

&.

L 4
-

© 0§ © 000000 000000000 g oo

DATA LooK AHEAD EXAMPLE
160 CAS oo
lot CLA 700
) DLA REQ 102 SUB 670
02 of.i7) 103 TRA 300
E OR L
TIME
RESET XAD
3 CARRY T4R
<+ TAG REG
205. 20.4
I
| N
IBR Ig-20 TIBR(21-35) ADDRESS PoRTION oF CLATo AR
To To AR
£ F2 oR L2
Té‘qzé'oﬂfiz.G 306 101
1 \,l_< [}
3 R N .
AR — XAD CARRY To XR - XAD APDR MoD!FICATION CF
Ayd2 XADDn Au D2 INST IN I1BR. {(Cuh)
306 06. ;“‘C‘,o,lzw,l 206G -071
I]
No /INDEXABLE
\ INSTR
YES
XAD—~ AR
AS DI
03 06 0%./
AR~ MAR| MODIFIED ADDR OF IBR INST To meEmoRy
A0 DLY
IF EVEN INST wAs PoD Iu4 THE
Pc wiLL ¢conNTARIN SHI | ADDR
{1602) AR Wi BE vP DATE FRoA I Time
PC ¥ Wikl CONTAIN NEXT SE§. ADDR NEXT
4 = \]/
Pc -~ XAD SET DLA BLOCK
3 PoD 34
) °b DLAWAO D3 T&R ToD?2 AAR?._DXEAD
306 09, 3.0%.17-) 166 061
NO
CARRY To
XAD 17
JLARYACD3
20607
N \(g
! \
XAD ~ AR No sHiP ADDR 1IN CASZ 00D (NST 15 A
55//1 7¢6. 1 PEA A2DI | Pob 34 oR NEXT S£QINST (F NoT Pup
g 3'%l°5" 2y
7/",@ CoNT. PAGE 2 ‘

Son T FAgE
|
DATA LOOK-AHEAD PFPAGE 2 ‘
'] ¥
XA XAD j7 .
) D@"WDZ DA AYD2 Ay D2
©6-07, 3 oG 06/ 306 07 |
]
] o
yees NOTE 1 NeTE | FP oR I/o TRAP
INTERRUPT ©R CHANNEL TRAP DEMAND
IBR T A REQ'D
NO
RESET Dia YAD = Pc SKIP ONE ADDRESS .
TeR DLA A5 DI
32 0.7 | 3 o¢ o
1 ; ®
DA TGR
on o
] o
IBRTITA YES
ol — .
NO SET IA
, TGR "AG Dy
o210 654
|
¥ ¥ 1 Y
RESET MAST& SET MATER Brocr $8 RESET PR ‘
I TImE E Timve OVTIPVIS To (D
AC D1 0% .00 ¥ PR - DA pun Al ol
05 00 1.1 i 032 0% 1744 o2 11-80. .
Yes POD 34\ np TBR ¢) yes [TER NO
To PR'S A et .
Pe = xAD 3.08. 17}
| — XAD 17 4 '
FOR SHIP 2 SET PR IBR %2 IBR 3.1
| SIGN AL D2 To PR &49 To PR 9
No [POD 24\ AR 7 XAD fhudey | lpionil 83 ot/ o
—(owiP Tog DA E9 D2 \lr l
306 06/ SET PR§-9 SET PR 1Y
Aeb2 A6 D2 .
02 1] 4O/ 0. N 4O
XAD - e
AR = maR :
Ato DL : -~ .
¢3 oq-oc)zl-{ l«a 70‘ /
{
Pc MAR CONTAINS SKIP ONE .
RESET DLA Ale Dy OR SHipp Two ABDRESS :
T6R Al DI €3.64.00.) 103 0% 104 L T/ufey BAJ v
T B {‘;7'

® 0§ OO0 00000 000000000 g 0

PoDd 34

TiIME

TIME

NO A YES
OR TLA

POD 34 wiITH o©VER LAP CoND'S
CAS Ac> SR NosmiP
AC = SR SKIR |
AcL SR SKIp 2

! \@/ L PDR. MODIFICATION
Pc - XAD "ITBR 21-35] ':F oPD NE
E4D2 To AR INST pon&
3.06.09, E2-DI WIiTH NoRMAL DLA CIRTUITS
XAD — AR | NO SKIP
E5 Dt APDR.
1 ol
%\
1 b R
Pc - XAD CARRY 10
EGc D2 XAD |7
3.66.09.] EG D2
{]
XAD=PC | k1P | ADDR
E7-Di
1
FB-SR
E7 Dy
I |
Pc — XAD Y To
CARR LAS INGT CAg
Y \(
SR %;35 gR =35 ComP AC CARRY To
- 7o @35 ToAD AD- 35
AD P-3% AD P-35 -
Eg D3 gaw E8D3 E8 D3
1 | 1 T
AD I~ 34 No SET PULSE To SR
Toe SR -
£6 73 2ZERO TEST QKT
¥
CARRY ¥+ ZE&RO YES . yés SriP CARRY ¢ No ziRo
CoNDITION T 2 co_;w CONDITION.
NoTE | NO
SHIP ConDiTion « SIGNS comDiTion SE1 pop
ON LOGIC PRGE 04 09 U2 3:,3:—:51,,
0209 42.i

Y.
<

74 C

7

E4T 74ls2
CONT PAGE2 ey
’ _."/.’

~

- 2
FROM PAGE |
~Pob No
-/34 SKiP
W
N
2L0CH TLA {Gms pc
TeR 2RIANG 176 MAR
UP [BR RESE] Lﬁlo DLy
G ATE Pc GATE AR
To MAR To MAR
Elo puy Eio DLY
7
¥
T TiImE
NELT INST.
Aj\\ 0
- N

w

| BLec K AR BLOCK CARRY PC — XAD
iTo XAD To XAD 17 .
| A2 D2 Ao D3 Do+ AODS
12:06.061 | 30607, 306 071
[I
¥
YAD-AR | No SHIP
DA AZDI | ADDR.
2.06.08./
)|
¥ \]‘. {
BLock AR~ XAD | [CARRY To
A os DLA AuD2 XAD 17
306 07.{ 306 06-/ 3 06 09.
1 T
T
XAD~-Pc | sKip |
DLA A5 DIl ADDR
206 08.i
Sk SR
E7 DI
1 _(NEXT INST.
Pe— XAD +
CARRY XAD 17
EB8 D3
SHIP 2

2 COND

XAD To PC
I Pob 34 SMP

} ADDR

7770

000000 0% 0000000 8 eo

NoTE 4 NoTE |
FP TRAP
o 1o TRAP
N CNANNEL TRAP
DEMAND
XAD=PS + siip oN pob 3y
5D

‘
4

PcC STEPED T &
¢F ryoT TLAOR DLA
REG.

(84 / P

@

Mylsa EAT

702. Transfer Lookahead
The ins tructions ADD-TIX have been selected to show the sequence of
a transfer lookahead., A transfer lookahead may be performed if the instruction
in the even location has an octal code of 02xx, 03xx, 04xx, or 85xx (except
052x and 053x) and the next instruction is TRA, TTR, TXI, TIX, TNX, TXH,
TXL, or TSX. When these conditions exist, the odd address instruction is
executed in overlapped condition and requires mo cycle time.
ADD-TIX is a common loop in programming. Assume we are using
the two instructions to add successive locations in memory, building up a
composite sum in the accumulator. At the end of the loop#is# the sum may
either be stored or used in the performance of the next instruction. '
In studying the following sequence notice that the TIX instruction
never actualyy appears -- although it is performed. The sequence refers
to Figure 707. Alphabetical notations on the paragraphs are keyed to the
sequence chart,
A.MX to SB -- the even address instruction is gated from
the multiplexor to the storage bus at I6 toI8. The odd address,
the TIX instruction, will be on the storage busg from I8 to
about 110,
B. SB to SR -- an I7 (Dl) pulse gates the information on the
storage bus into the storage register,
C. Storage Register -- until I7 the storage register will contain
information relating to the previogs instruction, Between I7 and n

18 the contents of the storage register are reset to the ADD

715

A0 =T 1K Shopnn Tissder [goka brod

St L T & T e L Trc)
ol L2 1 4 £ L2 B 7y & [2 3 ¥ L p -8y 4 L S 3 % L e I B.r oy Lo/

cocii| iy 1o 28 A U I SR B T) Fepe

Az an il SA 4o SK o [R S I S Tl |9errvena
png el Herase Kegrsdes Rovans T ;‘/..,éa,.vm R VW) V inte | OO i 707 7oa7 ;/')):/.;n'f/:'f;’ll

Neaenes | Fregram Legocdn - ‘ l 77_ Ao L[

Jrecsen feapaciese | Tl)

| PTS Py P S B o I8 S AR
reent INAR _fo APD 1——1 T_l
ca

L (7D 1. AF fesaT

-~

4 .

1,

[Vrocveri| ik to A0D 1 1 [
K7

T draeneqqlt 4 AAD 47 1

"]
]
’4.

5 g 2 3
.) U - ’
e it ogrem. Lownfer] 4 Uq J L f,’,’{',,f Iy
> I l ' X rim TAX
e, »‘/rp AR v ,,”/,,, —_ PY RV Y

rcnis s AR to AR T T | - &yl

1]
| A paenerylfc 4o WMIAR
0

£ |

Q]

A

1
et 00 LA E T vwe o1} I _
Hy E Time
rxcc g 1|\ Pesfen

L-\
[
|

cqemgi | eh Loed 18R TGr

?
“,-7,.'"/_,«:,_!7[':—1!* /R r—‘ _ —
 Vsevicilhate 5610160 M. _
’ R ot a
T v esamilran_rsx i
N{
I le3rpsit | S 16K LDD Toy l—] - — '
4

Y v {18k pD Ty, J |
LTI NT AL _Reguesl |
cdeiand eaed W8P 2 Tanvy To h .

AH leics.and X K2 cAal A0o coo U POV L_l

DD eyt eq S Op / L'_——
£ E |raevav)| T4ATar ON L

W
A 4,

Y paernipinais)i XPO | . | - .
2 leosgaer| X80 10 XR I fis shos bl folllio s bep T

Apinbopin
w1 06 €0/ el 1t

.
R Aun r
s |TARS '/.ﬂ' f

Tip tewd met "]'—
MR NLY. Tov v ¢ lelcte

il i

b ’

et (Ol A KR+ AAD

ke
~3 6. X YD 3 PC l_\

Fiy(/rc 707

-il‘,zr / /:"‘

¥

|
o0 00000000 00000008 eo

S\
~4

0§ O O OO0 00 0 0500000000 g o0

instruction. Between E7 and E8 the storage register will

be reset to the operand of the ADD instruction,

D. Program R%gister -- while the two instructions ADD-TIX
are being performed the program register will contain only the¥
ADD instruction for decoding.

E. SR 21-35 to AR -- contents of the SR 21-35 are gated to the
address register at I7. This is the unmodified address of the
ADD instruction,

F. Address Register -- from 17 through I10 the address
register contains the unmodified address of the ADD instruction,
The address register will be set at I11 to contain the modified
address of the instruction. The following E3 the address register
is again reset to the address specified by the address portion

of the instruction in the IBR.

G. AR to XAD -- the contents of the Ar are gated to the index
adders at I9 for address modification. Steps G, H, Iand J
comprise the xxxfidk modification sequence.

H. XAD to AR Rst -~ at I10 the contents of the XAD are gated
back to the AR (this is following address modification),

I. XR to XAD - the complement of the contents of index register
two are brought to the XAD at I9 to modify the address coming
in from the address register,

J. 1to XAD 17 -- adding a 1 to XAD position 17 xkxrx changes
the contents of the XAD to the 2's complement of the index
register.

717 P

K. Program Counter -- the contents of the program counter are
not used during this overlap sequence, However, the program
counter is stel:;ped correctly until the second I time when the
step pulse is blocked and the program counter is reset to a
count of 5, This would be the correct count if the prgram counter
were to be gated to MAR,

L. Step Program Counter -- refer to step K.

M. AR to MAR --at Ill the modified address in the AR is gated
to MAR. This address will locate® the ADD operand in memory,
At the next Ell the modified address of the TIX instruction

is gated to MAR by an ElO(deWed) pulse,

N. PC to MAR -- does not occur,

O. E Time Call -~ the E time call is initiated at I9.

P. Master E Time --master E time begin s at I11 and remains
up for a full cycle,

Q. Set Load IBR Trigger -- the set load IBR trigger comes up
at Il and remains up to Il1l. The conditions necessary to set

this trigger are shown in Figure 702,

R. Reset IBR -- the IBR is reset at I9, preparatory to receiv-
ing the TIX instruction,

S. GAte SB to IBR -- at I9 (delayed) the contents of the SB are
gated to the IBR,

T. IBR TIX -- at I9, as soon as the TIX instruction is in the IBR,
the instruction is decoded and control lines come up preparing

the camputer for the traasfer instruction,

'
Y

R
~ L

00 0 o000 000 0% 0000000 Beo

18

0 gooooooeoeg0o0000000Qg0O0

U. Set IBR LDD Trigger -- at I9 the set IBR LDD trigger control
line comes up and sets the IBR LDD trigger. Conditions necessary
to bring up this control line are shown in Figure 702,

V. IBR LDD Trigger -- the IBR LDD trigger is set at I9 and will
rermnain up until the next I8, This trigger must be mmmm set to
perform a transfer lookahead.

W. TLA Request -- the TLA request is conditioned by the IBR LDD
trigger and remains up for the same period. Conditions necessary!
for a TLA request are shown in Figure 708.

X. Reset XAD 3 Carry trigger -- this trigger is reset at E2 if

the 1 injected into XAD 17 and the addition of the XR to the AR
results in a carry out of the XAD position. This would occur,

for example, when the XR and AR were equal, signifying the
ADD-TIX loop had been completed. When the 3 carry trigger

is up the TLA request circuitry is nullified,

Y. IBRAZEEZR (3 - 17) to XAD -- this gates the decrement of the
TIX instruction to the XAD for modification of the XR.

Z. XAD to XR -- note in step I the KR was brought to the e

XAD at E4, simultaneously with the contents of IBR 3-17. The
modified contents of the XAD are now returned to the index
register,

AA. This line shows the contents of the index register throughout
the cycle. Recall that the complement of the register is always

used in vthe index adders,

719

(o xh)
iy Trr)2503

3
g

Z/,’;—', 9 z.f

/'9//\/DH 2

Zie 7R TTR

4o
Inr TR TTR| - ‘
GxRS

)R MoLr 7H6-

(/Sox.»rio From Qo_)

I S C_O l

(R The Thx Txe TXL,

/5T

e ZER

Por yme S Ao
./.1.7@41_.._____4_4 s
ToE S

) B TNy TXL

/7e_Tix TXH

|BR_Tx Tnx

‘—‘ A
AT TRE 2 L

/['jort')08 TL” Qpﬁ/ﬂc‘.rfdn:—/ 77/9 77//

/R0

75"

-—
Y

1

N

~2

S eoeocoo0o00o0o00% 0000000 eo

0 gooooooooeg 00000000000

BB. TLA Condition Met -- this line will come up at I9 if a

transfer is to take place. The two conditions necessary to

bring up this control are a TIX instruction and nocarry out

of XAD 3,

CC. Delete,

DD. End Op -- the end operation trigger is turned on at E10,

enabling the computer to go to an I cycle.

EE. TLA Tgr ON -- the TLA trigger is turned on at I0 and

remains on until I11, Conditions necessary to set the TLA

trigger are shown in Figure 708, When this trigger is on

the step program counter pulse is blocked -~ refer to item K.

FF. Block XR to XAD -- the ’XR woubd normally be gated to the

XAD at I4. Notice, however, that in step G we are going to

modify the address register from E4 to E6,

GG. XAD to PC -- at E5 the contents of the XAD are gated to

the program counter. Although this step seems unnecessary

in this sequence, certain skip instructions take advantage

of modifying the program counter in this fashion. The program

counter now contains the TIX address count plus 1 (in step J

the 1 to XAD 17 is held up over a count of four clock pulses).
This ADD-TIX loop will continue until the count in the index register

and address register are equal, At this point the program will drop through

to the next instruction.

The flow diagrams on the following pages relate to

various transfer instructions in the IBR,i. e. » transfer overlap instructions.
721

IBR T‘\ Tl‘\!- “.'"“' H, -rxL
TUA Keq and]

£ Time

b

rﬁ’:.\ XAD 3 Covvrl

T“.' < T@Z 'e(', %
E2 01
(0394 tQ:.LQ:Ld

X

16k (|8-2¢)

"

1K (21-35)

—> —y
Tag Re £ AR
E2 04 . £2Dd
. Io_-t (4D) S ..b.-.torl_-.L?LQ

LBR(2-17) XR - % XAD Cavry T xa0N

—..’)

XAD

E+ D2 F4pe EV D2

k13,1 (2§D 63.06b-0"1 . .
$ Aobagllital | 9306eTl0A

| XRD —> XR

Es 04
2.0, 2F)

" e r—

TLA
Cend Met
°3. 6 (.19./ (48)(F]

—5%

/a

Qoeoocooo0o0o0o00% 0000000 foeo

/’j 709

7aa

H-L-1t. wikl' v

e 11

(RS

[T~

Qa_‘r'vY To XAD"’

o EL D2 EGC D2
._5;, ©09.4 (3D 306,071 CH+F)
® XAD—> PC

® €1 0t

L 03.06-08.1 (4£)|

Yo 2N

PC —> XA o”] | Carvy To XAD 17

N

! E8 D3

E8 D38

]
]) les

30609,

ogof (30)

)(F\D"> PC

E o D)
03.06.08.1_CIF)(E)

P

o~

267-%

-~

'\ ' ' . .\))
, .

*Q

A= b~6 !

'\

WE K

.\1
'y
Y

Yes
\
PC —» XAD Cavvy To XAD 11
E8 D3 EgC3
02.06.09.1 C¢3E) 08,06:.09-1 (3E)
Y
XAD— AR
Eilo b4

Y Y
End OP

PoD 34\ Ye 5

lo Diyd

Gated v absent

PC > MAR

E lo Dl\('d

2,088,051 ($<)($D

-

T\ (Co v;t 'd)

,,_.,
qy

IBR TIX, TNX, TXH, TXL (Cont’d) (2) . ‘
»

j l o
I Time .

Next
\ @
Foo>1cs ‘
No o
\ Y .) |

"Blee® XR¥XAD To
" Sz R Cavvy To XAD I AR —> XAD PQ —> XAD
- I4 D2 I4 D2 I+ D2 ’
2002045 le3.0¢,07.0(46) | loz.06.0¢.4 (48) 3.00:0% 1 SENSH) .
Nete 1 = FP Tvap cv ,
-0 T'vap oY Interryy
ey Channed TVa.P ‘
Demannd .
No .
XAD—> Pc ‘
+F ¢ AR XRD 5
15 0L +G-1f Pe ~—» XAD ,
1os.04.08. 1 HE)(+G) .
Yo Y A
XR —> A.J\“D’ Carvy Te XRD 11 .
707’5 I¢ pe Te D2 ®
03.04.07 1 4D)] 03-06:07. 1 (4F)

' ¥

=6~ WE K

Aok

L
~ -~
~
3

2 ¥

S B EIE - (Cont'd)

Note 2 = FP Tvap oy I-0 Tva

No Note 2 oy Intcvvuupt. oy Channe|
T'n..p Demand oy POD 3¢
Sk T
Yes '® %V

IBR (3-11)
—>

XAD
T6 D2
93.08-19 -1 (+A)

9 0 0.0 0 .§ 00

N ‘
! ’

L

N\
S
<

£

=6~¢1¢

©0 g ©e 00 0 00 050

I7 D1
02.12.10.1 (3IF)
Y
b-
3
~
7225

w E K » '-.'!"- 'f"ﬁ"'; ,"‘;;',t'-‘.v ‘:"'ﬂ! . :7

< LBR TXI .
TLA Req and
/ E Time
J/
5 Y. . ¥
Rst XAD 3 C‘..-v-vY1 TL A ‘
TRY € Tas Reg Cond Mext
E2 01
- 03,05:20. | ($E) 03,06, (2L (D
; v
Y Y
IBR (18-20) LR (21-35)
— —
Tag Reg A R
E2 01 £2 Dt
03 / 0300 10-1 (+D)
N Yy
N N
v Y
XR —» XAD Carvy To XAD I
- E4D2 E¥D2
- 3,060,071 €Y _Q_;__o_g_,jz_l_ﬂl
—
XAD— XR
N ES D1
. 02:12.70. 1 L2€2DY
N
N Yes PoD 3% Neo
~ \
I‘Pc —» XAD Cavyy To XAD (7
EtC D2 Ee D2
!"u" 1 {30) 0346071 (4 F)
/
N Sl
\ 4 XAD—=> PC
w L ET7 DL
c.00.08.| CHED iy 70 A B
. < 2 6
AR Y ’f\ (Co“tld) ﬁﬁ:;"L*/ 8 (cont’d)

-

Oo_caco-coc‘ooooocootoé

.

. , .
v

- ,‘ | | ‘ . | ' o . . . I . PRI l - . . N . [N RN
‘ I | .
.) ., i ‘£ . ’
. R - > - T) . | | |

,LA (cont J) B (cont'd)
[R
PC —» XAD Cq,v-v\, To XAD ‘7}
E® D3 E8 03
PENTL WS90 B PRV)
He (skip 2
Yes
XAD—> Pe
Eio D1
c3.06.08 1 F)(E)
Y ¥
End Op
PoD 3¢ Yea
No
AR —r MAR

E 1o Diy'd
(iﬁhed:' atbée'\ct

PC—> MAR

E o Dlya

1= 8- ¢l wEeK

Ter TXI (cont'd) (2)

' I Tv.vv\(.
l Next

Vof}}}Yh&

No

.

Y . . - Y
IBlocK XR>XAD AR —>XAD pe—> XAD
‘A4 02 Gate
] I+D2 1% D2
£3:06,074 4 (6P .c-s.a_g;_oi-z CHED Q.}-_ah;.e'jzl_ﬁiﬁ

Nete L=FP Tyap cv
Ye. I-C Tvep o7 Tutcryo

q.f:t ev Channcl

T-V‘LP De niayyd

YF 1§ AR—YAAD

46 1{ PC—»XAD

06 06]
3 .

- E—

XR —>» XAD Cuv-vY To AAD "

T¢ DR It D2
IR RCY I 03¢ et (HED
L e
7/0~% C
. {'l
; —7
I/-8-61 WEK 78 V(C_ont'd)

N X E R EEEE LYY EEEEEIEY

Yes Note 2 oy Intevvu.f:t
NO Sk;p Ts-v
—
XAD
I6G D2
308.149.4 (3A)

XAD—» XR

.71 D1

~ \
N

4,7 /0 LD

D27

, ‘ _ \ \
' \ . [y . . . ; , N
. Y t R ‘ i ;

/1~ 8-6 1 wEK

Nete 2 . FP Twap

ey Channel

melo Demand or PoOO 3¢

oy I-0 Tvap

IBR TSX

TLA Rect and
E T'wme Note: TSX will not
oveylap on POD 34

S
h

/;/ 2/

220 o ° L

\

\ 1 o
Rst XAD 3 Cavvy TLA
Tgv ¢ Teg Re% Cond Met '
£2 D1
£3.a05.20.1 (4€) 2160 19l (+8)CE) .
IR ((g-—20) IBR (21-35) ’
— —>
Ta_% Re8 AR .
E2 DL E2 D1
03.06.07:1 (4D) oa.06G. a4 (4D)
~ e « °
E*\d OP .
v ®
A R— MAR
E 10 DIY'd _ ‘
C{q(ca tn arbaencq
of P¢ Gate : ‘
LI Time ‘ '
Next .
h
‘L | U 1 .
Block XR—>XAD ﬁomf PC—>» XAD Qaan To XAD (1
A4 D2 Gate : .
I+ D2 I+ D2
03,0021 (5O lo2.04.09.1 (3G) 3,006,071 (4 G) .

o goooosooogpPOOOOOOOQGEOOTO

Note 1: FP Tvap ov I-0 Trafp
6y Tntevrupt ov Channel
Tvap Cemand

XAD —» XR

IS D1
02.12.10.((1H)

N

\

AR —>» XAD

Ié6 D2
£3.06,06-1 (3G)

ca_‘lTY To XAD |

I6 02
03.06:Q7.

6.06-0

4

) I&R TRA , TTR [
oy TLA Req ond ‘
v E Time
) N ¥
Rst XxAD 2 Ca*n'r g TLA
\' T%-v and Ta.s &S Cond Me.t ‘
E2 DL
s 2.05.20.1 (+E) 03.06,09,1(4 8) .
. /
. Y - N ()
o I8R (18~20) IB8R (21~-35)
—_— —_
‘ Ta Reg AR ‘
S 204 i 201
‘ $.06.:07:1 <$D) 193: 94
S °
. v . Y.
L AR —> XAD XR —> XAD Carvy To XAD I ‘
, .
EY D2 E% D2 E4 D2
. 3:06:06:0 HE)] 103:06:07:4 (4A) | 0
4 ey k) .
v AAD—>» AR
'\",
. o
) Yes (Pop 3¢ :
] ! N\ °
l P —> xAD Carvy To XAD 17 | '
,, ®
l" EC D2 EC D2 / [
~3.8.0((2D) 02, 06,074 (£ .
N / e
. XAD-> Pe ’ ®
y= /.
— 16 7/2 .
£ 06 0K | (FE) .
. V] - 4 ,
H=3=<1 R (cent'd -7 ’ ' Oy)

lﬁ (cent’qd) B (cont'd)

v ¥

PC~—» XAD Qa.-r'vY To XAD 7

E]{ D3
03.06.09.4 (3¢) Q3.0

E8 03

XAD—> P

Eio D1
306,084 UFIE)}

J End Op

PoD 3¢-)Ies

No

Pob 3¢
No SKkip Ty

AR—> HAR

Eio ply'd
Cated in abseny]

R

, ,. . . . P L . . N N . . N . . . ‘ < ‘
- - ’ 4 - : ‘ : ‘ - ’ ’) / ‘ ’ ’ * 4
. ' . - ~- ~. i Y [s . N, N - --
~

IBR TRA, TTR (contd)(2)

l

T Time
Next

Y. -

No

A

“_lg‘ock XR—>XAD
A¥ D2 Gate

03 Chaedt c5C)(0)

\..«"

1H=7-¢ 1

Ca.*rvY To XAD 1N

I+02
3.00-07.1 (46D

AR~—» XAD PCL—> XAD ‘-‘

¢

I+D2 ' I4 D2
03.06.06.1 (4+8) %.0609-1 (IF) |}

e

WEK

Note 1 -FP TTQP o ;
I-0 TV«.P oy Intey

wpt ov Chawnnel| .
'\"’Vap Demang

XAD—> PC 4F 1§ AR 9XAD
46 ¢ pc—axnD
IS5 DL
03.06-08,1 C+E)E

~

(

X

~J
‘\
N

\\

0§ ©0 00000 090000000 04g¢goOF

703. Store Lookahead

The timing rules for a store lookahead require that the instruction in
the even location have an emx octal code of 06xx (store type). When this is the
case the execution time of the next cycle is reduced by one cycle, If the
instruction following an 0bxx octal code instruction is a one cycle instruction
it is executed in overlapped operation and requires no cycle time, If the address
of an 06xx instruction located at address 2n is 2n+l, no overlap is possible,
Without overlap the following program would require four cycles,
100 STO
101 CLA

The store instruction would require an I and an E cycle, ws would the

clear and add instruction.

1 / E / I / E /
STO / CLA

With overlap, the computer is forced to go to I time at the middle

of the E cycle, operations are combined, and the two instructions completed

in a total of three cycles. .

The flow chart, Figure 713, shows the sequence of a store lookahead
function, The first page shows that an SLA request must be initiated, The
conditions necessary for an SLA request and for setting the SLA trigger are
shown in Figure 706, The XAD 3 carry trigger and the tag register are reset

and the contents of IBR 18-20 gated to the tag register at E2,

At E4(D3) the program counter and address register are compared to

735

STORE LOOK AHEAD PACE 4

STORE LooKx
AHEAD REQ

308171 (5F)
) |

o 3
RESET XAD 3 SET SLA T&R
CARRY TGR « £o D3
TAG REG E2 D
3.05 20 3.08.111 (3g)
L [
R

IBR Cis5-20)
To TAG REe
E2 Dy

3 0% 20. ur

Pc HAS BEEN : X 1
STEFPED DURNING i;“;” E‘;CD To AR To XAD BLocH ZR
T TIME (N+1) 3 CQDDS’-BOF $70) 7,‘40);Aab
kK . ’ ; H “
\

ComP XAD e - .

To SR No SET TEST FOR SToRE |NLoC

PULSE E4D3 N+

306 -1t \2¢)

ON SToRE 1IN N t1 conD. SR
- - IMPUT OR
SToRe IN PROPER Log. & £QuAL.
o

PREVENT o©OLER LAPR

YES
BrocH SwiTcH RESET SLA
E To I TiME TeR E6b1
03 o0 g7.d2D 03 -0817.1(4T)

SLA v
J4rR oN

YES

CONTY) PAGE 2

3 '7"‘*’..4

oo.ooco.oooo%ooooocolco

©0 3OO0 000000 OGOIOIOGIOCGOQOOOTS

CoNT'D FRON MH6E | STORE KOOH AHEA)
v 2 N4 N 4
RESET MST E &7 mMsT T IBR '21-35 IBR — §R REseT PR
TIME AL D T mE Yo AR FOR CH sEC Ac DI
AG D1 INST. A7 Dy

05001 i HG)

Of 60,15/ MF)

03 0G. 10 3¢

3. o0& 1T (2w

02 11 46:1(3D)

Y

~

4

BLocK SB-SR

04 12 Fi1 5y

BrocH S8
ovTPuls To PR

03 6517 (1€

GATE 1BR &
J0 PR ¢

SLA TeR
030470 Q)

4

SETPR $
AGD2

02 1.Ub-| (N

GATE 1BR i+2

To PR &Y 9
SLA TGER
63 0% 174 L3¢

Lo

Frtgun

727

A

GATE [IBR 31
To PR 1~9
SLA TeR

03 0%-17.] (1c)

N

SET PR 8%9
AG D2

0P (1. 4O 3

SET PR I-9
AG.D2

62 (. w0y (3£)

7/3

make certain the program is not salling for a store operation into the address
of the next instruction, The result of the complement addition is gated to the
first latch of the storage register and a zero check made, The information
is not gated & into the storage register but sensed for zeros at the input OR,

If the input to the storage register contains all zeros, the overlap
feature is nullified by blocking the switch to E time and resetting the SLA
trigger, If the input is not zero, master E time is reset (Figure 311) and
master I time set (Figure 306), putting the computer into I time,

The contents of the IBR are gated to the storage register and the
program continues as though the computer were in a normal I cycle. Because
the store operation is being carried out around this transition period (from E

to I}, the SB gating to the SR and the PR is blocked.

The CLA instruction will be completed during the following E cycle,

738 :

o0 0 o000 000 0% 0000000 0 eo

.t;nnm(KEG

Pc aoy

PC

‘ski/-af-m(

R XAD

‘HD AR
‘R-/W-)K

e SR

]
Qlﬂ -/BR
.ua REQ
‘L/-) T¢R

HAITIG E

£/r

‘usEr

s4p

o —(I?D
AR - ¥ARD

@ s«
[
@
o -
o
®

\y /‘} /7,/,'/// T //1/ arT
7 Time E/T Time £ TimE I Tome
C1234569890001 234567810101 2345626 Jbwol2398567 89000
b ¢ 4
_— I 1
7 ? 7
N I M
Vst Vr,rg’g v cLn Y on| owpr ¥V '
D 1
7 7 7
1 1 1
/00 L 707 L 7ot 703 |
7 1]
m n M
? M Mgl
ap ~n gt
" £op " Lod —
T 1 JT L J
/ "1
4
1
]
[e]
L
o i
S|
b
™
[4
IR
Vi
1
¥
1
A & 6
L. 1 s7o L Iy W werr
InsT,
7
M s
é
(o]
b1
2
_ Il
;7397

/700 S50 &
7ot C+ A &
102 WNEAT JWs

pPc+mpk

NENT ADORES

Vo SET
2Elo TEI

-’ e

mFs
s/l /s

870706 IBM 7151 CONSOLE CONTROL UNIT

The 7151 Coasole Controt Unit is a separate unit that may be placed at any convenient
location within ceriain cable length restrictions. It provides manual and semiautomatic
control over the systemi. The console consists of three panels: an operator's panel, a
customer engineer's test pancl, and a marginal check panel. With proper use, the con-
sole can be one of the customer engineer's most powerful tools. The time spent learning
how to use it effectively is returned many times when diagnosing system errors.

This section introduces the keys, lamps, switches, and test facilities, their function,
and any associated logic.

During the progress of a program, the operator may want some amount of control.
For example, at a given point in a calculation, the computer is given the instruction to
halt. The opecrator then can make a visual check of the information developed thus far
in the program. At this point, one of several alternate manual steps may be performed,
depending on the data observed. For this operation, the automatic-manual switch is set

o MANUAL. With the machine in this state, the operator may enter and execute an
instruction, interrogate any locations in storage for a visual check of the information
stored, or loud data from the operator's panel keys. After the desired manipulations
have been made, the machine is returned to automatic status; the start key is depressed
and the program continues,

The start and stop of the machine are under control of the master stop trigger.
This trigger in turn controls "B cycle interrupt, " which gates the I, E, and L cycles.

The keys, switches, and lamps on the console provide a means to:

1. Start or stop the machine

2. Step through a program at reduced speed
3. Check the status of the CPU

4. Display or revise the contents of storage
5. Alter the program

In addition, the customer engincer has facilities for several testing features which
include:

1. Auxiliary start and resct key

2. -0 interiocks

3. Continuous cxecution of an instruction
4. Power jacks for test equipment

5. B cycle control

The console (I'igure 6.0-1) 1s divided into three sections; an operator's panel, a
customer enginecr's test panel, and a bias pancl. Figure 6.0-2 designates system
page locations for the keys and indicators located on the console.

aae §OO0 e

'Y E FEEEEEEEERE L IEEEEEEEXEKKXX XX XX

©0go00o000000CLOOGOOOOOONQEOO

X% b
" y e L
Yy £ F .
i y LG -
; g . P]
B % s — - [. ¢ ¢ I8 {
, . . B . “ i :
N NN N e : . i
i) [
L
. [[N g . - [- [I . gy
d H) 3 i ! f- ,5 [¢ « é’ip
) Ly T N - N S iofeccc e TIETR
N B : . . E“J
. 3 % T i \r “a ff~"'ff';’¢[?':;
. f : 14 [et L.
N DRI § s~ TA A e, Gk Lo ferece ;
— ISR e ol {L 3 E et E o E s
) C—— . 2 -)
, Yo § v
} &3 s
; g ! \
RV
- .) :— - ';; - : o ». .. - . [a) ey
r j r “} F*"i E" E":“‘\ Y
oo t~ - . . _j B P
L_._ﬂ a . o . i g — ! reand ; g\: ‘1\
FIGURE 6.0-1. IBM 7151 CONSOLE
Trep & Chk. Ind.
00.20.14.0-00.20.90.0 E
Prog. Stop merg -
Index -0 OE(Program Register Off
Register Rdy /Act 00.30.40
A.B.C. “Gy/Adte . Customer
Program Ctr. i Engineer's
00.20.70.0 00.20.41.0 00.30.50.0 g’g Pane!
Channel 5&
Select E.u
Storage Register 00.20.11.0 & Trop. Ind. 5)
Accumulator Register 00.20.30.0 See Fl'g' 2.3-2
MQ Register 00.20.40.0 for Breakdown
00.60.xx.0 9.02.01.1
Marginal Check Panel
Clear Manual Contr . Sense
00.40.10.0 Keys Switchas Voltmeters
0C.40.:7 0 00.20.91.0
9.05.12.1 :
Errry Neys Margingl Check
R Seiector Switches
00.20.10.0
L c.10.0 9.05.11.1 -9.05.31.1

FIGURE 6.0-2. BLOCK DIAGRAM OF CONSOLE

Z= Fo/

e
,B;rfo‘o OPERATOR'S PANEL

The operator's pa.:l provides for visual checking of the information in the computer
and {or manual contres of the computer's functions, It {s also a station from which
power may be applie’ to or removed from the system.

/‘{.j /67 Indicators
All indicators o1 the console are of the incandescent type. When used to indicate the

condition of a regisler, a lamp being on signifies a 1, while a lamp being off signifies
ao.

Internal Registers

The contents of the internal registers (accumulator, multiplexor-quotient, storage
register, instruction counter, instruction register, and index registers A, B, and C)
are displayed directly on the panel.

Trap

This lamp is on whenever the machine is in the transfer trapping mode.

Simulate

The simulate lamp is on when the 7090 is operating in any of the following modes
associated with the 704, 709, or 7090 compatibility program:

1-0O select and sense trap mode
Copy and locate drum address trap mode
Storage nullification mode

[S

Accumulator Overflow

The & ccumulator overflow lamp is on any time during a fixed point operation (add,
subtract, and so on) or shifting operation that a carry out of position 1 of the accumu-
lator occurs. It is also turned on by a bit in position P during the execution of a float-

ing point instruction while in compatibility mode. It may be turned off by the TNO or
TOV instruction.

Quoticent Overflow

his lamp is on whenever the computer is using the compatibility program and an
MQ overflow occeurs,

Read-Write Select

The read-write (R-W) select lamp is on whenever the chs: nel-in-use trigger is on
In any data channel.

5
§ed

0§ OO O OO0 O 0g0 000000 0 g o090

Divide Check

The divide check lamp is turned on in fixed point division if the dividend accumu-
lator (AC) is greater than or equal to the divisor (storage register). In floating-
point divido the lamp is on if tho magnitude of the fraction of the dividend is greater

than or equal to twice the magnitude of the fraction of the divisor. The indicator may
be tested by the DCT instruction.

Channel Select (A-H)

The channel select (A-H) lamps, one for each ch

annel, are on according to the
data channel that is in operation.

They are off when the channel is not in operation.

Command Word Trap (Channels A-H)

These lamps are turned on according to the corresponding channel that is enabled

to trap on command word or end of file. The lamp for a particular channel is turned
off when the channel is disabled.

Tape Check Trap (Channels A-H)

These lamps are on according to the corresponding channel that is enabled to trap
on a tape check. The lamp for a particular channel is off when the channel is disabled.

Channel Tape Check

These lamps, one for each channel, are on if

or reading. The lights may be turned off b
Check instruction.

any error is detected while writing
y the execution of a Transfer on Redundancy

Trap Control

This lamp is on when the channe] is not executin
any channel enters a trap condition.
executed. Channel traps may be exe
time as any of the enabled lamps.

g a channel trap. It is off when
While the light is off, no channel traps may be
cuted only when the light is on at the same

Program Stop (Red)

The program stop lamp is turned on whenever the computer executes a halt instruc-
tion and no data channels are in operation (DVH or VDH excepted).

I-O Check (White)

The I-O check lamp may be turned on by an

y of the following conditions:
1.

If a RCH or LCH is decoded and the specified data channel has
not been selected.
2. I, when writing, a data channel data register has not been

loaded with a word from storage by the time its contents are
to be sent to the output unit.

.~ o 3

3. If, when reading, a data channel data register has not transmitted its
contents to storage by the time new information is to be loaded into it
from an output unit.

The I-O check lamp may be turned off by the execution of an IOT.
ReadjLighL (White)

The ready lamp comes on after power comes up and remains on except when the ma-
chine is in automatic status, the continuous enter instruction switch is on, the I-O inter-
lock switch is in manual, or if any B-time control switch is on.

Automatic (Yellow)

The automatic lamp is on whenever the computer is executing instructions in the
automatic mode or whenever a data channel is in operation.

Console Power-On (Red)
The console power-on lamp is on whenever power is applied to the console.

Central Components Power Check (Yellow)

The central components power check comes on whenever a fuse or circuit breaker
opens in CPU frame 1 or 2, multiplexor, or core storage. It also lights when core
storage has improper oil temperature or low oil pressure.

1-O Power Check (Yellow)

The I-O power check lamp is turned on whenever a fuse, an open thermal, or air-
flow failurc is sensed in a data channel.

Power (Redy
The power indicator is turned on whenever DC power is up in core storage.
Marginal Check +6 (Yellow)

This indicator is on whenever the +6 supply marginal check variable autotransformer
is not in the home position.

AMarginal Check -12 (Yellow)

This indicator is on whenever the -12 supply marginal check variable autotransformer
is not in the home position.

m §Oof

' E R R EEEEE X X

///;
~G, ¥ 02 Manual Controls

Figure 6.1-1 shows the keys and switches on the operator's panel that provide for
starting and stopping the machine and initiating computer functions. All keys are of the
spring-returned variety with the exception of the auto-manual key, entry keys, sense
switches, und emergency-off key.

Power-On

With the system in normal-off status, pressing the power-on key will commence the
power-on sequence. Ready status (power-on) will be reached in about 20 seconds. As

power comes on, a clear operation is performed, resetting all registers and triggers,
and sctting memory to all zeros.

Normal-Off
The normal-off key will initiate the following:

1. Immediate removal of 60-cycle power from the MG set, MG blower, and all
frame blowers except memory.

2. Immediate removal of 400-cycle power from the 30-60 volt memory power supply

3. After 5 seconds, removal of 400-cycle power from the standard memory supply.

4. After 3 minutes, removal of power from the memory blowers.

The dropping of the 60-cycle power removes the input to the MG, but the MG still
rotates at about full speed for longer than 5 seconds, allowing the memory power to
sequence down.,

Emergency-Off

When the emergency~off switch is pulled, all power is immediately removed from
the 7096 system, except the voltage to HR 24 and HR 30 points in the power control unit.
The emergency-off switch is to be used only in emergencies, because of possible dam-
age to circuits,

Resetﬁ/ :

The reset circuits control the resetting of various components in the system.
There are three types of resets which may be initiated from the panel.

An interlock reset is initiated by the load keys, clear key, and
power-on key. It causes the resetting of all registers (except
sense indicator), panel light (except power on and ready), all
channels that are in operation and their associated registers.

An operator's reset is initiated by the reset key. It performs all the
functions of an interlock reset plus’a bias reset for CPU triggers.

A power-onreset occurs when power is applied to the system. This
reset accomplishes an interlock reset, an operator's reset, plus the
resetting of the clock and setting core storage to all zeros. The clear
key also initiates a power-on reset if the machine is in automatic
status.

Automatic-Manual Key

The auto-manual switch controls the rest of the switches on the console. If a pro-
gram is running in automatic status, and the switch is put in the manual position, the
program will stop after it completes the operation it is performing. If an I-O program
is running, [-O will complete the operation before stopping. The auto-manual switch
will not affect the program stop status.

i posS”

0) OO 00000 0g0 0000000 g oo

Any Man
Ctrl Key

/

1 usec

SS
04.20.04 1

Auto.

30 Msec
SS

04.20.04 1

!

350 usec
SS

04.20.04.1

CLEAR

]qmmmw
m X3 o wn
m> 3} v n

Disp

Disp
Eff
Adr

Load

Tape

Load

Caords

Mylt
START
Step

Sing

Step

Enter

MQ

Enter

Inst

Stg

200+
Pulse

04.20.04 1

ENTRY KEYS

35

~o oo

!

Turn On

Man Ctrl Tgr
04.20.05.

1

Y

FIGURE 6.1-1. OPERATOR'S PANEL

Y

Man Ctrl Tgr
On Ungated

04.20.05.1

Allow Keys to be
Active in Auto
Clear, Stort,Ld
Cards, Ld Tape
04.20.06.1
04.20.07.1

Y

Man Ctrl Tgr
On Ungated

04.20.05.1

Y

Turn on Op
Panel Ctrl Tgr

04.20.16.1 Off
19

After Execution

of Operation
Called for Follow-

ing Occurs

On ot 14 Turn On

with Op Pnl Man Stop Tgr

Ctrl Tgr

Off 04.20.18.1
Turn On
MST Tgr 17
04.20.16.1

FIGURE 6.1-2. MANUAL CONTROL KEY

¥

Man Ctel Tgr
On Gated

04.20.05.1

Turn On Tgrs
For Other Man
Ctrl Key
Operations

Turn Off Man
Cul Tgr

04.20.035.1

Gated by
Manugal
ond AO

06

y -

o0 0 o000 000 0% 0000000 R eo

Entry Keys
There are 36 entry keys on the operator's panel: S, 1-35, Depressing a key sets a
1 in that position; leaving a key normal sets a 0 in that position. Information set in the y Lo 777 ¢
lar o
centry keys may be entered into storage, executed, or used for a storage inquiry address.”’- fr/, sge Ll

The entry keys may all be reset to 0 by depressing the reset key to the right of position ;},, Py ea sy -
35, The contents of these keys will be set into the SR, instruction register and tag
register when using the ENK or when using the continuous enter instruction switeh

/C(G./i’.ﬂs Manual Control Keys land start, single—ﬂ, machine cycle or multiple step keys.

When any manual control key is pressed, a series of single-shots and triggers are
set. Separating the key from the usable signal prevents false indications from noise
generated by the key (Figure 6.1-2). Three single-shots are fired in sequence: a
l-uscc, a 20-ms and a 350-usec., The 350-usec single-shot is taken through a delay
network to develop a 200-ns pulse that turns on the manual control trigger. By this
time, the switch has settled down and the trigger to perform the desired operation turns
on, resetting the manual control trigger.

Start Key (Figure 6.1-3)

If the CPU is in automatic and ready status, pressing the start key initiates machine
operation by turning off the master stop trigger and the program stop trigger. The
master stop trigger off conditions '"not B cycle interrupt,' allowing the computer to
proceed. If the system is in manual status, pressing the start key turns off the program
stop trigger.

Clear Key (Figure 6.1-4)

The clear key is only operative if the computer is in automatic status. Pressing the¢o é.:. Z)

clear key: ¢ f(/x(/,]j—y)‘)nfo o ({ J/M_M(:f;/_/j L? /W/Q,L(/ ;/‘Aa ﬂﬁ/.’({(f-/’m

1. Fires a l-usec single-shot to reset the clock and all channel registers of channels
that are not in manual status.
2. Resets CPU interlocks and registers.

3. Conditions circuits which allow zeros to be written into all storage locations. -)
Tobenlly ST aigielie . F Turso om pradliple 7% ‘et WW/‘”’I
The program counter controls the stepping through memory, with posi%ion 2 of the

PC indicating when all addresses have been zeroed. The turn-on of PC2 trigger will

turn on the master stop trigger at E10.

Display Storage (Figure 6.1-5)

Pressing the display storage key causes the address portion of the operator's panel
keys to be sensed, to determine the address in storage to be displayed. All 36-bit posi-
tions of the address will be displayed in the storage register. This is accomplished by:
(1) turning off the master stop trigger, (2) bringing the operator's panel keys to the
storage register in I time, and (3) suppressing ""storage bus to storage register." The
address portion of the SR is routed through the adders and address switches, to the
address register, During E time, the SB is gated to the SR, which contains the 36 bits
of the desired address. If a tag or indirect addressing is specified in the operator's/ 7
keys, the contents of the effective address or the I-A address will be displayed. £ /aoz'nv‘-
PN N P ey oA aties o ﬁ,\,l/ &

Display Indicators v

The display indicators key gates the true value of the sense indicators to the stor-

s . . ~ _t . _ \
ageifor display (Figure 6.1-6). Zi* s o ier Az s AL /\2/.(1/4/(&(wn it
Sl vediead J ‘ M ey ; .
AP wbleater s i L0 - ~ / S e £
} e L KLM(/QM Lt uplarc LA

et A ceatdd,
k5T &Y Ae ety K4,<7 &".77' z/;/u

&/ '_"

0§ OO OO OO O 000000000 9o

P

Fire Man
Ctel SS

4.20.04 1

Tuorn On
thor Ctel Tgr

4.20.05)

o

Turn On

Start Tgr

4.20.07.1

On ot AQ

Off at A8

|

Turn CFf

than Cirl Tge

4.20.08 1

Nech
in
Auto

1

Ton Of
PAST Topr

4.20010 0

A Reset
Lites
4.20.12.1

o~

-

MNcchine
in 1'
Auto
— Bring Up Man
GoToE
4.20.06.1
Y
Bring Up
Clear Ctrl
Fire Mon
4.20.06.
Ctrt SS 1l
4.20.04 .
Store Ctrl
Tuin On
Man Ctri Tgr 2.09.00.1
4.20 05.1 l
Bring Up
Clear Stg
Turn On
Clear Stg Tgr 4:20.06.1
4.20.06.1 Y l
Turn Off
. MST Tgr
Turn Off Man 4.20.11 1
Ctrl Tgr
4.20.05.1

B

l

3ring Up
“MNot B Cycle
interrupt”

0.00.13.1%

- >

{

Not B Cycle
Interrupt Gates
I, Eor L Time

FIGURE 6.1-3.

START

tus SS

4.20.12.1

Clock Reset

4.20.12.1

SO |

Intlk and
Reg Reset
4.20.12.1

FIGURE 6.1-4,

Write Zero

4

PC to AS

3.05.09.1

!

AS to AR

3.06.18.1

,

m

PC Advance
on Clear

4.20.06.1

CLEAR STORAGE

End Op
on Clear 6

4.20.06.1

Turn On
End Op E10

.06.09.1

Turn On
Mst Tgr E10
4.20.11 1

008 00000000 0000000 leo

00 3000000000000 0000¢@00

————
f Machine

in Maryal

-~

-

Fire Man
Ctrl S5

Turn on Man
Ctet Tgr

4.20.05.1

Turn On OP
Panel Ctrl Tgr
4.20.16.1

!

Turn on Disp
Stg Tgr

4.20.08.1

!

Turn Off Man

Ctrl Tgr
4.20.05.1
Bring Op
Disp Stg Ctrl
4.20.08.1
Suppress Pri Not L Time End Op Turn Off
Op 00 Call Control MST Tgr Ab
3.01.00. 8.00.16.1 4.20.12.1 4.20.11.1
(8lock Halt Control) End Op in Mst | Tgr
Note: Black AR+=PC E Time All
During L Cycle of HTR 8.00.00.1 8.00.18.1
Reset PR
10 (D3)
' 2.11.40.1
Turns On ;
G"}l'g g Tgr at Turn on End
(D3) Op Tgr ot E10 Suppress SB
to SR, TR, PR,
IC
4.20.14.1
Suppress PC
Adv
4.20.14.1
Inhibit Op
Keep to PR
2.11.40
Op Keys to
SR 17

FIGURE 6.1-5.

4.20.14.1

DISPLA™ STORAGE

se7

[P

Route Address of
SR Through Adders,
Addr SW, to AR

Turn Off Op
Panel Ctrl Tgr

4.20.16.1

Go to £ Trg
On By.Not L
Time Call
8.00.12.1

Y

Mst E Tgr

8.00.19.1

!

SR

Gate SB to

2.12.50.1

!

Op Tgr

Turn On End

8.00.09.1

Gate PCaAS
AS—AR

/

Go to | Time

8.00.12.1

19(D3)

m

E7

El0

!

Turn On Man
Stop Tgr

On 14

4.20.18.1

Turn On
MST Tgr

4.20.11.1

Stg Tgr

Reset Disp

4.20.09.1

Off Al

Machine in
Manual

Fire Mon
Ctrl SS

4.20.04.1

Turn On Man
Ctrl Tgr

4.20.05.1

On at AQ
Turn On Disp
Ind Tgr

4.20.06.1

Off at A10

Turn Off
Man Cirl Tgr

4.20.05.1

St to SR

A2

2.12.13.}

FIGURE 6.1-6. DISPLAY INDICATORS

EfF Adg;/‘rg
/ 4.20.09.1

Turn on Disp

r

7 4.20.05.1

/ " Turn Off
Man Ctrl Tgr

/‘ ‘ 7

v —5

-

Minus On Disp
Eff Addr Ctrl
4.20.2001 7

r Hold Tag /
Reg Reset ,/’
. 2.08.01.Y/

r '/

Bring Up Disp
Eff Addy
4.20:20.)

Calculate Eff”
Adde 7

Hold AD3/ Carry
Tgr Reset:

AN 7
| 2.12.76.1

A

Gate XR

R fs-!s to /] . &
Adders P-y/ 71 Spalified

A0 (DB) ~ /u"Ao

2.12.16.1 2.12,26,1
sy

XR to Adders”)

NOTE: Specified

by Bit in SR Positions

18,19, or 20

%

/
/
7
SV S 4 s s
/ . / s
o 2.12.194
a4 / ;
i/ / ’ /‘/ / ‘
Adders 3-17) / iz;ry f‘o7
to AS / er
A0 (D8B) (7 - A0 (D8) /7
3.06. 16! ’ 2.12.19.%°
‘. /& - : - e "
AS1o R S ,’T ,/O” ~
A6(D1) o Ve 'sp
3&:))2'1 / g /| Bl A Tor y,
i / 1:4.20.09.1

/
/ e
FIGURE /1-7, DIS

EFFECTIVE ADDRESS

'Y E EEEXEEEYEY XEEXEEXEKEXX XX

©0go000000OOCOOIOGIOIOGOGIOGOGGQGEOOE

PREVENT

NoTe. RESET ConD MET TgR To
AR — MAR

DISPLAY EFFECTIVE ADDRESS

DISP EFF
ADD RESS

FIRE MAN
CTRL &8
50,04

TVRAN ON
MANVAL
CATL T4R

¥

TuRN ON DiSP

EFF AR
TaR AO
H. 40.09./

TUuRN OFF

MAN CNIRL
TGR
o4 20,05

1

END of

021399}

¥

RESET Con)
MET T6R

[3.0G- 19 [(11

P

SR 21-35
70 A RIIDI
3:06.10¢

[

Y

A

XR 3 XAD
A4D?2

62.06.071

CARRY To

XARD 17

D2

)4

{

R 4
AR~ XAD
Ao D10
03.06-06.4

I

{

comp XAD
To &R .
A5 SAnrg
03:06 1./

SR-31-35
To AR

76D |
3.06- 10]

¥

Comp XAD

o SR
Alo D
306G .14/

N

TuRN OFF
Disp £Fi
ADDR. Alod |
¢ 20 ¢9.4

FFF AR

iy

SR 33

K/0. /

¥

MINUg on
DisP FFF Appgl
CON TRp L

° o.2o.{

XAD 3 CARRY
TGR RESET

NowD TAG

REG RESET
3.05 401

£AJ 7/‘?/6 2

ﬂ switch is on, the single-step key is pressed, and the 7090 is in manual status, the in-

A
, o lean
Display Effective Address (}M—'i) At L 4 ; LAt

The display effective address key initiates the calculation of the effective address of
the instruction in the storage register. The actual address from the storage register
is combined with the two's complement of the specified index register to produce the
effective address. The cmc(ulated address is then placed in the address portion of the
storage register, POSLth'ls/l through 20 of the storage register are set to zero. The
effective address may be calculated only once because the positions 18, 19, and 20 of
the storage register have been set to zero, an indication of no index register. Jy.eriuc 5')"27

Single Step (Figure 6.1-8)

Pressing the single-step key results in executing the instruction whose address is in
the instruction counter prior to key depression. The instruction counter will be advanced,
or altered, under control of the instruction executed, once for each time the key is
pressed If an 1-O operation is executed, the machime Will continue o exécute_instruc-)

L’wntll the end of the I-Q operation/ If the continuous enter instruction

struction set in the OP keys will be executed once. The single-step key is effective
\3only if the system is in manual status, and not in program stop statusg+ M

Multiple Step (Figure 6.1-9)

This key is effective only in manual status with the program stop trigger on. The L4 X/0 -+
multiple-step key causes the repetition of single-step operations. The rate of operation il le s
is under control of a toggle switch located on the customer engineer test panel. The p,)/ /u (L f/‘w
operator has the choice of low speed with a delay of 104 milliseconds between each in- /& T2 MZ"_"@ ‘

struction, or high speed with a delay of 24 milliseconds between each instruction. The 7[',M
program will continue to run as long as the multiple step key is pressed, or until a pro- 777 **°
gram halt is decoded, /

Enter MQ Key

The enter MQ key provides a means for loading the MQ register from the operator's
entry keys. The information may then be loaded into storage by placing the instruction
STQ along with the desired address in the entry keys and depressing the enter instruc-
tion key. The enter MQ key is effective only when in manual status. See Figure 6,.1-10,

Enter Instruction (Figure 6.1-11)

With the machine in manual status, the enter instruction key executes completely and
correctly any legitimate instruction entered in the operator’s panel entry keys. The
contents of the instruction counter remain unchanged when an instruction is executed

(except for a transfer or a skip type of instruction). The key is effective only in manual

status, ok ¢ q/,

Load Cards (Figure 6.1-12) .

The load cards key causes a resct of the instructiop-Counter, address register, pro-
gram stop trigger, simulate, and all channels not m/manual status. Pressing th)0{‘
cards key then causes a select of the’ card readexvon channel A, reads the firsf three
words, and proceeds to storage locat1ons zero/for the next comman rd, This is

accomplished by brmpmg up "load ctrl," \xhlch fires a 1-usec gle-shot, The auto load
trigger goes on m/the CPU, selecting the card readeél'l/owdwa/mZI A. The word counter

is set to three 77and indicator S is tumedw . Three words from the first

/ & // |

0 goooo0o0OOGLOOEOEONONOOGgGTOTE

LOAD CARDS AND LOAD TAPE

Depression of one of these keys results in storing the first three words
fran either the card reader or tape unit number one on channel A into storage
addresses 0,1 and 2, providing data channel A with the first word as an I/O
command, and starting the computer with the second word stored as its first
instruction. The computer must be in automatic status and the ready light
on for peoper performance. Depression of a load key will then :
l. Reset the instruction counter, address register, program stop
light, simulate light and all indicators and registers in all channels
in automatic status.
2. Set card reader select (or tape sekaot read select and unit select
1), control indicator S and word counter indicators 16 and 17, in channel A
(if channel A is attached and in automatic status).
3. Channel A will normally store three words and then read a command
from storage address 000000,
4. As channel A reads out its command, the master stop trigger
in the computer should go to off and address register position 17 should

be set on, thus starting the computer with the instruction at address 00001,

N ~ .

T
—
B:'na Up Not “
3 Cucie 1 ALY Machine in
Ierers ot Manval
L8052 ‘
—_y
Gote Mester X
I Time i
!
|
806;1571
8]
Fire Man Turn Off
Reset PR Crel §S Monuol Ctri
10 (23) Tgr
2.11.40.0 4.20 04.1 4,20.05.1
pan Crel Tgr i Turn On Man
¢ Op Keys to SR
420,05 ;v'"loc“ [O? Crrl Tgr A2
n tr r
AT 4.20.05.1 420041
T.n On Op l l
Parel Ctrl Tgr
4.20.16 1 Turn On Enter Bring Up
Execute Inst MQ Tgr A SR1o MQ
4.20.08.1 4.20.14.]
Turn On l
SS Tgr AO
4.20.09.) End Opesation Gate Op Keys
to SR
TN i 2.12.09.1
Man Crrl Tgr Turn On Man Onat 14 I
4.20.05.1 Stop Trigger i
‘ 4.20.18.1 Off a1 Al Cote SR into
MQ AS
Turn Off l
MST Tgr 26 2.12.40.)
20 111 Turn On
4.20.11 1 MST Tgr
C 4.20.11.1 Turn Off Enter
MQ Tgr
4,20.08.1 Al
FIGURE 6.1-8. SINGLE STEP KEY FIGURE 6.1-10. ENTER MQ
Mach in i
Menual Z:;; S‘ Ab Turn On Man Onatl4
g Stop Trigger
4.20.11 1
; 4.20.18.1 Off ot A 1
3ring Up Not
B Cycle Int Al
Fire Man §.00.13.1
il ss [
4.20.04 10 Gote Mo Turn On
] Iore}me ster 17 1 MST Tgr
’,v__d!_____ 4.20.11.1
furn Or Man g2.00.18 1
| Cri Tgr T {
34 20 35 Reser PR Turn On B
‘ﬁ_’—‘r_ 10 (D3) Cycle Int Tgr
Onat A Y 2.11.40.0 High 8.00.13.1
Turn o~ Op i ——ﬁ
Paret Crel Tgr Turn Off O
4.20.76.0 ! . Turn on Op
o | Panel Crrl Tgr Pane! Ctrl Tgr | -All
CHf with 4.20 15 4.20.16.)
Key Relecse
Tu Myl
SVer; TOr: urt Execute Fire 24 ms . i
9 Inst S Fire 104ms SS NOTE: Prevents Turning
4.20.09 1 On Manual Stop Tgr
—_— 4.20.17.1 4.20.17.1 During 13t | Cycle's
End Operation
e —— |
FIGURE 6.1-9. MULTIPLE STEP KEY

o000 0000% co0o0o0o00e0lecoe

¥

\ Y
Machine in Machine in Maching i
Op K achine in Set Tape
SRR, |17 | Reedrend Ready and Auto Unir Sel 1
and Teg R Auto 80.50.04.1
4.20.14.1
Y
Load Set WC =3 Set WC 3
A Cards
Gate Op Key 60.30.01 . 60.30.01.1
Keys into
SR,PR, TR i l
Fire Monuol 2.12.09.1 — - —
Ctrl SS Fire Manual Set S 2;7 gr\son :er. 'S Op
l C'r[SS % Reg r eng er
4.20.04.1 4.20.04.1 60.20.01.1 4.20.04) 60.20.01.1
Block SB = PR,
1 R, TR 7 ¢
= 4.20.14.1
Turn On Man Turn On Man Channel has Turn On Mon Channel hos
Ctrl Tgr Cirl Tgr 10CP 3,0000 Ctrl Tgr 10CP 3,0000
4.20.05.) 4.20.05)
4.20.05.1 \ i
1 On ot A3 4 On at A3 /
S s .
Turn On Op PkéPPAfjv;nce 19 T”"; ?" Lood Reod in Turn On Load Read in
Ponel Ctrl Tgr Card Tgr 3 Words Tape Tgr 3 Words
4.20.16.1 4.20.14.1 4.20.07.1 4.20.07 .1
Offarl4{ Ofme; !
y Turn Off Man wC = (|) &r/;ng Turn OFf Man WC = 0 Bring
Turn On Ent Turn On Op Ctrl Tgr Up Cir Gt| A2 Crel Tor Up Ctrt Wd Gt | A2
inst Tgr A0 Panel Ctrl Tgr 4.20.05.1 4.20.05.1 40.20.03.1
4.20.16.1 i ¢ i
4.20.08.1
Bring Up Load Ctrl Wd Gt Bring Up Ctrl Wd Gote
i \ Ctel Brings Up A3 Load Ctrl Brings BCW Req A3
4.20.07 BCW Req 4,20.07.1 60.80.03.1
Turn Off Man ¢ ¢
Crel Tar Execute Inst ¢
Fire Jus SS BCW Bring BCW Brin
gs
4.20.05.1 Next Comd Fire lus SS Next Comm
{ 4.20.15.1 from 0000 4.20.12.1 from 00CO
)
End OnovA2¢ OnovAli
Turn OFf " . - :
1 A Operation Turn On Auto Bring Up Turn On Auto Bring Up
T Tor 6 Load Tgr Load BCW Load Tgr Lood BCW
4.20.10 .1 4.20.15.1 4.20.15.1 4.20.15.1 4.20.15.1
Off ot B4 ——z Off ot B4 r—-#
v Onoat 14 Y 4 ; .
A Go to One to Go To Bring Up 1
Bring Up Not Turn On Channe! AS 17 Channel to AS 17
8 Cycle Al Man Stop T
| an Stop Igr 3.06.14.1 3.06.14.)
nterrupt
8.00.13.1 4.20.18.1 ¥ ¢
l Off ot Al Set Cord Reade AS to AR Set Tape AS to AR
) Select Rds Tgr
Gate Master Turn On 80.50.02.1 4.20.15.1 60.50.02.2 4.20.15.1
| Time All MST T
gf On Al v l } On Al v
8.00.18.1 4.20.11.0 Turn on Lood Turn OFf Turn On Load Tum Off
Sync Tgr MST Tgr Ab Sync Tgr MST Tgr "
60,30.06.1 420111 60.30.06. 1 42011
¥ . o i RN o a9 : y
FIGURE 6.1-11. ENTER INSTRUCTION FIGURE 6.1-12. LOAD CARDS FIGURE 6.1-13. LOAD TAPE

$/3

card enter storage location zero, one, and two. The word entered in address zero
should be a control word. When the word counter goes to zero, the channel asks for

another control word from location zero, The CPU gets its next instruction from loca-
tion one.

Load Tape Key (Figure 6.1-13)

The load tape key works the same
and all channels not in manual st
tape unit 1 on channel A, I0C
come from location zero
00001,

the load cards key, causing a reset to the CPU
s. The load tape key also causes a read select of
word count of 3. The next command for the channel will
nd the next instruction for CPU will come from location

Sense Control

There are two types of sense controls on the operator's panel: sense lights and
scnse switches. The conditions of these sense devices may be checked by machine
instructions and used to control program flow.

The four sense lamps on the panel may be turned on or off by instructions in the
main program and then checked by the sense instructions. The condition of the lamp
determines if the program steps are to be skipped.

The six sense switches may be set on or off from the operator's panel. The
condition of the switch may then be checked by sense instructions in the program to

actcrmme whether to skip the fgllowmg program step. St rotnn le&A “3

C'. AT Ve ,O/ex,f Wu,yt /@((ALY([A 1,, u/o

6.2.00 CUSTOMER ENGINEER'S TEST PANEL

In addition to the indicators and manual controls on the operator's panel, the
customer engineer has at his disposal the indicators and controls on the customer
engineer's test panel.

The indicators provide a means for checking the address register contents, the
tally counter, various test triggers, and the cycle time. The switches and jacks
provide means to continually execute any instruction, control I-O operation, control
B time, and step through instructions cycle by cycle.

Figure 6.2-1 shows the layout of indicators and controls for this panel and
designates system page locations.

G.2.01 Indicators

Indicators on the customer engineer's test panel are of the incandescent type.
Indicutors connccted to test triggers are on when the trigger is on and off when the
trigger is off. Indicators concerned with the registers and counters signify a 1
when they are on and a 0 when off.

Address Register

The address register contains the address portion of the instruction under
execution.

Ly

[

T E EEEEEE E E L XX XS

i T ¥ AT

L ome

e S -

A
y

~——-

S R S

3

1 +6/-12 Meter
" Selection Switch

[

A

v
K i .
: {)
=12 Control
Switch \
&

—— Ve
o s

— e e ——— -~

DATA PROCESSING SYSTEA}//
o

S iy e e
- - 3
:
by ! .
RSN RN ,
I] \
Vol B |
1 | U 2 & .
j . i '
MOD ChK M R e - N
[S 3
| " | L [i y .
é | moo £rE R I~ L\ - /}"\ 2&‘3 E;)
4 [: i . @ &Y ERR
N ' CEn CPR _p s :
jommen NE N NS ;
1 ; LT . :
il ‘
! 3 H ,
S : L e - .
' g | TP 3 LA FSTREUEIN . ;o
] . B A 1
3 ? st 3 : .
Rt - L j
E] il H : g -
P LS . XA . H
HE B i 4 iy s . o " .
b N B -l
: e o b o e o e ;
{4‘3 . SOFPRESS pljp/ﬁ)f t
Marginal Check ~ - e / pLP -4 TBR N N '
Panel Door o ~ ’ e 7:»-(.1’;1:@;'7,:—_-'..Ql'f\':‘:.:.“'t:-.t‘!_;;‘f"--""'.‘JYV’“'"W’— Cacecioncd '?"?"’)"‘“‘"""‘"'“‘ . \ \\ ‘
Ty TR ~0T s . N \

P
»

Y +60 Control

. \ Switch
i hY
N 1

JEE SNSRI T VT SR e

+30/+60 Meter]
Selection Switch

o At

/ T +30 Control
/ - prem Ty TR ST TR i‘_i Switch
+6 Control L Nt .

/Switch
/

1A 2T
~

e |
O

FIGURE 6.2-1. CUSTOMER ENGINEER TEST PANEL
39

728

Cycle Time

The cyele time indicators indicate in which cycle the machine is currently operating:
I, £, L, or Btime. Also, in conncction with cycle time, isthe "multiple error" indi-
cator, This lamp is on whenever tho machine is trying to perform two different cycles

at the same time other than an L cycle and a B cycle, which is a normal share opera-
tion. Refer to Systems 08.00.17.1

Tally Counter

The tally counter differentiates between the L cycles of floating point instructions
and provides gating for their different operational steps. The tally counter is divided
into five steps. The lamps on the test panel indicate in which of the five steps the ma-
chine is currently operating. Refer to Systems 02.10, 21,1 and 02. 10.22.1.

T-2

Indicator T-2 signifies the condition of the T-2 trigger in floating add or subtract,
multiply, and floating divide. During floating add or subtract, T-2 is used to indicate
whether or not the multiplier quotient equals 0. During floating divide, T-2 is turned
on if the quotient is greater than 2. T-2 is turned on at the beginning of a floating

multiply second step to gate second step operations. The T-2 trigger is found on
Systems 2.10. 38.1.

rpP

The floating point (FP) lamp indicates the condition of the FP trigger on Systems
2.10.29.1. The trigger is used to store certain conditions throughout the floating
point operations. The conditions that turn on this trigger and indicator are shown

in Figure 6.2-2,

9 Carry

This lamp indicates the condition of the 9 carry trigger on Systems 2.10.37.1.
The trigger is turned on whenever there is a carry from adder position 9.

9 Overflow

The 9 overflow lamp signifies the condition of the 9 overflow trigger on Systems
2.10.39.1. The trigger and lamp come on whenever AC 9=1 during an accumulator
left shift, or during a multiply add cycle when there is an adder 9 carry.

Q Carry

The Q carry lamp indicates the condition of the Q carry trigger on Systems _
2.10.36.1. This trigger is turned on whencver there is a carry out of adder position

Master Stop

The master stop lump is turned on w

henever the master stop trigger on Systems
4.20.11.1 is turned on.

77 R

S¥3IOONIL dd ANV

‘OVD ‘aNY *Z-Z°9 3¥NOI4

(1Q)91 43y

NOIOMILSNI ¥3INI SNONNIINOD *£-2°9 3¥NOI4
(SR A8 4
v 18 1SW
30O wny
doxg puo)
2314y) jo BUQ
fun ysuy
ajnoaxy 1°'60°0Z° ¥
16) 14D uow
HO winy
(SR ARl 4 %
APY "D°d
ssasddng av 30 | 1200z Y
161 1038
H oY W uQ wnj
(D AR AR 4
s o4
shkay do 1°60°02" ¥
6] uD uow
ﬁ ug wny
v 0Ty %
¥S ©°4 8S
ssauddng (SR Nl 4
SS PO
ﬁ uowy 24
1°81°00°8
awil |
JETHAPVERETE-TS)
LU"€L°00°8
dyup 9134 ¢ 1ON
dy Bung

(1a) 111 4o yasay

17°9¥°60°]
6y (461 uo win] (1Q)sv
anv SNV /VYNV swif |

1°6¥°60°2
5] mmh_ uQ uiny)
w
ovy | V3w 30VD
1°62°01°2
16} ¥O1 d4
L& CO CL:‘_V

30

"2¢Cot°Z Tig)9v 5o z1 vO b1
1103 ¢ qjun subis dais pig g4

ierole 0=0%
dayg pig Alg 44

L1y 0t°Z (1Q)Zv uO 16 Aoy ¢
daig 15y AIQ 44

17202172 (1a)ev 0 = ow
Swll 3 AdW d4
1"v2 01"z (1@)9ov 0 = o5

da45 puy AdW d4

L"¥e'0l'z (10)v L = 6 DOV
d345 Y45 9Ns/aav d4

(7

000 00000000 o000 ooe 8oeo

End Operation

The end operation indicator is turned on whenever the end operation trigger on
Systems 8,00.09.1 is turned on.

AND

The AND lamp indicates the condition of the AND trigger on Systems 2.09.46. 1.
It can be used to distinguish between the first and second E cycles of an ANS
operation. It is on during the first E cycle of an ANS or ANA and off during the
second E cycle of an ANS. See Figure 6.2-2,

CAQ

The CAQ indicator signifies the condition of the CAQ trigger on Systems 2.09.49.1,
It denotes the difference between the first and succeeding E cycles of a CAQ instruction.
The trigger is off for the first E cycle and on for the remaining E cycles and I time bf
next instruction. See Figure 6.2-2,

X Carry

The X carry lamp indicates the condition of the X carry trigger on Systems
2.12.76.1. The trigger is on when the machine is not in memory nullification mode
and a carry occurs from adder position 3. If the machine is in memory nullification
mode, a carry from adder position 4, when in 16K mode, or a carry from adder posi-
tion 5, when in 24K mode, turns on the trigger.

/Zoe.—eyee Switches

1I-O Interlock Switch

The I-O interlock switch is effective only when the system is in manual status, It
" has two positions: automatic and manual. With both the automatic-manual and I-O inter-
lock switches set in the manual position, the computer will stop after executing each
instruction. With the I-O interlock switch set to automatic, the machine will not stop if
an I-O device is in operation. The normal setting (automatic) of the I-O interlock switch
aljows the computer to continue at high speed after I-O selection, to allow normal opera-

tion of the I-O device. The machine will stop after each instruction, providing no I-O
device or data channel is in use.

Continuous Enter Instruction (Figure 6.2-3)

The continuous enter instruction switch is effective in automatic or manual status.
With this switch on, all instructions are obtained from the operator's panel entry keys,
not memory. The instruction counter is not used and does not advance. The IC contents
w'il not be altered unless a skip, trap, or transfer results from the instruction in the
entry keys. If the system is in automatic status, the instruction will be executed at

normal operating speeds; if in manual status, the speed will be under control of multi-
step or single-step operations.

w2

L ar

eo0ooo0o0c0coc0e®occcococcs lec

©0 9000000000000 0000¢00O0

Coal ald - SO f)0 wnsiue ’é’””“’/“’w
Multiple Step High and Low Speed VS S o .y
jtz itfeud = 10 D2 e slrinet s /2
The following explanation is with reference to Section 3.12,00. With this switch in
the high position, the multiple step key on the operator's panel performs program steps,

one after another, every 24 ms. With the switch in the low position, program steps

are performed every 104 ms. The high-speed position is advantageous when stepping
through index loops.

B Cycle Controls

These switches allow the machine to operate normaily when they are in the down
position. In the up position, they modify normal operation as follows:

Interrupt: Prevents the 7606 from obtaining a B cycle by interrupting
a CPU instruction.
Share: Prevents the 7606 access to core storage during CPU L cycles.

End Operation: Prevents the 7606 from taking a B cycle when a CPU instruction
ends operation,

The switches can be used if the customer engineer wants to test the end operation
procedure of obtaining a B cycle. The interrupt and share switches would then be put
in the up position. This prevents a B cycle from being started in any manner except
end operation. Any of these switches in the up position turns off the ready light.

Machine Cycle Key (Figure 6.2-4)

The machine cycle receptacle on the customer engineer's test panel accepts the
machine cycle key. This key is used to sequentially step through the basic machine
cycles I, E, and L. When the machine cycle key is inserted into the customer engi -
neer's panel and pressed, the machine cycle trigger and machine cycle gate trigger are
turned on at A-0. The machine cycle trigger turns off the MST and allows for the proper
cycle time, after which the MST is turned on again. The machine cycle gate does two
things. TFirst, it allows only three shifts per cycle on a shift operation, and forces a
wait until the shift counter equals zero before ending operation in L time. Second, it is
used to hold up "manual Itime cntl" to insure that the machine will use a full I cycle.

"Manual I time cntl' is AND'ed with the output of the master I time trigger (Systems
08.00.18.1). Thus, if "manual I time cntl" drops, Itime is finished. Usually, turning
on the MST at I7 causes ''manual I time entl" to fall and stop Itime at I7. This allows
the machine to finish with an instruction before the following instruction is brought in.
Normally, the go to I time trigger (Systems 08. 00. 12, 1) is turned off at 19, but because
there is no I9, it remains on. The all pulse is blocked from resetting the master I time
trigger (Systems 08.00. 08. 1) by ""minus on not go to I time. " Therefore, if we start

again, the MST is turned off at A6, bringing up "manual I time cntl" and starting the
cycle at 16,

To insure getting a full I cycle when using the machine cycle key, the machine cycle
Zate trigger holds up "manual I time cntl" in the OR circuit on Systems 04.20,10,1,

When the key is not in use, a plug (sent with the system) that shorts pins 1 and 3 must
be inserted.

o~ g7q .

Torn OFff Fire Man Gate Next
MST Tgr A2 Ctel S Cycle Colled
' for by
4.20 1101 4.20.04 1 Instruction
4 4
Not 8 Cycle Turn On Man Execute the
Interrupt Al Ctrl Tgr Cycle
8.00.21.1 4.20.05.1
Fire Man Gate Master Turn On Mach Bring Up Turn
Ctrl S | Time Cycle Tgr On MST Tgr
A0
4.20.04 .1 8.00.18.1 4.20.10.1
Turn On Execute Turn Off Mon Turn On
Man Ctrl Tgr I Cycle Ctel Tgr MST Tgr A4
4.20.05.1 4.20.10.1 4.20.11.1
Bring U Turn On Mach Reset Mach
Turn On g p urn On eset Mac 15
Mach Cycle T";; TO“ Cycie Gate at Cycle Tgr £5
Tgr AQ M 9 Tor AQ LS
4.20.10.t 4.20.10.1 4.20.10.1 4.20.10.1
Turn Off _Turn On Bring Up Man Reset Mach
Man Ctrl MST Tar Time Ctrl Cycle Gate
4.20.05.1 4.20.11.1 .4.20.10.1 4.20.10.1
Turn On Reset Machine| Bring Up Turn Repeat from
Mach Cycle Cycle Tgr £5 OFf MST Tgr “A" Until Inst
Gate Tgr L5 Complete
4.20.10.) 4.20.10.1 4.20.10.1
Bri.ng Up Man Reset Mach Turn Off
| Time Ctrl Cycle Gate MST Tgr A2
Tgr A3
4.20.16.1
4.20.10.1 4.20.11.1
!
ﬁ/ Not B Cycle
Cycle " an Interrupt AN
Key
8.00.21.1

FIGURE 6.2-4, MACHINE CYCLE KEY

&7 Q2.0

o0 00000000 0% 0000000 feo

v o gv O 00000 00 0000000 ¢ o090

SUPPRESS TLA -- the normal position of this switch is off or down., When on,
this swithc turns off the ready light and suppresses executing TRA, TTR and
the six index transfer instructions in overlapped fashion from the IBR (TLA).
SUPPRESS DLA/SLA -- the normal position of this switch is off or down, When
on, this switch turns off the ready light and suppresses the data lookahead and
store lookahead featurss, thus causing all instructions to execute full 2
microsecond I and E cycles.

DISPLAY IBR -- depressing this key replaces the contents of the storage
register with the contents of the IBR. Effective in manual status only.
MEMORY DIAGNOSTIC MODE -- the normal position of this switch is off or down.
When on, this switch turns off the ready light, suppresses all overlap functions
and interchanges the high and’low order bits between the remainder of the

7094 system and the 7302 core storage unit.

Switch Off S witch On
AR 3 gates to MAR 17 AR 3 gates to MAR 3
AR 17 gates to MAR 3 AR 17 gates to MAR 17
Planes 0 - 35 contain all even- Planes 0 - 35 contain all
numbered addresses addresses below 40, 0008
Planes 36-71 contain all odd- Planes 36 -71 contain addresses
numbered addresses above 37,7778

MACHINE CYCLE JACK -- when the mooewest machine cycle key is inserted in
this plug, depressing the ke'- onee causes the machine to execute one and only

one cycle. When the machine cycle key is not plugged in, a plug shorting pins 1

and 3 of the jack must be inserted.
AUXILIARY START AND R ESET JACK-- whenx the auxiliary start and reset

buttons are plugged into this jack they operate the same as gthe operator's

panel start and reset buttons. (cont'd on p 822)

BR3x 821 ’ s

/2
. - Y
Auxiliary Start and Reset” &0+ /)

-T}"vs*“ck—:uc.m,pzs_&he\mm'}iqrﬁmt—and—resebkey. The key is on a long cable,
giving the customer engineer a means for starting and resetting the machine at
points other than the console.

Phone Jack

The phone jack, in conjunction withthe phone jacks on the other units in the system,
provides a means of communication between customer engineers working at different
units,

16K /24K Mode Switch

This switch is used with the compatibility package. When it is in the 16K position,
16K core storage positions are available to the 704 program; in the 24K position, 8K
core storage positions are available to the 704 program.

DC On

The DC on switch controls the 400-cycle power supplied only to the 7151.%utting
the DC on switch in the off position will immediately remove all power to the console,
except the convenience outlets and the reset motor (operator's keys). All voltages
should be normal about ten seconds after turning this switch to the on position,

6.3.00 MARGINAL CHECK

The system biasing network can be useful to the customer engineer, The controls are
ocated on the marginal check console on the 7151, Any single gate or combination of
tes in any single module, or combination of modules, can be biased at the same time.
» only exception is the 7302 memory. This module is under control of only one key, A
the whole module will be biased when this key is pressed.

ch module has a key for selecting it, and each gate has a key with key A for gate
T gate B, ete.

biasing, all gates must be selected prior to varying the voltage. After the
s been varied, another gate cannot be selected until returning to normal volt-
e A is being biased and it is decided to bias gate B instead, gate A MC relay
Jp)cd out; therefore it will be necessary to take the MC voltage to normal
ing gate B. 1If this is not done, gate A MC relay will have a hold through
eluy points. This means that both gates A and B would be biased instead of
as desired, ’

possible to vary the +30v and +60v in the 7302. These controls are also
we 7151, on the MC panel.

ving the different voltages, there are two meters to monitor the amount of
g varied. One meter is for the +30 and +60 in the 7302, and one meter, for
. =12 for the rest of the system. The meters indicate what the voltage is if
celays are picked and the points are properly adjusted. A periodic check of the
3, while biasing, should be made.

= 772 S

-

.

eaafagoo0o0o000%cceccccclece

A EFEEEEEEELZLEEEXEEEXXEAKYX

©0 OO OOOOONRIOGCIOGISIOIOGIOGIOGIgGEOOS

