This edition includes REA 06-88481

(Volume 4 of 4)

The following listing shows, by volume (binder) number, the basic contents of the 8100 Information System Maintenance Information Manual. The column not shaded indicates the volume you are using; the shaded columns indicate the contents of the other three volumes.

Volume 1 (Binder 1)

Chiapter 1. Stant (ST)
ST100, Distributed Processing Programming Executive (DPRX)
ST200. Distributed Processing Control Executive (DPCX)
ST300 Non-1BM Program Product.
ST400 Common Messages, Action Plans, and Procedures
Chapter 2. Configuration and Maintenance Procedures (CP)
CP100 System Configuration Information
CP200 Addressing and Device Atrachment
CP300 MD Diskette Configuration Proceduri
CP300 MD Diskette Configuration Procedures
CP400 Maintenance Device Function and Use
CP500 Mitial Program Load liPL)
CP600 Common Test Procedures and Messages
CP700 DPPX Testing and Fault Isolation Proce
CP800 DPCX Testing and Fault Isolation Procedures
Chapter 3. Locations and Tools (LT)
LT100 8130 Locations
LT200 8140 Locations
178008101 Locations
LT400 Common Location information
LT500 Tools
LT500 Tools
Chaprar 4, General Referanco information (GR)
GR 100 8i00- in formatfon System Description
crent and Operation.
GR300 Atrachabite Dovices
GR400 Mainterance Aids.
GR500 System Mafintenance Approach
GR700 Basic Data Flow
8100 Information System Licensed
Program Products

Volume 2 (Binder 2)
Chapter 5. MAP Reference Information (MB)
Display and Printer Adapter (AD)
AD100 General Information
AD2000 Offline and Online Tests
AD300 Intermittent Failure Repair Strategy
AD400 Signal Paths and Detailed Operational Description AD500 Atwched Device Information.

Bringup (BU)

U100 General Information
BU200 Offline and Online Bringup and Basic
Operator Panel Tests
BU300 Intermittent or Random Failure Repair Strategy BU400 Signal Paths and Detailed Operational Description BU500 Adiustment, Removal, Replacement, and Aojustment, Removal, Repl

Volume 3 (Binder 3)

Communications Features (CA)
CAOOO Quick Reference Guidi
CA200 General Information
CA300 Intermittent Failure Repair Strateg
CA400 Signal Paths and Detailed Operational Description
CA500 Adjustment, Removal, and Replacement
CA600 Information

- Descriptions Devices, Interface and Line

Cascriptions, and Test Equipment Setup
CA800 Cormunications Specify Code (Minor) Communi

Diskette Storage (DA)
DA100 General Information
DA200 Offline Tests
DA300 Intermittent Failure Repair Strateg
DA400 Signal Paths and Detailed Operational Description DA500 Adjustment, Removal, and Replacement

- Information, Part 1

DA600 Adjustment, Removal, and Replacement
DA700 Voltages and Environmental Characteristic

Volume 4 (Binder 4)

Disk Storage (FA)
FA100 General Information
FA200 Offline Tests
FA300 Intermittent Failure Repair Strategy
FA400 Signal Paths and Detailed Operational Description
FA500 Adjustment, Removal, and Replacement Information
Power (PA)
PA100 General Information
PA200 Offline Tests
PA300 Intermittent Failure Repair Strategy
PA400 Signal Paths and Detailed Operational Description
PA500 Adjustment, Removal, and Replacement
Information
,

System Control Facility (SC)
SC100 Geral lifor
SC100 General Inform
SC300 Intermittent Failure Repair Strateg
SC400 Signal Paths and Detailed Operational Description
SC500 SCF System Test and Internal I/O Bus Cable Change Procedures

Expanded Function Panel (SP)
SP100 General Information
SP200 Offline Tests
SP300 Intermittent Failure Repair Strategy
SP400 Signal Paths and Detailed Operational Description
SP500 Adjustment, Removal, and Replacement Information

Magnetic Tape Adapter (TA)
TA100 General Information
TA200 Offline and Online Test
TA300 Intermittent Failure Repair Strategy
TA400 Signal Paths and Detailed Operational Description TA500 Console Messages

Appendix A. Hexadecimal-to-Binary Conversion

Chapter 5. MAP Reference Information

This part of Chapter 5 provides maintenance information needed to service the disk storage unit in the 8130,8140 , or 8101 . When used with the MAP Maintenance Package, the FA MAP diagnoses disk storage problems and refers you to this part of Chapter 5 for information such as hardware locations, actions, and wiring checks.

This part also contains maintenance information and action plans for diagnosing intermittent problems not found with the MAPs.

This part has five sections

1. General Information (FA100-FA131) - Contains information on FA configuration theory of operation, and repair strategy
2. Offline Tests (FA200-FA250) - Contains disk storage test information, erro messages, and actions.
3. Intermittent Failure Repair Strategy, (FA300-FA350) - Contains System Error Log information that you use to service intermittent failures.
4. Signal Paths and Detailed Operational Description (FA400-FA452) - Contains signal path diagrams, wiring and signal paths, and net lists.
5. Adjustment, Removal, and Replacement Information (FA500-FA590) - Contain disk storage service checks, and adjustment, removal, and replacement procedures.

FA100 General Information
....................................
Disk Storage Adapter Cards .
FA112 Addressing .
FA113 Configuration Table Entry

A120 Basic Operational Descriptio
A130 DSD Unique Repair Strategy
A131 Disk Storage Unique Intermittent Repair Strategy 5-FA-8
FA200 Offline Tests
FA220 Not Used
A230 Test Message Formats and Status Information 5-FA-13
FA231 Offline Adapter Test Message Formats . 5-FA-13
A232 Drive Test Message Formats .
A233 Status and Sense Byte Formats.
File Status (FS) Byte (Tag 100)
File Status (FS) Byte (Tag 100) .
. 2 (Tag 110) and File Pusing (AP) Byte 1
File Sense (BF) Bye (BP) Byte
File Pul sing (CP) Byte 3
FB Processor Extended Status (FE)
(F) .FCB Prous (SS) 5-FA-1Data Handler Basic Status (HS) .
Adapter Basic Status (BS) . 5-FA-17
Data Handler Extended Status (HE) . 5-FA-17
FA240 Test Message, Error Number Descriptions, and Actions 5-FA- 5 -
FA241 Common Test Error Messages and Actions Act 5-FA-1
FA242 Adapter Test Messages, Error Numbers, and Actions 5 5-FA-20
FA243 Disk Logic Test Messages, Error Numbers, and Possible Causes 5-FA-22
A250 Action Plan . 5-FA-3
A300 Intermittent Failure Repair Strategy
A310 Adapter-Unique Intermittent Repair Strategy
FA311 Looping with MAP Interaction to Determine Faliures
FA312 Using the System Error Log to Determine Failures 5-FA-35
FA313 Using the Free-Lance Utility to Determine Failures 5-FA-35
FA320 Not Used
A330 Error Log Formats and Meanings Used for the FA MAP
FA331 DPPX Error Log Formats and Meaning
FA332 DPCX Condition/Incident Log Formats and Meanings
FA341 Usin
A341 Using the DPPX Error Log
A342 Using the DPCX Condition/Incident Log
5-FA-35
5-FA-38
.................... 5-FA-40
FA350 Action Plan to Correct Intermittent Failures 5-FA-40.

FA400 Signal Paths and Detailed Operational Description	5-FA41
FA410 Card Socket Wiring Charts	5-FA41
FA1 FCB Processor Card	5-FA41
FA2 Data Handler Card	5-FA41
FA3 Data Channel Card	5-FA42
FA4 Logic Card 1	5-FA42
FA5 Logic Card 2	5-FA43
FA6 Servo Card 1	5-FA43
FA7 Servo Card 2	5-FA44
FA8 Voice Coil Motor (VCM) Drive Card.	5-FA44
FA9 Terminator Card.	5-FA44
Adapter to Drive Cables, (CC) and (DD)	5-FA45
Drive Logic Board to DE Cables, (FA) and (MH)	5-FA46
Top Card Connectors W, X, Y, and Z	5-FA47
FA420 Adapter to Disk Drive Interface Description	5-FA48
Control Bus (CC)	5-FA48
Dedicated Cable (DD)	5-FA48
Output Lines from DSD to System	5-FA-48
Individual Cabling Via Voltage Crossovers.	5-FA-49
FA430 Not Used	
FA440 Jumpers	5-FA-49
FA441 Board Jumpers.	5-FA-49
FA442 FA4 Logic Card 1 Jumper	5-FA-49
FA443 FA5 Logic Card 2 Jumpers.	5-FA-50
FA444 FA6 Servo Card 1 Jumpers	5-FA-50
FA450 Detailed Data Flow and Operational Theory	5-FA-51
FA451 Data Flow Diagrams	5-FA-51
FA452 Detailed Operational Theory	5-FA-55
File Adapter	5-FA-55
Disk Enclosure (DE)	5-FA-55
Spindle/Brake	5-FA-56
Actuator	5-FA-56
Read/Write Components	5-FA-56
DSD Data Formatting	5-FA-56
Seek .	5-FA-59
Read/Write	5-FA-60
Power Sequencing	5-FA-62
Signal Bus Descriptions	5-FA-63
Phase-Locked Oscillator (PLO) Loop	5-FA-64
Voltage Controller Oscillator (VCO) Control	5-FA-65
Recalibrate Issued by Processor or Storage and I/O Unit	5-FA-65
Access and Head Change	5-FA-66
Write Safety Detection	5-FA-67
Sense/Status Cycle	5-FA-68
FA500 Adjustment, Removal, and Replacement Information	5-FA-69
FA510 Scope Charts	5-FA-69
Scope Chart 1	5-FA-69
Scope Chart 2	5-FA-69
Scope Chart 3	5-FA-69
Scope Chart 4	5-FA-69
Scope Chart 5	5-FA-70
Scope Chart 6	5-FA-70
Scope Chart 7	5-FA.70

Scope Chart 8	5-FA-70
Scope Chart 9	5-FA-70
Scope Chart 10	5-FA-70
FA520 Adapter and DSD Cable and Card Continuity	5-FA-71
FA521 Data Select Gate Continuity	5-FA-71
FA522 Disk Adapter to DSD Continuity	5-FA-71
FA530 Not Used	
FA540 Disk Enclosure (DE) Removal and Replacement.	5-FA-72
FA541 Shock Mount Removal	5-FA-74
FA550 Card Gate, Board, and VCM Driver Card Removal/Replacement	5-FA-75
FA551 Card Gate Removal/Replacement	5-FA.75
FA552 Board Removal/Replacement	5-FA-76
FA553 Voice Coil Motor (VCM) Driver Card Removal/Replacement	5-FA-76
FA560 Card Gate Fan Removal/Replacement	5-FA-76
FA570 Drive Motor and Drive Belt	5-FA-77
FA571 Drive Motor	5-FA-77
Drive Motor Characteristics	5-FA-77
Drive Motor Assembly Removal/Replacement	5-FA-78
FA572 Drive Belt	5-FA-79
Drive Belt Tensioner	5-FA-79
Drive Belt Removal/Replacement	5-FA-79
Antistatic Brushes	5-FA-79
FA580 Brake Assembly and Coil Removal, Adjustment, and Replacement	5-FA-80
FA590 Actuator Lock Knob and Lock/Operate Switch Adjustment	5-FA-81
Actuator Lock Lever Cable Adjustment	5-FA-81
Lock/Operate Switch Adjustment	5-FA-81

Figures

FA100-1.	Disk Storage Drive Basic Diagram .	5-FA-1
FA111-1.	8130 Processor Adapter Card Locations.	5-FA-2
FA111-2.	8140 Processor Model AXX Adapter Card Locations	5-FA-3
FA111-3.	8140 Processor Model BXX Adapter Card Locations	5-FA3
FA1114.	8101 Storage and I/O Unit Card Locations.	5-FA-3
FA111.5.	Disk Storage Drive .	5-FA4
FA1116.	Disk Storage Drive Logic Board and Card Gate	5-FA-5
FA120-1.	Data Flow in the Disk Storage Adapter and the DSD	5-FA-7
FA240-1.	Pseudo Card and Cable Locations	5-FA-18
FA451-1.	Adapter Data Flow Diagram	5-FA-51
FA451-2.	Data Flow Diagram, Seek Operation.	5-FA-52
FA451-3.	Data Flow Diagram, Read/Write Operation	5-FA-53
FA451-4.	Data Flow Diagram, Error Detection and Safety Circuits	5-FA-54
FA452-1.	Disk Configurations	5-FA-55
FA452-2.	Actuator	5-FA-56
FA452-3.	Data Surface	5-FA-57
FA452-4.	Servo Surface .	5-FA-57
FA452-5.	Sector Format	5-FA-57
FA452-6.	Sector Organization	5-FA-58
FA452-7.	Spiraling.	5-FA-59
FA452-8.	Example of Defective Sector Reassignment	5-FA-59
FA452-9.	Sector Scan	5-FA-61

FA452-10.	Power Sequencing .	5-FA-62	FCB	function control block
FA452-11.	Power-On Logic Sequence Timing	5-FA-63	FDM	function definition module
FA452-12.	PLO Data Flow.	5-FA-64	(FH)	pseudo for fixed head cable
FA452-13.	PLO Timing.	5-FA-65	FRU	field replaceable unit
FA452-14.	VCO Control	5-FA-65	FRWA	function request work area address
FA452-15.	Recalibration Timing Chart	5-FA-66	GFI	General Failure Index
FA452-16.	Access and Head Change Timing Chart	5-FA-66	ID	identification
FA452-17.	Write Safety Detection Circuits	5-FA-67	I/O	input/output
FA452-18.	Transient Blanking Timing	5-FA67	IOEP	I/O interrupt entry point
FA452-19.	Sense/Status Timing Chart	5-FA-68	LV	level
FA541-1.	Type A Shock Mount	5-FA-74	MAP	Maintenance Analysis Procedure
FA541-2.	Type B Shock Mount	5-FA-74	MD	Maintenance Device
FA541-3.	Type B Shock Mount Access.	5-FA-74	(MH)	pseudo for moving head cable
			MI	manual intervention
			OP	option
			PA	physical address
			PCI	program-controlled interrupt
			PES	position error signals
			PIO	programmed I/O
			PLO	phase locked oscillator
			RES	reserved
			R/w	read/write
			rws	read write storage
			SCA	secondary component address
			SCF	System Control Facility
			SCX	pseudo for system control facility card type
			SEO NO	sequence number
			TCC	top card connector
			TCM	test control monitor
			UT	unit type
			VCM	voice coil motor
			w	pseudo for top card connector row 2
ADWA	adapter work area address		X	pseudo for top card connector row 3
AGC	automatic gain control		Y	pseudo for top card connector row 4
ARC	adapter return code		Z	pseudo for top card connector row 5
CA	channel address			
(CC)	pseudo for control cable			
chiv	channel control vector			
CHIO	channel input output			
CIL	condition/incident \log			
CNT	count			
COMPSTAT	completion status			
CPR	channel pointer register			
CRC	cyclic redundancy check			
(DD)	pseudo for dedicated cable			
DE	disk enclosure			
DH	data handler			
DPCX	Distributed Processing Control Executive			
DPPX	Distributed Processing Programming Executive			
DSD	disk storage drive			
DT	device type			
ECC	error correction code			
FAX	pseudo for disk storage card type			

FA100 General Information

The 8100 system disk storage drive (Figure FA100-1) consists of a disk enclosure (DE), a drive motor, and a card gate mounted on a subframe. The DE consists of a sealed unit that houses the disks, the access mechanism, and some associated electronics. Three shock mounts inside the 8100 system units fasten the disk drive subframe to the 8130 8140, or 8101 frame; the frame supplies ac and dc power.
The DE uses either three or six disks stacked on a spindle, and resides within the frame in a horizontal position. These disks rotate at 3125 rpm and provide a 27 -ms average access time. The DE provides various byte capacities by using a combination of fixed and movable heads. The DE has a filtered closed air circulation system to prevent lle hed la read/write heads to be attached.

The DE cannot be repaired in the field, and must be replaced as a FRU. Defective DEs must be returned to the plant of manufacture with the cover seal intact to obtain the

The following 8100 Information System units contain the disk storage drive (DSD) and adapter

- IBM 8130 Processor, Models A21-A24
- IBM 8140 Processor, Models A31-A34, A41-A44, A51-A54, B51, B52, B61, B62, B71, and 872 .
- IBM 8101 Storage and Input Output Unit, Models A11, A13, A23, and A25.

Disk storage is available in four configurations giving a storage capacity range from 23 to 64 million bytes of data, as follows:

Model*	Disk Elements	Moving Head Capacity	Fixed Head Capacity
Ax1	3	$29,327,360$ bytes	0
Ax2	3	$23,461,888$ bytes	131,072
Ax3	6	$64,520,192$ bytes	0
Ax4	6	$58,654,720$ bytes	131,072
Ax5	6 (2 units)	$64,520,192$ bytes	0

Model*	Disk Elements	Moving Head Capacity	Fixed Head Capacity
$\mathrm{Bx1}$	6	$58,654,720$ bytes	131,072
$\mathrm{Bx2}$	6 (lower)	$58,654,720$ bytes	131,072
	6 (upper)	$64,520,192$ bytes	0

$x=5,6,7$

Disk storage consists of two disk storage adapter cards that attach to the PIO bus and a disk storage drive (DSD).

Disk Storage Adapter Cards

Two logic cards attach the DSD to the processor through the SC card and the System Control Facility (SCF) bus. These cards plug into the 8130 A1 board, the 8140 A2 or B2 board, and the 8101 A2 board. Connections between the cards are through top card connectors (TCC) W, X, Y, Z and board wiring. Connections between the adapter cards and the DE are through the control cable (CC) and the dedicated cable (DD). See Figures FA111-1 through FA1114 for the locations of these cards and cables. The cards are

- FA1 card - Function Control Block (FCB) Processor
- FA2 card - Data Handler (DH)

Notes:

1. 04 and 31 pins are ground.

TCC W, X, Y, and Z are interchangeable with
eech other, but are not necessarily interchhangeable with those of other adapters. For part numbers, refer
to Chapter 3 , Figures $L T 140-1, L T 140.2, ~ L T 240.1$ LT240-2, LT240-3, LT240-4, and LT340-1.

Figure FA111-1. 8130 Processor Adapter Card Location

Modal	Loostions*				
	sc	FA1	FA2	(CC)	(DD)
${ }_{\text {A5x }}^{\text {A3x }}$ /44x	${ }_{\text {A }}^{\text {A202 }}$	${ }_{\text {A2F2 }}$	${ }_{\text {A2E }}^{\text {A2P }}$	${ }_{\text {A223 }}{ }^{\text {A226 }}$	${ }_{\text {A222 }}{ }_{\text {A225 }}$

Figure FA111-2. 8140 Processor Model AXX Adapter Card Locations

Figure FA111-3. $\mathbf{8 1 4 0}$ Processor Model BXX Adapter Card Locations

Figure FA111-4. 8101 Storage and I/O Unit Card Locations

The DSD (Figure FA111-5) includes:

- Disk Enclosure (DE) - The actual storage device that contains the disks, R/W heads, and the access mechanism.
- Disk electronics - Six circuit cards plugged in the 01X-A1 board, that is hinge mounted on the DSD subframe, and one circuit card that is mounted on the card gate. The cards on the A1 board (Figure FA111-5 and FA1116) are:
- FA3 card - Data channel card
- FA4 card - Logic 1 card
- FA5 card - Logic 2 card
- FA6 card - Servo 1 card
- FA7 card - Servo 2 card
- FA8 card - Voice coil motor (VCM) driver card. (Mounted on the card gate)
- FA9 card - Terminator card

Figure FA111-6. Disk Storage Drive Logic Board and Card Gate

FA112 Addressing
The only software addressing needed for the DSD is the physical address (PA) of the adapter cards. No logical address (LA) is necessary since only one device can be attached to a disk storage adapter. The disk storage PA consists of two hex characters. The first character, I/O group address, is determined by switch settings on the associated SCF card (see Chapter 2 for a detailed discussion of addressing) and is assigned according to the location of disk storage. The second character of the address, 0 , is fixed by board wiring. For example, the processor disk storage PA is 80 and the first 8101 disk storage PA is 90 .

FA113 Configuration Table Entry
LV PA UTUT OPOP OPOP
LV = Level
PA $=$ Physical Address
$P=I / O$ Group address - set in the SCF switches
$A=$ Fixed wiring on the board

Disk Storage Location	PA	
	Lower	Upper
8130	80	-
8140	80	-
8140 Model BXX	84	85
1st 8101	90	91
2nd 8101	A0	A1
3rd 8101 (8140 only)	B0	B1
4th 8101 (8140 only)	C0	C1

UTUT = Unit Type
0020

OPOP $=$	Option	Disk Feature	Moving Heads
1000	Fixed Heads		
	29 Meg	5	0
2000	64 Meg	11	0
3000	23 Meg	4	8
	4000	58 Meg	10

OPOP $=0000$

The operation of the DSD can be divided into four broad categories:

Seek: Positions selected heads over desired tracks.

Read/Write: Reads or writes data on selected head.
Integrity: Checks device operation and ensures data integrity
Sense: Provides error and status information to the adapter. Further categories can be defined for:

Control: Defines signal bus operations between adapter cards and DSD
Power: Includes motor drive, braking, power on and off sequencing.
perationally, these categories all interact and cannot normally be separated. However, they are treated separately in the descriptions found in FA450 "Detailed Data Flow".

Figure FA120-1 is a high-level diagram of the data flow in the disk storage adapter and the DSD.

FA130 DSD Unique Repair Strategy

The General Failure Index (GFI) contained in Chapter 1 provides procedures for initial disk storage fault isolation. If the GFI isolates a problem to disk storage, it directs you to use the maintenance device (MD) to execute the FA MAP contained on test diskette 03 for problem resolution. The primary repair strategy for disk storage problems involve use of the FA MAP offline. If random or intermittent failures occur that cannot be re solved by the MAPs, the MD prompts you to use the intermittent repair strategies, or action plans, contained in FA350

FA131 Disk Storage Unique Intermittent Repair Strategy
See FA300 for detailed information on intermittent failures. An intermittent failure can be defined as:

- An error occurring so infrequently that it is not detectable by looping the test. Go to FA350 "Action Plan to Correct Intermittent Failures".
- An error occurring at random times (different test error messages occur), thereby making the MAPs ineffective. After the MAPs detect three different test error messages, you are instructed to go to FA350.
- An error that is detected only after looping the diagnostics for more than 5 minutes. Record the test message error number and continue using the FA MAPs. In this case, repair verification will again require looping.

Offline tests check the disk storage operation. They consist of 48 routines on mainte nance diskette 03. The offtine tests are invoked using the maintenance device (MD), either by the FA MAP or the Free-Lance Option.

- When using the FA MAP, the MAPs invoke the tests as needed.
- Valid offline routines are: 01-47 and 50 (see FA210).

When using the Free-Lance Option, the following test invocation message must be entered:

At 80BC, enter PAB.
At 80BC, enter SLRRB
PA $=$ Disk storage address (see FA112
S = Sense Option (one character)
$0=$ run disk storage adapter tests only
$1=$ run disk storage adapter and device test
2 = not used by disk storage
= Loop Option (one character)
$0=$ run selected routines one time
$1=$ loop selected routines; stop on error
2 = loop selected routines; bypass error
RR $=$ Routine Number (two characters)
If 00 or no entry is made, all routines will run. If a routine number is entered, only that routine will run.
= begin execution, enters the invoke messag.

The offline disk storage tests consist of 48 routines arranged to test the functions within the disk storage in an order that isolates the problem to the most likely failing FRU(s). Routines 01-19 tests the adapter logic (see FA211), and Routines $20-47$ and 50 test the drive (see FA212).

Generally, the tests begin by checking the basic functions (for example, I/O instructions) and then progress to checking complex functions (for example, function definition module, FDM, interface).

All I/O instructions that are defined are executed with minimal setup to get predictable results from an I/O instruction. All accessible registers are set to values to verify that each latch of the register can be turned on and turned off.

Error generation tests are included to test the error detection logic. The objective is to have functional errors cause the various status bits (indicating the error) to be turned on These routines require a somewhat more sophisticated use of an I/O sequence.

A functional exercise of the hardware is done by executing a random program of Seeks, Writing of data, Reading of data, and Reading of IDs. Any errors recorded during this exercise are considered potential solid failures.

All writing of data and IDs is confined to the test cylinder (cylinder 359). Reading data is also confined to the test cylinder and the fixed head area. Reading IDs is unrestricted There are cases in which the error is displayed while a bad ID exists (on the test track of head 1 only). A normal termination of the test (such as a FREE or BEGIN) clears the bad ID. Since the possibility of an abnormal end to a test exists (such as, loss of power), he Operational Format Utility must be used to restore the correct IDs. Errors that could cause a bad ID condition are

Routine	Error Numbers
27	$13,14,15$
29	$16,17,18,19,1 \mathrm{~A}, 1 \mathrm{~B}$
30	$13,14,15,16,17$
32	$13,14,15,16,17$
33	$13,14,15,16,17$
34	$13,14,15,16,17,18,19$
35	$13,14,15$
36	$13,14,15$
46	$10,11,12,13$
50	11

Note: After FRU replacement, depending on the nature of the problem, the disk surface may contain bad data, thus preventing a good verification run. When this occurs, it may be advisable to run the Operational Format Utility.

Also, these failures may have resulted in bad data on the customer/user area, requiring -creation of the data by the user and possibly reformat (IDs) of the defective area by the CE cylinder (359)

Routine 01. Tests the adapter reset command by checking all registers reset by the command for correct reset values. The registers tested are: basic status, FCB processor status, seek status, burst register, first value register, next function request register, data CHCV FCB CHCV, and seek register.

Routine 02. Tests the basic status register and the commands that modify the register (set/reset basic status under mask, read basic status).

Routine 03. Tests the next function request register. The register is reset and written to all 1 's and then all 0 's. The state of the NFR register is tested after each write

Routine 04. Tests the seek register and the commands that modify the seek register. The seek register is reset then written with all 1 's plus the recalibrate bit. It is then read or the correct state. Next the seek register is written with all 0 's and tested for the correct state.

Routine 05. Tests the FCB channel control vector and the commands that modify the CHCV. It is written first to all 1 's and then to all 0 's and tested for the correct state.

Routine 06. Tests the data channel control vector and the commands that modify the CHCV. It is written first to all 1 's and then to all 0 's and tested for the correct state.
Routine 07. Tests the first value register and the commands that modify the register. It is written first to all 1 's and then to all 0 's and tested for the correct state in each case.

Routine 08. Tests the initiate command and basic FCB operation. Prior to the first command being issued in this test, the PA8O channel hang message is outputted on the invoking device. This message is overlaid by the test before it is seen unless a Channel Hang condition really exists. This precaution is necessary as this routine transfers data etween the processor storage and the adapter. The test issues the initiate command with the adapter disabs and checks the CHCVs. The adapter is then enabled and an FCB of 'NO-OP' is processed. Again the $\mathrm{CHCV}_{\text {s }}$ are tested.

Routine 09. Tests for an FCB timeout error. The error is generated in the routine. The th FCB with channel request inhibited. Basic status and seek status are compared.

Routine 10. Verifies that a program-controlled interrupt can be executed and that an interrupt is generated. The adapter is enabled and an FCB of 'NO-OP, PCI' is processed. Basic status is checked to ensure that an interrupt occurs.

Routine 11. Tests the store memory control FCB command. The adapter is enabled and an FCB is processed for the SMC subcommand. Basic status is checked as well as the appropriate channel pointer registers.

Routine 12. Is an extended test of a program-controlled interrupt. It insures that PCl alone sets the interrupt bit. The adapter is enabled but file interrupts are disabled. An interrupt.

Routine 13. Tests that interrupt is set when device error is set. The adapter is enabled with file interrupts disabled. The device error bit is set in basic status and the basic status register is checked for an interrupt.

Routine 14. Tests that all invalid PIO commands generate equipment checks. The adapter is enabled and each invalid command is issued. Basic status is then compared for the correct setting.

Routine 15. Tests the file reset command. A reset file command is issued and basic status is checked for all 0's.

Routine 16. Tests the FDM initialization of the file. The FDM initialization function request is issued followed by a request to the FDM to read basic status. FDM return codes are checked after each function.

Routine 17. Tests the load burst count, store new track, and load sector count FCB commands. FCB's of 'SNT,LSC,LDburst' are processed. The residual count register, seek register, and burst register are read and tested for the appropriate status.

Routine 18. Tests the adapter data buffers for the ability to retain 1 's and 0 's. FCBs are processed to write and read both data buffers in the adapter and the data received is compared with what is expected.

Routine 19. Tests the adapter data buffer for parity check generation. A parity check is generated in the data buffer, and FCB is processed to write data into buffer 1 with odd parity, a second FCB is processed to read the data with even parity, and data handler basic status bit 1 (data handler error) is checked to see that it is set.

FA212 Disk Drive Offline Test Routine Descriptions

Routine 20. Tests the recalibrate FCB command and file recalibrate. The ability to read the file sense is also tested. FCBs are processed to recalibrate and to read file status; status is checked after each to ensure correct setting. This routine checks the control sample pulsing logic by issuing 32 requests for file sense. After each request, a check is made to ensure the index/sector bit is on. This routine also tests the file rotational speed checked to ensure that it is on.

Routine 21. Tests the ability of the file to wrap data on the cable. FCBs are processed to recalibrate, read file status, and to perform file wrap. Status is checked after each to ensure correct setting.
Routine 22. Tests the read ID immediate command. FCBs are processed to perform recalibrate, read ID immediate, and to store new track (359) followed by a read ID immediate. Status is checked to ensure operations were performed correctly.

Routine 23. Tests the seek command and file arm movement. The test includes a seek from cylinder 0 to cylinder 1 to cylinder 0 . The seek controls are tested. FCBs processe from cylinder 0 to cylinder 1 to cylinder 0 . The seek controls are tested. FCBs processed file sense; and read ID immediate. Status is checked after each oeperation.

Routine 24. Tests servo calibration. FCBs processed are: recalibrate; seek head 1 , cylinder 128; and recalibrate. Status is checked after each operation.

Routine 25. Tests write data, read data, and readback check FCB commands. FCBs processed are: recalibrate; seek head 1 , cylinder 359; read ID immediate; write sector; checked after each operation. This routine performs 64 cycles of all operations excepting the initial recalibrate.

Routine 26. Tests the ability of the file control electronics to read the IDs of all heads according to model. A recalibrate is issued first: then each moving head that is installed (figured from Test Control Monitor (TCM) configuration option byte) is tested using a seek, read ID normal, and write sector. Each fixed head present is tested using a seek, SNT, and read ID normal.

The configuration definitions are (from TCM option byte)

Offline Us

Option Byte	Definition	
10	5 moving heads	(29M)
20	11 moving heads	(64M)
30	4 moving heads and 8 fixed heads (23M)	

Routine 27. Tests sector ID flags. The following FCBs are processed: recalibrate; seek head 1, cylinder 359; read ID immediate; write, read ID; (set ID flag bit); write, read ID; and read residual count register. Status is checked after each operation.

Routine 28. Tests the multisector operation of the file. The file is exercised with skip factors of 1,2,4, and 8. For each skip factor, sector counts of $2,4,8,16,32$ and 64 are used. The test proceeds as follows: recalibrate, seek (cylinder 359), read ID immediate, write sector, read sector, set skip factor and sector count, load sector count, read sector, test buffer areas for correct data. The test is looped until all of the combinations of secto count and skip factor have been tested. After each operation, status is checked to ensure all correct conditions exist.

Routine 29. Tests the format and retrieve FCB commands. This routine first performs a recalibrate, seek (359), and read ID immediate. The ID is saved. Next the routine performs a write sector, read sector, and retrieve. The retrieved data is then checked. A format (FFFF) is then performed on the sector. A read sector is performed and the data compared for hex FF. Next a format (0000) is performed. A read sector is executed and the data compared for hex 00 . The ID is restored. Status is checked after each operation.

Routine 30. Tests the read displaced ID and write displaced ID FCB commands. The test first does a recalibrate, seek (359), and a read ID immdediate. The ID is saved. Next, FCBs are issued to write displaced ID, read displaced ID, and read ID normal. The ID restored. Status is checked after each operation. Reformatting is done to clean up th data file.
Routine 31. Performs extended testing of the recalibrate command. After a recalibrate and seek (359) is performed, a read ID immediate is performed. Status is checked after each operation.

Routine 32. Tests that the adapter can generate an ID error. The error is indicated in the basic status by attempting to write to a defective sector. First a recalibrate, seek (359), and read ID immediate are performed. The ID is saved. A write ID is performed to set defective sector. A write sector is then attempted and should fail. The proper error codes are checked. The ID is restored. Status is checked after each operation.

Routine 33. Tests that the adapter can generate an ID error by accessing a sector with an incorrect ID written on the file. The routine does a recalibrate, seek (359), and read ID immediate. The ID is saved. A write ID normal is done with a bad ID field. A read ID normal and read sector are issued. The appropriate error conditions are checked. Status is checked after all operations. The good ID is restored.

Routine 34. Tests that the disk adapter can generate a data field error indication in the basic status. The error is generated by attempting to write data to a protected sector. FCBs are processed as follows: recalibrate, seek (359), read ID immediate. The ID is saved. Next, FCBs are processed for write sector, write ID (protected), read ID normal, write sector normal, and read sector normal. Proper status is checked after each operation. The good ID is restored.
Routine 35. Tests that the disk adapter can generate a CRC error and an ID error. This is done by reading an ID with bad CRC. The routine creates and restores the ID. FCBs are processed for recalibrate, seek (359), and read ID immediate. The ID is saved. The sector is formatted with the CRC bad for that ID. A read sector normal is performed Proper status is checked after each operation. The good ID is restored.

Routine 36. Tests that the disk adapter generates a CRC error and a data field error in the basic status. This is done by reading data sector with bad CRC. This routine creates the bad CRC and restores a good CRC at completion. A recalibrate, seek (359), and read ID immediate are issued and the ID is saved. The sector is formatted with bad data CRC. A read sector FCB is processed. The original good ID is restored. Two write sectors are performed. Status is checked after each operation for the correct setting.

Routine 37. Tests that the disk adapter generates a sector not found error in the basic status. This is done by attempting to access sector numbers beyond the valid range. A recalibrate, seek (359), and read ID immediate are issued. Next, a readback check issued for an invalid sector. The readback check is looped for sector addresses 42-7F

Routine 38. Tests that the disk can generate a multisector error indication. This routin writes multiple sectors so that a count remains in the residual count register. A recalibrate, seek (359), read ID immediate, and write sector are issued. An FCB for load sector count and read multiple sector is issued. Status is checked after each operation.

Routine 39. Tests that the adapter can generate a file error indication in the basic statu Routine 39. Tests that the adapter can generate a fie error indication in the basic sta
and FCB processor status. This is done by sending the file a control byte with even parity. A recalibrate, seek (359), and read ID immediate are issued. Next, an FCB is processed to send a control byte with even parity. Status is checked after each operation

Routine 40. Tests that the disk adapter generates a file error indicated in the basic status and the FCB processor status. This is done by sending the file an address larger than the maximum for the file. A recalibrate, seek (359), and read ID immediate are issued. Next, a seek for cylinder 511 is issued. Status is checked after each operation.

Routine 41. Tests that the disk adapter can generate a control bus parity error in the basic status and the FCB processor status. This is done by writing a control byte to the file with odd parity and reading it back with even parity. One FCB is processed which writes the control byte odd and reads it back even. Status is checked for the error when the operation is completed.

Routine 42. Tests that the disk adapter can generate a command error indication in the basic status and the seek status register. This is done by issuing a diagnostic write command when the FCB processor is busy. A recalibrate, seek (359), and read ID immediate are issued. An FCB is then processed with seek, PCI, seek, and SMC commands chained The PCI causes an immediate return to the driver. At this time the diagnostic write is issued. Status is checked after each operation

Routine 43. Tests the ability of the file control electronics to access random cylinders and heads, and to read the track IDs according to model. An FCB is processed to: issue recalibrate, seek (128), recalibrate, seek (359), and read ID immediate. Next, an FCB is processed to perform 73 random seeks followed by a read ID normal on different cylinders on all heads (1-4). Status is checked after each operation.
Routine 44. Performs a seek speed test by doing a recalibrate, a seek (359), and a read ID normal (PSC $=0$). An FCB is then issued and timed while performing four seeks, alternating between cylinder 0 and cylinder 359 . The seek speed is checked for a $\pm 15 \%$ tolerance. The speed constants are adjusted for each processor

Routine 45. Tests the file rotational speed bit in the adapter basic status and then verifies that the speedbit functions correctly. The test issues a recalibrate, a seek (359), and a read ID revolution). The routine then issues a read ID normal (PSC $=0$) and times the operation The next time PSC 0 comes under the head should be near 9.2 ms . One revolution takes exactly 19.2 ms . The speed is then checked for a $+/-10 \%$ tolerance. The constants are adjusted for each processor.

Routine 46. Ensures that a multisector write of IDs only writes requested IDs. The test performs a recalibrate and then a seek to head 1 of the CE track. The test then writes two IDs using a multisector write operation. The IDs are read and compared to ensur that the write worked. Next, all IDs on the disk are checked to ensure that only the requested writes were performed. Status is checked after each operation.

Routine 47. Ensures that a multisector read of 32 data sectors are processed within approximately $40-60 \mathrm{~ms}$. The test first issues a recalibrate and then a seek to head time is tested. Status is checked after each operation. Speed constants are adjusted for each processor.

Routine 48. Checks that the DSD subsystem can successfully process multisector write operations. The routine processes Recalibrate, Seek (cylinder 359), and Read ID Imme diate FCBs. Next, the routine issues Multisector Writes for skip factors 1, 2, 4, and 8 with a count of 2 . Finally, the routine loops 10 times issuing a Multisector Write for skip factor 2 with a count of 64 . After each operation, status is checked to ensure all correct conditions exist.

Routine 50. Performs a checkout of the fixed heads. No data is written in the secto fields under a fixed head; however, the write circuitry of each fixed head is tested by writing IDs. These IDs are rewritten correctly by the test. If an error condition cause ad Thain under a to the test This routine processes one FCB that performs seek, read ID, write ID (error), read ID (to test), and restore ID operations.

The configuration definitions are (from TCM option byte):

Offline Use

Option Byte	Definition	
10	5 moving heads	(29M)
20	11 moving heads	(64M)
30	4 moving heads and 8 fixed heads	(23M)
40	10 moving heads and 8 fixed heads	(58M)

FA220 Not Used

FA230 Test Message Formats and Status Information

The formats of the output messages are:		
Format	Content	Byte
1	YYBC	02
2	PAZZ	02
3	PAXE RREN CCMO	06
4	PAXE RREN RCVD EXPD	08
5	PAXE RREN FSTB AFAP BFBP CFCP SSFE HSBS HER1 R200	20

Legend

YY - System message number
BC - Indicates a system erro
PA - Disk storage physical address
ZZ - MI number
$\mathrm{X}=1$ - Indicates that PA is the adapter address
$X=2$ - Indicates that PA is the device address
$\mathrm{E}=\mathrm{E}$ - Indicates that this is an error message
RR - Routine number
EN - Error number
CC - One byte of command code (current PIO operation) - One byte of error modifier data defined by failure description信 EXPD - Two bytes of expected data defined by error description

- One byte of file status
$\begin{array}{lll}\text { TB } & \text { - One byte of wrap fail status (} 00 \\ \text { AF } & \text { - One byte of file sense } & 1(101)\end{array}$
AP - One byte of file pulsing 1 (101)
BF - One byte of file sense $2(110)$
BP - One byte of file pulsing 2 (110)
CF - One byte of file sense 3 (111)
CP - One byte of file pulsing 3 (111)
SS - One byte of seek status
FE - One byte of FCB processor extended status
- One byte of data handler basic status

HE - On byte datar
E - One byte ofda handier extended status
R1 - One byte of next function request register, part 1
00 - One byte of next function quest register, part
00 - One byte of hex 00 for pad
Note: When entering test error messages (as in menu selection ' C '), spaces must not be Note. When entering test error messags

FA231 Offline Adapter Test Message Formats

The adapter tests use only formats $1,2,3$, and 4.

FA232 Drive Test Message Formats

The disk drive tests use all the formats (1, 2, 3, 4, and 5)

FA233 Status and Sense Byte Formats

File Status (FS) Byte (Tag 100)

Bit Position	0	1	2	3	4	5	6	7
File Status (FS)	Fixed Head Not	Brake Applied	Track Not Avail *	Command Error	Data Unsafe	Seek Inc	Home	Not Ready

Note: The active condition of any bit is a 1 .
Bits with an asterisk indicate error conditions when they are set to a 1 . All other bits indicate DSD status at the time the adapter sampled the status register.

Bit 0 - Fixed Head Not Selected. This bit is set to 1 at the conclusion of a seek, power-up, recalibrate or moving head select. This bit is set to 0 at the conclusion of a fixed head select operation, even if fixed heads are not present.

Bit 1 - Brake Applied. This bit is set if the brake coil is no longer energized and the brake is applied. It provides sense information for the fact that the dedicated line brake is applied. It provides sense information for the fact that the dedicated line applied line being active.

Bit 2 - Track Not Available. If a command requires the DSD to access an invalid cylinder (valid cyclinders are 0 to 359), then an interrupt is given and this sense bit et. The actuator will not move. This bit is reset after a seek tag sequence with a valid address.

3 - Command Error. This sense bit is set when the DSD detects a parity error on either the control bus or tag lines, or an invalid tag code. An interrupt is then generate The resulting sense cycle clears the interrupt caused by a tag error. In this case, 'reset rror' must be activated followed by a further sense command to clear the interrupt as tag parity error removes confidence in control and sense cycle communication. Correct parity is presented on the control bus by the DSD even after a 'command error' is detected. Cylinder and head address is checked after a command error before a write peration is performed.
Bit 4 - Data Unsafe. Certain conditions can occur during read/write operations which may change/risk customer data. A 'data unsafe' incident may result in loss of a maximum of one sector of customer information. These conditions are monitored by the DSD and heir occurrence will result in an interrupt. Write current is immediately inhibited at source and all data heads are sel ting an unsafe condition.

The following conditions result in 'data unsafe' being set
Write and data servo unsafe
Write and no write transitions
Not write and write current detected
Write and not on track and moving head selected
Write and read. If write and read commands overlap by 10 ns or more, 'data unsafe' is set.
Write and head short circuit to ground indication
Write and moving head selected during sector pulse. Can only write in the data areas Write and 'not ready'
'Reset error' in all cases clears the 'unsafe condition'.
Bit 5 - Seek Incomplete. This sense bit is set when any access, recalibrate, or moving head select operation is in process. (This bit is not relevant to fixed head seeks.) This bit is also set by 'not ready'. A read, write, or moving head seek operation must not be attempted with the bit active. A sense cycle performed during an access will correctly indicate 'seek incomplete'. If this bit is still set after the access should have been completed, then a recalibrate may be performed.

Bit 6 - Home. This bit is set at the end of a successful power-up sequence or recalibrate operation; the actuator is at cylinder 0 with moving head '00001' selected. An interrup is then issued and the resulting sense command indicates 'home'. A normal access to cylinder 0 will not cause a 'home' indication. If 'home' is not indicated after a powerup
'Home' is reset when the next tag code ' 001 ' is issued.
Bit 7 - Not Ready. The DSD indicates 'not ready' for any of the following reasons, and will issue an interrupt:

- 'Seek' operation not completed within 1.7 seconds.
- 'Invalid move' is active. The internal DSD latch 'invalid move' detects actuator motion which is not in response to an access command or an attempt to write on moving heads during an access operation.
- The PLO is out of synchronization for any reason including loss of disk speed.
- Disk not moving.
- Oscillator not running.
- Not 'power OK'.
- Excessive noise on the +24 V line
- Servo unsafe.
- 'Power good' pulsing (should be a solid level).
- The wires on the top right voltage connector on the C gate are pulled out or not making connection.

This bit is reset by a recalibrate operation. If 'brake applied' is on, do a power-down/ power-up sequence. If the recalibrate is successful, then a 'reset error' completes the error recovery

File Sense (AF) Byte 1 (Tag 101) and File Pulsing (AP) Byte 1

Bit Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$			
File Sense 1 (AF)	On Track	Linear Region Pulse	Ind/ Sect	Out Direct	Not Out Drive	Not In Drive	Tag Pty Error	Velocity Profile			
Error									$	$	File Pulsing 1
:---											
(AP)	x										

$\mathrm{X}=0$: Not pulsing
$=1$: Pulsing
Note: Active sense and pulsing bits are set to a 1. An active pulsing bit indicates that the associated sense bit changed state while it was being sampled 256 times. Thus, the sense bit is intermittent and not valid.

Bit description is the condition when an active (set to " 1 ") pulsing bit indicates that atter being repetitively sampled 256 times, the associated sense bit has changed state (pulsing). Another way to state it is, if the pulsing bit is set, the condition of the associ ated sense bit has no valid meaning.

Bit 0 - On Track. Is normally set when the actuator is on track (within 10% of track eenter). It is reset if the actuator deviates from the center of the track by 10% (as defined by 'servo sample').

Bit 1 - Linear Region Normal and Even. Changes state when the actuator crosses a track. The level is +5 V for an even track and OV for an odd track. The line normally pulses when on track.

Bit 2 - Index and Sector Pulses Missing. Is normally reset indicating that index and sector pulses are present.

Bit 3 - Out Direction. Indicates the direction of seek.
Bit 4 - Not Out Drive, Bit 5 - Not In Drive. These bits indicate the logic level of the voice coil drives respectively 'out' and 'in':

Bit 4 Bit 5 Meaning

$0 \quad 0 \quad$ The actuator drive is turned off and the actuator is being pushed in by return spring
01 The actuator is being accelerated outwards.
10 The actuator is being accelerated inwards.
11 The actuator is either on track or setting on track at the end of an access.
Bit 6 - Tag Parity Error. Is set if the DSD receives other than tag codes '001' to ' 111 with correct parity. It is reset by 'reset error'.

Bit 7 - Velocity Profile Error. Is set by an internal test on the DSD circuits, which sets the instantaneous velocity of the actuator. It is reset by 'reset error'.

File Sense (BF) Byte 2 (Tag 110) and File Pulsing (BP) Byte 2

Bit Position	0	1	2	3	4	5	6	7
File Sense 2 (BF)	Behind Home	Miss- ing Clocks $\div 2$	Not Miss- ing Clock Error Latch	Coil Current Low	Miss. ing Servo Signal	Off Data Track	Not Missing Position Error Signal	$\begin{aligned} & \text { CTR } \\ & \text { In } \\ & \text { Sync } \end{aligned}$
File Pulsing 2 (BP)	x	X	x	x	x	X	x	x

$X=0$: Not pulsing
$=1$: Pulsing
Note: Active sense and pulsing bits are set to a 1. An active pulsing bit indicates that the associated sense bit changed state while it was being sampled 256 times. Thus, the sense bit is intermittent and not valid.

Bit description is the condition when an active (set to "I) pulsing bit indicates that, after being repetitively sampled 256 times, the associated sense bit has changed state (pulsing). Another way to state it is, if the pulsing bit is set, the condition of the associated sense bit has no valid meaning.

Bit 0 - Behind Home. Is set when the DSD actuator is over a cylinder between the land ing zone and track 0 . This bit is reset when the actuator is outside cylinder 0
Bit $\mathbf{1}$ - Missing Clocks $\div \mathbf{2}$. Changes state every time a 'missing clock' is detected. Missing clocks are used to code positional information on the director servo surface.

Bit 2 - Not Missing Clocks Error Latch. Is normally set. It is reset when six consecutive missing clocks are detected. It is set by 'reset error'.

Bit 3 - Coil Current Low. Is set when the coil current is below a threshold level. It is reset by 'recalibrate'.

Bit 4 - Missing Servc Signal. Is set if the amplitude of the signal from the dedicated Servo Read is too small for the DSD electronics to use. The bit is reset by 'reset error'

Bit 5 - Off Data Track. Indicates the servo is off track, as defined by the 'servo sample' by plus or minus 10%. Bit 5 is reset by 'recalibrate

Bit 6 - Not Missing Position Error Signals (PES). Indicates that the PES reference signals used by the actuator when accessing and following a track are correct. It is set by 'recalibrate'.

Bit 7 - Counter 5 In Sync. Indicates that the phase locked oscillator (PLO) in the DSD is in synchronism.

File Sense (CF) Byte 3 (Tag 111) and File Pulsing (CP) Byte 3

Bit Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
File Sense 3 (CF)	Not Shift	Not (Off Track and Write)	Inside AGC Win- dow	Not AGC Freeze	Demod Pulsing	Not (Read and Write)	Not (Servo Protect and Write)	Invalid Move
File Pulsing 3 (CP)	x	x	x	x	x	x	x	x

$\begin{aligned} \mathrm{X} & =0 \text { : Not pulsing } \\ & =1: \text { Pulsing }\end{aligned}$
$=1$: Pulsing
Note: Active sense and pulsing bits are set to a 1. An active pulsing bit indicates tha the associated sense bit changed state while it was being sampled 256 times. Thus, the sense bit is intermittent and not valid

Bit description is the condition when an active (set to " 1 ") pulsing bit indicates that, after being repetitively sampled 256 times, the associated sense bit has changed state (pulsing). Another way to state it is, if the pulsing bit is set, the condition of the associated sense bit has no valid meaning.

Bit 0 - Not Shift. Indicates that the position of the actuator agrees with the desired cylinder address given in the previous tag 2, tag 1 sequence. Indicates that a seek com mand is not in progress.

Bit 1 - Not (Off Track and Write). Indicates that the DSD is not trying (erroneously) to write when off track. The bit is set by 'reset error'.

Bit 2 - Inside AGC Window. Indicates that signal from the selected head is of sufficient amplitude to be used by the head-position control circuits. (Does not apply if nonexistent head is selected.) per sector.

Bit 4 - Demod Pulsing. Indicates that part of the position-detection electronics is working correctly. This bit should normally be pulsing.

Bit 5 - Not (Read and Write). Indicates that the DSD is trying to read and write at the same time.
Bit 6 - Not (Servo Protect and Write). Indicates that the DSD is trying to write between sectors.

Bit 7 - Invalid Move. Indicates that the servo head in the DSD has been offset by more than half a track from its normal position without a seek request It is reset by 'recalibrate'.
\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Bit Position } & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} \\
\hline \begin{array}{l}\text { Seek Status } \\
\text { (SS) }\end{array} & \begin{array}{l}\text { Tag } \\
\text { Seq } \\
\text { Error }\end{array} & \begin{array}{l}\text { CMD } \\
\text { Error }\end{array} & \begin{array}{l}\text { FCB } \\
\text { Proc } \\
\text { Error }\end{array} & \begin{array}{l}\text { FCB } \\
\text { Time }\end{array} & \begin{array}{l}\text { Cable } \\
\text { Error }\end{array} & \begin{array}{l}\text { Seek } \\
\text { Cont }\end{array}
$$ \&

Otatus\end{array}\right]\)| |
| :--- |

Notes:

1. The status bits are set to 1 when active.
2. Bits 0,1 , and 2 are set to indicate errors that occur during an operation between the adapter and the processor. Bit 3 is set to indicate an error that occurs during an opera tion between the adapter and the file.

Bit 0 - Tag Sequence Error. Indicates that the adapter received the improper interfac sequence from the processor. This bit is set when:

1. Two adapters are addressed at the same time.
2. The file detects the TC tag.
3. An invalid tag sequence of the I/O, TA, TD, and channel grant tags is detected.

This bit sets adapter basic status (BS) bits 5 and 7
Bit 1 - Command Error. Indicates that the adapter received an invalid command or command parity error from the processor. This bit is set when:

1. The adapter receives an invalid command.
2. The adapter receives a valid command with bad parity.
3. An initiate signal is issued to the adapter and it is busy.
4. The adapter receives an invalid command when adapter basic status bit 3 (busy) is on. This bit sets adapter basic status (BS) bits 5 and 7

Bit 2 - FCB Processor Error. Indicates an internal parity error within the FCB processor card. This bit, which is set during TA or TD time of the $1 / 0$ command, sets adapte basic status (BS) bits 1,5 , and 7 .

Bit 3 - FCB Timeout Error. Indicates the adapter is busy and more than 2 seconds have elapsed between channel requests to the processor. The 6-1/2 second single-shot has expired (this single-shot is started when the start signal is issued to the adapter). (This may not be an error if the system code has disabled interruptions.) This bit sets adapter basic status (BS) bits 1 and 7 .

Bit 4 - Cable Continuity OK. Bit is set as long as continuity is complete through the adapter and drive cards; all must be properly seated. This line does not go through the file cards (see FA522). This line is +3 V when good.

Bit 5, 6,7-Seek Status. Indicate seek status of file.

5, 6, 7 Activity

000 No MHS, FHS, or RECAL in progress.
001 RECAL begun and not yet completed. (Not seek complete.)

5, 6, 7 Activity
10 FHS begun and not yet completed. NO MHS or RECAL in progress. (Not seek complete.) If FHS is not complete in 52 ms , 'seek incomplete' is set.
10 MHS begun and not yet completed. No FHS or RECAL in progress no begun after MHS. (Not seek complete.)
101 MHS begun then FHS begun. FHS completed and MHS not completed (Not seek complete.)
10 MHS begun then FHS begun. Neither completed. (Not seek complete.)
111 MHS begun then FHS begun. MHS completed and FHS not completed No data is transferred until FHS is complete.
MHS - Moving Head Seek
FHS - Fixed Head Seek
RECAL - Recalibrat
FCB Processor Extended Status (FE)

Bit Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
FCB Processor Extended Status (FE)	0	0	FCB Processor Extended Status					

234567 Significanc

(00) 000000 Idle state
(01) 000001 Adapter waiting to make channel request or continually servic ing a hot file interrupt
(03) 0000011 Waiting for Channel Grant
(04) $00010 \begin{array}{lllll}1 & 0 & 0 & \text { Op decode state (interface hang condition). }\end{array}$
(05) 0000101 Waiting for acknowledge signal from Data Handler (canno communicate between FA1 and FA2 cards).
(07) $000111 \begin{array}{lllll} & 1 & 1 & \text { Waiting for proceed signal from Data Handler to enable next }\end{array}$ file operation.
(OF) $0 \begin{array}{llllll}0 & 1 & 1 & 1 & 1\end{array}$ Waiting for proceed signal from Data Handler (doing data transfer to/from storage).
(11) 0100001 Incomplete End Op processing. Decoding 'end-op' has not presented adapter basic status (BS) but is presenting an inte uption. If a seek or data transfer command in the FCB precedes 'end-op', can commands comple.
(27) $1 \begin{array}{lllllll}0 & 0 & 1 & 1 & 1 & \text { Incomplete } \mathrm{PCl} \text { processing }\end{array}$
(2C) $10 \begin{array}{llllll}1 & 1 & 0 & \text { Waiting for seek completion before processing Data Op. Will }\end{array}$ have a 'read' or 'write' in the next function request register. Must wait for 'seek complete' before any data transfer can be done.

234567 Significance

(37) $\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 1\end{array}$ End op processing delayed by outstanding seek. There is no data transfer command in the FCB list. Need 'seek complete' before executing end-op.
(38) 101100000 Multisector transfer past sector 63 . The number of sectors to transfer exceed the number of sectors remaining on the disk.
(39) $1 \begin{array}{llllll}1 & 1 & 0 & 0 & 1 & \text { Data Handler error. The following conditions turn on this }\end{array}$ error: (1) data CRC, (2) ID error, (3) track does not compare (4) something is wrong with the data the file presented to the data handler card (FA2 card). See data handler basic status and data handler extended status to determine the type of error. When this error occurs, the following is true: (1) seek was OK, (2) can transfer data, (3) alternate sector sets an FCB status of hex 39
(3A) 111010 File error (non data); not doing a data transfer. In conjunc tion with this error, file status bits $1,2,3,4$, or 7 is on.
(3B) 111011 File error (data related); error during a read or write, not necessarily a data problem.
(3C) $\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & \text { Data flow parity error. There is a parity error in the tag }\end{array}$ between the FA1 and FA2 cards. This is a control parity rror, not a data parity error.
(3D) $1 \begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & \text { Control sample timeout. Sent 'control sample' to the file but }\end{array}$ did not get 'control sample' back within $1.8 \mu \mathrm{sec}$
(3E) $1 \begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & \text { CHIO equipment check (file adapter check). The adapter con }\end{array}$ nected to the processor by means of CHIO and 'halt' became active. If data handler status bit 6 is off, the adapter is doing a control operation; if the bit is on, the adapter is doing an FCB operation.
(3F) $\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & \text { Control bus parity error. The adapter detected bad parity }\end{array}$ during a sense operation to the file.

Data Handler Basic Status (HS)

Bit Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$		
Data Handler Basic Status (HS)	FCB Proc Error	DH Error	CRC Error	ID	Data Error	Sector Field Error	Equip Not Found	File Check Write		
Halt										Gate
:---										
Error										

Note: The status bits are set to a 1 when active.
Bit 0 - FCB Processor Error. Indicates Data Handler received bad parity from FCB Processor.

Bit 1 - Data Handler Error. Indicates error was detected internal to data handler car (FA2 card)

Bit 2 - CRC Error. Indicates that CRC received from file does not compare to CRC generated. See bits 3 and 4 to determine the type of CRC error

Bit 3 - ID Error. Indicates an ID error. This bit is set if the defective bit is on in the ID field on a read ID, read data, or write data command

Bit 4 - Data Field Error. Indicates CRC error or write operation to a write protected field Bit 5 - Sector Not Found. Indicates that the sector cannot be found. Set if:

1. Sector search and two indexes are detected before the sector is found.
2. Not getting sector pulses (sector counter does not run).
3. Sync byte is not decoded in read ID (see if the NRZI line is pulsing).

Bit 6 - Equip Check/Halt. Indicates that equipment check occurred after the data channel grant. Data transfer is halted. This bit sets adapter basic status bits 1,5 , and 7
Bit 7 - File Write Gate Error. Indicates a miscompare between write gate to file and write gate return from file (Data Unsafe condition). Set if:

1. File was told to write, but no write gate was returned.
2. File was not told to write, but a write gate was returned

If NFR equals write, this indicates a good write gate error. If NFR equals read or write this indicates a multisector data transfer is in process and the write gate return should be active.

Bit Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Adapter Basic Status (BS)	PCI	Device Error	File Int Disab	Busy	Chan Req Frozen	Equip Check	Req Enab	Int

Note: The status bits are set to a 1 when active.

Bit 0 - Program Controlled Interrupt (PCI). Indicates when the adapter decodes a PCI operation.

Bit 1 - Device Error. Indicates adapter has detected an error which was caused by the device. The 'file not ready' bit is set.

Bit 2 - File Interrupt Disabled. Set by program. Adapter ignores interrupts from file.
Bit 3 - Busy. Indicates that the adapter is processing FCBs.
Bit 4 - Channel Request Frozen. Set by program. Prevents adapter from requesting a new FCR operation. Allows the current data transfer to complete, then stops the adapter
Bit 5 - Equipment Check. Indicates that this adapter has detected an error. The adapter is selected, but received halt tag on an internal check. This bit is also set by a parity error is selected, but received halt tag on an internal check.

Bit 6 - Requests Enabled. Set by program. Enables adapter to make requests to the processor. If this bit is off, the adapter cannot perform CHIO operations.

Bit 7 - Interrupt. Set when adapter wants to interrupt processing. Occurs for normal reasons as well as error detection.

Data Handler Extended Status (HE

Bit Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Data Handler Extended Status (HE)	BFR A to File	File Speed Good	Wrt Prot 1	Wrt Prot 0	Sector Disp	Sector Reas- signed	Sector Defect	Alt Sector

Note: The status bits are set to a 1 when active.
Bit 0 - Buffer A to File. Indicates buffer A connected to file. " 0 " indicates buffer B connected to file.

Bit 1 - File Speed Good. Indicates file speed tolerance is within 2-1/2\% nominal. This bit is off if sector pulses are not detected every 600 ms .

Note: Bits 2-7 are valid only for the last good ID read. If the read was not successful, these bits are left over from the previous ID read.

Bit 2 - Write Protect 1. Indicates second half of sector is Write Protected.
Bit 3 - Write Protect $\mathbf{0}$. Indicates first half of sector is Write Protected.
Bit 4 - Sector Displaced. Indicates sector is displaced form normal position (pushed down).

Bit 5 - Sector Reassigned. Indicates sector is reassigned to an alternate sector.
Bit 6 - Sector Defective. Indicates a defective sector
Bit 7 - Alternate Sector. Indicates that the sector is an alternate.

This page intentionally left blank.

Use Figure FA240-1 to identify locations for sections FA241, FA242, and FA243.

Mach Type	Model	Pseudo Card Locations									
		Gate 01A			Disk Storage Gate 01C						
		sc	FA1	FA2	FA3	FA4	FA5	FA6	FA7	FA8	FA9
8130	A2x	A2G2	A1U2	A1T2	A1B2	A1C2	A1D2	A1E2	A1F2	vcm	A1A4
8140	$\begin{aligned} & \text { A3x/A4x } \\ & \text { A5x } \end{aligned}$	$\begin{aligned} & \text { A2D2 } \\ & \text { A2D2 } \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \mathrm{O}_{2} \\ & \mathrm{~A} 2 \mathrm{~F} 2 \end{aligned}$	$\begin{aligned} & \text { A2P2 } \\ & \text { A2E2 } \end{aligned}$	$\begin{aligned} & \text { A1B2 } \\ & \text { A1B2 } \end{aligned}$	$\begin{aligned} & A 1 C 2 \\ & A 1 C 2 \end{aligned}$	$\begin{array}{\|l\|l} \text { A1D2 } \\ \text { A1D2 } \end{array}$	$\begin{array}{\|l\|l\|} \hline A 1 E 2 \\ \text { A1E2 } \end{array}$	$\begin{aligned} & \text { A1F2 } \\ & \text { A1F2 } \end{aligned}$	$\begin{aligned} & \text { VCM } \\ & \text { VCM } \end{aligned}$	$\begin{aligned} & \text { A1A4 } \\ & \text { A1A4 } \end{aligned}$
8140	Bxx (lower) Bx2 (upper)	$\begin{aligned} & \text { A2A2 } \\ & \text { A2A2 } \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \mathrm{H} 2^{\mathrm{B} 2 \mathrm{~F} 2} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { B2J2 } \\ \text { B2G2 } \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline A 1 B 2 \\ A 1 B 2 \end{array}$	$\begin{aligned} & A_{11 C 2} \\ & A_{1} C 2 \end{aligned}$	$\begin{array}{\|l\|l} \text { A1D2 } \\ \text { A1D2 } \end{array}$	$\begin{array}{\|l\|l\|} \hline A 1 E 2 \\ A 1 E 2 \end{array}$	$\begin{aligned} & \text { A1F2 } \\ & \text { A1F2 } \end{aligned}$	$\begin{aligned} & \mathrm{VCM} \\ & \mathrm{VCM} \end{aligned}$	$\begin{aligned} & \text { A1A4 } \\ & \text { A1A4 } \end{aligned}$
8101	Axx (lower) Axx (upper)	$\begin{aligned} & \text { A2A2 } \\ & \text { A2A2 } \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \mathrm{H} 2 \\ & \mathrm{~A} 2 \mathrm{E} 2 \end{aligned}$	$\begin{aligned} & \text { A2J2 } \\ & \text { A2F2 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A1B2 } \\ \text { A1B2 } \end{array}$	$\begin{aligned} & \mathrm{A} 1 \mathrm{C} 2 \\ & \mathrm{~A} 1 \mathrm{C} 2 \end{aligned}$	$\begin{array}{\|l} \hline \text { A1D2 } \\ \text { A1D2 } \end{array}$	$\begin{array}{\|l} \hline \text { A1E2 } \\ \text { A1E2 } \end{array}$	$\begin{aligned} & \text { A1F2 } \\ & \text { A1F2 } \end{aligned}$	$\begin{aligned} & \mathrm{VCM} \\ & \mathrm{VCM} \end{aligned}$	$\begin{aligned} & \text { A1A4 } \\ & \text { A1A4 } \end{aligned}$

A. Pseudo Card Locations

B. Pseudo Cable Locations

Figure FA240-1. Pseudo Card and Cable Locations

Manual Intervention (MI) or Operator Messages

Manual Intervention (MI) or Operator Messages
Msg No. Message Actions* PA00 Successful completion. PA80 CHIO hang, attempted data transfer. 1. Reseat or exchange FA1, FA2, SC, and TCC W and X. 2. Check continuity in nets: FA1B08-SC D09 FA1G03-SC P02 PA84 CE cylinder degraded. 1. Run Surface Status and Format utility (see CP653) on cylinder 359. 2. Rerun FA MAP. 3. If same failure occurs, reseat or exchange FA1, FA2. Note: If the problem still occurs, the CE cylinder has been degraded so that a Write Multisector Ifull track) operation can not be tested. All other diagnostic tests have completed successfully.
PAFO
Test in progress.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT1403, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

FA241 Common Test Error Messages and Actions

RREN	Failure Desription	Actions*
x×01	System check	1. Reseat or exchange FA1, FA2, SC, FA4, FA3. 2. Check wiring on TCCs W, X, Y, Z. 3. Check continuity in the nets: - FA2B02-FA1S02 - FA2B09-FA1D09 - FA2B10-FA1B10 - FA2D02-FA1D02 - FA2D06-FA1D06 - FA2D07-FA1D07 - FA2D10-FA1D10 - FA2D11-FA1D11 - FA2D12-FA1D12 - FA2G09-SCG12 - FA2G12-FA1J05 - FA2S10-FA1D04-FA1G09-FA1J11 - FA1B02-FA1G05FA1J13 - FA1G02-SCD07 - FA1J04-SCJ06 - FA1M08-SCG10 - FA1M10-SCP10 - FA1P02-SCG02 - FA1P10-SCM12 - FA1SO4-SCB02 - FA1SO5-SCG05 - FA1S07-SCD11 - FA1S08-SCM02 - FA1S10-SCB 10 - FA1S12-SCP11 - FA1S13-SCG09 - FA1U02-SCD13

Notes:

1. "Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be r adapters. See Chapter 3 , Figures LT140 1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Desription	Actions*
$\begin{aligned} & \text { xx01 } \\ & \text { (cont) } \end{aligned}$		3. (cont) - FA1U04-SCJ09 - FA1U05-SCG04 - FA1U07-SCP06 - FA1U10-SCJ07 - FA1U11-SCB08 - FA1U12-SCP13 - FA1U13-SCG08
xX04	Unexpected interrupt	1. Reseat or exchange FA5, FA7, FA4.
x×07	Initialize error.	1. Reseat or exchange FA1, FA4, FA9, FA2, FA5, FA7. 2. Reseat or replace TCCs W, X. 3. Reset or replace cables (CC), (DD). 4. Check continuity in nets: - TCC W24 - TCC X05 - TCC X24 - FA1G13-(CC)B04-FA4P07-FA9B04 - FA1B04-(CC)B12-FA9B12-FA4P09 - FA1B05-(DD)B04FA4D06 - FA1G07-(CC)B05-FA4M08-FA9B05 - FA1G10-(CC)B03-FA4M07-FA9B03 - FA1G12-(CC)B02-FA4M09-FA9B02 - FA1J09-(CC)D05-FA9D05-FA4P02 - FA1M12-(DD)B03FA4G09

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3 , Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
XXOA	Save ID error.	1. Run Surface Status and Format Utility (CP653) on cylinder 359. 2. Rerun tests (even if utility failed).
ххов	ID not stored.	1. Run Surface Status and Format Utility (CP653) on cylinder 359. 2. Rerun tests (even if utility failed).
xxoc	Restore ID error.	1. Run Surface Status and Format Utility (CP653) on cylinder 359. 2. Rerun tests (even if utility failed).
XXOF	Internal equipment check.	Reseat or exchange FA1, FA2.
XX66	CE cylinder in degraded state	1. Run Surface Status and Format Utility (CP653) on cylinder 359, all heads. 2. Suspect $D E$; request aid.
Xx77	Data handler basic status error.	1. Reseat or exchange FA2, FA1. 2. Check continuity in TCC Y and Z .
Xx99	Adapter machine check.	1. Reseat or exchange FA2, FA1. 2. Check continuity in nets: - FA1B10-FA2B10 - FA1D02-FA2D02 - FA1D06-FA2D06 - FA1D07-FA2D07 - FA1D09-FA2B09 - FA1D10-FA2D10 - FA1D11-FA2D11 - FA1D12-FA2D12 - FA1SO2-FA2B02

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

FA242 Adapter Test Messages, Error Numbers, and Actions

RREN	Failure Description	Actions*
0110	Residual count error.	Reseat or exchange FA1, FA2.
0111	FCB processor error.	Reseat or exchange FA1, FA2.
0112	Seek status error.	1. Reseat or exchange FA1. 2. Check continuity in nets: - TCC YO3 Wiring: See FA522
0113	Burst reg error.	Restart or exchange FA1, FA2.
0114	First value reg error.	1. Reseat or exchange FA1, FA4, (DD). 2. Check continuity in nets: - FA1B05-(DD)B04FA4D06
0115	Next function request reg error.	Reseat or exchange FA1.
0116	Data CHCV error.	Reseat or exchange FA1, FA2.
0117	FCB CHCV error.	Reseat or exchange FA1, FA2.
0118	Seek reg error.	Reseat or exchange FA1, FA2.
$\begin{aligned} & 0210 \\ & 0211 \end{aligned}$	Set basic status error.	Reseat or exchange FA1, FA2, FA4, FA5.
$\begin{aligned} & 0212 \\ & 0213 \end{aligned}$	Reset basic status error.	Reseat or exchange FA1, FA2.
0214	Set basic status error.	Reseat or exchange FA1, FA2.
0215	Reset basic status error.	Reseat or exchange FA1, FA2.
$\begin{aligned} & 0310 \\ & 0311 \end{aligned}$	Write NFR reg error.	Reseat or exchange FA1.
0315	Reset NFR reg error.	Reseat or exchange FA1.
0410	NFR reg error. (write NFR reg)	Reseat or exchange FA1.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
0411	Seek reg error. (load NFR reg to seek reg)	Reseat or exchange FA1.
0412	NFR reg error. (write NFR reg)	Reseat or exchange FA1.
0413	Seek reg error. (load NFR reg to seek reg)	Reseat or exchange FA1.
0414	NFR reg error. (write NFR reg)	Reseat or exchange FA1.
0415	NFR reg error. (controller reset)	Reseat or exchange FA1.
0416	Seek reg error. (load NFR reg to seek reg)	Reseat or exchange FA1.
0418	Seek reg error. (controller reset)	Reseat or exchange FA1.
0510 through 0517	FCB CHCV error.	Reset or exchange FA1, FA2.
0610 through 0618	Data CHCV error.	Reseat or exchange FA1, FA2.
0710	Set first value.	Reseat or exchange FA1, FA2.
0711	Write first value.	Reseat or exchange FA1, FA2.
0714	Reset first value.	Reseat or exchange FA1, FA2.
0810	FCB CHCV error. (using Initiate command)	Reseat or exchange FA1, FA2.
0811	Basic status error. (after Initiate command)	1. Reseat or exchange FA1, FA2. 2. Check continuity in TCCs w, X.
0812	Error in FCB channel pointer reg address. (using Initiate command)	Reseat or exchange FA1.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X,Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.
$\left.\begin{array}{|l|l|l|}\hline \text { RREN } & \text { Failure Description } & \text { Actions* } \\ \hline 0813 & \begin{array}{l}\text { Basic status error. } \\ \text { (after Initiate command) }\end{array} & \begin{array}{l}\text { 1. Reseat or exchange FA1, } \\ \text { FA2, SC. } \\ \text { 2. Check continuity in TCC } \\ \text { W, X. }\end{array} \\ \hline \text { 3. Check continuity in net: } \\ \text { - FA1J02-SCJ02 } \\ \text { - FA2G09-SCG12 }\end{array}\right]$

Notes:
. "Use Figure FA240-1 to identify card and cable locations.
. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

REA 06-88481

RREN	Failure Description	Actions*
1814	Data buffer error (FFFF).	1. Reseat or exchange FA1, FA2. 2. Check continuity in TCCs Y, Z.
1815	Write buffer error.	Reseat or exchange FA1, FA2.
1816	Read buffer error.	Reseat or exchange FA1, FA2.
1817	Data error (FFFF).	Reseat or exchange FA1, FA2.
1818	Data buffer error (0000).	Reseat or exchange FA1, FA2.
1910	Write buffer error.	Reseat or exchange FA1, FA2.
1911	Read buffer error.	Reseat or exchange FA1, FA2.
1912	Basic status error after read buffer.	Reseat or exchange FA1, FA2.

FA243 Disk Logic Test Messages, Error Numbers, and Possible Causes

Rren	Failure Description	Actions*
2010	Control sample not received.	1. Reseat or exchange FA1, FA4, FA9, (CC). 2. Check whether jumper at C-A 1A5B 12 to B13 is properly installed and has good continuity. 3. Check continuity in nets: - FA1B04-(CC)B12-FA9B12-FA4P09 - FA1J06-FA2J12-(DD)B12FA4B03 - FA7G10-(J1-2) - FA5G11-(J5-1) 4. Check power interface lines (see PA452): - - Power good - + Brake applied

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140.1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2011	Seek timeout error (spindle turning and appears to be running normally)	1. Reseat or exchange FA5, FA4, FA7, FA3, FA8, FA2, FA1, (DD). 2. Check drive power. 3. Check that actuator lock is fully disengaged. (see FA590) 4. Check continuity in nets: - FA4B06-FA5U10 - FA4D07-FA5S09 - FA4D11-FA5B03 - FA4D13-FA5U11 - FA4J07-FA5D06-FA7S13 - FA1B05-(DD)B04-FA4D06 - FA3M05-FA4D09-FA5J04 - FA3P05-FA4P10 - FA3P06-FA4G02 - FA3P10-FA4J06 - FA4B13-FA5S04 - FA4M12-FA5P09 - FA4P11-FA5J13-FA7S07 - FA4S05-FA5D07 - FA4S06-FA5D05 - FA4S07-FA5M12 - FA4S08-FA5M07 - FA4U06-FA5B05 - FA5G04-FA7D09 - FA4M13-FA5S07FA7P11 - FA4U02-FA5U07FA7M13 - FA4U10-FA5G07 - FA5G02-FA7B09 - FA5G03-FA7B08 - FA5J06-FA7B10

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different then thase used on other adapters. See Chapter 3 Figures LT140-1 different than those used on other adapters. See Chapter 3, Figures LT140-1
through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers

RREN	Failure Description	Actions*
$\begin{aligned} & 2011 \\ & \text { (cont) } \end{aligned}$		- FA5S13-(DD)D07FA2B03 - FA6D10-FA7D10, J10, P10, U10
	Seek timeout error (spindle stops turning after 20 second power on delay)	1. Check that spindle lock is fully disengaged (see FA590). 2. Reseat or exchange FA5, FA7, FA6, FA3, FA4. 3. Check continuity in nets: - FA3M10-FA6G12 - FA3U12-FA5J05 - FA4S03-FA5S08 - FA5B13-FA6G07 - FA5G05-FA7B04 - FA5JO2-FA6J07 - FA7D05-(MH)D11 - FA7D06-(MH)D10 - FA7S04-(MH)B10, B12, D09, D13 4. Suspect $D E$; request aid.
	Seek timeout error (spindle never starts turning at all)	1. Check that spindle lock is fully disengaged (see FA590). 2. Check belt, motor (see FA580, FA570) 3. Check ac to motor (see FA570) 4. Reseat or exchange FA4, FA5, FA7 5. Check continuity in nets: - FA4S13-FA5U09FA7P02 - FA5M09-FA7P09B2A01 (J1-8)

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part number

RREN	Failure Description	Actions*
2012	File sense not ' 82 ' after recal failure	1. Reseat or exchange FA4, FA9, FA1, FA5, FA3, FA7, FA2, FA6, (CC), (DD). 2. Check continuity in nets: - TCC-W22 - FA1B03-(CC)D06-FA9D06-FA4M03 - FA1G08-(CC)D09-FA9D09-FA4M05 - FA1G12-(CC)B02-FA9B02-FA4P07 - FA1J07-(CC)D07-FA9D07-FA4M02 - FA1J09-(CC)D05-FA9D05-FA4P02 - FA1J10-(CC)D04-FA9D04-FA4M04 - FA1J12-(CC)D13-FA9D13-FA4P04 - FA1M03-(CC)D11-FA9D11-FA4P05

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2013	File sense not '82' after successful sense operation	1. Reseat or exchange FA4, FA5, FA7 2. Check continuity in net: - FA4B08-FA5P07-FA7M02
2014	Control bus error	1. Reseat or exchange FA7, FA6, FA1, FA9, FA3, FA4, FA5, FA2, (CC). 2. Check continuity in nets: - FA1B03-(CC)D06-FA9D06-FA4M03 - FA1G07-(CC)B05-FA9B05-FA4M08 - FA1G10-(CC)B03-FA9B03-FA4M07 - FA1J07-(CC)D07-FA9D07-FA4M02 - FA1J09-(CC)D05-FA9D05-FA4P02 - FA1J10-(CC)D04-FA9D04-FA4M04 - FA4B08-FA5P07-FA7M02 - FA5B07-FA7D11 - FA6B13-FA7P06 - FA6D10-FA7D10-FA7J10-FA7P10FA7U10

1. "Use Figure FA240.1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be TCC W, X, Y, and Z are interchangeable with each other. However, they may
different than those \angle sed on other adapters. See Chapter 3, Figures $\angle T 140 ; 1$ different than those used on other adapters. See Chapter 3, Figures LT140; 1
through LT1403, LT240-1 through LT240-8, LT340-1 and LT340.2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2015	Recalibrate failure	1. Reseat or exchange FA5, FA4, FA7, FA3, FA6, FA2, FA1, (DD)
2016	Speed OK bit failure	2. Check continuity in nets: - FA5J06-FA7B10 - FA5U12-FA7M08
2017	Recal failure	1. Reseat or exchange FA2.
2018	1. Reseat or exchange FA5, FA7. 2. Check continuity of net: - FA5U12-FA7M08 - FA6D13-FA7D02	
logic error		

Notes:

1. "Use Figure FA240.1 to identify card and cable locations
2.
3. Unp W, X, Y and Z are int
 trough LT140-3, LT240.1 throush LT240.8, Chapter 3, Figures LT140-1保 locations and part numbers.
\(\left.\begin{array}{|l|l|l|}\hline RREN \& Failure Description \& Actions*

\hline 2112 \& Control bus parity error. \& Reseat or exchange FA4.\end{array}\right]\)| 1. Reseat or exchange FA4, FA9, |
| :--- |
| FA1, (CC). |

Notes:

1. *Use Figure FA240-1 to identify card and cable locations
2. Unplug associated cards when checking continuity.
3. Unplug associated cards when checking continuity.
4. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
$\begin{aligned} & 2212 \\ & \text { (cont) } \end{aligned}$		4. (cont) - FA2J06-(DD)D12FA3U11 - FA2J07-(DD)D09-FA4J11 - FA2J09-(DD)D05-FA3SO2 - FA3B04-FA4J02FA5G09 - FA3B12-(MH)D03(FH) A1A13 - FA312-FA4J12 - FA3M04-(MH)B03(FH) A1E13 - FA3M05-FA4D09FA5J04 - FA3M07-(FH) A1E11 - FA3M09-(MH)B02 - FA3P05-FA4P10 - FA3P09-(MH)B06 - FA3P10-FA4J06 - FA3U06-FA6G03 - FA4J07-FA5D06-FA7S13 5. See net in FA521. 6. Suspect DE; request aid.
2213	FRB complete without error after error test.	1. Run Surface Status and Format Utility (CP653) on track 0, head 1, then rerun diagnostic tests. 2. Reseat or exchange FA4, FA3, FA2, FA1, FA5 3. Check continuity in nets: - FA1P06-(DD)D04-FA4J13 - FA2G08-(DD)B08-FA3S07 - FA2J07-(DD)D09-FA4J11 - FA3B04-FA4J02-FA5G09 - FA3J12-FA4J12 4. Suspect $D E$; request aid.

. Use Figure FA240-1 to identify card and cable location
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be Herent than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2214	Basic status not correct after error test.	Reseat or exchange FA1, FA2.
2310	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
2311	Seek to track 1 error.	1. Reseat or exchange FA4, FA5, FA7, FA6, FA1, FA9, (CC). 2. Check continuity in nets: - FA1J10-(CC)D04-FA9D04-FA4M04 - FAJO5-FA5U02 - FA4M06-(CC)D12-FA1P04-FA9D12 - FA4SO7-FA5M12 - FA4S09-FA6J06-FA7B03 - FA4U06-FA5B05 - FA5G03-FA7B08 - FA7S02-FA5J07 - FA1G13-(CC)B04-FA9B04-FA4M09 - FA4B08-FA5P07-FA7M02
2312	File statuserror.	1. Reseat or exchange FA4, FA9, FA1, FA6, FA7, (CC). 2. Check continuity in nets: - FA1B03-(CC)D06-FA9D06-FA4M03 - FA1G08-(CC)D09-FA9D09-FA4M05 - FA4S09-FA6J06FA7B03
2313	File status not $=80$.	1. Reseat or exchange FA4, FA5. 2. Check continuity in nets: - FA4G04-FA5P12

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.

TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2314	Read ID error,	1. Run Surface Status and Format Utility (CP653) on track 1, head 1, then rerun diagnostic tests. 2. Reseat or exchange FA5, FA4, FA7. 3. Reseat or replace cable (DD). 4. Check continuity in nets: - FA4G05-FA5M08 - FA5B09-FA7S10 5. See net in FA521 6. Suspect $D E$; request aid.
2315	Seek to track 0 error.	1. Reseat or exchange FA5, FA4, FA7. 2. Check continuity in nets: - FA4J05-FA5U02 - FA5S12-FA7D13
2316	File status error.	Reseat or exchange FA4, FA1, (CC).
2317	File status not $=80$.	Reseat or exchange FA4, FA6, FA7, FA1.
2318	Read ID error.	Reseat or exchange FA5, FA7.
2410	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
2411	Seek to track 128 error.	1. Reseat or exchange FA7, FA5, FA4. 2. Check continuity in nets: - FA4S06-FA5D05 - FA5D04-B1E4A14-(J9-3) - FA4S05-FA5D07 - FA5B07-FA7D11 - FA5J07-FA7S02 - FA5S12-FA7D13

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may b
4. TCC W, X, Y, and Z are in terchangeable with each other. However, they may
different than those used on other adapters. See Chapter 3, Figures LT140-1 diffrough LT140.3, LT240-1 through LT240-8, LT340.1 and LT340. 2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2412	Recalibrate error after 128.	Reseat or exchange FA4, FA6, FA7, FA1.
2510	Recalibrate error.	Reseat or exchange FA4, FA6, FA7, FA1.
2511	Seek to track 359 error. (CE track)	1. Run Surface Status and Format Utility (CP653) on cylinder 359, then rerun diagnostic tests. (even if utility fails) 2. Reseat or exchange FA5, FA7. 3. Check continuity in net: - FA4SO5-FA5D07 4. Check that actuator lock is fully disengaged. (See FA590.) 5. Suspect DE; request aid.
2512	Read ID error.	1. Run Surface Status and Format Utility (CP653) on cylinder 359, then rerun diagnostic tests. (even if utility fails) 2. Reseat or exchange FA4, FA7, FA5. 3. Check continuity in net: - FA5B09-FA7S10 4. Suspect $D E$; request aid.
2513	Write data error.	1. Run Surface Status and Format Utility (CP653) on cylinder 359, then rerun diagnostic tests. (even if utility fails) 2. Reseat or exchange FA6, FA3, FA5, FA2, FA1, FA4, FA7, FA8, (DD). 3. Check continuity in nets: - FA1M13-(DD)D06-FA4S10-FA5P 13 - FA2B03-(DD)DO7FA5S13 - FA2D09-(DD)B09FA5G08 - FA2G13-(DD)D11FA4G12 - FA2M04-(DD)D03FA3J07 - FA3D05-(MH)D05

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

REA 06-88481

RREN	Failure Description	Actions*
2513 (cont)		3. (cont) - FA3D06-(MH)D04 - FA3D07-(MH)D07(FH)A1D11 - FA3D12-(J1-3) - FA3G03-(MH)B08(FH)A1C13 - FA3G13-FA4U12 - FA3J06-FA4G11 - FA3P11-FA6G08 - FA3S02-(DD)D05FA2J09 - FA3U06-FA6G03 - FA4B12-FA6G13FA7G12 - FA4G10-FA5U06 - FA4G13-FA6J13 - FA4J11-(DD)D09FA2J07 - FA5G08-(DD)B09FA2D09 - FA5J09-FA6G10 - FA5J10-FA6J04 - FA5U13-FA6G04 - FA6B12-FA6G05 4. Suspect $D E$, request aid.
2514	File status error.	Reseat or exchange FA4, FA6, FA7,FA1.
2515	Read sector error.	1. Reseat or exchange FA3, FA2, (DD). 2. Check continuity in nets: - FA2J11-(DD)B10FA3U02
2516	File status error.	Reseat or exchange FA4, FA6, FA7, FA1.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT1403, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2517	Readback check error.	Reseat or exchange FA4, FA3, FA5, FA1, FA2.
2518	Seek, write, read back, check error.	1. Reseat or exchange FA7, FA8, FA2. 2. Suspect $D E$, request aid.
2519	Seek to track 0 error.	1. Reseat or exchange FA5, FA4, FA7. 2. Check continuity in net: - FA4SO5-FA5D07
2520	Sector ID error.	Reseat or exchange FA1, SC, FA2.
2610	Recalibrate, seek (128), recalibrate.	1. Run Surface Status and Format Utility (CP653) on track 128, head 1. Then rerun diagnostic tests. 2. Reseat or exchange FA4, FA5, FA7, FA1.
2611	Model invalid.	See FA113; model and/or configuration are not valid.
2613 2614 2615 2616	Seek moving heads 1-4 (model 30). Seek moving heads 0-4 (model 10). Seek moving heads 1-A (model 40). Seek moving heads 0-A (model 20).	1. Run Surface Status and Format Utility (CP653) on cylinder 359, all heads. Then rerun diagnostic tests. 2. Reseat or exchange FA3, FA4, FA1, FA2. 3. Reseat cable (MH), TCC X. 4. Check continuity in nets: - FA3M04-(MH)B03-(FH)A1E13 - FA3M09-(MH)B02 - FA3M11-(MH)B05 - FA3P09-(MH)B06 - FA3P07-FA4P12 - FA3P04-(MH)B04-(FH)A1C11 5. Possible defective head. Replace DE. Request aid.
$\begin{aligned} & \hline 2617 \\ & 2618 \end{aligned}$	Seek moving head 0 (model 30). Seek moving head 0 (model 40).	See FA113; model and/or configuration do not agree.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through $\angle T 1403, \angle T 240-1$ through $\angle T 240-8, ~ L T 340-1$ and $\angle T 340-2$ for TCC locations and part numbers.

RREN	Failure Description	Actions*
2619	Seek moving heads 5 (model 10/30).	See FA113; model and/or configuration do not agree.
261A	Seek moving heads 6 (model 10/30).	
261B	Seek moving heads 7 (model 10/30).	
261C	Seek moving heads 8 (model 10/30).	
2610	Seek moving heads 9 (model 10/30).	
261E	Seek moving heads A (model 10/30).	
2620	RD/WRT moving head 0 .	1. Run Surface Status and Format
2621	RD/WRT moving head 1.	Utility (CP653) on cylinder 359,
2622	RD/WRT moving head 2.	all heads. Then rerun diagnostic tests.
2623	RD/WRT moving head 3.	2. Reseat or exchange FA1, FA2.
2624	RD/WRT moving head 4.	3. Check +24 V ripple.
2625	RD/WRT moving head 5.	4. Suspect DE; request aid.
2626	RD/WRT moving head 6.	
2627	RD/WRT moving head 7.	
2628	RD/WRT moving head 8.	
2629	RD/WRT moving head 9 .	
262A	RD/WRT moving head A.	
2630	RD failure fixed head 0 .	1. Run Surface Status and Format
2631	RD failure fixed head 1.	Utility (CP653) on all fixed heads.
2632	RD failure fixed head 2.	2. Reseat or exchange FA3, FA5,
2633	RD failure fixed head 3.	FA6.
2634	RD failure fixed head 4.	3. Rerun tests.
2635	RD failure fixed head 5 .	4. If failure persists, suspect DE; request aid.
2636	RD failure fixed head 6.	
2637	RD failure fixed head 7.	
2710	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
2711	Seek to CE track error.	Reseat or exchange FA5, FA7.

1. *Use Figure FA240-1 to identify card and cable locations
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
2712	Read ID error.	Reseat or exchange FA4, FA6, FA7.
2713	Write ID error.	Reseat or exchange FA5,FA7.
2714	File status error.	Reseat or exchange FA4, FA6, FA7, FA1, FA2.
2715	Sector flag error.	1. Reseat or exchange FA4, FA3, FA5, FA1, FA2, (DD). 2. Check continuity in nets: - TCC X32 - FA2G13-(DD)D11FA4G12 - FA1M13-(DD)D06-FA4S10-FA5P13 - FA3G13-FA4U12
2810	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
2811	Seek to CE track error.	Reseat or exchange FA4, FA5.
2812	Read ID error.	Reseat or exchange FA4, FA6, FA7.
2813	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.
2814	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
2815	Read data error.	Reseat or exchange FA1, FA3, FA2.
2816	Multisector error.	Reseat or exchange FA3, FA2, FA1.
2817	Data overrun.	Reseat or exchange FA2.
2910	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 trough LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description ${ }^{\text {* }}$	Actions*
2911	Seek to CE . track error.	Reseat or exchange FA4, FA5.
2912	Read ID error.	Reseat or exchange FA4, FA6, FA7.
2913	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.
2914	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
2915	Retrieve error.	Reseat or exchange FA2, FA1.
2916	Format error.	Reseat or exchange FA2, FA1.
2917	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
2918	Data does not compare.	Reseat or exchange FA3, FA6, FA2, FA7.
2919	Format error.	Reseat or exchange FA2, FA1.
$\begin{gathered} 291 \mathrm{~A} \\ 291 \mathrm{~B} \end{gathered}$	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
3010	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3011	Seek to CE track error.	Reseat or exchange FA4, FA5.
3012	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3013	WRT ID displaced error.	Reseat or exchange FA5, FA7, FA1.
3014	RD ID displaced error.	Reseat or exchange FA3, FA6, FA2, FA7, FA1.
3015	Displaced ID error.	Reseat or exchange FA3, FA6, FA2, FA7, FA1.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

Rren	Failure Description	Actions*
3016	RD ID error.	Reseat or exchange FA3, FA6, FA2, FA7, FA1.
3017	Restore ID error.	Reseat or exchange FA3, FA6, FA2, FA7, FA1.
3018	Format error.	Reseat or exchange FA1, FA2.
3110	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3111	Seek to CE track error.	Reseat or exchange FA4, FA5.
3112	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3210	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3211	Seek to CE track error.	Reseat or exchange FA4, FA5.
3212	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3213	Write ID error.	Reseat or exchange FA5, FA7.
3214	Data error.	Reseat or exchange FA3, FA6, FA2, FA7.
3215	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.
3216	Basic status error.	Reseat or exchange FA1, FA2, FA4, FA9.
3217	Residual count error.	Reseat or exchange FA2, FA1.
3310	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3311	Seek to CE track error.	Reseat or exchange FA4, FA5.
3312	Read ID error.	Reseat or exchange FA4, FA6, FA7.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3 , Figures LT140.1 different than those used on other adapters. See Chapter 3, Figures LT140-1 locations and part numbers

RREN	Failure Description	Actions*		
3313	Write ID error.	Reseat or exchange FA3, FA6, FA2, FA7.		
3314	Read ID normal error.	Reseat or exchange FA3, FA6, FA2, FA7.		
3315	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.		
3316	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.		
3317	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.		
3410	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.		
3411	Seek to CE track error.	Reseat or exchange FA4, FA5.		
3412	Read ID error.	Reseat or exchange FA4, FA6, FA7.		
3413	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.		
3414	Write ID error.	Reseat or exchange FA5, FA7.		
3415	Protect bit error.	Reseat or exchange FA3, FA6, FA2, FA7.		
3416	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.		
3417	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.		
Protect data error.	Reseat or exchange FA3, FA6, FA2, FA7.			
Reseat or exchange FA3, FA6,				
FA2, FA7.			,	3418
:---				
Read error.				

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. $T C C W, X, Y$, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
3510	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3511	Seek to CE track error.	Reseat or exchange FA4, FA5.
3512	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3513	Format error.	Reseat or exchange FA2, FA1.
3514	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
3515	Basic status error.	Reseat or exchange FA1, FA4 FA5, FA2, FA9.
3610	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3611	Seek to CE track error.	Reseat or exchange FA4, FA5.
3612	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3613	Format error.	Reseat or exchange FA2, FA1.
3614	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
3615	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.
$\begin{aligned} & 3616 \\ & 3617 \end{aligned}$	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.
3710	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3711	Seek to CE track error.	Reseat or exchange FA4, FA5.
3712	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3713	Readback check error.	Reseat or exchange FA3, FA6, FA2, FA7, FA1.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers

RREN	Failure Description	Actions*
3714	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.
3810	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3811	Seek to CE track error.	Reseat or exchange FA4, FA5.
3812	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3813	Write data error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.
3814	Read data error.	Reseat or exchange FA3, FA6, FA2, FA7.
3815	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.
3816	Extended status error.	Reseat or exchange FA2, FA4, FA5, FA1, FA9.
3910	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
3911	Seek to CE track error.	Reseat or exchange FA4, FA5.
3912	Read ID error.	Reseat or exchange FA4, FA6, FA7.
3913	Control bus error.	Reseat or exchange FA3, FA1.
3914	Basic status error.	Reseat or exchange FA1, FA4, FA5, FA2, FA9.
3915	Extended status error.	Reseat or exchange FA2, FA4, FA5, FA1, FA9.
4010	Recalibrate error.	Reseat or exchange FA4, FA5, FA7, FA1.
4011	Seek to CE track error.	Reseat or exchange FA4, FA5.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations
2. Unplug associated cards when checking continuity. different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { RREN } & \text { Failure Description } & \text { Actions* } \\
\hline 4012 & \text { Read ID error. } & \begin{array}{l}\text { Reseat or exchange FA4, FA6, } \\
\text { FA7. }\end{array} \\
\hline 4013 & \text { Invalid seek address. } & \text { Reseat or exchange FA3, FA1. } \\
\hline 4014 & \text { Basic status error. } & \begin{array}{l}\text { Reseat or exchange FA1, FA4, } \\
\text { FA5, FA2, FA9. }\end{array} \\
\hline 4015 & \text { Extended status error. } & \begin{array}{l}\text { Reseat or exchange FA2, FA4, } \\
\text { FA5, FA1, FA9. }\end{array} \\
\hline 4113 & \text { Control bus error. } & \begin{array}{l}\text { Reseat or exchange FA4, FA1. }\end{array} \\
\hline 4114 & \text { Basic status error. } & \begin{array}{l}\text { Reseat or exchange FA1, FA4, } \\
\text { FA5, FA2, FA9. }\end{array} \\
\hline 4115 & \text { Extended status error. } & \begin{array}{l}\text { Reseat or exchange FA2, FA4, } \\
\text { FA5, FA1, FA9. }\end{array} \\
\hline 4210 & \text { Recalibrate error. } & \begin{array}{l}\text { Reseat or exchange FA4, FA5, } \\
\text { FA7, FA1. }\end{array} \\
\hline 4211 & \text { Seek to CE track error. } & \begin{array}{l}\text { Reseat or exchange FA4, FA5. }\end{array} \\
\hline 4212 & \text { Read ID error. } & \begin{array}{l}\text { Reseat or exchange FA4, FA6, } \\
\text { FA7. }\end{array} \\
\hline 4213 & \text { PCI error. } & \begin{array}{l}\text { Reseat or exchange FA1, FA2. }\end{array} \\
\hline 4214 & \text { Basic status error. } & \begin{array}{l}\text { Reseat or exchange FA1, FA4, } \\
\text { FA5, FA2, FA9. }\end{array} \\
\hline 4216 & \text { Extended status error. } & \begin{array}{l}\text { Reseat or exchange FA2, FA4, } \\
\text { FA5, FA1, FA9. }\end{array}
$$

\hline 4311 \& Seek error. \& 1. Reseat or exchange FA4, FA5,

FA7.\end{array}\right\}\)| 2. Suspect DE; request aid. |
| :--- |
| 40 |

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.

2 Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140.3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.

RREN	Failure Description	Actions*
4411	Seek speed error.	1. Reseat or exchange FA4, FA5. 2. Check continuity in nets: - FA4D02-FA5B02 - FA4B02-FA5B08 3. Suspect $D E$; request aid.
4412	Seek timeout	1. Reseat or exchange FA4, FA5. 2. Check continuity in nets: - FA4D02-FA5B02 - FA4B02-FA5B08 3. Suspect DE; request aid.
4413	Controller error.	Reseat or exchange FA1, FA2.
4510	Seek speed bit error.	Reseat or exchange FA2.
4511	Speed out of tolerance.	Reseat or exchange FA5, FA7, FA4, FA6.
4512	Timeout.	Reseat or exchange FA1, FA2. FA2, FA4.
4513	Error during FCB processing.	Reseat or exchange FA1, FA2.
4610	Multisector write ID operational error.	Reseat or exchange FA6, FA3, FA4, FA5, FA2, FA7, FA1.
4611	Write IDs not requested.	Reseat or exchange FA1, FA2.
4612	Timeout occurred waiting for processing.	Reseat or exchange FA1.
4613	Error during FCB processing.	Reseat or exchange FA1, FA2.
4711	Multisector read too slow.	1. Reseat or exchange FA1. 2. Run diagnostics on other adapters and/or disconnect other adapters located on the same board as the disk in question; repair failing adapter. Note: A channel grant problem in another adapter may be affecting the disk operation.

Notes:

1. *Use Figure FA240-1 to identify card and cable locations.
2. Unplug associated cards when checking continuity.
3. TCC W, X, Y, and Z are interchangeable with each other. However, they may be different than those used on other adapters. See Chapter 3, Figures LT140-1 through LT140-3, LT240-1 through LT240-8, LT340-1 and LT340-2 for TCC locations and part numbers.
4. If the unit is available, and the offline tests have not been run, do a power-on reset and run the tests.
5. Record the error message (RREN) for future reference. If there is no failure, go to step 8.
6. The unit must be released by the customer before replacing the $\operatorname{FRU}(\mathrm{s})$ indicated on the MD. Always power the unit down when instructed to reseat or replace a FRU, or check nets for continuity or shorts.
7. For multiple FRU callouts, replace them in the order shown on the MD display because they are listed in the order of failure probability. After replacing each FRU, key 'FWD' and the verification tests are automatically performed.
8. Check FA240 for the error number to be sure that all of the possible FRUs have been replaced. Only the most likely FRUs are listed on the MD display.
9. If replacing the FRU s does not correct the problem, check the continuity of the nets listed for the error number in FA240. Also check each net to ground, there should be no shorts.
a. Open nets are field repairable by installing a BLU/WHT wire to complete the path. First use a test jumper to verify the fix.
b. For a grounded net, check for foreign matter on the board in the area of the net pins. (For example, pieces of wire, nuts, screws, tight wire.)
10. If the failure still occurs, try this action plan one more time starting at step $\mathbf{1}$ before requesting assistance.
11. If the tests run without a failure, loop the tests for five passes (see FA311) or until there is a failure.

- If a failure occurs, go to step 3
- If no failure occurs, terminate the test by entering an ' F ' on the MD and then 'ENT'.

9. If the tests do not fail after five passes, go to FA350,

FA300 Intermittent Failure Repair Strategy

FA310 Adapter-Unique Intermittent Repair Strategy

Intermittent failures may be detected by looping the FA offline tests, or by examining the error log.

FA311 Looping with MAP Interaction to Determine Failures
To loop the disk storage tests, answer "YES" to the question: "Do you want to check o loop the disk storage tests, answer "YE" To the question: "Do you want to check or intermittent failure by looping FA test?" The test loops continuously until an erro is looping, PAFO is displayed on the MD.

If an error is detected while looping, the MAP analyzes and directs repairs of the failure in the same manner as a solid failure. Once a repair action has been performed, the MAP loops the tests to verify the repair.

Note: If an error is not detected after five passes while looping the tests, or if the error detected occurs randomly (test error messages vary), the MAP operation is ineffective and more information is required. Go to FA350
Another option is the free-lance looping operation (see FA313).
FA312 Using the System Error Log to Determine Failures
DPPX and DPCX record in their error logs any DSD failure that occurs during system operation. The error log can be used to select specific failure types or all failures. Obtain all error log records associated with the DSD. Refer to Chapter 2 (CP700 for "How, to Use the Error) Lo", Examine the log to determine the type of failure and FA350 to correct the failure.

FA313 Using the Free-Lance Utility to Determine Failures
The disk storage tests can be looped using the free-lance operation provided by the maintenance device (MD). The test invocation message is PAPN B-11B (see FA210). The test loops continuously until an error is detected or the test is terminated by entering an F on the MD keyboard.

If an error is detected while looping, the MD disp Record the number and go to FA240 to identify and repair the failure. Once a repair action has been taken, loop the disk storage tests for at least five passes to verify the repair

FA330 Error Log Formats and Meanings Used for the FA MAP

The format of the error log depends upon whether the customer is using DPPX or DPCX. For DPPX formats, see FA331; for DPCX, see FA332.

FA331 DPPX Error Log Formats and Meanings
Disk storage failures are stored in the DPPX error log in the Type 5 record format. Only those fields necessary for the FA MAPs are identified. See Chapter 2 (CP700) for complete error log details.

The error log for Class 05, Subclass 01, consists of either Header I or II plus the main body of the Record.

If bit 0 of the Option Mask (Option) $=\mathbf{1}$, then Header 1 is supplied with a time stamp. If bit 0 of the Option Mask $=0$, then Header II is supplied with a sequence number

The BCLE is part of the record of bit 1 if the option Mask = 1 .
The D fields are variable by adapter type.

Header

CLASS 05 SUBCLASS 01 OPTION (5
DATE YY.DDD TIME HH/MM/SS
Header II
CLASS 05 SUBCLASS 01 OPTION (5)
DATE YY.DDD SEQNO. (1)
Record
PA (2) SCA (3) DT (4)
CRC (7) COMPSTAT (8) ARC (9)
DATA (11) RES (12) CNT (13)
IOEP (14) ADWA (15)
CA (16) CPR (17) FRWA (18)
RES (19)
Extended Data
D01 (24) (25) D02 (26) (27) D03 (28) (29) D04 (30) (31) D05 (32) (33) D06 (34) (35) D07 (36) (37) D08 (38) (39) D09 (40) (41) D10 (42) (43) D11 (44) (45) D12 (46) (47) D13 (48) (49)

The following listing describes the error log records used for the FA MAPs:

(1) SEO NO. Sequence Number of the error log record. This part of the Header II format is provided through DISPLAY.ERRLOG f bit 0 of the Option Mask (field 5) $=0$. If bit $0=1$, then Header I is provided with a time stamp. The format of the time tamp is hour/minute/second.
With either header, a data field is provided consisting of the year and Julian date.
Date is only valid when the customer sets it after every IPL
using the SET.DATE command. Time is only valid when the customer runs DPPX with Timer Management and sets the tim after every IPL using the SET.TOD command.
2) PA Physical Adapter Address - Byte 0 of the FRB byte.
(3) SCA Secondary Component Address - Bytes 26, 27 of the RB - N/A
4) DT Device Type - 40D7
(5) OPTION Option Mask - Byte 4 of DPPX Header:

Bit $0-1$ time stamp (Header I)

- 0 sequence number (Header II)

Bit $1-1$ BCLE present
Bit 2 - 1 Extended data present
Bit 3-7 - Specifies format for extended data
7) CRC FDM Request Code (in hex) - Byte 1 of the FRB:
$00=$ Initialize
$\mathrm{OB}=$ Close
$69=$ Diagnose
A $=$ Low priority start
GE = Hold
7A $=$ High priority start
8) COMPSTAT Completion Status - Byte 2 of the FRB

Byte 2 has the following meaning:
Bit 0 - Error Record Indicator
Bit 1 - Reenter
Bit 2 - Reenter FRB Indicator
Bit 3 - Reserved
Bit 4 - Complet
Bit 5 - Error
Bit 6 - Exception
Bit 7 - Attention

Valid entries are

00 - Normal Completion
01 - Program Controlled Interrupt
02 - FRB Busy
04 - Equipment Check
06 - ECC Successful
10 - Program Check
11 - FRB Program Check
19 - Record Not Found

1A - Multisector Count Error
1B - Write Protect Error
20 - Unexpected Interrup
2A - Adapter Parity Err
2A - Adapter Tim
33 - Deek Chec
33 - Data CRC Error - Primary
39 - Data CRC Error - Alternat
3A - ID CRC Error - Primary
3B - ID CRC Error - Alternat
3B - ID CRC Error - Alternate
62 - File Not Ready
63 - Data Unsafe
Note: The values in fields 8 and 9 represent the status of the adapter when it terminated its activity leither successfully or with an error) and returned control to DPPX
(11) DATA Bytes 4-7 of the FRB
(12) RES Reserved - Bytes 8,9 of the FRB - N/A.
(13) CNT Count - Bytes 10,11 of the FRB
14) IOEP I/O Interrupt Entry Point - Bytes 12-15 of the FRB.
(15) ADWA Adapter Work Area Address - Bytes 16-19 of the FRB.
6) CA Channel Address - Byte 24 of the FRB - N/A.
17) CPR Channel Pointer Register - Byte 25 of the FRB - N/A.
(18) FRWA Function Request Work Area Address - Bytes 20-23 of the FRB. Contains address of FDM error log.
19) RES

Error Record Flags - Byte 0 of the FRWA. Defined as:
Bits 0-1 _- Reserved
Bit 2 - Partial Log Indicato
Bits 3-7 - Reserved
Note: If bit 2 is set, then the information in fields D01 through D13 are not complete and not correct

FRB Byte 1 (Retry Count) - The number of retries attempted on the following operation before successful recovery or termination with erro. FRB Byte 2 (completion status) as logged on the initial detection of an error.
FRB Byte 3 (ARC) as logged on the initial detection of an erro
Data handler extended status (see FA233):
Bit 0 - Buffer A to File
Bit 1 - File Speed Good
Bit 2 - Write Protect 1
Bit 3 - Write Protect 0
Bit 4 - Sector Displaced
Bit 5 - Sector Reassigned
Bit 7 - Sector Defective

Residual Sector Count - Residual count of the number of sectors
remaining for a multisector operation that has been terminated
with an error (Bits 10-15).
Data handler basic status (see FA233):
Bit 0 - FCB Processor Error
Bit 1 - Data Handler Error
Bit 2 - CRC Error
Bit 4 - Data Field Error
Bit 5 - Sector Not Found
Bit 6 - Equip Check/Halt
Bit 7 - File Write Gate Error
Seek status (see FA233):
Bit 0
Bit 1 - Tag Sequence Error
Bit 1 - Command Error
Bit 2 - FCB Processor Error
Bit 4 - Cable Continuity O
Bits 5-7 - Seek Status:
000 - No MHS, FHS, RECAL in progress
001 - RECAL begun
010-FHS begun
100 - MHS begun
101 - MHS begun, FHS done
110 - MHS begun, FHS begun
111 - MHS done, FHS begun
MHS = Moving Head Seek
FHS = Fixed Head Seek
Data handler basic status
See D04 (30) above.
Basic status (see FA233):
Bit 0 - Program Controlled Interrupt
Bit 1 - Device Erro
Bit 2 - File Interrupt Disabled
Bit 3 - Busy
Bit 4 - Channel Request Frozen
Bit 5 - Equipment Check
Bit 6 - Requests Enabled
Bit 7 - Interrupt
Data handler basic status
See D04 (30) above.

FCB Processor status (see FA233)
Bit $0-0$
Bit $1-0$
Bits 2-7 (in hex)

00	Idle state.
01	Adapter waiting to make channel request, or continually servicing a hot file interrupt.
03	Waiting for Channel Grant.
04	OP decode state.
05	Waiting for acknowledge signal from Data Handler.
07, OF	Waiting for proceed signal from Data Handler.
11	Incomplete End-Op processing.
27	Incomplete PCI processing.
2 C	Waiting for seek completion before processing
37	End-Op processing delayed by outstanding seek.
38	Multisector error
39	Data Handler error
3A	File error (non-data)
3B	File error (data related)
3 C	Data flow parity error
3 D	Control sample timeout
3E	CHIO equipment check
3F	Control bus parity error
Next Function Request (in hex) - FCB operation being executed.	
Code	Command
0000	End-Op
0800	No -Op
0900	PCI (Program-Controlled Interrupt)
0A0X	Load Burst Register
1000	TIC End-Op
18XX	Load Sector Count
20XX	Read ID Normal
21xX	Read ID Displaced
23XX	Read ID PSC - Normal
24XX	Read ID Compare
26XX	Read ID Immediate
28XX	Write ID
29xX	Write ID Displaced
30xX	Read Sector Normal
34XX	Read Sector Compare
38XX	Write Sector Normal
3CXX	Write Sector Compare
4200	Recalibrate
4xX0	Control Bus - Bit 4 of byte 1 set
5X00	Store Memory Control
60XX	Read Back Check Normal

REA 06-88481

```
*00 Buffer Deack Compare
6X00 Buffer Diagnostic - Bit 4 of byte 1 set
70XX Read CRC
71XX Retrieve
78XX Format
8YYY Seek (Moving Heads)
9YYY Seek (Moving Heads)
AYYY Seek (Fixvd Heads)
CYYY Store New Track (Moving Heads)
    DYYY Store New Track (Moving Heads)
    EYYY Store New Track (Fixed Heads)
YYY bit layout = BBFHHHHC CCCCCCCC
where: BB = 10 = seek
    11 = store new track
        F=1= fixed head select
        0= moving head select
    HHHH= head address
```

ccccccccc $=$ cylinder address
Examples (in hex) :

1. Seek to moving head 5 , cylinder 128	$10000101 / 1$	00101000
2. Seek to fixed head 3 (cylinder address not applicable)	1010011 C	c Cccccccc
3. Store new track moving head 2 , cylinder 167	1100010	101100111
4. Store new track fixed head 7	11110111	c cccccccc

Seek Register:
Bit 0-Reserved
Bits 1-5- Head Address
Bit 6-15- Reserved
Bits 7-15- Cylinder Address

FDM Flags - Condition Flags set by FDM for internal use.
File Status (see FA233):
Bit 0 - Fixed Head Not Selected
Bit 1 - Brake Applied
Bit 2 - Track Not Available
Bit 3 - Command Err
Bit 4 - Data Unsafe
Bit 5 - Seek Incomplete
Bit 6 - Home
Byte 2 - Reserved
File Sense 1 (see FA233):
Byte 1 :
Bit 0 - On Track
Bit 1 - Linear Region Normal and Even

Bit 2 - Index and Sector Pulses Missing	
Bit 3	- Out Direction
Bit 4	- Not Out Drive
Bit 5	- Not In Drive
Bit 6	- Tag Parity Error
Bit 7	- Velocity Profile Error
Byte 2 - Pulsing Information (same bit definition as Byte 1)	
File Sense 2 (see FA233):	
Byte 1:	
Bit 0	- Behind Home
Bit 1	- Missing Clocks $\div 2$
Bit 2	- Not Missing Clocks Error Latch
Bit 3	- Coil Current Low
Bit 4	- Missing Servo Signal
Bit 5	- Off Data Track
Bit 6	- Not Missing Position Error Signals
Bit 7	Counter 5 In Sync
Byte 2 - Pulsing Information (same bit definition as Byte 1)	
File Sense 3 (see FA233):	
Byte 1:	
Bit 0	- Not Shift
Bit 1	- Not (Off Track and Write)
Bit 2	- Inside AGC Window
Bit 3	- Not AGC Freeze
Bit 4	- Demod Pulsing
Bit 5	- Not (Read and Write)
Bit 6	- Not (Servo Protect and Write)
Bit 7	- Invalid Move

Byte 2 - Pulsing Information (same bit definition as Byte 1)

FA332 DPCX Condition/Incident Log Formats and Meanings
Disk storage failures are stored in the DPCX condition/incident log in the Type 5 record Only those fields necessary for the FA MAPs are identified. See Chapter 2 (CP800) for complete error log details.

ype 5 Record

(1)
(2)
$\begin{array}{lllllll}\text { (1)-TYPE } & \text { I-REC } & \text { SEO-XXXX } & \text { PA-XX } & \text { LA-XX } & \text { D1-XX } & \text { D2-XX } \\ \text { D3-XX } & \text { D4-XX }\end{array}$ (4)
D5-PL

(4)		
D5-PL	D6-XX	D7-XX \quad D8-XX
(5)	D9-XXXXXX	
(5)	(6)	(7)
D10-HESC	D11-HSSS	D12-HSBS
(8)	(9)	
D13-HSFE	D14-NANB	D15-SKRG
	(10)	(11)
D16-XXX	D17-FS00	D18-AFAP
(12)	(13)	
D19-BFBP	D20-CFCP	D21-XXXX

D22-XXXX	D23-XXXX	D24-XXXX
D25-XXXX	D26-XXXX	D27-XXXX
D28-XXXX	D29-XXXX	D30-XXXX

Type 5 Record Description

(1) Type 5 Indicates an extended variable incident record.
(2) SEQ A four-digit decimal number (0001-4095). This number identifies
(3) PA A two-digit number indicating the physical address of the FA adapter/device. (See FA113.)

LA
(4) D5 PL - Partial Logout

Bits 0, 1, 3, 4, 5, 6, 7 - Reserved
Bit 2-0 $=$ Complete Logout
$1=$ Partial Logout
(5) D10 Byte $1=$ Data-Handier Extended Status (HE) (see FA233):

Bit 0 - Buffer A to File
Bit 1 - File Speed Good
Bit 2 - Write Protect 1
Bit 3 - Write Protect 0
Bit 4 - Sector Displaced
Bit 5 - Sector Reassigned
Bit 6 - Sector Defective

Byte 2 = Residual Sector Count

Residual Sector Count is not used for intermittent problem determination.

Bits 8-15 Equal the number of remaining sectors for a multisector operation that was terminated with ner
(6) D11 Byte $1=$ Data Handler Basic Status (HS) (see FA233):

Bit 0 - FCB Processor Error
Bit 1 - Data Handler Error
Bit 2 - CRC Error
Bit 3 - ID Error
Bit 4 - Data Field Error
Bit 5 - Sector Not Found
Bit 6 - Equip Check/Halt
Bit 7 - File Write Gate Error
Byte $2=$ Seek Status (SS) (see FA233):

> Bit 0 - Tag Sequence Error Bit 1 - Command Error Bit 2 - FCB Processor Erro Bit 3 - FCB Timeout Error

Bit 4 - Cable Continuity OK
Bits 5-7- Seek Status:
000 - No MHS, FHS, RECAL in progres
001 - RECAL begun
010 - FHS begun

100 - MHS begun
101 - MHS begun, FHS done
110 - MHS begun, FHS begun
111 - MHS done, FHS begun MHS = Moving Head Seek FHS = Fixed Head See RECAL $=$ Recalibrate

Byte 1 = Data Handler Basic Status (HS (See D11 field bits 0-7.)
Byte 2 = Basic Status (BS) (see FA233):
Bit 0 - Program Controlled Interrupt
Bit 1 - Device error
Bit 2 - File Interrupt Disabled
Bit 3 - Busy
Bit 4 - Channel Request Frozen
Bit 5 - Equipment Chec
Bit 6 - Requests Enabled
Bit 7 - Interrupt
Byte 1 = Data Handler Basic Status (HS)
(See D11 field bits 0-7.)
Syte $2=$ FCB Processor Status (FE) (see FA233)
Bit $0-0$
Bit 1
Bits 2-7 in hex:
38 Multisector error
39 Data Handler error
3A File error (non-data)
File eror (data related)
Cata frow pample timeout
CHIO equipment check
Cho equipment check
ext Function Request (in hex)
Hold the FCB operation currently being executed.
Code Command
0000 End-Op
0800 No-Op
900 PCI (Program Controlled Interrupt)
A0X Load Burst Registe
1000 TIC End-Op
1800 Load Sector Count
20xX Read ID Normal
21XX Read ID Displaced
23XX Read ID PSC - Norma
24XX Read ID Compare
26XX Read ID Immediat
28XX Write ID
29XX Write ID Displaced
30XX Read Sector Normal
34XX Read Sector Compare

REA 06-88481

38XX	Write Sector Normal
3CXX	Write Sector Compare
4200	Recalibrate
4XX0	Control Bus - Bit 4 of byte 1 set
5X00	Store Memory Control
60XX	Read Back Check Normal
64XX	Read Back Check Compare
6X00	Buffer Diagnostic - Bit 4 of byte 1 s
71XX	Retrieve
78XX	Format
8YYY	Seek (Moving Heads)
9YYY	Seek (Moving Heads)
AYYY	Seek (Fixed Heads)
CYYY	Store New Track (Moving Heads)
DYYY	Store New Track (Moving Heads)
EYYY	Store New Track (Fixed Heads)

EYYY Store New Track (Fixed Heads)
YYY bit layout $=$ BBFHHHHC CCCCCCCC
where: $\mathrm{BB}=10=$ seek

11 = store new track

$F=1=$ fixed head select
$0=$ moving head select
HHHH = head address
CCCCCCCCC = cylinder address
Examples (in hex):

1. Seek to moving head 5 , cylinder 128	100\|0010	$\text { \|1 } 00101000$
2. Seek to fixed head 3 (cylinder address not applicable)	10100	c cccccccc
3. Store new track moving head 2, cylinder 167 4. Store new track fixed head 7		101100111

4. Store new track fixed head 7
(cylinder address not applicable)

$$
\begin{aligned}
& \text { Bit 0-Reserved } \\
& \text { Bits 1-5 - Head Address } \\
& \text { Bit } 6 \text { - Reserved } \\
& \text { Bits 7-15 - Cylinder Address }
\end{aligned}
$$

Byte 1 = File Status (FS) - (in hex) (see FA233): Bit 0 - Fixed Head Not Selected Bit 1 - Brake Applied
Bit 2 - Track Not Available
80
40
Bit 2 - Track Not Availabla
Bit 3 - Command Error
20
$\begin{array}{ll}\text { Bit } 5 \text { - Seek Incomplete } & 08 \\ 04\end{array}$
Bit 6 - Home
Bit 7 - Not Ready08
04

Byte 2 = Reserved
Byte $1=$ File Sense 1 (AF) - (in hex) (see FA233): Bit 0 - On Track Bit 1 - Linear Region Normal and Even $\quad \begin{aligned} & 80 \\ & 40\end{aligned}$

Bit 2 - Index and Sector Pulses Missing	20
Bit 3 - Out Direction	10
Bit 4 4 - Not Out Drive	08
Bit 5 - Not In Drive	04
Bit 6 - Tag Parity Error	02
Bit 7 - Velocity Profile Error	01

(12) D19

Byte $2=$ Pulsing Sense 1 (AP) (same bit definition as Byte 1) Byte 1 = File Sense 2 (BF) - (in hex) (see FA233):
Bit 0 - Behind Home
Bit 1 - Missing Clocks $\div 2$
Bit 2 - Not Missing Clocks
it 2 - Not Missing Clocks Error Latch
it 3 - Coil Current Low
Bit 5 - Off Data Track
$\begin{array}{ll}\text { Bit } 6 \text { - Not Missing Position Error Signals } & 02 \\ \text { Bit } 7 \text { - Counter } 5 \text { In Sync } & 01\end{array}$
Byte $2=$ Pulsing Sense 2 (BP) (same bit definition as Byte 1)
Byte 1 = File Sense 3 (CF) (see FA233):
Bit 0 - Not Shift
Bit 1 - Not (Off Track and Write)
Bit 2 - Inside AGC Window
Bit 3 - Not AGC Freeze
Bit 4 - Demod Pulsing
Bit 5 - Not (Read and Write)
Bit 6 - Not (Servo Protect and Write)
Bit 7 - Invalid Move
Byte 2 = Pulsing Sense 3 (CP) (same bit definition as Byte 1

FA340 How to Use the Error Los

The procedure for examining the error log depends upon whether the customer is using DPPX or DPCX. For the DPPX operating system, see FA341; for DPCX, see FA342

FA341 Using the DPPX Error Log
Examine the error log for the failing DSD. Using FA331 (DPPX Error Log Formats and Meanings) identify the latest error log with a complete logout of the most frequent failure type (Field DO1 = hex 00XX for a complete logout and hex 20XX for a partial logout) Also a complete logout has valid pulsing bits in Fields 45,47, and 49. If there are no complete logout records, use the latest partial logout record. When instructed to by the MD display, enter the requested data fields from this error log. The MD will display the action plan. To verify the repair, return the system to the customer. Obtain a new error \log after the customer has used the system. End the repair action when there are no FA failures in the error log.

FA342 Using the DPCX Condition/Incident Log
Examine the condition/incident log records for the failing DSD. Using FA332, identify the latest condition/incident log with a complete logout of the most frequent failure type (Field D5 = hex 00 for a complete logout and hex 20 for a partial logout). Also a complete logou has valid pulsing bits in Fields D18, D19 and D20. If there are no complete logout records, use the latest partial logout record. When instructed to by the MD display, enter the requested
data fields from this log record. The MD will display the action plan. To verify the repair, return the system to the customer. Obtain a new error \log after the customer has used the system. End repair action when there are no FA failures in the error log.

FA350 Action Plan to Correct Intermittent Failures
This procedure assumes that there is an intermittent hardware failure. It is also possible, however, that the problem may be a defective/intermittent ID or data field on the customer surface. Since the diagnostic tests utilize only the CE track (359), customer surface problems will not be detected. In such cases, it is recommended that the Surface Status and For mat utility be run on the entire file (refer to CP653)

1. The offline tests should have been run.
a. If they have not been run, go to FA250
b. If there were random errors, go to step 2
c. If the tests were looped without error for five passes, go to step 8 .
2. Obtain the error log for failing DSD physical address (PA). Refer to Chapter 2 (CP700 for DPPX; CP800 for DPCX) for information on obtaining the error log.
3. Enter into the MD the information from the latest complete logout record of the mos frequent type of failure (see FA340). If there are no complete logouts, use the latest partia logout.
4. The MD display recommends FRU replacements or possible causes of failure in the order of probable cause. Replace and record the FRUs. (If, after all recommended FRUs have been replaced, the problem still exists, request aid.)
5. Loop the tests for five passes. Enter " F " into the MD keyboard to end looping. If there is a failure, the MD will continue prompting.
6. Return the system to the customer.
7. End Repair action when there are no more DSD failures in the error log after a satisfactory period.
8. If the drive has fixed heads installed, run Routine 50 in free-lance mode (this is a special test for "write" capabilities of the fixed heads). If there are no fixed heads or Routine 50 runs without error, go to step 2.

This Page Intentionally Left Blank

FA400 Signal Paths and Detailed Operational Description

This section contains card socket wiring charts, board and card jumpers, and detailed operational description.

FA410 Card Socket Wiring Charts

This section shows the card pins and associated line names. Where possible, input/output directions are shown with arrows. See FA111 for card locations.
FA1 FCB Processor Card

FA2 Data Handler Card

SCF	+ gate bus driver on (VE)	G10	D07	- DH stat bit P	FA1
SC5	- system reset	G09	D12	- DH stat bit 0	FA1
SC5	- release	${ }^{13}$	D10	- DH stat bit 1	fal
FA1	-4V reg	B13	D06	- DH stat bit 2	FA1
FA1	+ 9 MHz	S10	B10	- DH stat bit 3	fal
FA1	+ file bus degate	${ }^{12}$	D11	- DH stat bit 4	FA1
FA3	1 Fread clock	G07	B02	- DH stat bit 5	fal
FA3	1 F write clock	J06	в09	- DH stat bit 6	FA
FA3	+ NRZ data	608	D02	- DH stat bit 7	FA1
FA3	+ write gate return	м04	G12	-clock ring reset	FA1
FA5	- index	во3	M02	+ continuity from cntl	FA1
FA5	- sector	D04	J09	- fast sync	fa 3
FA5	- sector pulses missing	D09	$J 11$	- write data	fa3
	+ write load (TP)	${ }^{\text {B04 }}$	G13	- write	fa4
		- 805		- read	FA4
	+ gate P clock (TP)	[${ }^{807}$		ground	
		B08	G05	-tie down	
	+ select clock (TP)	\square^{812}	m03		
		- ${ }^{\text {d }} 13$	U10		
		- 602			
		$\left[^{\text {G02 }}\right.$			
	+ byte start (TP)	[${ }^{\text {J2 }}$			
		[310			

Volts
Vols
$P A+5$ VDC
$P A+8.5 V C$ $P A+8.5 \mathrm{VDC}$
$\mathrm{PA}-5 \mathrm{VDC}$ PA - 5 VDC
PA Ground (TP) $=$ test point

Pins
D03, J03, P03, U 03 B11, G11, M11, S 11 B00, G06, M06, S06
D08, 008 , P08, Yo8

FA4 Logic Card 1

[^0]| FA3 | buffered analog data A | воз | G03 | + servo VCO inhibit | FA3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FA3 | buffered analog data B | D02 | G12 | 2 F write clock | fa3 |
| FA3 | data servo 2 F burst | G08 | D09 | - outside AGC window | FA4 |
| FA4 | - even | J06 | J13 | + off data track | fa4 |
| fa5 | + enable mark detect | G04 | B13 | data PES | FA7 |
| fa5 | - osc early | G07 | G02 | + select demod A (TP) | |
| FA5 | + shift reg clock | G10 | G11 | -B (TP) | |
| FA5 | + head change gate | D11 | G09 | - D (TP) | |
| FA5 | + enable servo sample | J04 | 809 | - G (TP) | |
| fas | - osc late | J07 | D04 | AGC ref (TP) | |
| FA7 | VTP 1 ref | 804 | D05 | + 6 volts (TP) | |
| FA7 | + on track | G13 | D06 | linear data signal (TP) | |
| fa7 | -7 volts | D10 | D07 | + select gain adj (TP) | |
| FA7 | - dedicated sw PES | D13 | J02 | + demod 8 (TP) | |
| | + AGC control (TP) | 802 | J05 | - counter run (TP) | |
| | VCO (TP) | B05 | J09 | - bit 0 (TP) | |
| | reses bucket | 807 | J10 | + enable data (TP) | |
| | linear data sig (TP) | B08 | J11 | - enable data (TP) | |
| | - reset cap (TP) | B10 | J12 | 2 F write clock (TP) | |
| | + positive zero crossing (TP) | | | | |

Volts
$P A+5 V D C$
$P A+12 V D C$

PA Ground
PA
VA

PA -4 VDC
$\mathrm{PA}-12 \mathrm{VDC}$
A -12 VDC
Pins
B11,
D08, 108
Din
B06, GO6
D12

FA8 Voice Coil Motor (VCM) Drive Card

Pin connections and signal titles for both the fixed and moving head flat cables are shown.

Card Gate with Cover Removed, Showing (MH) and (FH) Plug Positions
(FH) is installed only when the fixed head feature is installed.

Top Card Connectors W, X, Y, and Z						
- dh valid	\longleftarrow	W22	W02	\rightarrow	- dh csr	
- dheoc	\leftarrow w	W23	w03	\rightarrow	- sync clk (b)	
- sync clk (c)	\rightarrow w	W24	w04		+ ground	
+ dflow bus bit 2	\rightarrow w	w25	w05	\leftarrow	+ dflow bus bit 7	
+ spiral 1	\rightarrow w	w26	W06	\longleftarrow	- sampled td	
+ dflow bus bit 5	\rightarrow	W27	w07	\leftarrow	- td sync	Top Card Connector
- gt in status	w	W28	w08	\leftarrow	+ spiral 2	(Pin Side)
- ${ }^{\text {ctl csr }}$	\rightarrow	W29	W09 W10	\longleftarrow	- sync clk (b)	\bigcirc - $0-1020$
- + ground	\rightarrow	W31	W11	\longleftarrow	+ difow bus pty	$0-100^{22}$
+ dflow bus bit 6	\rightarrow w	W32	W12	¢	+ $\mathrm{gt} \mathrm{dh} \times \mathrm{st}$: : $:$
+ dflow bus bit 1	\rightarrow w	w33	W13	\leftarrow	- dhi 0	: : \quad :
+ dflow bus bit 0	$\rightarrow \times$	$\times 22$	$\times 02$	-	+ dflow bus bit 4	
- nfr sel	$\longleftarrow \times$	$\times 23$	$\times 03$	-	+ skip factor 1	
- dhi 1 + dflow bus bit 3	\rightarrow	$\times 24$	$\times 04$		+ ground	
+ dflow bus bit 3	\rightarrow	$\times 25$	$\times 05$	\rightarrow	-dhct//ops 0	
- sync clock (p) + cs attached	$\stackrel{\text { x }}{ }{ }^{\text {x }}$	$\times 26$ $\times 27$	$\begin{aligned} & \times 06 \\ & \times 07 \\ & \times 07 \end{aligned}$	\rightarrow	+ dfio sel	connected to the
$+\mathrm{xxxb} \mathrm{clki}$		$\times 28$	$\times 08$	\leftarrow	- proc window 1	corresponding pin on
+ buffer rd	$\longleftarrow \times$	$\times 29$	x09	$\xrightarrow{ }$	- proc busy	the other card.
- time out	$\longleftarrow \times$	$\times 30$	$\times 10$	\rightarrow	- xxx clock	Example:
+ ground		$\times 31$	$\times 11$	\longleftarrow	- equipment check	
- file window	\longrightarrow	$\times 32$	$\times 12$ $\times 13$	$\stackrel{ }{\longleftrightarrow}$	+ dfhi sel	FA1 W02 to FA2 W02 FA1 $\times 22$ to $\mathrm{FA} 2 \times 22$
- xxx clock	$\longleftarrow \times$	$\times 33$	$\times 13$		- proc window 2	FA1 $\times 22$ to $\mathrm{FA}^{2} \times 22$ FA1 Y33 to FA2 Y33
reserved	Y	Y22	Y02	\longleftarrow	+ burst reg bit 1	FA1 213 to FA2 213
reserved	Y	Y2	Y03	\longrightarrow	+ cable continuity out	
- proc lo int 15	\rightarrow	Y24	Y04		+ ground	
- pty proc lo	\leftarrow	Y25	Y05	\rightarrow	- pty prochi	
- RWS hi int 7	\longleftarrow	Y26	Y06	\rightarrow	- RWS hi int 6	
- proc to int 13	\rightarrow	Y27	Y07		+ burst reg bit 2	
- RWS lo int 5	\longleftarrow	Y28	Y08	\leftarrow	- reset	
- RWS lo int 7	\leftarrow	Y29	Y09	\leftarrow	- proc lo int 14	
- RWS lo int 6	\leftarrow	Y30	Y10	\longrightarrow	- RWS hi int 5	
+ ground	\bigcirc	Y31	Y11	\longleftarrow	- prochi int 7	
- prochi int po	\rightarrow	Y32	Y12		- prochi int 6	
- proc hi int 5	\rightarrow	Y33	Y13		- proc lo int p1	
- proc hi int 3	\longrightarrow	222	202	\longleftarrow	- proc lo int 11	
- proc lo int 10	\rightarrow	223	203	\longleftarrow	- proc hi int 4	
- proc lo int 9	\rightarrow	224	204		+ ground	
- proc lo int 8	\longrightarrow	225	205	\rightarrow	- RWS 10 int 3	
- RWS hi int 4	\longleftarrow	z26	206	\rightarrow	- RWS hi int 3	
- prochi int 0	\longrightarrow	227	207	\rightarrow	- RWS hi int 2	
+ burst reg bit 4	$\rightleftarrows{ }^{2}$	228	208		$\stackrel{\text { reserved }}{ }$	
- RWS hi int 0	\leftarrow	230	210	$\xrightarrow{\longrightarrow}$	- RWS lo int 4	
+ ground		231	211	\longrightarrow	- RWS lo int 1	
- RWS lo int 2	\longleftarrow	232	212	\longleftarrow	- proc lo int 12	
- proc hi int 2	\longrightarrow	233	213		- prochi int 1	

FA420 Adapter to Disk Drive Interface Description

Control Bus (CC)
Control Bus Bits 0-7 and Parity. This section of the control bus is used to transfer data to and from the DSD. The decode of the three tag bits determines the significance and direction of data flow. Parity is checked by the DSD for incoming data and generated for outgoing data.

Tag Bus Bits 0, 1,2 and Parity. The three tag bus bits are decoded to eight control lines as shown in the table below:

Tag Bits			
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	
0	0	0	
0	Interrupt Control		
0	0	1	Head Selection
0	1	0	Track Selection
1	1	1	Diagnostic Wrap
1	0	0	Sense
1	0	1	Diagnostic Sense 1
1	1	0	Diagnostic Sense 2
1	1	1	Diagnostic Sense 3

Tag 000 Interrupt Control. The 000 and bit 1 on the bus suppresses the 'seek complete interrupt. Tag 000, and not bit 1 , resets the condition. Any suppressed interrupt will now become active.

Tag 001 Head Selection (Seek Control). Tag 001 gates control bus bits 5-0 to the head address register. Bit 7 is gated to the desired address register bit 256. Bit $\mathbf{6}$ is unused.
Tag 010 Track Selection (Required Address). Tag 010 gates the control bus bits 7-0 into the desired address register bits 1-128 respectively
Tag 011 Diagnostic Wrap Back. Tag 011 gates the low order bits (1-128) of the desired address register, back to the control bus for wrap around transmission back to the using system.

Tags 100, 101, 110 and 111. These tags gate sense and status information onto the control bus. For details of sense and status lines, see FA233.
'- Control Sample Received'. This line is activated by the DSD after it reads the tag lines and, if necessary, the control lines following a 'control sample' signal from the system controller.

- - Control Sample' (Input to DSD from System). The control bus is looped through up to four DSDs and the information carried is available to them all. '- Control sample' can only be active on one DSD at any time and is ANDed with the 001 or 010 tag decbdes to gate head or track selection into the correct DSD.
'- Control sample' also generates '+ enable bus' for any tag other than 001 or 010 which gates sense and status to the control bus.
'+ Interface Driver Degate'. This line disables the control bus, control bus parity, and control sample received.
- Reset Error'. This line is used to reset the 'data unsafe' or 'command error' sense bits. It may also be used to clear an interrupt.
-- Write'. This line activates the 'write' circuits in the DSD. It causes the 'write' curren source to be turned on
-- Read'. This line with 'data select' causes the data separator to decode data read from the disk, and present it on the 'NRZI' data line.

Note: '- Write' and '- read' are mutually exclusive. An error interrupt occurs if they are both active at the same time.
-- Data Select'. This is only active in one DSD at any time. It is used to gate '- write' or '- read'.

- Write Data'. This is serial binary data for writing to the disk. '- Write data' is synchronized with '- write clock'.
'- Fast Sync'. This line must be activated to synchronize the data separator:

1. Before Reading ID
2. Before Reading Data
3. For Displaced Sector ID

Output Lines from DSD to System
‘- 1F Write Clock'. Synchronized to servo clock, pulses from the servo surface '- 1 F write clock' are used by the using sy stem to synchronize write data
'- Read Clock'. Derived from raw 'read' data by the data separator.
'+ NRZ Data' to System. This line is the output from the data separator denoting 1's by an up level, and 0 's by a down level.
-- System Index'. - System Index' indicates the track start to the using sy stem. It is derived from data in the dedicated servo area just prior to the start of the first sector on any track.
-- System Sector'. '- System Sector' is similar to '-system index' but indicates the start of all sectors after the first. It is derived from the dedicated servo area

- Sector Pulses Missing'. This indicates to the using system that the DSD failed to detect one or more sector or index pulses at the time that one was expected
-- Interrupt'. An Interrupt is raised by any one of the following:
- Seek Incomplete
- Not Ready
- Data Unsafe
- Command Error
- Brake Applied
- Track Unavailable
'+ Write Gate Return'. This indicates to the using system that the write current has been switched on.
'+ Dedicated Ready'. This indicates to the system that the DSD is 'ready'.

Individual Cabling Via Voltage Crossovers

- Power Good'. This is active only when all power lines are within tolerance. When inactive, it causes the DSD brake to be applied immediately.
'+ Brake Applied'. This indicates to the system that the brake has been applied eithe due to an unsafe or error condition, or due to brake failure. The sy stem will respond by removing ac power from the motor within 5 seconds of ' + brake applied' becoming active.

FA440 Jumpers

FA441 Board Jumpers
The only board jumper used is the file degate jumper from C-A1A5B12 to C-A1A5B13. This jumper must be installed for proper disk operation. However, the MD instructs you to remove it for certain tests.

FA442 FA4 Logic Card 1 Jumper

Jumpers A must be installed
for proper operation.
The FA6 Servo 1 card is located in 01X-A1E2.

FA450 Detailed Data Flow and Operational Theory

FA451 Data Flow Diagrams
Figure FA451-1 shows the adapter data flow. Figures FA451-2, FA451-3, and FA451-4,
respectively, show data flow for a seek operation, a read/write operation, and for error
detection and safety circuits.

Figure FA451-1. Adapter Data Flow Diagram

Figure FA451-2. Data Flow Diagram, Seek Operation

Figure FA451-3. Data Flow Diagram, Read/Write Operation

Figure FA451-4. Data Flow Diagram, Error Detection and Safety Circuits

File Adapter

Function Definition Module (FDM). System code builds Functional Control Block (FCBs), which are queues of functions to be executed by the adapter. System code then requests the FDM to execute the FCB. The FDM issues the appropriate commands to the adapter hardware to cause it to fetch the enqueued functions from the FCB. The adapter hardware makes the necessary data transfers and interrupts bac to the FDM when all functions in the FCB have been executed.

Function Control Block Processor Card (FA1). The FA1 card communicates with the FDM through commands and status. It also fetches operations from the FCB, controls seeking and sensing of the drive, causes the data handler to initiate data transfer operations, and maintains adapter status.

When an operation is fetched from the FCB, the FA1 card decodes it and causes the necessary actions to occur to complete its execution. Once the action is initiated, the FA1 card may fetch the next FCB operation to allow overlapped operations (that is, fixed head data transfers and a moving head seek).
back to the FDM.
Data Handler Card (FA2). When the FCB processor determines that data transfer to ar from the drive is required, the FA2 card is activated. The FA2 card monitors the position of the head with respect to the disk. The Physical Sector Counter (PSC) in the FA2 card is able to predict the next physical sector on the track. The sequence control logic inspects the FCB operation and, at the correct sector count, verifies the ID (in the case of a read or write of a data field), and executes that read or write operation

Two 256-byte data buffers reside in the FA2 card. While one buffer is receiving one dat field from the drive (or processor), the other buffer may be transmitting to the processo (or rive). With in the FA2 card, Cyclic Redundancy Check (CRC) data is checked and generated and correct parity is maintained on the data

When the transfer of one field is completed, the FA2 card requests the next function from the FCB processor. In this fashion, a read (or write) of all 64 data fields on a track may occur within one revolution

The $D E$ is a sealed unit that contains the read/write components, actuator, spindle, and me of the DE electronics. This unit is available in 3 - and 6 -disk models as shown in Figure FA452-1. The DE drive motor, spindle brake, and the remainder of the elec tonics are attached to the DE base casting

Six-Disk Model

Three-Disk Model

Figure FA452-1. Disk Configurations

Depending on the type of DE , either three or six disks are clamped onto the spindl hub. A fourth (dummy) disk is fitted on the end of the three-disk spindle to assist the closed air circulation system.

The spindle is coupled to the drive motor by a belt that runs on the spindle and motor pulleys. If the $D E$ is switched off or power fails, a mechanical drive brake operates gainst the spindle pulley to control deceleration of the disks. The brake also prevents against the spindere pulley
disk rotation during transit.

The spindle and the conductive belt are grounded to the DE frame through antistatic brushes attached to the DE casting

The moving heads are attached to the end of each arm of a pivoted arm actuator. See Figure FA452-2.

Because the head-to-disk spacing is small, contamination prevention is important. Therefore, a closed-air circulation is used in which blades on the spindle hub continually circulate air through an absolute filter. A breather filter controls air pressure during startup, and ambient temperature changes.

A rectangular coil is attached on the opposite side of the actuator pivot within a twogap magnet, and current in the coil causes the heads to move in an arc across the disk surface.
Servo tracks on one disk surface are read continuously by the dedicated servo head and provide information to enable a closed loop servo system to be used for accessing.
Additional servo information is contained in each sector of the data tracks on all disk surfaces. This sampled servo information supplements the dedicated servo for fine control of the data head position when on track and during read or write operations.

Preamplifiers for servo and data heads and head section circuits are mounted on the actuator close to the heads, together with write driver circuits. During start and stop eycles, the actuator retracts the heads to the guard band area on the disk surfaces.

A retract spring pulls the heads to the landing zones if loss of disk speed occurs or if the actuator power supply fails. A magnetic catch on the actuator holds the heads over the landing zones in a normal power-off state.

A mechanical lock is provided for locking the actuator in the retracted position during removal and installation of the DE or transit of the DSD.

Figure FA452-2. Actuator

The disks rotate at a nominal 3125 revolutions per minute. A single head flies over each disk surface. To minimize wear of the disks and heads, the start and stop times are controlled by the drive motor and drive brake.
The disk surface nearest the base casting is dedicated to the servo head. The remaining surfaces each have a data head. Up to eight fixed heads can be fitted in place of the data head nearest the base casting. Each fixed head remains permanently over its own data track.

Note: Fixed heads land on the data track and, for this reason, it is recommended that any permanent data be rewritten by the customer after a maximum of 20 power on/ off cycles.

The DSD format is written so that there are two data records of 256 bytes.

Track Format. The number of tracks on each disk data surface is 376 . The band of 16 tracks closest to the disk spindle forms the guard band, which is behind home. The cylinder home is defined as cylinder zero, and the remaining cylinders are numbered from this cylinder outwards.

Sector boundaries are derived from information permanently encoded within the dedicated servo pattern under the zero head. These boundaries are defined by pulses on the dedicated sector line.

Each track is divided into 33 sectors ($0-32$) of 600 bytes. Sector 32 is reserved as an alternate sector to provide backup for defective disk areas. Cylinder 64 is also reserved for alternate sector usage, and cylinder 359 is reserved for maintenance test purposes.

Data Surface. Each data surface (Figure FA452-3) has 360 concentric data tracks, each of which has 32 sectors. A factory-written sample servo used for track following is contained in each sector. Each track has a reserved sector to which failed sectors are reassigned.

When this alternative sector has been used, further reassignment is to track 64, which has been reserved as an alternative track.

Figure FA452-3. Data Surface

Servo Surface. The servo surface (Figure FA452-4) is used for seek operations. It has 360 concentric tracks, with index and sector coding that corresponds to the data tracks on the other surfaces. The guard band has 16 tracks without encoding.

Sector Format. Each sector (see Figures FA452-5 and FA452-6) has a gross length of 600 bytes and is made up of three basic areas:

1. ID area, which contains flag byte, sector, head, track numbers, and cyclic check code.
2. Data area, which contains two 256 -byte data fields.
3. Servo sample area, which is used by the DSD position servo to establish the data Servo sample area, which is used by the DSD position servo to establish the head position over the track. This area is

As shown in Figure FA452-6, a two-byte CRC field is provided for each of the 256 -byte data fields, and a four-byte ECC field is provided for each of the 256 -byte data fields.

Figure FA452-5. Sector Format

Figure FA452-4. Servo Surface

Figure FA452-6. Sector Organization

Spiraling. Large volumes of data are sometimes required to be read or written on sequential sectors and tracks. In these cases, after all remaining sectors on the first track have been written, the next sequential head is selected and writing continues on the next track. A maximum of eight sectors is required for the read/write circuit to stabilize after a head change; therefore to ensure that data transfer can continue with the minimum interruption, sector addresses on each succeeding track are displaced by ight sectors (see Figure FA452-7). This avoids the requirement to wait for a full disk rotation before restarting the read or write operation. Fixed heads do not follow this principle as they are not intended for use with bulk data.

Figure FA452.7. Spiraling

Defective Sector Handling. Occasionally, defects in the disk surface will cause a sector to be unu sable for normal operations. These surface defects may occur at any time, although originally they are detected and flagged during the manufacturing process.
Section 32 on each track is reserved as an alternate for the first defective sector on that Section 32 on each track is reserved as an alternate for the cylinder 64 is reserved as an alternate for any subsequent sector failures.

When the first defective sector is identified, the sector number in the address bytes is changed to 32 and the flag byte 6 is set. All subsequent sectors will be reassigned so that the defective sector will now occupy the space currently occupied by the next sequential ector, and sector 32 will be occupied by sector 31. All sectors that have been moved in his way have bit 4 set in the flag byte (Sector Displaced) and the sector address changed to show the new sector assignment.

Any subsequent defect on the same track will have bits 6,5 , and 4 set in the flag byte Sector Defective, Reassigned, and Displaced respectively). Its address also is exchanged with that of the first available sector on cylinder 64 using the same head (see Figure FA452-8).
the defect on any sector prevents reading of the ID field, then the whole ID field is rewritten 64 bytes later on the sector. If this area is also defective, then provision is made for the ID field to be written 256 bytes later instead. Bits 5 and 7 are set in the flag byte (Sector Reassigned and Alternate Sector).

igure FA452-8. Example of Defective Sector Reassignment

Flag Byte. Bits 4 through 7 have been described previously under Defective Sector Handling. Bits 0 and 1 (Defective Fields 2 and 1) indicate the location of a defect to the first or second data field in 256 -byte mode. Bits 2 and 3 (Write Protect Fields 2 and 1) directly identify sectors that contain protected data which must not be overwritten

Seek

 with dense packing of data tracks on each surface, any minor misalignment between data heads and data track cannot be tolerated.Final access positioning, therefore, is controlled by short bursts of servo information written at the start of each sector. The servo head may therefore be marginally off track, but the data head is correctly aligned at all times.

The sample servo error signal is reset to zero at the end of each sector, and is set by the sample servo electronics to its required level every time a sector or index area passe under the selected read head.

Dedicated Servo. A seek operation is initiated by two commands on the logic card control bus. The adapter places the binary equivalent of the low-order eight bits of the desired address on the control bus, and encodes a tag of 010 to the tag bus.

After permitting the two buses to stabilize, the adapter activates the control sample, which permits the tag bus register to accept the tag code. The tag code is decoded and (256) on bus to tosird address regist, bis 1 12. The is der gates the head address data to the head address register.

The desired address is compared with the current address position, stored in the absolute address accumulator by the subtractor. At the same time, the decode verifies he validity of the address required and raises track unavailable if the track requested is outside the usable track address. Track unavailable is combined with parity inhibit set seek, thereby preventing an attempt to seek under error conditions.

The desired and absolute addresses are compared in the subtractor. The lower of the wo addresses is subtracted from the higher, and the difference count obtained. The count is equivalent to the number of tracks that have to be crossed for the access arm to arrive at the desired address.

Any output from the subtractor other than all zeros activates shift. This indicates to the access logic that the heads are not positioned at the required track.
Internal carry lines in the subtractor determine the direction of subtraction. If the absolute address is higher than the desired address, the subtraction is absolute addres minus the desired address. The -carry 256 signal from the subtractor controls th direction of access motion.

To obtain the fastest possible movement of the access arm, the voice coil motor is driven at its maximum possible acceleration for as long as possible, then decelerated quickly to a stop immediately over the desired track without overshooting or undershooting. Because each successive access move can vary in length from 1 to 359 tracks, a very sophisticated servo control system is necessary.
or any access length, the actuator is driven at maximum acceleration until its velocity exceeds the velocity profile. From that point until the completion of the access, the actuator velocity is controlled to follow the profile. The velocity profile is stored as 512 words in a read-only storage (ROS) module.

At all times during the course of an access, the DSD calculates the distance of the actuator from the desired track by taking the difference between the absolute track address and the desired track address. This difference is updated at $1 / 4$ track intervals and used to address the ROS. On long accesses, when the difference exceeds 512 quarter tracks (that is, 128 tracks), the ROS address is forced to 511.
he ROS output feeds a digital-to-analog converter so that, as the difference count decrements from 127 to 0 , a graduated output is produced that corresponds to the esired velocity profile. To compensate for mechanical and electrical tolerances, and velocity generator is variable and controlled by the profile gain voltage.

Profile gain voltage is generated all the time that power is available to the DSD. The maximum access performance of the DSD is obtained by calibrating the profile gain voltage using the following sequence:

1. Recalibrate - This causes the DSD to access to the home position with head 1 selected
2. Seek to track 128 with head 1 selected - During this 128 -track seek, the velocity profile is compared with the true velocity of the access arm.

The counter increments until the velocity is not greater than profile or until the counter is full.
A compensation coil in the DE minimizes drift caused by temperature variations. The compensation coil is made of the same material as the voice coil motor windings. There fore, any resistance changes in the compensation coil mirror those of the voice coil and provide corresponding compensation to the analog circuits.

One further offset to the desired velocity is provided by the handover velocity. The handover velocity is recalibrated automatically after a calibrate operation, and sets the slow seek timing for the last $1 / 4$ track of a seek operation.

The access arm is forced to seek in two-track increments. The time taken is compared in a slope detector block against a reference voltage. If the time is less than 1.9 ms , the counter, previously preset to 7 , is decremented, and the cycle repeated until the time is equal to or greater than 1.9 ms , or until the counter has reached 0 .

When the access arm has reached the desired address, + seek is deactivated and, after suitable delay, seek complete is activated. This raises an interrupt that signals to the adapter that the operation is completed.

Read/Write

A prerequisite for any read/write operation is that one, and only one, read/write head must be selected.

Control bus bits 1 through 5 are gated into the head address register by a tag decode of 001. These five lines are then converted to five module-select lines by the head-select decode logic. Module-select lines 1 through 3 are routed directly to the DE logic circuit through the (MH) cable

Note: The DE contains up to five modules each capable of driving up to four heads.
When a module select line is activated, the positive supply is gated to the appropriate module. Decoding the head select pair then gates the selected head.

Each module contains the following: four write drives, four read preamplifiers, a common read output amplifier, head selection logic, read/write selection logic, and safety circuits.

The DE does not reject invalid codes. However, the safety circuits indicate an erro condition if a write operation is attempted on an invalid head.

The read/write heads are center-tapped, and the center tap lines are connected together A read or write operation is controlled by the center tap of the selected head. A plus level on the center tap line provides the current for writing; a zero level provides the necessary grounding for a differential output while reading.

Read and write signals pass to and from the module through the actuator I/O lines (or fixed-head I/O lines on a fixed head DE).

Write Data. Write data from the dedicated cable enters a four-bit shift register and is clocked through the shift register by a clock pulse derived from the write clock. The our bis of the sht regiser are fod a fter feding through the signa bus amplifier modules, is passed to the moving and fixed heads for writing by the selected head.

Precompensation in the encoder is a technique used to counteract timing errors that occur in the read signal caused by the high density of data on the disk surface. In principle, as the data flows through the shift register, bit 3 of the shift register is the bit being wrritten, bit 4 is the bit that was written previously, and bits 1 and 2 are yet to be written. The timing logic supplies the encoder with three clock lines at $2 F$ frequency, 2 F early, 2 F on-time, and 2 F late; early and late are approximately $\pm 9 \mathrm{~ns}$ from the on-time signal.

The encoder examines the four bits in the shift register and, from the 16 possible bit combinations, decides whether bit 3 should be written on the disk on time, late, or early and uses one of the three 2 F clocks to achieve this. Write data is also fed to the head circuits during a write operation for test purposes.

Read Data. Any time that a head is selected and not writing, it is reading data from the disk. Read data is amplified within the $D E$ and passed by the actuator I / O line to the signal bus amplifier for further amplification. Two outputs are available from this stage: the first provides sample servo input; the second is amplified again by a variable gain stage that provides a differential output at a constant level, regardless of the input variations.

Figure FA452-9 shows the expected output at this point D13 or B13. Synchroniza tion is provided by the system sector line. The figure shows a full scan across one sector using a delayed $10: 1$ sweep on a time base of $0.2 \mathrm{~ms} /$ division.

Figure FA452-9. Sector Scan

The data -V detector extracts timing information from the differential output of the amplifier by detecting the signal peaks. Each peak produces a pulse output that is fed o the voltage controlled oscillator (VCO) sync control logic. VCO sync logic controls the following operations:

1. The VCO is synchronized with the incoming data stream in frequency and phase The phase discriminator detects differences in phase between the oscillator and the data stream, and raises or lowers the control voltage to the oscillator, through the charge pump, to keep them in step. The servo inhibit VCO line stops the oscillator during the sample servo area. Rapid changes in operation cause the vCO to go out of sync; the controller, therefore
2. Fast sync momentarily stops the oscillator and restarts it in proper synchronism with the data stream so that control can be rapidly resumed.
3. The VCO output is used by the data separation circuits (MFM decoder and NRZ data generator) to time the extraction of data from the data stream. NRZ data applied to the controiler in the using system in serial mode together with a read clock to drive the deserializer

Error Detection and Safety Circuits. Comprehensive error detection is provided by the DSD, and write operations are immediately inhibited if any unsafe condition is detected while writing. Recovery actions, however, must be handled by the adapter.
hirty-two status and sense conditions are available to the 8100 system, in groups of解t. By selecting the appropriate tag ($00,101,110$, or 111), the 8100 system can gate the selected group in the control bus out register.

Provided that the degate bus and power-on delayed are not active, the contents of the register will be gated to the control bus.
sense Cycle. Certain conditions will cause an interrupt to be raised. This interrupt may esult from (1) the normal completion of an access, head select, recalibrate, or powerup sequence, or (2) alternatively, as a result of DSD error condiitions such as not ready, data unsafe, command error, track unavailable, or brake applied.
The issue of an interrupt by the DSD is serviced by a control bus sense cycle with tag code 100. Further sense cycles may then be initiated with tag codes 101, 110, and 11 orovide further sense information if the tag 100 sense indicated an error condition.

The 8130/8140 Processor or the 8101 Storage and I/O Unit supplies and sequences the and dc power to the DSD. The basic sequence in Figure FA452-10 applies

Notes
. The ac power to the gate cooling fan must be on any time that dc power is supplied to the logic cards to prevent overheating of the electronic components.
2. The brake is retracted when dc power is applied and - power good is at dc-ground level. This should occur within $\pm 500 \mathrm{~ms}$ of ac power being applied to the driver otor.
brake failure occurs, that is, the brake is released, ac power is removed from the Storage and I/O Unit.
3. The ac power is not applied to the drive motor unless dc power to the gate is on and within tolerance.
4. - Power good is applied to the DSD (VC-1) and indicates that the dc voltages are within tolerance at the user system, and that ac power is applied to the DSD drive motor. When power goood goes active (that is, to ground level), it provides the dc round for the brake electromagne
Power good must be active within $\pm 500 \mathrm{~ms}$ of ac power being applied to the drive motor
5. The DSD issues an interrupt within 25 seconds of power good being active. Power good is filtered by the DSD and used to hold the DSD reset for 17 seconds by -POD. At the end of the 17 -second delay, the DSD effects a calibrate operation and raises the interrupt.
igure FA452-10. Power Sequencin

Power-On Logic Sequence (Figure FA452-11)

1. The ac and dc power are applied to the DSD.
2. Brake applied remains essentially negative to provide a return path for brake current which retracts the brake and permits the spindle to accelerate.
3. -Power good is raised by the processor when dc voltages are within tolerance.
4. -POD becomes active for approximately 20 seconds to permit the disk speed to stabilize at 3125 rpm .
5. CTR 4 comes into synchronization after -POD times out and triggers the kick SS If CTR 4 fails to come into sync before -POD and PLO holdover SS times out brake applied will be raised, the brake will activate, and brake applied to the adapter will be raised. The ac and dc power will then be switched off within 5 seconds.
6. -Kick SS applies maximum acceleration to the actuator arm for 10 ms to move the actuator arm into the data area.
7. During the initial access movement, CTR 5 comes into synchronization.
8. + Seek is raised with the kick SS cycle and is lowered when the actuator comes to rest.
9. -Seek complete initiates a recalibrate cycle.
10. At the completion of the recalibrate cycle, home and ready become active and an interrupt is raised.
11. During this recalibrate cycle, handover velocity (HV) is calibrated. This is an analog voltage that should set to a similar level each time the DSD is powered up.

Power Down. When the DSD is powered down normally, through software or an emergency, the moving heads are moved to the landing zone of the disks, and the motor brake is applied when its +24 V holdoff voltage is removed.

If a dc supply goes outside the specified limits, all ac and dc voltages are removed within 5 seconds. This reduces the risk of possible loss of data.

DC Power from System
D2 P07 ' + Brake Applied'
Brake Mechanical Action
2 G10 --Pwr Good'
2 PO2 '- POD'
No pin out ' + CRT 4' in Sync
D2 506 '- Kick SS' (10 msec)
D2 G07 ${ }^{\prime}+$ CRT 5^{\prime} in Sync
D2 $111^{\circ}+$ Seek $^{\prime}$
D2 J13 ' - Seek Complete
D2 U11 ${ }^{+}+$Behind Hom
D2 P10 ' + Home'
D2 M07 - Ready'
C2 D06 -- Interrupt
D2 S03 'HV Test Pt'

Note: This chert indicates the correct sequence of events. Actual times and wave forms will vary.

Figure FA452-11. Power-On Logic Sequence Timing

Power Interlocks. Power-failure detection is not provided by the DSD. However, failing conditions are indicated to the system.

Not-Ready Condition. A not-ready signal is issued and an interrupt is raised when:

- The Phase Lock Oscillator (PLO) loses synchronization. This can be due to loss of disk speed that can occur if the drive motor fails, ac power removed from the motor, or the brake fails.
- The brake applied line is active due to failure of the brake drive. The line is reset when the power-down sequence of the $8130 / 8140$ Processor or the 8101 Storage and I/O Unit is complete.
- The invalid move line is active. This line is actuated either when actuator motion is not in response to an access command, or when writing is attempted during an access operation.
Recalibrate (see Figure FA452-15) resets not ready except when brake applied is active or when a power-down sequence is required. If recalibrate is not successful, reset error completes the recovery process.

Thermal Failure. A thermal cutout detects overheating in the drive motor. If the cut out operates, it can be reset manually only after the motor has cooled to within safe mits. After a thermal cutout trips, the PLO will go out of synchronization, thus activating brake-applied and initiating a power-off sequence in the 8130/8140 or the 8101

Control Cable (CC

Control Cable Bits 0-7 and Parity. This section of the control cable is used to transfer ata to and from the DSD. The decode of the three tag bits determines the significance and direction of data flow. Parity is checked by the DSD for incoming data and generated for outgoing data.
Tag Bus Bits 0,1,2 and Parity. The three tag bus bits are decoded to seven conrol lines as shown in the following table:

Tag Bits			
0	1	2	
0	0	0	
0	Meaning		
0	0	1	
0	1	0	Head Selection
0	1	1	Track Selection
1	0	0	Sest Wrap
1	0	1	Test Sense 1
1	1	0	Test Sense 2
1	1	1	Test Sense 3

Tag 001 Head Selection. Tag 001 gates control bus bits 5-0 to the head address register Bit 7 is gated to the desired address register bit 256. Bit 6 is unused.
Tag 010 Track Selection. Tag 010 gates the control bus bits $7-0$ into the desired address register bit 1-128 respectively.
Tag 011 Test Wrap. Tag 011 gates the low order bits (1-128) of the desired addres register, back to the controll bus for wrap around transmission back to the adapter. Tags 100, 101, 110 and 111. These tags gate sense and status information onto the control bus.
-Control Sample Received. This indicates to the adapter that control sample has been received and responded to.

Dedicated Cable (DD)

-Control Sample (input to DSD from the adapter). -Control sample and the 001 tags decode gate head or track selection. -Control sample also generates +enable bus for any tag other than 001 or 010 which gates sense and status to the control bus.
+Degate Bus. This line is normally held negative. When activated, it prevents sense and status information from being gated to the control bus.
-Reset Error. This line is used to reset the data unsafe or command error sense bits. It may also be used to clear an interrupt.
-Write. This line activates the write circuits in the DSD.
-Read. This line activates the read circuits in the DSD.
Note: -Write and -read are mutually exclusive. An error interrupt occurs if they are both active at the same time.
-Data Select. Data Select is used to gate -write or -read.
-Write Data. This is serial binary data for writing to the disk. -Write data is synchronized with -write clock.
-Fast Sync. This rapidly forces the read PLO into synchronization after any event that requires a long resync, using normal sync control. For example, after change from write to read.

Output Lines from DSD to the Adapter

-1F Write Clock. Synchronized to servo clock, pulses from the servo surface -1F write clock are used by the adapter to synchronize write data.
-Read Clock. Synchronized to data during read operations, -read clock is used by the adapter to clock read data into the deserializer.

+ NRZ Data to the Adapter. Serial data read from the disks.

-System Index. -System index indicates the track start to the adapter. It is derived from data in the sample servo area just prior to start of first sector on any track. -System Sector. -System sector is similar to -system index but indicates the start of all sectors after the first.
-Sector Pulses Missing. This indicates to the controller that the DSD failed to detect a sector pulse at the time one was expected.
-Interrupt. An interrupt is generated for home and ready, after power up, for seek complete and some error conditions.
\pm Write Gate Return. This indicates to the controller that the write current to the DSD has been switched on.

Individual Cabling Through Voltage Crossovers

-Power Good. This is active only when all dc power lines are within tolerance at the $8130 / 8140$ or the 8101 . Its loss causes the DSD brake to be applied immediately. +Brake Applied. This indicates to the controller that the brake has been applied, either because of an unsafe or error condition or brake failure. The $8130 / 8140$ or the 8101 will respond by removing ac power from the motor within 5 seconds of + brake applied becoming active.

Phase-Locked Oscillator (PLO) Loop

The PLO (Fiqure FA452-12) is synchronized in phase and frequency by the servo signal clock pulses as follows:

The voltage-controlled oscillator (VCO) runs at approximately 16.5 MHz . The output 2 F is divided by 2 to give 1 F write clock.
The 1 F write clock drives a 5 -bit counter (counter 4) whose output is $1 / 16$ th of the PLO frequency. The servo clock pulses trigger a single shot (+ servo clock SS 280 ns).
For the PLO to be in synchronization, the trailing edge of the servo clock SS must coincide with the midpoint of the negative level of the counter 4 signal.
A comparative circuit on the Logic 2 card looks for this coincidence and provides
an output of oscillator early or late to the VCO to correct any misalignment.
During normal synchronous operation, narrow oscillator late and oscillator early signals are produced continuously as shown in Figure FA452-13.
The PLO is used by the processor to serialize write data.

Figure FA452-12. PLO Data Flow

Figure FA452.13. PLO Timing

Voltage Controller Oscillator (VCO) Control
The VCO and associated control circuit (Figure FA452-14) form a phase-locked loop that tracks the frequency and average phase of the read input data signal, and corrects for any drift in these signal components.
Circuit Operation. The 2 F clock applied to the data latch is compared with the data S (single shot) for coincidence. If the data SS pulse is completed before the end of the corresponding data latch pulse, an increase line is activated. If the data SS pulse is ompleted after the end of the corresponding data latch pulse, a decrease line is ctivated. The combined output (an analog control voltage) is applied to the VCO restore the correct coincidence of the data latch pulses with the data SS pulse.

Relatively large discontinuities of the data signal can cause loss of synchronization of the data latch and data SS signals. Therefore, when the source of the data signal changes, for example when changing from writing to reading, the VCO control circuit is switched momentarily to the fast synchronization state.
uring fast synchronization, the VCO operates as previously described, except that the signals involved are much greater.

The fast sync signal applied to the fast sync logic can be in one of two phases, depending on the mode (read or write) in which the DSD is operating. The fast sync logic selects the appropriate fast sync input, that is, fast sync from the processor or internal fast sync.

The circuit is reset by the end of the inhibit SS pulse and the data pulses; the VCO is then restarted so that the data pulses and the VCO output are synchronized.

When the DSD is not under the control of the disk adapter, the VCO is synchronized with the write clock.

Figure FA452-14. VCO Control

Recalibrate Issued by Processor or Storage and I/O Unit

Recalibrate sequence is as follows (see Figure FA452-15)

1. A recalibrate command issued by the processor is initiated by a tag code of 001 with bus bit 0 active (-).
2. Tag 001 CLK 2 with -go home bit sets -go home.
3. +Out direction drops and + seek is raised.
4. When the actuator arm arrives in the behind home position, seek drops and 4 ms later -seek complete is activated.
5. -Seek complete initiates a further seek with + out direction active to the home position.
6. 4 ms after the seek ends, -seek complete is activated again together with + home and an interrupt to signify completion of the recalibrate.
7. +Home is reset by the next seek operation and remains negative until a further calibrate command sets it again.
8. Handover velocity is not affected by a recalibrate command after the initial power-up sequence.

Bus bit 0	
FA4 D07 Tag 001, CLK 2	
$\begin{aligned} & \text { '-Go Home' } \\ & (1-\text { Go Home' or 'POFL') } \end{aligned}$	\%
'+ Out Direction'	
'+ Seek'	\longrightarrow Hanm
-- Seek Complete'	
'+ Behind Home'	
'+ Home'	
'- Interrupt'	

Figure FA452-15. Recalibration Timing Chart

Figure FA452-16 indicates the sequence of events for a seek to a higher number cylinder followed by a head change only operation. For a seek in the other direction (t inder followed by a head change only operation. For a seek in the other direct
a lower number cylinder), only + out direction will show a different response.
(1) A tag decode of 010 and -control sample reads the low-order bits (1-128) of the desired address into the desired address register. If this address is different from the current address, -shift becomes active. +Out direction sets according to the dif ferent count from the subtractor. (It may then switch to the opposite condition
The subsequent decode of tag 001 with control sample sets the high-order bit 256 of the desired address. + out direction sets and + seek are raised; -shift is deactivated when the desired address and absolute address are equal. This occurs at $1 / 4$ track from the on-track position. + seek deactivates when on track and 4 ms later -seek complete is activated together with -interrupt.
3 The adapter performs a sense cycle which resets the interrupt.
During a head change only operation, tags 010 and 001 are used in exactly the same way as for an access. - shift and + out direction may show a response to tag 010 bus data if the low-order address bits differ from the absolute address. They will, however, return to the inactive state when the second tag cycle 001 is received. A seek complete interrupt occurs 4 ms after -control sample received.

Figure FA452-16. Access and Head Change Timing Char

Write Safety Detection
General. Write safety detection circuits (Figure FA452-17) on the data channel card check operation of the DSD that could affect data written on the disks or data being written.

These circuits check for the following unsafe conditions:

- No transitions - that is, failure of write drivers to switch current in a head in write mode.
- Head grounded - this causes excessive current in the center-tap line.
- Multimodule selection - this causes excessive current in the positive power supply to the DE circuits.
- Servo unsafe - logical or analog unsafe conditions external to the data channel.
- Write current when not writing.

Each of the first four unsafe conditions listed above causes a latch to be set in the safety condition latches.

The latch outputs are connected with + servo unsafe to produce the line + data unsafe.
No Transitions. Normally, when the current in a head is reversed during a write opera tion, voltage spikes are produced in the head winding. If these spikes are missing (that is, no transitions occur), either the head or the write driver has failed.

The voltage spikes caused by this failure and the - write gate produce the - no trans tions during the writing signal. This signal sets the appropriate safety condition latch

Head Grounded. A head-to-ground short circuit can cause current in the center-tap line to exceed the threshold set in the associated current threshold sense circuit; then a head grounded error signal is produced.
Multimodule Selection. If current in the positive supply to the DE exceeds the threshold set in the associated current threshold sense circuit, a multimodule selection error signal is produced.

Servo Unsafe. Unsafe logical or analog conditions cause the -servo unsafe signal to be applied to the write safety detection circuit. The -servo unsafe signal is connected with any of the unsafe conditions latched in the safety condition latches to produce + data unsafe.

Write Current When Not Writing. An error signal caused by write current flowing when not in writing mode is processed through the sense circuit and safety condition latches, and is then applied to the processor as a 1 W error.

Priority Inhibit. Priority inhibit prevents any subsequent error from setting the safety condition latches so that only the first error condition is held in the latches.

Transient Blanking. Transient conditions that would otherwise set the safety condition latches are inhibited by transient blanking that gates off the latches. Transient blanking is provided in the unsafe detectors circuit. See Figure FA452-18.

Figure FA452-18. Transient Blanking Timing

A sense or status cycle is initiated by the processor encoding a sense or status tag (tags $011-111$) and raising -control sample (see Figure FA452-19). This may be in response to an interrupt or simply a normal housekeeping command.
The tag is decoded by the DSD. Control sample, control sample received, and tags 000 001, or 010 are combined to raise the internal line enable bus.

Meanwhile, the tag decode has selected the appropriate sense or status bits for trans mission to the adapter. Enable bus gates the selected bits to the bus out drivers and, provided that - POD and degate bus are inactive, the bits are transmitted to the usin system.

- POD prevents the DSD from responding to a sense or status cycle during the power up sequence.

Figure FA452-19. Sense/Status Timing Chart

FA510 Scope Charts
The following scope charts were obtained using a Tektronic 453 and are to be used in conjunction with the FA MAP. See Scope Chart 1 for initial scope set up. Subsequent cope charts will only list the changes from the initial setup.

Scope Chart 1

1. Use 1 X scope probes
2. Place oscilloscope Channel 1 probe on X-A1D2J09 +SR Clock.
3. Place oscilloscope Channel 2 probe on X-A1D2J10 +Enable Servo Sample
4. Place oscilloscope EXT TRIG probe on X-A1D2S10
5. Set oscilloscope controls as shown in the following table:

HORIZ DISPLAY	NORMAL TRIG
MAG	OFF
A SWEEP LENGTH	FULL
A TIME BASE	5 us/DIV
MODE	ALT
TRIGGER SOURCE	EXT
A SWEEP MODE	NORMAL TRIG
A TRIG SLOPE	-
A TRIG COUPLING	AC
TRIG	NORMAL
A TRIG LEVEL	0
A TRIG HF STAB	0
INVERT	1

6. Switch CHAN 1 INPUT to GND and adjust trace
7. Position trace until the center line is ground
8. Switch CHAN 1 INPUT to DC.
9. Switch CHAN 2 INPUT to GND and adjust trace.
10. Position trace until the center line is ground.
11. Switch CHAN 2 INPUT to DC.
12. Adjust A TRIG LEVEL to display trace
13. Adjust a POSITION control to start trace at left-hand line.

SCOPE DISPLAY

Scope Chart 3

1. Move CHAN 2 probe to X-A1D2U13 (+ Enable Mark Detect)
2. Switch MODE to CHAN 2

X-A1D2U13 + Enable Mark

1. Move CHAN 1 probe to X-A1E2B03 (Data A).
2. Set CHAN 1 V/DIV to 20 mV .
3. Switch CHAN 1 INPUT to AC.
4. Switch MODE to CHAN 1

SCOPE DISPLAY

1. Move CHAN 2 probe to X-A1E2D02 (Data B),
2. Set CHAN 2 V/DIV to 20 mV .
3. Switch CHAN 2 INPUT to GND and adjust.
. Position until the center line is ground
Switch CHAN 2 INPUT to AC
4. Switch MODE to CHAN 2.
5. Pull INVERT switch.

SCOPE DISPLAY

1. Move CHAN 1 probe to $\mathrm{X}-\mathrm{A} 1 E 2 G 03$ ($+\mathrm{V}_{\text {co }}$ Inhibit)
2. Set MODE to CHAN 1
3. Set CHAN 1 V/DIV to 1 V .

SCOPE DISPLAY

X-A1E2G13 + VCO Inhibit
Scope Chart 6
SCOPE DISPLAY

X-A1E2G03 + VCO Inhibit
Scope Chart 7

1. Move CHAN 1 probe to X-A1E2J05 (-CRT RUN). SCOPE DISPLAY

Scope Chart 8

1. Move CHAN 1 probe to X-A1E2G08 (+2F Burst).

SCOPE DISPLAY

X-A1E2G08 +2 F Burst
Scope Chart 9

Scope Chart 10

1. Move CHAN 1 probe to X-A1E2B13 (Data PES)
2. Set A TIME BASE to 2 ms .
3. Move EXT TRIG probe to X-A1D2S13 - (System Index).
4. Adjust A TRIG LEVEL to display trace.

SCOPE DISPLAY

FA520 Adapter and DSD Cable and Card Continuity

There are two separate areas for cable and card continuity:

1. Data Select Gate continuity checks the Moving Head (MH) cable X-A1A2, the FA3 Data Channel card, and the FA4 Logic 1 card.
2. System continuity checks the Control cable (CC), Dedicated cable (DD), the FA1 and FA2 adapter cards, the TCC Y03, and the FA9 terminator card.

FA521 Data Select Gate Continuity

FA522 Disk Adapter to DSD Continuity

Ma	${ }^{\text {Model }}$	Pseudo Card and Cable Locatio				
		1 fal				
				(CC		
18130	A2X	A				
18140	$\|A 3 X / A 4 x\|$	\| A-A202	A-	A-A226		
8140	${ }^{\text {A5x }}$	\| A-A2F2	A-A2E	A-A2z		
8101	, AxX (Low)	A-A2H2	A-A2J2	A-A2		
8101	\| AXX (Up)		A-A2E2	A-A2F2	A-A2Y2	A-A2z2
8140	$\mid \mathrm{BXX}$ (Low) \|	A-B2H2	A-B2J2	A-A2K4	A-A2	
8140	BXX (Up)	A-B2F2	A-B2G2	A-A2Y3	A-A	

FA540 Disk Enclosure (DE) Removal and Replacement

It is necessary to remove the DSD subframe from the unit to remove the DE. Removing the drive motor eliminates the need to remove the actuator lock lever bracket.

Cautions:

1. Do not remove the DE without requesting aid.
2. The DSD weighs 25 kg (55 lb). The card gate may be removed to lighten the load (see FA550). Also, in the case of the 8101 Mod A25, removal of the top DSD should require assistance due to weight and leverage constraints.
3. The heads on the actuator and the disks might be damaged if the DE pulley is turned counterclockwise.

DSD Subframe Removal

1. Switch off electrical power
2. With the actuator lock lever in the Operate position, remove the spindle lock bracket (2 screws) from the subframe. Do not loosen or remove cable from the spindle lock bracket.
3. Remove the motor from the subframe. Do not disconnect the wires, but lay the motor on the unit frame floor until the new subframe is installed. (See FA570.)
4. If you want to lighten the load, remove the card gate (see FA551) and go to step 11
5. If you have not removed the card gate, continue by disconnecting the DE ground.
6. Remove the card gate cover and cable retaining plate.
7. Loosen the card gate screw and swing the gate open
8. Release the fan retainer at the rear of the card gate and withdraw the fan from the gate.
9. Unplug cables Y 1 (if fixed heads are installed), A2, A3, and A5.
10. Unplug cables $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 4, \mathrm{~J} 5$ and J 9 . ($\mathrm{J9}$ also requires that both bottom board retainers be loosened in order to remove cable.)
11. Move the Operator/Lock Lever to the Lock position.
12. Remove the flat cable retaining straps.

Note: For 8101 Mod A25 units, it will also be necessary to remove the OPERATE/LOCK lever plate.
13. Loosen the actuator lock cable retaining bracket.
14. Disconnect the actuator lock cable from the nylon actuator lock knob arm. (See FA590.)
15. Disconnect the frame ground strap.
16. Loosen the three shock mounts, and remove the subframe by sliding it out of the screws. (See FA541.) Stand the DSD on the DE cover on a clean surface.

DE Removal

1. Disconnect the slip-on terminals from the brake and the trimmer resistor.
2. Remove the nylon actuator lock knob bracket.
3. Unscrew the lower (long) DE mounting nut and the two upper DE mounting nuts.
4. Lift the subframe from the DE .

DE Replacement

1. To install the DE, reverse the removal procedure.
2. Adjust the belt tensioner and the brake as detailed in FA580 and FA572.
3. Insure that the actuator lock knob is turned fully counterclockwise (the Lock/ Operate lever is in the Operate position)
4. Run diagnostics.
5. Format DE using the format utility. (See CP650)

FA541 Shock Mount Removal

There are two types of shock mounts: A and B. Determine if the shock mount is type A or type B and use the corresponding procedure.

Type A (Figure FA541-1)

1. Loosen the $1 / 4-20$ UNC screws (hex head) to a point that allows the subframe to slide out.

Type B (Figure FA541-2)

1. Loosen the $1 / 4-20$ UNC screws (allen head) that attach the subframe to the two upper shock mounts.
2. Insert a hex wrench through the access hole in the machine frame base and remove the hex screw from the lower shock mount. See Figure FA541-3.

Figure FA541-1. Type A Shock Mount
Figure FA541-2. Type B Shock Mount

Figure FA541-3. Type B Shock Mount Access

Removal

1. Switch off electrical power
2. Remove the card gate cable clamp screws, then remove the cable clamp and card cover.
3. Disconnect flat cable connectors (CC), (DD), (MH), (FH if installed), and terminator FA9 (A4). See Figure FA111-5
4. Loosen the card gate screw and open the card gate
5. If it is necessary to release the $\mathbf{8 1 3 0}, \mathbf{8 1 4 0}$, or 8101 flat cables, remove the cable straps to release the cables.
6. Disconnect voltage connectors J 1 through J 5 , and J 9 .
7. Disconnect the ground connector from the gate casting.
8. Release the cables from under the board retainers by loosening the board retainer screws and lifting the retainers.
9. Disconnect the fan supply from terminal block TB2.
10. Unscrew the pivot nut from the upper pivot and lift the gate off both pivots.

Replacement

Install the card gate in the reverse order to that used to remove it.
Note: If the 8130,8140 , or 8101 flat cables were released from the subframe cable clamp, reclamp the cables with the rubber straps as shown.

Allow sufficient slack cable around the pivot area of the card gate lthe length of cable should be approximately 240 mm (1 inch) from the cable clamp to the end of the socket.)

Removal

. Switch off electrical power
2. Remove the cable clamp and the card cover.
3. Unplug the cards and the flat cable connectors.
4. Note card part numbers and locations.
5. Open the card gate
6. Unplug the voltage connectors from the pin side of the A1 board
7. Loosen four screws holding the board retainers and lift out

Replacement

1. Install board A1 in the reverse order to that used to remove it

FA553 Voice Coil Motor (VCM) Driver Card Removal/Replacement
The card is screwed to the inside of a plastic cover attached to the right-hand end of the card gate.

Removal

1. Unplug the voltage connectors $\mathrm{J} 7, \mathrm{~J} 8$, and J 10
2. Remove the cover screws and cover
3. Remove card retaining screws and card.

Replacement

1. Install the VCM driver card in the reverse order to that used to remove it.

Removal

Caution: Before removing the fan, note the 'direction-of-arflow' arrow to ensure that Caution: Before removing the fan,
the fan can be refitted correctly.

1. Remove all power from DSD.
2. Disconnect the fan supply wires from terminal block TB2 and the adjacent ground screw.
3. Loosen the card gate screw and open the card gate.
4. Release the fan retainer at the rear of the card gate and withdraw the fan from the card gate.

Replacement

1. Install the card gate cooling fan in the reverse order to that used to remove it

FA570 Drive Motor and Drive Belt
FA571 Drive Motor
Drive Motor Characteristics
The drive motor is fitted with a thermal cutout that prevents overheating of the motor. The thermal cutout will not reset until the motor has cooled.

Caution: Switch off all power to the DSD before pressing the Thermal Reset button.

The following table shows the motor frequencies and voltage ranges:

Country	Hz	Nom	Min	Max
U.S.	60	120	104	127
Other than	60	100	90	110
U.S. \& Canada		110	96.5	119
		120	104	127
		127	111	137
		200	180	225
		208	180	225
		220	193	238
		240	201	254
	201	254		
Other than	50	100	90	110
U.S. \& Canada		110	96.5	119
		200	180	220
		220	193	238
		230	202	249
		240	210	259

Note: Drive motor input VAC may be measured at TB1.

Removal
The drive motor assembly is a field replaceable unit (FRU) that consists of the motor, the motor bracket with pivots, and the driving pulley.

1. Switch off electrical power.
2. Remove the spindle lock bracket
3. Disconnect operated lock mounting bracket from the frame
4. If removing the motor for DE replacement, go to step 7.
5. Remove the motor terminal block TB1 cover.
6. Disconnect the wires from TB1 and the adjacent ground screw.
7. Loosen the two belt guard screws and slide the belt guard off
8. Push the motor against the belt tensioner and turn the tensioner shaft so that the tensioner spring is held in compression.
9. Remove the tensioner mounting screws and remove the tensioner. Allow the belt to support the weight of the motor.
10. Remove the retaining ring (C clip) from the motor pivot.
11. Supporting the weight of the motor, remove the belt, then move the motor toward the rear until the pivots are clear of the holes.

Note: The motor pivot bushings might fall off as the motor is removed.
12. Remove the pivot bushings and inspect them carefully; if they are damaged, renew

Replacement

1. Install drive motor in the reverse order of removal
2. Adjust the belt tensioner as detailed in FA572.

FA572 Drive Belt

Drive Belt Tensioner

1. Switch off all power to the DSD
2. Pull the shaft and turn it through 90 degrees so that it locks in the 'out' position.
3. Loosen the two mounting screws.
4. Allow the tensioner assembly to find its own position resting against the motor bracket
5. Retighten the two mounting screws
6. Turn the shaft and release it so that it is pulled into the operating position.

Drive Belt Removal/Replacement

Removal

Caution: Do not turn the DE spindie pulley counterclockwise as this may damage the heads and disks.

1. Switch off all power to the DSD
2. Loosen the two belt guard screws and remove the belt guard.
3. Lift the motor against the force of the belt tensioner and lift off the belt. Antistatic Brushes
4. Gently lower the motor till it rests on its stop.

Replacement

Make sure that the belt to be fitted is clean, dry, and not frayed or otherwise damaged.

1. Push the motor against the tensioner and fit the belt centrally on the pulleys.

Note: The smooth side of the belt should bear on the faces of the pulleys.
2. Allow the motor to be supported by the belt. Fit the belt guard and tighten the screws.
3. Adjust the tensioner.
4. Refit the belt guard.

previous procedure.

When fitting a new brush, ensure that the carbon brush is centered on the associated pulley.

Refit the belt guard

Removal
Caution: When the brake assembly has been removed, do not turn the DE spindle pulley counterclockwise as this may damage the heads and disks.

1. Switch off all power to the DSD.
2. Loosen the two belt guard screws and remove the belt guard.
3. Push the motor against the force of the belt tensioner and lift off the belt.
4. Disconnect wires 1 and 2 from the brake coil.
5. Remove the two screws that attach the brake assembly and lift out the brake assembly complete with the antistatic arm.

Adjustment

1. Switch off all power to the DSD
2. Remove the belt guard.
3. Check that there is a gap of $0.25 \mathrm{~mm}(0.010 \mathrm{in}$.) between the coil core on the base and the armature. If not, adjust the brake as follows:
a. Insert a $0.25 \mathrm{~mm}(0.010 \mathrm{in}$.) feeler gauge between the coil core and the armature, and hold the two castings and the pulley together, as shown.

Note: Ensure that the feeler gauge is clear of the small coil spring (not illustrated) recessed in the armature.
b. Tighten the two mounting screws.
c. Remove the feeler gauge.
d. Recheck the adjustment.

Replacement

1. Attach the brake and coil loosely to the DE with the two brake mounting screws.
2. Attach the antistatic brush arm to the core casting with the brush arm screw
3. Adjust the brake as follows:
a. Insert a 0.25 mm (0.010 in .) feeler gauge between the core casting and the armature casting, and hold the two castings and the pulley together.
Note: Ensure that the feeler gauge is clear of the spring (not illustrated) recessed in armature.
b. Tighten the two brake mounting screws.
c. Remove the feeler gauge.

Caution: The wires $\mathbf{1}$ and $\mathbf{2}$ must be connected to the correct terminals (marked 1 and 2) on the coil.

4. Connect wires 1 and 2 to their respective coil terminals marked 1 and 2.
5. If necessary, adjust the antistatic brush arm until the brush bears centrally on the DE pulley spindle.
6. Lift the motor against the force of the belt tensioner and fit the drive belt. Ensure that the smooth side of the belt bears on the pulleys. Allow the motor to be supported by the belt.
7. Fit the belt guard and tighten the belt guard screws.

FA590 Actuator Lock Knob and Lock/Operate Switch Adjustment

Actuator Lock Lever Cable Adjustment

1. Position both Lock/Operate lever and Actuator Lock Knob Arm in the LOCK position.
2. If cable has been removed, insert control cable into levers.
3. Tighten cable clamps (see insert for correct position of the clamp).
4. Adjust outer sleeves of cables and tighten clamps as required to give satisfactory lockout operation. Provide full travel of the actuator lock arm on the DE in both lock and operate positions.

Lock/Operate Switch Adjustment
Use the following figure to locate and adjust the Lock/Operate lever cables.

1. Place the Lock/Operate lever in the OPERATE position slot.
2. Adjust the switch down, and rotate counterclockwise until the switch actuator overtravel is taken up.
3. Tighten screws.

Note: The ACTUATOR LOCK KNOB ARM has been known, in some cases, to siip around the ACTUATOR LOCK KNOB. This could result in an improper unlocking condition, even though the ACTUATOR LOCK KNOB ARM is moving its full travel. Visually inspect to see that the ACTUATOR LOCK KNOB turns with the full travel of the ACTUATOR LOCK KNOB ARM, while operating the LOCK/OPERATE LEVER.

Chapter 5. MAP Reference Information

Power

This part of Chapter 5 provides maintenance information to service the 8130/8140/ 8101 power. The PA MAP guides you in isolating power failures, and refers to this part of Chapter 5 for locations, adjustments, service checks, or replacement procedures.
This part has seven sections:

1. General Information (PA100-PA130): Contains information on PA configuration, operation, and repair strategy.
2. Offline Tests (PA200-PA253): Contains test information and failure plans.
3. Intermittent Failure Repair Strategy (PA300-PA310): Contains information to repair intermittent failures.
4. Signal Paths (PA400-PA466) : Contains figures and wiring charts which show wiring and signal paths.
5. Adjustment, Removal, and Replacement Information (PA500-PA540): Contains information for adjusting the plus 5 volt dc and for removing the LED and BOP.
6. Service Checks (PA600-PA680): Contains information for checking transformers, diodes, and voltages.
7. Locations (PA700-PA760): Contains information for basic locations.

PA100 General Information	5-PA-1
PA110 Components	5-PA-1
PA120 Basic Operational Description	-
PA121 PSCF Power Control Logic	5-PA-6
8130 PSCF Power Control Logic	-6
8140 Models AXX PSCF Power Control Logic	$5-\mathrm{PA} .7$
8140 Models BXX PSCF Power Control Logic	
PA122 Not Used	
PA123 Attached 8101 Power-On Control.	PA
PA124 DC Overvoltage and Undervoltage Sensing	5-PA-10
PA130 Power-Unique Repair Strategy	5-PA-10
PA200 Offline Tests	5-PA-11
PA210 PA MAP Menu Options	5-PA-11
PA211 PA MAP Options for 8130, 8140, and Undetermined	
Power Problems	5-PA-11
PA212 PA MAP Options for 8101 Power Problems.	5-PA-11
PA250 Action Plans	5-PA-12
PA251 Possible Causes of Failure - General	5-PA-12
PA252 Possible Causes of Failure Using the Status of 8101	
Fuses and Indicators	5-PA-12
PA253 PC-2/PC-3 01C Disk Drive Power Fault Isolation	5-PA-12
PA300 Intermittent Failure Repair Strategy .	5-PA-13
PA310 General Intermittent Failure Repair Strategy	5-PA-13
PA400 Signal Paths and Detailed Operational Description.	5-PA-15
PA405 Safety Grounds	5-PA-16
8130/8140 Models AXX Safety Grounds	5-PA-16
8140 Models BXX Safety Grounds	5-PA-17
8101 Models A1X, A20, and A23 Safety Grounds.	5-PA-18
8101 Model A25 Safety Grounds	5-PA-19
PA410 60-Hz AC Power (U. S. and Canada)	5-PA-20
PA411 $813060-\mathrm{Hz}$ AC Power (U. S. and Canada)	5-PA-20
PA412 $814060-\mathrm{Hz} \mathrm{AC} \mathrm{Power} \mathrm{(U}. \mathrm{S} .\mathrm{and} \mathrm{Canada)}$	5-PA-21
8140 Models AXX $60-\mathrm{Hz}$ AC Power (U. S. and Canada).	5-PA-21
8140 Models BXX $60-\mathrm{Hz} \mathrm{AC} \mathrm{Power} \mathrm{(U}. \mathrm{S} .\mathrm{and} \mathrm{Canada)}$	5-PA-22
PA413 $810160-\mathrm{Hz} \mathrm{AC} \mathrm{Power} \mathrm{(U}. \mathrm{S} .\mathrm{and} \mathrm{Canada)}$	5-PA-23
8101 Models A1X, A20, and A23 60-Hz AC Power (U. S. and Canada)	5-PA-23
8101 Model A25 60-Hz AC Power (U. S. and Canada).	5-PA-24
PA420 60-Hz AC Power (Other Than U. S. and Canada).	5-PA-25
PA421 $813060-\mathrm{Hz}$ AC Power (Other Than U. S. and Canada)	5-PA-25
PA422 $814060-\mathrm{Hz} \mathrm{AC} \mathrm{Power} \mathrm{(Other} \mathrm{Than} \mathrm{U}. \mathrm{S} .\mathrm{and} \mathrm{Canada)}$	5-PA-26
8140 Models AXX $60-\mathrm{Hz}$ AC Power (Other Than U. S. and Canada)	5-PA-26
8140 Models BXX $60-\mathrm{Hz}$ AC Power (Other Than U. S. and Canada)	5-PA-27
PA423 $810160 \cdot \mathrm{~Hz} \mathrm{AC}$ Power (Other Than U. S. and Canada)	5-PA-28
8101 Models A1X, A20, and A23 60-Hz AC Power (Other	
Than U.S. and Canada)	5-PA-28
8101 Model A25 $60-\mathrm{Hz}$ AC Power (Other Than U. S. and	

PA430 50-Hz AC Power	5-PA-30
PA431 8130 50-Hz AC Power	5-PA-30
PA432 8140 50-Hz AC Power	5-PA-31
8140 Models AXX $50-\mathrm{Hz}$ AC Power	5-PA-31
8140 Models BXX $50-\mathrm{Hz}$ AC Power.	5-PA-32
PA433 8101 50-Hz AC Power	5-PA-33
8101 Models A1X, A20, and A23 50-Hz AC Power	5-PA-33
8101 Model A25 50-Hz AC Power.	5-PA-34
PA440 DC Power.	5-PA-35
PA441 8130 DC Distribution	5-PA-43
PA442 8140 DC Distribution.	5-PA-44
PA443 8101 DC Distribution	5-PA-48
PA450 Power Logic Interconnections	5-PA-52
PA451 8130 Power Logic Interconnections.	5-PA-52
PA452 8140 Power Logic Interconnections.	5-PA-53
PA453 8101 Power Logic Interconnections.	5-PA-55
PA460 Power Card Assemblies	5-PA-58
PA461 PC-1 Power Card Assembly	5-PA-58
PA462 PC-2 First-Disk -4V Regulator and Sensing Logic Card.	5-PA-60
PA463 PC-3 Power Sequence Card	5-PA-61
PA464 PC-4 8101 Power Sequence Card.	5-PA-63
PA465 PC-50 Second-Disk -4V Regulator Card.	5-PA-64
PA466 PC-51 Second-Disk Control Card.	5-PA-66
PA500 Adjustment, Removal, and Replacement Information	5-PA-67
PA510 +5V DC Adjustment.	5-PA-67
PA520 LED Removal and Replacement Procedure	5-PA-68
PA530 BOP Adapter Card Removal and Replacement Procedure.	5-PA-69
PA540 How to Gain Access to BOP Components .	5-PA-69
PA550 01G Gate Capacitor and Thermal Replacement Procedure,	5-PA-70
PA600 Service Checks.	5-PA-71
PA610 AC Ripple Service Check.	5-PA.71
PA620 8130/8140/8101 Indicator Check	5-PA. 72
PA630 Capacitor Resistance Check	5-PA. 72
PA640 Transformer Winding and Diode Service Checks.	5-PA.74
PA641 01G Gate T2 Transformer Winding and Diode Service	
Check	5-PA. 74
PA642 01G Gate Power Supply Diode Isolation.	5-PA-74
PA643 Transistor 01 and Q 2 Check	5-PA.75
PA650 Fuse and Voltage Distribution	5-PA.76

PA1 10-1. 01G Power Gate Hardware Configuration, Rear View	5-PA-2
PA120-1. Power On/Off Sequence Timing.	5-PA-3
PA120-2. Basic Power-On Logic for Machines with One Disk Drive	5-PA-4
PA120-3. Basic Power Distribution	5-PA-5
PA123-1. 8101 Unit Power-On Signal Sequence Timings	5-PA-9
PA124-1. DC Overvoltage/Undervoltage Sensing Summary	5-PA-10
PA253-1. PC-2 316 Input/Output Levels	5-PA-12
PA253-2. PC-3 Power Reset Line Distribution	5-PA-12
PA440-1. 8130 DC Power	5-PA-35
PA440-2. 8140 Models AXX DC Power	5-PA-37
PA440-3. 8140 Models BXX DC Power (2 parts)	5-PA-38
PA440-4. 8101 Models A1X, A20, and A23 DC Power	5-PA-40
PA440-5. 8101 Model A25 DC Power.	5-PA-41
PA442-1. 8140 Models AXX DC Distribution (2 parts)	5-PA-44
PA442-2. 8140 Models BXX DC Distribution (2 parts)	5-PA-46
PA443-1. 8101 Models A1X, A20, and A23 DC Distribution (2 parts)	5-PA-48
PA443-2. 8101 Model A25 DC Distribution (2 parts)	5-PA-50
PA452-1. 8140 Models AXX Power Logic Interconnections	5-PA-53
PA452-2. 8140 Models BXX Power Logic Interconnections	5-PA-54
PA453-1. 8101 Models A1X, A20, and A23 Power Logic	
Interconnections	5-PA-55
PA453-2. 8101 Model A25 Power Logic Interconnections	5-PA-57
PA465-1. PC-50 Card Signals	5-PA-65
PA466-1. 8140 Models BXX PC-51 Card Signals	5-PA-66
PA466-2. 8140 Model A25 PC-51 Card Signals	5-PA-66
PA510-1. +5 V DC Adjustment	5-PA-67
PA520-1. LED Assembly	5-PA-68
PA530-1. Basic Operator Panel Adapter Card (01B).	5-PA-69
PA540-1. BOP Frame Mounting.	5-PA-69
PA641-1. 01G Transformer and Diode Locations	5-PA-74
PA642-1. Diode Check Wire Removal.	5-PA-75
PA650-1. 8130 Fuse Specifications and Voltage Distribution Chart.	5-PA-76
PA650-2. 8140 Models AXX Fuse Specifications and Voltage	
Distribution Chart	5-PA-77
PA650-3. 8140 Models BXX Fuse Specifications and Voltage	
Distribution Chart	5-PA-77
PA650-4. 8101 Fuse Specifications and Voltage Distribution Chart.	5-PA-78
PA662-1. PC-1 Connector Locations	5-PA-79
PA663-1. PC-2 Connector Locations	5-PA-80
PA712-1. 8140 Models AXX Gate and Other Subassembly Locations	5-PA-84
PA712-2. 8140 Models BXX Gate and Other Subassembly	
Locations (4 parts)	5-PA-85
PA713-1. 8101 Models A1X, A20, and A23 Gate and Other Subassembly	
Locations .	5-PA-89
PA713-2. 8101 Model A25 Gate and Other Subassembly Locations	5-PA-90
PA732-1. 8140 Models AXX 01T I/O Panel Locations	5-PA-94
PA732-2. 8140 Models BXX 01T I/O Panel Locations	5-PA-94

PA 100 General Information

DANGER
 With the power cord connected to the wall outlet, line voltage and the +5 and +24 control voltages are always present in all:

Coltages are always present in all

- $\mathbf{8 1 4 0}$ Models BXX with the line voltage circuit breaker (CB1) on.

Before removing metal covers or internal power components (except for power control
(PC) and logic cards), either (1) disconnect the power cord for all 8130 s , 8140 Models
AXX, and all 81015, or (2) turn off CB1 for 8140 Models BXX.

Note: If the +5 V or +24 V control voltage is missing, the 8130/8140/8101 will not power up.

Eight system voltages are developed from the 01G-T2 transformer windings: $+5,+8.5$, $+12,+24,-5,-8.5,-4$, and -12 volts. If the disk storage is not installed, only the -5 volt is sensed. If the -5 volts is not present, the $8130 / 8140 / 8101$ will not power on. If the disk storage is connected, $+12,+24,-4,-12$ and one +5 V supply are sensed to ensure that the voltages are present. See PA124 for more information on voltage sensing.

A thermal switch is located in the 01A gate, and manual reset thermal circuit breakers are located in the 01C and 01E gate disk drive motors. Excessive gate temperature will cause the 01A gate thermal switch to open and the machine will power down. Excessive motor emperatures causes the disk drive thermal circuit breaker to open and turn off ac power to that disk drive motor. All other power remains on. If the disk storage is connected and the disk drive fails to get up to speed, the power to that disk drive motor drops in approximately 20 seconds. This 20 -second time-out can also result from an open thermal switch in the motor, a broken or misaligned drive belt, a deenergized disk motor brake, or the lock-operate lever not in the operate position.

The 8130/8140/8101 can be connected to one of several different line voltage sources. The 01G gate power supply contains one of three types of ferro transformers in the lin voltage circuit. Which type of transformer is installed depends upon the country and ad power controls; the only differences are the input voltages and frequency. The llowing table lists the transformer part number for the appopiate input volass ists the transformer part number for the appropriate input voltages and frequencies:

Input Voltage	Frequency	Phase	Where Used	Transformer Part Number
120 Note 1	60 Hz	1	U.S. and Canada	7389040
208, 240	60 Hz	1	U.S. and Canada	7389042
100/110/115/120/127/ 200/208/220/230/240	60 Hz	1	Other than U.S. and Canada	7389042
100/110/200	50 Hz	1	Other than	7389041**
220/230/240			U.S. and Canada	7389297**

The PA power is made up of a line cord, the basic power gate (01G) other power gates $(8140$ models $B X X$), and the distribution to other components. Mounted on the rear of the 01G gate are transformers 01G-T1 and 01G-T2, line filter (FL1) mounted on TB4, card PC1, and various capacitor, fuse, and diode modules. The PC3 and PC4 cards mount on the PC1 card. The PC2 card is part of the -4 V supply for the first disk drive, and mounts on the front of the 01 G power gate for $8130 \mathrm{~s}, 8140$ Models AXX, and 8101 s and on the M/N gate ofr 8140 Models BXX. The PC50 card is part of the -4 V supply used for the second disk drive. See Figure PA110-1 and PA740 for 01G component locations.

You must know the unit model number to use this power section of the MIM. Always verify the model number

Note: The 8101 does not have a convenience outlet or fuse F13.

Line voltage is supplied to the system through the line filter, TB4, and fuse F11 to control voltage transformer 01G-T1. The secondary windings of T1 develop two control voltages that are present as long as the power cord is connected to the line voltage, except on 8140 Models BXX (see PA100). These control voltages (+5 V CTL and +24 V CTL) are used to start the powerup sequence, and the absence of either voltage will prevent system power from cycling up.
When the main power switch is placed in the on position, K 2 is picked and ac power is applied to transformer 01G-T2, the diskette drive motor, and all fans. After a time delay to permit the dc voltages to stabilize, ac power is applied to the first disk drive motor through the points of contactor K1 (see Figure PA120-1) and approximately 5 seconds later, to the second disk drive motor (if installed) through K50.

The secondary windings of $T 2$ develop the system voltages which are distributed to the 01A gate through 01G-TB1, 01A-TB1, and 01A-TB2. The system voltages are further distributed by jack connectors to the different functional components. See Figure PA120-2 for basic power on logic, Figure PA120-3 for the basic power distribution, and PA440 through PA443 for more detailed information on de distribution.

When 8101 units are attached to the $8130 / 8140$, they are powered up using the following procedure:

1. Set the 8101 power control switch to Remote.
2. The main power switch should be set to the On position (l) on all of the attached 8101s.
3. Set the $8130 / 8140$ power switch to the Power On position (I).
4. The system control facility (SCF) will then send a turn-on signal to each 8101 in a timed sequence.

If the $8130 / 8140$ system is inoperable, an 8101 may be powered up by first setting the unit power control switch to Local and then set the 8101 power switch to On (

Note: The disk determines the timing relationship between the
Power Good and Brake On/Off signal.
Figure PA120-1. Power On/Off Sequence Timing

Note: For more detail see individual components; for machine with two disks, see PA400.

Figure PA120-2. Basic Power-On Logic for Machines with One Disk Drive

8130 PSCF Power Control Logic

8140 Models AXX PSCF Power Control Logic

8140 Models BXX PSCF Power Control Logic

$\mathrm{A}+5 \mathrm{~V}$ control level (+5 CtI) must be available at each 8101 as a prerequisite to power up. This voltage is required by the power control logic in each device and is furnished by the 8101 power supply (see PA440).
Note: When the 8130 with the System Expansion Feature or the 8140 is powered up, only the Power On indicator on the $8130 / 8140$ operator panel is valid during the power on signal sequence (approximately 73 seconds). All other indicators and hexadecimal
 until the 8101 unit power-on sequence is complete, at which time the IPL process begins.

When the $8130 / 8140$ is powered on, +5 VCtI is generated and 250 ms later -POR $\left(+\mathrm{V}_{\mathrm{E}}\right)$ becomes active. The 8101 power-on signal sequencing starts when -POR1 $\left(+\mathrm{V}_{\mathrm{E}}\right)$ becomes active. The $8130 / 8140$ remains in a system-reset state until the power-onsignal sequence is complete. In the PSCF -POR1 (V_{E}) is sent to PSCF cards 2,3 , and 5 which control power-on signal sequencing. When the operation is complete -POR1 $\left(V_{E}\right)$ is sent to the PSCF1 card which controls initialization reset functions.

The PSCF and SSCF -POR1 $\left(+\mathrm{V}_{\mathrm{E}}\right)$, together with +5 V ctl , control the POR signal.
Primarily, - POR1 $\left(+V_{E}\right)$ becomes active 5.2 to 11.6 seconds after the power switch is activated and provides the gating for the $1 / O$ drivers to ensure a noise-free environment when the drivers are turned on or off. The -POR1 $\left(+V_{E}\right)$ in both the PSCF and SSCF is deactivated before +5 V CtI , which generates a POR. This causes the I/O drivers to turn off before the loss of +5 V CtI .

8101 power-on signal sequencing is controlled by the PSCF using the channel request logic in the SSCFs, the channel request priority (CRP) bus between the PSCF and SSCFs. and the Transmit Control (Xmit CtrI) line. When an SSCF is powered down, the Transmit Control line enables a comparison between its predetermined CRP value and the Transmit Contro CRP bus. When a the SSCF's CRP value, the "sequence on" signal is activated.

The sequence in which the units are optioned to power up is determined by their CRP assignment. The unit with the highest CRP assignment is activated first, followed by the remaining units in descending order of CRP assignment. The PSCF controls this sequencing by using the 4 -bit power-up sequence counter as the source for the value it places on the CRP bus. The counter is first reset and then set to a value of $\mathrm{B}^{\prime} 1111$ ' at the time the $8130 / 8140$ is powered up. The PSCF places the value $B^{\prime} 1111^{\prime}$ on the CRP bus and raises the Transmit Control line. At that time, all SSCFs compare their CRP value with the value $\mathrm{B}^{\prime} 1111^{\prime}$ on the CRP bus. If an SSCF is assigned the CRP value $\mathrm{B}^{\prime} 1111^{\prime}$, the unit to which it is attached is powered on. The PSCF waits 4 seconds, decrements the counter by 1 , places the new value on the CRP bus, and raises the Transmit Control line. Again all SSCFs compare the CRP bus with their predetermined CRP value, and, if a comparison is made, the unit to which that SSCF is attached is powered up. This the value B'0000' At this to all 8101 units, with their rower control switch set to Rete are pored up and PSCF returns a Sequence Complete sigal to the set to Remote, are powered up and the PSCF returns a Sequence Complete signal to complete.

Figure PA123-1 shows the timings for the power-on signal sequence for the attached 8101 units. The $8130 / 8140+5 \mathrm{VCC}$ signal initiates this sequence

SY27-2521-3

The 8100 power logic monitors certain dc voltages for overvoltage (OV) and undervoltage UV) conditions and, if detected, performs a machine power off. Refer to the following text and also to Figure PA124-1 to determine those machine voltages sensed for OV/UV conditions, and also for those dc voltages not sensed.

Overvoltage Sensing

The 8100 senses only the -4 V dc for an overvoltage condition. The PC-2 and PC-50 logic cards generate and sense this voltage; PC-2 supplies the first disk drive and PC-50 supplies the second (if installed). When PC-2 or PC- 50 detects a -4 V dc overvoltage after power is ped the overvoltage. This condition opens fuse F14 (F50 on PC-50), which drops the V 1 , -4 V dc and powers down the machine

Undervoltage Sensing
The PC-2, PC-3, and PC-50 cards sense undervoltage conditions as follows:

- PC-2 senses the $-4,-12$, one $+5,+12$, and +24 dc voltages at the load side of the fuse that corresponds to the voltage. (See Figure PA124-1). When PC-2 (PA462) detects an undervoltage condition for any of these voltages at any time except during a poweron or power-off operation, it
- Powers down the machine
- Turns on the disk storage fault indicator (DS4)
- Turns on the Power/Thermal indicator (DS3)
- Generates a machine turn-off signal
- PC-3 senses the -5 V dc voltage at $01 \mathrm{~A}-\mathrm{TB1} 18$ for an 8130 (PA441 and PA451), at 01A-TB2-3 for an 8140 Model AXX and at 01A-TB2-7 for Model BXX (Figure PA440-3 and PA442 and PA452) and at 01A-TB2-3 for an 8101 (PA443 and PA453). When PC-3 detects a -5 V undervoltage condition at any time (PA463) except during a power-on or power-off operation, it drops machine power.
- PC-50 senses the -4 V dc for the second disk drive (if installed). When this PC card detects a -4 V undervoltage condition, it powers down the machine and turns on it disk storage fault indicator (DS50)

DC Voltage	ov	UV	Sensed By	Fused By	Comments
-4	\times	x	PC-2	01G-F14	1st disk drive
**-4	x	x	PC-2	01M-F14	8140 1st disk drive
-4	x	x	PC-50	01N-F50	8140 2nd disk drive
-4	x	\times	PC-50	01G-F50	8101 2nd disk drive
+5	-	x	PC-2	01G-F3	
+5	-	-	\cdots	01G-F4	Not sensed
+5	-	-	----	01G-F5	Not sensed
+5	-	-	\cdots	01G-F6	Not sensed
** +5	-	-	\cdots	01R-F1	Not sensed
** +5	-	-	\cdots	01R-F2	Not sensed
** +5	-	-		01R-F3	Not sensed
* 5	-	x	PC-3	01G-F8	
-8.5	-	-	---	01G-F7	Not sensed
+8.5	-	-	-	01G-F2	Not sensed
-12		\times	PC-2	01G-F1	
+12	-	x	PC-2	01G-F10	
+24	-	x	PC-2	01G-F9	

*An 8101 Model A10 (no disk drive) senses only this voltage
**Present only on 8140 Models BXX.
Figure PA124-1. DC Overvoltage/Undervoitage Sensing Summary

Figure PA124-1 shows all 8100 dc voltages and if they are sensed for either OV or UV conditions. It also shows the PC card that senses these voltages, which occurs at the load (output) side of the respective fuse. Refer to PA660 for a list of all system voltages, fusing, and test points.

PA130 Power-Unique Repair Strategy

Access to power components and test points normally requires removal of exterior covers over the area being checked

You should perform all initial 8100 power fault isolation by using the maintenance device and the power (PA) MAPs located on MD diskette 01

- Use MD diskette 01 menu option 4 either for $8130 / 8140$ power problems or if you cannot determine the failing machine type.
- Use MD diskette 01 menu option 5 if you know an 8101 failed but cannot determine which one.

Always have the maintenance device plugged into the $8130 / 814001 \mathrm{H}$ gate convenience outlet unless you have either:

- disconnected or plan to disconnect the power cord
- turned off the line voltage circuit breaker (CB1) on 8140 Models BXX.
- otherwise have no 01 H gate convenience outlet power because of a machine problem.

PA211 describes the PA MAP menu options and their meanings used for 8130,8140 , and undetermined power problem isolation; PA212 describes the PA MAP menu options available for an 8101.

When using PA211 or PA212, find the symptom meaning that most closely describes your failure and select the corresponding PA MAP option. If you isolate the problem to a field-replaceable unit (FRU), repair or exchange the FRU; for a problem other than a defective FRU, repair as necessary; if you cannot determine the problem, request aid.
If the Chapter 1 General Failure Index (GFI) directed you to the PA MAP, use MD diskette 01 menu option 4 or 5 as explained above. The PA MAP then directs you to either:

- Exchange a FRU
- Locate opens by checking circuit continuity
- Locate shorts by unloading particular circuits.
- Locate power control failures.
- Verify correct power supply operation.

Intermittent failures make all MAPs ineffective. If either an intermittent power problem occurs or the PA MAP cannot isolate the failure, go to PA300.

PA200 Offline Tests

To perform initial power problem fault isolation, you must obtain the entire system from the customer. As the PA MAPs are standalone programs and do not require system interaction, you do not need to plug the MD signal cable into the $8130 / 814001 \mathrm{H}$ gate socket. You should, however, plug the MD power cable into an 01 H gate convenience outlet if power is available there. (See note after PA211 options). Power on the MD, load MD dis kette 01, and use:

- MD diskette 01 menu option 4 either for $8130 / 8140$ power problems or if you cannot determine the failing machine type
- MD diskette 01 menu option 5 for 8101 power problems.

PA210 PA MAP Menu Options

PA211 PA MAP Options for 8130, 8140, and Undetermined Power Problems
The following lists and briefly describes the PA MAP options, symptoms, and meanings used for MD diskette 01 menu option 4. To use these options, find the symptom meaning that most closely describes your failure, then select the corresponding PA MAP option and symptom as displayed on the MD. If none of the meanings apply or you cannot determine the symptom, select option 09, UNKNOWN PROBLEM.

If you isolate the problem to a field-replaceable unit (FRU), repair or exchange the FRU; for a problem other than a defective FRU, repair as necessary; if you cannot determine the problem, request aid.

PA MAP

Menu Option	Symptom	Meaning
01	SOUND; NO LIGHTS	$\begin{array}{l}\text { After a power-up, fans and motors } \\ \text { run but no indicators are on. }\end{array}$
02	$\begin{array}{l}\text { NO POWER-UP } \\ \text { INDICATION }\end{array}$	$\begin{array}{l}\text { After attempting a power-up, no fans } \\ \text { or motors run and all indicators are } \\ \text { off. }\end{array}$
03	VOLTAGE OUT OF	
TOLERANCE		

one or more voltages are low.\end{array}\right\} $$
\begin{array}{l}\text { You have determined that a voltage } \\
\text { is missing either at the 01A gate, a } \\
\text { disk drive, the diskette drive, or a fan. }\end{array}
$$\right\}\)
se this option to begin PA MAP fault isolation if you cannot determine a symptom.

You have exchanged a fuse and want to verify the repair. If the fuse again pens, the PA MAP provides faut isolation.

The customer's line voltage CB trips either when connecting the power cord or when powering up. convenience outlet(s).

Returns you to the MD diskette 0 menu.

The Power On Disabled indicator is on and the system does not power up

Displays the PA MAP menu options.

You cannot plug the MD into the 8130/8140 convenience outlet when selecting this option, as the outlet has no power.

PA212 PA MAP Options for 8101 Power Problems
The following lists and briefly describes the PA MAP options, symptoms, and meanings used for MD diskette 01 menu option 5 .

- If the symptom meaning describes your failure, select the corresponding PA MAP option and symptom as displayed on the MD.
lect option OC, POWER PROBLEM.
- For any 8101 symptom not listed, use MD diskette 01 option 4 and go to PA211.

Note: If a MAP step asks you to check a voltage that does not apply or an indicator that is not installed, reply as if the voltage or indicator were installed and good
If you isolate the problem to a field-replaceable unit (FRU), repair or exchange the FRU for a problem other than a defective FRU, repair as necessary; if you cannot determin the problem, request aid

PA MAP

Menu Option Symptom Meaning
OC
POWER PROBLEM

SCF POWER SIGNALS

Isolates a system power problem to a particular 8101.

An 8101 operates with the local/ remote switch set to Local but not when set to Remote

If PC-2, PC-3, or the 01C disk drive appears to cause a power on failure, use the following procedure to aid in fault isolation. See also PA450 through PA453 and PA460 through PA462.

Providing the disk storage fault indicator (DS-4) is on, disconnect J16/P16 on PC-2 and also disconnect the power plug (01C-J11/P11) to the 01C disk drive motor.

- If power remains on, either a PC-2 input or the PC-2 card caused the fault indication. Use Figure PA253-1
- If the machine does not power up, either a PC-3 input or output caused the problem. Use Figure PA253-2 and PA453

Figure PA253-1 describes the voltages expected at certain PC-2 $\mathbf{J 1 6}$ pins before and after a power up attempt.

$\begin{aligned} & \mathrm{J} 16 \\ & \text { Pin } \end{aligned}$	Voltage Before	Voltage After	Comments
A03	0	+24*	
A05	0	+12*	
A06	0	+5*	
A07	0	-4*	
B12	0	-12*	
A12	0	0	
A10	0	0	+5 V after power up if the disk storage interlock switch or switch path is open.
A01	0	+24*	+24V path through the K2 relay indicating that the relay is picked. (PA440)
B07	0	+3.5	Approximately 3.5 V if the -POR signal is coming from PC-3 G10. (PA452, PA461, and PA462)
B11	0	+5	-Sw Off signal. (PA450, PA461, and PA463)
A11	+5	+5	This point is also called -POR but comes from PC-3 G07 and indicates +24 V ac from the T1 transformer. (PA461, PA463, PA410, and PA440)
B06	+5	+5	Disk Storage (File) Fault signal from PC-2 to PC-3. If measured when the fault occurs, the meter deflects lower, then returns to +5 V .
B09	0	0	-Power Good signal to the disk drive logic that allows the K1 relay to pick, which starts the disk drive motor. During power up, this signal is +2 V to +3 V .
B08	0	+5	+Power Good signal to the 01A gate and the SCF logic.

*If power remains up.

Figure PA253-1. PC-2 J16 Input/Output Levels

Figure PA253-2 shows the signal path of certain PC-3 power reset lines used to determine fault isolation when using this action plan.

Line Name	PC-3 Pin	PC-1 Pin	PC-2 Pin	01A Pin	Disk Pin
-POR 1	D07	J8A15	-	J12-3	-
-POR 2	D13	J8B09	-	J16-3	-
-POR 3	B09	J8B10	-	J16-6	-
-POR	G05	J1A01	J16A11	-	-
-POR	G10	J1A06	J16B07,		01 J J1-3
-Sw Off	G07	J1A03	J16B09		

Figure PA253-2. PC-3 Power Reset Line Distribution

PA300 Intermittent Failure Repair Strategy

Use the information in this section to aid in fault isolation of either intermittent power problems or for those failures that the PA MAP could not isolate.

PA310 General Intermittent Failure Repair Strategy
Use the following general procedure to aid in isolating intermittent power failures:

1. Turn off machine power at the operator panel and either disconnect the power cord from the wall outlet on all 8130 and 8140 Models AXX, or turn off the line voltage circuit breaker (CB1) on $\mathbf{8 1 4 0}$ Models BXX
2. Disconnect all P/J connectors one at a time and inspect for cracked housings and loose or bent pins. Reconnect them if not defective, or repair or replace as necessary. See PA760 for connector part numbers.
3. Reseat all pluggable cards in the power supply gate(s) and all 01 A logic gate cards.
4. Check all TBs and filter capacitors for loose screws.
5. Check power cables for possible chafing or pinching
6. Check power cables and connections for opens or shorts.
7. Either connect the power cord to the wall outlet or turn on CB1 $\mathbf{8 1 4 0}$ models BXX).

danger

With the power cord connected to the wall outlet, line voltage and the $+\mathbf{5}$ and $+\mathbf{2 4}$ control voltages are always present in all:

- 8130s, 8140 Models AXX, and 8101s.
- $\mathbf{8 1 4 0}$ Models BXX with the line voltage circuit breaker (CB1) on.

8. Turn on machine power at the operator panel and check relay contactors for proper operation.
9. When powered up, vibrate the machine while visually checking for arcing or smoking.
10. Go to PA610 and perform the AC Ripple Service Check.
11. Check for extra or missing ac (PA405) and dc (PA440) grounds.

PA400 Signal Paths and Detailed Operational Description

DANGER

With the power cord connected to the wall outlet, line voltage and the +5 and +24
control voltages are always present in all:

- 8130s, $\mathbf{8 1 4 0}$ Models AXX, and 8101s.
- $\mathbf{8 1 4 0}$ Models BXX with the line voltage circuit breaker (CB1) on

The following summarizes PA400, the first five sections of which are grouped according to machine type, where:
$X=1=8130$
$X=2=8140$
$X=2=8140$
$X=3=8101$

- PA41X contains the $60-\mathrm{Hz}$ ac power logic for machines used in the United States and Canada.
- PA42X contains the $60-\mathrm{Hz}$ ac power logic for machines used in countries other than the United States and Canada.
- PA43X contains the $50-\mathrm{Hz}$ ac power logic.
- PA44X contains the dc power logic.
- PA45X contains the power control (PC) card external logic connections.
- PA460 contains PC card diagrams and internal logic connections sectionalized by PC card type.

BLK	Jumper		01 GPower Gate to Frame	
	3*			
GN/YEL	$r-\infty$	4*	Gate Fans 1 and 201 A	01A-J1-2

8140 Models BXX Safety Grounds

8101 Models A1X, A20, and A23 Safety Grounds

GN/YEL	Jumper	Diskette Drive 010	01D Motor Case PA413, PA423, PA433
GN/YEL	Jumper	Disk 1 Fan 01C	01C Motor Case PA413, PA423, PA433
GN/YEL	Jumper	Disk Drive 101 C	01C Motor Case PA413, PA423, PA433

8101 Model A25 Safety Grounds

PA410 60-Hz AC Power (U.S. and Canada)

PA411 8130 60-Hz AC Power (U.S. and Canada)

Notos:
11
1 Typical value with system operating properly; for reference only. Vo/tage measured with respect to DC common.
2 Connect this lead to $T 1$ input tap corresponding to $A C$ inp
voltage.
3 Connact this lead to $T 2$ input tap corresponding to $A C$ input danger
High-voltage resonant circuit. Do not measure across C12 with power on.
5. Leads in P3 and J3 are connected to pins 4, 5, and 6 for Leads in P3 and J3 are connected to pins 4, 5, and 6 for
100 to 127 volts and to pins 1,5 , and 3 for 200 to 240 volts
See also Note See also Note 3

8140 Models AXX $60-\mathrm{Hz}$ AC Power (U.S. and Canada)

Notes:
117
1 Typical value with system operating properly; for referer Trpical va/ue with system operating properily; for refe
only. Voltage measured with respect to $D C$ common.
2 Connect this lead to $T 1$ input tap corresponding to $A C$ input voltage.
3 Connect this lead to T_{2} input tap corresponding to $A C$ input
4 danae
DANGER
High-voltage resonant circuit. Do not measure across C12 High-voltage ras
with power on.
5 Leads in P3 and J3 are connected to pins 4, 5, and 6 for 100 to 127 volts and to pins 1, 5 , and 3 for 200 to 240 volts Se also Note 3
6 All units built after EC 862592 have disk and diskette double-

1 Typical value with system operating properly; for reference Typical vilue with system operaing properily, for refer
only. Voltage measured with respect to DC common.
2 Connect this lead to $T 1$ input tap corresponding to $A C$
input voltage.
3) Connect this lead to $T 2$ input tap corresponding to $A C$
$4{ }^{\text {input voltage }}$
4 danger
High-voltage rasonant circuit. Do not measure across C12 High-voltage rasc
with power on.
5. All units built after EC 862592 have disk and disketre double-
grounded.

PA420 60-Hz AC Power (Other than U.S. and Canada)

PA421 8130 60-Hz AC Power (Other Than U.S. and Canada)

1 Typical value with system operating property; for reference only. Voltage measured with respect to DC common.
${ }^{2}$ connect
3 Connect this lead to $T 2$ input tap corresponding to AC inpu voltage for 100 V and 110 V . For all other input voltages, connect this lead to TB5-5.

4 danger

High-voitage resonant circuit. Do not measures across C12 with power on.
5 Low-voltage convenience outlet rreceptacle to be connected
for 100 V and 111 V inputs. High- yol trge for 100 V and 110 V inputs. High-vortage convenience outlet receptacle to be connected for 200 V to 240 V inputs. Lowvoltage. 6 Le 127 volts and to pins 1,5 , and 3 for 200 to 240 volts. See also Note 3

Notes:
Typical value with system operating properly; for reference only. Voltage measured with respect to DC common.
Connect this lead to $T 1$ input tap corresponding to $A C$ indur
voltage.
Connect t
voltage. danger
High-voltage resonant circuit. Do not measure across C12 High-vitage res.
with power on.
5 Low-voltage convenience outlet receptacle to be connected for 100 V to 127 V inputs High-voltage convenience outlet receptacle to be connected for 200 V to 240 V inputs. Low hevoltage outlet connections same as low
6.

Connect this lead to $T 2$ input tap corresponding to $A C$ input vect this flead 100 110, 115 , and 120 V . For 127 V input, connect this lead to TB5-3. For 200, 2
7 Leads in P3 and $J 3$ are connected to pins 4,5 , and 6 for 100 to 127 vots and to pins 1,5 , and 3 for 200 to 240 votts Soe a/so Notes 3 and 6
8 All units built after EC 862592 have disk and diskette double grounded.

Notes:
1 Typical value with system operating properly; for reference only. Voltage measured with respect to DC common. Connect this lead to $T 1$ input top correspqnding to $A C$ mpur volage.
3 Connect this lead to $T 2$ input tap corresponding to $A C$
4 danger
$4 \begin{aligned} & \text { DANGER } \\ & \text { High-voltage resonant circuit. Do not measure across } \mathbf{C 1 2}\end{aligned}$
High-voltage resonant circuit. Do not measure across C12
with power on.
5 Connect this leed to $T 2$ input tap corresponding to $A C$ input voltage for 100, 110,115 , and 120 V . For 127 V , connect voltage for thead to TB-3. For 200, 208, 220, 230 and 240 V , connect this lead to TB5-7.
6 Leads in P3 and J3 are connected to pins 4,5, and 6 for 100 to 127 volts and to pins 1,5 , and 3 for 200 to 240 volts.
See also Notes 3 and 5 . See also Notes 3 and 5
7. All units built after EC 862592 heve disk and diskette double-

Notes:
1
Typical value with system operating properly; for reference only. Voltage measured with respect to DC common. 2. Connect this lead to $T 1$ input tap corresponding to $A C$ input voltage.
3 Connect this lead to $T 2$ input tap corresponding to $A C$ input voltage.
4 dange High-voltage resonant circuit. Do not measure across C12 with power on.
5 Low-voItage convenience outlet receptacle to be connected for $100 \mathrm{~V}-127 \mathrm{~V}$ inputs. High-voltage con venience outlet receptacle to be connected for 200 V to 240 V inputs. Low-
voltage shown. High-voltage outtet connections same as low voltage.
6 Connect this lead to $T 2$ input tap corresponding to $A C$ input voltage 100/110/115/120V. For 127 V input, connect this lead to TB5-3. For all other input voltages (200/208/220
230/240V) connect this lead to TB5-7.
7 Leads in P3 and J3 are connected to pins 4,5, and 6 for 100 to 126 volts and to pins 1,5 , and 3 for 200 to 240 volts. See also Notes 3 and 6.

8140 Models AXX $50-\mathrm{Hz}$ AC Power

Notes:
1 I
Typical value with system operating properly; for reference only. Voltage measured with respect to DC common. Connect this lead to $T 1$ input tap corresponding to $A C$ input voltage.
3 Connect this lead to $T 2$ input tap corresponding to $A C$ input voltage
4 danger
High-voltage resonant circuit. Do not measure across $\mathbf{C 1 2}$
with power on
5 Leads in P3 and J3 are connected to pins 4,5 , and 6 for 100 or 110 volts and to pins 1,5, and 3 for 200 to 240 votts. See 6 also Note 3
6 Connect this lead to $T 2$ input tap corresponding to $A C$ input for 100 and 110 V . For $200,220,230$, and 240 V , AC
this lead to TB5-6.
7 Taps 2 and 3 on 72 primary are not brought out on trans.
formers PN 7389297.
8 All units built after EC 862592 have disk and diskette doublegrounded.

[^1]

Figure PA440-3 (Part 2 of 2). $\mathbf{8 1 4 0}$ Models BXX DC Power

14 For additional wiring to PC50 and PC51, see PA453.
15 Present with EC862250 installed.

This page intentionally left blank.

PA441 8130 DC Distribution

Figure PA442-1 (Part $\mathbf{2}$ of 2). $\mathbf{8 1 4 0}$ Models AXX DC Distribution

```
12 Required for Models A61-A64 and A71-A74 only.
    On some special featured machines to reduce voltage drop to
    match the new curre
        LLasd 1 at TB1-9 reattrached to TB1-11
        Lead 2 at TB1-10 reattached to TB1.12
        Lead 16 at TB1-11 reattached to TB1-9
    For additional wiring to 01G-PC-2, see PA440, PA452
15 For additional wirring to 01C Disk Drive, see PA452
16 For additional wirring to 01F, BOP Panel, POPA452
18
19 For additional wiring to P1/Jl, see PA452
20 For additional wiring to P5/55, see PA440 and PA452
21 Present with EC867486 installed.
```


${ }^{w} 4$

Notes:
Required when code 9943 or 1503 is intalled (communication ports $1-4$
2 Required when code 1504 is installed (communication ports 5.8) 3 For additional wiring to TB1, see PA440
4 For additional wiring to PC1, see PA440, PA453
5 For additional wiring to O1G-W3, W4, see PA440.
6 For additional wiring to O1A-A1 Wh, A2 boards, use PA453.
7 .
7 For additional wiring to 01G-PC2, see PA440 and PA45
9 .
For additional wiring to
and P16/I16, see PA440
10 For additional wiring to P1/JI, see PA453
11 For additional wiring to P5/J5, see PA440, and PA453.

Figure PA443-1 (Part 2 of 2). 8101 Models A1X, A20, and A23 DC Distribution

Figure PA443-2 (Part 1 of 2). 8101 Model A25 DC Distribution

Figure PA443-2 (Part 2 of 2). $\mathbf{8 1 0 1}$ Model A25 DC Distribution

PA450 Power Logic Interconnections
PA451 8130 Power Logic Interconnections

5 For additional wiring to 01A-A1 board, see PA441.
For additional wiring to PC2, see PA440, PA441.
7 For additional wiring to 01C Disk Drive, see PA441.

9 Present with EC 321965 installed.

PA452 8140 Power Logic Interconnections

Notes:

This point connected to ground for lamp test
EC2-G is jumpered to EC2-H if keylock SW is not present
For additional wiring to PC1, see PA440, PA442
For additional wiring to PC2, see PA440, PA442.
For additional wiring to O1C Disk Drive, see PA442
Figure PA452-1. 8140 Models AXX Power Logic Interconnections

6 For additional wiring to 01A-A1, A2 boards, see PA442.
For additional wiring to Op Panel, see PA442
7
8
For addition
Thin
is:
$\frac{- \text { Seq Comp }}{\text { H6A04 (z3B02) }}$ H6AOM
A6D04 (Z1B02)
$\frac{\text { Models }}{\text { A3X, }} 4 \mathrm{AX}$ ${ }_{\text {A5XX }}$

9 This pin is:
13 Present with EC 867486 installed
 AGE04 (Z1BO3) $\overline{A 3 X, A} 4 x$
$A 5 X$
10 For additional wiring to P1/JI, see PA442
11 For additional wiring to P16/J16, see PA440.
12 For additional wiring to P5/J5, see PA440 and PA442.
REA 06-88481

Figure PA452-2. $\mathbf{8 1 4 0}$ Models BXX Power Logic Interconnections

PA453 8101 Power Logic Interconnections

Figure PA453-1. 8101 Models A1X, A20, and A23 Power Logic Interconnections

This page intentionally left blank.

PA461 PC-1 Power Card Assembly

B. PC-1 Power Card Assembly Component Layou

PA462 PC-2 First-Disk -4V Regulator and Sensing Logic Card

B. PC-2 Minus 4-Volt Regulator Card Component Layour

Notes:

1. See PA650 for fuse specification.
2. For any defective PC-2 card component except fuse F14, replace the entire card.

Note: For any defective PC.3 card component, replace the entire card

A. Logic Flow

Notes:

1. The PC 4 card is used in the 8101 only.
2. For any defective PC-4 card component. replace the entire card.

B. Card Pictorial

3. For any defective PC-50 card component except fuse F50, replace the entire card.
4. See PA650 for fuse specifications.

C-50 regulator asse 8101 Model A25 except that the PC-51 Card and its mounting are removed.
B. PC-50 Card Assembly

c. PC-50 Card Pictorial

Figure PA465-1 shows the PC-50 card signals and voltage levels with the unit powered on and operating properly.
Note: When probing VTL voltage levels, use the General Logic Probe (PN 453212) to verify line status; when probing an actual dc voltage level, use a voltmeter.
If, after probing these lines:

- Any one input is incorrect, either the voltage source or distribution is the probable cause
- Multiple inputs are incorrect, either the common voltage source or the PC-50 card is the probable cause.
- Some inputs and outputs are both incorrect, either the voltage input or the PC-50 card is the probable cause.
- One or more outputs are incorrect, PC-50 is probably defective.

If replacing the card does not fix the problem, either the voltage distribution or load could be the probable cause

Input	Input	PC-50 Card		Output	Output
Voltage	Line			Line	Voltage
Level	Name			Name	Level
Gnd	DC Common	J50-1	J51-1	- DC Common	Gnd
			J52-5	-DC Common	Gnd
			J52-6	-DC Common	Gnd
-12V	-12V	J50-4	J52-1	- -4 V	-4V
			J52-2	--4V	-4v
			J52-3	--4V	-4V
+5v	+5V	J51-2	J51-3	- Undervoltage	-4V
			J52-7	-No Load Indication	-4V

Figure PA465-1. PC-50 Card Signals

A. Logic Flow

Figures PA466-1 and PA466-2 show the PC-51 card signals and voltage levels with the unit powered on and operating properly.
Note: When probing VTL voltage levels, use the General Logic Probe (PN 453212) to verify line status; when probing an actual dc voltage level, use a voltmeter.
If, after probing these lines:

- Any one input is incorrect, either the voltage source or distribution is the probable cause
- Multiple inputs are incorrect, either the common voltage source or the PC-51 card is the probable cause.
- Some inputs and outputs are both incorrect, either the voltage input or the PC-51 card is the probable cause.
- One or more outputs are incorrect, PC-51 is probably defective
freplacing the card does not fix the problem either the voltage distribution or load could be the probable cause

Figure PA466-1. $\mathbf{8 1 4 0}$ Model BXX PC-51 Card Signals

Input	Input	PC-51 Card		Output	Output
Voltage	Line			Line	Voltage
Leval	Name			Name	Level
+ VTL	-Lamp Test	J53-2	J53-1	- + Start V_{E}	+ VTL
Gnd	Gnd	J53.4			
+ VTL	-Power On Reset -	J53.5			
+ VTL	+ Power Good	J536	J54-5	-_Power Good	-VTL
$+5 \mathrm{Vdc}$	$+5 \mathrm{Ctl}$	J53-8	J54.6	--File Fault	+ VTL
-VTL	+ Switch Off	J53-9			
+ VTL	-Sys Off	J53-10	J54-10	- +Brake Applied	-VTL
$-4 \mathrm{Vdc}$	-4V Check	J54-9	J54-1	- -Pick K50	-VTL

Figure PA466-2. 8101 Model A25 PC-51 Card Signals

PA500 Adjustment, Removal, and Replacement Information

DANGER
With the power cord connected to the wall outlet, line voltage and the +5 and +24
control voltages are always present in all:
control voltages are always present in all:

- 8130s, 8140 Models AXX, and 8101s.
- $\mathbf{8 1 4 0}$ Models BXX with the line voltage circuit breaker (CB1) on.

Before removing metal covers or internal power components (except for power control AXX, and all 8101s, or (2) turn off CB1 for 8140 Models BXX.

Caution: To remove either power control (PC) or logic cards:

1. Place the operator panel power switch to the Off position.
2. Disconnect 01G- $\mathbf{8} 8$ from the $\mathrm{PC}-1$ card.

PA510 +5V DC Adjustment
Before the customer receives the system, the factory adjusts the +5 V dc level while having all devices connected to the system that use this voltage. As this is the only adjustable dc voltage, you should check all +5 V dc outputs after adding or deleting any feature in the field. You can use your tool bag meter, (IBM PN 1749231 or equivalent) to make this adjustment but, if possible, use a Weston 201 meter for accuracy. Referring to Figure PA510-1, proceed as follows:

1. To measure the +5 V , connect the positive meter lead to $01 \mathrm{GL} \mathrm{L}-2$ and the negative lead to 01G W3.
2. A voltage of from +5.15 V to +5.25 V dc is within tolerance and does not need adjust ment; if out of tolerance, go to step 3.

Caution: Turn power off before moving the transformer leads.
Note: Changing this +5 V adjustment has some effect on other system voltages, but it should not cause an out of tolerance condition.
3. Power off the machine at the operator panel.
4. Locate the $T 3$ transformer leads marked 55 and 56 on 01G-TB6. Move both leads as necessary to adjust the +5 V output according to the following chart. Moving both necessary to adjust the +5 V output according to the following chart. Moving both
leads one position changes the +5 V output approximately 0.1 V . Adjust as close to 5.20 V as possible.

Lead 55	Lead 56	
		Comments
TB6-1	TB6-4	Minimum voltage level connections
TB6-1	TB6-3	
TB6-1	TB6-2	
TB6-1	TB6-1	Bypasses T3 through common connection
TB6-2	TB6-1	
TB66	TB66-1	
TB6-4	TB6-1	Maximum voltage level connections

5. After moving the leads, power up and check the +5 V output between each of the After moving the leads, power up and check the +5 V output between
following points. All four outputs must be between 4.85 V and 5.45 V .

01G TB1-8
1G TB1-9
01G TB1-9 01G TB1-11
6. Check all other machine voltages (PA660).

To replace the light emitting diodes (LEDs) mounted on the 8130/8140 operator panel requires replacing the mounting as well as the diode.

Removal

Installation

After turning off power, disconnect the cable to the diode pins. Cut through the diode and mount as close as possible to the metal panel as shown in Figure PA520-1 using diagonal cutting pliers, or equivalent.

Using new parts, assemble the diode and mount by engaging the two rings of the mount in the panel, one over the other.

Figure PA520-1. LED Assembly

Referring to Figure PA530-1, proceed as follows:

1. Remove the four front cables from the adapter card (locations B2A $2, \mathrm{~B} 2 \mathrm{~A} 3, \mathrm{~B} 2 \mathrm{~A} 4$ and B2A5).
2. Remove the two retaining nuts from the front card and cable connector bracket.
3. Remove the adapter card from the rear card and cable connector bracket with the front card and cable connector bracket still attached.
4. Remove the adapter card from the front card and cable connector
5. To replace the card, perform the above steps in reverse order

Figure PA530-1. Basic Operator Panel Adapter Card (01B)

PA540 How to Gain Access to BOP Components

To replace any operator panel component, you must first gain access to the rear of the panel, as follows:

1. Remove $8130 / 8140$ power plug from the wall or turn off the line voltage circuit breaker (CB1) on 8140 Models BXX

DANGER
DC voltage is still present at the operator panel with the $8130 / 8140$ power switch in
the Power Off position.
2. Open the $8130 / 8140$ front covers and remove the bezel by sliding the two retainer clips to the rear and lifting the front edge straight up and toward the front of the unit, ensuring that the studs are clear of the retainer clips (Figure PA540-1).
3. Pivot the BOP assembly toward the front of the $8130 / 8140$ to gain access to any of the BOP field-replaceable units.

Figure PA540-1. BOP Frame Mounting

Replace capacitors on the 01 G gate as follows:

- If any capacitor C1 through C7 or C12 is defective, replace the capacitor only.
- If any capacitor C8 through C11 or the 01G gate thermal is defective, replace all capacitors C8-C11, and the W6 bus bar, which includes the thermal.

PA600 Service Checks

With the power cord connected to the wall outlet, line voltage and the $\mathbf{+ 5}$ and $\mathbf{+ 2 4}$
control voltages are always present in all:

- 8130s, 8140 Models AXX and 8101s.
- $\mathbf{8 1 4 0}$ Models BXX with the line voltage circuit breaker (CB1) on.

Before removing metal covers or internal power components (except for power control (PC and logic cards), either (1) disconnect the power cord for all 8130s, 8140 Models AXX, and all 8101s, or (2) turn off CB1 for 8140 Models BXX

Caution: To remove either power control (PC) or logic cards:

1. Place the operator panel power switch to the Off position.
2. Disconnect 01G-J8 from the PC-1 card.

PA610 AC Ripple Service Check

Use the oscilloscope setups shown below with a Tektronix 453, 454, or similar scope; connect the scope ground lead to 01G TB1-2.

Control	Setting
Channel A sweep mode	Normal
Channel A level	+
Channel A coupling	DC
Channel A slope	+
Channel A source	Internal
Trigger	Auto trig
Mode	Channel 1
Channel 1 volts/div	50 mv*
Channel 1 input	AC
Times per division	0.1 sec
Channel 1 probe	See table below

[^2]| DC Voltage | Maximum Ripple Peak to Peak | Channel 1 Probe | Fused by |
| :---: | :---: | :---: | :---: |
| 4 | 40 mv | PC-2 J15-3 | 01G-F14 |
| 4 | 40 mv | PC-2 J15-3 | 01M-F14 |
| 4 | 150 mv | PC-50 J52-2 | 01N-F50 |
| ** 4 | 150 mv | PC-50 J52-2 | 016-F50 |
| + 5 | 100 mv | $01 \mathrm{GTB1.7}$ | 01G-F3 |
| + 5 | 100 mv | $01 \mathrm{GTB1-9}$ | 01G-F4 |
| + 5 | 100 mv | 01G TB1-10 | 01G-F5 |
| + 5 | 100 mv | $01 \mathrm{GTB1-11}$ | 01G-F6 |
| * + 5 | 150 mv | 01R TB2-1 | 01R-F1 |
| + 5 | 150 mv | 01R TB2-2 | 01R-F2 |
| * + 5 | 150 mv | 01R TB2-3 | 01R-F3 |
| +5 Control | 200 mv | PC-1 J1A12 | |
| - 5 | 200 mv | 01G TB1-1 | 01G-F8 |
| + 8.5 | 340 mv | $01 \mathrm{GTB1-5}$ | 01G-F2 |
| 8.5 | 340 mv | PC-1 J3-1 | 01G-F7 |
| +12 | 960 mv | PC-1 J6-1 | 01G-F10 |
| -12 | 960 mv | $01 \mathrm{GTB1-4}$ | 01G-F1 |
| +24 | 1920 mv | PC-1 J6-3 | 01G-F9 |
| +24 Control | 200 mv | PC-1 19812 | |

*Present only on 8101 Model A25.

PA620 8130/8140/8101 Indicator Check

The Lamp Test pushbutton provides a quick method to check the 8130/8140 operator panel indicators. You can also check the operation of all system indicators as follows: 1. Perform the procedure in PA540 to gain access to the rear of the panel.
2. On any operator panel, jumper 01F EC2e to ground. This should turn on all system indicators except DS50. (See PA720 for EC2e location and BU424 for EC2 point-topoint connections).
3. To check DS50, remove fuse F50. The indicator should turn on.
4. Perform the steps in PA540 in reverse order.

PA630 Capacitor Resistance Check

Caution: Check all capacitors for opens or shorts with the power cord disconnected from the wall outlet.
The capacitor (micro)farad rating generally determines both how far and the speed at which your ohmmeter deflects. Capacitors with a numerically large rating generally cause a wide meter needle deflection toward the zero ohms position and a slow return to the infinity position; capacitors with a small rating cause little deflection and rapid return to zero and are, therefore, sometimes difficult to check.

Use your ohmmeter to check capacitors as follows:

1. Isolate the capacitor from the circuit.
2. Short the capacitor terminals with a resistor to discharge it. Generally, capacitors having a large (micro)farad rating retain a charge longer than those having a low value. 3. Set the meter on the $R \times 10$ scale.
3. Connect the meter leads across the capacitor terminals. (Observe the + and - connections for polarized capacitors.) The needle should deflect rapidly toward zero ohms and then return slowly to the infinity position.

This page intentionally left blank.

To isolate diodes in the power supply for resistance checks, you should use one of the following procedures:

Procedure Diodes

A D5, D6, D7, D8

B
D2, D4
C
D1, D3
Procedure A - Diodes D5, D6, D7, D8

1. Power down the unit and unplug the ac power cord.
2. Remove the plastic safety shield covering the $\mathrm{C} 8, \mathrm{C} 9$, and C 11 capacitor area (see Figure PA642-1).
3. Remove jumper B at the W 5 bus bar end (Figure PA642-1).
4. Remove jumper A at the $W 4$ bus bar end (Figure PA642-1).
5. Check the diodes using the diode resistance check procedure (PA641). Measure between the removed wire ends of jumper A and jumper B. See Notes 1 and 2 below for additional information
6. If a shorted condition exists, the diodes must be unsoldered from the $T 3$ windings
(see PA440) to further isolate the shorted diode or diodes.
7. If an open condition exists, exchange all four diodes.
8. Reinstall the wires and the safety shield removed in the preceding steps after you have exchanged the defective diodes.

Notes:

1. These diodes are wired in parallel. They can be isolated as a group to check them for a shorted condition. If a shorted condition exists, one or more diodes could be shorted.
2. The only valid open condition that can be found by this procedure is if all diodes in a group are open. A single open diode cannot be detected with this procedure. To check for a single open diode, remove the wires from each diode. Check each diode for an open condition using the diode resistance check procedure (PA641).

Procedure B - Diodes D2 and D4

1. Power down the unit and unplug the ac power cord.
2. Remove the plastic safety shield covering bus bars W3, W4, and W5 (see Figure PA642-1).
3. Remove wires 16 and 21 at the W 3 bus bar.
4. Remove the plastic safety shield covering bus bars W1 and W2 (see Figure PA642-1).
5. Remove wire number 8 from the plus terminal of capacitor C 2 .
6. Check the diodes using the diode resistance check procedure (PA641). Measure between the removed ends of wire numbers 8 and 16. See Notes 1 and 2 below for additional information.
7. If a shorted condition exists, the diodes must be unsoldered from the T 2 windings (see PA440) to further isolate the shorted diode or diodes

Note: See PA440 for capacitor polarity.

Figure PA642-1. Diode Check Wire Removal

8. Replace diodes only in pairs.
9. Reinstall the wires and the safety shield removed in the preceding steps after you have exchanged the defective diodes.

Notes:

1. These diodes are wired in parallel. They can be isolated as a group to check them for a shorted condition. If a shorted condition exists, one or more diodes could be shorted.
2. The only valid open condition that can be found by this procedure is if all diodes in a group are open. A single open diode cannot be detected with this procedure. To check for a single open diode, remove the wires from each diode. Check each diode for an open condition using the diode resistance check procedure (PA641).
3. Power down the unit and remove the ac power cord.
4. Disconnect plug P10 from jack J10 on the PC1 card (PA461)
5. Remove the plastic safety shield covering bus bars W3, W4, and W5 (see Figure PA642-1).
6. Remove wire numbers 16 and 21 from the W3 bus ba
7. Remove the plastic safety shield covering the W1 and W2 bus bars (Figure PA642-1).
8. Remove wire number 6 from the plus terminal of capacitor C 7 .
9. Check the diodes using the diode resistance check procedure (PA641). Measure Check the diodes using the diode resistance check procedure (PA641). Measure additional information.
10. If a shorted condition exists, the diodes must be unsoldered from the T2 windings (see PA440) to further isolate the shorted diode or diodes.
11. If an open condition exists, exchange both diodes
12. Reinstail the wires and the other safety shield removed in the preceding steps afte you have exchanged the defective diodes.
13. Reinstall plug P 10 on the PC 1 card.

Notes:

1. These diodes are wired in parallel. They can be isolated as a group to check them for a shorted condition. If a shorted condition exists, one or more diodes could be shorted.
2. The only valid open condition that can be found by this procedure is if all diodes in a group are open. A single open diode cannot be detected with this procedure. To check for a single open diode, remove the wires from each diode. Check each

PA643 Transistor Q1 and O2 Check

1. Set a CE VOM to RX1 scale.
2. Put the positive probe on " B " (base); see below.
3. Probe pins E and C (emitter and collector) with the negative probe. Each pin should read between 10 and 30 ohms.
4. Put the negative probe on B and probe pins E and C with the positive probe. Both pins should show an infinite reading.
5. Connect one probe on E and the other on C , then reverse the probes; there should be no reading either way. A low reading means a shorted transistor

PA650 Fuse and Voltage Distribution

solate power problems by disconnecting the loads from a fuse that opens repeatedly. See Figure PA650-1, PA650-2, PA650-3 or PA650-4 to determine the points to disconnect to isolate all of the loads for that fuse.

Caution: Unplug the power cord before disconnecting or connecting plugs or exchanging cards.
Disconnect the plugs for the voltage distribution to be checked. Power up and verify that the fuse does not open again. If the fuse opens again, a short in the wiring exists. Refer the fuse does not open again. If the fuse opens again, a short in the wiring exists. Refer diagrams, isolate the short and make the necessary repairs.

If the fuse does not open with all of the loads disconnected, reconnect the plugs one at a ime. If the fuse opens, the gate or board for that plug has either a defective card or a hort in the board. If the plug connects to a single card, exchange the card. If not,解 carefully inspect the board for bent pins, broken or shorted wires, and other external damage. If there are no visual problems, exchange the board.
f the fuse does not open with all of the cards removed, power down, insert one carc, and power up. If inserting a card causes the fuse to open, exchange the card. If not, continue until all cards are inserted, one at a time

Return to the start of the PA MAPs when all of the cards are inserted, all of the loads are reconnected, and the fuse remains good

Fuse	Size	Type	Part No.	Voitage	Load	Connector (Note)
01G F1	10A	ABC	511063	-12 dc	01C gate (disk)	J1
01G F2	15A	ABC	596676	+8.5 dc	01A-A1 board 01A-A2 board 01B gate (BOPA card) 01G-PC-1 card	J7, J9, J11 J1 to J6 ${ }_{8} \mathrm{~B} 144$ cable P4
01G F3	15A	bAF	115971	$+5 \mathrm{dc}$	01B gate (BOPA card) 01 C gate (disk) 010 gate (diskette) 01F-A1A2 BOP ind. card 01G-PC-1 card	B1A3, B1A4 cables J2, J4 A2 cable J1 P4
01G F4	15A	baf	115971	+5 dc	01A-A2 board	J1, J2, J3
01G F5	15A	BAF	115971	$+5 \mathrm{dc}$	01A-A2 board	J1 to J6
01G F6	30 A	NON	7389944	+5 dc	01A-A1 board	J1 to J5, J7, J9, 111
$016 \mathrm{F7}$	3 A	AGC	855252	$-8.5 \mathrm{dc}$	01A-A1 board 01A-A2 board	$\begin{aligned} & \mathrm{J4,} \mathrm{J5} \\ & \text { U4DO7 } \end{aligned}$
01G F8	10A	ABC	511063	-5dc	01A-A1 board 01A-A2 board 01 B gate (BOPA card) 01D gate (diskette) 01G-PC-1 card	$\begin{aligned} & \text { J7, J9, J11 } \\ & \mathrm{J1} \text { to J6 } \\ & \text { B1A3 cable } \\ & \text { A2 cable } \\ & \text { P2, P3, P4 * } \end{aligned}$
01G F9	4 A	MTH	111257	+24 dc	01 C gate (disk) 01 D gate (diskette)	$\begin{aligned} & \mathrm{J} 5 \\ & \text { A2 cable } \end{aligned}$
01G F10	4A	MTH	111257	+12 dc	01C gate (disk)	J1
01G F11	$\begin{aligned} & 0.5 \mathrm{~A} \\ & 0.3 \mathrm{~A} \end{aligned}$	MDL MDL	78999 78998	$\begin{aligned} & 100-127 a c \\ & 200-240 a c \end{aligned}$	01G-T1 transformer	
016 F12	$\begin{gathered} \text { 15A } \\ 8 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { FNM } \\ & \text { FNM } \end{aligned}$	$\begin{aligned} & 107670 \\ & 107668 \end{aligned}$	$\begin{aligned} & 100-127 \mathrm{ac} \\ & 200-240 \text { ac } \end{aligned}$	01G-T2 transformer	
01G F13	$\begin{aligned} & 4 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { FNM } \\ & \text { FNM } \end{aligned}$	$\begin{array}{r} 107665 \\ 92734 \end{array}$	$\begin{aligned} & 100-127 a c \\ & 200-240 a c \end{aligned}$	01 H and 01 U gate convenience outlets	
01G F14	4A	MTH	111257	-4 dc	01C gate (disk)	J2, J4

-sv source
Note: The connectors referenced in this colkm are always located on the gate, board, or card what provides the load,
For multiple connectorsdisconnect all to isolate the load. See PA700 for connector locations.
Figure PA650-1. 8130 Fuse Specifications and Voltage Distribution Chart

Fuse	Size	Type	Part No.	Voltage	Load	Connector (Note)
01 GF 1	10A	ABC	511063	-12 dc	01 C gate (disk)	J1
01G F2	15A	ABC	$\begin{aligned} & 511063 \\ & 596676 \end{aligned}$	+8.5 dc	01A-A1 board 01A-A2 board 01 B gate (BOPA card)	J1, J3 J1, J3 B1A4 cable
016 F3	15A	baf	115971	+5 dc	01B gate (BOPA card) 01 C gate (disk) 01D gate (diskette) 01F-A1A2 BOP ind. card 01F-A1A3 EFP ind. card 01G-PC-1 card	$\begin{aligned} & \text { B1A3, B1A4 cables } \\ & \text { J2, J4 } \\ & \text { A2 cable } \\ & \text { J1 } \\ & \text { J2 } \\ & \text { P4 } \end{aligned}$
016 F4	20A	baf	117252	+5 dc	01A-A1 board	Y2, Y3, Y4
01 GF 5	20A	baf	117252	+5 dc	01A-A1 board	Y2, Y3, Y4
016 F6	30A	NoN	7389944	+5 dc	01A-A2 board	Y2, Y3, Y4
01G F7	3A	AGC	855252	$-8.5 \mathrm{dc}$	01A-A2 board	H2 (Models A3X, A4X)
01G F8	10A	ABC	511063	-5dc	01A-A1 board 01A-A2 board 018 gate (BOPA card) 01D gate (diskette) 01G-PC-1 card	J1 $J 1$ B1A3 cable A2 cable P2, P3, P4 *
$016 \mathrm{F9}$	4A	мтн	111257	+24 dc	01 C gate (disk) 01D gate (diskette)	$J 1$ A2 cable
01G F10	4A	MTH	111257	+12 dc	01C gate (disk)	J5
01G F11	$\begin{aligned} & 1 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$	MDL	$\begin{aligned} & 303549 \\ & 78999 \end{aligned}$	$\begin{aligned} & 100-127 \mathrm{ac} \\ & 200-240 \mathrm{ac} \end{aligned}$	01G-T1 transformer	
016 F12	$\begin{aligned} & 15 \mathrm{~A} \\ & 8 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { FNM } \\ & \text { FNM } \end{aligned}$	$\begin{aligned} & 107670 \\ & 107688 \end{aligned}$	$\begin{aligned} & 100-127 \mathrm{ac} \\ & 200-240 \mathrm{ac} \end{aligned}$	01G-T2 transformer	
016 F13	$\begin{aligned} & 4 A \\ & 2 A \end{aligned}$	$\begin{aligned} & \text { FNM } \\ & \text { FNM } \end{aligned}$	$\begin{aligned} & 107665 \\ & 92734 \end{aligned}$	$\begin{aligned} & 100-127 \mathrm{ac} \\ & 200-240 \mathrm{ac} \end{aligned}$	01 H and 01 U gate convenience outlets	
01G F14	4A	MTH	111257	-4 dc	01C gate (disk)	J2, J4

Note: The connectors referenced in this column are always located on the gate, board, or card that provides the load. For multiple connectors, disconnect all to isolate the load. See PA700 for con-
nector locations.

Figure PA650-2. 8140 Models AXX Fuse Specifications and Voltage Distribution Chart

Fuse	Size	Type	Part No.	Voltage	Load	Connector (Note)
01 GF 1	10A	ABC	511063	12 dc	01C gate (disk 1) 01 E gate (disk 2 01 N-PC-50	$\begin{aligned} & \hline \mathrm{J1} \\ & \mathrm{~J} 1 \\ & \mathrm{P} 5 \end{aligned}$
016 F2	15A	ABC	596676	+8.5 dc	01A-A1 board 01A-A2 board 01A-B2 board 01A-C2 board 01A-D2 board 01G-PC-1	J1-J6 J1, J2, J3 J1, J2, J3 B1A4 cable P4
01G F3	15A	BAF	115971	+5 dc	01A-A2 board 01 Bgate (BOPA card) 01 Cgate (disk 1) 011 g gate (diskette) 011 gate (disk 2) 01F-A1A2 BOP ind. card 01F-A1A3 EFP ind. card $01 G-P C-1$ card	
016 F4	20A	BAF	117	+5 dc	01A-B2 board	J1-J3, bus bars E, J
01 GF 5	20A	BAF	117252	+5 dc	01A-C1 board *	J1-J3, bus bars E, J
016 F6	30A		6814327	+5 dc	01A-A1 board	$\begin{aligned} & \mathrm{J} 1-\mathrm{J} 6, \text { bus bars } \mathrm{E}, \\ & \mathrm{~J}, \mathrm{~N}, \text { and } \mathrm{S} \end{aligned}$
01 GF 7	3A	AGC	855252	$-8.5 \mathrm{dc}$	01A-A2 board 01A-C2 board ** 01A-D2 board *	$\begin{aligned} & \hline \frac{T B 2-10}{T B 2-9} \\ & T B 2-10 \end{aligned}$
01G F8	10A	ABC	511063	$-5 \mathrm{dc}$	01A-A1 board 01A-C1 board 01A-A2 board 01A-B2 board 01A-C2 board 01A-D2 board 01B gate (BOPA card) 01D gate (diskette)	$\begin{aligned} & \hline 11-16 \\ & \text { J1.j3 } \\ & \text { J1-J3 } \\ & \text { J1.J3 } \\ & \text { J1-J3 } \\ & \text { J1.J3 } \\ & \text { B1A3 cable } \\ & \text { A2 cable } \end{aligned}$
01G F9	4A	MTH	111257	+24 dc	01C gate (disk 1) 01 D gate (diskette) 01E gate (disk $01 \mathrm{G}-\mathrm{PC}-1$ card	$\begin{aligned} & \hline \mathrm{J5} \\ & \text { A2 cable } \\ & \mathrm{J5} \\ & \text { P1 } \end{aligned}$
01G F10	4A	MTH	111257	+12 dc	01A-C1 board 01 C gate (disk 1) 01E gate $01 \mathrm{G}-\mathrm{PC}-1$ card	J1-• J1 J1 P1
$01 \mathrm{GF11}$	0.3 A	MDL	78998	208-240 ac	01G-T1 transformer	
$01 \mathrm{FF12}$	5A	FNM	107666	208-240 ac	01G-T2 transformer	
$01 \mathrm{GF13}$	1.6 A		228391	208-240 ac	01R-T1 transformer	
01L F1	1.8A		2495467	208/240 ac	Convenience outlets	
01M F14	4A	MTH	111257	-4dc	01C gate (disk 1)	J2, J4
01N F50	6A		5214456	-4 dc	01 E gate (disk 2)	J2, J4
01R F1	10A	ABC	511063	+5 dc		
01R F2	15A		5236559	+5 dc	01A-D2 board *	$\begin{aligned} & J 1, \mathrm{~J} 2, \mathrm{~J} 3 \\ & \text { Bus bars } \mathrm{E} \text { and } \mathrm{J} \end{aligned}$
01R F3	15A		5236559	+5 dc	01A.C2 board	$\begin{aligned} & \mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3 \\ & \text { Bus bars E and J J } \end{aligned}$

*Board D2 not present and 01R-F2 provides +5 V source for board C 1 when floating-point is installed,
$* 8.5 \mathrm{~V}$ not present if these boards contain display/printer adapter.
Note: The connectors referenced in this column are always located on the gate, board or card the provides the load. For multiple connectors, disconnect all to isolate the load. See PA700 for con-

Figure PA650-3. 8140 Models BXX Fuse Specifications and Voltage Distribution Chart

Fuse	Size	Type	Part No.	Voltage	Load	Connector (Note 1)
01 GF 1	10A	ABC	511063	$-12 \mathrm{dc}$	01C gate (disk 1) 01 E gate (disk 2)	$\begin{aligned} & \mathrm{J} 1 \\ & \mathrm{~J} \end{aligned}$
01G F2	15A (Note 2)	ABC	596676	+8.5 dc	01A-A1 board 01A-A2 board 01A-B1 board	$\begin{aligned} & \mathrm{J1}, \mathrm{J3} \\ & \mathrm{J1}, \mathrm{J3} \\ & \mathrm{Ji}, \mathrm{J3} \end{aligned}$
01 GF 3	15A	BAF	115971	+5 dc	01C gate (disk 1) 01D gate (diskette) 01 E gate (disk 2) 01G-PC-1 card	$\begin{aligned} & \mathrm{J} 2, \mathrm{~J} 4 \\ & \text { A2 cable } \\ & \mathrm{J} 2, \mathrm{~J} 4 \\ & \text { P4 } \end{aligned}$
01G F4	20A	BAF	117252	+5 dc	01A-A1 board	J1, J2, J3
01G F5	20 A	baF	117252	+5 dc	01A-B1 board	J1, J2, J3
01G F6	30 A	NON	7389944	+5 dc	01A-A2 board	J1, J2, J3
01G F7	3A	AGC	855252	$-8.5 \mathrm{dc}$	01A-A1 board 01A-B1 board	$\begin{aligned} & \mathrm{J} 2 * * * \\ & \mathrm{~J} 2 * * \end{aligned}$
016 F8	10A	ABC	511063	-5dc	01A-A1 board 01A-A2 board 01A-B1 board 01D gate (diskette) 01G-PC-1 card	$\begin{aligned} & \mathrm{J} 1, \mathrm{~J} 3 \\ & \mathrm{~s}, \mathrm{J3} \\ & \mathrm{J1}, \mathrm{J3} \\ & \mathrm{~A} 2 \text { cable } \\ & \text { P2, P3, P4 * } \end{aligned}$
01G F9	4A	MTH	111257	+24 dc	01 C gate (disk 1) 01 D gate (diskette) 01 E gate (disk 2)	$\begin{aligned} & \text { J5 } \\ & \text { A2 cable } \\ & \text { J5 } \end{aligned}$
01G F10	4A	MTH	111257	+12 dc	01C gate (disk 1) 01 E gate (disk 2)	$\begin{aligned} & \mathrm{J} 1 \\ & \mathrm{~J} 1 \end{aligned}$
01G F11	$\begin{array}{\|l\|l\|} \hline 1 \mathrm{~A} \\ \hline 0.3 \mathrm{~A} \end{array}$	MDL MDL	$\begin{array}{l\|l} 303549 \\ 78999 \end{array}$	$\begin{aligned} & 100-127 \mathrm{ac} \\ & 200-240 \mathrm{ac} \end{aligned}$	01G-T1 ransformer	
01G F12	$\begin{array}{\|l\|l\|} \hline \text { 15A } \\ \hline 8 \mathrm{~A} \end{array}$	$\begin{aligned} & \text { FNM } \\ & \text { FNM } \end{aligned}$	$\begin{aligned} & 107670 \\ & 107668 \end{aligned}$	$\begin{aligned} & 100-127 \mathrm{ac} \\ & 200-240 \mathrm{ac} \end{aligned}$	01G-T2 transformer	
01G F14	4A	MTH	111257	-4 dc	01 C gate (disk 1)	J2, 14
01G F50	6A		5214456	4 dc	01 Egate (disk 2)	J2, J4

$*$ *5V source
or feture codes 1503 or 9943 (communications ports 1-4)
***Present for feature code 1504 (communications ports 5 -8).

1. The connectors referenced in this column are a/ways located on the gate, board, or card that
provides the load. For multiple connectors, disconnect all to isolate the load. See PA700 for onnector locations.
2. Use 10A for Models A25 (PN 511063),

Figure PA650-4. 8101 Fuse Specifications and Voltage Distribution Chart

PA660 Voltage Verification
Use PA661 through PA663 to verify system dc voltages, as well as PC card ac referenc and dc logic voltages. Refer to the point-to-point diagrams in PA410-PA430 to verify the ac line voltage.

PA661 System DC Voltage Verification

Use the following chart to verify that all system dc voltages are present and within tolerance. See PA710 and PA740 for TB and fuse locations, PA662 for PC-1 pin locations, PA663 for PC- 2 pin locations, and PA664 for PC- 50 pin locations.

- If a voltage is missing, use the PA MAP.
- If a voltage is present but missing at a gate or board, use PA440 and PA650 to isolate the open circuit

DC Voltage	Range in Volts	+ Lead	- Lead	Fuse	Sensed
-4	-3.8 to -4.2	PC-2 J15-1	PC-2 J15-3	01G-F14	At PC-2
$-4 * *$	-3.8 to -4.2	PC-2 J15-1	PC-2 J15-3	01M-F14	At PC-2
-4*	-3.8 to -4.2	PC-50 J52-6	PC-50 J52-2	01N-F50	At PC-50
-4**	-3.8 to -4.2	PC-50 J52-6	PC-50 J52-2	01G-F50	At PC-50
+5	+4.8 to +5.5	01G TB1-7	01G W3	01G-F3	At PC-2
+5	+4.8 to +5.5	01G TB1-9	01G W3	01G-F4	No
+5	+4.8 to +5.5	01G TB1-10	01G W3	01G-F5	No
+5	+4.8 to +5.5	01G TB1-11	01G W3	01G-F6	No
+5	+4.8 to +5.5	01R TB2-1	01R TB2-4	01R-F1	No
+5	+4.8 to +5.5	01R TB2-2	01R TB2-4	01R-F2	No
+5	+4.8 to +5.5	01R TB2-3	01R TB2-4	01R-F3	No
$+5 \mathrm{CtI}$	+4.8 to +5.3	PC-1 J1A12	PC-1 J1A07	None	No
-5	-4.6 to -5.6	01G TB1-2	01G TB1-1	01G-F8	At PC-1
+8.5	+7.9 to +9.5	01G TB1-5	01G W3	01G-F2	No
-8.5	-7.9 to -9.3	01G TB1-2	PC-1 J3-1	01G-F7	No
+12	+11.0 to +13.2	PC-1 J6-1	01G TB1-2	01G-F10	At PC-1
-12	-11.0 to -13.1	01G W3	01G TB1-4	01G-F1	At PC-1
+24	+22.0 to +26.4	PC-1 J6-3	01G TB1-2	01G-F9	At PC-1
+24 Ctl	+17.0 to +30.0	PC-1 J9B 12	PC-1 J9B01	None	No

[^3]
PA662 PC-1 Card AC and DC Voltage Verification

The PC-1 card converts certain ac reference voltages into dc control and logic voltages, which are fused as indicated. Fuses F7-F10 mount on PC-1, while fuse F11 mounts on the 01G gate.
Use the following chart and Figure PA662-1 to verify the ac input and dc output voltages on the PC-1 card. See also PA461 for a point-to-point diagram, and PA650 for fuse specifications.

AC Input	Input Pin	DC Output	Output Pin(s)	01G Gate Fuse
--	\cdots	Common	J2-3, J4-3, J4-6	*
6 V	J7-10	-5V	J2-2, J3-3, J4-4	F8
6 V	J7-13	-5V	J2-2, J3-3, J4-4	F8
9.5 V	J10-9	-8.5V	J3-1	F7
9.5 V	J10-8	-8.5V	J7-4, J10-5	
10V	J13-6	$+5 \mathrm{VCt}$	J1A12, J5, J11D03, J12D03	F11
10 V	J13-9	$+5 \mathrm{VCtI}$	J8B16	F11
---	\cdots	$+5 \mathrm{VCl}$	J8B15**	F11
13V	J10-1	+12V	J1A10, J3-2, J5, J6-1	F10
13V	J10-3	+12V	J7-2	
18V	J13-1	$+24 \mathrm{VCtI}$	J7-3, J8B12, J9B12, J13-4	F11
18 V	J13-7	$+24 \mathrm{VCt}$	J13-4	
---	---	$+24 \mathrm{VCt}$	J8A08**	F11
.--	----	$+24 \mathrm{VCtl}$	J11D09**	F11
--	----	$+24 \mathrm{VCt}$	J8B08**	F11
--	----	$+24 \mathrm{VCt}$	J12D11**	F11
---	----	$+24 \mathrm{VCl}$	J13-10**	F11
26 V	J10-7	+24V	J1A08, J2-1, J6-3, J6-4	F9
26V	J10-4	+24V	J7-1, J7-5	*

*Not fused

Figure PA662-1. PC-1 Connector Locations

PA670 Power Status Indicators and Their Meaning

1. Use the following chart and Figure PA663-1 to check the dc input voltages on the PC-2 card.

DC Voltage	Input Pin
Common	J14-1
-4	J14-3
-4	J14.4
-4	J14-8
-4	J14.9
+4	J14-7
Common	J16B01
-4 sense	J16A07
+5	J16B04
+5 sense	J16A06
-12 sense	J16B12
+12 sense	J16A05
+24 sense	J16A03

2. Check the output of fuse $\mathrm{F} 14(-4 \mathrm{~V})$ at PC-2 J15-3 and J15-4

Figure PA663-1. PC-2 Connector Locations

Certain logic voltages in $\mathbf{8 1 4 0}$ Models BXX have parallel wires used for voltage distribu tion. All loads, therefore, must be disconnected to check wiring continuity for these models.
ther than an open or shorted wire, noise or low-voltage problems in the dc paralle wiring can also cause a machine failure:

- Noise can be caused by bad connections, loose screws, or defective components.

Note: You cannot disconnect the load to troubleshoot noise problems that occur in circuits having parallel wiring. Disconnecting a good line from a noisy one gives a false error indication because either (1) the additional current through a defective connection can temporarily eliminate the noise or (2) the voltage drop exceeds allowable limits and causes a machine failure.

- Low voltage can be caused by one broken wire or one bad connection.

This page intentionally left blank.

PA700 Locations

PA710 Gate and Other Subassembly Locations

Rear View

SY27-2521-3

Front View
Figure PA712-1. $\mathbf{8 1 4 0}$ Models AXX Gate and Other Subassembly Locations

Figure PA712-2 (Part 2 of 4) 8140 Models BXX Gate and Other Subassembly Locations

01 R - Line Voltage Circuit Breaker (CB1)

Figure PA712-2 (Part 4 of 4). 8140 Models BXX Gate and Other Subassembly Locations

Figure PA713-1. 8101 Models A1X, A20, and A23 Gate and Other Subassembly Locations

Note: The second disk uses the PC-50 and PC-51 cards.
Figure PA713-2. 8101 Model A25 Gate and Other Subassembly Locations

PA720 Operator Panel Component Locations

PA721 8130/8140 Basic Operator Panel Locations

PA731 813001 TGate Locations

Figure PA732-1. 8140 Models AXX 01T I/O Panel Location

Figure PA732-2. 8140 Models BXX 01T I/O Panel Locations

A740 01G Gate Power Supply Component Locations

PA741 8130 01G Gate Power Supply Component Locations

Resistor Chart 2		
Name	Resistance	Watt
R1	2 ohms	25
R2	1 ohm	50
R3	15 ohms	10
R4	1 ohm	50
R5	8 ohms	25
R6	2 ohms	25

This page intentionally left blank.

PA750 Board DC Voltage Distribution

PA751 8130 Board Voltages

J1-2 - B2A01	-Power Good
J1-3- B1E14	+12V
J1-4- B2E01	-12V
J2-1 - B2A14	Ground
J2-2 - в3A01	-4v
J2-3- B2E14	+5v
J2-4- ВЗе01	Ground
J3-1 - в3А14	Brake Coil 1
J3-2 - B4A01	Brake Coil 2
J3-3- в3E14	DE Adjust Resistors B
J3-4- B4E01	DE Adjust Resistors A
J4-1 - B4A14	Ground
J4.2- B5A01	-4V
J4.3- B4E14	+5V
J4-4- B5E01	Ground
J5-1 - B5A14	Brake Applied to System
J5-2 - B6A01	Brake Coil/ 24 V Brake
J5-3- B5E14	+24V
J5-4-86E01	Ground (+24 V)

Line Name	Power Connections to Diskette Drive (see PA440)	Diskette Drive Control (DA3) Card (01D-A1)		
		$\underset{\text { Pin }}{\text { Conn }}$	Card Pin	Test Point
Ground	TB1-2	B08	D08	TPA6
+24Vdc	PC1-J2-1	B10	D10/J12	TPA8
$+5 \mathrm{Vdc}$	TB1-7	в03	D03/J03	TPB15
-5Vdc	PC1-J2-2	B11	D11/J13	TPA9

Diskette Drive Card Logic Pins

Caution: The board connectors might not be mounted as shown in these drawings.

Chapter 5. MAP Reference Information

This part of Chapter 5 provides maintenance information to service the 8100 system control facility (SCF). When used with the Maintenance Analysis Procedures (MAPs), he SC MAP diagnoses SCF problems and refers you to this part of Chapter 5 for

This part has five sections

1. General Information (SC100-SC123) - Contains configuration, operation, and repair strategy information.
2. Offline Tests (SC200-SC250) - Contains test information and lists possible causes of failure.
3. Intermittent Failure Repair Strategy (SC300-SC351) - Contains information used to repair intermittent failures.
4. Signal Paths and Detailed Operational Description (SC400-SC464) - Contains diagrams and charts that show wiring and point-to-point signal paths.
5. SCF System Test and Internal I/O Bus Cable Change Procedures (SC500-SC520) Contains information concerning a system test procedure and how to change SCF internal I/O bus cables.

SC100 General Information	5-S
SC110 Components and Addressing	5-SC-1
SC111 Hardware Components	5-SC-1
SC112 Addressing	5-SC-15
SC113 SCF Configuration Table Entry	5-SC-16
SC120 SCF Basic Operational Description	5-SC-17
SC121 PSCF Basic Functions	5-SC-17
SC122 SSCF Basic Functions	5-SC-17
SC123 PSCF and SSCF Combined Basic Functions	5-SC-17
SC200 Offline Tests	5-SC-19
SC210 Offline Test Routine Descriptions	5-SC-19
SC211 PSCF Routine Descriptions	5-SC-19
SC212 PSCF/SSCF Combined Function Routine Descriptions	5-SC-21
SC213 SCF System Test Routine Descriptions	5-SC-23
SC230 Test Message Formats and Status Registers	5-SC-26
SC231 SCF Offline Test Message Formats	5-SC-26
SC232 Not Used	
SC233 SCF Status Registers	5-SC-27
PSCF Basic Status Register (BSTAT)	5-SC-27
PSCF Error Information Register (EIR)	5-SC-27
SSCF Unit Status Register (USR)	5-SC-28
SC240 Test Messages and Descriptions	5-SC-29
SC250 Action Plans	5-SC-30
SC300 Intermittent Failure Repair Strategy	5-SC-33
SC310 Adapter-Unique Intermittent Repair Strategy	5-SC-33
SC311 Looping with MAP Interaction to Determine Failures	5-SC-33
SC312 Using the System Error Log to Determine Failures	5-SC-33
SC313 Using the Free-Lance Utility to Determine Failures	5-SC-33
SC320 Error Log Information Needed for the SCF	5-SC-34
SC330 Error Log Formats and Meanings Used for the SC MAP	5-SC-34
SC331 DPPX Error Log Formats and Meanings	5-SC-34
SC332 DPCX Condition/Incident Log Formats and Meanings	5-SC-37
SC340 How to Use the Error Log for Fault Isolation	5-SC-38
SC341 Using the DPPX Error Log Record for Fault Isolation	5-SC-38
SC342 Using the DPCX Condition/Incident Log for Fault Isolation	5-SC-38
SC350 Action Plan to Correct Intermittent Failures	5-SC-39
SC351 Machine Check Action Plan	5-SC-39
SC400 Signal Paths and Detailed Operational Description	5-SC-41
SC401 SCF General Data Flow	5-SC-41
SC410 SCF Point-to-Point Net Listing	5-SC-42
SC411 8130 SCF Point-to-Point Net Listing	5-SC-42
8130 Without Expansion Feature, I/O Bus to Adapters	5-SC-42
8130 With Expansion Feature, I/O Bus to Adapters 8130 - SC2, SC3, and SC4 Signal Path	5-SC-43

SC414 8140 SCF Point-to-Point Net Listing	5-SC-45
8140 Model AXX - SC2, SC3, and SC4 Signal Path on A2 Board	5-SC-45
8140 Models A3X and A4X Board Wiring - SC5 to	
01A-A2 Board Adapters	5-SC-46
8140 Model A5X Board Wiring - SC5 to 01A-A2 Board Adapters 8140 Model BXX - SC2, SC3, and SC4 Signal Path on	5-SC-47
A1 Board	5-SC-48
8140 Model BXX Board Wiring - SC5 to 01A-A2	
Communications Adapter Board	5-SC-49
8140 Model BXX Board Wiring - 01A-B2 Disk/Diskette	
Adapter Board	5-SC-50
8140 Model BXX Board Wiring - SC5 to 01A-C2 or 01A-D2	
Tape Adapter Boards	5-SC-50
8140 Model BXX Board Wiring - SC5 to 01A-C2 or	
01A-D2 Communications Adapter Board	5-SC-51
8140 Model BXX Board Wiring - SC5 to 01A-C2 or 01A-D2	
Display/Printer Adapter Board	5-SC-52
SC417 8101 SCF Point-to-Point Net Listing	5-SC-52
8101 Model A25 Board Wiring - SC5 to 01A-A2	
Disk/Diskette/Tape Adapter Board	5-SC-52
8101 Board Wiring - SC5 to 01A-A1 or 01A-B1	
Communications Adapter Board	5-SC-53
8101 Board Wiring (All Models Except A25) - SC5 to 01A-A2	
Disk/Diskette/Tape Adapter Board	5-SC-54
8101 Board Wiring - SC5 to 01A-A1 or 01A-B1	
Display/Printer Adapter Board	5-SC-54
SC420 Card Wiring Charts	5-SC-55
SC430 SCF Cable Connections	5-SC-60
SC431 SCF Internal Cable Connections	5-SC-60
SC432 SCF External Cable Connections	5-SC-60
SC440 Switches	5-SC-60
SC441 SC1 Card Switches	5-SC-60
How to Test the IPL Parameter Switch Settings	5-SC-60
SC442 SC5 Card Switches	5-SC-62
SC5 Card Module 1 Switch Description	5-SC-62
SC5 Card Module 2 Switch Description	5-SC-62
SC450 8130/8140 Detailed Data Flow	5-SC-64
SC460 SCF Detailed Description	5-SC-70
SC461 Primary System Control Facility (PSCF)	5-SC-70
SC462 Secondary System Control Facility (SSCF)	5-SC-71
SC463 PSCF and SSCF Combined Functions	5-SC-71
SC464 How the SCF Controls the BOP, EFP, and Adapter Bus	5-SC-71
PSCF Command Functions	5-SC-71
Halt Signal	5-SC-72
SC500 SCF System Test and Internal I/O Bus	
Cable Change Procedures	5-SC-73
SC510 SCF System Test Procedure	5-SC-73
SC520 Procedure to Change SCF Internal I/O Bus Cables	5-SC-73

Figures
$\begin{aligned} & \text { SC111-1. } 8140 \text { Model } A \text { and } 8130 \text { with System Expansion Feature } \\ & \text { SCF Basic Data Flow . }\end{aligned}$
SC111-2. 8130 without System Expansion Feature
$\begin{array}{ll}\text { SCF Basic Data Flow . } & \text { 5-SC-3 } \\ \text { SC111-3. } \\ 8130 \text { A2 Board SCF Card/Connector Locations } & \text { 5-SC-3 }\end{array}$
SC111-4. 8130 A1 and A2 Board SCF Cables and
Locations (with System Expansion Feature) 5-SC-4
SC111-5. $\quad 8130$ A1 and A2 Board SCF Cables and
SC111-6. 8130 External Cable and Terminator
SC111-7. 8130 SCF Addresing and Card Location 5SC
SC1118. 8140 M Adre 1 I A2 Board LCa
Card/Connector Locations

SC111-9. 8140 Model A A1 and A2 Board SCF Cable Location 5-SC
SC111-10. 8140 External Cable and Terminator Locations 5-SC-
SC111-11. 8140 External Cable S Adminator Locations Card Locations
Card Locations
SC111-13. 8809 Model 1B SSCF Card and Cable Positions
SC111-14. 8140 Model B Basic Data Flow
SC111-15. 8140 Model B Cable Locations
115. 8140 Model B Cable Locations . 5 5C-10

5- 8140 Model B Board SCF Card/Connector Locations 5C-12
SC11-17. 8140 Model B SCF Addressing and Card Locations 5 5C-13
SC11-18. 8101 A1 and A2 Board SCF Card and Cable Locations 5 SC-14
Clit. $8130 / 8140 / 8101$ 01T Gate D and E Position Cable, Socket,
and Terminator Location and Socket Pin Numbering
SC112-1. SCF Physical Addresses
SC112-2. 8130/8140 Address Label Designations 5 5CS-15
SC112-3. 8101 Address Label Designations . 5 5SC-15
SC3-1. SCF Configuration Table Entries and Card Locations 5-SC-16
SC342-1. Type-1 Record B-STAT Field Error Description 5-SC-38
SC342. The 1 R X XTAT2 Fild Ero Description
SC401-1 8130 Hardwar SCF D 2 Flow (without
Expansion Feature) .
SC401-4. 8140 Model B Hardware SCF Data Flow 5 5C-4
$\begin{array}{lll}\text { SC420-1. } & \text { SC1 and SC7 Card and Connector Signals } & \text { 5-SC-4 } \\ \text { 5-5 } 55\end{array}$
SC420-2. SC2 Card and Connector Signals . 5 5-SC-56
SC420-3. SC3 Card and Connector Signals . 5-SC-57
SC420-4. SC4 Card and Connector Signals . 5-SC-58
SC420-5. SC5 and SC6 Card and Connector Signals 5-SC-59
SC441-1. IPL Parameter Bit Descriptions . 5-SC-6
SC441-2. SC1 Card IPL Switch Settings . 5-SC-61
SC441-3. SC1 Card IPL Switch Module Locations 5-SC-6
SC442-1. SC5 Card Module 1 Switch Settings Relating
to SSCF Board Locations . 5-SC-62
SC442-2. SC5 Card Switch Module Locations 5-SC-63
SC450-1. SCF Signal Bus Data Flow Diagram . 5-SC-64
$\begin{array}{lll}\text { SC450-2. } & \text { SCF Timing Chart for Read and Write Operations } & \text { 5-SC-65 } \\ \text { SC450-3. } & \text { SCF SC1 Card Data Flow }\end{array}$
SC450-3. SCF SCI Card Data Flow
5-SC-66

SC450-5. SCF SC3 Card Data Flow . 5-SC-67
SC450-6. SCF SC4 Card Data Flow . 5 5C-68
$\begin{array}{lll}\text { SC450-7. } & \text { SCF SC5 Card Data Flow . } & \text { 5-SC-69 } \\ \text { SC520-1. } & \text { Typical Top Covers }\end{array}$
$\begin{array}{ll}\text { SC520-1. } & \text { Typical Top Covers . } \\ \text { 5-SC-74 } \\ \text { SC520-2. } & \text { Typical } 8130 \text { Cable Installation }\end{array}$
$\begin{array}{lll} \\ \text { SC520-2. } & \text { Typical } 8130 \text { Cable Installation . } & \text { 5C-74 } \\ \text { SC520-3. } & \text { Typical } 8140 \text { Cable Installation }\end{array}$
SC520-4. Typical 8101 Cable Installation . 5-SC-75

adr	address
adwa	adapter work area address
ARC	adapter return coode
BCLE	buffer control list element
BOP	basic operator panel
BSC	Binary Synchronous Communications
BSTAT	basic status register
CA	channel address
C-CODE	completion code
CHIO	channel I/O
CNT	count
COMPSTAT	completion status
CPR	channel pointer register
CRP	channel request priority
DPCX	Distributed Processing Control Executive
DPPX	Distributed Processing Programming Executive
DT	device type
EFP	expanded function panel
EIR	error information register
EIRV	error information register vector
EN	error number
FRB	function request block
FRU	field-replaceable unit
FRWA	function request work area address
hex	hexadecimal
I/O	input/output
IOEP	I/O interrupt entry point
IPL	initial program load
LV	level
IVI	level
MAP	Maintenance Analysis Procedure
MD	Maintenance Device
PA	physical address
PIO	Programmed I/O
PSCF	Primary System Control Facility
RES	reserved
ROS	read-only storage
SCA	secondary component address
SCF	System Control Facility
SDLC	Synchronous Data Link Control
SEQ NO	sequence number
SS	start/stop
SSCF	Secondary System Control Facility
SYS-COND	system condition
USR	unit status register
UT	unit type

adwa adapter work area ad
BCLE buffer control list eleme
BCLE
BSTAT
CA
CHIO
CNT
$\begin{array}{ll}\text { COMPSTAT } & \text { completion status } \\ \text { CPR } & \text { channel pointer register }\end{array}$
CRP
DPCX
DT
EFP
EIR
EIRV
EN
FRB
RU
hex
I/O
IOEP
LPL
LVI
MD
PIO
PSCF
RES
ROS
ROS
SCF
SDLC
SEQNO
SCF
USR
UT
unit type

This section illustrates and describes the system control facility (SCF) used in the 8130
8140, and 8101. It enables you to understand basic operational differences as well as
physical differences. It also enables you to understand the SCF addressing scheme, and describes any system-unique repair strategy involved when performing fault isolation.

SC110 Components and Addressing

The following sections describe and illustrate the 8100 SCF components and locations that relate to the SC MAP describe the SCF physical addressing scheme and list the SCF configuration table entry.

SC111 Hardware Components
Figures SC111-1 through SC111-19 show the physical components and locations of the Figure
SCF.

[^4]| Card | Location |
| :---: | :---: |
| SC1 | A2G2 |
| SC2 | *A2F2 |
| SC3 | *A2E2 |
| SC4 | *A2D2 |
| SC5 | *A2C2 |
| SC6 | *A2B2 |
| SC7 | **A2H2 |

*System Expansion Feature Only.
**Not used with System Expansion Feature.

A2F2 and A2G2 by a double male pin connector, PN 5997533.

Figure SC111-4. 8130 A1 and A2 Board SCF Cables and Locations (with System Expansion Feature)

Figure SC111-5. 8130 A1 and A2 Board SCF Cables and Locations (without System Expansion Feature)

Note: Terminators must be present whenever cables are not.

1. Phys sical locations of first and second 8101 scan varr from the above
2. Forif an 8809 Model 18, the SSCF address is hex 78 and the level is 02.

Figure SC111-7. $\mathbf{8 1 3 0}$ SCF Addressing and Card Locations

Figure SC111-8. 8140 Model A A1 and A2 Board SCF Card/Connector Locations

Figure SC111-10. 8140 External Cable and Terminator Locations

Notes: $\begin{aligned} & \text { Physical locations of 8101s can vary from the configuration }\end{aligned}$

Figure SC111-11. $\mathbf{8 1 4 0}$ Model A/8101 SCF Addressing and Card Locations

Figure SC111-13. 8809 Model 1B SSCF Card and Cable Positions

Figure SC111-15. 8140 Model B Cable Locations

Card	Locations
SC1	A1D2
SC2	A1C2
SC3	A1B2
SC4	A1A2
SST SC5	A2A2
2ND SC5	C2A2

Caution: You must not swap the 3-position top card connector used on these
cards with those used on the procossor cards, as the SCF connector ties the
grounds together differently and, therefore, is a different part number. Soe grounds together differently and,
Figure SC111-12 for orientation.

Note: Cables connect to the cards
in A1A2, A1C2, A1D2, A2A2, and
C2A2 by a double male pin connector C2A2 by a dou

Notes:

1. Physical locations of 8101 s can vary from the configuration
shown.
2. For an 8809 Model 18, the SSCF address is hex 78 , and the
level is 02 .

Figure SC111-17. 8140 Model B SCF Addressing and Card Locations

Notes:

1. For correct cable and terminator locations according to system configuration,
refer to Figures SC1116 for 8130 and SC111-10 for 8140 .
2. In the $8140 B X X$ the $D 1$, D2, and D3 socket positions are alongside the $E 1$, $E 2$, and $E 3$ positions.
Figure SC111-19. 8130/8140/8101 01T Gate D and E Positions Cable

Numbering

SSCF addressing always requires two entries

1. The physical address (PA) entry of hex 08 , which defines the primary system contro facility (PSCF).
2. This entry defines the address of any secondary system control facility (SSCF), whic depends on its board location and application. For the 8130 , it also depends on depends on its board location and application. For

Figure SC112-1 shows the $\mathbf{8 1 0 0}$ SCF physical addresses. PSCF address hex 08 is alway the first two digits of the PA that specifies the SSCF

Use Figures SC112-2 and SC112-3 to determine the PSCF and SSCF addresses of any 8130,8140 , or 8101 . The address (PA) of the SSCF in an 8809-1B is always 78 . Se Figure SC111-13 for its location. If the 8140 is a model B , there may be a second SSCF with an address of 58 .

SCF Board Location	Physical Address	Typical Error**	
8130 A2 board or 8140 A1 or A2 board	08	081E	$x \times x x$
8130/8140 A2 board	0888	882 E	xxxx
8140B C2 board	0858	582 E	xxxx
First 8101 A1 board	0818	182 E	xxxx
First 8101 A2 board	0898	982 E	xxxx
Second 8101 A1 board	0828	282 E	xxxx
Second 8101 A2 board	08A8	A82E	xxxx
Third 8101 A1 board	0838*	382 E	xxxx
Third 8101 A2 board	0888*	B82E	xxxx
Fourth 8101 A1 board	0848*	482 E	xxxx
Fourth 8101 A2 board	0888*	C82E	xxxx
8809, Model 18	0878	782E	xxxx

*8140 only.
$\times 82 \mathrm{E}$ to occasioually $\times 81 \mathrm{E}$ for system-type tests
Figure SC112-1. SCF Physical Addresse

Figure SC112-3. 8101 Address Label Designations

The configuration table defines the SCF address path in the following standard format: LV PA UTUT OP(1^{*}) OP (2*) OP (3*) OP (4*).
For the SCF, these values are:

PSCF LV $=01$

SSCF LV $=02$
PA $=$ Board dependent. Refer to Figures SC112-2 and SC1 12-3.
UTUT $=00 F 0$ (SCF unit type designation)
$\mathrm{OP}(1)=$ Channel request priority value (refer to Figure SC113-1.)
$\mathrm{OP}(2)=00$
OP (3) $=00$ for SSCFs
$\mathrm{OP}(4)=00$ for SSCFs
*These fields are physically represented in the format OPOP OPOP. The numbers in "These fields are physically represented in the form.

Figure SC113-1 shows the configuration table entries, card locations, physical addresses, unit types, and option field entries for the PSCF and each SSCF. The SSCF (SC5 card) channel request priority switches determine the value of the first option (OP1) parameter. As explained above, the format is shown as two physical addresses: the PSCF value hex 08 (LV01) and the SSCF address (LV02), both of which depend on the machine type and board location. For example, address 0818 specifies that the SSCF is contained in the first 8101 in the A1 board.

PSCF Location	LV	PA	UTUT	OP(1)	OP(2)	OP(3)	OP(4)
8130 A2 board	01	08	$00 F 0$	10	00	43	80
8140A A1 board	01	08	O0F0	10	00	43	84
$8140 B$ A2 board	01						

SSCF Location	LV	PA	UTUT	OP(1)	OP(2)	OP(3)	OP(4)
8130/40 A2 board	02	88	00F0	54	00	00	00
8140B C2 board	02	58	00F0	6 C	00	00	00
First 8101 A1 board	02	18	00F0	*1C	00	00	00
First 8101 A2 board	02	98	00F0	**3C	00	00	00
Second 8101 A1 board	02	28	00F0	*14	00	00	00
Second 8101 A2 board	02	A8	00F0	**34	00	00	00
***Third 8101 A1 board	02	38	00F0	*0c	00	00	00
***Third 8101 A2 board	02	B8	00FO	**2C	00	00	00
***Fourth 8101 A1 board	02	48	00F0	*04	00	00	00
***Fourth 8101 A2 board	02	C8	00FO	**24	00	00	00
8809, Model 1B	02	78	00F0	64	00	00	00

*This field becomes 74 if the board contains the display and printer adapter. If an 8140 Model BXX has a display//printer adapter in the C2 board (OP1 field 6C) or in an $8101 \mathrm{A1}$
board (OP1 field 74), this is the second display/printer adapter and has an OP1 field of 7 C . *This field becomes 5 C if the board contains the Magnetic Tape Feature, becomes 4 C if the This field becomes 5 C if the board contains the Magnetic Tape Feature, becomes 4 C
board contains the Diskette Storage Feature without the Magnetic Tape Feature, and
becomes 04 if the board contains only an SSCF card.

**8140 only.

Note: Use the Machine Configuration List, stapled to the Machine Level Control (MLC) history leets for this unit to help determine the correct values for the OP(1) field of the above table.

Figure SC113-1. SCF Configuration Table Entries and Card Locations

The functions provided by the 8130 without the System Expansion Feature are identical to those provided by the 8140 primary system control facility (PSCF) SC1 card. Effectively, the SC1 card permits information transfer within the 8130/8140 Processors. The functions provided by the 8130 with the System Expansion Feature are identical to those provided by the 8140 system worr faci (SCF). The Fions permi in trantion trans either the 8130 or 8140 .

Note: For purposes of discussion in this section, the terms "PSCF" and "SSCF" are used. "PSCF" refers to those functions performed by the SC1 card, while "SSCF" refers to ose unctions performed by the SC5 card. The SC2, SC3, and SC4 cards become part the PSCF when there is an SC5 card in the system, while the SC6 card, used only in the 8130 with the System Expansion Feature, functions as a signal line terminator.
or physical differences, see section SC110; for functional differences, refer to the detailed data flow contained in section SC450

SC121 PSCF Basic Functions
The following lists the functions provided by the PSCF and briefly describes what these functions perform:

- Power sequence - Controls power sequencing for the 8100 .
- Operator panel and channel operations - Controls data transfer of the basic and expanded (8140 only, if installed) operator panels, and the logic necessary for processor to-channel information transfer.
Clocked interrupt - Provides a 100 -ms timer used for processor program operation.
Programmed IPL parameters - Provides a register used for program mode IPL operations.
- IPL switch parameters - Provides switches that determine primary mode IPL parameters.

BOP and PSCF priority level assignments - Permits the program to alter the PSCF and BOP fixed hardware interrupt level from 3 to 0 .
 EFP (if installed).

- KDO instruction decode for PSCF operations - Decodes certain types of KDO instructions to permit execution of specific SCF control functions.
- Reset control - Executes PSCF/SSCF and I/O group resets.
- Programmed SCF control - Uses the SSCF status register to control certain SCF functions under program control

SC122 SSCF Basic Functions
The following lists and basically describes the functions provided by the SSCF

- $/$ O group address - Provides switches whose fixed assignment determine the firs four bits of the PIO physical address used to specify the device
- Channel request priority - Provides switches whose fixed assignments determine interrupt priority for channel I/O operations.
- Release request for BSC operations - Permits BSC operations to override channel I/O operations so that no BSC data overrun conditions occur
- Interrupt translation array - Permits programmable interrupt level and sublevel assignments for all except the PSCF, SSCF, BOP, and EFP.

SC123 PSCF and SSCF Combined Basic Functions

The following lists those SCF functions provided by combining PSCF and SSCF hardware
Wraps the SCF signal bus to check correct bus operation.

- Permits devices attached to any SSCF to present I/O interrupts.
- Determines SSCF addressing

The system control facility (SCF) can only be tested and repaired in offline mode with the system dedicated to fault isolation. These tests verify PSCF operation, and then verify operation of the PSCF with one of its SSCFs, if installed.

The tests are contained on MD diskette 01 , and check SCF functions to isolate failures to the FRU or FRUS most likely defective. You invoke these tests only from the MD by using either the SC MAP for MAP interaction, or the Free-Lance Utility in which no MAP interaction occurs.

When using the MAP, the tests are automatically invoked and you are prompted by the MD display to perform test procedures. Refer to SC313 for procedures relating to freelance operation.

SC210 Offline Test Routine Descriptions

The SCF tests may be described by grouping them logically by overall function, as follows:

Note: During Initialization there is a Configuration Table verification. These tests are a/ways performed.
Group 1 - PSCF Test, routine numbers less than 30. These routines test the SC1 card, and the basic functions of the SC2, SC3, and SC4 cards, when they are present. The routines can be invoked by entering ' 088 ' at $80 B C$ and ' B ' 81BC.

Group 2 - SSCF Tests, routines 30 through 89. These routines test the SC2, 3, 4, and 5 cards. They are run in addition to Group 1 on a single SSCF address when that these entering ' $08 \times 8 \mathrm{~B}^{\prime}$ at 80 BC and ' 18 ' at 81 BC . Lt should

Group 3 - SCF System Tests. These tests assuume that all the individual adapter tests have been run successfully. These tests make use of the entire system (this includes all adapters, SSCFs and configuration table). Testing includes some multi-adapter operations. These tests are invoked by entering '69C at 80 BC and ' B ' at 81 BC . See SC510 for System Test operating procedures.
Note: Routines $2 C$ and $2 D$ are the system routines for an 8130 system without the expansion feature. These routines must be invoked separately.

SC211 PSCF Routine Descriptions
Routine 01, Reset Error Information Register (EIR) Test. This test first performs a Reset Adapter command and issues Read PIO commands to the 16 -bit PSCF EIR. It then compares the data read to the data expected.

Routine 02, Set Error Information Register (EIR) Test. Individually tests each bit of the PSCF EIR. All bits not used are masked before beginning the test. Starting with bit 0 and ending with bit 15, this routine individually places bits in the EIR, and then issues a Read command to verify the data.

Routine 03, Reset Error Information Register (EIR) Data Test. Places 1-bits in the EIR and issues a PIO reset command with a mask having only one bit on. It then reads the EIR to ensure that only the proper bit was reset. Bits 14 and 15 are not used, therefore no interupts are expected

Routine 04, Reset Error Information Register Single Bit Data Test. Places a single bit in the EIR and then issues a reset command with the same bit masked. The register should then be reset with only the forced bits on

Routine 05, Reset PSCF Basic Status Register (BSTAT) Test. This test first performs a Reset Adapter command and issues Read PIO commands to the 16 -bit PSCF BSTAT. It then compares the data read to the data expected.
Routine 06, Set PSCF Basic Status Register (BSTAT) Test. Individually tests each bit of th PSCF BSTAT. All bits not used are masked before beginning the test. Starting with bit 0 and ending with bit 15 , this routine individually places bits in the BSTAT and then issues Read command to verify the data

Routine 07, Reset PSCF Basic Status Register (BSTAT) Data Test. Places 1 -bits in the BSTAT and issues a PIO reset command with a mask having only one bit on. It then reads the BSTAT to ensure that only the proper bit was reset. The routine operates on level zero so that interrupt processing does not occur.
Routine 08, Reset PSCF Basic Status Register Single Bit Data Test. Places a single bit in the PSCF BSTAT and then issues a reset command with the same bit masked. The register should then be reset with only the forced bits on

Routine 09, Reset PSCF BSTAT Bit 3 (Power On Reset) Test. Hardware turns on PSCF BSTAT bit 3 after a power-on reset, and the Reset Adapter command should not turn this bit off. This routine sets the bit, issues a Reset Adapter command, and ensures that the bit was not reset.

Routine OF, SCF Interrupt Request Test. The SCF should present interrupt requests it bits 14 and 15 of the PSCF BSTAT are on. This routine sets PSCF BSTAT bits 14 and 15 , using processing level zero. The IOIRV is then read to see that the proper I/O interrupt request is active. Both level 0 and N requests are tested
Routine 10, Timer Check Test. Bit 8 of the PSCF EIR (timer check) should set when a imeout condition occurs (bit 8 of the PSCF BSTAT on). This routine sets bit 8 of the PSCF BSTAT, then enables the timer (PSCF BSTAT bit 9), which causes an immediate timer interrupt. PSCF EIR bit 8 (timer check) should be set.

Routine 11, Timer Accuracy Test. Tests the accuracy of the SCF timer logic that gene rates the $100-\mathrm{ms}$ clocked interrupt. The routine first enables the timer, and, after the first active interrupt, enters a loop that counts 10 interrupts. The time used to complete this loop is then compared to the high and low tolerances, and, if within limits, the test completes successfully. The timer speed is based on the input AC line frequency. The limits are based on a variation of $\pm 1 / 2$ cycle from the norm ($50 / 60$ cycle).
Routine 12, PSCF Basic Status Register Invalid Operation Test. The PSCF decodes all PSCF adapter commands. This routine issues all invalid commands to PSCF address 08 and then checks for a system check condition.
Routine 13, PSCF Error Information Register Invalid Operation Test. Issues all invalid commands to PSCF address OC and then checks for a system-check condition.

Routine 14, Byte Tag Test. Checks that correct data transfer occurs between the PSCF and the processor for byte I/O commands.
Routine 15, KDO Enable Test. The I/O Power Drop command should not drop power if an improper sequence has occurred.

Routine 17, PSCF BSTAT Interrupt Test. Causes an interrupt request in PSCF BSTA then enables the adapter to ensure that an interrupt occurs. This test is done on level 7 . Dynamic level switching to hardware level N is tested.
Routine 18, PSCF BSTAT Interrupt Level Switching Test. A stream of I/O instructions Routine 18, PSCF BSTAT interrupt Level Switching Test. A stream of $/ O$ instructio maximum interrupt rate test.

This routine causes PSCF BSTAT interrupt requests by issuing I/O halfword commands to the BSTAT, which turns on bits 14 and 15 . It then immediately issues another I/O halfword command that resets bit 14 to disable the interrupt. Many interrupts occur bu the results are predictable. If the bits set and reset correctly, the proper level swaps hav occurred.

Routine 19, Read PSCF Programmed IPL Register Test. The PSCF programmed two-byte IPL register is set and reset under program control. Before beginning, the routine reads the register. It then tests each bit by setting the bit (resetting the adapter) and then reading the register bit value. If successful, the register contents saved at the beginning of the routine are returned to the register.

Routine 1A, BOP Primary Interrupt Level Test. The BOP adapter is wired to present it interrupt requests on the same level as the SCF. This routine forces a BOP interrupt request, and then reads the IOIRV to ensure that the proper bit was set for the interrupt.

Routine 1B, Read IPL Switch Register Test. The 16 switches on the PSCF (SC1) card are contained in two 8 -switch modules. This routine reads the PSCF IPL switches to ensure that the value is equal to the factory setting (as in the Configuration Table). The IPL switch settings are also checked for validity.

Routine 1C, Condition Value Test. The SCF should set the correct condition valu into the processor after executing each I / O instruction. This routine tests that the correc condition value is set. A test is also made to insure that the condition value is not changed if the I/O instruction does not complete successfully (machine check).
Routine 1D, Wait Test. This routine tests the ability of the processor to enter the wait state and then, after an interval (signaled by an I/O interrupt), to continue processing
 system should remain in the wait state until the interrupt is fielded.

Routine 20, I/O (Read) Bus "Parity Valid" Signal Test. With the data tag active, the adapter activates the "parity valid" line to signal the processor that data parity should be checked. This routine uses the KDO instruction to force data bits 2 and 10 on, which should cause invalid parity. A system check should then occur with the EIRV indicating invalid parity.

Routine 21 , I/O (Read) Bus Parity Bit (KDO ‘0110'B) Test. The adapter should raise th -valid line during 'TD' time so that the processor will check the parity on the data. In this test the KDO instruction is used to force the data parity bits on, thereby causing bad parity. A machine check should occur with the EIRV indicating invalid parity

Routine 22, PSCF Parity Read Test. The PSCF should detect bad parity on the I/O bus at TD time when data is being transferred to the processor from one of the system devices. The BOP is used to send bad parity data through the PSCF. If the "SDC bus select" line is active (the device did not detect bad parity), the bad parity data causes a read check and a machine check in the PSCF. The "valid" signal is also suppressed, which causes an I/O timeout, setting the machine check bit in BOP basic status. After the test is completed, the BOP is re-initialized. If this fails, a BOP error is indicated either a hot interrupt or an I/O Interface Check (panel indicator).

Routine 23, PSCF I/O Parity Write Test. The PSCF should detect bad outbound parity on the $1 / O$ bus. The KDO instruction forces data bits 2 and 10 on, which causes invalid parity. A system check should then occur with the EIRV indicating a timeout condition Id PSCF EIR bit 9 should be on (1/O Write check). When bad parity is detected by the processor, the halt signal should set the MCK bit in the selected adapter BSTAT

Routine 24, I/O Read B0/B1 Data Check Halt Test. The marker force bit $2 / 10$ command forces invalid parity. The EIRV I/O parity bit should also be on. The routine tests each byte separately.

Routine 25, Marker Reset Function Test. Uses the force $2 / 10$ data command to test that the marker function is reset after the first $1 / 0$ command. The routine first enables the marker function and then issues an I/O read data command to ensure odd parity. This mind Tharker function is properly reset, no system check should occur. If ECC is present a storage test for bad parity is done via KDO commands.

Routine 26, Read Secondary Level Command Test. (Only run if Expansion feature installed.) Adapters on the same primary level should be assigned to different secondar levels. When presenting interrupts, each adapter ORs its secondary bit to the bus in response to the Read Secondary Level command. This routine issues the Read Secondary is (no A test is made to insure the the Expansion feature (bit 6 of EIRV) agres with configuration type. This is the first test he first test of

Routine 27, Unselected Unit Test. (Only run if Expansion feature is installed.) When units are not logically connected to the system, the I/O bus should be disabled. This routine attempts to read unit status in the reset condition. No data or response should occur, and the processor should report an $1 / 0$ timeout.

Routine 28, Unit Not Connected Broadcast Read Command Test. (Only run if Expan sion feature is installed.) SSCF status can be determined by using three commands: (1) Read USR bit 0, (2) Read USR bits 1 and 2, and (3) Read USR bit 3. This routin issues each command and then checks to see that all SSCFs have no status pending

Routine 29, Unit Not Connected Data Wrap Path Test. (Only run if Expansion feature is installed.) The SCF can wrap a byte of data from the PSCF wrap register to the processo through the BO bus. This routine issues the Wrap (CRP) command without any $/ O$ unit for bit 7 on, then bit 6 , tca, then for nobits on. If an error is reported, a messag may bet to 1 lise register in the SC3 card.

Routine 2A, 8130 "Halt" Line System Test. Can be used to isolate halt line failures in the PCF. When the processor detects incorrect parity, it activates the "halt" signal and the selected adapter should set its machine check bit in basic status. This routine issues
 different tests: Machine check, Halt, and Rese

Routine 2B, 8130 Data Bus Parity Check Test. The marker force $2 / 10$ command places invalid data parity on the I/O bus. This routine tests the adapter parity detection logic Roll Test.

Routine 2C, $\mathbf{8 1 3 0}$ File Channel I/O and Release Request Test (selectable only). This routine checks the operation of the operation of the release request line when activated by the BSC/SS communications adapter. If the configuration table indicates this adapte was installed, and a BSC/S-S communications adapter is present, the routine will be run. The release request line should be activated by BYSNC interupt request and should cause the file adapter doing CHIO operations to stop. The test should proceed as follows: Run the test without the BSC/S-S adapter and check for success.
2. Force the $\mathrm{BSC} / \mathrm{S}-\mathrm{S}$ adapter to interrupt.
3. Start CHIO and test for release request.
. Delay and check for CHIO complete.
5. Remove the $\mathrm{BSC} / \mathrm{S}$ - S adapter interrupt.
6. Check for CHIO operation complete.
7. If ECC is installed, CHIO test is run with bad parity data in the buffer. CHIO and adapter machine checks should occur

Routine 2D, 8130 Diskette Channel I/O and Release Request Test (selectable only). This routine checks the operation of the release request line when activated by the BSC/S-S communications adapter. If the configuration table indicates this adapter was installed and a BSC/S-S communications adapter is present, the routine will be run. The releas request line should be activated by BYSNC interrupt request and should cause the diskette adapter doing CHIO operations to stop. The test should proceed as follows

1. Run the test without the BSC/S-S adapter and check for success.
2. Force the BSC/S-S adapter to interrupt.
3. Start CHIO and test for release request.

Delay and check for CH IO complete.
5. Remove the BSC/S-S adapter interrupt.
6. Check for CHIO operation complete.
7. If ECC is installed, CHIO test is run with bad parity data in the buffer. CHIO and dapter machine checks should occu

SC212 PSCF/SSCF Combined Function Routine Descriptions

The following tests run only on the 8140 and the 8130 with the System Expansion eature installed.

Routine 30, Unit Connected Command Test. Unit status register (USR) bit 3 (unit connected) determines the logical attachment of the I/O unit (SSCF/SC5 card) to the 8100. This routine sets bit 3 in each adapter's USR, and then reads the register to ensure
that a timeout does not occur.

Routine 31, I/O Unit Invalid Operation Test. Each I/O unit appears as an individual dapter to the SCF. This routine tests the ability of an $1 / O$ unit to reject all invalid commands.
Routine 32, PSV Valid Bit I/O Test. The processor always checks for invalid parity during I/O read commands. If the adapter does not activate the "valid" line, it sets the V bit in the PSV. This test issues a Read Sublevel command with the parity even, (one byte at a time). The parity valid line is not activated by this command.

Routine 33, Tag/Valid Wrap Tests. The SCF can wrap a byte of data (P, 0-7) from the PSCF wrap register to the processor on the BO bus. The data is also sent over the Tag bus to the SSCF card. From the SSCF card it is sent to the PSCF on the Valid bus. From the PSCF it is sent to the processor over the B1 bus. The test checks one bit at time. If an error is reported, a B message may be entered to continue checking the remaining bits. The last test is done using adapter address 08 . This test sets all bits on

Routine 40, Unit Status Register Data Test. After bit 3 (unit connected) has been set, this routine reads and writes the eight USR bits one at a time

Routine 41, Reset Unit Status Register under Mask Test. Tests the Reset command by first setting the register to all 1 's. The routine then issues a Reset command with the mask containing only a single bit. Bits $0-3$ are individually reset, and bits 4-7 are oaded from the mask bits. Bit 3 must always be set to properly execute the read ommands.

Routine 42, Time Test. This routine tests $1 / 0$ timing of the 8100 System. A series of I/O write commands is given, and a count of the number of commands performed dur ing a fixed interval is recorded. The same sequence is repeated using read commands; more read commands should be done during the time interval. The I/O commands are one in level 7 , with the timer signaling an end to the time period by forcing a level. 0 $/ \mathrm{O}$ interrupt. If more passes are required, the interrupt is reset and I / O instruction are resumed.

Routine 43, Unit Connected Broadcast Read Command Test. SSCF status can be deter mined by using three commands: (1) Read bit 0, (2) Read bits 1 or 2, and (3) Read bit 3. All selected bits are OR ed into a halfword, and each bit occupies a particula position depending on the unit address of the SSCF

Routine 44, I/O Adapter Interface Connect Test. The I/O connect bit (bit 0) can only be set if bit 3 is also set. This test attempts to set bit 0 without bit 3 on. Then bits 0 and 3 are turned on and bit 3 only is reset. The unit status register is then checked to see that bit 0 was also reset so that the I/O unit is truly disabled

Routine 45, Unit Interrupt BSR(N) Bit 12 Test. Bit 1 of the unit status register is reserved. If bit 3 and bit 1 are on, then bit 12 of the BSR(N) should not be set. This sts sets bit 1 of the test unit status register. The BSR(N) is then checked for prope setting.

Routine 46, Unit Interrupt BSR(0) Bit 11 Test. Bit 2 of the unit status register is set by data tag time parity errors. This bit should then set BSR (0) bit 11 . This test sets unit status register bit 2 with the SSCF enabled.

Routine 47, Selective Reset Test. The Reset Adapter command issued to PSCF(N) should not reset the SCF unit status register. In this test, bits 1 and 2 of the selected SSCF are set. This should set bit 11 of the BSR (0) and bit 12 of the BSR (N). The Reset Adapter command (N) is then issued. The BSRs are checked to ensure that the tests bit remain set. The adapter is disabled.
Routine 51, USR Bit 9 Interface Test. USR bit 9 is reserved. Byte 1 should always return zeros when the USR is read.

Routine 52, Channel Request Priority Switch Test. Each I/O unit contains a set of 4-bit switches that are used to further define channel request priority. To ensure that these switches are set properly, this test reads them. The data is then compared to the configuration data. The read CRP wrap command is used in this test. Release request and the two-bit CRP bus are also tested. Before wrap testing, the CRP values in the option field of the configuration table are checked for validity by scanning adapter types to determine the correct CRP values. The CRP switches are in module 1 and are switch numbers $7,8,9$, and 10 . If an error is reported, a B message may be entered to continue checking the remaining switches
Routine 60, Translate Array and Command Test. The translate array in the SSCF is a 1×16 hardware array. It is used to provide the system with programmable interrupt capability. There are eight 2 -byte slots of which only the odd byte is used. Bits $1-3$ instructions arimary level, and bits 4-7 are for the second level decodes. I/O halword test of the array and verifies that the instructions perform correctly.

Routine 61, Translate Array Primary Translator Test. Each SSCF uses a translator to convert hex values to a 1 -of- 16 bit code. In this test, each adapter slot is set to a unique level code. The Test Read Primary Level command is issued. The corresponding bit in the B 1 bus should be returned. After all eight levels have been tested, the array is rewritten so that each slot has a new primary level. The test is complete after all slots have been tested for all levels.

Routine 62, Translator Array Error Test. Each translator in the SSCF will only translate a primary code value less than 8 . If the array has bit 0 set, a parity error will be signaled i the array slot is read, since bit 0 will always be read as a 0 . This test sets bit 0 in all slots and then reads each slot. Bit 2 of the unit status register should be set, causing an SCF signal bus check in $\operatorname{BSR}(0)$ to also be set. A halt should also occur. The routine runs on Level 7.

Routine 63, Translator Array Second Level Test. Each SSCF translator converts a second hex value to a 1 -to-16 bit code when requested by a Read Second Level command. Only the slots that have a matching primary level active (interrupt request pending) will be translated. In this test, each slot is assigned a primary equal to its slot address. All eight slots will be given unique second level assignments. The Read Second Level Translate command will then be used to force the translation one slot at a time. Each slot is tested for all 16 valid secondary translate values.

Routine 69, Translate Array Primary Translator Test. This test is similar to Routine 61 except array bit 0 is set.

Routine 6F Solid Data Bus or IR Bit Test. The adapter data bus is connected when bit 0 and 3 of the USR are set on. This test uses a halfword read command (to the IPL SW Register) to read known data. All data bits, except the one under test, are set on in the PL Register. C OIRR is the to if the is the is is done by setting arh translate slot so that its presented interrupt will come in on a different line than the ach translate slot so data bit under test.

Routine 70, Real I/O Connection Test. I/O adapters are connected to the bus when both bits 0 and 3 in the USR are set. This test does a reset adapter command to each of the 16㲘

Routine 71, I/O Bus Output Data Driver Test. When bits 0 and 3 are set in the USR, the adapter data bus is connected to the SCF bus. This test checks the 'basic' adapter data bus bits $(13,14,15)$ for opens. The basic' bits are those output bits required by /O operations during the TA/TC time. All existing adapters on the SSCF participate in the test. The test first issues a Reset adapter command to each adapter (bit $14+$ addr). If this is successful, a reset BSR command is issued (bit $13+$ addr). The Read BSR command is issued (bit $15+$ addr). The errors will indicate the first failing bit in the first error data byte plus all the adapters that fail. Note that the active bits of the adapte ddresss also participate in the test.
outine 72, I/O Bus Input Data Receiver Test. When bits 0 and 3 are set in the USR the adapter data bus is connected to the SCF bus. This test checks the I/O adapter the adapter data bus is connected to the SCF bus. This test checks the I/O adapter data bus for opens. Driver bits (13, 14, and 15) and adapter address bits have already
been tested in the driver test. The open test is done by using the basic status register of the available I/O adapters as a data source. It should be noted that only byte 1 of the data bus will be tested if no halfword adapters exist on the SSCF. All adapters will be tested. The routine records all failing adapters; however, only the first failing bit is indicated

Routine 73, IO/IR Bus Open Test. When Bits 0 and 3 are set (in the USR), the adapter O/IR Bus is connected to the SCF bus. This test finds an adapter; then sets an interrupt on and reads the IO/IR Bus for the proper data. The test is done eight times using the same adapter. Each time the translate array is set for a different level. Then the eigh tests are repeated for each adapter on the SSCF

Routine 74, I/O Adapter Interrupt Capacity Test. Checks the ability of the SSCF trans late hardware to translate the required maximum number of interrupts. This is done by causing all the adapters on the SSCF to present a different primary interrupt. The I/O bus is then disabled. When the bus is reconnected, the 101RV is immediately read and the umber of interrupts compared with an expected mask (derived from configuration table data). This test is also a test of the IRR line

Routine 75, Selective I/O Group Reset Test. An SSCF with status bits 0 and 3 reset to Routine 75, Selective I/O Group Reset Test. An SSCF with status bits 0 and 3 rese
zero will activate an I / O reset to all adapters (on the I/O unit). In this test, all the ttached adapters are enabled. Then each of the bits (0 and 3) are individually reset and The adapters (BSR) should remain enabled. The bits (0 and 3) are then reset and set. All the adapters should receive the I / O reset and be disabled

Routine 79, I/O Read B0/B1 Data Check Test. The marker force bit $2 / 10$ command is used in conjunction with the IOH instructions to verify that the I/O parity checkers are working properly. First a read without a parity valid is issued with bit 2 only, causing the even parity. Then the read with bit 10 causing even parity is issued. In each case, the data stored is tested.

Routine 7A, Dynamic SSCF Parity Check Read Test. When the processor detects bad parity on read I/O commands, the "halt" signal should be raised and the selected adapter should set its system check bit. This test forces a read with bad parity from the SSCF that should cause a system check to the processor. The halt line should then set USR bit, which in turn should set BSRO bit 11.

Routine 7B, Dynamic SSCF Parity Check Write Test. The SSCF should detect bad parity and set bit 2 of its USR directly. This should also cause the SSCF to withhold the "valid" signal and cause a processor timeout. In this test, a set USR command with bad data is used to set the test conditions.

Routine 87, Unit Release Request Switch Test. To be added.
Routine 88, "Halt" Line System Test. Can be used to isolate halt line failures in the PSCF and SSCFs.

When the processor detects incorrect parity, it activates the "halt" signal and the selected adapter should set its machine check bit in basic status. This routine issues a Read BSTAT command (with incorrect parity forced) to each adapter on the I/O unit, which should cause the "halt" line to set the machine check bits in the adapters BSTAT. The routine does 3 differenct tests
Machine check test: Tests that each adapter that sends bad data will cause an I/O parity check
Halt test: \quad Tests that BSTAT bit 5 is set on a bad parity operation Reset test: \quad Tests that KDO I/O reset will properly reset all adapters (BSTAT).

Routine 89, Data Bus Parity Check Test. The marker force $2 / 10$ command places invalid data parity on the I/O bus. This routine tests the adapter parity detection logic by using byte and halfword commands. The routine does a Machine Check and a Halt Test.

SC213 SCF System Test Routine Descriptions

Routine 90, File Channel I/O and Release Request Test. This routine checks the operation of the release request line when activated by the BSC/S-S communications adapter. If the configuration table indicates a file adapter and a BSC/S-S communications adapter are present, the routine will be run. The release request line should be activated by BYSYNC interrupt request and should cause the file adapter doing CHIO operations to stop. The test should proceed as follows:

1. Run the test without the BSC/S-S adapter and check for success.
2. Force the BSC/S-S adapter to interrupt.
3. Start CHIO and test for release request.
4. Delay and check for CHIO complete.
5. Remove the $\mathrm{BSC} / \mathrm{S}-\mathrm{S}$ adapter interrupt.
6. Check for $\mathrm{CH} I \mathrm{O}$ operation complete.
7. If ECC is installed, CHIO test is run with bad parity data in the buffer. CHIO and adapter machine checks should occur.

It should be noted that all CCA adapters using BSC must have the release request switch et on the SC5 card (SSCF). Start/Stop adapters must have the switch off. The switch is set on the SC5 card (SSCF). Start/Stop adapters must have the switch off. The switch
adapter/port-dependent. The test is run on all BSC/S-S adapters and file adapters in the system.

Routine 91, Byte Tag Test. Halfword adapters must deal with the BSR on a byte basis. This can be done by implementing the byte tag. In this test, all halfword adapters are scanned to see that they perform BSR operations properly. All errors are presented after the testing is completed. If all adapters failed, a different error message is issued.
Routine 92, Maintenance Tests, and Power Down and Timer (BOP) Tests (selectable only) The design of the 8140 allows for the online maintenance of adapters. To facilitate this feature, individual 8101 s can be powered down without affecting the operation of the He white the is An I/O interrupt should occur (SSCF power drop). The operator can then roper the unit After each shange of power status a message is Issued confirming the change The routine will run until the operator 'frees' the routine or 5 minutes have elapsed. This is done by allowing the timer to run and display on the BOP. Te display is $X Y Y Z(X=$ minutes $Y Y=$ second $Z=$ tenth $)$.

Routine 93, System Channel Request Priority Test. Each I/O unit contains a set of 4-bit switches that are used to further define channel request priority. To ensure that these switches are set properly and that the priority/contention circuits are working properly, a CRP wrap is done with all the I/O units participating in the function. First the configuration table is used for determining the expected unit according to priority. Then several wraps are done to check the priority logic, and a test is also made to ensure no duplicate CRP values exist.

Routine 94, Read Connected Control/Unit System Test. The USR connected bit (0) connects all the adapters on the unit with the I/O bus. The Read Connected Status Broadcast command presents all unit status in a halfword. This test attempts to connect all of the possible I/O units. A test is made to ensure that they connect according to the configuration table. After the connecting has occurred, the status of the connected nits is determined by issuing the Read Connected Unit bit 0 and bit 3 commands.

Routine 95, Read Interrupt Request System Test. The Read Interrupt Request Broad cast command reads the interrupt status of all system units. The interrupt sequence is a combination interrupt request or USR check. All the units on the system are connected then all the interrupt request bits are set and read. Then all the USR check bits are set and read.

Routine 96, Tape Channel I/O and Release Request Test. This routine checks the operation of the release request line when activated by the BSC/S-S communications adapter. If the configuration table indicates a tape adapter and a BSC/S-S communications adapte are present, the routine will be run. The release request line should be activated by BYSNC interrupt request and should cause the tape adapter doing CHIO operations to stop. The test should proceed as follows:

1. Run the test without the BSC/S-S adapter and check for success.
2. Force the BSC/S-S adapter to interrupt.
3. Start CHIO and test for release request.
4. Delay and check for CHIO complete.
5. Remove the $\mathrm{BSC} / \mathrm{S}-\mathrm{S}$ adapter interrupt.
6. Check for CHIO operation complete.
7. If ECC is installed, CHIO test is run with bad parity data in the buffer. CHIO and adapter machine checks should occur.

It should be noted that all CCA adapters using BSC must have the release request switch set on the SC5 card (SSCF). Start/Stop adapters must have the switch off. The switch set on the SC5 card (SSCF). Start/Stop adapters must have the switch off.
switch is adapter/port-dependent. The test is run on all BSC/S-S adapters and tape dapters in the system.

Routine 97, Display/Printer Channel I/O and Release Request Test. This routine checks the operation of the release request line when activated by the BSC/S-S communication adapter. If the configuration table indicates a display/printer adapter and a BSC/S-S ommunications adapter are present, the routine will be run. The release request lin should be activated by BYSNC interrupt request and should cause the display/printer adapter doing CHIO operations to stop. The test should proceed as follows

1. Run the test without the BSC/S-S adapter and check for success.
2. Force the $B S C / S-S$ adapter to interrupt.
3. Start CHIO and test for release request.
4. Delay and check for CHIO complete.
5. Remove the $\mathrm{BSC} / \mathrm{S}-\mathrm{S}$ adapter interrupt
6. Check for CHIO operation complete.
7. If ECC is installed, CH 1 O test is run with bad parity data in the buffer. CHIO and adapter machine checks should occur
It should be noted that all CCA adapters using BSC must have the release request switch set on the SC5 card (SSCF). Start/Stop adapters must have the switch off. The switch is adapter/port-dependent. The test is run on all BSC/S-S adapters and display/ printer adapters in the system.

Routine 98, Diskette Channel I/O and Release Request Test. This routine checks the poeration of the release request line when activated by the $\mathrm{BSC} / \mathrm{S}$. communication adapter. If the configuration table indicates a diskette adapter and a BSC/s-S communications adapter are present, the routine will be run. The release request line should be activated by BYSNC interrupt request and should cause the diskette adapter doing CHIO operations to stop. The test should proceed as follows:

1. Run the test without the BSC/S-S adapter and check for success.
2. Force the $B S C / S-S$ adapter to interrupt.
3. Start CHIO and test for release request.
4. Delay and check for CHIO complete.
5. Remove the BSC/S-S adapter interrupt.
6. Check for CHIO operation complete.
7. If ECC is installed, CHIO test is run with bad parity data in the buffer. CHIO and adapter machine checks should occur.
It should be noted that all CCA adapters using BSC must have the release request switch set on the SC5 card (SSCF). Start/Stop adapters must have the switch off. The switch is adapter/port-dependent. The test is run on all BSC/S-S adapters and diskette adapters in the system.

Routine 99, Power Down Test (selectabie only). The SCF should drop system powe KDO commands have been issued. This test will fail only if the power does not enablep.

Routine 9A, Modifier Test. This test of the modifier line is run on diskette and tape adapters. The modifier line is used by the diskette adapter to allow register sets 8-1 adapters. The modifier line is used by the diskette adapter to allow register sets 8 -
to be used for channel operations. The modifier line is used by the tape adapter to accomplish odd byte data transfers.

Routine 9C, Adapter System Test. Connects all the I/O units at once and then forces an I/O interrupt on all adapters possible on the system. Each adapter is assigned a unique primary/secondary interrupt level. The secondary level is set by the control address. The primary level is based on the I/O unit address. The IOIRV is tested for primary level interrupts. The Read Secondary command verifies that only the configured adapters respond. This test verifies the accuracy of the configuration table adapter addresses. Al adapters are contained in the adapter table. All slots in the SSCF arrays are preset to in terrupt on primary level 0 , and the secondary level is the I/O unit address. The wired array adapter slot is contained in bits $0-2$ of the configuration table byte entry for the adapter. This is set by routine $9 F$.

Routine 9D, IPL Switch Display (selectable only). This routine reads the IPL switch register and presents the data as an information display to the operator.

Routine 9E, Release Request Switch Test. This routine checks the Release Request switches on the SC5 card. These eight switches are numbered by port number. Only a BSC communications adapter should have the switch set on. This routine scans all test is similar to routine 90 . The CHIO device is the first file adapter in the configuration table. If the release line is activated, the Release Request switch is set on (error).

Routine 9F, Real I/O Adapter Scan Routine (selectable only). There can be a maximum eight I / O adapters on each I / O unit. These adapters can have a possible 15 different ddresses. This routine attempts to connect all 15 possible I/O units and then read the status for all possible I/O adapters. Any adapter that responds will be recorded and then presented to the operator as a list of all available adapters. The list will be given a line at a time on a unit basis, and will contain the slot that the adapter is actually assigned to. This is done by forcing a level 7 I/O interrupt to each responding adapter. The secondary level presented will be the slot assignment. For 8130, only the responding adapters are given.

Routine A0, System Translator Read Test. Each SSCF contains a translator array which is written at SYSGEN time. If a parity error occurs, improper I/O interrupts can occur, causing erroneous interrupt processing or a system hard wait. It is important not to run he SCF diagnostic as it could mask an intermittent error. This routine should be run nd looped first. It will read all the slots in all the arrays in the system. It will force terrupts to I / O units and test interrupt translations for the I/O units on the system. The error message will indicate the failing SSCF card and the failing slot

Routine A1, Miscellaneous Channel Operation Tests. Channel operation is allowed whenever the channel mask is set and the EIRV register bits 0-5 are zero. In the first test, File is started with the channel mask off. The operation should not complete until the mask is enabled. The second group of tests is then done by setting all the 'EIRV' bits $(5$ to 0), one at a time. Each bit (except bit 4) being set should cause the channel to be 5 to 0), one at a time. Each bit (except bit 4) being set should cause the channel to be
masked off. A file CHIO operation should not start or finish until the MCPC is cleared. masked off. A file CHIO operation should not start or finish until the MCPC is cleared CHIO operation is performed with a different channel pointer set until each has been tested.

Routine A2, Disabled Channel Operation Tests. The channel request and grant lines ar not gated by the SSCF cards. To test this function, the following tests are done

1. The channel mask is disabled.
2. A channel buffered adapter is started
3. Bit 0 of the SSCF status register is disabled
4. The channel mask is enabled.
5. Wait for a period of time.
6. Turn off the channel mask.
7. Set SSCF status bit 0 on.
8. Read MCPC.
9. Test for successful completion

Routine AE, Run All Channel Adapters Test. This routine runs all (see routine AF description) CHIO adapters while using storage volume 0 only. Each CHIO adapter is serially actuated to do an adapter write operation, and locations hex 0100 through hex FFFF are tested. (see background storage test)

Routine AF, Selectable, Run All, Multi Adapter Channel Tests. This selectable routin will run or loop routines BO through BF only. This routine provides a storage scan looping facility. After invoking this routine, an "enter test address" message is issued. This message allows the operator to enter up to 16 adapter addresses to select the adapters to be run in routines AE through CO . The default of entering no adapter addresses is to run all adapters in the configuration table.

Routine B0-BF, Multi Adapter Channel Test. Channel operation is allowed whenever the channel mask is set. In this test all channel adapters are started with channel write operations (file, diskette, tape, display, HPCA). The channel mask is disabled. All oper iinsul All operations Ald first location in a volume. The first test (buffer location 0 volume 0) should cause all CHIO adapters to generate machine cork during the test Testing continues by movin the buffer upward through storage until the upper boundary has been reached bither 32 K or 64 K). This interactive test is designed to uncover adapter/storage problems. On error, the first error is captured but not printed. The EIRV is then cleared and the test allowed to complete. After all the adapters have finished their CHIO operations, the firs error will be printed. Giving the ' B ' message after this will present the adapter status of all the adapters participating in the test. The first error message will be as follows: 08×8, BX4B, ADP ADDR, ADP STATUS, MCPC, BUFFER VOL, BUFFER ADDR EVEN CPR, ODD CPR

The second message will be as follows:
08X8, BX73, ADP, ADP STATUS, MCPC, ADPT 1, ADPT 1 STATUS, MCPC, ETC

Notes:

1. CHIO devices must be ready.
2. Background Storage Test - When all Channel Requests are active, after the Channel Mask has been enabled, storage testing, using the same buffer, is started with CLS MVHS, and TS instructions. Before each Move test, a TS instruction is issued to the 2-byte area used in the Move, except in the move test.
The Move test will move the buffer to itself on a halfword basis. The buffer is saved and restored. The data pattern to be tested is a floated-one then a floated-zero for each address.

The Compare test sets the destination bus to all ones and then compares each byte of data in the buffer. On machines with ECC, the background storage test is not run. Each hex 800 byte block of storage is tested for data integrity.
3. As an adjunct test, all adapter interrupt slots are set to a unique primary/secondary Aseel. After a pass has been completed, the IOIRR, each interrupt, and all channel pointer registers are tested. The HPCAs only support 16-bit addressing and requir three channel pointer registers. Each HPCA writes from a "pong" buffer (address under test) and then in full duplex mode reads into the "ping" buffer (fixed address),

Routine C0, Channel Request High Release Request Tests. Adapters issuing a channel high request should also activate the release request line (to stop burst data transfers). In the 8100, HPCAs are the only adapters wired to the channel request high line. In this test, each HPCA is wrapped so that a byte of HPCA data is placed in the write buffer of an operating buffered channel request adapter. If the HPCA is wired to the channel request high line (HPCAs above 9.6K), then the data written to the buffered adapter should include the byte of HPCA data. To check this, the buffered adapter is read. Low-speed HPCAs should not activate the release request line. The buffer used by device contain hex 20 data ber contains hex data This test is run as follows:

1. Find all HPCAs; count and identify high-speed HPCAs (above 9.6 Kb).
2. Find a CHIO adapter (see routine AF description). Start the adapter; start an HPCA check for proper completion. Check for release line action.
3. Tests are repeated until all HPCAs are run against all CHIO adapters specified

REA 06-88481

The following error messages use Format 3: PAXE RRO1
PA1E 2A01
PA1E 2A2D
PA1E 282D
PA1E 2 B02
PA2E 7420
PA2E 7520
PA2E 7520
PA2E 8802
PA2E 882D
PA2E 8902
PA2E 892D
PA2E 9C01
PA2E 9 C02
The following error messages use Format 4
PAXE 0018
PAXE 003F
PAXE 0041
PAXE 0041
Note: $R R=00$ indicates configuration table errors.
The following error messages use Format 5
PA15 - Test stopped at Routine 15
PA20 - Test stopped at Routine 1D.
PA30 - Test stopped at Routine 30.
PA40 - Test stopped at Routine 40.
PA43 - Test stopped at Routine 43 .
PA47 - Test stopped at Routine 47. PA70 - Test stopped at Routine 70 PA73 - Test stopped at Routine 73. PA74 - Test stopped at Routine 74 PA90 - Test stopped at Routine 90 PA91 - Test stopped at Routine 9A. A92 - Test stopped at Routine 9E PA93 - Test stopped at Routine A1. PA96 - Test stopped at Routine 96 PA97- Test stopped at Routine 97 PA98 - Test stopped at Routine 98 PA9 - Test stopped at Routine 99

The following error message uses Format 6
PAXE 7305
Note: When entering a PAXE test error message into the MD, MAP menue selection 4
nter with no spaces.
Correct
NOT Correct
PAXERREN

SC233 SCF Status Registers
The two PSCF status registers, BSTAT and PSCF EIR, are both physically located in the
SC1 card. Each SSCF (SC5) card also contains an SSCF unit status register.

PSCF Basic Status Register (BSTAT)

The SCF basic status register contains the current hardware status of SCF Levels 0 and 3. Several commands, such as Set, Reset, and Reset under Mask, can be used to perform various operations that affect the status of the register bits. This register is addressed with hex 08 on Level 3. The PSCF BSTAT, which uses address hex 08 for information transfer, also enables and controls the operation of the $100 \cdot \mathrm{~ms}$ timer. The following table describes the PSCF BSTAT bit meanings:
Bit Meaning

Reserved

Programmed IPL Register Valid - Set only by the program, and indicates that the programmed IPL register contents can be used during a program mode IPL sequence. Either a power-on reset sequence, pressing the BOP Reset/IPL pushbutton, or the program, can reset this bit.
Reserved
Power-on Reset - Set by hardware during a power-on reset sequence to indicate restoration of system power. This bit determines the system initial ization required during IPL execution, and can also be set and reset by programming.

4-6

Reserved

7^{*}
Processor Storage Select - When on, all data read and write and all instruction fetch operations access processor storage and not ROS. When off and using a real storage address under $4 K$, all instruction fetch and read operations are from ROS, but all writes are to processor storage regardless of bit status. This bit can be set and reset by programming, and can also be reset by a power-on
reset or pressing the Reset/IPL pushbutton on the BOP
$8 \quad 100$-ms Clocked Interrupt - Set by hardware when either bit 9 turns on or by a 100 -ms elapsed time interval with bit 9 on. Can also be set and reset by program, and also turns on bit 15 when on.
9 Timer Enabled - Set only by programming, which then permits bit 8 to present an interrupt from the $100-\mathrm{ms}$ clock. Can be reset both by hardware and programming, and, when reset and set, always turns on bit 8 .
Reserved
11** SSCF Power Outage - An 8101 dropped power. Can be set by programming, and also turns on bit 15 .
12

Reserved

PSCF Equipment Check - While executing a PIO to either PSCF level hex 08, the BOP, or the EFP, the channel detected an error and issued a "halt" signal. This bit can also be set and reset by programming, and reset by hardware.

Meaning
PSCF Enabled - Permits the PSCF to interrupt processing on the currently assigned priority level. Bit 15 indicates the pending interrupts according to the status of bits 8 and 11 . Only set by programming, and can be reset by both programming and hardware.
PSCF Interrupt Request - The PSCF is requesting processor interrupt servicing. Set by programming and also by bits $8,9,11$ and 12 . Cannot interrupt processing unless bit 14 is on, but stays set until being reset either from programming or hardware.
*Applies only to 8130 with or without the System Expansion Feature.
${ }^{*}$ Applies only to 8130 with System Expansion Feature and all 8140 s.

PSCF Error Information Register (EIR)
The PSCF EIR provides current PSCF error status, and uses commands such as Set, Reset, and Reset under Mask to perform various operations that affect the register bit status. The and Reset under Mask to perform various operations th

Bit Meanin

0 Reserved
BOP/PSCF Priority Level Control - When set, BOP and PSCF are assigned to Level 0 , and, when reset, they are assigned to Level 3 . Set only by program ming, and reset either by programming or hardware.
2,3 Reserved
I/O Read Check - Set by hardware when an out-of-parity condition occurs while returning (reading) data to the program and using either the BOP, EFP, or PSCF. If using PSCF address hex 08, it also sets bit 13 in the PSCF BSTAT by prograin set by programming.

Reserved

SSCF installed

Reserved
Timer Check - Set by programming, or by hardware when it detected a timeout condition of the 100 -ms clocked interrupt. Reset either by programming or hardware.
I/O Write Check - Set by hardware when an out-of-parity condition occurs while receiving (writing) either data or the command byte from the program and using either the BOP, EFP, or PSCF. If write errors occur while using PSCF address hex 08, bit 13 in the PSCF BSTAT is set by the HALT signal, and, if using PSCF address hex OC, it sets bit 13 in this register. Can also be set by programming, and reset either by programming or hardware.
Bit Meanin10
11^{*}
SSCF Equipment Check - An enabled SSCF detected an error during a PIOSSCF detected the error, it sets its own bit 2 and this bit also. Set by hardware or programming.

Reserved

PSCF Address Hex OC Equipment Check - Set when (1) an invalid parity condition was detected on either the command byte or the data received (written) from a program, or the data sent (read) to the program, while performing a PIO operation to PSCF address hex OC, or (2) the channel issued a halt to PSCF hex OC. Reset by either hardware or programming.
Reserved
Reserved
*Applies only to 8130 with the System Expansion Feature and the $\mathbf{8 1 4 0}$
The SSCF USR physically resides in the SC5 card and contains status information specifi cally related to information transfer from the PSCF to the attached device through the SSCF. The following table describes the SSCF Unit Status Register bit meanings:
Bit
Meaning
$0 \quad$ I/O Group Enabled - If on, permits programmed access to devices attached to the register's associated SSCF. Set by program.
1 Reserved
2 SSCF-Detected Error - If on, the associated SSCF received either (1) a PIO command with invalid parity, (2) an invalid PIO command, (3) an invalid parity condition on a write data operation, (4) an invalid parity condition on a read translation array priority level assignment, or (5) a halt signal from th EIR. No SSCF inform an IM operation. This bit sets bit 1h in the PSCF EIR. No SSCF information transfer can occur until the SSCF that detected the error turns off this bit.
SSCF Enabled - If on, permits programmed access to the SSCF and its attached devices for read and write-type operations. If off, only write-type operations can occur.
4-7 Reserved

The following table lists and describes the test error messages generated while using th system control facility MAP. Normally, only RREN values will be displayed. SC231 shows special error formats for certain routines

RREN	Meaning
RR01	Unexpected system check
RR02	System check did not occur when expected
RR03	Wrong system check
RR04	Unexpected I/O interrupt
RR05	No I/O interrupt when expected
RR06	Solid interrupt
RR07	Basic status register error
RR08	Device status register error
RR09	Channel request for priority during write
RR0A	Channel request for priority during read
RR0B	Processor error
RR0C	SSCF array error
RR0D	SSCF translator error
RR0E	Spurious interrupt
RR0F	Halt error
RR10	Wrong level
RR11	Data error
RR12	Operator panel error
RR13	No secondary interrupt request
RR14	Timer error
RR15	Timer fast
RR16	Timer slow
RR17	Timer did not step
RR18	Channel request high configuration error
RR19	ROS/RAM bit error
RR1A	Driver error
RR1B	SSCF installed (status bit 6) error
RR1C	Reset device status register error
RR1D	Device connection error
RR1E	Channel request for priority error
RR1F	Switch error
RR20	No response from I/O adapter
RR21	Select error

RREN	Meaning
RR22	Multiple no responses from I/O adapters
RR23	Byte operation error
RR24	Condition code error
RR25	Unexpected response
RR26	Read secondary error
RR27	CHIO error
RR28	CHIO error 1
RR29	CHIO error 3
RR2A	CHIO did not complete
RR2B	CHIO error 2
RR2C	Enable error
RR2D	Reset error
RR2E	Power drop
RR2F	Exception error
RR30	Timer slow
RR31	Timer fast
RR32	No exception
RR33	Interrupt error
RR34	CHIO error 4
RR3E	Storage error
RR3F	Configuration table type error
RR4O	Wrap command error
RR41	Configuration table error
RR42	Configuration table system error
RR43	KDO error
RR44	Multiple system check
RR45	Slot error
RR46	Resource error
RR47	Multiple byte error
RR48	Input error
RR49	CHIO device error
RR4A	CHIO machine check during release test
RR4B	CHIO machine check

Meaning

Modifier error
RR4D Expansion feature error
Configuration option byte 1 erro
Release error
Wrap error number 1
Wrap error number 2
Wrap error number 3
Wrap error number 4
Wrap error number 5
Wrap error number 6
Test 1 bit 14 + address (Reset Adapter cmd)
Test 2 bit $13+$ address (Reset BSR cmd Test 3 bit $15+$ address (Read BSR cmd) Test 4 bit P1 + address (Set BSR cmd) DSR error 1
DSR error 2
Double MC error CHAN error with mask off
CHAN error with mask on CHAN operation error HAN machine check error Tape adapter status error
Bit 0 error

Message error

Unexpected adapter error
Basic status register contents wrong
No device connection
Release timeout erro
Control error

ACTION PLAN 3

If the error is PA2E 4008
or PA2E 4308
or PA2E 6FXX
or PAXE 702X
or PAXE 7123
or PAXE 7161
or PAXE 7177
or PAXE 7211
or PAXE 732X (example: 881E 7320 or 982E 7320)
or one of the following MI messages
PA30
PA40
PA43
PA47
PA70
PA74

1. Match the P in the error message to an address label on an operator panel of an 8101 or $8130 / 8140$. (See SC112 for address label description and SC1 11 for locations of SSCFs.)
2. Go to Procedure 04 "SCF Signal Bus Fault Isolation" in Chapter 1, ST440, and loosen the adapters attached to that SSCF one at a time
3. After loosening each adapter, run the SC tests in free-lance mode. When the error message changes, the error is in the loosened adapter. Go to the MAP for that adapter to find the problem. If the adapter tests give an error which is too basic for the adapter MAP, replace adapter cards for the failing adapter, one at a time
4. If after loosening all the adapters the error remains the same, go to the SC MAP to find the problem.

ACTION PLAN 4
If the error is PAXE 7420 AD
or PAXE 9C01 AD
or PAXE 9C02 AD and other error messages using format 3 (see SC231):

1. Match the first digit of the $A D$ field of the error message to an address label on an operator panel of an 8101 or 8130/8140 (see SC112 for address label description and SC111 for locations of SSCFs).
2. Run Routine 9F (see below) to confirm AD is the adapter address the SC tests have a problem with. If the AD address does not show in one of the Routine 9 F displays, or if an 081E 9F01 AD message appears, it confirms that the adapter is causing the problem.
3. Go to the MAP for that adapter to find the problem. If the adapter tests give an erro which is too basic for the adapter MAP, replace adapter cards for the failing adapter, one at a time.
4. If that MAP cannot find the problem, return to the SC MAP

ACTION PLAN 5

If the error is PA2E 7520 ADAD ADAD ADAD ADAD
or PA2E 88xx ADAD ADAD ADAD ADAD
or PA2E 89XX ADAD ADAD ADAD ADAD

1. Count the number of adapters that are failing (the number of $A D$ addresses in the rror message).
2. Match the first digit of the $A D$ field to an address label on an operator panel of an 8101 or 8130/8140. (See SC112 for address label description and SC111 for locations of SSCFs).
3. If there is only one adapter address in the error message, go to the MAP for that adapter to find the problem.
4. If all the adapters attached to an SSCF are failing, go to Procedure 04 "SCF Signal Bus Fault solation" in Chapter 1, ST440, and loosen the adapters one at a time.
5. After loosening each adapter, run the SC tests in free-lance mode. A PA2E 7161 OEAD error message will occur, where AD is the address of the loosened adapter. Ignore this message. Press the ' B ' key on the MD hand held keypad. The test will continue. If the original error message appears, continue to loosen the adapters MAP for that adapter to find the problem.
6. If after loosening all the adapters attached to that SSCF the error remains the same, go to the SC MAP to find the problem
7. If more than one but not all of the adapter addresses attached to that SSCF are in the error message, perform step 4, but only loosen the failing adapters one at a time.

ACTION PLAN 6

If the error is PAXE52XX, perform the following procedure.
Note: If the error is PAXE524E or PAXE5241, there is a configuration table error: go to Action Plan 1.

1. Match the \mathbf{P} in the error message to an address label on an operator panel of an 8101 or $8130 / 8140$ (see SC112 for address label description and SC111 for locations of SSCFs).
2. Remove that SSCF (SC5 card).
3. Use Figure SC442-1 to check that SSCF switches 7 through 10 of module 1 are correct (see Figure SC442-2 for the SC5 card switch module locations).
4. There is a chance that switches $1-4$ of module 1 may be wrong. If all the switches are correct, replace with a new card and run the SC tests again.

ACTION PLAN 7

1. Using MD diskette 01, select the SC MAP. At the MAP menu, select option 1 TO TEST EVERY SSCF. If an error message occurs, follow the MAP to fix the error
2. If no error message occurs, select the Free-Lance Utility.
3. At $80 B C$, enter 088 ; at $81 B C$, enter 009AB.
4. Look for an error 081E 9A4C AD, where AD is the address of the failing diskette adapter
5. If there is another diskette adapter on the System, enter B.
6. If another 081E 9A4C AD error occurs and the two AD fields are the addresses of different diskette adapters, or if there is only one diskette adapter on the system, the error can be in the:
a. SC1 card
b. Processor card
c. Line between processo

8130
at A2G2 at A1A2 at A1D
at A102 at A1C2 at A1F2
A2G2G04. A2G04. D2G04.
$\begin{array}{lll}\text { A2G2G04- } & \text { A2G04- } & \text { D2G04 } \\ \text { A102U07 } & \text { C2U07 } & \text { F2U07 }\end{array}$ and SC1 card

A102
7. If only one error occurs when more than one diskette adapter was tested, change its SC5 card if not already exchanged. If the error is not corrected, return to step 6.

ACTION PLAN 8 - SCF BUS ERROR

(To be used when more than one SSCF is failing)

1. Pick an SSCF with an error message, preferably in the most outboard unit. (See SC111 for locations of SSCFs.)
2. Unplug the W, X, and Y top card cables from the SSCF. (See Note below.)
3. At the MD keypad, press the PF key. When the PF menu appears, select 1 to return to SC MAP menu. Re-IPL.
4. Select SC MAP menu 1, TO TEST EVERY SSCF
5. When the SC tests have been run to every SSCF and the error messages are available write them down. If only the SSCF with its W, X, and Y top card cables unplugged has an error message, go to step 11. Otherwise, go to step 6 .
6. If all the SSCFs continue to have error messages (the SSCF with the W, X, and Y top card cables unplugged may now have a different error message), plug the W, X, and Y top card cables previously unplugged.
7. If there are other SSCFs you have not checked with this unplugging procedure, pick another SSCF and return to step 2.
8. If all the SSCFs have been checked with this unplugging procedure, at the MD keypad, press the PF key. When the PF menu appears, select 1 to return to SC MAP menu. Re-IPL.
9. Select SC MAP menu 4, TEST ERROR MESSAGE, using the 882E XXXX error mes sage. Whenever the SC MAP calls out the SSCF card to be changed, ignore it as it has been isolated from the failure.
10. Leave this action plan and take directions from the MAP
11. This SSCF card is holding down some line on the bus. Remove the SSCF card, replace it with a new SSCF card, making sure the switches on the card are set th same as on the old card. See SC442 if more information is needed about the switches.
12. Replug the W, X, and Y top-card cables.
13. Go to step 3 to rerun the tests to check there is no error message. If an error message occurs now, carefully check the ends of the top card cables and the interposers at
the SSCF.
14. Go to step 3 again. If an error message persists, go to step 9 .

Note: In 8130s, remove the SSCF card, then replace the top card connectors so that outboard SSCFs remain connected to the PSCF.

ACTION PLAN 9

1. Using MD diskette 01 , select the SC MAP. At the MAP menu, select option 1 TO TEST EVERY SSCF. If an error message occurs, follow the MAP to fix the error.

2. If no error message occurs, select the Free-Lance Utility.

3. At 80BC, enter 08B; at 81 BC , enter 0090B.
4. If there is no failure, a series of progress indicators will occur. A sample is as follows: X8908010 If the routine hangs here or X81E 904B 8000 error occurs, go to step 6 X8908011
X8909010 If the routine hangs here or X81E 904B 9000 error occurs, go to step 5 X8909011

These progress indicators show the machine running the first file adapter with the first communications adapter, then on through other combinations of both.
5. For instance this is the first time the file with address 90 is checked and the one with address 80 was OK. Error must come from the Modifier line being on between the SC5 card with address 98 and the DA1 or TA1 card with address 9X (see SC417 810 Wiring), or the SC5, DA1, or TA1 card
6. The error may be caused by the Modifier line being on in the following places (a meter is needed to check the condition of the signal):
a. In the 8130/8140 between the SC5 card and the processor (see step 6 of Action Plan 7).
b. In the 8130/8140 between SC5 card and the DA1 (see SC415 for 8140 DA1 board wiring or SC412 for 8130 board wiring).
c. In an 8101 upper board where the Modifier line is not used but is turned on at the SC5 card (A1A2B12 at ground)
d. In steps a and b above, the SC5, the DA1, or the TA1 card, if present, may be holding the Modifier line down

ACTION PLAN 10 - TIMER ERRORS
O8XE 1114 - Timer error
Go to step 5
O8XE 1115 - Timer extremely fast Go to step 5
O8XE 1130 - Timer slow Got Go to step 2
08XE 1131 - Timer fast
Go to step 2
where $X=1$ or 2
Go to step 2

1. Check to see if the $-50 / 60-\mathrm{Hz}$ line is open or grounded. This line enters the SC card at the P11 pin. Use PA450 and PA460 of the PA section to trace this line. It is called "Square AC" in the PA section. If no problem with this line is found go to step 5 .
2. If this error occurred while using a backup power source, the source may be out of specification. It may be checked at pin P11 of the SC1 card. If no problem is found, go to step 3 .
3. If this is a $60-\mathrm{Hz}$ machine, check that the jumper is present from $\mathrm{J7}-8$ to $\mathrm{J7}-15$. If this is a $50-\mathrm{Hz}$ machine, check that the jumper is removed. (See PA460 of the PA section.) If the jumper is correct, go to step 4.
4. The $+60-\mathrm{Hz}$ Control line may be grounded. It may be checked at pin P10 of the SC1 card. Use PA450 and PA460 of the PA section to trace this line. This signal is inverted in the power logic so an open line may look like a grounded line at the SC1 card. If no problem with this line is found, go to step 5.
5. Return to the SC MAP to find the error. The SC1 card or the engine card containing the oscillator (A102 in 8130) is suspect.

ACTION PLAN 11 - CHANNEL I/O ERRORS
Certain lines between SSCFs and Channel I/O adapters cannot be checked with the Primary and Secondary SCF tests. To check these lines, you must run certain routines of the SCF System tests.

If one or more files are on the 8100 System, run routine 90 . If there is a tape drive on the 8100 System, run routine 96 . If there is a display or printer on the system, run routine 97. If there is one or more diskette adapters on the system, run routine 98. The following table shows how to invoke these routines using the Free Lance utility

For Adapter	Routine to be Run	How to Invoke	
		At 80BC	At 81BC
File	90	08B	0090B
Tape	96	08B	0096B
Display/Printer	97	08B	0097B
Diskette	98	8 B	0098

Read the routine descriptions in section SC213 to familiarize yourself with the intent of each routine used. Read section SC510 for setup details and error message definitions.

Record each error message. From the error message (or combination of error messages) you may be able to pin-point the problem to a board, an adapter on a board, or a certain type of adapter (a byte-adapter, for example). Then use section SC4 10 to find the type of board or boards that match the suspected board(s), and check the continuity of Channel I / O lines that go to suspected adapters.

ACTION PLAN 12 - INTERRUPT BIT FAILURES WITH ERROR MESSAGE PA2E 7305 IR

1. Match the P in the error message to an address label on an operator panel of an 8101 or 8130/8140. See section SC112 for address label description and section SC111 for SSCF locations.
2. Go to section SC410 and pick the net listing that matches the board or boards with adapters using this SSCF
3. Turn power off and use this net listing to check the continuity of the -IR/B1 bit line that matches the IR field of the error message.
4. If bad, replace the net or board; if good, return to the SC MAP

ACTION PLAN 13 - SPECIAL POWER PROBLEM
After reading the SC diagnostic routine descriptions, a 1901 error message points you immediately to the SC1 card and its switches. Error message 1901 also occurs when the immediately to the
+5 Volts Control line going to the
U to one SC5 card, turn off power to the 8101 units on the system or loosen the SC5 cards in the system, one at a time, until the error message occurs beyond the 1901 error message

Once you have isolated the problem to one SC5 card, check the continuity of the +5 Volts Control line. See section PA450 for the path this line takes to get to the board with the suspect SC5 card. The following table shows, for the various boards, the line name and path on the board to the $\mathrm{UO5}$ pin of the SC5 card

Unit	Line Name	Board	From	To (SC5)
8130	+5V	A2	Any D03	C2U05
8140 Mod A	+5V	A2	Any D03	D2U05
8140 Mod B	+5V Control	A2	Z1D05	A2U05
8140 Mod B	+5V Control	C2	Z1D05	A2U05
8101	+5V Control	A1	Z1D05	A2U05
8101	+5V Control	A2	K4D05	A2U05

While isolating to a single SC5 card, use the Free Lance utility. If the failure cannot be found, return to the SC MAP for further isolation.

HOW TO RUN ROUTINE 9F
To run SC routine 9F, use the Free-Lance Utility. At 80BC, enter 08B; at 81BC, enter 009FB.

A typical display is:

0805 adapter address
101112131F
$\left.\begin{array}{lll}0 & 1 & 2\end{array}\right\} \quad 7 \quad$ these lines only show when SSCFs are in system
where 0805 is displayed because 08B was entered and five adapters are found to use the first SSCF checked. The second line contains the physical addresses of the adapters, the third line contains the SSCF array slots used by the adapters.
Enter B for the routine to display the same information for the next SSCF. Continue entering Bs until no more SSCFs are found. The 0800 is displayed to announce the
routine is completed.

SY27-2521-3

SC300 Intermittent Failure Repair Strategy

When intermittent failures occur, you can attempt fault isolation either by using the erro log, looping the tests for an extended period while under MAP control, or using the Free Lance Utility loop option to selectively loop the tests. Sections SC311, SC312, and SC313 explain these repair strategles, and filures. help determine the cause of intermittent failures.

SC310 Adapter-Unique Intermittent Repair Strategy
Other than the action plans contained in SC350, there are three options for determining the cause of an intermittent failure:

1. You can loop the SC tests offline under MAP control for 5 minutes.
2. You can obtain a copy of the system error log by using a DPPX or DPCX utility (see SC330 and also see Chapter 2, CP750 for DPPX and CP830 for DPCX). If the customer does not use an IBM operating system, error logging facilities are not available
3. You can loop the tests selectively by using the Free-Lance Utility. In this manner, you can select a routine or group of routines and specify certain run options.

The following sections explain how to use these options.
SC311 Looping with MAP Interaction to Determine Failures
The SC tests can be looped offline by using the SC MAP menu options 1, 2, or 3. Al selections ask "DO YOU WISH TO CHECK FOR INTERMITTENT FAILURE BY LOOPING SC TESTS?"

- MAP menu option 1 consecutively tests each SSCF, and, when complete, automatically reinitiates testing.
- MAP menu option 2 loops only one SSCF continuously
- MAP menu option 3 loops only the PSCF continuously.

These tests loop continuously and display "PA80 TEST LOOPING" on the MD until either an error is detected or you press the F pushbutton on the MD.

If the MAP detects an error while looping, the MAP directs you toward fault isolation in the same manner as a solid failure. Once you perform a repair action, the MAP loops the SC tests to verify the repair.

If the MAPs do not detect an error after looping the tests for 5 minutes, or random test errors messages occur, use the Free-Lance Utility looping option (see SC313).

SC312 Using the System Error Log to Determine Failures
DPPX and DPCX use error logs to record any SCF failure that occurs during system operation. To use this log for intermittent fault isolation, obtain all error log records associated with the SCF. The information in the error log can be used to determine the failure type (see SC340) and also the action plan to use to correct this failure. If necessary refer to CP750 for DPPX and CP830 for DPCX in Chapter 2 for procedures. If the log does not contain any error entries, no SC failure occurred during system operation.
You can verify the repair action by running the SC tests using the Free-Lance Utility on the MD diskettes. (See CP462 in Chapter 2 and SC313.)

To invoke the Free-Lance Utility to verify a repair action on the System Control Facility

1. On an 8140 or an 8130 with the System Expansion Feature installed, enter "08P8B" at 80 BC and " 1 B " at 81 BC .
2. On an 8130 without the System Expansion Feature, enter " $08 B$ " at $80 B C$ and " B " at 81 BC .

If the tests do not determine an error, return the system to the customer. After the ystem is operating, examine the error log for any SCF failures. If the error log indicates the same failure, you should perform the next step in the action plan. If the error log indicated that no failures occurred, end the repair action.

SC313 Using the Free-Lance Utility to Determine Failures

Certain groups of SCF test routines are run depending on the invoke message used with the Free-Lance Utility:
At $80 B C \quad$ At $81 \mathrm{BC} \quad$ Routines Run

08B	B	01 through 2F
08P8B	$1 B$	01 through 8F
69C	B	90 through C0
08B	00AFB	BO through BF

08B OOAFB BO through BF^{*}
*Routine $A F$ is run to set up for Routines $A E, B 0-B F$ and $C O$.
The SCF tests can be looped without MAP interaction by using the Free-Lance Utility (see CP462 in Chapter 2). Also, refer to the following procedures for how to loop SCF tests or to loop a specific routine with test options.

To loop all SCF routines using the Free-Lance Utility:

1. At the $80 B C$ or PAOO prompt message, enter either:

- " 08 P 8 B " for an 8140 or an 8130 with the System Expansion Feature.
- "08B" for an 8130 without the System Expansion Feature.

Where:
$08=$ PSCF physical address
P8 = SSCF physical address (refer to SC113 for "P" value of SSCFs installed); otherwise use only the 08 entry
$B=B e g i n$
2. At the 81 BC prompt message, enter either

- " $01 \mathrm{~B}^{\prime \prime}$ if testing an 8130 without the System Expansion Feature
- " 118 " if testing an 8140 or an 8130 with the System Expansion Feature.

The tests loop continuously until detecting an error. You terminate them by pressing " F " on the MD keypad
If an error occurs while looping, the MD displays a test error message. Record this messag and refer to the failure action plans contained in SC250 to diagnose and repair the failure.

After performing any repair action loop the SC tests for at least 5 minutes to verify th repair.

To loop specific SCF routines and select run options using the Free-Lance Utility:

1. At either the $80 B C$ or PA00 message, enter the 80 BC parameters according to the procedure described in step 1 above for the $80 B C$ or PA0O response.
2. At 81 BC , enter SLRRB, where:

S = $0=$ run only PSCF routines 01 to 2 F .
$1=$ run the primary and designated SSCF using routines 01 to Co (only on 8100s with SSCFs installed).
$\mathrm{L}=0=$ run selected routine(s) once
$1=$ loop selected routine(s) and stop on error.
2 = loop selected routine(s) and bypass errors.
RR $=$ zero or no entry runs all routines. A valid routine number runs only that routine, and must be specified to run selectable only routines 2C, 2D,92 $99,9 \mathrm{D}, 9 \mathrm{~F}$, or FF .
$\mathrm{B}=$ begin test

SC320 Error Log Information Needed for the SCF

Refer to Chapter 2 (CP750 for DPPX and CP830 for DPCX) for the procedure to obtain the error log. Perform two searches for log records. First, search for log records of the failing SSCF using its address 08P8 (see SC112). Then search for all log records of the SCF using 08 (see SC112).

SC330 Error Log Formats and Meanings Used for the SC MAP
The format of the error log depends on whether the customer is using DPPX or DPCX. For DPPX formats, refer to SC331; for DPCX formats, refer to SC332.

SC331 DPPX Error Log Formats and Meanings
DPPX Type 5 Hardware Incident Record Format
HEADERI
CLASS 05 SUBCLASS 01 OPTION (5)
DATE YY.DDD TIME HH/MM/SS
HEADER II
CLASS 05 SUBCLASS 01 OPTION (5)
DATE YY.DDD SEQNO. (1)
RECORD
PA (2) SCA (3) DT (4)
CRC (7) COMPSTAT (8) ARC (9)
DATA (11) RES (12) CNT (13)
IOEP (14) ADWA (15)
CA (16) CPR (17) FRWA (18)
RES (19)
EXTENDED DATA
D01 (24)(25) D02 (26)(27) D03 (28)(29) D04 (30)(31)
D05 (32)(33) D06 (34)(35) D07 (36)(37) D08 (38)(39)
$\begin{array}{lllllll}\text { D09 (40)(41) } & \text { D10 } & (42)(43) & \text { D11 } & (44)(45) & \text { D12 } & (46)(47)\end{array}$
$D 13$ (48)(49) D14 (50)(51)

DPPX Error Log Record Meanings

The following listing describes the error log records used for SCF:

Field		Meaning			
(7)	CRC	FDM Request Code - Byte 1 of the FRB: (continued)			
				Adapte	
		Function Request	CRC	Address	SCA
		Read timer TOD	81	08	02
		Write timer TOD	82	08	02
		Disable timer TOD	8A	08	02
		Read timer RTIT	81	08	01
		Write timer RTIT	82	08	01
		Disable timer RTIT	8A	08	01
		Wrt SSCF xlate array	22	08	
		Connect	AE	08	
		Disconnect	A6	08	
		Read secondary interrupt	A5	08	
		Read SSCF xlate array	21	08	
		Read SSCF status	A9	08	
		Open adapter (BOPA)	03	09	
		Terminate adapter	6B	09	
		No.op	07	09	
		Read BOPA BSTAT status	91	09	
		Set BOPA BSTAT status	92	09	
		Reset BOPA BSTAT status	96	09	
		Read BOPA control byte	BD	09	
		Write BOPA control byte	BA	09	
		Read BOPA display	B5	09	
		Write BOPA display	B2	09	
		Diag rotate MD reg	87	09	
		Write message to MD	72	09	
		Read message from MD	71	09	
(8)	COMPSTAT	Completion Status - Byte 2 of the FRB:			
		Bit 0 - Extended status indicator Bit 1 - Reenter Bit 2 - Reenter FRB indicator Bit 3 - Reserved Bit 4 - Complete Bit 5 - Error Bit 6 - Exception Bit 7 - Attention Note: If bit 0 (ESI) equals 1, then Byte 4 of the FRWA (Extended Completion Status - field 28) has meaning.			

Field		Meaning Adapter Return Code - Byte 3 of the FRB. Note: The values in fields 8 and 9 represent the adapter status when it terminated its activity, either successfully or with error, and returned control to DPPX.
(9)	ARC	
(11)	DATA	Bytes 4-7 of the FRB.
(12)	RES	Reserved - Bytes 8,9 of the FRB - not used
(13)	CNT	Count - Bytes 10, 11 of the FRB.
(14)	IOEP	I/O Interrupt Entry Point - Bytes 12-15 of the FRB.
(15)	ADWA	Adapter Work Area Address - Bytes 16-19 of the FRB
(16)	CA	Channel Address - Byte 24 of the FRB - not used
(17)	CPR	Channel Pointer Register - Byte 25 of the FRB - not used
(18)	FRWA	Function Request Work Area Address - Bytes 20-23 of the FRB.
(19)	RES	Reserved - Bytes 28-31 of the FRB - not used
(24)		Reserved - Byte 0 of the FRWA
(25)		Reserved - Byte 1 of the FRWA
(26)		Reserved - Byte 2 of the FRWA
(27)		Reserved - Byte 3 of the FRWA
(28)		Byte 4 of the FRWA - extended completion status: Bit 0 - Request Reject Bit 1 - Error Record Indicator Bit 2 - Program Request Interrupt Bit 3 - Not used Bit 4 - Not used Bit 5 - Preemptive Request Complete Bit 6 - Not used Bit 7 - Reserved Note: Bit 1 is set whenever the FDM builds an error record in FRWA bytes 16-27 (fields 40-51).
(29)		Reserved - Byte 5 of the FRWA
(30)(31)		Bytes 6, 7 of the FRWA - error record displacement (pointer to FRWA byte 16).
(32)-(35)		Bytes 8-11 of the FRWA - not used
(36)(37)		Bytes 12, 13 of the FRWA - residual count.
(38)(39)		Reserved - Bytes 14, 15 of the FRWA
(40)		Byte 16 of the FRWA - error record flags: Bit 0 - Not used Bit 1 - Not used Bit 2 - Partial Log Bit 3 - Not used Bit 4 - Not used

	Meaning
	Bit 5 - Not used
	Bit 6 - Not used
	Bit 7 - Not used
(41)	Byte 17 of the FRWA - retry count of failing operation.
(42)	Byte 18 of the FRWA - not used
(43)	Byte 19 of the FRWA - not used
(44)(45)	FRWA Bytes 20, 21 - PSCF EIR
	Byte 20:
	Bit 0 - Not used
	Bit 1 - BOP/PSCF Priority Level Control
	Bit 2 - Not used
	Bit 3 - Not used
	Bit 4 - I/O Read Check
	Bit 5 - Not used
	Bit 6 - $1=$ SSCF Installed
	Bit 7 - Not used
	Byte 21:
	Bit 0 - 100-ms Clocked Interrupt Overrun
	Bit 1 - 1/O Write Check
	Bit 2 - Reserved
	Bit 3 - SSCF Equipment Check
	Bit 4 - Not used
	Bit 5 - PSCF Address OC Equipment Check
	Bit 6 - Not used
	Bit 7 - Not used
(46)(47)	FRWA Bytes 22, 23 - PSCF Basic Status Register
	Byte 22:
	Bit 0 - Not used
	Bit 1 - IPL Register Valid
	Bit 2 - Not used
	Bit 3 - Power-On Reset
	Bit 4 - Not used
	Bit 5 - Not used
	Bit 6 - Not used
	Bit 7 - Not used

	Meaning
	Byte 23: Bit 0 - 100-ms Clocked Interrupt Bit 1 - 100-msec Clock Enabled Bit 2 - Not used Bit 3 - SSCF Power Outage Bit 4 - Reserved Bit 5 - Equipment Check Bit 6 - Enable Interruption Bit 7 - Interruption Request
(48)(49)	FRWA Bytes 24, 25 - BOPA Basic Status Byte 24: Bit 0 - Invalid Command Bit 1 - MD Signal Bus Check Bit 2 - BOPA Write Check Bit 3 - BOPA Read Check Bit 4 - MD Enabled Bit 5 - Reserved Bit 6 - IPL/Keylock Encode Bit 7 - IPL/Keylock Encode Byte 25: Bit 0 - Enter Data pushbutton Bit 1 - Enter Function pushbutton Bit 2 - MD Transfer Complete Bit 3 - MD Status In Bit 4 - Any IPL Bit 5 - Machine Check Bit 6 - Enable BOPA Interruption Bit 7 - BOPA Interruption Request

	feld	Meaning
(50)(51)		FRWA Bytes 26, 27 - SSCF basic status.
		Byte 26:
		Bit 0 - I/O Unit Enabled
		Bit 1 - Not used
		Bit 2 - SSCF-Detected Error
		Bit 3 - SSCF Enabled
		Bit 4 - Not used
		Bit 5 - Not used
		Bit 6 - Not used
		Bit 7 - Not used
		Byte 27:
		Bit 0 - Not used
		Bit 1 - Not used
		Bit 2 - Not used
		Bit 3 - Not used
		Bit 4 - Not used
		Bit 5 - Not used
		Bit 6 - Not used
		Bit 7 - Not used
		SSCF basic status is only valid for machine checks during connect, disconnect, read/write translate array, and read SSCF status requests.

SC332 DPCX Condition/Incident Log Formats and Meanings

The DPCX Condition/Incident Log stores three types of record formats for system control facility failures:
DPCX Type 1 Record Format
$\begin{array}{llllll}\text { (1) } & & \text { (2) } & \text { (3) } & \text { (4) } & \text { (5) } \\ \text { 1-TYPE } & \text { 1-REC } & \text { SEQ-XXXX } & \text { NA-XX } & \text { PA-XX } & \text { LA-XX }\end{array}$
1-TYP
(8)

C-CODE-XX (7) (8)
(9)

C-FR-XX
(11)
$\begin{array}{lll}(9) & (10) & (11) \\ X \text {-STAT1-XX } & \text { X-STAT2-00 } & \text { S-FR-XX }\end{array}$
(12)

10CB-XXYY OOZZ RC-XX
$\begin{array}{lll}\text { (15) } & \text { (16) } & \text { (17) } \\ \text { D1 } & \text { (18) }\end{array}$

DPCX Type 2 Record Format					
(1)		(2)	(3)	(4)	(5)
2-TYPE	I-REC	SEO-XXXX	NA-XX	PA-XX	LA-XX
(19)		(20)			(8)
D21-XXXX	x xxxx	\times LVL-X			C-FR-XX
(21)		(22)			(11)
D22-XXXX	XXXX	X Mc-XX			S-FR-XX
(23)		(24)			(25)
D23-XXXX		D24-X			D25-XXXX

DPCX Type 4 Record Format				
(1)	(2)		(26)	
4-TYPE	I-REC	SEO-XXXX	SYS-COND-XX	
(27)	(28)	(29)	(30)	(31)
D01-XX	D02-XX	D03-XX	D04-XX	D05-XX

DPCX Types 1, 2, and 4 Condition/Incident Log Record Contents

Field	C-TPE	Contents Indicates the record type (1, 2, or 4).
(2)	SEQ	A four-digit decimal number (0001-4095). This number identifies the relative time the incident occurred.
(3)	NA	A two-digit number indicating the number of active applica- tions at the time of the error.
(4)	PA	A two-digit number indicating the physical address of the PSCF (see SC112).
(5)	LA	A two-digit number indicating the logical unit address (same as PA).
(6)	C-CODE	Completion code - A two-digit hex number indicating operation completion status.
(7)	B-STAT	PSCF Basic Status Register bits 8-15. See SC233 for bit definition.
(8)	C-FR	A two-digit hex number indicating operation when the error occurred.
(9)	X-STAT1	PSCF EIR bits 0-7. See SC233 for bit definition.
(10)	X-STAT2	PSCF EIR bits 8-15. See SC233 for bit definition.
(11)	S-FR	A two-digit hex number indicating system operation when the error occurred.
(26)	SYS-COND	A system condition code that identifies the system event being recorded.
Note: Present/y, DPCX does not use fields 12-25 and 27.31 for SCF incidents.		

SC340 How to Use the Error Log for Fault Isolation

The procedure for examining the error log depends upon whether the customer is using DPPX or DPCX. For DPPX, see SC341; for DPCX, see SC342.

SC341 Using the DPPX Error Log Record for Fault Isolation
The log records should be examined for the failing area of the SCF. The physical address indicates the failing PSCF or SSCF (08 or P8 respectively).

Obtain the basic status information from the extended data field D11, D12, and the high order of D14. Convert the hex number to binary (see Appendix A) and see SC331 for field meaning.

SC342 Using the DPCX Condition/Incident Log for Fault Isolation
Examine the log records for the failing area of the SCF. The PA indicates the failing PSCF or SSCF (08 or P8 respectively).

- If any Type 2 format records are found, use the Machine Check Action Plan (SC351) to initiate a repair action.
- If no Type 2 records are found, examine the Type 1 format records to determine the type of SCF failure.

Obtain the B-STAT value (field 7) from the Type 1 record and convert the hex number to binary (see Appendix A). If the B-STAT contains either an active 0 or 5 bit, use the Machine Check Action Plan (SC351) to initiate a repair action. Use Figures SC342-1, 2 and 3 to further define the error.

B-STAT Bits	PSCF Basic Status Register Bits	Description
${ }^{*} 0$	8	$100-m s$ clocked interrupt
1	9	$100-$ ms clock enabled
2	10	Not used
${ }^{2}$	11	SSCF power outage
4	12	Reserved
5	13	PSCF equipment check
6	14	PSCF interruption enabled
7	15	PSCF interruption request

Turns on B-STAT bit 7.
Figure SC342-1. Type 1 Record B-STAT Field Error Description

X-STAT1 Bits	PSCF EIR Bits	Description
0	0	Not used
1	1	BOP/PSCF priority level control
2	2	Not used
3	3	Not used
4	4	N
5	5	read check
6	6	Not used
7	7	SSCF installed
7	Not used	

Note: For more information concerning the errors contained in this figure, obtain the X-STAT1 and X-STAT2 fields from the Type 1 error record.

Figure SC342-2. Type 1 Record X-STAT1 Field Error Description

X-STAT2 Bits	PSCF EIR Bits	Description
0	8	$100-m \mathrm{~m}$ clocked interrupt overrun
1	9	Resreved
2	10	SSCF equipment check
3	11	Not used
4	12	PSCF addr OC equipment check
5	13	Not used
6	14	Not used
7	15	

igure SC342-3. Type 1 Record X-STAT2 Field Error Description

Intermittent failures can most easily be determined by using the error log. To determine the type of failure recorded in the error log, refer to How to Use Error Log for Fault solation (SC340), which then refers you to the correct action plan.

SC351 Machine Check Action Plan
Use this action plan for the following conditions:

- DPCX Type 2 log format errors - The processor logic detected an SCF hardware operational error, such as a parity error.
- DPCX Type 1 log format errors - The SCF detected a hardware error in the SCF logic.
- DPPX Type 5 log errors - A hardware failure occurred in the adapter bus logic during an SCF operation.

Caution: Turn power off when removing or exchanging cards or cables.

Troubleshoot this failure in the following sequence:

Probable Cause	Action	Comment
1. Incorrect voltage	Measure board voltages at $8130 / 8140$ 01A-A1 and 01A-A2 boards and also at the board of the failing SSCF.	Missing or out-of- tolerance voltages; go to PA MAP.
a. D03 $=+4.5$ to +5.5 V dc b. B11 $=+7.7$ to +9.3 V dc c. BO6 $=-4.5$ to -5.5 V dc		
2. Loose or defective SCF control cables	Inspect for loose or defective cables (see SC111).	See Note 1 below.
3. Defective SCF cards	Exchange, in order, the SC5, SC4, SC2, SC3, SC1, and SC6 cards. See the following chart for locations.	See Notes 1, 2, and 3 below. If this is an 8130 without the
System Expansion		
Feature, only the SC1		
card can be exchanged.		
If this is an 8140, there		
is no SC6 card.		

Mach Type	SC5	SC4	SC2	SC3	SC1	SC6	2nd SC5
8130	A2C2	A2D2	A2F2	A2E2	A2G2	A2B2	
$8140 A$	A2D2	A2C2	A2A2	A2B2	A1A2		
$8140 B$	A2A2	A1A2	A1C2	A1B2	A1D2		C2A2

Notes
To verify the fix, run the SC tests using the Free-Lance Utility. At 80BC, enter 08A; at 81BC, enter 1B (see SC211).
a. If the tests fail, record the test error message and use the SC MAP menu option 4 to find the failure.
b. If the tests complete successfully (P 800), return the system to the customer Obtain a new error log after the customer has used the system.
c. If the log indicates a failure pertaining to this action plan, go to the next step in the table.
d. End repair action when there are no SC failures indicated in the log.
2. If the system still fails after exchanging cards, reinstall the original cards and go to the next step in the table.
3. If the system still fails after exchanging the FRU and this is the last step in the action plan, go to SC250 and use the SCF Bus Error action plan (Action Plan 8).

This page intentionally left blank.

SC400 Signal Paths and Detailed Operational Description
SC401 SCF General Data Flow
Figures SC401-1 through SC401-4 show SCF general data flow in the processors. Figure SC401-1 depicts the 8130 without the expansion feature; Figure SC401-2 shows the 8130 with the expan sion feature; Figure SC401-3 shows the 8140A; and Figure SC401-4 shows the 8140B.

Figure SC401-1. 8130 Hardware SCF Data Flow (without Expansion Feature)

Figure SC401-4. $\mathbf{8 1 4 0}$ Model B Hardware SCF Data Flow

SC410 SCF Point-to-Point Net Listing

SC411 8130 SCF Point-to-Point Net Listing

8130 Without Expansion Feature, I/O Bus to Adapters

Line Name	A2 Board		A1 Board			A2 Board					
	$\begin{aligned} & \text { SCF } \\ & \text { Card } \\ & \text { A2G2 } \end{aligned}$	BoardY4, Y5 \& Y6	BoardZ4, Z5 \& Z6	Diskette DA A1S2	$\begin{aligned} & \text { File } \\ & \text { FA } \\ & \text { A1U2 } \end{aligned}$	Communications Adapters					
						$\begin{aligned} & \text { CA1 } \\ & \text { A2J4 } \\ & \text { A2K2 } \end{aligned}$	$\begin{aligned} & \text { CA2 } \\ & \text { A2J2 } \\ & \text { A2LL2 } \end{aligned}$	CA3 A2N4 A2M2	$\begin{aligned} & \text { CA4 } \\ & \text { A204 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CA5 } \\ & \text { A2S4 } \\ & \text { A2R2 } \end{aligned}$	$\begin{aligned} & \text { CA6 } \\ & \text { A2U4 } \\ & \text { A2T2 } \end{aligned}$
-PIO Data 0	W22	T1C13	L6D04	G04	S04	K2G02	L2G02	M2G02	P2G02	P2G02	T2G02
-PIO Data 1	W28	T1E11	M6E04	D13	U11	K2,02	L2J02	M2J02	P2J02	R2J02	T2J02
-PIO Data 2	W11	T1D13	N6C02	J02	S07	K2D10	L2D10	M2D10	P2D10	R2D10	T2D10
-PIO Data 3	W24	U1C13	M6A04	G02	U05	K2G08	L2G08	M2G08	P2G08	R2G08	T2G08
--PIO Data 4	W04	U1813	M6A02	J06	U10	K2J04	L2J04	M2J04	P2J04	R2J04	T2J04
-PIO Data 5	W25	T1C11	M6804	G07	S13	K2D09	L2009	M2D09	P2D09	R2D09	T2009
-PIO Data 6	W07	T1D11	M6D02	G08	S08	K2809	L2809	M2B09	P2809	R2809	T2809
-PIO Data 7	w06	U1A13	M6C02	G03	M10	K2D06	L2006	M2D06	P2D06	R2D06	T2006
-PIO Data PO	W27	U1A11	M6D04	B12	P10	K2802	L2B02	M2B02	P2B02	R2302	T2802
-PIO Data 8	W05	M1811	M6802	D12	S09						
-PIO Data 9	W30	N1813	M6B04	J04	S10						
--PIO Data 10	W13	N1E11	N6B02	G09	U02						
-PIO Data 11	w09	N1A11	N6A02	J07	S05						
-PIO Data 12	W29	N1A13	N6A04	D10	B12						
-PIO Data 13	W10	N1811	N6B02	M08	013 004 0						
-PIO Data 14	W23	L1E13	L6E04	G05	U07						
-PIO Data 15	W32	N1D13	N6D04	J05	S12						
-PIO Data P1	W33	N1E13	N6B04	B10	U12						
-TD Tag	$\times 22$	P1E13	P6E04	U05	P02	K2805	L2805	M2B05	P2B05	R2305	T2B05
-1/0 Tag	$\times 05$	Q1C11	-6C02	S09	D13						
-1/0 Tag (B)	$\times 06$	Q1D11	06002			K2805	L2804	M2B05	P2B05	R2804	T2B04
-Halt	$\times 09$	R1811	R6B02	P02	J04	K2G04	L2G04	M2G04	P2G04	R2G04	T2G04
-TA Tag	$\times 30$	R1C13	R6C04	406	M08	K2D05	L2005	M2005	P2D05	R2D05	T2D05
-TC Tag	x10	R1C11	R6C02	S05		K2808	L2808	M2B08	P2B08	R2308	T2808
-Byte Tag	X11	R1D11	R6D02								

Line Name	A2 Board		A1 Board			A2 Board					
	$\begin{aligned} & \text { SCF } \\ & \text { Card } \\ & \text { A2G2 } \end{aligned}$	Board Y4, Y5 \& Y6	$\begin{aligned} & \text { Board } \\ & \text { Z4, Z5 \& Z6 } \end{aligned}$	Diskette DA A1S2	$\begin{aligned} & \text { File } \\ & \text { FA } \\ & \text { A1U2 } \end{aligned}$	Communications Adapters					
						$\begin{aligned} & \text { CA1 } \\ & \text { A2J4 } \\ & \text { A2K2 } \end{aligned}$	$\begin{array}{\|l\|l} \text { CA2 } \\ \text { A2J2 } \\ \text { A2L2 } \end{array}$	$\begin{aligned} & \text { CA3 } \\ & \text { A2N4 } \\ & \text { A2M2 } \end{aligned}$	$\begin{aligned} & \text { CA4 } \\ & \text { A204 } \\ & \text { A2P2 } \end{aligned}$	$\begin{aligned} & \text { CA5 } \\ & \text { A2S4 } \\ & \text { A2R2 } \end{aligned}$	$\begin{array}{\|l\|l} \text { CA6 } \\ \text { A2U4 } \\ \text { A2T2 } \end{array}$
-Valid HW	$\times 02$	P1E11	P6E02		G02						
-Exception	$\times 23$	Q1A13	06404	W07							
-Modifier	$\times 24$	Q1813	Q6B04	P13							
-EOC	$\times 04$	Q1811	$06 \mathrm{B02}$	U13	B08	K2P11	L2P11	M2P11	P2P11	R2P11	T2P11
-PV	X25	$\mathrm{Q}^{1 \mathrm{C} 13}$	Q6C04	U11	D05	K2007	L2007	M2D07	P2D07	R2D07	T2007
-VB1 (B)	+27	${ }^{\text {Q1E13 }}$	Q6E04			K2603	L2G03	M2G03	P2G03	R2G03	T2G03
-VB1	-07	Q3E11	Q6ED2	U02							
-IRR (B)	+28	R1A13	R6A04			K2D02	L2002	M2002	P2D02	R2D02	T2D02
-IRR	X29	R1813	R6804	P10	B09						
-VB0	$\times 32$	R1E13	R6E04								
-1/O Reset	Y13	V1811	V6B02	S03	$\begin{aligned} & \text { T2G09 } \\ & \text { M05 } \end{aligned}$	$\times 2 \mathrm{~J} 05$	L2J05	M2J05	P2J05	R2J05	T2J05
-Release	Y09	U1C11	U6C02	S02	T2J13						
-IPR	Y30	U1D13	U6D04								
- Ch Reg Hi	$\times 33$	S1A13	S6A04			$\times 2 \mathrm{M} 13$	L2M13	M2M13	P2M13	R2M13	T2M13
-Ch Reg Med	x33	U1D11	U6D02								
-Ch Reg Lo	+13	S1A11	S6A02	M05	102						
-CH Grant Hi	$\times 12$	R1E11	R6E02			K2P05	L2P05	M2P05	P2P05	R2P05	T2P05
-CH Grant Med		T1813	T6B04			K2P04	L2P04	M2P04	P2P04	R2P04	T2P04
-CH Grant Lo	Y02	T1A11	T6A02	U10	G03						
-IR/B1 0	Y24	T1C13	T6C04			K2G09	L2G09	M2G09	P2G09	R2G09	T2G09
-IR/B1 1	Y06	T1E11	T6E02			K2J06	L2J06	M2.06	P2J06	R2J06	T2, 206
-IR/B1 2	Y25	T1D13	T6D04			K2G07	L2G07	M2G07	P1G07	R2G07	T2G07
-IR/B1 3	Y29	U1C13	U6C04			K2807	L2807	M2807	P2B07	R2807	T2807
						K2J07	L2J07	M2,07	P2J07	R2J07	T2.07
-18/81 4	Y28	U1813	U6804			K2G10	L2G10	M2G10	P2G10	R2G10	T2G10
-18/815	Y04	T1C11	T6C02			K2J10	L2J10	M1310	P2J10	R2310	T2J10
-1R/81 6	Y05	T1011	T6D02			K2J11	L2J11	M2J11	P2J11	R2J11	T2J11
-18/817	Y27	U1A13	U6A04			K2J12	L2J12	M2J12	P2J12	R2J12	T2J12
-1R/B1 P	Y07	U1A11	U6A02			K2G12	L2612	M2G12	P2G12	R2G12	T2G12
+VE (POR) -10 MHZ	$\begin{aligned} & \text { Y22 } \\ & \text { Y33 } \end{aligned}$			P05		J4D11	J2D11	M4D11	O4D11	S4D11	U4D11

8130 With Expansion Feature, I/O Bus to Adapters

Line Name	A2 Board		A1 Board			A2 Board					
	$\begin{aligned} & \text { sscF } \\ & \text { Card } \\ & \text { A2C2 } \end{aligned}$	Board Y4, Y5 \& Y6	Board Z4, Z5 \& Z6	Diskette DA A1S2	$\begin{aligned} & \text { File } \\ & \text { FA } \\ & \text { A1U2 } \end{aligned}$	Communications Adapters					
						$\begin{aligned} & \text { CA1 } \\ & \text { A2 } 24 \\ & \text { A2K2 } \end{aligned}$	$\begin{aligned} & \text { CA2 } \\ & \text { A2J2 } \\ & \text { A2L2 } \end{aligned}$	$\begin{aligned} & \text { CA3 } \\ & \text { A2N4 } \end{aligned}$ A2M2	$\begin{aligned} & \text { CA4 } \\ & \text { A204 } \\ & \text { A2P2 } \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|} \text { A2S5 } \\ \text { A2R2 } \\ \hline \end{array}$	$\begin{aligned} & \text { CAG } \\ & \text { A2U4 } \\ & \text { A2T2 } \end{aligned}$
-PIO Data 0	B02	T1C13	L6D04	G04	S04	K2G02	L2G02	M2G02	P2G02	R2G02	T2G02
-PIO Data 1	B08	T1E11	M6E04	D13	U11	K2, ${ }^{2}$	L2,02	M2J02	P2J02	R2J02	T2J02
-PIO Data 2	D11	T1D13	N6C02	J02	S07	K2D10	L2010	M2D10	P2D10	R2D10	T2D10
-PIO Data 3	G04	U1C13	M6A04	G02	005	K2G08	L2G08	M2G08	P2G08	R2G08	T2G08
-PIO Data 4	J07	U1813	M6A02	J06	U10	K2, 04	L2304	M2J04	P2J04	R2J04	T2J04
-PIO Data 5	G09	T1C11	M6B04	G07	S13	K2D09	L2009	M2D09	P2D09	R2D09	T2D09
-PIO Data 6	м02	T1D11	M6D02	G08	S08	K2809	L2809	M2B09	P2809	R2809	T2809
-PIO Data 7	P10	U1A13	M6C02	603	M10	K2D06	L2006	M2D06	P2D06	R2D06	T2D06
-PIO Data PO	M12	U1A11	M6D04	B12	P10	K2802	L2802	M2802	P2802	R2802	T2B02
-PIO Data 8	D05	M1811	M6802	D12	509						
-PIO Data 9	B10	N1813	M6B04	J04	S10						
-PIO Data 10	D13	N1E11	N6E02	G09	U02						
-PIO Data 11	G05	N1A11	N6A02	J07	S05						
-PIO Data 12	G08	N1A13	N6A04	D10	U13						
-PIO Data 13	J09	N1811	N6B02	J09	U04						
-PIO Data 14	P06	L1E13	L6E04	G05	007						
-PIO Data 15	P11	N1D13	N6D04	J05	S12						
-PIO Data P1	P13	N1E13	N6E04	B10	412						
-TD Tag	602	P1E13	P6E04	v05	P02	K2805	L2805	M2B05	P2805	R2805	T2805
-1/0 Tag	J05	Q1C11	$06 \mathrm{CO2}$	S09	D13						
-1/0 Tag (B)	G13	Q1D11	06D02			K2805	L2804	M2B05	P2805	R2804	T2804
-Halt	J06	R1811	R6B02	P02	J04	K2G04	L2G04	M2G04	P2G04	R2604	T2G04
-TA Tag	G10	$\mathrm{R}^{\text {R } 123}$	R6C04	${ }^{0} 06$	M08	K2005	L2005	M2D05	P2D05	R2D05	T2005
-TC Tag	J10	R1C11 R1D11	R6C02 R6DO2	S05		K2808	L2808	M2B08	P2B08	R2808	T2808
-Byte Tag	J11	R1D11	R6D02								

Line Name	A2 Board		A1 Board			A2 Board					
	$\begin{aligned} & \text { ssCF } \\ & \text { Card } \\ & \text { ARC2 } \end{aligned}$	Board Y4, Y5 \& Y6	Board Z4, Z5 \& Z6	$\begin{array}{\|l\|l\|} \hline \text { Diskette } \\ \text { DA } \end{array}$	File FA A1U2	Communications Adapters					
						$\begin{aligned} & \text { CA1 } \\ & \text { A2 } 24 \\ & \text { A2K2 } \end{aligned}$	$\begin{aligned} & \text { CA2 } \\ & \text { A2J2 } \\ & \text { A2L2 } \end{aligned}$	$\begin{array}{\|l\|l} \text { CA3 } \\ \text { A2N4 } \\ \text { A2M2 } \end{array}$	$\begin{array}{\|l\|l} \text { CA4 } \\ \text { A2O4 } \\ \text { A2P2 } \end{array}$	$\begin{aligned} & \text { CA5 } \\ & \text { A2S4 } \\ & \text { A2R2 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { CA6 } \\ \text { A2U4 } \\ \text { A2T2 } \end{array}$
-Valid HW	D07	P1E11	P6E02		G02						
-Exception	D10	Q1A13	Q6A04	w07							
-Modifier	B12	Q1813	06B04	P13							
-EOC	D09	Q1811	Q6B02	U13	B08	K2P11	L2P11	M2P11	P2P11	R2P11	T2P11
-PV	B04	Q1C13	-6C04	U11	D05	K2D07	L2D07	M2007	P2D07	R2D07	T2D07
-VB1 (B)	J12	Q1E13	-6E04			K2G03	L2G03	M2G03	P2G03	R2G03	T2G03
-vB1	D06	Q1E11	Q6E02	U02							
$-\operatorname{IRR~(B)~}$	${ }^{113}$	R1A13	R6A04			K2D02	L2D02	M2D02	P2002	R2D02	T2002
-IRR	B05	R1B13	R6B04	P10	809						
-vBO	в09	R1E13	R6E04								
-1/0 Reset	G12	V1811	V6B02	S03	$\begin{aligned} & \text { T2G09 } \\ & \text { M05 } \end{aligned}$	K2J05	L2J05	M2J05	P2, 305	R2J05	T2J05
-Release	P09	U1C11	U6C02	S02	T2J13						
-IPR	M10	U1D13	U6D04								
-Ch Reg Hi	M05	S1A13	S6A04			K2M13	L2M13	M2M13	P2M13	R2M13	T2M13
-Ch Reg Med	G03	U1D11	U6D02								
-Ch Reg Lo	J02	S1A11	S6A02	M05	J02						
-CH Grant Hi	M04	R1E11	R6E02			K2P05	L2P05	M2P05	P2P05	R2P05	T2P05
-CH Grant Med	P12	T1813	T6B04			K2P04	L2P04	M2P04	P2P04	R2P04	T2P04
-CH Grant Lo	P02	T1A11	T6A02	U10	G03						
-IR/B10	D02	T1C13	T6C04		B12	K2G09	L2G09	M2G09	P2G09	R2G09	T2G09
-IR/B1 1	D04	T1E11	T6E02			K2J06	L2306	M2,06	P2J06	R2J06	T2J06
-IR/B1 2	B07	T1D13	T6D04			K2607	L2G07	M2G07	P1G07	R2G07	T2G07
-IR/B1 3	J04	U1C13	U6C04			K2807	L2807	M2807	P2B07	R2807	T2807
						K2J07	L2,07	M2.07	${ }^{\text {P2 } 207}$	R2J07	T2,07
-IR/B1 4	G07	U1813	U6804			K2G10	L2G10	M2G10	P2G10	R2G10	T2G10
-IR/B15	P04	T1C11	T6C02			K2J10	L2J10	M1J10	P2J10	R2J10	T2J10
-IR/B1 6	P05	T1D11	T6D02			K2J11	L2J11	M2J11	P2J11	R2J11	T2J11
-IR/B17	M07	U1A13	U6A04	M08		K2J12	L2312	M2J12	P2J12	R2J12	T2312
-IR/B1 P +VE (POR)	P07	U1A11	U6A02			K2G12	L2G12	M2G12	P2G12	R2G12	T2G12
+VE (POR) -10 MHz	813 $M 13$			P05		J4D11	J2D11	M4D11	04D11	S4D11	U4D11
-10MHZ	M13	V1813	V6804								

Line Name	SC2	sc3	SC4
+ Parity Valid Lth	F2D04		D2D04
+ SSCF IR	F5D09		D5D09
+SSCF Mck	F5D06		D5D06
-SSCF Pwr Outage		E4B03	D4B03
-Pwr Seq Comp	F504		D5D04
- Cr to Card 2	F3B13		D3813
+IPR to Card 2	F4B08		D4808
-IRR to Card 2	F2D05		D2D05
+ Exception Lth	F2B10		D2B10
+ X 8 Tag Wrap	F4D07	E4D07	D4D07
+08 Brdest Cmd		E2B04	D2B04
+0C Stat Cmd	F2B02	E2B02	
+08 Stat Cmd	F2B03	E2B03	
+ X 8 Crp Wrap	F4B09	E4B09	D4B09
+ Inward	F3D06	E3D06	D3D06
+ Pwr Outage Lth	F3B04	Езв04	
+Go	F3B02	Е3802	
+ Enable Data Lths	F5B04	E5B04	
-10 Mhz	F5B02	E5b03	
-Parity Good	F4D10	E4D10	
+ Load Chaw Reg	F4B02	E4B02	
+ Valid Hw Lth	F2B07	E2B07	D2B07
+ Valid Byte 0 Lth	F2D09	E2D09	D2D09
+ Valid Byte 1 Lth	F2D06	E2D06	D2D06
+ Modifier Latch	F2D12	E2D12	D2D12
-EOC DOT	F2B09	E2B09	D2B09
-Data Out P0	F4D12	E4D12	D4D12
-Data Out 0	F2D02	E2D02	D2D02
-Data Out 1	F2B08	E2B08	D2B08
-Data Out 2	F2D11	E2D11	D2D11
-Data Out 3	F3D04	E3D04	D3D04
-Data Out 4	F3B07	Езв07	D3807
-Data Out 5	F3D09	E3D09	D3D09
-Data Out 6	F4D02	E4D02	D4D02
-Data Out 7	F4B10	E4B10	D4B10
-Data Out P1	F4B13		D4B13
-Data Out 8	F2B05	E2B05	D2805
-Data Out 9	F2D10	E2D10	D2D10
-Data Out 10	F2B13	E2B13	D2813
-Data Out 11	F3D05	E3D05	D3D05
-Data Out 12	F3B08	E3B08	D3B08
-Data Out 13	F3B09	Езв09	D3809
-Data Out 14	F4D06	E4D06	D4D06
-Data Out 15	F4D11	E4D11	D4D11

Line Name	SC2	sc3	SC4
+Parity Valid Lth	A2D04		C2D04
+SSCF IR	A5D09		C5D09
+SSCF Mck	A5D06		C5D06
-SSCF Pwr Outage		B4803	C4B03
-Pwr Seq Comp	A5D04		C5D04
-Cr to Card 2	A3B13		С3813
+IPR to Card 2	A4B08		С4808
-IRR to Card 2	A2D05		C2D05
+Exception Lth	A2B10		C2B10
+X8 Tag Wrap	A4D07	B4D07	C4D07
+08 Brdest Cmd		B2804	C2B04
+0C Stat Cmd	A2802	B2802	
+08 Stat Cmd	A2B03	в2803	
+X8 Crp Wrap	A4B09	B4809	C4B09
+Inward	A3D06	B3D06	C3D06
+Pwr Outage Lth	A3B04	B3B04	
+Go	A3B02	в3в02	
+Enable Data Lths	A5B04	B5B04	
-10 Mhz	A5B02	A5B03	
-Parity Good	A4D10	B4D10	
+Load Chew Reg	A4B02	B4802	
+Valid Hw Lth	A2807	B2807	C2B07
+Valid Byte 0 Lth	A2D09	B2D09	C2D09
+Valid Byte 1 Lth	A2D06	B2D06	C2D06
+Modifier Latch	A2D12	B2D12	C2D12
-EOC DOT	A2B09	B2809	C2B09
-Data Out PO	A4D12	B4D12	C4D12
-Data Out 0	A2D02	B2D02	C2D02
-Data Out 1	A2B08	B2808	C2B08
-Data Out 2	A2D11	B2D11	C2D11
-Data Out 3	A3D04	B3D04	C3D04
-Data Out 4	А3807	в3807	С3807
-Data Out 5	A3D09	B3D09	C3D09
-Data Out 6	A4D02	B4D02	C4D02
-Data Out 7	A4B10	B4B10	C4B10
-Data Out P1	A4B13		C4B13
-Data Out 8	A2B05	B2805	C2B05
-Data Out 9	A2D10	B2D10	C2D10
-Data Out 10	A2B13	82813	C2B13
-Data Out 11	A3D05	B3D05	C3D05
-Data Out 12	А3808	в3808	С3808
-Data Out 13	A3B09	B3B09	C3B09
-Data Out 14	A4D06	B4D06	C4D06
-Data Out 15	A4D11	B4D11	C4D11

					DA	FA
	sscF	CA	CA	CA	Diskette	Disk
Line Name	(SC5)	Adapter	Adapter	Adapter	Adapter	Adapter
- Valid Half Word	D2007					03802
-Parity Valid	D2804	E2D07	G2D07	J2007	M5D11	Q2D05
-End of Chain	D2009	L2B02	L2803	L2B04	M5D13	02808
-IRR (HW)	D2805				M4D10	02809
-CR Low	D3D02				M4805	Q3D02
-Exception	D2D10				M5007	
-Modifier	D2812				M4D13	
-Valid Byte 1	D2006				M5D02	
$-\mathrm{IR} / \mathrm{BIP} \mathrm{P}_{1}$	D4007	E3B12	G3B12	J3B12		
-IR/BIo	D2002	Езво9	G3809	Ј3809		Q2B12
-\|R/BI 1	D2004	E2B07				
		E3D06	G3D06	J3D06		
-IR/BI 2	D2807	Е3807	G2807			
			G3807	J3B07		
-IR/B1 3	D3D04	E3D07	G3D07	J3007		
				J2007		
-\|R/B1 4	D3в07	Езв 10	G3B 10	J3810		
-\|R/B1 5	D4D04	E3D10	G3D10	J3010		
-IR/BI 6	D4005	E3D11	G3D11	J3D11		
-\|R/B17	D4807	E3D12	G3D12	J3012	M4B08	
- Valid Byte 1 (Byte)	D3D12	Езв03	G3803	J3803		
-IRR (Byte)	D3D13	E2D02	G2D02	J2002		
-Ch Req Med	D3803	L2813	L2B12	L2B10	Specials	
-Ch Req Hi	D4805	L2809	L2808	L2807		
+5 Volts Ctri	D5D05	C5D03	(just plai	5 V)		
--DB PH	D4B12	E2802	G2802	J2802	M2B12	Q4D10
-dB 0	D2802	E3B02	G3802	J3802	мзв04	05804
-DB 1	D2808	E3D02	G3D02	J3002	M2D13	Q5D11
-DB 2	D2011	E2D10	G2010	J2010	M3002	Q5807
-DB 3	D3804	E3B08	G3808	J3808	м3802	05D05
-DB 4	D3007	E3D04	G3D04	J3004	M3006	05010
-DB 5	D3809	E2D09	G2D09	J2009	мзво7	05813

Line Name	SSCF(SC5)	CA Adapter	$\begin{aligned} & \text { CA } \\ & \text { Adapter } \end{aligned}$	$\begin{aligned} & \text { Adapter } \end{aligned}$	DA Diskette Adapter	FA Disk Adapte
-DB 6	D4802	E2B09	G2809	J2B09	мзво8	O5B08
-DB 7	D4D10	E2D06	G2006	J2006	мзвоз	04810
-DB PL	D4D13				M2B10	05 D 12
-DB8	D2D05				M2012	05809
-DB 9	D2B10				M3004	05810
-DB 10	D2013				мзво9	$05 \mathrm{DO2}$
-DB 11	D3в05				M3D07	05805
-DB 12	D3808				M2D10	O5D13
-DB 13	D3D09				M3D09	05D04
-DB 14	D4D06				мзво5	05 D 07
-DB 15	D4D11				M3D05	-5812
-TD	Dзв02	E2805	G2B05	J2B05	M5D05	Q4D02
						${ }^{\text {P4808 }}$
-1/0 Op	D3D05				M5809	${ }^{02013}$
-Halt	D3D06	E3804	G3804	J3804	M4D02	$03 \mathrm{DO4}$
-TA	D3в10	E2D05	G2D05	J2D05	M5D06	04808
-TC	D3D10	E2808	G2B08	J2808	M5B05	
-System Reset	D38 12	E3D05	G3D05	J3005	M5803	Q4B05
$-1 / 0 \mathrm{Op}$ (Byte)	D3813	E2B04	G2B04	J2804		Р3в09
-Ch Grant Lo	D4D02				M5D10	
--Ch Grant Hi (Special)	D4B04	L3в04	L3в07	Lзв08	L3B09	L3810
-Release	D4D09				M5802	P3D 13
-10 Mhz	D5B02-					
	D502					
-Gate Inf Drurs On (VE)	$\begin{aligned} & \text { C5D05 } \\ & \text { D5B05 } \end{aligned}$	н6B04				
			H4D11			
			F4D11			
			F2D11			
			H2D11			
			K2D11			
			Р3в10			
			M4D05			
			$04 \mathrm{DO5}$			
			05006			

		DA	FA			DA	FA
	SSCF	Diskette	Disk		SSCF	Diskette	Disk
Line Name	(SC5)	Adapter	Adapter	Line Name	(SC5)	Adapter	Adapter
- Valid Half Word	D2D07		F3B02	-DB 6	D4802	G3808	F5B08
-Parity Valid	D2B04	G5D11	F2D05	-DB 7	D4D10	G3803	F4B10
-End of Chain	D2D09	G5D13	F2B08	-DB PL	D4D13	G2B10	F5D12
-IRR (HW)	D2B05	G4D10	F2B09	-DB 8	D2D05	G2D12	F5809
-CR Low	D3D02	G4B05	F3D02	-DB 9	D2810	G3D04	F5B10
-Exception	D2D10	G5D07		-DB 10	D2D13	G3809	F5D02
-Modifier	D2B12	G4D13		-DB 11	D3805	G3D07	F5805
-Valid Byte 1	D2D06	G5D02		-DB 12	D3808	G2D10	F5D13
-IR/BI P1	D4007			-DE 13	D3D09	G3D09	F5D04
-IR/BI 0	D2D02		F2B12	-DB 14	D4D06	G3B05	F5D07
-IR/BI 1	D2D04			-DB 15	D4D11	G3D05	F5B12
-IR/BI 2	D2807			-TD	D3B02	G5D05	F4D02
-IR/BI 3	D3D04						E4B08
-IR/Br 4	D3807			-l/O Op	D3D05	G5B09	F2D13
-IR/BI 5	D4D04			- Halt	D3D06	G4D02	F3D04
-IR/BI 6	D4D05			-TA	D3B10	G5D06	G4B08
-IR/BI 7	D4B07	G4B08		-TC	D3D10	G5B05	
- Valid Byte 1 (Byte)	D3D12			-System Reset	D3812	G5803	F4B05
-IRR (Byte)	D3D13			- -/ O Op (Byte)	D3813		E3B09
-Ch Reg Med	D3803			-Ch Grant Lo	D4D02	G5D10	
-Ch Reg Hi	D4805			-Ch Grant Hi (Special)	D4B04		
+5 Volts Ctrl	D5005			-Release	D4D09	G5B02	E3D13
-DB PH	D4B12	G2B12	F4D10	$-10 \mathrm{MHz}$	D5B02-		
-DB 0	D2B02	G3804	F5B04		D5D02		
-DB 1	D2808	G2D13	F5D11	-Gate Inf Drvrs On (VE)	C5D05		
-DB 2	D2D11	G3D02	F5B07		D5805	E3B10	
-DB 3	D3804	G3B02	F5D05			G4D05	
-DB 4	D3D07	G3D06	F5D10			F4D05	
-DB 5	D3809	G3B07	F5B13			F5D06	

Line Name	SC2	sc3	SC4	Line Name	SC2	SC3	SC4
+Parity Valid Lth	C2D04		A2D04	+1/0	С3805	в3805	A3B05
+SSCF IR	C5D09		A5D09	+TA	C3D10	B3D10	A3D10
+SSCF Mck	C5D06		A5D06	+TC	C3B10	в3B10	A3B10
-SSCF Pwr Outage		B4B03	A4B03	+TD	C3D02	в3802	A3B10
-Pwr Seq Comp	C5D04		A5D04	+Ch Grant	C3812	в3812	A3D02
- Cr to Card 2	С3813		A3B13	+Any Tag	C4D05	B4D05	A3B12
+IPR to Card 2	C4B08		A4B08	Any Tag			
-IRR to Card 2	C2D05		A2D05	- Byte Tag	C3D11		A3D11
+Exception Lth	C2B10		A2B10	SC1 Reset/not1/0	C1812		A4B07
+X8 Tag Wrap	C4D07	B4D07	A4D07	-SC1 Reset/not I/O	C4B12	B4B12	
+08 Brdcst Cmd		B2804	A2B04	-SC1 Reset	C3D12	B3D12	
+0C Stat Cmd	C2B02	B2802		-SC5 Reset	C4D09	B4D09	A4D09
+08 Stat Cmd	C2B03	в2803		-I/O Reset	C2B12		A2B12
+X8 Crp Wrap	С4809	в4в09	A4B09	- Outbound Ctrl	C3D13	B3D13	A3D13
+ Inward	C3D06	B3D06	A3D06	-Xmit Ctrl	C2D13		A2D13
+Pwr Outage Lth	С3в04	в3в04		Int or MI Vhw	C3D07	B3D07	A3D07
+Go	С3в02	в3802		-Val Dly 150-200	C4D04		A4D04
+Enable Data Lths	C5B04	B5804		-Val Dly 250-300	C4B04		A4B04
-10 Mhz	C5B02	A5B03		-Any Val Lth	C4D13	B4D13	A4D13
-Parity Good	C4D10	B4D10		+10 Mhz	C4B05	B4B05	A4B05
+Load Chaw Reg	C4B02	B4B02		+2 Hz Free Run	СЗв03		Аз803
+ Valid Hw Lth	C2807	в2807	A2807	-Pwr Seq Complete	C5D04		A5D04
+Valid Byte 0 Lth	C2D09	B2D09	A2D09				
+Valid Byte 1 Lth	C2D06	B2D06	A2D06				
+Modifier Latch	C2D12	B2D12	A2D12				
-EOC DOT	C2809	B2B09	A2B09				
-Data Out PO	C4D12	B4D12	A4D12				
-Data Out 0	C2D02	B2D02	A2D02				
-Data Out 1	A2B08	B2B08	A2B08				
-Data Out 2	C2D11	B2D11	A2D11				
-Data Out 3	C3D04	B3D04	A3D04				
-Data Out 4	Сзво7	в3в07	A3B07				
-Data Out 5	C3D09	B3D09	A3D09				
-Data Out 6	C4D02	B4D02	A4D02				
-Data Out 7	C4B10	B4B10	A4B10				
-Data Out P1	C4B13		A4B13				
-Data out 8	C2B05	B2B05	A2B05				
-Data Out 9	C2D10	B2D10	A2D10				
-Data Out 10	C2B13	B2B13	A2B13				
-Data Out 11	C3D05	B3D05	A3D05				
-Data Out 12	сзво8	взв08	Азв08				
-Data Out 13	Сзво9	B3D09	Азв09				
-Data Out 14	C4D06	B4D06	A4D06				
-Data Out 15	C4D11	B4D11	A4D11				

8140 Model BXX Board Wiring - SC5 to 01A-A2 Communications Adapter Board

	sc	ca	cA	CA	cA	To Board	
Line Name	SSCF	Port 4	Port 3	Port 2	Port 1	A-B2	
$-18 / 81 P^{\prime}$	A4D07	в3812	D3612	F3812	H3812	K4D07	
$-\mid R / B 10$	A2002	взво9	Dзво9	F3809,	H2B07	K2002	
-\|R/B	1	A2004	в3D06	D3D06	F2B07	H3D06	K2D04
-\|R/B1 2	A2807	взво7	D2B07	F3807	нзво7	K2807	
$-1 \mathrm{R} / \mathrm{Bl} \mathrm{I}$	A3D04	в2807	D3007	F3D07	H3D07	K3D04	
-IR/B1 4	A3807	в3810	D3B10	F3810	н3810	к3807	
$-\mid R / B 15$	A4D04	B3D10	D3D 10	F3D10	H3D10	K4D04	
-\|R/B1 6	A4D05	B3D11	D3D11	F3D11	H3D11	K4D05	
-IR/BI 7	A4807	B3D12	D3D12	F3D12	H3D12	K4807	
- Valid Byte 1 (Byte)	A3D12	взвоз	рзвоз	Fзвоз	нзвоз	K3D12	
-Parity Valid	A2B04	B2D07	D2007	F2D07	H2D07	K2804	
-IRR (Byte)	A3D13	B2D02	D2D02	F2D02	H2D02	K3013	
- Valid Byte 1 (HW)	A2D06					K2006	
- Valid HW	A2007					K2D07	
-Valid Byte 0	A2809					K2809	
-End of Chain	A2D09	G4310	G4B09	G4B08	G4807	K2D09	
-Exception	A2D10					K2D10	
-Modifier	A2B12					K2312	
-Ch Req Lo	A3002					K3D02	
-Ch Req Med**	Аз803	G4B05	G4B04	G4803	G4802	K3803	
-Ch Req Hi**	A4805	G4D13	G4D11	G4813	G4B12	K4805	
-IPR	A4B10					K4310	
-DB PH	A4B12	B2802	D2802	F2802	H2B02	K4B12	
-DB 0	A2B02	взв02	D3802	F3B02	нзво2	K2802	
-08 1	A2808	B3D02	D3002	F3D02	H3D02	K2808	
-DB 2	A2D11	B2D10	D2D10	F2D10	H2D10	K2D11	
-DB 3	Азв04	взво8	D3808	F3808	нзво8	к3804	
-DB 4	A3D07	83D04	D3D04	F3D04	нзD04	K3D07	
-DB 5	Азво9	B2D09	D2D09	F2D09	H2D09	кзво9	
-DB 6	A4802	B2809	D2809	F2809	H2809	K4B02	
-DB 7	A4D10	B2D06	D2006	F2006	H2D06	K4D10	
-DB PL	A4D13					K4D13	
-DB 8	A2D05					K2D05	
-D8 9	A2810					K2810	
-DB 10	A2D13					K2D13	
-DB 11	A3B05					кзво5	
-DB 12	Азв08					кзвов	
-DB 13	А3009					K3D09	
-DB 14	A4D06					K4D06	
-DB 15	A4011					K4D11	
$+5 \mathrm{Ve}$	A2B13	C2011	E2D11	G2D11	J2011	K2813	
-TD Tag	A3802	в2805	D2B05	F2805	H2B05	к3в02	
-1/0 Tag	A3D05					K3D05	
- Halt Tag	A3D06	взво4	D3804	F3B04	нзво4	K3006	
-TA Tag	А 3810	82005	D2D05	F2005	H2D05	K3810	
-TC Tag	A3D10	B2D08	D2B08	F2808	H2808	K3010	
-Byte Tag	A3D11					K3D11	
-System Reset	A38 12	B3D05	D3D05	F3D05	H3D05	K3812	

Line Name	sc sscF	CA Port 4	CA Port 3	CA Port 2	CA Port 1	To Board A-B2
-1/0 Tag (Byte)	A3B 13	B2804	D2804	F2B04	H2B04	K3B13
-Ch Grant Lo	A4D02					K4D02
-Ch Grant Hi	A4804				G5B03	
-Ch Grant Pass				G5B07	65804	
-Ch Grant Pass ${ }^{* * *}$			G5809	G5808		
-Ch Grant Pass		G5B12	G5B10			
${ }^{-C h}$ Grant Pass		G5B13				K4B04
-Ch Grant Med	A4D12				G5D02	
-Ch Grant Pass				G5D06	G5D05	
-Ch Grant Pass			G5D10	G5D07		
-Ch Grant Pass		G5D12	G5D11			
-Ch Grant Pass		G5D13				
-Release	A4009					K4D09
-Release Request	A4808					

*** *llustrates Ch Grant (+) being passed through but not connected to any ports in the A1 board
and sent to the B 1 board by wiring.

	Lines		2nd	1 st
		DA	FA	FA
Line Name	01A-A2	Diskette	Disk	Disk
-Valid Byte	A2D06	C5D02		
- Valid HW	A2D07		F3B02	H3B02
-Parity Valid	A2B04	C5D11	F2D05	H2D05
-End of Chain	A2D09	C5D13	F2B08	H2B08
-IRR	A2B05	C4D10	F2B09	H2B09
-Chan Reg Lo	A3D02	C4B05	F3D02	H3D02
-Modifier	A2B12	C4D13		
-IR/BI 0				
-IR/BI 1				
-IR/BI 2				
-IR/BI 4	А3B07			H2B12
-IR/BI 5	A4D04		F2B12	
-IR/BI 6				
-IR/BI 7	A4B07	C4B08		
$-\|R / B\| P 1$				
-DB PH	A4B12	C2B12	F4D10	H4D10
-DB 0	A2B02	C3B04	F5B04	H5B04
-DB 1	A2808	C2D13	F5011	H5D11
-DB 2	A2D11	C2D02	F5B07	H5B07
-DB 3	А3804	С3802	F5D05	H5D05
-DB 4	A3D07	C3D06	F5D10	H5D10
-DB 5	Азв09	С3B07	F5B13	H5B13
-DB 6	A4802	С3в08	F5808	H5B08
-DB 7	A4D10	С3B03	F4B10	H4B 10
-DB PL	A4D13	C2B10	F5D12	H5D12
-DB 8	A2D05	C2D12	F5809	H5B09
-DB 9	A2B10	C3D04	F5B10	H5B10
-DB 10	A2D13	Сзв09	F5002	H5D02
-DB 11	Азв05	C3D07	F5805	H5805
-DB 12	A3B08	C2D10	F5D13	H5D13
-DB 13	A3D09	C3D09	F5004	H5D04
-DB 14	A4D06	С3805	F5007	H5D07
-DB 15	A4D11	C3D05	H5B12	H5B12
$+5 \mathrm{Ve}$	A2B13	C4D05	F4D05	H4D05
			F5D06	H5D06
-TD Tag	A3B02	C5D05	F4D02	H4D02
-1/0 Tag	A3D05	C5B09	F2D13	H2D13
-Halt Tag	A3D06	C4D02	F3D04	H3D04
-TA Tag	A3B10	C5D02	F4B08	H4B08
-TC Tag	A3D10	C5B05		
-Sys Reset	A3B12	C5B03	F4B05	H4805
			G3809	J3809
-Release	A4D09	C5B02	G3D13	J3D13
-Ch Grant Lo	A4D02	C5D10		
-Ch Grant Lo Pass		C5B10		
-Ch Grant Lo Pass			F3B03	Нзво3

8140 Model BXX Board Wiring - SC5 to 01A-C2 or 01A-D2 Tape Adapter Boards

	$\begin{gathered} \text { or } \\ \text { sc5 } \end{gathered}$	
		TA
Line Name	SSCF	Tape
-Valid Byte	A2D06	G3D11
- Valid HW	A2D07	G3D02
-Parity Valid	A2B04	G3B03
-End of Chain	A2009	G3D05
-IRR	A2B05	G3808
-Chan Req Lo	A3D02	G3B10
-Modifier	A2B12	G5813
-IR/BIO		
-\|R/BI 1		
-IR/BI 2		
-IR/BI 3		
-\|R/B1 4		
-\|R/B1 5		
-IR/BI 6	A4D05	G3D10
-\|R/BI 7		
$-\mid R / B 1 P 1$		
-DB PH	A4B12	G4B04
-DB 0	A2B02	G4B05
-DB 1	A2B08	G4803
-DB 2	A2D11	G4D06
-DB 3	A3804	G4B09
-DB 4	A3D07	G4807
-DB 5	Азво9	G4D11
-DB 6	A4802	G4D05
-DB 7	A4D10	G4D12
-DBPL	A4D13	G4D09
-DB 8	A2D05	G4D13
-DB 9	A2B10	G4B12
-DB 10	A2D13	G4B10
-DB 11	A3B05	G4D10
-DB 12	Аз808	G4B13
-DB 13	A3D09	G4D04
-DB 14	A4D06	G4808
-DB 15	A4D11	G4D07
$+5 \mathrm{Ve}$	A2B13	H5B02
-TD Tag	А3802	G3D09
-1/O Tag	A3D05	G2B12
-Halt Tag	A3D06	G3B09
-TA Tag	A3B10	G5B04
-TC Tag	A3D10	
-Sys Reset	A3B12	G2B05
-Release	A4D09	H3D02
-Ch Grant Lo	A4D02	
-Ch Grant Lo Pass		G3B07
-Ch Grant Lo Pass		G3D07

8140 Model BXX Board Wiring - SC5 to 01A-C2 or 01A-D2 Communications Adapter Board

	sc		CA		CA	To Board	
Line Name	sscF	Port 8/12	Port 7/11	Port 6/10	Port 5/9	-D2	
-\|R/BIP1	A4007	взв12	D3812	F3B12	нзв12	K4D07	
-\|R/BIo	A2D02	взво9	Dзво9	F3809	H2807*	K2D02	
-\|R/B	1	A2004	вздо6	D3D06	F2807*	H3D06	K2D04
$-\mid R / B 12$	A2807	взво7	D2807*	F3807	H3807	K2807	
-IR/B1 3	A3D04	B2807*	D3007	F3D07	H3D07	K3D04	
-\|R/B1 4	Аз807	взв10	D3810	F3810	нзв $10{ }^{*}$	кзв07	
--1R/B1 5	A4D04	в3D10	D3D10	F3D10*	H3D10	K4D04	
-\|R/B	6	A4D05	в3D11	D3D11**	F3D11	H3011	K4D05
-18/B17	A4807	в3D12*	D3D12	F3D12	H3D12	K4807	
- Valid Byte 1 (Byte)	A3D 12	взвоз	рзвоз	Fзвоз	нзвоз	K3D12	
-Parity Valid	A2B04	B2007	D2007	F2007	H2007	K2804	
-IRR (Byte)	A3D13	B2002	D2002	F2D02	H2D02	K3D13	
- Valid Byte 1 (HW)	A2D06					K2D06	
-Valid HW	A2007					K2007	
- Valid Byte 0	A2B09					K2B09	
--End of Chain	A2009	G4B10	G4809	G4808	G4B07	K2D09	
-Exception	A2D10					K2D10	
-Modifier	A2B12					K2B12	
-Ch Req Lo	A3D02					K3D02	
-Ch Req Med**	Азво3	G4805	G4B04	G4803	G4B02	кзвоз	
-Ch Req Hi**	A4805	G4D13	G4D11	G4813	G4812	K4B05	
-IPR	A4B10					K4B10	
-DB PH	A4812	B2802	D2802	F2802	H2802	K4B12	
-db 0	A2802	взво2	Dзво2	F3B02	нзво2	K2802	
-DB 1	A2808	в3D02	D3D02	F3D02	H3D02	к2808	
-DB 2	A2011	B2D10	D2D10	F2D10	H2D10	K2D11	
-DB 3	А 3804	взво8	D3808	F3B08	нзво8	кзв04	
-DB 4	A3D07	взD04	D3D04	F3D04	H3D04	к3D07	
-DB 5	Азво9	B2009	D2009	F2D09	H2D09	кзв09	
-DB 6	A4802	B2809	D2809	F2809	H2809	K4802	
-DB 7	A4D10	B2006	D2006	F2006	H2006	K4D10	
-DBPL	A4D13					K4D13	
-DB 8	A2D05					K2D05	
--db 9	A2B10					к2810	
-DB 10	A2D13					K2D13	
-DB 11	Азво5					кзво5	
-DB 12	Азво8					кзво8	
-DB 13	A3D09					K3D09	
-DB 14	A4D06					K4D06	
-DB 15	A4D11					K4D11	
$+5 \mathrm{Ve}$	A2B13	C2D11	E2011	G2D11	J2011	K2813	
-TD Tag	Аз802	в2805	D2B05	F2805	H2805	кзв02	
-1/O Tag	A3D05					K3D05	
-Halt Tag	A3D06	взво4	D3804	F3804	нзво4	к3D06	
-TA Tag	АзВ10	B2005	D2005	F2005	H2D05	к3810	
-TC Tag	A3D10	B2008	D2B08	F2B08	H2B08	K3D10	
-Byte Tag	A3D11					K3D11	
-System Reset	АЗВ 12	B3D05	D3D05	F3D05	H3D05	кзв12	

8101 Model A25 Board Wiring - SC5 to 01A-A2 Disk/Diskette/ Tape Adapter Board

Line Name	$\begin{aligned} & \text { Cable } \\ & \text { or } \\ & \text { sc5 } \end{aligned}$	Display/ Printer Cards			
-IRR	A2B05	E4B13			
-Ch Req Lo	A3D03	B2D05			
-End of Chain	A2009	84D09			
-Valid HW	A2007	B2805			
-\|R/B17	A4807	E4D13			
-DB PH	A4B12	C3804			
-DB 0	A2802	C3D06			
-DB 1	A2808	Сзво5			
-DB 2	A2011	C2009			
-DB 3	А3804	С3802			
-DB 4	A3D07	C3002			
-DB 5	Азво9	C2B10			
-DB6	A4802	Сзвоз			
-DB 7	A4D10	C2D12			
-DBPL	A4D13	C3D12			
-DB 8	A2005	C4B04			
-DB 9	A2B10	C4D04			
-DB 10	A2013	C4D02			
-D8 11	А3805	C4D07			
-DB 12	Азво8	C4802			
-DB 13	A3009	C4D05			
-DB 14	A4006	C3D11			
-DB 15	A4D11	Сзв13			
$+5 \mathrm{Ve}$	A2813	H2D13	J2013	K2013 H4D13	$\begin{aligned} & \mathrm{K} 4 \mathrm{D} 13 \\ & \mathrm{J4D} 13 \end{aligned}$
-TD Tag	A3802	84802	E2D02		
-1/0 Tag	A3D05	E5803			
-Halt Tag	A3D06	E4D02			
-TA Tag	A3810	E2D06			
-Sys Reset	A3812	E2D04			
-Release	A4D09	C5809			
-Ch Grant Lo	A4D02	E2B08			

Line Name	sc sscF	$\begin{aligned} & \text { CA } \\ & \text { Prote } \end{aligned}$	CA Port 3	CA Port 2	$\begin{gathered} \text { CA } \\ \text { Port } \end{gathered}$	To Board A-B2	
-IR/BIP1	A4D07	взв 12	D3812	F3B12	H3812	K4007	
-\|R/BI 0	A2D02	взво9	Dзво9	ғзво9	H2807*	K2002	
-\|R/BI 1	A2D04	взDо6	D3D06	F2807*	H3D06	K2004	
-\|R/B	2	A2807	взво7	D2807*	F3в07	нзво7	K2807
-IR/BI 3	A3D04	в2807*	D3007	F3D07	H3007	K3004	
-IR/B1 4	Аз807	взв 10	озв 10	F3810	нзв 10^{*}	кзво7	
-IR/B 5	A4D04	в3D10	D3D10	F3D10*	H3D10	K4D04	
-IR/BI 6	A4D05	взD11	D3D11*	F3D11	н3011	K4D05	
-18/B17	A4807	в3D12*	D3D12	F3012	H3D12	K4807	
-Valid Byte 1 (Byte)	A3D12	взвоз	Dзвоз	F3в03	нзвоз	K3D12	
-Parity Valid	A2B04	82007	D2007	F2D07	H2007	K2804	
-IRR (Byte)	A3013	B2D02	D2D02	F2002	H2002	K3013	
- Valid Byte 1 (HW)	A2D06					K2006	
-Valid HW	A2D07					K2D07	
- Valid Byte 0	A2809					к2809	
--End of Chain	A2D09	G4B10	G4809	G4808	G4807	K2009	
-Exception	A2D10					K2D10	
-Modifier	A2B12					K2B12	
-Cn Req Lo	A3D02					K3D02	
-Cn Req Med**	Азво3	G4805	G4804	G4803	G4802	кзвоз	
-Ch Req $\mathrm{Hi}^{\text {** }}$	A4805	G4D13	G4011	G4813	G4812	K4805	
-IPR	A4B 10					K4B10	
-DB PH	A4B12	B2802	D2802	F2B02	H2802	K4812	
-dB 0	A2802	в3в02	D3802	F3B02	н3802	K2802	
-DB 1	A2808	B3D02	D3002	F3002	H3D02	K2808	
-DB 2	A2D11	B2D10	D2D10	F2D10	H2D10	K2D11	
-DB 3	A3804	в3в08	D3808	F3B08	H3808	K3804	
-DB 4	A3007	B3D04	D3D04	F3D04	H3D04	K3D07	
-DB 5	A3809	B2009	D2009	F2009	H2009	кзв09	
-DB6	A4802	в2809	D2809	F2B09	H2809	K4802	
-DB 7	A4D10	B2D06	D2006	F2006	H2D06	K4D10	
-DB PL	A4D13					K4D13	
-DB 8	A2D05					K2D05	
-DB 9	A2B10					K2810	
-DB 10	A2D13					K2D13	
-DB 11	A3805					к3805	
-DB 12	A3808					кзво8	
-DE 13	A3009					к3009	
-DE 14	A4006					K4006	
-DB 15	A4011					K4011	
$+5 \mathrm{Ve}$	A2B13	C2011	E2D11	G2011	J2011	K2813	
-TD Tag	A3802	B2805	D2805	F2805	H2805	K3802	
-1/O Tag	A3D05					K3005	
- Halt Tag	А3D06	вз804	D3804	F3B04	нзв04	K3006	
-TA Tag	A3B10	82005	D2005	F2005	H2005	к3810	
-TC Tag	A3D10	82008	D2808	F2808	H2808	K3D10	
-Byte Tag	A3D11					K3D11	
-System Reset	A3B12	B3D05	D3D05	F3D05	H3D05	K3812	

Line Name	sc SSCF	$\underset{\text { Port } 4}{\text { CA }}$	CA Port 3	CA Port 2	$\begin{aligned} & \text { CA } \\ & \text { Port } \end{aligned}$	To Board A-B2
-1/0 Tag (Byte)	A3813	в2B04	D2804	F2804	H2804	K3813
Ch Grant Lo	A4D02					K4D02
-Ch Grant Hi	A4804				G5803	
-Ch Grant Pass				G5B07	G5804	
-Ch Grant Pass			G5809	G5808		
-Ch Grant Pass		G5B 12	G5810			
-Ch Grant Pass		G5B13				K4B04
-Ch Grant Med	A4D12				G5002	
-Ch Grant Pass				G5006	G5D05	
-Ch Grant Pass			G5D 10	G5007		
-Ch Grant Pass		G5012	G5D11			
-Ch Grant Pass		G5D13				
-Release	A4D09					K4009
-Retease Request	A4B08					
*If A1B1 board:						
H2807 $=$ H3809	H3B10 $=$	H2807				
F2807 $=$ F3D06	F3D10 $=$	F2807				
D2807 $=$ D3807	D3011 $=$	D2807				
	B3D12 =	B2807				
**Mutually exclusive.						
***Illustrates Ch Gran and sent to the B1	(+) being bard by wis	passed thr ring.	but not	ected to	ports in the	1 board

Line Name	$\begin{aligned} & \text { SC5 } \\ & \text { SSCF } \end{aligned}$	$\begin{aligned} & \text { TA } \\ & \text { Tape } \end{aligned}$	DA Diskette	FA Disk
- Valid Byte	A2D06	B3D11	G5D02	
- Valid HW	A2D07	B3D02		H3B02
-Parity Valid	A2B04	в3803	G5D11	H2D05
-End of Chain	A2D09	B3D05	G5D13	H2B08
-IRR	A2B05	взв08	G4D10	H2B09
-Chan Req Lo	A3D02	B3B10	G4B05	H3D02
-Modifier	A2B12	B5B13	G4D13	
-IR/BI 0	A2D02			H2B12
-\|R/BI 1				
-\|R/BI 2				
-IR/BI 3	A3D04	B3D 10		
-\|R/B1 4				
-1R/BI 5				
-IR/BI 6				
-IR/BI 7	A4B07		G4B08	
$-\mid R / B 1 P 1$				
-DB PH	A4B12	B4B04	G2B12	H4D10
-DB 0	A2B02	B4805	G3B04	H5B04
-DB 1	A2B08	B4803	G2D13	H5D11
-DB 2	A2D11	B4D06	G3D02	H5B07
-DB 3	А3804	B4809	G3B02	H5D05
-DB 4	A3D07	B4807	G3D06	H5D10
-DB 5	A3B09	B4D11	G3B07	H5B13
-DB 6	A4B02	B4D05	G3B08	H5808
-DB 7	A4D10	B4D12	G3B03	H4B10
-DB PL	A4D13	B4D09	G2B10	H5D12
-DB 8	A2005	B4D13	G2D12	H5809
-DB 9	A2B10	B4B12	G3D04	H5810
-DB 10	A2D13	B4B10	G3809	H5D02
-DB 11	A3B05	B4D10	G3D07	H5B05
-DB 12	А 3 B08	B4B13	G2D10	H5D13
-DB 13	A3D09	B4D04	G3D09	H5D04
-DB 14	A4D06	B4B08	G3B05	H5D07
-DB 15	A4D11	B4D07	G3D05	H5B12
$+5 \mathrm{Ve}$	A2B13	C5B02	G4D05	H5D05
				H5D06
-TD Tag	A3B02	B3D09	G5D05	G4D02
-I/O Tag	A3D05	B2B12	G5B09	H2D13
-Halt Tag	A3D06	в3в09	G4D02	H3D04
-TA Tag	A3B10	85804	G5D02	H4B08
-TC Tag	A3D10		G5B05	
-Sys Reset	A3B12	B2D05	G5B03	H4B05
				J3B09
-Release	A4D09	C3D02	G5B02	J3D13
-Ch Grant Lo	A4D02		G5D10	
-Ch Grant Lo Pass		B3B07	G5B10	
-Ch Grant Lo Pass		B3D07		H3B03

Figure SC420-1 through SC420-5 are wiring charts that show SCF card and connector pin assignments.

Figure SC420-1. SC1 and SC7 Card and Connector Signals

Figure SC420-2. SC2 Card and Connector Signals

Noto: " 1 " indicates a signal is from/to SC1; " "3" indicates a signal is from/to SC3;
${ }^{\prime 5} 5$ " indicates a signal is from/to SC4.

Figure SC420-3. SC3 Card and Connector Signal

nicates a signal is from/to SC2
" 3 " indicates a signal is from/to SC4.

Note: " "2" indicates a signal is from/to SC2; "5" indicates a signal is from/to SC3;
"OI" indicates a signal is from/to SCF signal bus.

Figure SC420-4. SC4 Card and Connector Signals

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
To SC6 Card \\
Pin
\end{tabular} \& To SC4 Card
Signal Name \& \& Pin \& \[
\begin{gathered}
\text { SsCF } \\
\text { Card } \\
\text { (SC5) }
\end{gathered}
\] \& Pin \& \begin{tabular}{l}
1/O or Processor \\
Board \\
Signal Name
\end{tabular} \& \\
\hline 802 \& + SCF Signal Bus PO \& <> \& W22 \& \& \({ }^{0} 02\) \& - SCF Signal Bus 0 \& <> \\
\hline D02 \& + CR-1 \& <> \& W02 \& \& D02 \& - 18/818 \& < \\
\hline воз \& GND \& \& W23 \& \& B03 \& \(+4 \mathrm{MHz} \mathrm{Osc}\) \& \\
\hline D03 \& + CR-2 \& <> \& wo3 \& \& D03 \& + 5 Voits \& \\
\hline B04 \& + Ch Grant \& \(>\) \& W24 \& \& B04 \& - Parity Valid \& \(\leqslant\) \\
\hline D04 \& GND \& \& W04 \& \& D04 \& - 1R/B1-9 \& \(<\) \\
\hline B05 \& + IPR \& \(<\) \& W25 \& \& B05 \& - IRR (Hw) \& \(<\) \\
\hline D05 \& + SCF Signal Bus P1 \& <> \& W05 \& \& \({ }^{\text {D05 }}\) \& - SCF Signal Bus 8 \& <> \\
\hline в06 \& + 1/O Reset \& \& W26 \& \& B06 \& -5 Volts (Unused) \& \\
\hline 006 \& + 1/O Tag \& \& W06 \& \& D06 \& - Valid Byte 1 \& \(<\) \\
\hline 807 \& GND \& \& | \begin{tabular}{|c}
W27 \\
wo7
\end{tabular} \& \& 807 \& - IR/B1-10 \& \(<\) \\
\hline D07
B08 \& + End of Chain
+ SCF Signal Bus 0 \& < \({ }^{\text {c }}\) \& \& \& D07
B08 \& - Valid Halfword
- SCF Signal Bus 1 \& \(<>\) \\
\hline D088 \& + GND \& \& w08 \& \& D08 \& - GND \& \\
\hline в09 \& + Halt \& \(>\) \& W29 \& \& в09 \& - Valid Byte 0 \& \(<\) \\
\hline D09 \& + Valid Byte 0 \& \& wos \& \& D09 \& - End of Chain \& \(<\) \\
\hline B10 \& + SCF Signal Bus 8 \& \& W30 \& \& B10 \& - SCF Signal Bus 9 \& <> \\
\hline D10 \& + SSCF Reset \& \& W10 \& \& D10 \& - Exception \& \(<\) \\
\hline B.11 \& GND \& \& W31 \& \& B11 \& + 8.5 Volts (Unused) \& \\
\hline D11 \& + SCF Signal Bus 1 \& <> \& \& \& D11 \& - SCF Signal Bus 2 \& <> \\
\hline B12 \& GND \& \& (\(\begin{aligned} \& \text { W32 } \\ \& \text { w12 }\end{aligned}\) \& \& B12 \& - Modifier \& \[
<
\] \\
\hline \({ }_{813}\) \& \& \& W33 \& \& \({ }_{\text {B13 }}\) \& + Ve \& > \\
\hline D13 \& + ML SCF Signal Bus 9 \& \(>\) \& W13 \& \& D13 \& - SCF Signal Bus 10 \& <> \\
\hline 302 \& + TC
\(+\mathrm{X}_{\text {mit } \mathrm{CtrI}}\) \& \(>\) \& \(\times 22\)
\(\times 02\)

123 \& \& ${ }^{\text {G02 }}$ \& - TD \& $<$

\hline D02
B03 \& \& \& $\times 02$
$\times 23$ \& \& ${ }^{\text {j02 }}$ \& - Ch Request Low \& $<$

\hline D03 \& + Hold Pwr On \& $>$ \& $\times 03$ \& \& J03 \& + 5 Volts \&

\hline B04 \& + SCF Signal Bus 2 \& <> \& $\times 24$ \& \& G04 \& - SCF Signal Bus 3 \& <>

\hline D04 \& GND \& \& $\times 04$ \& \& J04 \& - 1R/81-11 \& $<$

\hline 805 \& + SCF Signal Bus 10 \& <> \& $\times 25$ \& \& $\mathrm{G}^{\mathrm{G} 5}$ \& - SCF Signal Bus 11 \& <>

\hline D05 \& + Valid Byte 1

+ Release Req \& $<$ \& \& \& J05
G06 \& $-1 / 0 \mathrm{Tag}(\mathrm{Hw)}$
-5 Volts (Unused) \& >

\hline ${ }^{\text {Do6 }}$ \& + TD \& $>$ \& - \& \& ${ }^{\mathrm{G}} \mathbf{} \mathbf{0 6}$ \& ${ }^{-5 \mathrm{l}}{ }^{- \text {Halts }}$ (Unused) \& >

\hline B07 \& GND \& \& $\times 27$ \& \& G07 \& - IR/B1-12 \& $<$

\hline D07 \& + SCF Signal Bus 3 \& <> \& $\times 07$ \& \& J07 \& - SCF Signal Bus 4 \& <>

\hline B08 \& + SCF Signal Bus 11 \& <> \& $\times 28$ \& \& G08 \& - SCF Signal Bus 12 \& <>

\hline P08 \& + GND ${ }_{\text {SCF Signal Bus } 4}$ \& \& $\times 08$
$\times 29$ \& \& j 08
$\mathrm{GO9}$ \& GND
- SCF Signal Bus 5 \& <>

\hline D09 \& + SCF Signal Bus 12 \& <> \& x09 \& \& J09 \& - SCF Signal Bus 13 \& <>

\hline 810 \& + Valid Halfword \& < \& $\times 30$ \& \& G10 \& - TA \& >

\hline D10 \& + TA \& \& 退 $\times 10$ \& \& J10 \& -TC \& >

\hline B11 \& GND \& \& x31 \& \& G11 \& +8.5 Volts (Unused) \&

\hline D11 \& + Parity Valid \& \leq \& 还11 \& \& J11 \& - Byte Tag \& $>$

\hline [12 \& + CRP4 ${ }_{\text {GND }}$ \& \& ($\begin{aligned} & \times 12 \\ & \times 12 \\ & \times 1\end{aligned}$ \& \& ${ }_{\text {G12 }}$ \& - System Reset \& $<>$

\hline B13 \& + CRP-2 \& $<>$ \& $\times 33$ \& \& ${ }^{\text {G13 }}$ \& - I/O Tag (B) \& >

\hline D13 \& + CRP-1 \& <> \& $\times 13$ \& \& J13 \& - IRR (B) \& $<$

\hline
\end{tabular}

Figure SC420-5. SC5 and SC6 Card and Connector Signals

To SC6 Card Pin	To SC4 Card Signal Name		Pin	$\begin{aligned} & \text { SSCF } \\ & \text { Card } \\ & \text { (SC5) } \end{aligned}$	Pin	1/0 or Processor Board Signal Name	
B02	+ SCF Signal Bus 5	<>	Y22		M02	- SCF Signal Bus 6	<>
D02	+ Outbound Ctrl	$>$	Y02		P02	- Ch Grant Low	$>$
во3	GND		Y23		м03		
D03	+ CRP8	<>	Y03		P03	+ 5 Volts	
B04	+ IRR	<	Y24		M04	- Ch Grant High	>
D04	GND		Y04		P04	- IR/B1-13	
B05	+ Power Drop	$<$	Y25		м05	- Ch Request High	<
D05	+ Byte Tag	$>$	Y05		P05	- 1R/81-14	<
B06	- All SSCF Sel'd	$<$	Y26		M06	-5 Volts (Unused)	
D06	+ SCF Signal Bus 13	<>	Y06		P06	- SCF Signal Bus 14	<>
B07	GND		Y27		M07	- IR/B1-15	<
D07			Y07		P07	- IR/B1 P1	<
B08	+ SSCF Irpt	$<$	Y28		M08	- Release Req	<
D08	GND		Y08		P08	GND	
B09	+ SSCF MC Irpt	$<$	Y29		M09		
D09	+ Modifier	<	Yo9		P09	- Release	$>$
B10	+ Release	$>$	Y30		M10	- IPR	<
D10	+ SCF Signal Bus 6	<>	Y10		P10	- SCF Signal Bus 7	$<>$
B11	GND		Y31		M11	+8.5 Volts (Unused)	
D11	+ SCF Signal Bus 14	<>	Y11		P11	- SCF Signal Bus 15	<>
812	+ SCF Signal Bus 7	<>	Y32		M12	- SCF Signal Bus PO	<>
D12	GND		Y12		P12	- Ch Grant Med	>
B13	+ Exxeption	<	Y Y33		M13	- 10 MHz to Adapt	\rangle
D13	+ SCF Signal Bus 15	< >	Y13		P13	- SCF Signal Bus P1	<>
${ }^{\text {B02 }}$			222		S02		
D02	GND		202		U02		
B03	+ SSCF Stat A0	<>	223		S03		
D03	+ SSCF Stat A8	<>	203		003	+ 5 Volts	
804	- SSCF Stat A1	<>	224		504	- Turn Pwr On	>
D04	- SSCF Stat A9		204		U04		
B05	- SSCF Stat A2	< $>$	225		S05 005	+5 Volts Ve +5 Volts Vctri	$<$
${ }^{\text {D06 }}$	- SSCF Stat A10 + SSCF Stat A3	$<^{>}$	226		S06	${ }_{-5}^{+5 \text { Volts (trinused) }}$	
D06	+ SSCF Stat A11	>	206		006		
B07	GND		227		507		
D07 B08			207 228		U07 S08		
D08	GND		208		U08	GND	
B09	+ SSCF Stat A4	$<$	229		509		
D09	+ SSCF Stat A12	< $>$	209 730		U09 S10		
D10	+ + SSCF Stat A	<	210		S10 U10		
B11	+ SSCF Stat A6	$<$	z31		S11	+8.5 Volts (Unused)	
D11	+ SSCF Stat A14		z11		U11		
B12	+ SSCF Stat A7		z32		S12		
D12	+ SSCF Stat A15 GND		[12		U12 S13		
D13	- Sc6 Card Present	<	z13		U13		

SC430 SCF Cable Connections

Sections SC431 and SC432 are charts that show the 8100 SCF cable routing. The SCC designation indicates the pseudo numbering for the SCF cables.

SC431 SCF Internal Cable Connections

8830 Internal Without System Expansion Feature				
From	Through	Through	To	Cable
A2G2W	-	-	A2H2W	SCC 19
A2G2X	-	-	$A^{2 H 2 X}$	SCC 20
A2G2Y	-	-	A2H2Y	SCC 21
A2Y4	-	-	A1Z4	SCC 22
A2Y5	-	-	A1Z5	SCC 23
A2Y6	-	-	A1Z6	SCC 24
A2A5	-	-	B1A5	SSC 7
A2Z1	-	-	B1A2	SSC 11

	Through	Through	To	Cable
A2G2W	-	-	A2F2W	Scc 1
A2G2X	-	-	A2F2X	Scc 2
A2G2Y	-	-	A2F2Y	Scc 3
A2A2	-	-	T.E1	scc 4
A2A3	-	-	T-E2	Scc 5
A2A4	-	-	T-E3	scc 6
$\mathrm{A}^{2 \mathrm{Y} 1}$	-	-	A1Z1	SCC 8
A2Y2	-	-	A122	Scc 9
${ }^{\text {A2Y3 }}$	-	-	A123	SCC 10
A2Y4	-	-	A124	Scc 22
A2Y5	-	-	A125	SCC 23
${ }^{\text {A2 } 2 \text { Y } 6}$	-	-	A126	SCC 24
A2A5	-	-	B1A5	Scc 7
A221	-	-	B1A2	SCC 11

8140 Model A Internal				
From	Through	Through	To	Cable
A1A2W	-	-	A2A2W	SCC 1
A1A2X	-	-	A2A2X	SCC 2
A1A2Y	-	-	A2AAY	SCC 3
T-D1	A2C2W	A2D2W	T-E1	SCC 4
T-D2	A2C2X	A2D2X	T.E2	SCC 5
T-D3	A2C2Y	A2D2Y	T-E3	SCC 6

8101 Internal				
From	Through	Through	To	Cable
T-D1	A1A2W	-	T-E1	SCC 7
T-D2	A1A2X	-	T-E2	SCC 8
T-D3	A1A2Y	-	T-E3	SCC 9
T-D1	-	A2A2W	T-E1	SCC 7
T-D2	-	A2A2X	T-E2	SCC 8
T-D3	-	A2A2Y	T-E3	SCC 9
T-D1	A1A2W	A2A2W	T-E1	SCC 7
T-D2	A1A2X	A2A2X	T-E2	SCC 8
T-D3	A1A2Y	A2A2Y	T-E3	SCC 9

Note: The three cable locations depend on the 8101 features installed, and are a/ways SCCs 7 , 8 , and 9

SC432 SCF External Cable Connections

8130/8140 External						
From	Through	Through	To	Cable		
T-D1	-	-	T-E1	SCC 16		
T-D2	-	-	T-E2	SCC 17		
T-D3	-	-	T-E3	SCC 18		

SC440 Switches

SC441 SC1 Card Switches
(See SC111 for location of SC1 card.) The SC1 card contains the switches used to specify the primary mode IPL parameters, and are fixed at hex 4380.

Note: If these switch settings are changed, DPPX and DPCX do not perform a primary mode IPL properly.

Figure SC441-2 shows the switch settings as they relate to the IPL parameter bits specified in Figure SC441-1, and Figure SC441-3 shows their physical location.

How To Test the IPL Parameter Switch Setting

1. Press Reset/IPL at the BOP
2. At the $\mathbf{0 2 0 0}$ display message, press Enter Data
3. At the $\mathbf{0 2 0 1}$ display message, enter " $\mathbf{0 0 0 1}$ " and press Enter Data

The contents of the IPL parameter switches are then displayed in the BOP, and the value should be hex 4380 .

Bit	Meaning
0	Reserved
1	Auto restart primary IPL - If on, executes a primary IPL using the parameters specified in the PSCF IPL parameter switches. If off, terminates the IPL with 0122 in the BOP display.
2	Extended test - Specifies manual mode testing parameters according to DPPX or DPCX, and also according to whether IPL occurred either from a power-on sequence or from the IPL pushbutton. Refer to CP523 "Manual Mode IPL and Its Testing Options" in Chapter 2 for a detailed explanation.
3	Initialize storage - Refer to bit 2 for explanation.
4-7	IPL device type
	0001 = diskette 0011 = disk 1111 = maintenance device
8-15	IPL device address according to the following:
	$\begin{aligned} & 8-11=\text { SSCF address } \\ & 12-15=\text { device address } \end{aligned}$
	$80=$ Disk storage, 8130 or 8140 A
	$84=$ Disk storage, 8140 B
	$90=$ Disk storage, First 8101
	AO $=$ Disk storage, Second 8101
	B0 = Disk storage, Third 8101
	C0 = Disk storage, Fourth 8101
	$87=$ Diskette storage, 8130 or 8140
	97 = Diskette storage, First 8101
	A7 $=$ Diskette storage, Second 8101
	$\begin{array}{ll}\text { B7 } & =\text { Diskette storage, }{ }^{\text {chird }} 8101 \\ \text { C7 } & =\text { Diskette storage, Fourth } 8101\end{array}$
	C7 = Diskette storage, Fourth 8101

IPL Bit Number	Switch Number	Switch Module	Initial Setting	Description
0	1	1	On	Reserved
1	2	1	Off	Auto restart primary IPL
2	3	1	On	Extended test
3	4	1	On	Initialize storage
4	5	1	On	IPL device type
5	6	1	On	IPL device type
6	7	1	Off	IPL device type
7	8	1	Off	IPL device type
8	1	2	Off	IPL device address
9	2	2	On	IPL device address
10	3	2	On	IPL device address
11	4	2	On	IPL device address
12	5	2	On	IPL device address
13	6	2	On*	IPL device address
14	7	2	On	IPL device address
15		2	On	IPL device address

Note: The signals from the IPL switch register are inverted before being used, so the intial setting as indicated in the figure is read as 4380 at the IPL register.

Figure SC441-2. sC1 Card IPL Switch Settings

Note: Modules 1 and 2 are rocker switches. Pressing down the right side
turns the switch on, and pressing the left side turns them off. (4380 shown)
Figure SC441-3. SC1 Card IPL Switch Module Locations

Figures SC442-1 and SC442-2 show the SC5 card switches, locations, and meanings. (See SC111 for locations of SC5 cards.)

- The ten Module 1 switches specify the SSCF address, release request signal propagation, tag delay, and channel request priority
- The eight Module 2 switches each enable use of an interrupt request bus to turn on release request.

Refer to the configuration table shown in SC113 to relate the following explanation of the SC5 card (SSCF) switch settings to the SCF physical addressing scheme.

SSCF BoardLocation	Module 1 Switches and Settings									
	1	2	3	4	5	6	7	8	9	10
8130/40 A2	ON	OFF	OFF	OFF	ON	OFF	ON	OFF	ON	OFF
8140 C2	OFF	ON	OFF	ON	ON	OFF	ON	ON	OfF	ON
First 8101 A1*	OFF	OFF	OFF	on	ON	OFF	OFF	OFF	ON	ON
First 8101 A2**	ON	OFF	OFF	ON	ON	OFF	OFF	ON	ON	ON
Second 8101 A1*	OFF	OFF	ON	OFF	ON	OfF	OFF	OFF	ON	OFF
Second 8101A2**	ON	OfF	ON	OFF	ON	OFF	OFF	ON	ON	OFF
Third $8101 \mathrm{~A} 1^{*}$	OFF	OfF	ON	ON	ON	OFF	OfF	OFF	OfF	ON
Third 8101 A2**	ON	OFF	ON	ON	ON	OFF	OFF	ON	OfF	ON
Fourth 8101 A1*	OFF	ON	OFF	OfF	ON	OfF	OfF	OFF	OFF	OFF
Fourth 8101 A2**	ON	ON	OFF	OFF	ON	OFF	OfF	ON	OFF	OFF
8809 Model 1B	OFF	ON	ON	ON	ON	OFF	ON	ON	OFF	OFF

This figure shows settings for switches 7-10 for 8101 A1 boards containing only communications features and 8101 A2 boards containing only a file feature (see * and **).
When adding the display and printer feaure 10 any 8101 A1 Or Board, switches $7-10$ are set to $O N$ ON, ON, OFF (hex E. for the first apter and to (8140 model BXX systems only).
*When adding the Magnetic Tape Feature to any 8101 A2 board, switches $7-10$ are set to ON, OFF, ON, ON (hex B). When adding the Diskette Storage Feature without the Magnetic Tape Feature to anyly the SSCF card, switches $7-10$ are set to ON, OFF, OFF, ON (hex 9). Any board with Figure SC442-1. SC5 Card Module 1 Switch Settings Relating to SSCF Board Locations

Switches 1-4 determine the value of the leftmost hexadecimal digit of the SSCF physical address. The rightmost value is always hex 8 . The PSCF physical address is fixed to hex 08. To address any SSCF, the PSCF and SSCF physical addresses are specified. Therefore, to address the SSCF contained in the fourth 8101 A2 board, for example, requires a PAPA designation of hex 08C8. Switches $1-4$ specify the " C ". The 08 and 8 are always the desig
same

Switches $6,7,8,9,10$, and 5 in that order determine the first six bits of the first Op field of the table in SC113, and the last two are always zero. Therefore, the Op value for the SSCF contained in the fourth 8101 A2 board is hex 24. See Figure SC442-2 for the SC5 card module locations.
The following shows Module 1 switch assignments:

Function	Switch	Switch Position
SSCF address	$1-4$	Dependent on board location
Release request	5	Always on
Tag delay	6	Always off
Channel request priority	$7-10$	Fixed according to system configuration

C5 Card Module 2 Switch Description

The Module 2 switches enable the BSC/S-S communications adapters, when in BS mode, to send a release request signal to the processor. The table below shows the relationship between the communications adapter physical addresses and the switch num bers. When a BSC/S-S adapter is in BSC mode, the switch corresponding to its physical address must be on.

Communications Adapters				SSCF Card
Addresses				Module 2 Switch No.
8140B	8130	8140A	8101*	
5080			$\times 0$	1
5181	81	81	x1	2
5282	82	82	$\times 2$	3
5383	83	83	$\times 3$	4
5 C	84		xc	5
5D	85		xD	6
5 E	86		XE	7
5 F			XF	8

* $x=1,2,3$, or 4 depending on which 8101 the communications adapters
$x=1$,
are in.

Module 1 is the 10 -position switch module; Module 2 is the 8 -position switch module.

Figure SC442-2. sC5 Card Switch Module Locations

Note: This figure is for the 8130 without Expansion feature,
see SC401 for other configurations.
*Interrupt Connections for 8130 without Expansion Feature

Adapter Type	Wired To	Interrupt Level
Bisync CCA	IR/B1 Bus Bit 1	1
Start/Stop CCA	IR/B1 Bus Bit 3	3
SDLC HPCA	IR/B1 Bus Bit 3	3
Diskette	PIO Bus 1 Bit 4	4
Disk	PIO Bus 1 Bit 4	4

Figure SC450-2. sCF Timing Chart for Read and Write Operationt

Figure SC450-4. SCF SC2 Card Data Flow

Figure SC450-5. SCF SC3 Card Data Flow

Figure SC450-6. SCF SC4 Card Data Flow

Figure SC450-7. SCF SC5 Card Data Flow

The SCF provides the logical attachment for $1 / O$ devices and communications control, performs 8101 power-on signal sequence control, and also provides several programmable
functions. functions.
The SCF hardware responds to addresses hex 08 (SCF Level 3), hex OC (SCF Level 0), hex The SCF hardware responds to addresses hex 08 (SCF Level 3), hex OC (SCF Level
09 (BOP), and hex OA (EFP, if installed) for information transfer. It can request interrupts on Level 3 fixed assignment, which can be programmed to occur on Level 0 . Level 3 interrupt requests can occur from:
The BOP
The $100-\mathrm{ms}$ interval timer

- A control program
- The SCF adapter

Power can be turned off with a command to the Level 3 address after first enabling the power-off circuitry with a KDO command.

The physical location and functions performed depend on the processor model

- The basic 8140 Processor provides all functions.
- The basic 8130 requires addition of the System Expansion Feature to perform those functions equivalent to the 8140 .

The location and number of these cards also vary between the 8130 and 8140 because of physical board configuration. The PSCF cards and one SSCF card reside in the processor poards. Up to six more SSCF cards can reside in one SSCF card reside in the process 8101, depending on its $1 / O$ device configuration

Note: For purposes of discussion in this section, the terms "PSCF" and "SSCF" are Note: For purposes of discussion in this section, the terms "PSCF" and "SSCF" are
used. "PSCF" refers to those functions performed by the SC1 card, while "SSCF" refers used. "PSCF" refers to those functions performed by the SC1 card, while "SSCF" refess
to those functions performed by the SC5 card. The SC2, SC3, and SC4 cards control interrupt priority, while the SC6 card, used only in the 8130 with the System Expansion Feature, functions as a signal line terminator.

For physical differences, see section SC110; for functional differences, refer to the detailed data flow contained in section SC450; for operational differences, refer to the following information.
SC461 Primary System Control Facility (PSCF)
The PSCF and SSCF each provide certain functions and also logically combine to provide others. The following explains the functions provided by the PSCF:

Power Sequence Control. As the $8130 / 8140$ powers up, signals from the PSCF provide power sequencing to the attached devices. The sequencing order for attached 8101s depends on the setting of the channel request priority (CRP) switches of the SSCF, in the on. The complete sequence occurs in approximately 64 seconds.

Operator Panel to Channel Operations. The PSCF provides the method of information transfer with both operator panels (BOP and Expanded Function on the 8140) and the channel for processor operation. The panels use PIO halfword instructions for address and data transfer, and the panel adapter transmits any panel error conditions to the PSCF, which suppresses any response to the channel. The PSCF also parity checks operato panel address and data transfers before initiating any PIO operation to it, and does not initiate panel operation if errors occur.

Clocked Interrupt. The processor receives an interrupt every 100 ms , depending on PSCF BSTAT bits 8,9 , and 14 . The interrupt occurs either on Level 0 or 3 , according to the PSCF EIR bit 1 value. The program controls the timer that generates this clocked interrupt.

Programmed IPL Parameters. The PSCF has a programmable register to contain IPL parame ters, and the PSCF BSTAT bit 1 determines its use when performing a program-initiated IPL. The bit meanings are identical to those contained in the IPL switches. Refer to SC441 for IPL switch meanings.

IPL Switches. Sixteen PSCF hardware switches provide a source for IPL parameters when normal register parameters are not available. The bit meanings are the same as the program med IPL register, and determine:

1. The IPL device type
2. Whether an automatic restart primary IPL sequence can be performed
3. Whether extended bringup tests should be executed
4. Whether storage should be initialized to FFs with correct parity

Refer to SC441 for IPL parameter meanings.
BOP and PSCF Level Assignments. Processor board wiring assigns Level 3 to the BOP and the PSCF, which can be swapped to 0 by altering the value of the PSCF EIR bit value, as DPPX and DPCX use the fixed value assignment. The expanded panel always operates on Level 0 and cannot be altered
Error Detection. PSCF logic provides parity error detection for BOP and EFP operation as well as for its own functions. These conditions are indicated in the PSCF EIR.

KDO Instruction Decode for PSCF Operations. The marker bus decodes processor-to PSCF KDO instructions, which perform I/O resets, system resets, enable power-off, and other operations used to test the SCF hardware.

When a program executing in either master or supervisor mode performs two sequential Control Direct Out (KDO) instructions, PSCF logic decodes the second KDO to perform certain control functions. The 1 -field of the first KDO must be 0 , and the 1 -field value (from 0 to 7) of the second dermines the funtion to be perform These functio are: enable PSCF decodes, I/O reset, set I/O interface check, system reset, set panel check force bits 2 and 10 to 1 , force parity bits to 1 , and enable system power-off.

Reset Control. Reset facilities for the SCF, PSCF, I/O devices, and the system, as well as selective programming resets are provided by PSCF logic. The PSCF responds to the selective programming reses

Power-on reset from the power supply
IPL Pushbutton - Reset from panel
Marker bus - System reset
Marker bus - I/O reset
PIO command - Reset control
PSCF Priority Assignments for Adapters. The PSCF services adapters according to the following priority, and uses additional lines from the PSCF to the adapters to accomplish this:

Priority	Class	Type	Example
First	Real time services	PIO	
Second	Unbuffered, overrunable	CHIO	SDLC communications
Third	Unbuffered, overrunable	PIO	BSC/S-S communications
Fourth	Buffered, non-overrunable	CHIO	Disk storage
Fifth	Buffered, non-overrunable	PIO	Basic Operator Panel

Programmed SCF Function Control. The PSCF controls several functions of the SCF through specific bits in the SSCF status registers.
SC462 Secondary System Control Facility (SSCF)
The following paragraphs explain the functions provided by the SSCF
I/O Group Addresses. Hardware switches are used to determine the high-order four bits of the PIO address for each SSCF and its attached devices. These are fixed assignments: of the PIO address for each SSCF and its attached devices. These are fixed assignments; and DPCX use the fixed assignment values for addressing.

Refer to Chapter 2, CP220, for SSCF addressing assignment values.
Channel Request Priority (CRP) Switches. The fixed channel request priority switch value Channel Request Priority (CRP) Switches. The fixed channel request priority switch value The values are hex 0 to hex F with hex F being the highest priority. These are fixed assignments; al though you can change them at the user's request, it is not recommended, as both DPPX and DPCX use the fixed assignment values for addressing.

Refer to Chapter 2, CP220, for CRP addressing assignment values, and to SC44 for the switch settings.

Release Request Switch. Each SSCF has a switch used to activate the release request signal to the PSCF. This signal occurs when a device assigned to the SSCF channel-hi priority chain generates a channel request to the SSCF. This switch is set to the On position; although you can change it at the user's request, it is not recommended because it can result in improper operation of devices on the channel,
Interrupt Translation Array. Each SSCF has eight 8-bit locations used to contain the programmable priority level and sublevel assignments for its attached devices. Bit zero is
not used, bits $1-3$ specify the priority level ($0-7$) and bits $4-7$ specify the sublevel $(0-F)$ not used, bits $1-3$ specify the priority level ($0-7$), and bits $4-7$ specify the sublevel ($0-F$).
addresses are fixed, but all other devices can be assigned address priority through the programmable array values.

Refer to Chapter 2, CP220, for the translation array addressing values.
SC463 PSCF and SSCF Combined Functions
The 8100 requires both the PSCF and the SSCF to provide the following functions:

- Wrap Testing and the SCF Signal Path - Logic in each of these components provides a path to all attached I / O devices through the SCF signal bus. It also uses this path to check SCF signal bus integrity by using certain test commands.
- I/O Interrupt Presentation - All requests to the processor's channel facility require use of specific functions logically controlled by both the PSCF and SSCFs. Each performs certain operations required to present and prioritize the requests from both the hardware and software.

SC464 How the SCF Controls the BOP, EFP, and Adapter Bus
The PSCF responds to the BOP and EFP halfword commands, and controls processor-to BOP/EFP information transfer through the 9 -bit ($8+$ parity) system direct control bus. It also transfers information on the SCF signal bus and decodes certain processor KDO commands, which perform I/O resets, system resets, enable power-off, and other operation that test SCF hardware. The PSCF does not accept an out-of-parity address and command, and generates an I/O timeout error for this condition.

The system direct control bus transfers commands and data to the BOP and EFP one byte t a time. It does not check these commands for validity, but does perform parity checking.

The SCF signal bus transfers commands and data to PSCF addresses hex 08 and hex $0 C$, where the PSCF then checks them for both parity and validity. Invalid commands cause a equipment check, while commands with invalid parity cause an I/O timeout. The PSCF EIR also indicates invalid parity

PSCF Command Functions

If the PSCF accepts a command to address hex 08 , it performs one of the following perations:
Reads, sets, and resets the PSCF BSTAT
Reads the IPL switch register

- Reads and writes the programmed IPL register.
- Turns power off.

Resets the adapter
Loads the wrap register.
the PSCF accepts a command to address hex OC, it performs one of the following operations:
Reads, sets, and resets the error information register.

- Resets the adapter.
- Loads the wrap register

Halt Signal

This signal terminates a PIO operation to either the BOP, EFP, or PSCF address hex 08, and indicates that one of the following conditions occurred:

- The PSCF received an out-of-parity command, and the "valid" response for that command was suppressed to force an interface timeout.
- The PSCF, BOP, or EFP received an invalid command, and the "valid" response was suppressed to force an interface timeout.
- A PSCF address hex 08 write operation was in progress, and the PSCF sensed out-ofparity data on either the BO or B1 data bus. The "valid" response for that data is suppressed to force an interface timeout.
- A PSCF address hex 08 read operation was in progress, and the channel received out-ofparity data from the PSCF. The PSCF has not signaled the channel to assign parity to the data, and the channel then activates the Halt signal to terminate the PIO operation
- The BOP failed to respond to the initial signal from the PSCF to initiate a channel operation. The PSCF suppresses all responses to force an interface timeout.

Out-of-parity conditions sensed during read or write operations with the PSCF (address Out-of-parity conditions sensed during read or write operations with the PSCF (address
08 or OC) or the BOP (address 09) are recorded in the PSCF EIR, bits 4 (I/O Read Check) and 9 (I/O Write Check) to further define the error condition.

SC500 SCF System Test and Internal I/O Bus Cable Change Procedures SC510 SCF System Test Procedure

The SCF System Routines provide the additional testing needed to test system functions. in most cases the interaction of multiple adapters is needed. Therefore, run all adapter test, PSCF tests, and SSCF tests (see SC210) before using these SCF system routines.

Note that:

1. Normally an SCF System Routine will use all of the same type adapter needed for the test.
2. Testing will continue until all of the same type adapter have been tested. Multiple errors in a single routine can occur but only one per group of adapters.
3. Each time a new adapter is used in a test, a progress indicator is presented to describe the routine number and the adapters used in the test.
4. The tests are run using the Free-Lance Utility. At 80BC, enter 69C; at 81BC, enter B. Routines $90,91,93,94,95,96,97,98,9 A, 9 C, 9 E, A 0, A 1, A E, A F, B O, B F$, and $C O$ will be run; if the correct type of adapters is not available, a resource error will occur.
5. I/O devices must be ready (tape unit power on and ready, diskette in place and door closed, display powered, etc).
6. O8RR messages that flash on the hand held display are progress indicators that show the addresses of the adapters being tested. If these messages remain on the display for more than 1 minute, a hard error has occurred. Record the message, depress the ' ${ }^{\prime}$ key to continue. If the tests will not continue, start over to see if the same error halt occurs.
If a system test failure occurs, refer to the System Error Message Chart, below for the appropriate action. Be sure to record all error messages before calling for assistance.

System Error Message Char

Msg

O8RR ADAD

O8XE RR27 AD
08XE RR28 ADAD
08XE RR29 ADAD
08XE RR2A ADAD
08XE RR2B ADAD
08XE RR34 ADAD

Description/Action

Progress indicator.
Does not always indicate the test routine being executed when in an MI message (see SC231).
AD Is the physical address of the adapter or adapters being used for the test. Go to the MAPs and run the tests for these adapters.
CHIO Data register error.
Call support center.
Unexpected interruption during Release Request test. Bysync Release Request switch not set.
Control CHIO register setting in error Call support center.
CHIO operation did not complete during Release Request test. Bad 'AD'. Replace first AD. Retry test. Lost CHIO interruption during Release Request test. CCA Release Request switch not set off.
CHIO Data register error during Release Request test. Bad AD. Replace first AD. Retry test.

08XE RR3E ADDR

OBXE RR46 O8XE RR49 AD

08XE RR4A AD

08XE RR4B AD

08XE RR4C AD
08XE RRFEAD
1st AD $=\mathrm{CHIO}$
2nd $A D=$ Release Request adapter

SC520 Procedure to Change SCF Internal I/O Bus Cables

1. Power down the system and remove power plugs from the $A C$ power source.
2. At the unit it is necessary to change the flat white I/O cables, open the front cover At the unit it is necessary to change the flat white $I /$ cables, open the front cover
and front subcover, reach under the top cover to disengage the bezel stud latches, and remove the bezel (see Figure SC520-1).
3. Reach under the top cover frame members to disengage the top cover stud latches Lift front of top cover, push to rear and lift off.
4. Open the rear cover and rear subcover, remove the card retention covers over the cable or cables you wish to change, then unplug the cable or cables.
5. If possible, swing the logic gate to its most advantageous position and remove the cable retainers and cable from the gate. If this is impossible:
a. First, get someone to help you.
b. Then remove the logic gate from its hinges and set it on the floor of the unit, or out of the unit, as far from the 01T panel and as gently as possible to not damage the fans at the bottom of the gate
c. Remove the cable retainers and cable from the gate
6. Swing the logic gate open and using a mirror continue to remove the same cable from the cable trough through the unit and from the 01T I/O panel. If this is impossible: a. First, get someone to help you.
b. Then remove the logic gate from its hinges and set it on the floor of the unit, or out of the unit, as far from the 01T panel and as gently as possible to not damage the fans at the bottom of the gate.
c. Remove the cable from the cable trough through the unit and from the 01T I/O panel.
7. Reverse the above steps to install the replacement cable, starting at the 01T I/O panel.
8. Run the SC tests, using Menu Selection 1 to check if the new cable has corrected the problem.

Figure SC520-1. Typical Top Covers

Figure SC520-3. Typical 8140 Cable Installation

Figure SC520-4. Typical 8101 Cable Installation

This page intentionally left blank.

Chapter 5. MAP Reference Information

Expanded Function Panel

This part of Chapter 5 provides maintenance information to service the 8140 Expanded Function Operator Panel (EFP) Feature. When used with the Maintenance Analysi Procedures (MAPs), the MAP diagnoses EFP problems and refers to this part of Chapter 5 for information such as hardware locations, possible causes of failure, and wiring lists.

This part has five sections:

1. General Information (SP 100-SP 134) - Contains configuration, operation, and epair strategy information
2. Offline Tests (SP200-SP254) - Contains test information and lists possible causes of failure.
3. Intermittent Failure Repair Strategy (SP300-SP350) - Contains information used to repair intermittent failures.
4. Signal Paths and Detailed Operational Description (SP400-SP450) - Contains diagrams and charts that show wiring and signal paths.
5. Adjustment, Removal, and Replacement Information (SP500-SP540) - Contains reference information used for card and component replacement.
P100 General Information. 5-SP-1
P111 Hardware Components . 5-SP-1
P112 Addressing Components
SP120 Basic Operational Description.
SP121 Panel Functional Operation
Displays.
Hardware Indicators
State Indicators.
State Indicators.
Mode Indicators
Logical Pushbuttons.
Action Pushbutton/Indic
SP130 Adapter-Unique Repair Strate
SP132 DPPX Repair Strategy
SP132 DPPX Repair Strategy.
SP200 Offline Tests
SP211 Adapter Tests
SP212 Manual Intervention Panel Tests.
SP230 Test Message Formats and Status Registers
SP231 Adapter Test Message Formats
SP231 Adapter Test Message Formats.
SP232 Manual Intervention Test Message Format
5-SP-10
5-SP-10
SP233 EFP Registers
Basic Status Register
EFP Control Register
EFP Control Register
EFP Control Register .
Expand
SP240 Test Messages and Descriptions.
SP241 EFP Offline Test Messages
SP241 EFP Offline Test Messages
5-SP-15
5.SP-16
EFP Initial Action Plan Procedure
Action Plan Summary
SP251 Visually-Detected Failure Action Plans.
SP251 Visually-Detected Failure Act
SP252 Adapter Failure Action Plans
SP253 Panel Failure Action Plans
Keypad Failure Action Plan.
Keypad Failure Action Plan.
Hex Display Card Failure Action Plan
Mode and State Indicator Card Failure Action Plan
SP254 Cable Check Action Plan.
SP300 Intermittent Failure Repair Strategy
SP300 Intermittent Failure Repair Strategy
SP310 Adapter-Unique Intermittent Repair Strategy
SP310 Adapter-Unique Intermittent Repair Strategy
SP350 Action Plan to Correct Intermittent Failures.
SP400 Signal Paths and Detailed Operational Description
SP410 Point-to-Point Signal Path
SP420 Card and Top Card Connector Signals
SP430 Expanded Panel FRU Component and Connector Diagr
SP450 Detailed Data Flow
SP500 Adjustment, Removal, and Replacement Information
5-SP-10
5-SP-11
5-SP-11
5-SP-11
5-SP-11
5-SP-11
5-SP-11
$5-\mathrm{SP}-12$
5-SP-12
5-SP-13
5-SP-13
5-SP-16
5-SP-16
5-SP-16
5-SP-16
5-SP-16
5-SP-16
5-SP-16
5 SP-17
5-SP-17
5-SP-17
5-SP-18
5-SP-19
5-SP-19
5-SP-19
5-SP-19
5-SP-21
5-SP-21
5-SP-21
5-SP-21
5-SP-23
5-SP-23
5-SP-23
5-SP-24
5-SP-24
5-SP-25
5-SP-25
5-SP-30
SP510 Adapter Card
SP520 Keypad
5.SP-33
SP530 Hexadecimal Display Card .
5-SP-33

SP111-1.	P Adapter Card and Card Assembly.	5-SP-1
SP111-2.	EF Panel, BOP Adapter Card, and EFP Cable Assembly	5-SP-2
SP111-3.	EF Panel FRU Components (Rear View)	5-SP-2
SP121-1.	Basic and Expanded Function Operator Panel	5-SP-5
SP254-1.	Hex Display Card-to-Power Connections	5-SP-19
SP254-2.	EFP Adapter Card-to-EFP Mode and State Indicator Card Wiring \qquad	5-SP-19
SP254-3.	EFP Adapter Card-to-EFP Keypad Wiring	5-SP-20
SP254-4.	EFP Adapter Card-to-EFP Hex Display Card Wiring	5-SP-20
SP254-5.	EFP Adapter Card-to-BOP Adapter Card Wiring	5-SP-20
SP410-1.	EFP Point-to-Point Signal Path.	5-SP-23
SP410-2.	Processor-PSCF-BOPA Card Signal Path.	5-SP-24
SP420-1.	EFP Adapter Card Signal Lines (Pin Side)	5-SP-24
SP420-2.	EFP Adapter Card Signal Lines (Card Side)	5-SP-25
SP430-1.	EFP Keypad Card	5-SP-25
SP430-2.	EFP Adapter Card-to-EFP Keypad Wiring	5-SP-26
SP430-3.	Mode and State Indicator Card (Front View)	5-SP-26
SP430-4.	EFP Adapter Card-to-EFP Mode and State Indicator Card Wiring.	5-SP-27
SP430-5.	Mode and State Indicator Card-to-Power Connections	5-SP-27
SP430-6.	Hexadecimal Display Card (Front View)	5-SP-28
SP430-7.	EFP Adapter Card-to-EFP Hex Display Card Wiring	5-SP-29
SP430-8.	Hex Display Card-to-Power Connections	5-SP-29
SP450-1.	EFP Adapter Card Data Flow Diagram	5-SP-30
SP450-2.	EFP Adapter Card-to-BOP Adapter Card	5-SP-31
SP500-1.	BOP and EFP Access	5-SP-33
SP500-2.	BOP and EFP Frame Mounting	5-SP-34
SP500-3.	BOP and EFP Component Bezel Mounting .	5-SP-34

BOP	basic operator panel
BOPA	basic operator panel adapter
BSTAT	Basic status register
conn	connector
DAT	dynamic address translation
DPPX	Distributed Processing Programming Executive
EF	expanded function
EFP	Expanded function operator panel
EIR	error interrupt request
EIRV	error interrupt request vector
EN	error number
EXPD	expected data
fIt pt	floating point
FRU	field-replaceable unit
hex	hexadecimal
insn	instruction
I/O	input/output
IPL	Initial program load
LED	light emitting diode
MAP	Maintenance Analysis Procedure
MD	Maintenance Device
MI	Manual Intervention
Op	operation
PA	Physical Address
PIO	programmed I/O
PSCF	primary system control facility
RECD	received data
reg	register
SCF	System Control Facility

This SP section provides the reference information used to perform fault isolation for the 8140 Processor expanded function operator panel (EFP) feature. It should be used in conjunction with the EFP MAP, which era tests reside on MD diskette 01 , and use Maintenance Device (MD). This in this section for information such as hardware comreference material essing, wiring checks, offline test routine descriptions and messages, and possible failure causes.

SP110 Components and Addressing

This section contains information to assist in understanding the EFP physical com This section contains in it also describes the software addressing scheme and the configuration table entry used to specify the EFP.

SP111 Hardware Components
The EFP is a physical extension of the basic operator panel (BOP). Refer to Figure P120-1 for an illustration of the basic and expanded operator panels. The EFP uses ard that plugs into the processor board, whose location depends on the 8140 model selected:
Models A31-34 use board position A1M2.

- Other A models use board position A1P2
- B models use board position A1S2

The adapter card, board wiring and a single, multi-ended cable assembly provide the EFP hardware necessary for panel-to-processor information transfer. One of the cable connectors plugs into the top card connector "Z" position of the EFP adapter card, and the wires connected to it terminate at another connector that plugs into the basic operator panel keypad. In the same manner, the cable that plugs into the EFP adapter card ' W " top card connector position plugs into the expanded panel's mode and state indicator card, the " X " connector to the EFP keypad card, and the " Y " connector to the EFP hexadecimal display card. The following chart shows the $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and connections

Connector	Attaches EFP Adapter Card To
W	EFP mode and state card
X	EFP keypad card
Y	EFP hex display card
Z	BOP Data/Function pushbuttons

Additional wires in this cable assembly connect system power to the EF panel, and others terminate in a connector that plugs into the BOP Data/Function pushbutto keypad to permit its use by the EFP. Refer to Figures SP111-1 and SP111-2 for illustration of the cabling used to connect the EFP and its associated component.
Other than the adapter card, the EFP has three FRUs that attach to the rear of the Other (see Figure SP 111-3): hexadecimal display card, EFP keypad card, and mode and state indicator card.

Notes:
This cable is actually four flat cables, shown for illustration only. Each cable
connects to the card by a double male pin-connector, PN 5997533.

Figure SP111-1. EFP Adapter Card and Cable Assembly

Note 1: This is actually a multiended cable assembly shown for illustration only Note 2: BOP Adapter Card lays flat under the Operators Panel in 8140B Models.

Figure SP111-2. EF Panel, BOP Adapter Card, and EFP Cable Assembly

Figure SP111-3. EF Panel FRU Components (Rear View)

The EFP adapter has a fixed physical address (PA) of hex OA, and all EFP to processor data transfer occurs through the system control facility (SCF) by using this address.

SP120 Basic Operational Description

The EFP feature, available only on the 8140 Models A31-34, A41-44, A61-64, A71-74, and B51-72, combines hardware and software facilities to permit user access to the information contained within certain processor areas. Primarily, a programmer uses the EFP as an adjunct to conventional software troubleshooting aids.

Note: The system must be offline to use the EFP.
A typical EFP application would be to test and debug any control program that the customer can modify, such as the IBM Distributed Processing Programming Executive (DPPX). It can also be used to debug any application or I/O programs.
The EFP adapter card:

- Controls all instructions sent to the EFP.
- Physically and logically attaches the EFP pushbutton functions and indicators to the EFP program through the system direct control bus and system control facility. This permits processor hardware access so that the user can:
- Stop on system check/program exception conditions.
_ Know when dynamic address translation occurs.
- Perform address compares.
- Know the current and last levels of processor instruction execution.
- Determine the mode of processor instruction execution.
- Know what PSV was used for each instruction.

The EFP feature allows you to read and write to the following areas through programming

Storage location

Registers
Translation table
Instruction addresses
Program status vectors
Address control vectors

In addition to the read and write capabilities, the EFP provides several specia functions, which:

ransform an address.

Stop on an address compare.
Step instructions.
Start and stop processing.
Stop when detecting a system check/program exception
With the EFP, certain conditions can be indicated by using discrete LEDs
If using EFP register 1
f using EFP register 2
The processing instruction mode
If a primary or secondary PSV is in use
If using dynamic address translation
If the processor is stopped
If the BOP Data/Function pushbuttons are logically locked
The remaining LED indicators have a 4×7 matrix that indicates the current and las processing level and the contents of EFP registers 1 and 2

Note: Only DPPX provides commands to enable and disable EFP operation.
The EFP presents I/O interruptions to the processor on priority level zero and uses ohysical address hex 0A, and both assignments are fixed. During actual interrup presentations, only the Enable/Disable EF Panel pushbutton remains active. The EFP dapter enables the transfer of information from the panel to the processor. This information transfer occurs on the programmed I/O signal bus using only PIO halfword commands, and does not use any CHIO-type operations.

The following text describes the function of the displays, pushbuttons, and indicators of the expanded function operator panel (EFP). See Figure SP121-1.

The eight position hexadecimal display, a Current or Last Level display, 15 discrete LED indicators, and 23 pushbuttons are divided into functionally associated groups. The following lists and describes the panel components by group:

Hardware Indicators
There are two displays used to indicate hexadecimal values:
Current or Last Level - Normally displays the current level, and used in conjunction with the Display Last Level pushbutton to indicate the last priority level (1-7 and not 0) active for the presently executing program.

Address or Data - Has eight hexadecimal positions and displays either data or address information. Depending on the status of EFP control register bit 4 that controls the Reg 1 and Reg 2 indicator status, the hex display contains either the register 1 or register 2 value. The characters enter the rightmost position and move to the left for successive entries. When all eight positions contain characters, each additional entry eliminates the leftmost position.

Operator Attention/EF Panel - The last expanded operation was incorrect. EFP control register bit 6 determines the indicator status, which blinks twice a second when on.

EF Panel Check - A parity check occurred during a programmed information exchange to the panel, or an interruption occurred in the physical panel cable interconnection.

Reg 1 - When on during a store, fetch, or display operation, the hexadecimal display indicates the Register 1 Value. Either the Access Address Reg 1 pushbutton or a clear or default operation activates this indicator.
Reg 2 - When on during a store, fetch, or display operation, the hexadecimal display indicates the Register 2 value. The Access Data Reg 2 pushbutton activates this indicates the Register 2 value. The Access Data Reg 2 pushbutton a
indicator, which cannot be on the same time as the Reg 1 indicator.

DAT Active - Dynamic address translation is being used to access processor storage. All addresses generated are logical, and the address translation occurs on the level specified by the Current or Last Level display. The address mode register value determines the indicator status.

Primary (Secdy) PSV - Indicates whether the last instruction used a primary (indicator on) or secondary PSV for the processing level specified by the Current or Last Level display. Used in conjunction with the Display Last Level pushbutton to indicate the previous PSV used

Keyboard Locked - When on permits no functional keypad input except for the following pushbuttons: (1) Enable/Disable EF Panel, (2) Reset/Restore, (3) Display Last Level, (4) Access Address Reg 1, and (5) Access Data Reg 2. EFP control register bit 7 on turns on this indicator, and the Reset/Restore pushbutton resets it. Refer to SP233 for the conditions that turn on control register bit 7.

Processor Stopped - Priority Levels 1-7 are not active and processor is at level 0. Turned on by an address compare stop condition, a system check/program exception top, or pressing the Stop pushbutton. EFP control register bit 5 determines the indi cator status.

The discrete LED mode indicators correspond to the program mode active when executing on the current priority level (1-7) specified by the Current or Last Level display. The program mode register determines which indicator turns on according to information in the current program status vector PSV. The mode indicators are: Master, Supervisor, I/O, and Application.

Clear EF Panel - Resets registers 1 and 2 to zero, and turns on the Reg 1 indicator. Resets the transform address bit (3) and the access register 2 bit (4) in the EFP basic tatus register, System Check on the BOP, and the Reg 2, Operator Attention, and Panel Check indicators on the EFP.

Display Last Level - When held, displays the priority level ($1-7$ and not 0) of the last active instruction in the Current or Last Level indicator, and permits display of the PSV used in the Primary (Secdy) PSV indicator

Access Address Reg 1 - Turns on the Reg 1 indicator and selects register 1 to receive any entry from the BOP Data/Function pushbuttons. Also pressed to return to register after completing register 2 processing.
Access Data Reg 2 - Turns on the Reg 2 indicator and selects register 2 to receive any entry from the BOP Data/Function pushbuttons indicator. Resets the transform address bit (3) and the access register 2 bit (4) in the EFP basic status register, System Check on the BOP, and the Reg 2, Operator Attention, and Panel Check indicators on the EFP.

Enable/Disable EF Panel - Enables or disables the expanded function panel and also transfers control of the Reset/IPL and Lest pushbutton functions and also pad operation to the EFP. The keylock switch, if installed, must be set to Enable to permit operation.

Figure SP121-1. Basic and Expanded Function Operator Pane egister 1, or (2) displays the contents of the address indicated in the hex display,

Display - When pressed in conjunction with a selection pushbutton, causes display of the address in register 1 according to the selection pushbutton used. If Transform Address was pressed for a display address function, the address is logical.

Function - Only active when in stop mode, and uses the register 1 contents for display or store operations according to the selection pushbutton pressed. This pushbutton can so be used to display the control vectors by using 28 control immediate (KI) instructions. Any store operation must have previously placed data in register 2.

Insn (Instruction) Step - Executes one instruction at the level indicated, and display the PSV instruction address in register 1. The processor must be stopped for this to occur, and interruptible instructions do not execute completely by pressing this push button once.

Start - Begins instruction execution at the highest pending interrupt level if the processor was previously in stop mode.
Stop - Turns on the Stop indicator and stops instruction execution. Last level display procedures indicate the last executed address, and logic forces a current processing level of zero. Reset/Restore - Resets the processor but not the EFP logic, turns off the Keyboard
Locked indicator if on, enables all EFP pushbuttons, turn on EFP BSTAT bits 8, 9 , 10, and 15, and requests an interrupt if EFP BSTAT bit 14 is on

Storage Address Compare Stop Fetch - Operates in conjunction with the Compare Stop Address pushbutton. Specifies that if the address compare register contents are identical with the priority level, PSV selection, and processor address used during a fetch storage operation, processing stops and the indicator turns on. EFP control register bit 0 determines the indicator status.

Storage Address Compare Stop Store - Operates in conjunction with the Compare Stop Address pushbutton. Specifies that if the address compare register contents and a processor storage address compare during a store operation, processing stops. EFP control register bit 1 determines the indicator status.
Stop on System Check/Program Excpn - Stops instruction execution after detecting a system check/program exception error. When this condition occurs, the panel indicators show either the failing instruction or the next instruction, together with status informaOFP BSTAT reg. on EFP BSTAT bit 6 .

SP130 Adapter-Unique Repair Strategy

The following sections refer to those repair strategies that are unique to the EFP. Refer to the Chapter 4 general maintenance approach section for those that are common to the 8100

SP132 DPPX Repair Strategy
The EFP cannot be tested online under DPPX
Caution: Serious damage to the customer control program could result from improper operation of the EFP.

SP134 Intermittent Failure Repair Strategy

For intermittent EFP error action plans, refer to section SP300

All testing and repair of the EFP occurs offline. These tests reside on MD diskette 01 and require system dedication to verify operation or isolate failures, some of which may and require manual intervention. The test can be initiated by specifying physical address hex OA and the desired options.

The MAP either detects a failure in the adapter card, or prompts you to perform some action at the panel. As a result of this action, the test compares the results received with the results expected. If the MAP detects an error, refer to section SP250 for repair action according to the failure. If the MAP does not isolate the failure, refer to section SP250 for further corrective action.

SP210 Offline Test Routine Descriptions

The first group of routines verify proper adapter card operation, and the last group permits you to perform manual intervention routines to determine panel problems. The adapter routines complete in less than $\mathbf{4}$ seconds, while the time required to run the manual intervention routines is operator-dependent. The SP MAP uses two logica sections: Routines $1-19$ test only the adapter, while Routines $20-31$ test the LED indicators, panel switches, and cables, including the adapter functions necessary to operate them.
The MD invokes the adapter routines either by the MAP or by using the Free-Lance Utility.

- When using the MAP, the tests are invoked automatically when required.
- When using the Free-Lance Utility, the following test invocation procedure mus be used:

1. At 80BC or PA00, enter 08PAB.
2. At $81 B C$, enter SLRRB

Where:

PA = adapter address (always OA
$\mathrm{S}=$ sense option:
0 = run only adapter tests, Routines $1-19$, without using loop option 1.
1 = run adapter tests, Routines 1-19, using loop option 1.
$2=$ run adapter/device tests with manual intervention, routines 1-31
$L=$ loop option:
$0=$ run selected routines one time.
$1=$ loop selected routines; stop on error.
$2=$ loop selected routines; bypass error.

RR = routine number. If 00 or no entry is made, all routines for sense option are run. If a routine number is entered, only that routine is run.
B $=$ begins execution and enters the invocation message.
0 AOO indicates successful completion of the adapter tests. For more information on test invocation and operation, refer to CP600 Common Test Procedures and Messages in Chapter 2.
hese routines test the adapter hardware, EFP I/O commands, and the SCF to EFP signal bus. The following describes the adapter test routines and the function performed by each.

Routine 1, Reset Adapter Test. The processor issues a Reset Adapter command to the FP. This determines if the EFP recognizes the hex OA address used for all EFP in formation transfer, and resets the EFP registers to zero. The test then issues read Reset Adapter, Read Basic Status, Read Register 1 Low, Read Register 1 High, Read 2 ion Read Register 2 High, and Read Control Register commands. The valid routine test error messages are hex 0101,0104 , and 0120 to 0125

Routine 2, EFP Basic Status Register Test. Issues Read and Write PIO commands to test the EFP basic status register and to verify that all bits set and reset correctly. This outine also tests proper operation of the adapter drivers and receivers common to all registers. It uses five data patterns, and tests the Set BSTAT and Reset BSTAT EFP 0222.

Routine 3, EFP Interrupt Request Test. The EFP uses mostly interrupt requests for processor information transfer. This test enables the EFP interrupt request logic and conditions the EFP BSTAT to request an interrupt. The interrupt then occurs, and the EFP status indicates a pending interrupt request. The valid routine test error messages are hex 0301, 0304, 0305, and 0320.

Routine 4, Control Register Data Test. The 8 -bit control register determines operation f address compare stop, system check/program exception stop, keyboard lock, enable panel, and indicator functions. This test verifies the correct set and reset of the ontrol register data. It uses Read and Write commands to store and fetch the five ata patterns used, and checks the Write Control Register command. The valid routine est error messages are hex 0401, 0404, and 0420

Routine 5, Register 2 High Data Test. Control register bit 3, if active, permits access to EFP register 2. This 32 -bit register has both a high and a low data area, each of which determines four EFP hexadecimal display values. Data characters enter the rightmost half byte and shift all other characters to the left. When full, each subsequent entry causes loss of the high-order position. This routine verifies that the 16 high-order egister 2 bit positions can be correctly set and reset. It uses Read and Write commands to store and fetch the five data patterns used, and checks the Write Register 2 High command. The valid routine test error messages are hex 0501, 0504, 0520 and 0521

Routine 6. NOT USED.

Routine 7, Register 2 Low Data Test. Verifies the correct set and reset of the 16 loworder register 2 bit positions. It uses Read and Write commands to store and fetch the five data patterns used, and checks the Write Register 2 Low command. The valid routine test error messages are hex $0701,0704,0720$, and 0721.

Routine 8, Register 1 Low Data Test. Control register bit 3, if off, permits access to EFP register 1. This 32 -bit register has both a high and a low data area, each of which determines four EFP hexadecimal display values. This routine verifies the correct set res fetch frest 1 bive command. The valid routine test error messages are hex 0801, 0804, 0820 and 0821

Routine 9, Register 1 High Data Test. Verifies the correct set and reset of the 16 high order register 1 bit positions. It uses Read and Write commands to store and fetch the five data patterns used, and checks the Write Register 1 High command. The valid routine test error messages are hex 0901, 0904, 0920, and 0921.

Routine 10, Address Compare Test. Places a test address value in the EFP address registers and sets the level compare to zero to compare only the test address value. It sets both store and fetch compare bits in the control register, and then fetches the test address. The test then verifies that an interrupt occurred, reads the status, and compares it to the expected value. The routine uses the Write Address Compare Registe High and Write Address Compare Register Low commands. The valid routine test error messages are hex $1001,1004,1005$, and 1020

Routine 11, Store Address Compare Test. Fetches storage location hex 0000 and sets up an address compare condition for a store to this location. It then stores the previously fetched data, and an address compare occurs. The test then performs the sam operation on storage locations 0000FFFE to 0007FFFE by incrementing address byte , and an equal compare should occur on each store. The valid routine test error messages are $1101,1104,1120$, and 1121

Routine 12, Fetch Address Compare Test. Uses storage address locations hex 0000 and FFFF to test the EFP fetch address compare logic. It conditions the control register to stop on a fetch address compare, fetches storage location hex 0000, and ensures that an equal compare occurs. It then fetches storage location hex FFFF and also ensures that an equal compare occurs, and, in both cases, checks proper status and interrupt conditions. The valid routine test error messages are hex 1201, 1204, and 1220 to 1222.

Routine 13, No Stop on Store or Fetch Compare Test. Places a test address, in the address compare register and then conditions the control register to stop on a store compare operation. It then fetches the test address and no equal compare should ccur.

Next, it conditions the control register to stop on a fetch to the test address, performs a store to it, and does not expect an equal compare. The routine checks for proper tatus after each test location access. The . 1301, 1304, 1320, and 1321.

Routine 14, Processing Level Address Compare Test. Performs an address compare fetch on processing levels $1-7$, using both the primary and secondary PSVs, and checks that the compare occurs only on the proper level with the correct PSV. It first conditions the address compare register for a specific level and PSV, executes on all levels, and then ensures that the compare occurred only for the correct level. Th
outine uses the secondary PSV for 49 passes and then uses the primary PSV for 49 more. It checks status for each valid compare to ensure proper operation, and uses the BOP to display errors if either no compare occurs on any level, a compare error occurs, or for incorrect status after a compare. The valid routine test error messages are hex 1401, 1404, and 1420 to 1422

Routine 15, Interruptible Instruction Compare Test. Verifies that an address com pare causes an interrupt request at the proper time. It first conditions the address compare register to compare on the first byte of a storage field, then issues an MVRS interruptible instruction to move data from the test field to another field. The address compare interrupt should occur on the first MVHS instruction data fetch. The test
verifies correct operation by saving the count register when the interrupt occurs, and outine test error messages are hex 1501, 1504, and 1520 .

Routine 16, No Compare on Unsuccessful Branch. After conditioning the address com pare logic to compare on the target of an unsuccessful branch, it executes the branch instruction and no branch or compare should occur. The valid routine test error messages are hex 1601, 1604, and 1620

Routine 17, Stop on Instruction Fetch Test. Verifies that the panel presents an in ferrupt request at the proper time on an address compare during instruction fetch. I first conditions the address compare logic with an invaliid op code, and then ex

It next conditions the address compare logic, using the second half of an MVHS in struction, and executes a KI swap to the primary PSV. The address compare should occur before the KI swap. The valid routine test error messages are hex 1701, 1704 1720 , and 1721.

Routine 18, Stop on System Check/Program Exception Test. This routine first conditions the EFP to stop on either a system check or a program exception. It then issues an invalid command of hex FF to the EFP that causes a system check. The test stem check occurred.

Next, the test saves the level 7 primary PSV, changes it to point to the routine's proram exception handler, and executes an op code of hex FFFF, which causes a program xception. It then stores the primary PSV, returns to the secondary PSV for program execution, and checks status to verify that the panel interrupted processing when the program exception occurred. The valid routine test error messages are hex 1801, 1804 1820, and 1821

Routine 19, Invalid Command Test. The previous routines tested all valid commands. This routine issuess all the invalid EFP commands from hex 00 to FF , each of which hould cause a system check. After issuing each invalid command sequence, the test hecks EFP status to determine if the proper response occurred. The valid routine test error messages are hex 1901, 1904, 1920, and 1921.

SP212 Manual Intervention Panel Test
The manual intervention EFP routines test the panel logic, indicators, pushbuttons, and the panel adapter signal bus. This section describes these routines. Refer to SP242 for actions required by manual intervention messages.

Routine 20, EFP Operator Attention Indicator Test. Blinks the Operator Attention indicator and prompts you for a response to this condition. The MD display indicates an error for a negative response, and the BOP displays test error messages of either hex 2001 .or 2004 if unexpected system conditions occurred during the test.

Routine 21, Action Pushbutton Test. Tests the function of the Display, Store, Start, Function, Insn Step, Stop, Reset/Restore, Storage Address Compare Stop Fetch, Storage Address Compare Stop Store, and Stop on System Check/Program Excpn push. uttons.

The routine enables the EFP pushbuttons and uses the MD to prompt you for activation of these pushbuttons in the specified order. When each pushbutton generates an interrupt request, the test checks the corresponding EFP BSTAT bit to verify that it turned on. The BOP displays valid test error messages hex $2121,2123,2125,2127$, 2129, 2131, 2133, 2135, 2137, and 2139 for incorrect pushbutton functional operation, and 2101 and 2104 if unexpected system error conditions occurred.
Routine 22, Selection Pushbutton Test. Tests the function of the Storage Location, Routine 22, Selection Pushbutton Test. Tests the function of the Storage Location,
Register, Translation Table Entry, Address Control, Insn Address, Program Status, Register, Translation Table Entry, Address Control, Insn Addr
Compare Stop Address, and Transform Address pushbuttons.

The routine enables the EFP pushbuttons and prompts you from the MD. Each push button should be pressed in the specified order, followed by the Start pushbutton to generate an interrupt request. The test then checks the corresponding EFP BSTAT bit 225 vify that it turned on. The BOP displays valid test error messages hex 2221 to 2225 and 2236 to 2238 for incorrect pushbutton functional operation, and 2201 and

Routine 23, Reg 1, Reg 2 and Hexadecimal Display LED Test. The MD prompts you if all patterns should be tested, and, if not, uses only hex 0000 and FFFF. The test first places hex 00000000 in register 1 and hex BADOBADO in register 2, and prompts you to verify that the hexadecimal display output from register 1 contains zeros with the Reg 1 indicator on. The test then reverses the register 1 and register 2 values and per forms the same operation. The Reg 2 indicator should now be on, Reg 1 off, and the register 2 display value should be all zeros.

The test steps to either hex 11111111 or FFFFFFFF, depending on the option selected performs the same operation with the new register values, and prompts for response to the display and indicator conditions. A negative response to the MD prompt results in an error message on the MD display, and the BOP displays test error message number an exror message 2301 and 2304 when unexpected system error conditions occur.

Routine 24, Action Pushbutton Test. Tests the Enable/Disable EF Panel, Clear Panel, Routine 24, Action Pushbutton Test. Tests the Enable/Disa
Access Address Reg 1, and Access Data Reg 2 pushbuttons.

The test first turns on the EFP control register operator attention bit, but does no enable the panel. The MD then prompts you to press the Enable/Disable EF Panel pushbutton, followed by the Start pushbutton.

Note: The Start pushbutton did not function properly if the panel pushbuttons remain inoperative. Before continuing, the test checks for valid basic status.

The MD prompts for your response after observing if the Operator Attention indicator blinks. An EF panel reset then occurs, and BSTAT bits 3 and 14 turn on.

Next, the test fills registers 1 and 2 with hex FFFFFFFF and accesses register 2 with the Operator Attention indicator still blinking. The test prompts you to press the Clear Panel pushbutton and enter a ' 1 ' in the MD keypad. The EFP BSTAT should now have bit 3 reset, registers 1 and 2 should be all zeros, and the control registe attention and access register 2 bits should be off. The test then resets the panel.

Finally, the test fills register 1 with hex 11111111 , register 2 with hex 22222222 and accesses register 2. The prompt message requests verification of the display value, followed by pressing the Access Address Register 1 pushbutton. You should
verify the register 1 display value of hex 11111111 , press the Access Data Register 2 pushbutton, and verify the register 2 display value of hex 22222222.

The BOP displays valid test error messages hex 2421 and 2424 to 2427 for functions checked by this routine, and hex 2401 and 2404 when unexpected system errors occur.

Routine 25, Data/Function Pushbutton to Register 1 and 2 Exerciser. Checks the BOP Data/Function pushbutton encoding logic and the Data/Function pushbutton to register 1 and 2 data path. The MD prompts you to access registers 1 and 2 from the keypad. The test terminates by pressing Stop.

The MD prompt message then asks if the test functioned properly. A negative response prompts an MD display error message, and unexpected system error conditions display valid test error message numbers hex 2501 and 2504 on the BOP.

Routine 26, Data/Function Pushbutton Locked Test. Enables the panel and logically locks the Data/Function pushbuttons. The MD then asks you to check that the pushbuttons do not operate and that the Keyboard Locked indicator turned on. A negative response prompts an MD error message, and unexpected system error conditions cause the BOP to display valid test error message numbers hex 2601 and 2604.

Routine 27, Compare Stop and Processor Stopped Indicator Test. Tests the Storage Address Compare Stop Fetch, Storage Address Compare Stop Store, Stop on System Check/Program Excpn, and Processor Stopped indicators. The test turns on each indicator one at a time, and prompts a response from the MD for proper indicator operaconditions cause the BOP to display valid test error message numbers hex 2701 and 2704.

Routine 28, Panel Check Test. Tests the panel check logic by attempting to execute an invalid command. The test first enables the panel indicators and issues an invalid command. This causes a system check, which should turn on the EF Panel Check indicator. The MD asks if the indicator is on, and displays an error message for a negative response. The MD then prompts you to press the Clear Panel pushbutton and ensure that the Panel Check indicator turned off. The MD again displays an error message for a negative response, and unexpected system errors result in valid test error messages hex 2801 and 2804.

Routine 29, DAT Active Test. Tests the panel's capability to detect and display dynamic address translation mode. The routine first builds a translation table that assigns the same actual storage locations to real addresses $0-66 \mathrm{~K}$ and logical addresses $0-64 \mathrm{~K}$. It then sets the level 7 adjunct register contents to logical address values.
The MD instructs you to press the Start pushbutton to cause a level 0 interrupt. The The MD instructs you to press the Start pushbutton to cause a level 0 interrupt. The panded panel DAT Active indicator.

Next, the test restores the level 7 adjunct registers to real addressing values and prompts you to press Start if the DAT Active indicator turned on or Stop if it did not. Either pushbutton causes an interrupt to level 0 , restores the processor to real addressing mode, and returns to level 7 processing. The test then checks status to determine the pushbutton used. The BOP displays the error message hex 2922 if it was the Stop pushbutton, and also displays test error messages 2901 and 2904 for unexpected system error conditions.

Routine 30, Mode Indicator Test. Checks the Master, Supervisor, I/O, and Appl mode indicators and logic.

After initiating the routine, the MD asks you to check the Supervisr mode indicator status. A negative reply places a test error message in the BOP display

To test the other three indicators, the routine stores a test mode byte in a fixed storage location, and prompts you to press the Start pushbutton, which causes an interrupt to processing level 0 . The level 0 interrupt handler then conditions level for the test.

The test returns to level 7 , and the indicator for the mode under test remains on for about 10 seconds. The MD then prompts you to press Start if the indicator comes on and then turns off, or Stop if it doesn't.

The test reads basic status after each operation to determine the pushbutton pressed, and each indicator must be tested three times. The BOP displays test error messages hex 3020, 3023, 3025, and 3027 for negative responses to the prompt message, and hex 3001 and 3004 if unexpected system error conditions occurred during testing.
Routine 31, Current or Last Level Display and PSV Indicator Test. Checks the Curren or Last Level display, the Primary (Secdy) PSV indicator, and the Display Last Level or Last Level display, the Primary (Secdy) PSV indicator, and the Display Last Lev and the Primary/Secdy PSV displays the mode

The level steps once every 5 seconds for each primary level 1-7, and then repeats the stepping procedure using secondary mode. The eight-position hexadecimal display and Current or Last Level display provides test status information as follows, in con junction with the Primary/Secdy PSV indicator:

The routine uses the four leftmost positions of the EFP hexadecimal display to indicate the expected status:

- The first and third indicate the expected current and last processing levels (1-7)
- The second and fourth indicate the expected mode (primary or secondary)
- If the second and fourth digits are 1 's, the Primary/Secdy PSV indicator should be on (primary PSV).
If the second and fourth digits are O's, the Primary/Secdy PSV indicator should be off (secondary PSV).

Press the Display Last Level pushbutton during the test to check the correct last processing level and mode.

When the test terminates, the MD asks if the display values compared and the Display Last Level pushbutton operated properly. A negative response displays an error on the MD. Unexpected system error conditions display test error messages hex 3101 and 3104 on the BOP.

SP230 Test Message Formats and Status Registers

The following sections describe the format of the test messages generated when per forming offline testing.

SP231 Adapter Test Message Formats
The following test message formats occur when performing adapter Routines 1-19

Test Messages	Meaning
OAOO	Test ran successfully
OAFO	Tests running
OA2E RREN OOMM IIII	Format 1 error message
OA2E RREN OOML IIII	Format 2 error message
OA2E RREN OOBS EXPD RECD	Format 3 error message

Where
A $=$ EFP physical addres
$2=$ Processing level
E = Error
RR $=$ Failing routine
$\mathrm{EN}=$ Error number within the routin
$00=$ Not used
$M M=E I R V$ contents when failure occurred
IIII = Instruction address when failure occurred
ML = PSV used and processing level active when failure occurred
$\mathrm{M}=0$ = Primary mode
$\mathrm{M}=1=$ Secondary mode
L = Processing leve
EXPD = Expected data
RECD $=$ Received data

SP232 Manual Intervention Test Message Format

The EFP manual intervention routines use format 1 test error messages (RREN) if an unexpected error occurs. They also display 73 prompt messages numbered from 1 to 74 , with 73 not used. These messages prompt you to answer questions concerning tatus, or to perform certain procedures. The following message format occurs when performing Routines 20-31:
TEST MESSAGE
PAMI

Where:

PA $=$ EFP physical address hex $0 A$
MI $=$ Prompt message number

SP233 EFP Registers
This section describes the EFP basic status and control registers and their bit meanings, as well as all other EFP registers.

Basic Status Registe

The 16-bit EFP basic status register indicates the pushbuttons that were activated, equal compare conditions, adapter-detected error conditions, and interrupt priority equal compare conditions, adapter-detected error conditions, and interrupt priority EFP pushbuttons. The following table describes the bit meanings when on.

Bit	Pushbutton Pressed or Condition Detected
0-2	EFP selection pushbutton encode - Binarily determines which of the Selection pushbuttons were pressed according to the following: ```\(000=\) None \(001=\) Storage Location \(010=\) Register \(011=\) Translation Table Entry \(100=\) Insn Address 101 = Program Status \(110=\) Compare Stop Address 111 = Address Control```
3	Transform Address pushbutton pressed.
*4	Storage address compare stop fetch condition occurred.
*5	Storage address compare stop store condition occurred.
* 6	Stop on system check/program exception condition occurred.

$\left.\left.\begin{array}{|l|l|}\hline \text { Bit } & \text { Pushbutton Pressed or Condition Detected } \\ \hline 7 & \text { Reserved } \\ \hline{ }^{*} 8-10 & \begin{array}{l}\text { EFP Action pushbutton encode - Binarily determines which of the } \\ \text { Action pushbuttons were pressed according to the following: } \\ 000=\text { None } \\ 001=\text { Display } \\ 010=\text { Store } \\ 011=\text { Start } \\ 100=\text { Function } \\ 101=\text { Insn Step } \\ 110=\text { Stop }\end{array} \\ \hline 1112=\text { Reset/Restore }\end{array}\right] \begin{array}{l}\text { Initialize - Only set by programming and reset by programming or } \\ \text { the Enable/Disable EF Panel pushbutton. }\end{array}\right\}$
*Turns on EFP interrupt request (bit 15).

The EFP control register permits program control of certain EFP functions and indica tors. All bits of this 8 -bit register can be set by the program, and bits 3 and 4 can also be set by EFP pushbuttons. The register is reset by either Reset EFP Control command or a system reset, and bits 3 and 4 can also be reset by EFP pushbuttons. The following table describes the bit meanings when on.

Bit	Meaning
0	Stop on storage address compare fetch - Enables a comparison between the storage address compare register and a storage address issued by the processor during fetch operations. This bit determines the status of the corresponding EFP indicator.
1	Stop on storage address compare store - Enables a comparison between the storage address compare register and a storage address issued by the processor during store operations. This bit determines the status of the corresponding EFP indicator.
2	Stop on system check/program exception - Enables the EFP logic for this function and determines the status of the corresponding EFP indicator.
3	Enable EFP entry/display - Enables operation of EFP displays, indicators, pushbuttons, and BOP Data/Function pushbutton to register 1 and 2 information transfer. Bit status can either be programmed or changed by the Enable/Disable EF Panel pushbutton (with keylock, if installed, in Enable).
4	Access EFP register 2 - Enables access and display of EFP register 2 if on, and register 1 if reset, and determines register 1 and 2 indicator status. Bit status can either be programmed or changed by the Access Data Register 2 and Access Address Register 1 pushbuttons.
5	Processor stopped - Either an address compare stop or system check/ program exception occurred, or the Stop pushbutton was pressed.
6	Operator attention - Determines the status of the corresponding indicator, which blinks twice each second.
7	Keyboard locked - Disables input and encoding of all but five EFP pushbuttons. Turned on by any "Stop on -" condition, a system check/program exception in the EFP, or a program-detected EFP error.

Expanded Panel Registers Other Than Control and BSTAT

This section describes EFP registers other than the control and basic status registers.
Address Compare Register. This 32-bit register operates in conjunction with addres ompare stop logic, and specifies:
Whether a primary or secondary PSV should be active to permit a Stop on Compare (bit 3).

- The processing level that should be active to permit a Stop on Compare (bits 5-7).
xcept zero 3 and $5-7$ are zeros,

The real address that should stop processing if a compare occurs (bits 12-30 with 31 ignored).

Either a system reset or a Reset Device command resets this register
Register 1. A 32 -bit register used for operations that can be performed either from the panel or by programming. EFP control register 4 being reset and 3 being set permits ccess to this register. Manual register output places the first character in the units osition, which shifts to the left when entering another character. Either a system reset, Reset Device command, or the Clar Parel pushbutton resets this .

Register 2. Functions identically to register 1 , except that EFP control register bit being set permits access to register 2 .
urrent Level Register. A read-only 4 -bit register whose value results from processor logic, and cannot be programmed. It specifies the current processing level of the PSV ($1-7$ and not 0) in the Current or Last Leve Display.

Last Level Register. Functions identically to the current level register, but retains the last processing level executed. Display of this level occurs in the Current or Last Level display by holding in the Display Last Level pushbutton.

Program Mode Register. Contains a read-only binary value that results from processor ogic and cannot be programmed. The value reflects the current processing executio mode, encodes to activate one of the four Mode indicators, and cannot indicate the last processing execution mode

Address Mode Register. A one-bit read-only register whose value results from processor logic and cannot be programmed. The value indicates whether the processor is urrently performing real or logical addressing for the indicated PSV and current pro essing level, and determines the status of the DAT Active indicator. It does not ind cate the last processing execution mode.

This section describes those messages generated when running the EFP tests, which can only be run offline.

SP241 describes the messages generated while running all routines except those requiring manual intervention. SP242 describes messages used for the manual intervention routines. ages
The messages listed below are in the RREN format, where RR indicates the routine
The messages listed below are in the RREN format, where RR indicates the routine
number and EN the error number. See section SP231 for an explanation of the three number and EN the

RREN	Format	Meaning
0101	1	Unexpected system check occurred.
0104	2	Unexpected I / O interrupt occurred.
0120	3	Basic status not zero after adapter reset.
0121	3	Register 1 low not zero after adapter reset.
0122	3	Register 1 high not zero after adapter reset.
0123	3	Register 2 low not zero after adapter reset.
0124	3	Register 2 high not zero after adapter reset.
0125	3	Control register not zero after adapter reset.
0201	1	Unexpected system check occurred.
0204	2	Unexpected I/O interrupt occurred.
0220	3	Status bits write/read do not compare.
0221	3	Extra bits reset in basic status register.
0222	3	Status bits not reset by Reset Status command.
0301	1	Unexpected system check occurred.
0304	2	Unexpected I/O interrupt occurred.
0305	3	Expected I/O interrupt did not occur.
0320	3	Basic status not hex 0001 after interrupt.
0401	1	Unexpected system check occurred.
0404	2	Unexpected I / O interrupt occurred.
0420	3	Control register write/read do not compare.
0501	1	Unexpected system check occurred.
0504	2	Unexpected I/O interrupt occurred.
0520	3	Register 2 high write/read do not compare.
0521	3	Register 2 high not zero after adapter reset.
0701	1	Unexpected system check occurred.
0704	2	Unexpected I / O interrupt occurred.
0720	3	Register 2 Iow write/read do not compare.

RREN	Format	Meaning
0721	3	Register 2 low not zero after adapter reset.
0801	1	Unexpected system check occurred.
0804	2	Unexpected I/O interrupt occurred.
0820	3	Register 1 low write/read do not compare.
0821	3	Register 1 low not zero after adapter reset.
0901	1	Unexpected system check occurred.
0904	2	Unexpected I/O interrupt occurred.
0920	3	Register 1 high write/read do not compare.
0921	3	Register 1 high not zero after adapter reset.
1001	1	Unexpected system check occurred.
1004	2	Unexpected I/O interrupt occurred.
1005	3	Expected I/O interrupt did not occur.
1020	3	Basic status incorrect after interrupt.
1101	1	Unexpected system check occurred.
1104	2	Unexpected I/O interrupt occurred.
1120	3	No address compare interrupt.
1121	3	Basic status incorrect after interrupt.
1201	1	Unexpected system check occurred.
1204	2	Unexpected I/O interrupt occurred.
1220	3	No address compare interrupt at address hex 5554.
1221	3	Basic status incorrect after interrupt.
1222	3	No address compare interrupt at address hex AAAA.
1301	1	Unexpected system check occurred.
1304	2	Unexpected I/O interrupt occurred.
1320	3	Received an address compare when none should have occurred.
1321	3	Extended status incorrect.
1401	1	Unexpected system check occurred.
1404	2	Unexpected I/O interrupt occurred.
1420	3	Received an address compare on incorrect level.
1421	3	Did not receive an address compare.
1422	3	Extended status incorrect.
1501	1	Unexpected system check occurred.
1504	2	Unexpected I/O interrupt occurred.
1520	3	Either no address compare occurred or it occurred late in the MVHS instruction.
1601	1	Unexpected system check occurred.
1604	2	Unexpected I/O interrupt occurred.
1620	3	Received an address compare on the target of an unsuccessful branch.

RREN	Format	Meaning	RREN	Format	Meaning
1701	1	Unexpected system check occurred.	2225	3	Basic status incorrect after pressing Insn Address.
1704	2	Unexpected I/O interrupt occurred.	2236	3	Basic status incorrect after pressing Program Status.
1720	3	Did not receive an address compare before taking program exception.	2237	3	Basic status incorrect after pressing Compare Stop Address.
1721	3	Did not receive an address compare on second half of MVHS just before a KI swap.	2238	3	Basic status incorrect after pressing Transform Address.
1801	1	Unexpected system check occurred.	2301	1	Unexpected system check occurred.
1804	2	Unexpected I/O interrupt occurred.	2304	2	Unexpected I/O interrupt occurred.
1820	3	Panel operation did not stop on system check.	2401	1	Unexpected system check occurred.
1821	3	Panel operation did not stop on program exception.	2404 2421	2	Unexpected I/O interrupt occurred. Basic status incorrect after pressing Start.
1901	1	Unexpected system check occurred.	2424	3	Modifier bit in basic status not reset by pressing
1904	2	Unexpected I/O interrupt occurred.			Clear Panel.
1920	3	Invalid command did not cause a system check.	2425	3	Reg 1 not zero after pressing Clear Panel.
1921	3	Basic status incorrect after invalid command.	2426	3	Reg 2 not zero after pressing Clear Panel.
2001	1	Unexpected system check occurred.	2427	3	Control register incorrect after pressing Clear
2004	2	Unexpected I/O interrupt occurred.			Panel.
2101	1	Unexpected system check occurred.	2501	1	Unexpected system check occurred.
2104	2	Unexpected I/O interrupt occurred.	2504	2	Unexpected I/O interrupt occurred.
2121	3	Basic status incorrect after pressing Store.	2601	1	Unexpected system check occurred.
2123	3	Basic status incorrect after pressing Display.	2604	2	Unexpected I/O interrupt occurred.
2125	3	Basic status incorrect after pressing Function.	2701	1	Unexpected system check occurred.
2127	3	Basic status incorrect after pressing Insn Step.	2704	2	Unexpected I/O interrupt occurred.
2129	3	Basic status incorrect after pressing Start.	2801	1	Unexpected system check occurred.
2131	3	Basic Status incorrect after pressing Stop.	2804	2	Unexpected I/O interrupt occurred.
2133	3	Basic status incorrect after pressing Reset/Restore.	2901	1	Unexpected system check occurred.
2135	3	Basic status incorrect after pressing Storage	2904	2	Unexpected I/O interrupt occurred.
		Address Compare Stop Fetch.	2922	3	DAT Active indicator did not turn on.
2137	3	Basic status incorrect after pressing Storage Address Compare Stop Store.	3001 3004	1	Unexpected system check occurred. Unexpected I/O interrupt occurred.
2139	3	Basic status incorrect after pressing Stop on System Check/Program Excpn.	3020	3	Supervisor mode indicator not on.
2201	1	Unexpected machine check occurred.	3023	3	Master mode indicator did not turn on, then off.
2204	2	Unexpected I/O interrupt occurred.	3025	3	I/O mode indicator did not turn on, then off.
2221	2	Basic status incorrect after pressing Storage	3027	3	Appl mode indicator did not turn on, then off.
		Location.	3101	1	Unexpected system check occurred.
2222	3	Basic status incorrect after pressing Register.	3104	2	Unexpected I/O interrupt occurred.
2223	3	Basic status incorrect after pressing Translatn Table Entry.			
2224	3	Basic status incorrect after pressing Address Control.			

SP242 Manual Intervention Test Messages and Procedures
The following table describes the actions required for the test messages that display when performing the EFP manual intervention routines. In the PAMI column, PA = when performing the EFP manual intervention routines. In the PAMI

PAMI Procedure
OA01 If Operator Attention indicator blinks, enter B.
OA02 Press Store.
0A03
A05

Press Storage Address Compare Stop Store.
A11 Press Stop On System Check/Program Excpn.
0A12 Press Storage Location and then press Start.
Press Translatn Table Entry and then press Start
Press Translatn Table Entry and then press
Press Address Control and then press Start.
Press Address Control and then press Sta
Press Insn Address and then press Start.
Press Program Status and then press Start.
Press Compare Stop and then press Start

OA20 Reg 1 indicator $=$ on and display $=00000000$. Enter B if correct.
OA21
0A22
0A23

Procedure

Reg 1 indicator $=$ on and display $=88888888$. Enter B if correct Reg 2 indicator $=$ on and display $=88888888$. Enter B if correct. Reg 1 indicator $=$ on and display $=99999999$. Enter B if correct Reg 2 indicator $=$ on and display $=99999999$. Enter B if correct Reg 1 indicator $=$ on and display $=$ AAAAAAAA. Enter B if correct.
Reg 2 indicator $=$ on and display $=$ AAAAAAAA. Enter B if correct.
Reg 1 indicator $=$ on and display $=$ BBBBBBBB. Enter B if correct.
Reg 2 indicator $=$ on and display $=$ BBBBBBBB. Enter B if correct. Reg 1 indicator $=$ on and display $=$ CCCCCCCC. Enter B if correct. Reg 2 indicator $=$ on and display $=\operatorname{CCCCCCCC}$. Enter B if correct Reg 1 indicator $=$ on and display $=$ DDDDDDDD. Enter B if correct. Reg 2 indicator $=$ on and display = DDDDDDDD. Enter B if correct. Reg 1 indicator $=$ on and display $=$ EEEEEEEE. Enter B if correct Reg 2 indicator $=$ on and display $=$ EEEEEEEE. Enter B if correct Reg 1 indicator $=$ on and display $=$ FFFFFFFF. Enter B if correct. Reg 2 indicator $=$ on and display $=$ FFFFFFFF. Enter B if correct Press Enable/Disable EF Panel and then press Start
If Operator Attention indicator blinks, enter B.
Press Clear Panel and then enter B.
Press Access Address Register1 pushbutton. The Reg 1 indicator should turn on and the display should be 11111111 . Enter B if true Press Access Data Register 2. The Reg 2 indicator should turn on and the display should be 22222222 . Enter B if true.

Exercise the hex keypad. Keys pressed should be displayed in the data display, entering from the right and moving to the left as keys are pressed. Press Access Address Register 1 and Access Data Register 2 to verify that register 1 and 2 both operate from the keypad. Press Stop to end test.
Keypad, register 1, and register 2 functioned correctly. Enter B if true.
Keypad does not work and Keyboard Locked indicator = on. Enter B if true.
Enter B if the Storage Address Compare Stop Fetch indicator = on. Enter B if the Storage Address Compare Stop Store indicator = on. Enter B if the Stop on System Check/Program Excpn indicator = on Enter B if the Processor Stopped indicator $=$ on.
Enter B if the Panel Check indicator =on.
Press Clear Panel. The Panel Check indicator = off. Enter B if true Press Start. This should turn the DAT Active indicator on. If on, press Start. If off, press Stop.

OA67 Supervisor mode indicator $=$ on. Enter B if on.
0A68 Press Start. This should cause the Master mode ind then off. If correct, press Start. If incorrect, press Stop. Press Start. This should cause the I/O mode indicator to turn on, then off. If correct, press Start. If incorrect, press Stop. Press Start. This should cause the Appl mode indicator to turn on, Press Start. This should cause the Appl mode indicator to

The level indicator steps slowly and the expected level and mode are displayed. Enter B.
0A72
Test ran correctly. Enter B if true.
Enter 1 for short test. Enter 0 for long test. Used in Routine 23.

SP250 Action Plans

Action plans for correcting EFP failures are divided into three categories
Visually detected failure
Adapter logic failures

- Panel failures

The test and manual intervention routines might refer you to one of the action plan in this section for problem isolation and recovery

EFP Initial Action Plan Procedure
The first procedure used for EFP fault isolation is to reseat the cards and connections. Before performing any of the individual action plans, you should reseat the following:

1. Adapter card
2. Adapter top card cables
. EFP keypad connectors
. Hex display card connector
3. Mode and state indicator card connectors
. Cable in position B2A3 on the BOP adapter card, 01B-A1A2
efer to SP111 for EFP card and cable layouts, and BU1 cable layouts. After performing the above procedure, again run the adapter tests and manual intervention routines. Return to this section if a problem still exists.

Action Plan Summary
The following table should be used according to the failure indication. Find the failure in the Action Plan column, then go to the specified section to perform the action plan.

Action Plan	Section
Visually detected failure	SP251*
Adapter logic failure	SP252
Panel failure Keypad failure Hex display card failure Mode and state indicator card failure	SP253
Cable Check	SP254

* Use the action plan in SP251 only for fault isolation without MAP interaction. When the MAP refers you to SP250, first perform the Initial Action Plan Procedure described above, If the problem still exists, go to either SP252, SP253, or SP254, according to the failure indication

SP251 Visually-Detected Failure Action Plans
Use the following action plans only for any failure that can be detected visually

Probable Cause	Action
Pushbutton or LEDs	Observe condition of pushbuttons and hex displays. Any obvious loose or broken pushbuttons, or faulty LEDs indicate that the affected panel component should be replaced.
Indicators	Press Lamp Test on the BOP. If any indicators fail to turn on, replace the affected panel component.
Unknown	A visual panel failure can also be caused by other failures. The MAP and test program help to further isolate the problem.

The following action plans isolate EFP adapter failures to either voltage, card, board, bus, or card-to-panel signal path problems. These action plans assume that both bring up tests and the system control facility (SC) MAP ran successfully After performing this action plan, select the EFP test to verify any repair.
$\left.\begin{array}{|l|l|l|}\hline \text { Probable Cause } & \text { Action } & \text { Comment }\end{array} \left\lvert\, \begin{array}{ll}\text { Voltage } & \begin{array}{l}\text { Check all dc voltages } \\ \text { at the EFP adapter card } \\ \text { socket. } \\ \text { D03 }=+4.5 \text { to }+5.5 \mathrm{~V} \\ \text { B11 }=+7.7 \text { to }+9.3 \mathrm{~V} \\ \text { B06 }=-4.5 \text { to }-5.5 \mathrm{~V}\end{array}\end{array} \begin{array}{l}\text { If no voltage, or if voltage } \\ \text { is out of tolerance, go to the } \\ \text { PA MAP. }\end{array}\right.\right\}$

SP253 Panel Failure Action Plans
The panel failure action plans are grouped according to the three field replaceable panel units: EFP keyboard card, hexadecimal display card, and mode and state indicator card.

Use the description of the failing routine (SP212) to help select the proper action plan.

Keypad Failure Action Plan

Use the following action plan for failures relating to the EFP keypad:

Probable Cause	Action	Comment
Card	Replace the EFP adapter card. Return to MAP.	For models A31-34, card is in board location A1M2. For other A models, card is in A1P2. For B models, card is in A1S2.
Card-to-Panel	If the problem has not been solved, go to the cable check action plan.	See SP254.
Shorted or Stuck Keys	Use this action plan for manual intervention numbers 0A02-0A19, 0A52, OA54, OA55, 0A56, OA71, OA72, OA73 Check for shorted, open, or binding pushbuttons according to the following list of J 6 connector pins.	See SP430 for pin and connector locations. If any switches are shorted or open, replace the EFP keypad and skip the next action plan. (See SP520)
Open Switches	Meter the J6 connector pins on the EFP keypad and press the corresponding keypad keys as follows: J6-12 to J6-3 Clear Panel J6-12 to J6-4 Transform Address J6-12 to J6-5 Storage Address Compare Stop Fetch J6-12 to J6-6 Storage Address Compare Stop Store J6-12 to J6-7 Stop on System Check/ Program Excpn J6-11 to J6-3 Store	

Probable Cause	Action	Comment
	J6-11 to J6-4 Storage Location J6-11 to J6-5 Address Control J6-11 to J6-6 Compare Stop Address J6-11 to J6-7 Display Last Level J6-10 to J6-3 Display J6-10 to J6-4 Register J6-10 to J6-5 Insn Address J6-10 to J6-7 Access Address Reg 1 J6-9 to J6-3 Function J6-9 to J6-4 Translatn Table Entry J6-9 to J6-5 Program Status J6-9 to J6-7 Access Data Reg 2 J6-8 to J6-3 Enable/Disable EF Panel J6-8 to J6-4 Insn Step J6-8 to J6-5 Start J6-8 to J6-6 Stop J6-8 to J6-7 Reset/Restore After replacing the keypad, be sure that the face plate is aligned and all pushbuttons do not bind on the face plate before tightening the panel screws.	See SP520 for instructions on replacing the EFP keypad.
Board	Check board wiring.	For net listing, see SP410.

Probable Cause	Action	Comment
BOP Card	Replace the BOP adapter card if not already done and return to MAP.	Position 01B-A1A2
BOP Card-to-Panel	If the problem still exists, go to the cable check action plan.	See SP254.
Board	Check board wiring.	For net listing, see SP410.
	Request aid.	

Hex Display Card Failure Action Plan

Use the following action plan for failures relating to the hexadecimal display card T res from M1 OA64-0A66, OA71, OA73, and OA74.

Probable Cause	Action	Comment
Card	Replace the EFP adapter card if not already done and return to MAP.	Card location on models A31-34: A1M2. Other A models: A1P2. B models: A1S2.
	Check board wiring.	For net listing, see SP410.
Card-to-Panel	Go to cable check action plan.	See SP254.
Hex Display	Replace hex display card.	See SP530 for instructions on replacing the hex display card.
BOP Card-to-Panel	Check cabling from the BOP adapter.	
Board	Check board wiring.	
Unknown	Request aid.	

Mode and State Indicator Card Failure Action Plan

Use the following action plan for failures relating to the mode and state indicator Use the following action plan for failures relating to the mode and state
card that result from MI prompt messages OA59-0A63 and 0A67-0A70.

Probable Cause	Action	Comment
Card	Replace the EFP adapter card if not already done and return to MAP.	Card location on models A31-34: A1M2. Other A models: A1P2. B models: A1S2.
Card-to-Panel	If the problem still exists, go to the cable check action plan.	See SP254.
Mode and State Indicator Card	If problem still exists, replace the mode and indicator card on the EFP.	See SP540 for instructions on replacing the mode and state indicator card.
Voltage at Mode and Indicator Card	Check voltage to mode and indicator card.	
Unknown	Request aid.	

sP254 Cable Check Action Plan

Probable Cause	Action	Comment
Card-to-Panel	Check to be sure the	Figures SP254-2, -3, -4, and
Cables	connections between the	-5 illustrate the connections
	appropriate top card	between top card connectors
	connector and the EFP	W, X,Y, and Z
	component or power	respectively, and the EFP
	section affected are good.	components. Figure SP254-1
		shows the power connections
		for the hex display card and
		mode and state indicator
		card.

01F-A1A3
Cable
Cictan

Power Section
$\underset{\text { EFP }}{\text { Hexadecima }}$

EFP Mode
and State
Indicator
Card on

Card on	4

Figure SP254-1. Hex Display Card-to-Power Connections

Figure SP254-2. EFP Adapter Card-to-EFP Mode and State Indicator Card Wiring

Figure SP254-3. EFP Adapter Card-to-EFP Keypad Wiring

Figure SP254-4. EFP Adapter Card-to-EFP Hex Display Card Wiring

Figure SP254-5. EFP Adapter Card-to-BOP Adapter Card Wiring

SP300 Intermittent Failure Repair Strategy

Intermittent failures can possibly never be detected, or might indicate different test error messages while running the test. Intermittent failures make the MAPs ineffective To resolve this type of problem, you should record all information relating to the problem, such as the failing operation, visual symptoms, test error messages, and any other pertinent information. Refer to section SP350 for fault isolation of inter mittent failures.

SP310 Adapter-Unique Intermittent Repair Strategy
For intermittent failures that could possibly be caused by the EFP, obtain the system error \log and use this information to determine if there might be an EFP problem Refer to Chapter 2 for information on obtaining the error log. Use these results to develop your own action plan.

SP350 Action Plan to Correct Intermittent Failures

Perform the following action plan, in order, from top to bottom. Any time you perform a repair action, action, you must run the expanded function panel tests to verify the repair.

Probable Cause	Action	Comments
Unknown	Make sure that the bringup and System Control Facility tests have run correctly.	
Voltage	Check all de voltages at EFP adapter card socket. D03 $=+4.5$ to +5.5 V B11 $=+7.7$ to +9.3 V B06 $=-4.5$ to -5.5 V	If missing or out of tolerance, go to PA MAP.
Adapter card defective	Change card.	
Board or bus	1. Change PSCF card and BOP adapter card. 2. Check board wiring. See section SP410.	
Adapter to panel signal path	Go to the panel failure action plan, SP250.	
Failure still unknown	Request aid.	

This section contains information that is not usually necessary for fault isolation but assists in understanding EFP hardware operation.

S410 Point-to-Point Signal Path

Figure SP410-1 lists the signal lines by name from the processor to the EFP for most A models. Use the chart below for other models.

Note: The " $x x$ " designation is used for the storage card positions. See Chapter 3 for locations.

Card locations on 01A-A1 board for various 8140 models:
Model Nos.

	Processo						PSCF	STOR	FLT PT	EFP
				EF	FP Fe	ure	vailab			
C2	D2	E2	G2	H2	J2	K2	A2	xx	-	M2
C2	D2	E2	G2	H2	J2	K2	A2	x x	M2	P2
F2	G2	H2	K2	L2	M2	N2	D2	x x	02	S2

Net	Processor Processor	PSCF	FIt Pt	EFP	Conn	BOPA
Wait St Gate	C2D02 --E2M10-	A2G07		P2002		
PM 0	J2M07 - H2G04	A2P05	M2G04	P2009		
System Reset	K2807-D2808	A2U04	M280	P2G08	CiA	A2
EFP int Req		A2S07		P2004		
SDC Bus 0		A2U09		P2U09	-A1E13	-A2D12
SDC Bus 1		A2S09		P2S09	- B1A13	- A2D11
SDC Bus 2		A2S05		P2U10	- B1813	-A2D10
SDC Bus 3		A2U07		P2802	- $\mathrm{BIC13}^{13}$	- A2009
SDC Bus 4		A2S08		P2803	-81D13	A2008
SDC Bus 5		A2S10		P2804	- ${ }^{1613}$	-A2007
SDC Bus 6		A2U06	-	P2805	- ${ }^{\text {c1a }}$	- A2006
SDC Bus 7		A2U05		P2807	- ${ }^{\text {C1B13 }}$	- ${ }^{\text {220 }} 205$
SDC Bus 8		A2S12		P2808	- ${ }^{\text {cic13 }}$	- ${ }^{\text {A2D04 }}$
SDC Selected		A2P07	-	P2S12	F1C13	A2U05
SDC Sync		${ }^{\text {A } 2413}$		P2MO5	${ }^{\text {B1C11 }}$	- ${ }^{\text {A2809 }}$
SDC Halt		A2MO8		P2504	- E1E11	-A2s08
1/O Op		A2S03		P2006		- ${ }^{\text {a } 2811}$
1 MHz Osc		A2MOL		P2M12	- ${ }^{18111}$	-A2810
500 ms		A2M12				
1024 ms		A2M13		P2S07		

Figure SP410-1. EFP Point-to-Point Signal Path

Figure SP410-2. Processor-PSCF-BOPA Card Signal Path

Figures SP420-1 and SP420-2 show line names of the respective pins when the EFP adapter card plugs into any of the three possible board positions.

Line Name

- SDC Bus
- SDC Bus 3
- SDC Bus 4 - SDC Bus
- SDC Bus 5
- SDC Bus 6 - SDC Bus - 5 V - SDC Bus 7
- SDC Bus P
- DAT Active
- DAT
+8.5 V
- Compare Equal TP
- Compare Equal TP
-5 Volts
-1 Fetch
- System Reset/Restor
- Long Instruction
- Storage Sele
-8.5 Volts
- Storage Select Bit 4
-Storage Select Bit 7
- Storage Adr Bus 14
- Storage Adr Bus 4
- Storage Adr Bus
- SDC Bus Sync
- 5 Volts
- Storage Adr Bus 11
- Storage Adr Bus 1
- Storage Adr Bus 9
- Storage Adr Bus 6
- Storage Adr
+8.5 Volts
- Stack Adr Bus 9
- Storage Adr Bus 10
- Storage Write Hi
- Storage Write
-1 Megahert
- 5 Volts
-1.024 Ms Rate Clock
- SDC Bus 1
+8.5 Volts
$\stackrel{+8.5 \text { Volts }}{ }{ }_{-S D C}$

Figure SP420-1. EFP Adapter Card Signal Lines (Pin Side)

Line Name

- Panel Check Indicato
- Operator Attention
- Stop On Store
- Stop On Fetch TP Bk
- Stop On Fetch TP Bk
- Stop On Sys Ck TP Bk
- Stop On Sys Ck TP Bk
- Stop On Sys Ck
+ Control Bit 5
+ Control Bit
Spare
Interlock (To YO2)
- SDC Bus Sync
- SDC Bus Syn
- TP Break
- System Reset
- System Reset

CHIO Inhibit TP BK
CHIO Select TO Bk

- Clear PN TP Bk
TP Break
VTL Msec Clock 2
- Enable Hex Digit 6
- Enable Hex Digit 7
+ Level 2
+ Level 1
+ Level 3
+ Tie Up
+ Blanked
- Tie Down
- DAT Active Indicator

Spare
Sense 04×4 BOPA O

- Sense 14×4 BOPA
- Sense 24×4 BOPA
- Sense 34×4 BOPA
- Sense
Chg Out TP Bk

Lvi Chg Out
-TP Bk
CB3 EFP Enable
-0 FLT Test Break

- + Non Zero Level
- Strobe 2 BOPA

Interlick (To WO2)

ine Name
Interlock (to 233)

- Prog Mode 3 Indicator
- Stop On System Check
- Prog Mode 2 Indic
Stop On Store
- Prog Mode 1 Indicato
- Stop On Fetch
- Prog Mode 0 Indicator
- Processor Stopped Ind.
- Keyboard Locked Ind
Access Register 2 Ind.

Access Register 1 Ind.

- Sense 05×5 Keypad

- Sense 05×5 Keypad
- Sense $15 \times 5 \mathrm{Keypad}$

- Sense 25×5 Keypad - Sense 35×5 Keypad - Sense 45×5 Keypad

Strobe 0 BOPA

- Strobe 1 BOPA

Strobe 2 BOPA
Strobe 3 BOPA
Strobe 4 BOPA

+ Control Select
+ Control Select
Interlock (To W33)
- Hex Drive 3
- Hex Drive 2
- Hex Drive 1
- Hex Drive 0
- Hex Drive
+ Blanked
- Enable Hex Digit 0

Enable Hex Digit 1
Enable Hex Digit 2
Enable Hex Digit
Enable Hex Digit 5
Interlock (To W33)

- Level Change

Level Change
Keylock 1 From BOPA
Keylock 2 from BOPA

- Lamp Test From BOPA

Spare
Strobe 0 BOPA
Strobe 1 BOPA Spare

- Strobe 3 BOPA - Strobe 4 BOPA
*These jumpers are physically in the top card connectors.
Figure SP420-2. EFP Adapter Card Signal Lines (Card Side)

SP430 Expanded PaneI FRU Component and Connector Diagrams

Figures SP430-1 through SP430-8 show the physical layout and wiring of the EFP keypad card, mode and state indicator card, and hex display card

Figure SP430-1. EFP Keypad Card

Figure SP430-2. EFP Adapter Card-to-EFP Keypad Wiring

Figure SP430-3. Mode and State Indicator Card (Front View)

Figure SP430-4. EFP Adapter Card-to-EFP Mode and State Indicator Card Wiring

Figure SP430-5. Mode and State Indicator Card-to-Power Connections

Figure SP430-6. Hexadecimal Display Card (Front View)

Figure SP430-7. EFP Adapter Card-to-EFP Hex Display Card Wiring

	J2	P2	TB1
EfP			
Hexadecimal	3	3	-Ground-
Display Card	4	4	- +5 Volts-
	5	5	+5 Volts-

Figure SP430-8. Hex Display Card-to-Power Connections

Figure SP450-1. EFP Adapter Card Data Flow Diagram

Figure SP450-2. EFP Adapter Card-to-BOP Adapter Card

This section describes how to adjust, remove, and install (exchange) EFP components. Refer to Figures SP500-1 through SP500-3, and if necessary, to SP111 for illustrations showing locations.

To replace any operator panel component, you must first gain access to the rear of the panel. Perform the following:

1. Remove 8140 power plug from the wall.

Caution: DC voltage is still present at the operator panel with the $\mathbf{8 1 4 0}$ power switch in the Off position.
2. Open the 8140 front covers and remove the BOP/EFP bezel by sliding the two retainer clips to the rear. These are located at the bottom of the bezel. Remove the bezel by lifting it straight up.
3. Pivot the BOP/EFP assembly toward the front of the 8140 to gain access to any of the EFP field-replaceable units.
SP510 Adapter Card

1. Turn off power to the 8140 .
2. Remove card from M2, P2, or S2, depending on the model
3. Move any card jumpers to the replacement card.
4. Replace card, power up 8140 and run EFP test for verification of correct panel operation.
SP520 Keypad

To remove the keypad:

1. Unplug cable from J6 connector on keypad FRU
2. Remove keypad retaining hardware.
3. Remove keypad.

To replace keypad, reverse keypad removal procedure

SP530 Hexadecimal Display Card
To remove hexadecimal display card:

1. Unplug J1 and J2 connectors.
2. Remove card retaining hardware.
3. Remove card.

To replace hexadecimal display card, reverse the card removal procedure.

SP540 Mode and State Indicator Card

To remove mode and state indicator card:

1. Unplug J3, J4, and J5 connectors.
2. Remove card retaining hardware.
3. Remove card.

To replace mode and state indicator card, reverse the card removal procedure

Figure SP500-1. BOP and EFP Access

. Figure SP500-2. BOP and EFP Frame Mounting

Chapter 5. MAP Reference Information

Magnetic Tape Adapter

Contents

This part of Chapter 5 provides maintenance information to service the 8809 Magnetic Tape Attachment Feature adapter used for the IBM 8100 Information System. When used with IBM's MAP Maintenance Package, the TA MAP diagnoses tape adapter, problems and refers to this part of Chapter 5 for such information as hardware locations, possible-cause-of-failure lists, and wiring checks.

This part consists of five sections:

1. General Information (TA100-TA133): Contains information on TA components, addressing, operation, and repair strategy.
2. Offline and Online Tests (TA200-TA255): Contains test information and action plans.
3. Intermittent Failure Repair Strategy (TA300-TA353): Contains information to repair intermittent failures.
4. Signal Paths and Detailed Operational Description (TA400-TA453): Contains diagrams and wiring charts which show wiring and signal paths.
5. Console Messages (TA500-TA520): Contains information about the operating system console messages.

TA100 General Information	5-T
TA110 Components and Addressing.	5-TA. 1
TA111 Hardware Components	5-TA-1
TA112 Addressing	5-TA.4
TA113 Configuration Table Entry	5-TA-4
TA120 Basic Operational Description	5-TA-5
TA121 8809 Adapter to Tape Drive Basic Operations	5-TA-5
TA130 Adapter-Unique Repair Strategy	5-TA-6
TA131 Offline Checkout	5-TA-6
TA132 DPCX Online Exerciser	5-TA-6
TA133 Intermittent Failures.	5-TA-6
TA200 Offline and Online Tests	5-TA. 7
TA210 Offline Test Routine Descriptions	5-TA-7
TA211 Adapter Tests	5-TA-7
TA212 Tape Drive Tests	5-TA-8
TA213 Special Requirement Tests	5-TA.9
TA220 DPCX Online Exerciser	5-TA-10
TA221 Running the DPCX Online Tape Exerciser.	5-TA-10
TA222 DPCX Exerciser Invocation Examples Using the	
Basic Operator Panel	5-TA-10
TA230 Test Messages and Status Information	5-TA-10
TA231 Offline Tape Adapter Tests	5-TA-10
TA232 DPCX Online Exerciser	5-TA-11
TA233 Status and Sense Bytes	5-TA-12
Sense Byte 0 (Tape Unit Status)	5-TA-12
Sense Byte 1	5-TA-13
Sense Byte 2	5-TA-13
Sense Byte 3	5-TA-13
Sense Byte 4	5-TA-13
Sense Byte 5	5-TA-14
Sense Byte 6-Write Block or Write Tape Mark Only (Bit 0 = 1)	5-TA-14
Sense Byte 6-Not Write Block or Write Tape Mark (Bit $0=0$)	5-TA-14
Sense Byte 7-Not Used.	5-TA-14
Sense Byte 8	5-TA-15
Sense, Byte 9	5-TA-15
Sense Byte 10	5-TA-16
Sense Byte 11	5-TA-16
Sense Byte 12	5-TA-16
Sense Byte 13	5-TA-17
Sense Byte 14	5-TA-17
Sense Byte 15	5-TA-17
Adapter Status Bytes.	5-TA-18
TA240 Test Error Message Descriptions	5-TA-19
TA241 Adapter Test Messages.	5-TA-19
TA242 Tape Drive Test Messages	5-TA-21
TA243 Special Requirement Test Messages	5-TA-27
Symptom Codes (SCs) Generated by Routine 6C	5-TA-30

TA110 Components and Addressing . 5-TA. 1 TA111 Hardware Components

TA120 Basic Operational Descriptio
5-TA-5 Thich

TA200 Offline and Online Tests
TA210 Offline Test Routine Descriptions
5.TA. 7
TA213 Special Requirement Tests.

TA220 DPCX Online Exerciser
5-TA-10
TA222 DPCX Exerciser Invocation Examples Using the
Basic Operator Panel
5-TA-10
5-TA. 10
5-TA-11
5-TA-1
5-TA-13
5-TA-13
5-TA-13
5-TA-13
5-TA. 14
5-TA-14
5-TA-14
5-TA-15
5-TA-15
5-TA-16
5-TA. 16
5-TA-17
5-TA-17
5-TA-17
5-TA- 17 5-TA-18 5-TA-19 5-TA-21 5-TA-30

DPCX Online Exerciser Messages	31
TA250 Failure Action Plans	5-TA-32
TA251 SCF/Tape Adapter Failure Action Plan	5-TA-32
TA252 Tape Adapter Failure Action Plan	5-TA-32
TA253 Tape Adapter/Tape Drive Failure Action Plan	5-TA-32
TA254 Tape Drive Action Plan	5-TA-32
TA255 Card Exchange Table	5-TA-33
TA300 Intermittent Failure Repair Strategy	5-TA-35
TA310 Adapter-Unique Intermittent Repair Strategy	5-TA-35
TA311 Looping with MAP Interaction to Determine	
Intermittent Failures	5-TA-35
TA312 Using the System Error Log to Determine	
Intermittent Failures	5-TA-35
TA313 Using the Free-Lance Utility to Determine	
Intermittent Failures	5-TA-35
TA320 Error Log Information Needed for the Tape Adapter	5-TA-35
TA321 DPPX	5-TA-35
TA322 DPCX	5-TA-35
TA330 Error Log Formats and Meanings Used for the Tape Adapter	5-TA-36
TA331 DPPX Error Log Formats and Meanings	5-TA-36
DPPX Error Log Display	5-TA-36
Record Meaning	5-TA-36
TA332 DPCX Condition/Incident Log Formats and Meanings	5-TA-38
Temporary Errors	5-TA-38
Permanent Errors	5-TA-38
Error Data Display, Temporary Errors	5-TA-38
Error Data Display, Permanent Records	5-TA-38
Record Meaning	5-TA-39
TA333 DPPX and DPCX Common Error Log Byte Meanings	5-TA-40
Adapter Return Code (ARC)	5-TA-40
Command Byte	5-TA-40
Completion Status	5-T
Function Module Request Code	5 -T
PIO Command	5-TA-41
TA334 Tape Statistical Data (TSD) Counters	5-TA-41
TA340 How to Use the Error Log to Determine Tape Adapter Failu	5-TA-42
TA341 DPPX Error Log	5-TA-42
TA342 DPCX Condition/Incident Log	5-TA-42
TA350 Action Plan to Correct Intermittent Failures	5-TA-42
TA351 8809 Model 1A Intermittent Failure Action Plan (Adapter in 8101)	5-TA-42
TA352 8809 Model 1A Intermittent Failure Action Plan	
(Adapter in 8140) .	5-TA-42
TA353 8809 Model 1B Intermittent Failure Action Plan	5-TA-42
TA400 Signal Paths and Detailed Operational Description	5-TA-43
TA410 Adapter Card Interconnection Logic Signals	5-TA-46
TA420 Adapter Card Wiring Diagrams	5-TA-47
TA421 8809 Model 1A Adapter Card Wiring (Adapter in 8101)	5-TA-47
TA422 8809 Model 1A Adapter Card Wiring (Adapter in 8140)	5-TA-48
TA423 8809 Model 1B Adapter Card Wiring	5-TA-49
TA430 Adapter Card and Top Card Connector	
Locations and Illustrations	5-TA-50
TA431 8809 Model 1A Adapter Card and Top Card	

TA432 8809 Model 1A Adapter Card and Top Card
Connector Locations (Adapter in 8140)
TA433 8809 Model 1B Adapter Card and Top Card
Connector Locations
A4434 8809 Adapter Card Illustrat
TA450 Adapter Point-to-Point Necks
TA451 8809 Model 1A Point-to-Point Net Checklist
(Adapter in 8101)
Model 1A Point-to-Point Net Checklist
TA453 8809 Model 1 B Point-to-Point Net Checklist
TA453 8809 Model 1B Point-to-Point Net Checklist 5-TA-60

Figures

TA111-2.	8100/8809 Model 1A Tape System (Adapter in 8101) 8809 Model 1A Adapter and SCF Card and Cable Locations (Adapter in 8101)	5-TA-2
TA111-3.	8100/8809 Model 1A Tape System (Adapter in 8140)	5
TA111-4.	8809 Model 1A Adapter and SCF Card Locations (Adapter in 8140) \qquad	5-TA-3
TA111-5.	8100/8809 Model 1B Tape System	5-TA-4
TA111-6.	8809 Model 1B Adapter and SCF Card and Cable Locations \qquad	
TA120-1.	8809 Model 1A Tape System Basic Data Flow (Adapter in 8101)	5
TA120-2.	8809 Model 1A Tape System Basic Data Flow (Adapter in 8140 Model Bxx)	5-TA-5
TA120-3.	8809 Model 1B Tape System Basic Data Flow (Adapter in 8809)	5-TA-5
TA233-1.	Status and Sense Bytes	5-TA-12
TA331-1.	DPPX Error Log Display for Mount/Dismount Records	5 -T
TA331-2.	DPPX Error Log Display for Error Records (Format 1)	5 -T
332-1.	DPCX Type-2 System Check Record Display	TA-38
A332-2.	DPCX Type-4 System Condition Record Display	5-TA-38
TA332-3.	DPCX Type-5 Variable Data Record Display	5-TA-38
TA334-1.	8809 Tape Statistical Data (TSD) Counters	5-TA-41
TA400-1.	Adapter Detailed Data Flow Diagram (2 Parts)	5-TA-44
TA410-1.	Logic Signals Between Adapter Top Card Connectors	5-TA-46
TA410-2.	Logic Signals Between Adapter Cards	5-TA-46
TA410-3.	Adapter Card Locations	5-TA-46
TA431-1.	Top Card Connector Location and Pin Numbering, Model 1A (Adapter in 8101)	5-TA

TA431-2.	Adapter Card and Cable Locations-8101 01A-A2 Board (Card Side)	5-TA-50
TA432-1.	Top Card Connector Location and Pin Numbering, Model 1A (Adapter in 8140). \qquad	5-TA-51
TA432-2.	Adapter and SCF Card Locations-8140 C2 or D2 Board	5-TA-51
TA433-1.	Top Card Connector Location and Pin Numbering, Model 1B.	5-TA-52
TA433-2.	Adapter Card and Cable Locations-8809 01A-A1 Board (Card Side).	5-TA-52
TA434-1.	TA1 Card.	5-TA-53
TA434-2.	TA2 Card.	-TA-53
TA434-3.	TA3 Card.	5-TA-54
TA451-1.	Model 1A Adapter Net Checklist (Adapter in 8101) (2 Parts) \qquad	5-TA-56
TA452-1.	Model 1A Adapter Net Checklist (Adapter in 8140) (2 Parts)	5-TA-58
TA453-1.	Model 1B Adapter Net Checklist (2 Parts)	5-TA-60

Abbreviations

amp	Amplifier
ARC	Adapter Return Code
BADDR	Basic Address Register
BGERR	Backround Error
BOP	Basic Operator Panel
BOT	Beginning of Tape
BSB	Back Space Block
BSF	Back Space File
CHCV	Channel Control Vector
CHCVC	Channel Control Vector Command
CHCVD	Channel Control Vector Data
CHIO	Channel I/O
CIL	Condition/Incident Log
ck	Check
CLSAR	Control Lines Storage Address Register
cmd	Command
cnt	Count
cntI	Control
CNTL-L	Control Lines
cntr	Counter
conn	Connector
DA	Drive address
det	Detect
DPCX	Distributed Processing Control Executive
DPPX	Distributed Processing Programming Executive
DRV/RCV	Driver/Receiver
DSE	Data Security Erase
EADDR	Extended Address Register
ELDA	Error Log Data Analysis
ELSA	Error Log Summary and Archive

Envelope
Erase Gap Erase Gap
Error Record Indicator
Function Definition Modul
Function Definition Module
Function Request Block
Field Replaceable Unit
Forward Space Block
Forward Space Block
Forward
General Failure Index
Halfword
Inter Block Gap
Isolation Code
Identification
Input/Output
Inches Per Second
Logical Address
Light-Emitting Diode
Low
Loop Write to Read
Maintenance Analysis Procedure
Machine Check
Maintenance Device
Medium
Multi-Track Erro
Physical Address
Phase Encoded Identification
Programmed I/O
Processor Storage Address Register
Processor Storage Address Register
Register
Read/Write
Storage Address Register Symptom Code
System Control Facility
Segment
Set High Speed
Set Long Gap
Suppress Length Indication
Set Low Speed
Secondary System Control Facility
System List Error Log
System List Tape Statistical Dat
System Test Control Monitor
Tachometer
Translated Adapter Return Code
Transfer in Channel
Tape Mark
Tape Statistical Data
Test Control Line Parity
Unit Type
Write Tape Mark

TA100 General Information

This section contains information on hardware components, addressing, operation, and adapter-unique repair strategy.

A110 Components and Addressing

TA111 Hardware Components
An 8809 tape subsystem has three different configurations which are mutually exclusive. Each may have up to four tape units.

In the first configuration, the two tape adapter cards and a driver/receiver card reside in the 8101. The System Control Facility (SCF) card for the adapter can be shared with either the diskette or disk adapters or both, depending on the 8101 configuration. The first tape unit, always a Model 1A, connects to the 8101. See Figures TA111-1 and TA111-2.
In the second configuration, the two tape adapter cards and a driver/receiver card reside in the 8140 Model Bxx. The System Control Facility (SCF) card for the adapter can be shared with a display printer or communications adapter, depending on the 8140 con figuration. The first tape unit, always a Model 1A, connects to the $\mathbf{8 1 4 0}$. See Figures TA111-3 and TA111-4.

In the third configuration, which uses an 8809 Model 1B, the adapter cards, as well as the SCF card, reside in the first tape unit. In this configuration, the SCF is not shared and the tape unit connects to the 8130 or 8140 Processor or the 8101 and must be physically adjacent. See Figures TA111-5 and TA111-6.

For a description of the Model 2 and 3 tape units, see Chapter 4, GR300.

Figure TA111-1. 8100/8809 Model 1A Tape System (Adapter in 8101

Figure TA111-2. 8809 Model 1A Adapter and SCF Card and Cable Locations (Adapter in 8101)

Figure TA111-3. 8100/8809 Model 1A Tape System (Adapter in 8140)

Figure TA111-4. 8809 Model 1A Adapter and SCF Card Location
(Adapter in 8140)

Figure TA111-5. 8100/8809 Model 1B Tape System

TA112 Addressing
To specify a particular tape drive for any operation, the adapter physical address (PA) and a drive address (DA) must be used.

The adapter PA consists of two hexadecimal (hex) characters. The first (P) specifies the SSCF Group address and is determined by the SSCF card address switch settings. The second (A) specifies the tape adapter address within the SSCF group address. Refer to Chapter 2, CP200, for a discussion of addressing. The DA also consists of two hex characters and is determined by switch settings on a tape drive card.

TA113 Configuration Table Entry
This configuration table entry example aids in understanding how to specify a particular tape drive for testing. When running tests and the prompt message 'Enter PADA' displays, you must specify both a level 01 and a level 02 (adapter and drive) address. For example,
9301 selects drive address 01 that is connected to the first 8101 .

The following shows a maximum tape configuration entry. Be aware that only one level 01 PA entry can exist in the configuration table

SSCF Group and Tape Adapter Addresses (PA)

LV	PA	UTUT	OPOP	OPOP	Comments
01	5 E	0040	0000	0000	8140 Model Bxx
01	73	0040	0000	0000	8809 Model 1B
01	93	0040	0000	000	First 8101
01	A3	0040	0000	0000	Second 8101
01	B3	0040	0000	0000	Third 8101
01	C3	0040	0000	0000	Fourth 8101

Tape Drive Addresses (DA)

LV	DA	UTUT	OPOP	OPOP
02	00	0040	0000	0000
02	01	0040	0000	0000
02	02	0040	0000	0000
02	03	0040	0000	0000
02	04	0040	0000	0000
02	05	0040	0000	0000
02	06	0040	0000	0000
02	07	0040	0000	0000

The tape adapter consists of two adapter cards (TA1 and TA2) plus one driver/receiver card (Model 1A Tape System only). The adapter controls the operation of from 1 to 4 tape drives, depending upon the customer configuration. Figures TA120-1, TA120-2, and TA120-3 show the general layout and data flow of the adapter. Refer to the TA400 section for detailed information.

Figure TA120-1. 8809 Model 1A Tape System Basic Data Flow (Adapter in 8101)

Figure TA120-2. $\mathbf{8 8 0 9}$ Model 1A Tape System Basic Data Flow (Adapter in 8140 Model Bxx)

Figure TA120-3. 8809 Model 1B Tape System Basic Data Flow (Adapter in 8809) drives. The following briefly describes these operations:

- Write-directs the adapter to transfer ' X ' bytes of data from processor storage to the tape drive. The tape drive moves forward towards the end of tape (EOT) marker, tape drive. The tape drive moves forward towards the end
while writing the data from processor storage to the tape.
- Read-directs the adapter to transfer ' X ' bytes of data from the tape drive to processor storage. The tape drive moves tape forward towards the EOT marker, assembling the data from tape and passing it to the adapter, where it can then transfer to processo storage.
- Forward Space Block-moves tape forward towards the EOT marker to the next interblock gap (IBG). No data transfer or error detection occurs using the information con tained within that block
- Back Space Block-moves the tape backward towards the beginning of tape (BOT) marker either to the next interblock gap or to the load point, whichever comes first. No data transfer or error detection occurs using the information contained within that block.
- Forward Space File-moves tape towards the EOT marker to the interblock gap beyond the next tape mark. No data transfer or error detection occurs using the information contained within that file.
- Backspace File-moves tape towards the BOT marker either to the interblock gap beyond the next tape mark or to load point, whichever comes first. No data transfer or error detection occurs using the information contained within that file.
- Write Tape Mark-writes a tape mark (a block of significant non-data bytes separating files), and does not require processor information transfer.
- Data Security Erase-erases tape information from the present position of the tape to one meter beyond the EOT marker.
- Erase Gap-moves the tape forward towards the EOT marker, and erases approximately 8.75 cm (3.5 inches) of information.
- Rewind-rewinds the tape, which remains loaded when the tape reaches load point
- Rewind/Unload-rewinds the tape to load point and unloads the tape. If already a load point, the tape immediately unloads.
- Mode Set-sets the speed and the IBG length.

TA130 Adapter-Unique Repair Strategy

This section describes that repair strategy unique to the 8809 Magnetic Tape adapter. Refer to Chapter 4, GR500, for general 8100 Information System repair strategy.

The General Failure Index (GFI) initially determines whether the tape drive or the adapter caused a problem. Before entering the $8809 / 8100$ maintenance package, ensure that the 8100 operates properly. Use the TA MAP contained on MD diskette 03 to determine the cause of the failure. When the MAPs instruct you to run a test and detects a failure, the MAP then generates an Isolation Code (IC). The IC then points to a MAP to provide further direction.

TA131 Offline Checkout
To perform the adapter offline checkout, obtain the 8100 from the customer. Use main tenance device diskette 03 and specify the offline basic checkout option selection ' A from the TA MAP menu. Run the offline tests to isolate the problem to the adapter, the tape drive, or to the unit's Secondary System Control Facility (SSCF).
If the problem is isolated to the adapter, the TA MAP directs you to replace the FRU(s) causing the problem. If the problem is not corrected, you are referred to TA250 (Failure Action Plans) for further corrective action.

If the problem is isolated to the tape drive, the TA MAP refers you to the 8809 Tape Drive MAPs for further corrective action.

If the problem is isolated to SSCF, the TA MAP refers you to the system control facility MAP (SC) for further corrective action.

TA132 DPCX Online Exerciser
With DPCX, you can check the adapter and drive(s) online by using the DPCX Online
Exerciser, which tests operations that a customer might normally execute. If a failure occurs, the program collects and analyzes the error data, and then generates Symptom Code (SC) to identify the failing area or FRU. The SC points to a MAP which then provides further direction.

TA133 Intermittent Failures
An intermittent failure can occur so infrequently that looping the test might not detect it. You should then use the system error log. See TA330 and TA340 for detailed information on the error log

An error can also occur at random times and generate different test error messages, which makes the MAPs ineffective. After the MAPs detect three different test error messages, you are instructed to use the action plans in TA250.
f errors occur only after looping the tests for more than 15 minutes, record the test error message and use the free-lance looping operation (TA313) and the action plans in TA250.

See TA300 for detailed information on intermittent failures.

TA200 Offline and Online Tests

To test and repair the adapter and attached tape drive (s), IBM provides offline tests and a DPCX online exerciser.
The offline tests reside on MD diskette 03. The DPCX online exerciser is provided only for those systems using DPCX, and is part of the program.

The offline tests detect and report failures between the System Control Facility (SCF) and the tape adapter, in the adapter, between the tape adapter and the tape unit, and in the tape unit under test.

The DPCX online exerciser contains routines to isolate data transfer problems from tape motion problems, and to functionally exercise the tape unit.

A210 Offline Test Routine Descriptions

The offline test, which consists of 48 routines on MD diskette 03 , is divided into three parts: adapter routines, device routines, and special requirement tests. The maintenance device runs and controls offline test operation, which requires dedication of the entire 8100.

The adapter tests complete in 15 seconds, while the device tests take 5.5 minutes. For the run times of the special requirement tests, see the individual routine descriptions in TA213

TA211 Adapter Tests
The 14 adapter routines test the adapter hardware, I/O commands, and the SCF signal bus path from the SSCF to the tape adapter. The MD invokes the adapter routines either by the MAP or by a free-lance operation. See TA241 for error descriptions.

When using the MAP, the tests are invoked automatically when required. When using the free-lance operation, the following test invocation procedure must be used:

1. At $80 B C$ or PA00, enter PADAB
2. At $81 B C$, enter SLRRB

Where:
PA = adapter address (see TA113)
DA = address of the drive to be tested (see TA113)
S $=$ sense option:
$0=$ run only adapter tests, routine 01-15
$1=$ run adapter/device tests, routines $01-56$
$2=$ run adapter/device tests with manual intervention routines 01-56
$L=$ loop option:
$0=$ run selected routines one time
$1=$ loop selected routines; stop on error
$2=$ loop selected routines; bypass error
$R=$ routine number. If 00 or no entry is made, all routines for sense option are run. If a routine number is entered, only that routine is run
B $=$ begins execution and enters the invocation message.

Successful completion of the adapter tests (PA00) occurs in 15 seconds. A short description of each routine follows:

Routine 01, Address Recognition Test. Determines if the adapter under test recognizes its own address by issuing an Adapter Reset command. A machine check or an $1 / O$ interuption should not occur

Routine 02, Command Test. Determines if the adapter under test responds to al valid commands and causes a machine check for all invalid commands. All bit paterns from hex 00 to hex FF are issued as commands.

Routine 03, Adapter Register Test. This routine tests: (1) whether all bit combinations can be written into each adapter register, and (2) whether all adapter registers are reset by he Reset Adapter command. Except for the status register, this routine checks all regisers by writing all patterns to each register. It then reads them back while comparing the values to the write mask values. Each register is reset and checked for zero.

Routine 04, Basic and Extended Status Register Set/Reset and Interrupt Test. Tests that he basic and extended status registers: (1) can be written correctly, (2) can be reset selectively, and (3) have certain bit settings that cause generation of interruptions. Five tests are performed:
. Reset the status registers
Write hex $F F$ to the status registers and test that selective bits are reset
3. Check extended status for setting and reading all bit combinations,
. Check that the extended bits set the interrupt bit.
. Check basic status for setting and reading all bit combinations.
Routine 05, Timer Test. Tests the timer to ensure that an interruption: (1) occurs, (2) occurs only once, and (3) occurs within 800 to 1500 ms .

Routine 06, Counter Test. Checks that the Increment and Decrement commands cause the appropriate counters to increment or decrement correctly, and ensures that the dapter storage address counters wrap correctly. The counters are first set to a beginning value of either 1 's or 0 's, depending on whether the counter increments or decrements. The counters are then stepped through their complete range while being checked for the correct value at each step. They are also checked to ensure that only the correct command loads each counter

Routine 07, Buffer Test. Checks that the alternate buffers can be written and read correctly, and that the processor storage address register (PSAR) counter steps during these Read/Write Buffer commands.

Five data patterns and their complements are used to test every buffer address:

Pattern	Even Address	Odd Address
1	FFO0	OOFF
2	OOFF	FF00
3	AA55	55AA
4	55AA	AA55
${ }^{4} 5$	0101	F7F7
sed for parity checking.		

*Used for parity checking.

The routine writes every address by using a write loop, then reads and checks them by using a read and compare loop. The routine also checks the wrapping of the processor storage address register by using a loop count of 257 for 256 addresses.
Routine 08, Wrap Test. Tests that the Wrap command: (1) increments the control line storage address register (CLSAR) and (2) wraps data through the buffer with no errors.

The routine first issues a Reset Adapter command to set the processor storage address register (PSAR) and CLSAR to zero, and writes a halfword of hex FFOO into the first buffer address. The routine then issues a Wrap command and a Read Buffer command The first address should now contain hex FFFF, and the CLSAR should increment.

The routine completes successfully when the hex FFFF pattern ripples through all buffer positions by using the Wrap command. The routine checks every step to ensure that it completed correctly and that no parity errors occurred.

Routine 09, Function Control Block (FCB) Test. Checks the FCB fetch operation by using no-op FCB values. It executes an FCB list containing five no-op FCBs and an end-op FCB, and then checks the channel pointer register for correct ending status and value.

Routine 11, Command Transfer In Channel (TIC) Test. Checks command TIC operation by using no-op FCB values. It executes an FCB list containing a no-op, TIC, and end-op, and then checks the channel pointer register for the correct command value.
Routine 12, Program-Requested Interrupt (PRI) Test. Checks program-requested inter rupt operation in FCB mode by using no-op FCB values with the PRI bit on. It execute an FCB list containing a no-op (with the PRI bit on) and an end-op, and then checks status to ensure that the PRI and interrupt bits are on.

Routine 13, Invalid Subcommand Test (FCB Mode). Checks invalid subcommand detecion in FCB mode. It executes four invalid FCBs, each one of which should set interrupt and invalid subcommand status.

Routine 14, Parity Check Test. Checks the parity status bit by wrapping a bad parity byte with the Test Control Line Parity (TSTCLP) command. The command is the same as the Wrap command except that parity is inverted, which causes a parity error.

Routine 15, Control Lines Sequence Error Test. Checks that a control line sequence rror occurs when issuing a command to a nonselected tape unit. It first issues a Stop mmand before selecting the drive, which should turn on the control line sequence error status bit.

The 20 tape unit routines test for correct adapter-to-tape unit information transfer, as well as correct operation of the selected tape unit, and complete in 5.5 minutes. Refer to TA211 for the test invocation procedure when using free-lance mode.
hese routines also use a background error (BGERR) function, which checks for error on operations that have been tested by a previous routine. It is used to aid in resolvin intermittent errors by giving the correct error indication for failures that occurred in TA242 for a Se TA242 for a description of these error numbers.

The DIAG section of the 8809 Maintenance Manual contains a detailed description of the tape drive tests. The following briefly describes each routine:

Routine 40, Control Line Test. Exercises the control lines into the tape unit. It first executes an adapter reset and checks status to verify that no inbound lines to the status register are active. It then selects a drive and checks status to verify that correct selection occurred and that the drive responded with the correct address on Bus in.
Routine 41, Select Active Test. Tests the ability of the adapter to get a control line sequence error when selecting a tape unit that was previously selected. The routine first elects the drive, which should operate correctly. It then reselects the drive, which should cause a control line sequence error because Select Active was still on

Routine 42, Sense Byte Test. Verifies: (1) the operation of the Sense command and (2) that certain sense bytes contain the proper information after a Check Reset command

Routine 43, Loop Write-to-Read Test. Tests the data transfer circuits by transferring data patterns, which vary in length and content, through the write and read path. This routine is the first one to check the data TIC function of the adapter.

Routine 44, Poll Test. Tests that the tape unit can both suppress response and correctly respond to a poll tag.

Routine 46, Low-Speed Test. Ensures that various functions can be performed in low speed mode.

Routine 47, Write/Read Phase Encoded Identification (PEID) Test. Writes a PEID and then performs a read back check.

Routine 48, 31.75 Centimeter/sec (12.5 ips) Write/Read Test. Writes stress data pattern that vary in length, and then performs a read back check.

Routine 49, Dual Gap Test. Checks that the Set Long Gap and Set Short Gap command function correctly.

Routine 4A. Backward Creep Test. Ensures that a Backspace and Write command sequence does not destroy data in the record previous to the one being rewritten.

Routine 4C, High-Speed Test. Ensures that various functions can be performed in highspeed mode.

Routine 4D, Repositioning Test. Ensures that the hardware repositions the tape to the proper location when the Reinstruct command occurs too late. Only the 254 centimeter/second (100 ips) tape mode uses this routine

Routine 4E, Write Tape Mark Test. Writes a tape mark (TM) and then performs a read back check. The tape is backspaced and then spaced forward over the tape mark to determine that the TM can be written and read correctly.

Routine 4F, Basic Write/Read High-Speed Test. Writes variable-length stress data pattern records, and then performs a read-back check with the tape unit in the 254 centimeter/second (100 ips) mode of operation.

Routine 50, Incorrect Length Detection and Suppression Test. Tests that the adapter can recognize an incorrect length record by reading both long and short. It also tests the ppress length indicator bit by reading long and short. No length error should occur with the suppress length indicator bit on

Routine 52, Erase Gap (ERG) Test. Writes several 4 K byte records, rewinds the tape, and executes erase gap operations to erase the records. It then reads the records to ensure that they were erased.

Routine 53, Write High-Speed, Read Low-Speed Test. Writes stress data patterns at 254 entimeters/second (100 ips) and then reads them at 31.75 centimeters/second (12.5 ips)

Routine 54, Read High-Speed Test. Uses high-speed mode to read the tape that was written by Routine 53. Status and data compare operations are used to verify correct operation.

Routine 55, Magnetized Head Test. Writes a 2 K byte record, moves the record over the head assembly 10 times, and then reads the record. This sequence is repeated twice. If the last read operation is successful, the write head is considered to be properly demagnetized.

Routine 56, Data Security Erase Test. Tests the Data Security Erase command.
TA213 Special Requirement Tests
These 14 tests are selectable and can only be invoked in free-lance mode. You use these ests to perform skew adjustment, verify the read operation, display the sense bytes, check read/write reliability-interchange, and to complete the functional testing of the read path.

These routines use the background error (BGERR) function. Refer to TA212 for a brief description of BGERR, and to TA211 for test invocation procedures. See TA243 for error descriptions.

The DIAG section of the $\mathbf{8 8 0 9}$ Maintenance Manual contains a detailed description of the tape drive tests. The following briefly describes each routine

Routine 5A, Read Test Pattern Tape (Part 1). Reads a previously written test tape to check read functions and error-checking circuits, and runs in approximately two minutes.

Routine 5B, Read Test Pattern Tape (Part 2). Reads a previously written test tape and compares the expected data with the data read. It also tests the Write command on a file-protected tape, and runs in approximately 5 minutes.

Routine 60 , Write Reliability-Interchange Test. Tests the write operation by writing interchange test tapes, and runs in 35 seconds.

Routine 61, Read Reliability-Interchange Test. Reads tape written by Routine 60 and runs in 50 seconds.

Routine 62, Tape Control Line Exerciser. Exercises the control lines, and runs in 10 seconds.

Routine 63, Load/Rewind/Ready Problem Analysis. Performs an analysis of load, rewind, and ready problems, and runs in 10 seconds.

Routine 64, Reinstruct Timing Test-Short Gap. Checks Reinstruct command timing in short gap mode, and runs in approximately 5 minutes when using a 2400 -foot reel

Routine 65, Reinstruct Timing Test-Long Gap. Checks Reinstruct command timing in long gap mode, and runs in approximately 5 minutes when using a 2400 -foot reel.

Routine 66, Read Continuous High-Speed Test. Reads continuously in high-speed mode, and runs in approximately 5 minutes when using a 2400 -foot reel.

Routine 67, Inter-Block Gap IBG Measurement Test. Ensures that correct length gaps are written, and runs in 90 seconds.

Routine 6A, Skew Adjustment Exerciser. Exercises the tape while you perform mechan cal skew adjustments. The routine takes 5 minutes when using a 2400 -foot reel, and cannot be looped.

Routine 6B, Sense Byte Display Utility. Displays sense information from the most recent test error, and runs in 10 seconds.

Routine 6C, Symptom Code (SC) Generator Utility. Generates the symptom code for the most recent test error, and runs in 10 minutes.

Routine 6D, ‘P’ Track Only (PTO) Exerciser. Writes and reads a 4096-byte record o hex 00 by using a loop function to perform 40,000 operations. The run time is $31 / 2$ hours.

Note: The tape does not move when running routine $6 D$.

TA220 DPCX Online Exercise

The DPCX online exerciser runs under the SYSTCM utility and uses the normal invoca tion procedure.

Note: Only the tape unit under test must be dedicated.
Normal error logging, as well as any program error recovery procedures, are suppressed for the tested unit, but all other tape units operate normally.

The online exerciser uses two routines (01 and 02) that test tape-unit operations under normal conditions. These routines, described briefly below, might not determine highly intermittent problems:

Routine 01, Data Path and Tape Motion Test. Isolates data transfer problems from tape motion problems. It uses the loop write-read and erase gap functions, and runs in 15 seconds.

Routine 02, Functional Test Exerciser. Performs a functional verification of each start I/O operation, such as write, read, forward space block, and rewind, and runs in 70 seconds.

When detecting an error, the exerciser presents the 16 tape unit sense bytes, the two adapter status bytes, the symptom code (SC) for that error, and any other important completion and error codes from the system.

TA221 Running the DPCX Online Tape Exerciser
The SYSTCM utility must be used to invoke the DPCX online tape exerciser. This section contains information that relates only to tape-unique functions. For procedures on how to run the SYSTCM utility, refer to the Chapter 2, CP810, ‘How to Log On and Run DPCX Online Tests.'

Before running the exerciser:

1. Clean the tape unit to be tested. Tape-cleaning instructions are found on OPER Clean the tape unit to be tested. Tape-cleaning in
2. Mount a known good scratch tape reel containing a write enable ring.
3. Load the tape drive and make it ready. (The READY indicator should be on.)

Invoke SYSTCM from either the basic operator panel or a terminal

1. At the $80 B C$ or PA00 message, enter 'PADAB', where PA $=$ the tape physical address and $D A=$ the drive address. Refer to TA113 for these values.
2. At the 81 BC prompt message, enter any options in the SLRRB format. Refer to TA211 for these values; for the meaning of the test messages that can be generated while running this exerciser, see TA232
3. To continue the test after an error, enter ' B ' and press either Enter Function at the BOP, or ENTER at a terminal
4. To terminate the exerciser, enter ' F ' and press either Enter Function at the BOP or ENTER at a terminal. The exerciser terminates only at either a manual intervention or error stop, or at the end of testing.

TA222 DPCX Exerciser Invocation Examples Using the Basic
Operator Panel
The following chart can be used for a quick reference for invoking the DPCX online exerciser from the 8130/8140 operator panel:

		Enter Routine	Options	Enter	Enter
Eata	Function	Data	Function		
$01 \& 02$	No loop	PADA	B	---	B
$01 \& 02$	No loop	PADA	B	1	B
$01 \& 02$	Loop, stop on error*	PADA	B	11	B
02 only	No loop	PADA	B	1002	B
02 only	Loop, stop on error*	PADA	B	1102	B
02 only	Loop, no stop on error*	PADA	B	1202	B
* The tests will loop for 4 minutes unless an error is detected. The tests cannot be					

* The tests will loop for 4 minutes unless an error is detected. The tests cannot be terminated until after the 4 -minute loop or unless an error is detected. *The tests cannot be terminated until after the 4 -minute loop.

1. To terminate the utility at a terminal, enter ' D ' and press ENTER. This action ter minates the SYSTCM function, but the terminal is NOT logged off. To log off, per form the appropriate terminal logoff procedure.
2. To terminate the utility at the basic operator panel, enter ' D ' and press Enter Function.

If invoked from a terminal, the terminal displays the complete error data. If using the basic operator panel, additional data must be displayed by entering ' E ' and pressing Enter Function. Four hexadecimal digits display each time you enter ' E ' and press Enter Function. The number of digits in a message varies according to the error format, but blank field always indicates the end of the message. If you continue to enter ' E ' and press Enter Function, it repeats the message fields.

TA230 Test Messages and Status Information

TA231 Offline Tape Adapter Tests
The following messages are generated while running the offline tests:

- PA80 = channel I/O hang conditio
- PAFO = test started
- XXBC $=$ test control monitor error
- PAXE RREN = SCF, adapter, or tape drive error

The following table lists the different message formats produced by the tests

Format Type	Message
1	PAXE RREN SSSS
2	PAXE RREN AACC SSSS
3	PAXE RREN SSSS TTPP BBBB XXXX XXXX (See Note 1)
4	PAXE RREN EEGG TTPP BBBB XXXX XXXX (See Note 1)
5	XXBC
5	PA00
5	PA80
5	PAFO

TA233 Status and Sense Bytes
This section lists and describes the status and sense bytes used for the 8809. Figure 233-1 shows all 16 tape drive sense bytes, as well as the two adapter status bytes, which are then discussed and shown in detail.

Sense Byte 0 (Tape Unit Status)

Ready	Busy	Write Enable	BOT	EOT	Operation Complete	Low Speed	Positioning

Bit 0 - Ready: indicates that the tape drive has a tape loaded with tension established.
Bit 1 - Busy: set with the initiation of a Disconnected command and remains set until receiving an Op Complete or a Check Reset. Also set while performing a load rewind operation from the tape operator panel.
Bit 2 - Write Enable: set when the tape is not file protected (write enable ring installed). Write commands set Selected Alert when issued to the tape drive with Write Enable off.

Bit 3 - BOT: set when the tape is positioned at the beginning of tape (BOT) marke Any backward command issued to the tape drive with BOT on sets Selected Alert.

Bit 4 - EOT: set when sensing the end of tape (EOT) marker in the forward tape direc tion and reset when sensing the EOT marker in the reverse direction.

Sit 5 - Operation Complete: set when completing a disconnected command (other than space file) with the tape drive at the stop lock position. During a space file operation, the bit sets when a tape mark is detected. Also set when performing a load rewind from the tape operator panel. This bit is reset by Check Reset.

- Low Speed: when set, indicates that the speed of the tape drive is 31.75 entimeters/seconds (12.5 ips). When reset, the speed is 254 centimeters/second (100 ips)

Bit 7 - Positioning: indicates that the tape drive is in a positioning sequence.

1 Sense byte 1, bit $0(1-0)$ and $2-6$.
2 Any bit sets $2-1$ (except Read Back Failure-see 3
If $1-0$ is off, brings up 1.7 and activates the Selected Alert line
*These bits activate the Selected Alert line. **These adapter bits do NOT cause an interrup.

Figure TA233-1. Status and Sense Bytes

Sense Byte 1

$\begin{aligned} & \hline \text { Check } \\ & \text { End } \\ & \text { Sense } \\ & \hline \end{aligned}$	Bus Out Parity Check	Tag Bus Parity Check	$\begin{aligned} & \text { Formatter } \\ & \text { Write or } \\ & \text { CNT-L Failure } \end{aligned}$	CNTL-L Sequence Check	Command Register Parity Chk *	Drive Control Parity Chk ${ }^{*}$	Formatter Read Failure

*These bits activate the Selected Alert line.

Bit 0 - Check End Sense: indicates that either a Check End occurred following the las command or that Not Capable occurred during a space file operation. Sense byte 2 is valid when this bit is on
Bit 1 - Bus-Out Parity Check: set if even parity is detected on the Control Line Bus Out during a Write Data transfer

Bit 2 - Tag Bus Parity Check: set if even parity is detected on the Control Line Tag Bus Out.

Bit 3 - Formatter Write or Control Line Failure: indicates internal failure of either the Control Line or the Write modules.

Bit 4 - Control Line Sequence Check: set when a Control Line sequence error occurred.
Bit 5 - Command Register Parity Check: set when odd parity is detected on the Com mand Register bus from the formatter card to the drive control card.

Bit 6 - Drive Control Parity Check: set when odd parity is detected on the control bus from the drive control card
Bit 7 - Formatter Read Failure: indicates either an internal failure of the Read, or read back data did not occur when expected during a Write command.

Sense Byte 2

Data Overrun	Data Check	---	BOT	EOT	Tape Mark Detected	Not Capable	---

Bit 0 - Data Overrun: no write data available when the tape drive is ready to receive it.
Bit 1 - Data Check: indicates that one or more of the sense byte 6 bits are active
Bit 2 - not used
Bit 3 - BOT: see sense byte 0 , bit 3
Bit 4 - EOT: set only when EOT is detected during either a Write, Write Tape Mark, or Erase Gap operation.

Block operation

Bit 6 - Not Capable: set when a 1600 -bpi ID burst is not detected while reading or spac ing from BOT. This bit is also set with a Data Check (sense byte 2, bit 1) due to a PEID Burst Check (sense byte 6, bit 1) during a write from BOT.

Sense Byte 3

Write Bus Parity Check	Bus Out Register Parity Chk	Gap Control Check	Sync Out Check	$\begin{array}{l\|} \hline \text { Drive } \\ \text { Response } \\ \text { Check } \end{array}$	$\|$Not Capable (Space File)	Track in Error P	Write Enable Error

*These bits activate the Selected Alert line

1 Sets sense byte 1 , bit 0 and sense byte 2 , bit 6 .
Bit 0 - Write Bus Parity Check: indicates even parity on the 10 -bit bus to the write card.
Bit 1 - Bus-Out Register Parity Check: indicates even parity on the internal formatter bus from the bus-out register.
Bit 2 - Gap Control Check: indicates the gap control line dropped before writing a complete record.

Bit 3 - Sync-Out Check (Write only): set when more than one sync-out signal is received from the adapter in response to a single sync-in, or the sync-out signal did not reset in the specified time.

Bit 4 - Drive Response Check: set if motion logic responds either early or late to the Formatter command.

Bit 5 - Not Capable (Space File) : set when the PEID burst is not detected while exe cuting a space file operation from BOT. This bit sets sense byte 1 , bit 0 and sense byte 2 , bit 6 .

Bit 6 - Track in Error P: indicates the Track P pointer was on at the end of the last operation in which a data check occurred.

Bit 7 - Write Enable Error: indicates that a write was attempted with Write Enable off

Sense Byte 4

$\begin{aligned} & \text { Same as } \\ & 3-0 \end{aligned}$	Read Bus Parity Check	Same as 3-2	$\begin{aligned} & \text { Same as } \\ & 3-3 \end{aligned}$	---	_--	$\begin{aligned} & \text { Same as } \\ & 3-6 \end{aligned}$	$\begin{aligned} & \text { Same as } \\ & 3-7 \end{aligned}$

*These bits activate the Selected Alert line
Bit 0 - Write Bus Parity Check: same as sense byte 3, bit 0.
Bit 1 - Read Bus Parity Check: indicates bad parity on the read data bus from the Read Control module to the Bus In Assembler

Bit 2 - Gap Control Check: same as sense byte 3, bit 2.
Bit 3 - Sync-Out Check: same as sense byte, bit 3.
Bits 4 \& 5 - Not used.
Bit 6 - Track in Error P: same as sense byte 3, bit 6 .
Bit 7 - Write Enable Error: same as sense byte, bit 7

Sense Byte 5

POINTER REGISTER							
Track 0	Track 1	Track	Track	Track	Track 5	Track 6	Track

This byte contains the track-in-error pointers for tracks 0.7. It contains track(s) for which pointers were on at the end of the last operation in which a data check occurred

Sense Byte 6 - Write Block or Write Tape Mark Only (Bit $0=1$)

2 \begin{tabular}{|c|c|c|c|c|c|c|c|}

\hline 1 | Write |
| :---: |
| Command | \& | PEID |
| :---: |
| Check | \& | Multitrack |
| :--- |
| Error | \& | End |
| :--- |
| Data Check | \& | Start |
| :--- |
| Read Check | \& | Read Back |
| :--- |
| Failure |
| 3 | \& | Envelope |
| :---: |
| Check | \& | Write TM |
| :---: |
| Error |

\hline
\end{tabular}

2 Any bit sets sense byte 2, bit 1 except for a Read Back Failure (see 3

3 If sense byte 1 , bit 0 is off, sets sense byte 1 , bit 7 and also activates the Selected Alert line.

Bit $0=1=$ Write Command
Bit 1 - PEID Check (with Data Check): set when PEID burst is not detected during read-back check when writing from the BOT marker.

Bit 2 - Multi-Track Error: set if a multiple track error (more than one pointer) is detected during read-back check.

Bit 3 - End Data Check: set when an IBG is detected earlier or later than expected during read-back check.

Bit 4 - Start Read Check: set if Beginning of Record drops, or an IBG is detected after Beginning of Record but before the first 1 -bits of the preamble during read-back check.

Bit 5 - Read-Back Failure:

- Sense byte 1 , bit 0 not set: indicates read-back data did not occur when expected during a Write command. Also sets Selected Alert and Formatter Read Failure (sense byte 1 , bit 7).
- Sense byte 1 , bit 0 set: indicates that a crease was detected during the read-back check of a Write command, and does not set Selected Alert.

Bit 6 - Envelope Check: set when a skew buffer parity check or any phase error is detected during read-back check.

Bit 7 - WTM Error: indicates fewer than 40 bytes of tape mark were written during a write tape mark operation.

Sense Byte 6 - Not Write Block or Write Tape Mark (Bit 0=0)

2 Any bit sets sense byte 2, bit 1.
Bit $0=0=$ Non-Write Command
Bit 1 - No Track Pointer: indicates Skew Buffer parity check (VRC) with no track pointer on.

Bit 2 - Multi-Track Error: set if a multiple error (more than one pointer) is detected The data was uncorrectable.

Bit 3 - End Data Check: set when an IBG is detected earlier or later than expected
Bit 4 - Start Read Check: set if Beginning of Record drops, or an IBG is detected after Beginning of Record but before the first 1-bits of the preamble.

Bit 5 - Crease: set when IBG is detected during data transfer and crease timeout is not reached.

Bit 6 - Not used.
Bit 7 - Skew Error: indicates a skew buffer overflow.

Sense Byte 7 - Not Used

Sense Byte 8

These bits activate the Selected Alert line.
Bits 0-4 Transport State: show the encoded state of the tape drive at the time a sequence error (sense byte 8, bit 5) occurred.

The transport states are:

Sense Bit 01234

00000
00001
00010
Enable Servo
00100 Sample Radius
00101 Rewind Stop
00110 Rewind Forward Space
00111
01100
Move to BOT
Write ID Bust
01001 Unload Leader
01000 Space to Low-Speed Load
11000 Data Security Erase
11001 Set Erase Gate, Alternate Direction
11011 Low-Speed Degauss
11010 Prepare Gap Control, Alternate Direction
11110 Prepare Gap Control, Previous Direction
11111 Write Backward Hitch
11100 Low-Speed Wait
10100 High-Speed Wait
10101 Overrun, Alternate Direction
10111 Move From Hold
10110 Degauss Are
10010 Reversal
10011 Overrun Same Direction
Bit 5 - Sequence Error: indicates the loss of tension while the servo is active (Tensio Check - sense byte 10, bit 1) or a Load Check (sense byte 10 , bit 0) occurred.

Bit 6 - Sense Bus Parity Check: set when even parity is detected on the internal sens bus during a Read Sense command for sense bytes 8-15. Any byte 8-15 can contain the first occurrence of this error indicator, and, once detected, sets bit 6 of all remaining check bytes.

Bit 7 - Not used.

Sense Byte 9

Start Velocity Check	End Velocity Check	$\begin{aligned} & \text { PE ID } \\ & \text { Velocity } \\ & \text { Check } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Clock } \\ \text { Parity } \\ \text { Error } \end{array}$	SER	1	Same as 8-6	--

*These bits activate the Selected Alert line.
Bit 0 - Start Velocity Check: indicates a velocity problem occurred before a write data transfer.

Bit 1 - End Velocity Check: indicates a velocity problem occurred during a write data ransfer.
Bit 2 - PEID Velocity Check: indicates a velocity problem occurred while attempting to write a PEID burst.

Bit 3 - Clock Parity Error: set if an internal parity error is detected in the clock generation module.
Bits 4 \& 5 - Servo State: indicate the encoded state of the servo at the time of a sequence error (sense byte 8, bit 5).

The following shows bits 4 and 5 interpretation:

Bits $\mathbf{4}$ and 5	State Name
00	Idle
01	Stoplock
10	Run
10	Plug Start

Load Check	\cdotTension Check	\cdotCover/Reel Latch Lnterrupt	Tension Status	Not Ready Due to Reset	Long Gap Mode	Same as $8-6$	--

*These bits activate the Selected Alert line.
Bit 0 - Load Check: indicates that a load rewind initiated from the tape operator panel failed to execute.
Bit 1 - Tension Check: indicates tension failure caused a sequence error (sense byte 8, bit 5).

Bit 2 - Cover/Reel Latch Interrupt: indicates an active condition of either the cover interlock or the reel latch interlock while the tape is loaded and the reel motors are under servo control. This condition inhibits Ready and Reset.

Bit 3 - Tension Status: indication to the transducer channel that a tape is present as detected by the 'tape present' sensor.

Bit 4 - Not Ready Due to Reset: indicates that the RESET pushbutton on the tape operator panel has reset Drive Ready. Also set when a command was issued that expected a ready condition, and the drive was not ready.

Bit 5 - Long Gap Mode: indicates that the tape drive is in Long Gap Mode.
Bit 6 - Sense Bus Parity Check: same as sense byte 8, bit 6 .
Bit 7 - Not used.

Sense Byte 11

PRESENT TRANSPORT STATE					Cover/Reel Latch Inter-	Same as 8-6	
0	1	2	3	4			---

Sense byte 11 presents the tape drive and cover interlock status while executing the Read Sense Byte 11 command

Bits 0-4 - Present Transport State: show the present tape drive status. See Sens Byte 8 for an explanation of the bits.

Bit 5 - Cover/Reel Latch Interlock Status: indicates the cover is open.
Bit 6 - Sense Bus Parity Check: same as sense byte 8, bit 6
Bit 7 - Not used.

Sense Byte 12

Servo Logic Failure	$\begin{array}{\|l\|} \hline \text { Servo } \\ \text { Analog } \\ \text { Failure } \\ \hline \end{array}$	Write Current Failure	$\begin{array}{\|l\|l\|} \hline & \text { Erase } \\ \text { Current } \\ \text { Cailure } \end{array}$	PRESENT SERVO STATE 0 1	Same as 8-6	---

* These bits activate the Selected Alert line

Bit 0 - Servo Logic Failure: indicates a failure on the drive control card associated with the servo.

Bit 1 - Servo Analog Failure: indicates a failure on the power amplifier card.
Bit 2 - Write Current Failure: indicates either detection of no write current after setting write status or detection of improper current in the write head, which could destroy data.

Bit 3 - Erase Current Failure: indicates either detection of no erase current after setting erase status or detection of improper current in the erase head, which could destroy data.
its 4 \& 5 - Present Servo State: indicate the state of the servo while executing the Read Sense Byte 12 command. See Sense Byte 9 for an explanation of the bits.

Bit 6 - Sense Bus Parity Check: same as sense byte 8 , bit 6
Bit 7 - Not used.

Idler Tach Failure	Machine Tach Failure	$\begin{aligned} & \text { File } \\ & \text { Tach } \\ & \text { Failure } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Idler Tach } \\ \text { Rotation } \\ \text { Check } \end{array}$	---	---	Same as 8-6	---

*These bits activate the Selected Alert line.
it 0 - Idler Tach Failure: indicates detection of an idler tachometer failure in the 'run' servo state.
failur
Bit 2 - File Tach Failure: Indicates detection of a file reel motor tachometer failure.
Bit 3 - Idler Tach Rotation Check: indicates the ider tachometer frequency is below minimum allowable level during a normal start/stop operation. This condition can be caused by a tension failure, the tape sticking at the read/write head, or an idler tachon eter failure.

Bits 4 \& 5 - Not used.
Bit 6 - Sense Bus Parity Check: same as sense byte 8, bit 6.
Bit 7 - Not used.

Sense Byte 14

*These bits activate the Selected Alert line.
Bit 0 - BOT/EOT LED Failure: indicates no current is detected in the BOT or EOT sensor LEDs.

Bit 1 - Tape Present LED Failure: indicates no current is detected in the tape sensor ED.

Bit 2 - Reel Size LED Failure: indicates either (1) that no current is detected in one of the reel size sensor LEDs, (2) that the measured radius of the tape exceeds the reel size, or (3) detection of an incorrect reel size.

Bit 3 - Drive Control Failure: indicates a failure in the control module.
Bits 4 \& 5 - Not used.
Bit 6 - Sense Bus Parity Check: same as sense byte 8, bit 6.
Bit 7 - Not used.

File Amplifier Saturation	Machine Amplifier Saturation	Write Status	PA Cable Unseated	LWR Failure	Adapter PIO Command	Same as 86	Unexpected Adapter Status

*These bits activate the Selected Alert line

Bit 0 - File Amplifier Saturation: indicates that the file reel motor amplifier detected voltage saturation condition.

Bit 1 - Machine Amplifier Saturation: indicates that the machine reel motor amplifier detected a voltage saturation condition.

Bit 2 - Write Status: indicates that the tape drive has just executed a Write, Write Tap Mark, Erase Gap, or Data Security Erase command

Bit 3 - Power Amplifier Cable Unseated: indicates that the cable between the logic gat and the power amplifier board is not properly seated at either or both connectors.
Bit 4 - LWR Failure: indicates a failure occurred while performing an LWR command.
Bit 5 - Adapter PIO Command: indicates the last command issued by the adapter was a PIO-type command.

Bit 6 - Sense Bus Parity Check: same as sense byte 8, bit 6 .
Bit 7 - Unexpected Adapter Status: indicates the adapter status bits were not as expected after issuing a command.

Adapter Status Byte

Adapter Stạtus Extended	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Non- } \\ \text { Recoverable } \\ \text { Error } \end{array} \\ \hline \end{array}$	Invalid Sub Command	Adapter Parity Check	CNTL-L Sequence Error	Poll/ Command Mach Chk	Residual Count Error	Disconnect	Overrun/ Underrun
Adapter Status	Normal/ FCB End	Bus Not Equal to Zero	Timeout	End Error	Program Requested Interrupt	Machine Check	Enable	Interru Halt

** These adapter bits do NOT cause an interrupt.
Bit 0 - Nonrecoverable Error: set when the adapter detects a parity error when transmitting either the basic or extended address to the processor during a Transfer in Channel (TIC) command.

Bit 1 - Invalid Subcommand: set when (1) tape command bits 5-7 Byte 0, halfword 0 do not compare with bits $1-3$ Byte 0 , halfword 1 in the command FCB; (2) either an CB data bit does not follow a read/write FCB command, or when receiving a new com mand before receiving the end of data in an $8809 \mathrm{read} / \mathrm{write}$ sequence; (3) receiving an nvalid command during PIO operation.

Bit 2 - Adapter Parity Check: an internal adapter parity error was detected.

- If the error occurred on data transfer from the tape bus, bit 3 is also set.
- If the error occurred on data transfer to the processor, parity is corrected before any transfer and the operation terminates.
If the error occurred on data transfer to the tape, recycle drops, parity is corrected before any transfer, and the operation terminates.

Bit 3 - Control Line Sequence Error: set for the following conditions

- Along with status bit 2 when a parity error is detected while transferring data from tape.
Along with basic status bit 10 when no response causes a timeout error
- When Select Hold and Select Active are not on either when initiating a sequence other than Selection, or when receiving a Select command with 'Select' active.
- Along with End Error when Normal End did not set with Tag Valid active

Bit 4 - Poll/Command Machine Check: set when either receiving a response to a Poll command, or when a machine check occurs during any channel I/O operation using a channel control vector (CHCV).
Bit 5 - Residual Count Error: set during a read sequence with the Suppress Length Flag off, when the number of bytes transferred by a tape unit does not equal the segment count.

Bit 6 - Disconnect: set when the adapter issues a Disconnect command.
Bit 7 - Overrun/Underrun: set when a delay occurs in processor information transfer. The adapter either does not have sufficient buffer space to continue operation to the tape or sufficient data to transfer to the processor

Bit 8 - Normal or FCB End: after receiving a Sequence command on the PIO bus, this bit sets when receiving a Normal End from the tape drive at the completion of an Execute sequence. For a Sequence command received from an FCB, this bit is set only: (1) if he Normal End Tag Line from the tape drive is active and Ending Status does not equal 0 ; (2) after the completion of the 'Disconnect Command Sequence'; or (3) after an FCB 'End Op' Command

Bit 9 - Bus Not Equal to 0: set when receiving a Normal End (bit 8 is also set) with ending status not equal to hex 00 (BOT or EOT mark detected). If command was received from an FCB, no additional requests to the FCB are made. Also set when the address of the TAM responding to a Select sequence does not agree with the transmitted address.
Bit 10 - Timeout: set approximately one second after receiving the Enable Timer command. Also set when the entire sequence did not complete within the time expected and also sets Status Bit 3 for this condition.

Bit 11 - End Error: set when receiving either Selected Alert or Check End from tape.
Bit 12 - Program Requested Interrupt: set when receiving Program Requested Interrupt (PRI bit) during FCB operation.
*Bit 13 - Machine Check: set when a processor machine check occurred while communicating with the tape adapter.
*Bit 14 - Interrupt Enable: set to allow the adapter to make interrupt requests and to initiate channel requests. When reset, the adapter removes any requestsbefore responding with valid.

Bit 15 - Interrupt/Halt: this bit is the 'OR' of conditions defined that cause an interrupt. Set by the Halt signal, and also when the adapter is going to suppress a response because of receiving bad parity on the processor bus.
*Bits 13 and 14 do not cause an interrupt.

All TA offline and DPCX online exerciser test error messages (such as PAXE RREN SSSS) have an error number (EN). This error number indicates the type of failure detected, as well as additional status information available according to the test error message format. The routine number (RR) and the EN determine the error message formats.

The following sections contain a list of all error numbers used for each routine and describe their meaning. Section TA241 lists and describes the adapter test error numbers, section TA242 contains those used for tape drive testing, TA243 contains the test error messages used for the special requirement tests, and TA244 lists and describes the test error messages generated when running the DPCX Online Exerciser. Refer to the TA230 section or test message formats.

TA241 Adapter Test Messages
The following table lists, for each routine, the error numbers and their description for the adapter tests. For test message formats, see TA231.

RREN	Format	Meaning
0101	2	Unexpected machine check.
0104	1	Unexpected I/O interruption.
0106	1	Interruption always active.
0109	1	CHIO machine check.
010C	2	Solid I/O machine check.
0201	2	Unexpected machine check.
0202	1	Expected machine check did not occur.
0204	1	Unexpected I/O interruption.
0206	1	Interruption always active.
0207	1	Machine check status not set by invalid command.
0208	1	Invalid subcommand bit not set by invalid command.
0209	1	CHIO machine check.
020C	2	Solid I/O machine check.
0301	2	Unexpected machine check.
0304	1	Unexpected I/O interruption.
0306	1	Interruption always active.
0309	1	CHIO machine check.
030C	2	Solid I/O machine check.
0310	1	CHCVD register write-read did not compare.
0311	1	CHCVD register not 0 after adapter reset.
0312	1	CHCVC register write-read did not compare.
0313	1	CHCVC register not 0 after adapter reset.
0314	1	Segment count register write-read non-compare.
0315	1	Segment count register not 0 after adapter reset.
0316	1	BADDR write-read did not compare.
0317	1	BADDR not 0 after adapter reset.
0318	1	EADDR write-read did not compare.
0319	1	EADDR not 0 after adapter reset.
031A	1	PSAR write-read did not compare.

RREN	Format	Meaning
031B	1	PSAR not 0 after adapter reset.
031C	1	CLSAR write-read did not compare.
031D	1	CLSAR not 0 after adapter reset.
031E	1	Burst length register write-read did not compare.
031F	1	Burst length register not 0 after adapter reset.
0320	1	Burst length counter set-read did not compare.
0321	1	Burst length counter not 0 after adapter reset.
0401	2	Unexpected machine check.
0404	1	Unexpected I/O interruption.
0405	1	1/O interruption did not occur.
0406	1	Interruption always active.
0409	1	CHIO machine check.
040C	2	Solid I/O machine check.
0422	1	Basic status not 0 after adapter reset.
0423	1	Extended status not 0 after adapter reset.
0424	1	Extended status set/read did not compare.
0425	1	Interrupt bit not set by extended status bit.
0426	1	Basic status set/read did not compare.
0427	1	Interrupt bit not set by basic status bit.
0428	1	Interrupt bit set by machine check bit.
042A	1	Extended status bit not reset under mask.
042B	1	Basic status bit not reset under mask.
042C	1	Set basic status failed to set pending bit.
042D	1	Enable bit not reset by reset basic status.
0501	2	Unexpected machine check.
0504	1	Unexpected I/O interruption.
0506	1	Interruption always active.
0507	1	Incorrect basic status after timer interruption.
0509	1	CHIO machine check.
050C	2	Solid I / O machine check.
052E	1	Timer did not cause interruption.
052F	1	Incorrect extended status after timer interruption.
0530	1	Timer less than 800 ms .
0531	1	Timer longer than 1200 ms .
0532	1	Extra timer interrupt.
0601	2	Unexpected machine check.
0604	1	Unexpected I/O interruption.
0606	1	Interruption always active.
0609	1	CHIO machine check.
060C	2	Solid I/O machine check.
0633	1	CLSAR set by Set PSAR command.
0634	1	PSAR set by Set CLSAR command.
0635	1	Burst Length Counter set by Write Segment Counter command.
0636	1	Segment Counter set by Load Burst Length Counter command.
0637	1	PSAR not stepping correctly.
0638	1	CLSAR not stepping correctly.
0639	1	Segment counter not stepping correctly.
063A	1	Burst length counter not stepping correctly.

RREN	Format	Meaning
0640	1	CLSAR set by Write Segment Counter command.
0641	1	CLSAR set by Load Burst Length Counter command.
0650	1	PSAR set by Write Segment Counter command.
0651	1	PSAR set by Load Burst Length Counter command.
0701	2	Unexpected machine check.
0704	1	Unexpected I/O interruption.
0706	1	Interruption always active.
0709	1	CHIO machine check.
070 C	2	Solid I/O machine check.
$073 B$	1	Buffer write-read did not compare.
$073 C$	1	PSAR did not step on read buffer command.
$073 D$	1	PSAR did not step on write buffer command.
$073 E$	1	Parity error while reading buffer.
$073 F$	1	Parity error while writing buffer.
0801	2	Unexpected machine check.
0804	1	Unexpected I/O interruption.
0806	1	Interruption always active.
0807	1	Basic status incorrect.
0809	1	CHIO machine check.
$080 C$	2	Solid IIO machine check.
$082 F$	1	Extended status incorrect.
0840	1	CLSAR did not step on wrap.command.
0841	1	Wrapped data not equal to original
0901	2	Unexpected machine check.
0904	1	Unexpected I/O interruption.
0905	1	No interruption after executing Function Control Block
0906	1	IFCB) list.
0909	1	Interruption always active.
0909	2	CHIO machine check.
09042	1	Solid I/O machine check.
0943	1	Command CPR not stepping correctly.
1101	2	Normal end status not set after FCB list was executed.
104	1	Unexpected machine check.
1105	1	Unexpected I/O interruption.
1106	1	No I/O interruption after executing FCB list.
1109	1	Interruption always active.
$110 C$	2	CHIO machine check.
1143	1	Solid I/O machine check.
1201	2	Command TIC did not branch.
1204	1	Unexpected machine check.
1205	1	Unexpected I/O interruption.
1206	1	No I/O interruption after executing FCB list.
1209	1	Interruption always active.
$120 C$	2	CHIO machine check.
1244	1	Solid I/O machine check.
		Program-Requested Interrupt (PRI) bit not on in status
byte after PRI FCB.		

RREN	Format	Meaning
1301	2	Unexpected machine check.
1304	1	Unexpected I/O interruption.
1305	1	No I/O interruption after executing in valid FCB.
1306	1	Interruption always active.
1309	1	CHIO machine check.
$130 C$	2	Solid I/O machine check.
1345	1	Invalid subcommand bit not set by bad FCB.
1401	2	Unexpected machine check.
1404	1	Unexpected I/O interruption.
1405	1	No interruption after executing TSTCLP command.
1406	1	Interruption always active.
1408	3	Open adapter failure.
1409	1	CHIO machine eheck.
$140 C$	2	Solid I/O machine check.
1446	1	Parity error status bit not on after TSTCLP command
		execution
1501	2	Unexpected machine check.
1504	1	Unexpected I/O interruption.
1505	1	No I/O interruption from test Stop command.
1506	1	Interruption always active.
1509	1	CHIO machine check.
$150 C$	2	Solid I/O machine check.
1540	1	Control line sequence error bit not set.

The following table lists, for each routine, the error numbers and their meaning for the tape drive tests. For test message formats, see TA231.

RREN	Format	Meaning
4001	2	Unexpected machine check.
4004	1	Unexpected I/O interruption.
4006	1	Interruption always active
4008	3	Open adapter failure.
4009	1	CHIO machine check.
400C	2	Solid I/O machine check.
4011	3	Selected Active did not come on or low-order 3 bits of returned adddress incorrect.
4014	3	End error up after adapter reset.
4016	3	Bus not 0 after adapter reset.
4017	3	Timeout on select command. Check the following items for possible causes of failure: 1. Tape drive is powered down. 2. Tape drive was not ready prior to running tests. Power down tape drive, then power up drive and make ready. 3. Invalid drive address entered or no drive on system with that address. 4. Incorrect address set in drive address switches. 5. No LVL 02 entry in Configuration Table for drive address entered. 6. Bus and Tag cables loose or not connected (Model 1A only). 7. $\mathbf{8 1 0 1}$ paddle connectors at A 2 Y 1 and $\mathrm{A} 2 \mathrm{Z1}$ loose (Model 1A only).
4018	3	No normal end after select command.
4019	3	Bus-in parity error on selection.
401A	4	High-order 5 bits of returned address on selection are incorrect.
4021	4	A bus-in bit did not turn on.
40FO	3	Selected Alert when not expected.
40F1	3	Check end status received.
40F2	3	Bus-in parity error.
40F7	3	End status 10-second timeout.
40F8	3	Control line timeout or selection error.
40F9	3	Unexpected adapter error.
4101	2	Unexpected machine check.
4104	1	Unexpected I/O interruption.
4106	1	Interruption always active.
4108	3	Open adapter failure.
4109	1	CHIO machine check.
410 C	2	Solid I/O machine check.
4111	3	Control line sequence error not set by selecting a selected drive.
41FO	3	Selected Alert when not expected.

RREN	Format	Meaning
41F1	3	Check end status received.
41F2	3	Bus-in parity error.
41F7	3	End status 10-second timeout.
41 F8	3	Control line timeout or selection error.
41F9	3	Unexpected adapter error.
4201	2	Unexpected machine check.
4204	1	Unexpected I/O interruption.
4206	1	Interruption always active.
4208	3	Open adapter failure.
4209	1	CHIO machine check.
420 C	2	Solid I/O machine check.
$4210 \cdot 17$	4	Sense byte 1 not correct.
4218-1F	4	Sense byte 0 not correct.
$4220 \cdot 27$	4	Sense byte 2 not correct.
4228	3	Control line timeout on check reset.
4229	3	Bus-in parity error on check reset.
422A	3	Control line timeout reading status byte.
422 B	3	Bus-in parity error reading status byte.
422 C	3	Control line timeout reading byte 1 .
422D	3	Control line parity error reading byte 1.
422 E	3	Control line timeout reading byte 2 .
422F	3	Control line parity error reading byte 2.
4230-37	4	Sense byte 3 not correct.
4238	3	Control line timeout reading byte 3.
4239	3	Control line parity error reading byte 3.
4240-47	4	Sense byte 4 not correct.
4248	3	Control line timeout reading byte 4.
4249	3	Control line parity error reading byte 4.
4258	3	Control line timeout reading byte 5 .
4259	3	Control line parity error reading byte 5.
4268	3	Control line timeout reading byte 6 .
4269	3	Control line parity error reading byte 6 .
4278	3	Control line timeout reading byte 7 .
4279	3	Control line parity error reading byte 7 .
4280-87	4	Sense byte 8 not correct.
4288	3	Control line timeout readirg byte 8.
4289	3	Control line parity error reading byte 8.
4290-97	4	Sense byte 9 not correct.
4299	3	Control line parity error reading byte 9 .
42AO-A7	4	Sense byte 10 not correct.
42A9	3	Control line parity error reading byte 10.
42B0-B7	4	Sense byte 11 not correct.
42B9	3	Control line parity error reading byte 11.
$42 \mathrm{CO}-\mathrm{C7}$	4	Sense byte 12 not correct.
42C9	3	Control line parity error reading byte 12.
42D0-D7	4	Sense byte 13 not correct.
42D9	3	Control line parity error reading byte 13.
42DA	3	Control line parity error reading byte 14.
42DB	3	Control line parity error reading byte 15.
42E0-E7	4	Sense byte 14 not correct.
42E8-EF	4	Sense byte 15 not correct.

RREN	Format	Meaning
4301	2	Unexpected machine check.
4304	1	Unexpected I/O interruption.
4306	1	Interruption always active.
4308	3	Open adapter failure.
4309	1	CHIO machine check.
430 C	2	Solid I/O machine check.
4311	3	Control line timeout on Loop write to Read (LWR) command.
4313	3	Check end on LWR and check byte 6, bit $0=0$.
4314	3	Check end on LWR and check byte 6, bit $4=1$.
4315	3	Check end on LWR and check byte 6 , bits 1, 3, 6, 7 not all 0 .
4316	3	Check end on LWR and check byte 6, bits 1, 3, 6, 7 all 0.
4317	3	LWR command failed.
4318	3	Tape drive file protected.
4319	3	One or more pointers are on following an LWR command that ended with normal end.
431A	3	Normal End did not drop.
431B	3	Check End not set. Normal End and Select Alert are both off.
431C	3	Data overrun.
431D	3	Sense byte 2, bit 1 failed.
43A1	3	Selected Alert on LWR and bus-out parity check was on.
43A2	3	Selected Alert on LWR' and WRT/INTF PLA failure.
43A3	3	Selected Alert on LWR and sequence check is on.
43A4	3	Selected Alert on LWR and write bus parity check is on.
43A5	3	Selected Alert on LWR and gap control check is on.
43A6	3	Selected Alert on LWR and sync out check is on.
43A7	3	Selected Alert on LWR and no tape drive response.
43A8	3	Selected Alert on LWR and read back fail is on.
43A9	3	Selected Alert on LWR and write/erase current fail.
43AA	3	Selected Alert on LWR. Appears to be a motion problem.
43AB	3	Clock fail during LWR.
43AC	3	Selected Alert on LWR and none of the above conditions.
43AD	3	Read PLA fail.
43F0	3	Selected Alert when not expected.
43F1	3	Check end status received.
43F2	3	Bus-in parity error.
43 F 7	3	End status 10-second timeout.
43F8	3	Control line timeout or selection error.
43F9	3	Unexpected adapter error.
4401	2	Unexpected machine check.
4404	1	Unexpected I/O interruption.
4406		Interruption always active.
4408		Open adapter failure
4409	,	CHIO machine check.
440 C	2	Solid I/O machine check.
4411		Bus-in bit for device under test is on and should be off.
4412	3	Bus-in bit for device under test is off and should be on.
4413	3	Op Complete not on.

RREN	Format	Meaning
4414	3	Op Complete not reset by check reset.
4415	3	Bus-in bit for device under test is on and should be off.
4416	3	Bus-in bit for device under test is on. It was suppressed and should be off.
4420	3	Control line timeout on poll operation.
4421	3	Selected Alert on poll operation.
4422	3	Control line timeout on rewind operation.
4423	3	Selected Alert on rewind operation.
4424	3	Ready status off after rewind.
4425	3	Busy after reception of OP Complete
44F0	3	Selected Alert when not expected.
44F1	3	Check end status received.
44F2	3	Bus-in parity error.
44F7	3	End status 10-second timeout.
44F8	3	Control line timeout or selection error.
44F9	3	Unexpected adapter error.
4601	2	Unexpected machine check.
4604	1	Unexpected I/O interruption.
4606	1	Interruption always active.
4608	3	Open adapter failure.
4609	1	CHIO machine check.
460C	2	Solid I/O machine check.
4614	3	Bus-in parity error on SLS.
4615	3	Bus-in parity error on ERG.
4616	3	EOT status after ERG operation.
4617	3	Control line timeout on SLS command.
4618	3	Ten-second ending status timeout on SLS operation.
4619	3	Busy still on after OP complete on SLS operation.
461F	3	Sense byte 11, bits 0-4 =01100 after SLS.
4620	3	Op Complete not reset by check reset.
4621	3	Sense byte 12, bits 4 \& 5 not $=01$ after rewind.
4622	3	Control line timeout on ERG operation.
4623	3	Ending status timeout on erase gap command.
4627	3	BOT status still on after erase gap command.
4628	3	Sense byte 11 not equal to 01100XXX after erase gap command.
4629	3	Sense byte 12 not equal to XXXX01XX after erase gap command.
4631	3	End status timeout on erase gap command.
4632	3	End statue timeout on rewind command.
4633	3	Busy status still on after rewind complete.
4634	3	BOT not on after rewind complete.
4635	3	Sense byte 11 not equal to $01100 \times X X$ after rewind command.
4636	3	Sense byte 12 not equal to XXXX01XX after rewind command.
4637		Cover/reel latch interlock interrupt check bit on.
4638	3	BOT/EOT LED failure check bit on.
4639		Tape present LED failure check bit on.
463A	3	Reel size LED failure check bit on.
463B	3	P'A cable unseated check bit on.
463 C	3	Idie tach failure check bit on.

RREN	Format	Meaning
463D	3	Match tach failure check bit on.
463E	3	File tach failure check bit on.
463F	3	Idler tach rotation check bit on.
4641	3	Drive control PLA failure check bit on.
4642	3	Servo logic failure check bit on.
4643	3	Servo analog failure check bit on.
4644	3	File AMP saturation check bit on.
4645	3	Mach AMP saturation check bit on.
4646	3	Load check bit on and sequence error bit not on.
4647	3	Not ready due to reset check bit on.
464B	3	Tension check and sequence error bits on.
464 C	3	Load check and sequence check bits on.
464D	3	Sequence error bit on without tension check bit or load check bit on. This condition indicates a false error.
4651	3	Start velocity check.
4652	3	End velocity check.
4653	3	PEID velocity check.
4654	3	Drive response check is on.
4655	3	Drive control parity check.
4656	3	Gap control check is on.
4657	3	Selected Alert is on and a motion error is not indicated in the sense bytes. The sense bits that were checked are shown in error numbers 37-56.
46F0	3	Selected Alert when not expected.
46F1	3	Check end status received.
46F2	3	Bus-in parity error.
46F7		End status 10-second timeout.
46F8	3	Control line timeout or selection error.
46F9	3	Unexpected adapter error.
4701	2	Unexpected machine check.
4704	1	Unexpected I/O interruption.
4706	1	Interruption always active.
4708	3	Open adapter failure.
4709	1	CHIO machine check.
470 C		Solid I/O machine check.
4711	3	Control line timeout on data securing erase command.
4712	3	Control line timeout on test set ready operation.
4713	3	Control line timeout on FSB command.
4714	3	No check end on FSB command.
4715	3	Not capable not on after FSB.
4716	3	Not capable not off.
4717	3	Sense byte 2, bit 6 not reset by check reset.
4718	3	Control line timeout on FSP command.
4719	3	Selected Alert not set by FSF command.
471A	3	Sense byte 2, bit 6 not on.
471B	3	Sense byte 3, bit 5 not on.
471C	3	Sense byte 3, bit 5 not reset by check reset.
471D	3	Sense byte 6, bit 1 is on (PEID check).
471E	3	Sense byte 6, bit 0 not on (write command).
471F	3	Sense byte 6, bit 0 is on (write command).
4721	3	Write status not on after DSE command.
4722	3	Write status not reset by FSB command.
4723	3	Busy not on during DSE operation.

RREN	Format	Meaning
4724	3	Busy not off after DSE operation.
4725	3	BSB at load point did not cause selected alert.
4726	3	Control line timeout on BSB at load point.
4727	3	Data check set on erase gap.
47A1	3	Selected Alert on erase gap operation.
47A2	3	Selected Alert and sense byte 12, bits 2 \& 3 off.
47A3	3	Selected Alert and sense byte 12, bits 2 \& 3 not $=00$.
47F0	3	Selected Alert when not expected.
47F1		Check end status received.
47F2		Bus-in parity error.
47F7	3	End status 10-second timeout.
47F8	3	Control line timeout or selection error.
47F9	3	Unexpected adapter error.
4801	2	Unexpected machine check.
4804	1	Unexpected I/O interruption.
4806	1	Interruption always active.
4808	3	Open adapter failure.
4809	1	CHIO machine check.
480 C		Solid I/O machine check.
4811	3	8 -second control line timeout on write.
4813	3	Check end after a BSB command.
4814	3	Status error on write 2.
4816	3	Status error on write 3.
4818	3	Status error on write 4.
481A	3	Status error on write 5.
481B	3	8 -second control line timeout on read command.
481 C	3	Write sense bit is up on a read operation.
481D	3	No data check on check end on read operation.
481 E	3	Data check on read operation.
481F	3	10 -second ending status timeout on read command.
4820	3	Check end after a write command and write bit in sense is not on.
4821	3	PEID check on a write command.
4822		Envelope check on a write command.
4823	3	MTE, data check, or start read check on write operation.
4824	3	Check end on write and sense byte 6 bits 2-4 $=0$.
4826	3	Check end set but not data check.
482 E	3	10 -second ending status timeout write 1.
48A1	3	Selected Alert on write 1 (WRT/ERASE fail).
48A2	3	Selected Alert on BSB operation.
48A6	3	Selected Alert and read back fail on read operation.
48A7	3	Selected Alert and gap control check on write 1.
48A8	3	Selected Alert and read back fail on write 1.
48A9	3	Selected Alert on write 1.
48AF	3	Selected Alert on read operation.
48FO	3	Selected Alert when not expected.
48F1	3	Check end status received.
48F2	3	Bus-in parity error.
48F7	3	End status 10-second timeout.
48F8	3	Control line timeout or selection error.
48F9	3	Unexpected adapter error.

RREN	Format	Meaning
4901	2	Unexpected machine check.
4904	1	Unexpected I/O interruption.
4906	1	Interruption always active.
4908	3	Open adapter failure.
4909	1	CHIO machine check.
490 C	2	Solid I/O machine check.
4912	3	Control line timeout on set long gap operation.
4913	3	Selected Alert after reset long gap.
4915	3	Long gap sense bit did not reset.
4916	3	Low-Speed sense bit not on.
4918		Selected Alert on set long gap command.
491C	3	Control line timeout on set long gap operation.
4921	3	Long gap sense bit did not turn on.
492C	3	Selected Alert on read block command.
492D	3	8 -second ending status timeout.
4931	3	Selected Alert on read block command.
4933	3	Check end after a read block command.
4934	3	Ending status timeout on read block command.
4935	3	Data compare error on last record read. Adapter status in message is replaced by expected and actual data.
4936	3	Long gap mode not reset by RLG command.
4937	3	Selected Alert on read command.
4939	3	Check end while trying to read the hex 33 record.
493A	3	After reading 12 records, the tape was not in position to read the hex 33 record. Long gap mode did not reset.
493B	3	8 -second ending status timeout.
49F0	3	Selected Alert when not expected.
49F1	3	Check end status received.
49F2	3	Bus-in parity error.
49F7	3	End status 10-second timeout.
49F8	3	Control line timeout or selection error.
49F9	3	Unexpected adapter error.
4A01	2	Unexpected machine check.
4A04	1	Unexpected I/O interruption.
4A06	1	Interruption always active.
4A08	3	Open adapter failure.
4A09	1	CHIO machine check.
4AOC	2	Solid I/O machine check.
4A11	3	Low speed did not set.
4A12	3	Long gap did not reset.
4A16	3	Selected Alert after backspace block.
4A17	3	Selected Alert on backspace operation. Not at load point.
4A19	3	Check end on backspace block.
4A23	3	Selected Alert on read 1.
4A27	3	Check end after read 1.
4A2B	3	Selected Alert on read 2.
4A2D	3	Check end on read 2.
4A33	4	Read compare error on read 2.
4A35	3	Selected Alert on read 3.
4A37	3	Check end on read 3.
4A39	4	Read compare error on record 3.
4AFO	3	Selected Alert when not expected.

RREN	Format	Meaning
4AF1	3	Check end status received.
4AF2	3	Bus-in parity error.
4AF7	3	End status 10-second timeout.
4AF8	3	Control line timeout or selection error.
4AF9	3	Unexpected adapter error.
4C01	2	Unexpected machine check.
4 C 04	1	Unexpected I/O interruption.
4C06	1	Interruption always active.
4C08	3	Open adapter failure.
4C09	1	CHIO machine check.
4COC	2	Solid machine check.
4C11	3	Control line timeout on set high-speed operation.
4C12	3	Selected Alert on set high-speed command.
4 C 13	3	Ending status timeout on set high-speed command.
4 C 14	3	Busy status on after set high-speed command.
4C15	3	Low-speed status on after set high-speed command.
4C16	3	Positioning status after set high-speed command.
4 C 17	3	Sense byte 11 not equal to 00100XXX after set highspeed command.
4C18	3	Sense byte 12 not equal to $\mathrm{XXXX01XX}$ after set highspeed command.
4C19	3	OP Complete not reset by check reset.
4C1A	3	Selected Alert on ERG in high-speed command.
4C1B	3	Ending status timeout on ERG operation.
4C1C	3	Sense byte 11 not equal to $10100 \times$ XX after erase gap command.
4C1D	3	Sense byte 12 not equal to $\mathrm{XXXX01XX}$ after erase gap command.
4C1E	3	Sense byte 11 not equal to 00100XXX after rewind command.
4C1F	3	Low-speed status not on after set low-speed command.
4 C 21	3	Bus-in parity error on set high-speed operation.
4CFO	3	Selected Alert when not expected.
4CF1	3	Check end status received.
4CF2	3	Bus-in parity error.
4CF7	3	End status 10 -second timeout.
4CF8	3	Control line timeout or selection error.
4CF9	3	Unexpected adapter error.
4D01	2	Unexpected machine error.
4D04	1	Unexpected I/O interruption.
4D06	1	Interruption always active.
4D08	3	Open adapter failure.
4D09	1	CHIO machine check.
4DOC	2	Solid I/O machine check.
4D11	3	Selected Alert on first write command.
4D12	3	Check end on first write command.
4D13	3	Selected Alert reading record 1.
4D14	3	Check end on reading record 1.
4D15	4	Compare error in record 1.
4D16	3	Selected alert reading record 2.
4D17	3	Check end on reading record 2.

RREN	Format	Meaning
4D18	4	Compare error in record 2.
4D19	3	Selected Alert reading record 3.
4D1A	3	Check end on reading record 3.
4D1B	4	Compare error in record 3.
4D1C	3	Selected Alert reading record 4.
4D1D	3	Check end on reading record 4.
4D1E	4	Compare error in record 4.
4D1F	3	Selected Alert reading record 5.
4D20	3	Check end on reading record 5.
4D21	4	Compare error in record 5.
4D22	3	Selected Alert reading record 6.
4D23	3	Check end on reading record 6.
4D24	4	Compare error in record 6.
4D25	3	Selected Alert reading record 7 .
4D26	3	Check end on reading record 7.
4D27	4	Compare error in record 7.
4D28	3	Selected Alert reading record 8.
4D29	3	Check end on reading record 8.
4D30	4	Compare error in record 10.
4D3A	4	Compare error in record 8.
4D3B		Selected Alert reading record 9.
4D3C	3	Check end on reading record 9 .
4D3D	4	Compare error in record 9.
4D3E	3	Selected Alert reading record 10.
4D3F	3	Check end on reading record 10.
4DFO	3	Selected Alert when not expected.
4DF1	3	Check end status received.
4DF2	3	Bus-in parity error.
4DF7	3	End status 10-second timeout.
4DF8	3	Control line timeout or selection error.
4DF9	3	Unexpected adapter error.
4E01	2	Unexpected machine check.
4E04	1	Unexpected I/O interruption.
4E06	1	Interruption always active.
4E08	3	Open adapter failure.
4E09	1	CHIO machine check.
4EOC	2	Solid I/O machine check.
4E11	3	Control line timeout on write tape mark (WTM) operation.
4E12	3	Ending status timeout on WTM command.
4 E 13	3	Check end with PEID CK or WTM command.
4E14	3	Check end with WTM CK on WTM command.
4E15	3	Check end with check byte 6, bit 0 off on WTM operation.
4E16	3	Check end with check byte 6, bit 0 on during WTM operation.
4E18	3	BSB over TM failed to set check end.
4E19	3	TM detected bit not on.
4E1A	3	Check end not set by BSB command.
4E1B	3	TM detected bit not on.
4E1C		TM detected not reset by check reset.
4E1D	3	Control line timeout on BSF command.
4E1F	3	Op Complete not on after BSF command.
4E21	3	Busy and Op Complete on after BSF command.

RREN	Format	Meaning
4E22	3	Op Complete not reset by check reset.
4E23	3	No normal end and data check not set.
4EA1	3	Selected Alert during a write tape mark command.
4EF0	3	Selected Alert when not expected.
4EF1	3	Check end status received.
4EF2	3	Bus-in parity error.
4EF7	3	End status 10-second timeout.
4EF8	3	Control line timeout or selection error.
4EF9	3	Unexpected adapter error.
4F01	2	Unexpected machine check.
4F04	1	Unexpected I/O interruption.
4F06	1	Interruption always active.
4F08	3	Open adapter failure.
4F09	1	CHIO machine check.
4F0C	2	Solid 1/O machine check.
4F11	3	Check end received writing record 1.
4F12	3	Check end received-not a write problem.
4F13	3	No normal end while writing record 2.
4F14	3	No normal end while writing record 3.
4F15	3	No normal end while writing record 4.
4F16	3	No normal end while writing record 5.
4FA1	3	Selected Alert on a write operation-record 1.
4FF0	3	Selected Alert when not expected.
4FF1	3	Chek end status received.
4FF2	3	Bus-in parity error.
4FF7	3	End status 10-second timeout
4FF8	3	Control line timeout or selection error.
4FF9	3	Unexpected adapter error
5001	2	Unexpected machine check.
5004	1	Unexpected I/O interruption.
5006	1	Interruption always active.
5008	3	Open adapter failure.
5009	1	CHIO machine check.
$500 C$	2	Solid I/O machine check.
5011	3	Unable to write tape.
5012	3	No normal end on read with correct count.
5013	3	No count error on read long.
5014	3	No count error on read long.
5015	3	Count error on read long with SLI bit on.
5016	3	Count error on read short with SLI bit on.
$50 F 0$	3	Selected Alert when not expected.
$50 F 1$	3	Check end status received.
$50 F 2$	3	Bus-in parity error.
$50 F 7$	3	End status 10-second timeout.
$50 F 8$	3	Control line timeout or selection error.
$50 F 9$	3	Unexpected adapter error.
5201	2	Unexpected machine check.
5204	1	Unexpected I/O interruption.
5206	1	Interruption always active.
5208	3	Open adapter failure.

RREN	Format	Meaning
5209	1	CHIO machine check.
520C	2	Solid I/O machine check.
5211	3	Write errors-could not write tape.
5212	3	Check end not on after BSB operation.
5213	3	TM detected not set after BSB operation.
5214	3	Check end not set on read.
5215	3	TM detected not set after read operation.
5216	3	Normal end off and data check off.
52A1	3	Selected Alert on write
52F0	3	Selected Alert when not expected.
52F1	3	Check end status received.
52F2	3	Bus-in parity error.
$52 \mathrm{F7}$	3	End status 10-second timeout.
52F8	3	Control line timeout or selection error.
52F9	3	Unexpected adapter error.
5301	2	Unexpected machine check.
5304	1	Unexpected I/O interruption.
5306	1	Interruption always active.
5308	3	Open adapter failure.
5309	1	CHIO machine check.
530C		Solid I/O machine check.
5311		Unable to write pattern 1 after 5 retries.
5312	3	Unable to write pattern 2 after 5 retries.
5313	3	Unable to write pattern 3 after 5 retries.
5314	3	Unable to write pattern 4 after 5 retries.
5315	3	Unable to write pattern 5 after 5 retries.
5316	3	Status error reading record 1.
5317	4	Compare error record 1.
5318	3	Status error reading record 2.
5319	4	Compare error record 2.
531A	3	Status error reading record 3 .
531B	4	Compare error record 3.
531C	3	Status error reading record 4.
531D	4	Compare error record 4.
531E	3	Status error reading record 5.
531F	4	Compare error record 5.
53A1	3	Selected Alert reading record 1.
53F0	3	Selected Alert when not expected.
53F1	3	Check end status received.
53F2	3	Bus-in parity error.
$53 \mathrm{F7}$	3	End status 10-second timeout.
53F8	3	Control line timeout or selection error.
53F9	3	Unexpected adapter error.
5401	2	Unexpected machine check.
5404	1	Unexpected I/O interruption.
5406	1	Interruption always active.
5408	3	Open adapter failure.
5409	1	CHIO machine check.
540 C	2	Solid I/O machine check.
5416		Status error on record 1 read.
5417	3	Read data compare error record 1.
5418	3	Status error on record 2 read.

RREN	Format	Meaning
5419	4	Read data compare error record 2.
541A	3	Status error on record 3 read.
541B	4	Read data compare error record 3.
541C	3	Status error on record 4 read.
5410	4	Read data compare error record 4.
541 E	3	Status error on record 5 read.
541F	4	Read data compare error record 5.
54A1	3	Selected Alert on read record 1.
54FO	3	Selected Alert when not expected.
54F1	3	Check end status received.
54F2	3	Bus-in parity error.
$54 \mathrm{F7}$	3	End status 10-second timeout.
54F8	3	Control line timeout or selection error.
54F9	3	Unexpected adapter error.
5501	2	Unexpected machine check.
5504	1	Unexpected I/O interruption.
5506	1	Interruption always active.
5508	3	Open adapter failure.
5509	1	CHIO machine check.
550 C	2	Solid I/O machine check.
5511	3	Could not write tape. Tried five times.
5512	3	No normal end received after read due to read error or runaway tape. Either a write/read problem or magnetized head or cleaner blade.
5513	4	Data compare error on read. Possible magnetized head or cleaner blade.
55A1	3	Selected Alert while writing.
55F0	3	Selected Alert when not expected.
55F1	3	Check end status received.
55F2	3	Bus-in parity error.
$55 \mathrm{F7}$	3	End status 10 -second timeout.
55F8	3	Control line timeout or selection error.
55F9	3	Unexpected adapter error.
5601	2	Unexpected machine check.
5604	1	Unexpected I/O interruption.
5606	1	Interruption always active.
5608	3	Open adapter failure.
5609	1	CHIO machine check.
560C	2	Solid I/O machine check.
5613	3	Data record not erased.
5614		TM detected not set on FSB command.
56A3	3	Selected Alert or tape runaway on PSB command.
56A4	3	Selected Alert on write operation.
56FO	3	Selected Alert when not expected.
56F1	3	Check end status received.
56F2	3	Bus-in parity error.
56F7	3	End status 10-second timeout.
56F8	3	Control line timeout or selection error.
56F9	3	Unexpected adapter error.

RREN	Format	Meaning
5A01	2	Unexpected machine check.
5A04	1	Uneppected I/O interruption.
5A06	1	Interruption always active.
5A08	3	Open adapter failure.
5A09	1	CHIO machine check.
5A0C	2	Solid I/O machine check.
5A11	3	Not ready, not at BOT, or not file protected.
5A12	3	Check end not set by FSB over TM.
5A13	3	Tape mark not detected.
5A14	3	Check end not reset by check reset.
5A15	3	Normal end not set by FSB operation.
5A16	3	Data check not set.
5A21	3	Test pattern delimiter not found by FSB.
5A22	3	Test pattern delimiter not found by BSB.
5A23	3	Test pattern delimiter not found by FSB.
5A24	3	No check end on reading BOR test record.
5A25	3	Start tata check not set.
5A26	3	Data check not set.
5A27	3	Start read check not reset.
5A28	3	No normal end on FSB.
5A29	3	No normal end on BSB.
5A2A	3	No normal end, no CK end or no TM DET on BSB.
5A2B	3	No normal end on FSB.
5A2C	3	No normal end on FSB.
5A31	3	Test pattern delimiter not found by FSB.
5A32	3	Pointers on for test record failure.
5A33	3	Check end on with no pointers.
5A41	3	IBG detect incorrect on FSB.
5A42	3	IBG detet incorrect on BSB.
5A43	3	No normal end on FSB.
5A44	3	MTE and crease not reset by check reset.
5A51	3	Check end not set by FSB over TM.
5A52	3	Tape mark not detected.
5A53	3	No check end on reading creased record.
5A54	3	MTE not set by reading creased record.
5A55	3	Crease bit not set by reading creased record.
5A56	3	Tape position is questionable.
5A57	3	TM DET not on reading creased record.
5A58	3	TM DET not on after BSB on creased record.
5A59	3	TM DET not on after FSB on creased record.
5A5A	3	Crease with no pointers.
5A5B	3	Start read check not reset.
5A5C	3	Write command sense after read command.
5A5D	3	Pointer P not set ty creased record.
5A5E	3	Data check not set.
5A71	3	Test record delimiter not found by FSB.
5A72	3	No check end on record with 2 bad tracks.
5A73	3	No MTE on record with 2 bad tracks.
5A81	3	Test record delimiter not found by FSB.

RREN	Format	Meaning
5A82	3	No check end.
5A83	3	No end data check.
5A84	3	Data check not set.
5AA1	3	Check end not set by tape mark.
5AA2	3	Tape mark not detected.
5AA3	3	Selected Alert on 1-bit skew record.
5AA4	3	Check end on 1-bit skew record.
5AA5	3	Skew check on 1-bit skew record.
5AA6	3	Data check not set.
5AA7	3	Data check not set.
5AA8	3	No check end on 3-bit skew record.
5AA9	3	No skew error on 3-bit skew record.
5AFO	3	Selected alert when not expected.
5AF1	3	Check end status received.
5AF2	3	Bus-in partity error.
5AF7	3	End status 10-second timeout.
5AF8	3	Control line timeout or selection error.
5AF9	3	Unexpected adapter error.
$5 \mathrm{BO1}$	2	Unexpected machine check.
5B04	1	Unexpected I/O interruption.
5B06	1	Interruption always active.
5B08	3	Open adapter failure.
5B09	1	CHIO machine check.
5B0C	2	Solid I/O machine check.
5B11	3	Test record delimiter not found by FSB.
5B12	3	Read fail pattern 1.
5B13	4	Data compare error pattern 1.
5B14	3	Read fail pattern 2.
5B15	4	Data compare error pattern 2.
5B16	3	Read fail pattern 3.
5 B 17	4	Data compare error pattern 3.
5B18	3	Read fail pattern 4.
5B19	4	Data compare error pattern 4.
5B1A	3	Read fail pattern 5.
5B1B	4	Data compare error pattern 5.
5B1C	3	Read fail pattern 6.
5B1D	4	Data compare error pattern 6.
5B1E	3	Read fail pattern 7.
5B1F	4	Data compare error pattern 7.
5B21	3	Read fail pattern 8.
5 B 22	4	Data compare error pattern 8.
5B23	3	Read fail pattern 9.
5B24	4	Data compare error pattern 9.
5B25	3	Read fail pattern 10.
5 B 26	4	Data compare error pattern 10.
$5 \mathrm{B27}$	3	Read fail pattern 11.
5B28	4	Data compare error pattern 11.
5829	3	Read fail pattern 12.
5B2A	4	Data compare error pattern 12.
5B2B	3	Read fail pattern 13.
5B2C	4	Data compare error pattern 13.
5B2D	3	Read fail pattern 14.

RREN	Format	Meaning
5B2E	4	Data compare error pattern 14.
5B31	3	Test pattern tape delimiter not found.
5B32	3	No select alert on write to protected tape.
5833	3	Write enable error.
5B34	3	Write enable error did not reset.
5B35	3	Timeout with no EOT or check end.
5B36	3	Control line timeout on rewind unload.
5837	3	Ending status timeout on rewind unload.
5838	3	EOT status on early.
5B39	3	EOT status did not go off.
5B3A	3	Busy not on during rewind unload.
5B3B	3	Ending status timeout on rewind unload.
5B3C	3	Busy did not drop after Op Complete.
5B3D	3	Op Complete not reset by check reset.
5BF0	3	Select alert when not expected.
5BF1	3	Check end status received.
5BF2	3	Bus-in partity error.
5BF7	3	End status 10 -second timeout.
5BF8	3	Control line timeout or selection error.
5BF9	3	Unexpected adapter error.
6001	2	Unexpected machine check.
6004	1	Unexpected I/O interruption.
6006	1	Interruption always active.
6008	3	Open adapter failure.
6009	1	CHIO machine check.
600C	2	Solid I/O machine check.
6011	3	No normal end on write 1 at low speed.
6012	3	No normal end on write 2 at low speed.
6013	3	No normal end on write 3 at low speed.
6014	3	No normal end on write 4 at low speed.
6015	3	No normal end on write 5 at low speed.
6016	3	No normal end on write 6 at low speed.
6017	3	No normal end on write 7 at low speed.
6018	3	No normal end on write 8 at low speed.
6019	3	No normal end on write 9 at low speed.
601A	3	No normal end on write 10 at low speed.
601B	3	No normal end on write 11 at low speed.
601C	3	No normal end on write 12 at low speed.
601D	3	No normal end on write 13 at low speed.
601E	3	No normal end on write 14 at low speed.
6021	3	No normal end on write 1 at high speed.
6022	3	No normal end on write 2 at high speed.
6023	3	No normal end on write 3 at high speed.
6024	3	No normal end on write 4 at high speed.
6025	3	No normal end on write 5 at high speed.
6026	3	No normal end on write 6 at high speed.
6027	3	No normal end on write 7 at high speed.
6028	3	No normal end on write 8 at high speed.
6029	3	No normal end on write 9 at high speed.
602A	3	No normal end on write 10 at high speed.
602B	3	No normal end on write 11 at high speed.
602C	3	No normal end on write 12 at high speed.

RREN	Format	Meaning
602D	3	No normal end on write 13 at high speed.
602E	3	No normal end on write 14 at high speed.
60FO	3	Selected Alert when not expected.
60F1	3	Check end status received.
60F2	3	Bus-in parity error.
60F7	3	End status 10-second timeout.
60F8	3	Control line timeout or selection error.
60F9	3	Unexpected adapter error.
6101	2	Unexpected machine check.
6104	1	Unexpected I/O interruption.
6106	1	Interruption always active.
6108	3	Open adapter failure.
6109	1	CHIO machine check.
610C	2	Solid I/O machine check.
6111	3	No normal end after read record 1.
6112	3	No normal end after read record 2.
6113	3	No normal end after read record 3.
6114	3	No normal end after read record 4.
6115	3	No normal end after read record 5 .
6116	3	No normal end after read record 6.
6117	3	No normal end after read record 7.
6118	3	No normal end after read record 8.
6119	3	No normal end after read record 9 .
611A	3	No normal end after read record 10.
611B	3	No normal end after read record 11.
611C	3	No normal end after read record 12.
6110	3	No normal end after read record 13.
611E	3	No normal end after read record 14.
6121	3	No normal end after read record 15.
6122	3	No normal end after read record 16.
6123	3	No normal end after read record 17.
6124	3	No normal end after read record 18.
6125	3	No normal end after read record 19.
6126	3	No normal end after read record 20.
6127	3	No normal end after read record 21.
6128	3	No normal end after read record 22.
6129	3	No normal end after read record 23.
612A	3	No normal end after read record 24.
612B	3	No normal end after read record 25.
612C	3	No normal end after read record 26.
612D	3	No normal end after read record 27.
612E	3	No normal end after read record 28.
6151	4	Data compare error on record 1.
6152	4	Data compare error on record 2.
6153	4	Data compare error on record 3.
6154	4	Data compare error on record 4.
6155	4	Data compare error on record 5.
6156	4	Data compare error on record 6.
6157	4	Data compare error on record 7.
6158	4	Data compare error on record 8.
6159	4	Data compare error on record 9 .
615A	4	Data compare error on record 10.

RREN	Format	Meaning
615B	4	Data compare error on record 11.
615 C	4	Data compare error on record 12.
615D	4	Data compare error on record 13.
615E	4	Data compare error on record 14.
6161	4	Data compare error on record 15.
6162	4	Data compare error on record 16.
6163	4	Data compare error on record 17.
6164	4	Data compare error on record 18.
6165	4	Data compare error on record 19.
6166	4	Data compare error on record 20.
6167	4	Data compare error on record 21.
6168	4	Data compare error on record 22.
6169	4	Data compare error on record 23.
616A	4	Data compare error on record 24.
616B	4	Data compare error on record 25.
616C	4	Data compare error on record 26.
616D	4	Data compare error on record 27.
616 E	4	Data compare error on record 28.
6191	3	Tape mark detected not on after FSB operation over a tape mark.
6192	3	Tape mark detected not on after BSB operation over a tape mark.
61F0	3	Selected Alert when not expected.
61F1	3	Check end status received.
61F2	3	Bus-in partity error.
$61 F 7$	3	End status 10-second timeout.
6178	3	Control line timeout or selection error.
61F9	3	Unexpected adapter error.
6201	2	Unexpected machine check.
6204	1	Unexpected I/O interruption.
6206	1	Interruption always active.
6208	3	Open adapter failure.
6209	1	CHIO machine cneck.
620C	2	Solid I/O machine check.
6211	3	Normal routine completion.
6301	2	Unexpected machine check.
6304	1	Unexpected I/O interruption.
6306	1	Interruption always active.
6308	3	Open adapter failure.
6309	1	CHIO machine check.
630 C	2	Solid I/O machine check.
6313	3	Cover/reel latch interlock is open.
6314	3	Drive state is 'idle'.
6315	3	Drive state is 'take up slack'.
6316	3	Drive state is 'sample radius'.
6317	3	Drive state is 'enable servo'.
6318	3	Drive state is 'rewind FWD space'.
6319	3	Drive state is 'rewind'.
631A	3	Drive state is 'rewind stop'.
631B	3	Drive state is 'high-speed load point' and low speed is on.
631C	3	Drive state is 'space to low-speed load point'.
631D	3	Drive state is 'not low-speed load point' and the drive is in low-speed mode.

RREN	Format	Meaning
631E	3	Drive state is 'low-speed load point' and busy.
631F	3	Drive state is 'low-speed load point' and BOT is not on.
6321	3	Drive state is 'low-speed load point' and EOT is on.
6322	3	Drive state is 'low-speed load point' and Op Complete is not on. This error occurs if drive was reset after pressing LOAD REWIND or if LOAD REWIND is not pressed each time this routine is run.
6323	3	Drive state is 'low-speed load point' and positioning.
6324	3	Drive state is 'low-speed load point' and stoplock is not on.
6325	3	Drive state is 'low-speed load point' and READY light is not on.
6326	3	Drive state is 'low-speed load point' and all status appears correct. The READY light should be on; if not, check the READY light and circuit.
6328	3	Drive state is not 'high-speed load point' and the drive is in high-speed mode.
6329	3	Drive state is 'high-speed load point' and busy.
632A	3	Drive state is 'high-speed load point' and BOT is not on.
632B	3	Drive state is 'high-speed load point' and EOT is on.
632C	3	Drive state is 'high-speed load point' and Op Complete is not on. This condition occurs if RESET is pressed after load rewind or if LOAD REWIND is not pressed each time this routine is run.
632D	3	Drive state is 'high-speed load point' and positioning.
632 E	3	Drive state is 'high-speed load point' and stoplock is not on.
632F	3	Drive state is 'high-speed load point' and READY light is not on.
6331	3	Drive state is 'high-speed load point' and the READY light should be on; if it is not, then check the READY light and circuit.
6334	3	Cover/reel latch interrupt is on.
6335	3	BOT/EOT LED failure.
6336	3	Tape present LED failure.
6337	3	Reel size LED failure.
6338	3	PA cable unseated.
6339	3	Idler tach failure.
633A	3	Machine tach failure.
633B	3	File tach failure.
633C	3	Idler tach rotation check.
6341	3	Drive control PLA failure.
6342	3	Servo logic failure.
6343	3	Servo analog failure.
6344	3	File amp saturation.
6345	3	Machine amp saturation.
6346	3	Load check is on and sequence check is not on. This condition indicates a false error.
6347	3	Not ready due to reset.
6348	3	Selected Alert is on but there are not motion checks.
634B	3	Tension check is on and drive state is rewind
634 C	3	Load check and sequence error are on.
634D	3	Sequence check is on without tension or load check. This condition indicates a false error.
634 E	3	Tension check is on and drive state is not rewind.

RREN	Format	Meaning
6351	3	Drive control parity check.
6352	3	Drive response check is on.
6361	4	Write current failure.
6362	4	Erase current failure.
63F0	3	Selected Alert when not expected.
63 F 1	3	Check end status received.
63F2	3	Bus-in parity error.
$63 F 7$	3	End status 10-second timeout.
63F8	3	Control line timeout or selection error.
63F9	3	Unexpected adapter error.
6401	3	Unexpected machine check.
6404	1	Unexpected I/O interruption.
6406	1	Interruption always active.
6408	3	Open adapter failure.
6409	1	CHIO machine check.
640C	2	Solid I/O machine check.
6411	3	Selected alert from write operation.
6412	3	Check end on write operation.
6501	2	Unexpected machine check.
6504	1	Unexpected I/O interruption.
6506	1	Interruption always active.
6508	3	Open adapter failure.
6509	1	CHIO machine check.
650C	2	Solid I/O machine check.
6511	3	Selected Alert from write operation.
6512	3	Check end on write operation.
6601	2	Unexpected machine check.
6604	1	Unexpected I/O interruption.
6606	1	Interruption always active.
6608	3	Open adapter failure.
6609	1	CHIO machine check.
660C	2	Solid I/O machine check.
6611	3	Selected Alert from read operation.
6612	3	Check end on read operation.
6701	2	Unexpected machine check.
6704	1	Unexpected I/O interruption.
6706	1	Interruption always active.
6708	3	Open adapter failure.
6709	1	CHIO machine check.
670C	2	Solid I/O machine check.
6711	3	Positioning bit not turned on in 15 ms .
6712	3	Gap is too short-less than 1.4 cm (0.55 inch).
6713	3	Gap is too long-greater than $1.65 \mathrm{~cm}(0.65 \mathrm{inch})$.
6714	3	Bad status after read operation.
6A01	2	Unexpected machine check.
6A04	1	Unexpected I/O interruption.
6A06	1	Interruption always active.
6 A08	3	Open adapter failure.
6A09	1	CHIO machine check.
6A0C	2	Solid I/O machine check.
6A11	3	Not capable not on for first FSB. Check for proper skew tape.
6AA2	3	Tape motion was terminated by select alert condition other than tape running out.

RREN	Format	Meaning
6AFF	3	Normal test end (tape ran out).
6 B01	2	Unexpected machine check.
6B04	1	Unexpected I/O interruption.
6B06	1	Interruption always active.
6B09	1	CHIO machine check.
6B0C	2	Solid I/O machine check.
6B11	3	Normal error number that is displayed with the sense
		information.
6C01	2	Unexpected machine check.
6C04	1	Unexpected I/O interruption.
6C06	1	Interruption always active.
6C08	3	Open adapter failure.
6C09	1	CHII machine check.
6C0C	2	Solid I/O machine check.
6CFF	3	Normal message, not an error. (The symptom code is the
		last 2 bytes of the message; see Symptom Code table below.)
6D01	2	Unexpected machine check.
6D04	1	Unexpected I/O interruption.
6D06	1	Interruption always active.
6D08	3	Open adapter failure.
6D09	1	CHIO machine check.
6D0C	2	Solid I/O machine check.

Symptom Codes (SCs) Generated by Routine 6C
Symptom
AxxX
B001
B002
B004
B008
B010
B020
B040
B080
120
140
B180

Meanin

Adapter detected error
Sync out check
Sequence erro
Control line tag bus parity error
Control line bus-out parity error Formatter read failure
Formatter write or control line failure
Sense bus párity error
Clock failure
Check bus parity error
Bus-out gated parity error Command register parity error Power amp cable is unseated Reel size LED failure
Tape present LED failur BOT/EOT LED failure Cover interrupt with cover closed Idler tach rotation check
File tach failure
Machine tach failure
Idler tach failure
Machine amp saturation File amp saturation

Symptom		The following SCs could not be completely determined:	
Code	Meaning		
C220	Servo analog failure	Symptom	
C240	Servo logic failure	Code	Meaning
C280	Drive control PLA failure	FFF1	Selected Alert but no select alert sense bits
C380	Sequence error and load check	FFF2	Check end with data check on write
C381	Sequence error and tension check	FFF3	Check end with data check on LWR
C382	Sequence check without tension or load check	FFF4	Check end on but data check off
C420	PEID velocity check	FFF5	Check end with data check on
C440	End velocity check	FFF6	Invalid status and check bytes
C480	Start velocity check	FFFF	No Check End and no Selected Alert
C520	Gap control check		
C540	Drive control parity check	TA244 DPCX Online Exerciser Messages	
C580	Drive response check		The following table lists, for each routine, the error numbers and their meanings for the
C640	Not ready due to reset		
C641	Not ready due to reset and drive ready		DPCX online exerciser. See TA232 for error message formats.
C680	Load check	Rren	Meaning
D010	Read back fail	0101	Failure during a rewind
D020	Write-bus parity check	01.21	Failure during LWR -18 bytes, pattern $=0101010101010101$
D040	Write current fail	0122	Failure during LWR-128 bytes, pattern $=2222222222222222$
D080	Erase current fail	0123	Failure during LWR-256 bytes, pattern = FFFFFFFFFFFFFFFFF or
D180	Read-bus parity check Selected Alert with BOT		pattern $=7$ F08AAFF5504FFAB
D240	Write enable error	0124	Failure during LWR-2048 bytes, pattern $=$ 7F08AAFF5504FFAB
D280	Not capable on forward space fail	0125	Failure during ERG-15 erase gaps
E001	EOT on write	0170	Failure on When Ready macro
E020	Tape mark detected	0171	Failure on Open Device macro-programming error
E040	Not capable	01F2	Failure on Open Device macro-hardware error
E080	Overrun	0173	Failure on Close Device macro-programming error
E202	Not capable and write status	0174	Failure on Close Device macro-hardware error
E204	PEID check during write	0201	Failure during a rewind
E208	Write tapemark error	0203	Failure during write-18 bytes, pattern = FFFFFFFFFFFFFFFF
E210	MTE on write	0204	Failure during write -128 bytes, pattern $=7$ F08AAFF5504FFAB
E220	ENV check on write	0205	Failure during write-256 bytes, pattern $=7$ F08AAFF5504FFAB
E240	Start read check on write	0206	Failure during write tape mark
E280	End data check during write	0208	Failure during read-18 bytes
E302	Not capable and write status off	0208	Failure during forward space block
E304	Creased	0209	Failure during read-256 bytes
E308	No pointer error on non-write	020A	Failure during read (tape mark was being read)
E310	MTE on non-write	0208	Failure during backspace file
E320	Skew error on non-write	020C	Failure during forward space file
E340	Start read check on non-write	020D	Failure during read-128 bytes
E380	End data check on non-write	020 E	Failure during backspace block
E404	PEID check on loop write read (LWR)	020 F	Failure while comparing data-128 bytes
E408	WTM error on LWR	0210	Failure while comparing data-256 bytes
E410	MTE on LWR	0211	Failure during write-2048 bytes, pattern $=0123456789 \mathrm{ABCDEF}$
E420	ENV CK on LWR	0212	Failure during read-2048 bytes
E440	Start read check on LWR	02F0	Failure on When Ready macro
E480	End data check on LWR	02F1	Failure on Open Device macro-programming error
		02F2	Failure on Open Device macro-hardware error
		02F3	Failure on Close Device macro-programming error
		02F4	Failure on Close Device macro-hardware error

TA250 Failure Action Plans

This section provides an action plan for the type of error detected by the TA offline tests. The failing routine number in the test error message indicates the type of error detected (see TA230 for error message format). The types of errors and their action plans are:

Failing		Go to
Routine (RR)	Type of Failure	Action Plan
$01,02,03,09$	SCF/tape adapter	TA251
$04-08,11-15$	Tape adapter	TA252
$40-43$	Tape adapter/tape drive	TA253
$44-56$	Tape drive	TA254
		Go to
Other Test		Action Plan
Error Messages	Type of Failure	TA251
PA80	Tape adapter failed to initiate a data transfer	TA251
XXBC	SCF/tape adapter failure	

Determine the type of error and go to the appropriate action plan. The action plan provides you with a list of possible failing FRUs to correct the type of failure.

Caution: Turn power off when removing or exchanging cards or cables.

TA251 SCF/Tape Adapter Failure Action Plan
A failure was detected either in the SCF bus lines or the tape adapter circuitry associated A failure was detected either in the SCF bus lines or the tape adapter circuitry associa drive. Proceed as follows:

1. Measure the board voltages. See TA440. If there are missing or out-of-tolerance voltages, either go to the PA MIM for an 8809 Model 1A or the 8809 START MAP for an ages, either go to
8809 Model 1 B .
Reseat tape adapter cards and the SCF card. See TA431, TA432, or TA433.
2. Check SCF top card connectors.
3. Check card and board pins for bent or broken pins and connectors.
4. Exchange all possible cards that could cause the failure. For a list of cards related to the test error message, see TA255 (Routine 01, 02, 03, 09, XXBC, or PA80). Run tests after each exchange.
5. If the 8809 is a Model 1A, test all other adapters in the same SCF address group. Exchange any failing adapter.
6. Check the board wiring and correct if necessary. See TA451, TA452, or TA453.
7. If the error was 92 BC , return to the ST action plan that sent you here, and continue with the next ST action plan step.
8. Request aid.

TA252 Tape Adapter Failure Action Plan

A failure was detected in the tape adapter circuitry. The operation that failed was not related to operations involving the tape drive. Proceed as follows:

1. Measure the board voltages (see TA440). If there are missing or out-of-tolerance voltages, either go to the PA MIM for an 8809 Model 1A or to the 8809 START MAP for an 8809 Model 1B
2. Reseat tape adapter cards and top card connectors. Reseat SCF card and top card paddle connectors. Reseat cables from SCF card to 01A board (Model 1B only). See TA431, TA432, or TA433
3. Model 1A only: Check and reseat paddle cards at Y 1 and $\mathrm{Z1}$ (adapter in 8101) or Y3 and Z3 (adapter in 8140).
4. Check card and board pins for bent or broken pins and connectors.
5. Exchange all possible cards that could cause the failure. For a list of cards related to the test error message, see TA255 (Routines 04-08 and 11-15). Run tests after each exchange.
6. Check the board wiring and correct if necessary. See TA451, TA452, or TA453 7. Request aid.

TA253 Tape Adapter/Tape Drive Failure Action Plan
A failure was detected when the tape adapter initiated its first operations involving the tape drive. Proceed as follows

1. Ensure that the tape drive is clean, has a known good reel of tape mounted, and the drive is ready. Correct if necessary and rerun tests.
2. Reseat tape adapter cards and top card connectors. See TA431, TA432, or TA433.
3. Model 1A only: Check and reseat paddle cards at Y1 and $\mathrm{Z1}$ (adapter in 8101) or Y3 and $\mathrm{Z3}$ (adapter in 8140).
4. Model 1A only: Check the Bus and Tag cables for bent pins or loose connections. See TA111.
5. Exchange all possible cards that could cause the failure. For a list of cards related to the test error message, see TA255 (Routines 40-43). Run tests after each exchange.
6. Check the board wiring and correct if necessary. See TA451, TA452, or TA453
7. Go to TA254 (Tape Drive Action Plan) and perform that action plan.

TA254 Tape Drive Action Plan
A failure was detected while running the device tests. Proceed as follows:

1. Ensure that the tape drive is clean, has a known good reel of tape mounted, and the drive is ready. Correct if necessary and rerun the tests.
2. Check the card list in TA255. If the routine number and error number (RREN) appea in the list, exchange the cards shown one at a time. Run tests after each exchange.
Go to the 8809 tape drive MAPs.

Error Pattern		Model 1A									Model 18		
		Adapter in 8101 Exchange in Order			Adapter in 8140 C2 Board Exchange in Order			Adapter in 8140 D2 Board Exchange in Order			Adapter in 8809 Exchange in Order		
		1st	2nd	3rd									
PA80		A2A2	A2B2		C2A2	C2G2		C2A2	D2G2		SCF	A1D2	
XXBC		A2A2	A2B2	A2C2	C2A2	C2G2	C2H2	C2A2	D2G2	D2H2	SCF	A1D2	A1E2
PAXE	01x	A2C2	A2B2	A2A2	C2H2	C2G2	C2A2	D2H2	D2G2	C2A2	A1E2	A1D2	SCF
PAXE	02XX	A2C2	A2B2	A2A2	C2H2	C2G2	C2A2	D2H2	D2G2	C2A2	A1E2	A1D2	SCF
PAXE	03XX	A2B2	A2C2	A2A2	C2G2	C2H2	C2A2	D2G2	D2H2	C2A2	A1D2	A1E2	SCF
PAXE	04XX	A2B2	A2C2	A2D2	C2G2	C2H2	C2J2	D2G2	D2H2	D2J2	A1D2	A1E2	
PAXE	05XX	A2B2	A2C2		C2G2	C2H2		D2G2	D2H2		A1D2	A1E2	
PAXE	06XX	A2C2	A2B2		C2H2	C2G2		D2H2	D2G2		A1E2	A1D2	
PAXE	07XX	A2C2	A2B2		C2H2	C2G2		D2H2	D2G2		A1E2	A1D2	
PAXE	08XX	A2C2	A2B2		C2H2	C2G2		D2H2	D2G2		A1E2	A1D2	
PAXE	09XX	A2B2	A2A2	A2C2	C2G2	C2A2	C2H2	D2G2	C2A2	D2H2	A1D2	SCF	A1E2
PAXE	11XX	A2B2	A2A2		C2G2	C2A2		D2G2	C2A2		A1D2	SCF	
PAXE	12XX	A2B2	A2A2		C2G2	C2A2		D2G2	C2A2		A1D2	SCF	
PAXE	13xX	A2B2	A2A2		C2G2	C2A2		D2G2	C2A2		A1D2	SCF	
PAXE	14XX	A2C2	A2B2		C2H2	C2G2		D2H2	D2G2		A1E2	A1D2	
PAXE	15XX	A2C2	A2B2		C2H2	C2G2		D2H2	D2G2		A1E2	A1D2	
PAXE	40xX	A2C2	A2D2	A2B2	C2H2	C2J2	C2G2	D2H2	D2J2	D2G2	A1E2	A1D2	
PAXE	41xX	A2C2	A2D2	A2B2	C2H2	C2J2	C2G2	D2H2	D2J2	D2G2	A1E2	A1D2	
PAXE	42XX	A2D2	A2C2	A2B2	C2J2	C2H2	C2G2	D2J2	D2H2	D2G2	A1E2	A1D2	
PAXE	43XX	A2D2	A2C2	A2B2	C2J2	C2H2	C2G2	D2J2	D2H2	D2G2	A1E2	A1D2	
PAXE	4420	A2C2	A2D2	A2B2	C2H2	C2J2	C2G2	D2H2	D2J2	D2G2	A1E2	A1D2	
PAXE	4701	A2D2	A2C2	A2B2	C2J2	C2H2	C2G2	D2J2	D2H2	D2G2	A1E2	A1D2	
PAXE	4725	A2D2	A2C2	A2B2	C2J2	C2H2	C2G2	D2J2	D2H2	D2G2	A1E2	A1D2	
PAXE	481A	A2B2	A2C2		C2G2	C2H2		D2G2	D2H2		A2D2	A1E2	
PAXE	4935	A2B2	A2C2	A2A2	C2G2	C2H2	C2A2	D2G2	D2H2	C2A2	A1D2	A1E2	SCF
PAXE	49F9	A2C2	A2B2	A2A2	C2H2	C2G2	C2A2	D2H2	D2G2	C2A2	A1E2	A1D2	SCF
PAXE	4A33	A2B2	A2C2		C2G2	C2H2		D2G2	D2H2		A1D2	A1E2	
PAXE	4AF8	A2B2	A2C2		C2G2	C2H2		D2G2	D2H2		A1D2	A1E2	
PAXE	5319	A2B2	A2C2		C2G2	C2H2		D2G2	D2H2		A1D2	A1E2	
PAXE	5512	A2C2	A2B2		C2H2	C2G2		D2H2	D2G2		A1E2	A1D2	

The Local/Remote power switch should be in Local, and the 8809 should be powered
off when exchanging cards.

sY27.2521-3

TA300 Intermittent Failure Repair Strategy

TA310 Adapter-Unique Intermittent Repair Strategy

System-detected or customer-reported failures are considered intermittent if they cannot be readily reproduced by the DLS tests (see 8809 Maintenance Manual for definition) or other maintenance manual-instructed action by the service representative.

Looping the tests provides the most effective method of detection for an intermittent failure. Should a failure not occur, then you must use the error log.

TA311 Looping with MAP Interaction to Determine Intermittent Failures
The DLS tests may be looped using the MAP during basic checkout (MAP selection A). Each complete test sequence takes 7 minutes, and, if there are no errors on the first pass, the tests loop continuously. The MD displays 'PAFO TEST LOOPING' until the test either detects an error, or you terminate the test by entering ' F ' at the $M D$.

If an error is detected while looping, the MAP directs repairs of the failure in the same manner as a solid failure. Once you perform a repair action, the MAP loops the tests to verify the repair.

If the tests do not detect an error while looping, you should terminate the tests. The MA directs you to run either ELDA (DPPX systems) or SYSLERR (DPCX systems) and obtain the symptom code for the customer-reported failure. You then reenter the MAP at Entry Point D (Test Symptom Code) and are directed to the appropriate FRU exchange list.

TA312 Using the System Error Log to Determine Intermittent Failures
To obtain this log for DPPX systems, you use the ELDA utility, and to obtain it for systems operating under DPCX, you use the SYSLERR utility and obtain a symptom code using the sense data collected at the time of failure.

In general, the procedure is to replace the highest probability FRU indexed by the symp tom code. Once the FRU has been exchanged, run the DLS tests or the DPCX Online Exerciser. Assuming no detected failures, record the FRU in the FRU Exchange History Table, which is located in the
the machine to the customer.

On subsequent calls for the same failure, exchange the next lower probability $F R U s$, one at a time, using the above procedure. When the list of FRUs is exhausted and the intermittent failure persists, go to TA250 and perform all action plans.

The action plans direct you to some low probability FRUs of a more general nature, but still related to the failure being diagnosed. If the failure still persists, you are directed ocollect pertinent information before calling the support level.

TA313 Using the Free-Lance Utility to Determine Intermittent Failures
The TA test can be looped by using the Free-Lance Utility contained on the MD diskettes, A complete test sequence occurs in 7 minutes. To invoke the TA tests, at the 80 BC message enter PADAB, at the 81 BC message enter 11B (see TA211). The test loops con tinuously until either detecting an error or you terminate the test by entering an ' F ' at the MD.

If an error occurs while looping, the MD displays the test error message (see TA231). Record this message and use the Failure Action Plans section (TA250) to isolate and repair the failure. Once a repair action has been taken, loop the test for at least 15 min . utes to verify the repair.

TA320 Error-Log Information Needed for the Tape Adapter

Error-log information may be obtained in several ways, depending upon which system the customer uses and what type of information you want. The following lists the different methods of obtaining the information and briefly describes the information

- DISPLAY.ERRLOG Command-Outputs either all or selected records in the error log depending upon the options selected. The output is in detailed form.
- ELSA Utility-Outputs either all or selected records in the error log, depending upon the options selected. The output is in summary form.
- ELDA Utility-Outputs all records pertaining to the tape drive and the tape adapter. The records are in summary form and the user can select the type of information to be summarized. The output also includes the symperect the type of

TA322 DPCX

- SYSLERR Utility-Outputs all or selected records in the error log (called the Condition/Incident Log), depending upon the options selected. The output is in detailed form. In addition, if the record is a Type-5 tape unit or tape adapter record the utility generates the outputs the symptom code for the error. See TA332 for Type-5 record format.
- SYSLTSD Utility-Outputs the summary of all temporary errors occurring in the tape subsystem.

Note: Chapter 2 contains the invocation procedures for each of these methods, as well as additional information about SYSLTSD and ELDA.

TA330 Error Log Formats and Meanings Used for the Tape Adapter

The format of the error log depends upon whether the customer is using DPPX or DPCX.
TA331 DPPX Error Log Formats and Meanings
The following conditions generate an entry in the DPPX error log:

- Permanent errors. Figure TA331-2 shows the format of this record.
- Temporary errors. Temporary errors are not logged for each event but are counted by threshold counters in the program. See Figure TA334-1 for the Tape Statistical Data (TSD) threshold counters. When a threshold counter reaches a predetermined value, the Error Record Indicator (ERI) bit turns on in the extended status, and the data is logged. The record format is the same as for permanent errors.
- A volume is mounted or dismounted. Figure TA331-1 shows the contents of the entry.

DPPX Error Log Display
The DISPLAY.ERRLOG command prints the detailed error log data. Figure TA331-1 shows the Mount/Dismount display, and Figure TA331-2 shows the Error Record display.

The ELSA utility prints summary error data. Error data may also be printed using the Error Log Data Analysis (ELDA) report (see Chapter 2, CP730)

```
CLASS 04 SUBCLASS 02 OPTION XX
DATE YY.DDD TIME HH:MM:SS
MOLID XXxxxx 
```

Note: " X " indicates the field size in bytes, where two X s equals one byte.
Figure TA331-1. DPPX Error Log Display for Mount/Dismount Records

[^5]EXTENDED DATA
D01, D02 $=4$ bytes $=$ Not used
D03 = XXXX = First byte $=$ Extended completion status Bit $0=$ Not used
Bit $1=$ Error record indicator
Bit $2=$ Program request interrup
Bit $3=$ Not used
Bit $3=$ Not used
Bit $4=$ Not used
Bit $5=$ Preemptive request complete
Bit $6=$ Not used
Scond byte $=$ Not used
D04 = XXXX = Error record displacement
D05, D06 $=4$ bytes $=$ BCLE address
D07 $=X X X X=$ Residual coun
D08 = XXXX = Not used
Dio $=$ XXXX $=$ DPPX/CAC control byte
D10, D11 $=4$ bytes $=$ Reserved
D12 $=X X X X=$ Count (size of FCB build area)
D13, D14 $=4$ bytes $=$ Address of FCB build area
D15-D18 $=8$ bytes $=$ CAC work are
D19-D24 $=12$ bytes $=$ Reserved
D25-D36 $=$ Tape Statistical Data (TSD) counters (see TA334)
XXXX $=$ First byte $=$ Tape sense byte 0 (see TA233)
D38 = $\mathrm{XXXX}=$ First byte $=$ Tape sense byte 1 (see TA233)
Second byte $=$ Tape sense byte 3 (see TA233)
D39 = $\mathrm{xXXX}=$ Second byte $=$ Tape
Second byte $=$ Tape sense byte 5 (see TA233 First byte = Tape sense byte 6 (see TA233) Second byte $=$ Tape sense byte 7 (see TA233)
$=\mathrm{XXXX}=$ First byte $=$ Tape sense byte 8 (see TA233)
$=\mathrm{XXXX}=\begin{aligned} & \text { Second byte }\end{aligned}=$ Tape sense byte 9 (see TA233)
$=$ XXXX $=$ First byte $=$ Tape sense byte 10 (see TA233)
$=X X X X=$ First byte $=$ Tape sense byte 12 (see TA233)

- Second byte $=$ Tape sense byte 13 (see TA233)
$=X X X X=\begin{aligned} & \text { First byte }=\text { Tape sense byte } 14 \text { (see TA233) } \\ & \text { Second byte }=\text { Tape sense byte } 15 \text { (see TA233) }\end{aligned}$
$=$ XXXX $=$ First byte $=$ Adapter status extended (see TA233)
$=X X X X \quad$ Second byte $=$ Adapter status (see TA233)
$=$ XXXX $=\begin{aligned} & \text { First byte }=\text { Device address } \\ & \text { Second byte }=\text { PIO command (see TA333) }\end{aligned}$
$=\mathrm{XXXX}=$ First byte $=$ Tag bus
Second byte $=$ Bus Out
Note: See IBM 8809 Magnetic Tape Unit Description, Form GA26-1659, for detailed explanation of D47 field.

Temporary Errors

Temporary errors are not logged for each event but are counted by threshold counters in the program. When a threshold counter reaches a predetermined value, the error record indicator (ERI) bit turns on in the extended status, and the Tape Statistical Data (TSD) counters in processor storage save the data. When a TSD counter overflows or a tape is Volume ID and Tape Unit LA. The history file has the ability to hold 80 volume entries Volume ID and Tape Unit LA. The history file has the ability to hold 80 volume entries and 4 tape

Permanent Errors

The 8100 enters selected system events into an error log (Condition/Incident Log), contained on the system-resident disk storage drive (see Figure TA332-1). An incident type and a sequence number identify each event. Sequence numbers are assigned in order of occurrence, sequentially from 1 to 4095. The log wraps around at 4095, starting over at 1 , and any previous recordings are overwritten.

Note: Some error log records may be lost after an 8100 power-off sequence if (1) the Control Operator did not perform a normal termination of system operations prior to power-off, or (2) you did not initalize the 8100 before power-off.

Three types of error records are used by the tape adapter and tape drive

- Type-2 records, associated with system check failures (Figure TA332-1).
- Type-4 records, associated with various system events such as system start, system abend, and system shutdown (Figure TA332-2).
- Type-5 records, associated with tape adapter and tape drive failures (Figure TA332-3).

The log typically can be used for intermittent failure analysis when the various tests do not detect a failure.

Error Data Display, Temporary Errors

The SYSLTSD utility permits you to display or print the temporary error counters (tape statistical data or TSD) from the history file. See Chapter 2, CP853, for invocation procedures and allowable options. Supported devices are the same as for SYSLERR

You can display the TSD counters in two different formats: detailed or summary. The letailed format shows all the counters sorted by tape unit LA and the major counters in percentages sorted by Volume ID and LA. Refer to Chapter 2, CP853, for details.

Error Data Display, Permanent Records
The SYSLERR utility displays or prints permanent errors. See Chapter 2, CP830, for invocation procedures and allowable options.

During the SYSLERR processing of a Type-5 record, a call is made to a subroutine which generates a Symptom Code (SC) from the 8809 sense and status bytes, the tape adapter status bytes, and the Tag Bus Out. This symptom code displays in the D21 field of the record.

$\begin{array}{llll}\text { (1) } & & \text { (2) } \\ \text { 4-TYPE } & \text { 1-REC } & \text { SEQ }-X X X X & \text { (3) }\end{array}$
xx SYs-COND-xx

Figure TA332-2. DPCX Type-4 System Condition Record Display

$\begin{aligned} & \text { (1) } \\ & 5-\text { TYPE } \end{aligned}$	(2)			(3) PA-XX
	I-REC	seo-xxx		
	(5)	(6)	(7)	(8)
	${ }^{\text {D1-xx }}$	D2-xx	D3-xx	D4-xx
	D5-XX	D6-xx	D7-xx	D8-xX
	D9-xxx	xxx		
	(11)			
	D10-xx	$x x \quad 011$	1.xxxx	D12-xxx
	D13-xx	xx D14	4xxxx	D15-xxx
				(12)
	D16-xx		-xxxx	${ }^{\text {D18-xxx }}$
	(13)	(14)		(15)
	D19-xx	xx D20	-xxx x	D21-Xxx
	D22-xx	$x \mathrm{x}$ D23	3-xxxx	D24-xxx
	D25-xx		-xxxx	D27-xxx
	D28-xx	xx D29	-xxxx	D30-xxx

Figure TA332-3. DPCX Type-5 Variable Data Record Display

2-TYPE $=$ CIL record type 2 (see Figure CP840-2 in Chapter 2 for D21-D25 and LVL description)
4-TYPE $=$ CIL record type 4 (see Figure CP840-4 in Chapter 2 for detailed description)
5FO $=$ XXXX $=A 4$ dit
SEQ = XXXX = A 4-digit decimal value from 0001 to 4095 that identifies the relative time when the record occurred
NA $=X X=$ Number of applications active when the error occurred
$=X X=$ Tape adapter physical address
$5 \mathrm{E}=$ Adapter in 8140 Model BXX
$73=$ Adapter in Model 1B tape drive
$93=$ Adapter in first 8101
A3 = Adapter in second 8101
B3 $=$ Adapter in third 8101
LA = XX = Tape drive logical address
$04=$ Tape drive unit 0
$05=$ Tape drive unit 1
$06=$ Tape drive unit 2
$07=$ Tape drive unit 3
C-FR $=X X=$ Command byte (adapter operation) at time of error (see TA333
MC $\quad=X X=$ System check code
$1 \mathrm{x}=$ Program check
$2 \mathrm{Z}=$ Storage parity error
$4 \mathrm{X}=1 / 0$ timeout
$=X X=$ System Function Module Request code (see TA333)
EXTENDED DATA
D1 = XX = System Function Module Request code (see TA333)
D2 $=X X=$ Command byte (adapter operation) at time of error (see TA333)
D3 $=X X=$ Completion status (see TA333)
$=X X=$ Tape drive unit physical address
$00=$ Tape drive unit 0
$01=$ Tape drive unit 1
$02=$ Tape drive unit 2 $03=$ Tape drive unit 3
D5 = XX = Adapter Return Code (see TA333)
D6 = XX = Translated Adapter Return Code (see TA333)
$\mathrm{D7}=\mathrm{XX}=$ Not used (set to 00)
D8 $=X X=$ Record type (FF = permanent error)
D9 = XXXXXX = Volume ID

D10 = XXXX = First byte = Tape sense byte 0 (see TA233)
D11 = XXXX $=$ First byte $=$ Tape sense byte 1 (see TA233)
XXXX Second byte $=$ Tape sense byte 3 (see TA233)
D12 = XXXX = First byte $=$ Tape sense byte 4 (see TA233)
D13 $=$ XXXX $=$ Fecond byte $=$ Tape sense byte 5 (see TA233
$=$ Tape sense byte 6 (see TA233)
D14 = XXXX = First byte $=$ Tape sense byte 8 (see TA233)
5 = XXXX Second byte $=$ Tape sense byte 9 (see TA233)
Kirst byte $=$ Tape sense byte 10 (see TA233)
$16=$ XXXX Second byte $=$ Tape sense byte 11 (see TA233)
$\begin{array}{ll}\text { Sirst byte } & =\text { Tape sense byte } 12 \text { (see TA233) } \\ \text { Second byte } & =\text { Tape sense byte } 13 \text { (see TA233) }\end{array}$
$17=$ SXXX Second byte $=$ Tape sense byte 13 (see TA233)
First byte $=$ Tape sense byte $=$ Tape sense byte 15 (see TA233)
D18 = XXXX = First byte $=$ Adapter status extended (see TA233)
$19=$ XXXX $=$ First byte $=$ Device address

Device Address							
Adr	Adr	Adr	Not	Not	Not	Not	Not
Bit	Bit	Bit	Used	Used	Adr	Adr	Adr
4	2	1			4	2	1

When an address mismatch occurs during selection, bits 0 through are set to the value returned on the Control Line Bus In during Select Device Tag hex 83.

For all other cases, the drive address is binary encoded and placed in bits 0 to 2 by the Magnetic Tape Attachment; bits 3 to 7 are not used.

20 = XXXX Second byte $=$ PIO command (see TA333) First byte $=$ Tag bus Second byte $=$ Bus Out

Note: See IBM 8809 Magnetic Tape Unit Description, Form GA26-1659, for detailed explanation of D2O field.

21 = XXXX = Symptom cod
$\begin{aligned} D 21 & =\text { XXXX }=S \\ & =\text { XXXX }=0\end{aligned}$
23-D30 = XXXX $=$ Not used

TA333 DPPX and DPCX Common Error Log Byte Meanings
Certain fields in the DPPX error log and the DPCX condition/incident log, although named differently, have identical bit or byte meanings. The following paragraphs explain these fields and their meanings, as well as list the field names as used by each operating system.

Adapter Return Code (ARC)
You can find the DPPX adapter return code in the ARC field and the DPCX adapter return code in the D5 field. (For DPCX, a Translated Adapter Return Code (TARC) is found in the D6 field.) The following explains their meanings:

ARC
 (in Hex
 00 02 03
 02 09
 O9 OA OB
 OB 11
 11 12
 12 20
 20 21 22
 21 22
 29 2 B 2
 28 33
 33 38
 | 38 |
| :--- |
| 39 |
 39 3 A
 3B 61 62
 62 68 69
 69 $6 A$ 75
 75 76
 76 E3

Meaning
Normal completion
FRB busy
SCA busy
SCA not open
Adapter not open
SCA already open
FRB program check
BCL program check
Indeterminate equipment check
Aderminate equipmen
SCA equipment check
Overrun
Overrun
Position los
PEID check
DSE failure
Read data check
Write data check
Loop write-to-read
File protected (TARC $=41$
SCA not ready (TARC = 42)
ncorrect mode (TARC $=48$)
Marker sensor (TARC = 49)
Ready recovery (TARC $=4 \mathrm{~A}$)
AIO machine check (TARC = 45)
PIO machine check - nonrecursive (TARC = 46)
Data unsafe (TARC = 53)
IO machine check - recursive (TARC $=56$)

Command Byte

Completion Status

Cons

ransfer contro

Read
No operati
Forward space file
Forward space block
Backspace file
Backspace block
Data security erase
Rewind unload
Write tape mark
Rewind
Rewind

You can find the DPPX completion status in the COMPSTAT field and the DPCX You can find the DPPX completions The following explains their meanings:

Meaning

Extended status indicato
Reenter
Reenter FRB indicator
Not used
Error
Error
Exceptio

Function Module Request Code
You can find the DPPX function module request code in the CRC field and the DPCX function module request code in the S-FR field or D1 field. The following explains their meanings

Code (in Hex)	Meaning
00	Execute
03	Open adapter
05	Read operational statistics
07	No operation
$0 D$	Terminate FRB
23	Open SCA
25	Read SCA state
35	Read SCA state when ready
AB	Close SCA
EB	Terminate adapter

You can find the DPPX PIO command in the second byte of D46 field, and the DPCX PIO command in the second byte of D19 field. The following explains their meanings

$\begin{array}{c}\text { PIO Comm } \\ \text { (in Hex) } \\ 02 \\ 04 \\ 06 \\ 07 \\ 07 \\ 08 \\ 0 A \\ 10 \\ 14 \\ 16 \\ 24 \\ 27 \\ 2 C \\ 2 F \\ 30 \\ 34 \\ 37 \\ 38 \\ 3 A \\ 3 C \\ 3 F \\ 48 \\ 4 B \\ 50 \\ 53 \\ 54 \\ 57 \\ 58 \\ 5 B\end{array}{ }^{2}$
$5 C$
$5 F$
61
62
66
69
$6 C$
$6 E$
74
76
$7 C$

Meaning
Adapter reset
Reset basic status
Set basic statu
Read status
Enable
End op
Set burst length counter
Set status
Step count
Read burst length counter
Lead burst length counter Read burst length register Disconnect TAM
Set UC SAR counter
Read UC SAR counter
Test control line parity
Wrap
Set control line SAR counter
Read control line SAR counter
Set segment count
Read segment count
Write command pointer number Read command pointer number Set extended address register Read extended address Write data pointer number
Set basic address register Read basic address register Read control lines bus in Write buffer
Execute poll sequence Read buffer
Execute selection sequence
Execute immediate sequenc
Execute immediate disconnect sequenc Execute external without data sequence Execute FCB list

TA334 Tape Statistical Data (TSD) Counter

You can find Tape Statistical Data (TSD) counter information in the DPPX error log D25-D36 fields; for DPCX, run the SYSLTSD utility (see CP853 in Chapter 2) to obtain TSD counter information. Figure TA334-1 shows the 8809 TSD counters.

Counter Size in Bytes	DPPX Error Log Byte	Counter Name	Set by	
			$\begin{aligned} & \hline \text { Sense } \\ & \text { Busta } \end{aligned}$	$\begin{aligned} & \text { Sense } \\ & \hline \text { Bit } \end{aligned}$
$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { D32 } \\ & \text { D35 } \\ & \text { D36 } \end{aligned}$	C01-Start I/O Count C02-Write Skips C03-Read Retry	Determined by FDM Determined by FDM Determined by FDM	
1	D31, first byte	*C04-Temp Read Errors	1	0 (Byte 6 Bit 0 $=0$)
1	D31, second byte	* C05-Temp Write Errors	1	0 (Byte 6 Bit $0=1)$
1	D34, first byte	C06-Tape Adapter Parity Errors	16	2
1	D34, second byte	C07-Overrun	2	0
1	D25, first byte	C08-Multi-Track Errors	6	2
1	D25, second byte	C09-End Data Check	6	3
1	D26, first byte	C10-Start Read Check	6	4
1	D26, second byte	C11-Read Back Failure	6	5 (Bit $0=1)$
1	D27, first byte	C12-Envelope Check	6	6
1	D27, second byte	C13-No Pointer Error	6	1 (Bit $0=0)$
1	D28, first byte	C14-Crease Error	6	5 (Bit $0=0)$
1	D28, second byte	C15-Skew Error	6	7 (Bit $0=0$)
1	D29, first byte	C16-Track 4 Error	5	4
1	D29, second byte	C17-Track 5 Error	5	5
1	D30, first byte	C18-Track P Error	4	${ }^{6}$
1	D30, second byte	* ${ }^{*}$ C19-Velocity Check	9	0,1 or 2
1	D33, second byte	* C20-Read Bus Parity Check	4	1

*THRESHOLDS: Temporary Read Errors 16
Temporary Write Errors 1
$\begin{array}{lll}\text { Read Bus Parity Checks } & 16 \\ \text { Velocity Checks } & 8\end{array}$
$\begin{array}{ll}\text { Velocity Checks } & 8 \\ \text { All others } & \quad \text { Full Count }\end{array}$
Figure TA334-1. 8809 Tape Statistical Data (TSD) Counters

TA340 How to Use the Error Log to Determine Tape Adapter Failures

The procedure for examining the error log depends upon whether the customer is using DPPX or DPCX. For DPPX, see TA341; for DPCX, see TA342.

TA341 DPPX Error Log

Run ELDA and obtain the Symptom Code from the last error occurring on the suspected tape drive. You can then either use the TA MAP by selecting entry point D 'Test Symptom Code' or use the action plan in section TA350.

Chapter 2 contains the invocation procedures and output format for ELDA.
TA342 DPCX Condition/Incident Log
Run SYSLERR and obtain the Symptom Code (D21 field) from the last Type-5 error record occurring on the suspected tape drive. You can then use the TA MAP by selecting record occurring on the suspected tape drive. You can then use the TA

Chapter 2 contains the invocation procedures for SYSLERR, and TA332 shows the for mat of the log records and the location of the Symptom Code (field D21) in the Type-5 record.

A350 Action Plan to Correct Intermittent Failures

For any Symptom Code format of from BXXX to FXXX that you obtained by running ELDA or SYSLERR, go to the tape drive MAP to correct the problem. For any symptom code format of AXXX, or if no symptom code is available, use either TA351, TA352, or TA353 to troubleshoot in the sequence tabulated below.
Caution: Turn power off when removing or exchanging cards or cables. If Model 1B, the Local/Remote power switch should be in Local position.

A351 8809 Model 1A Intermittent Failure Action Plan (Adapter in 8101)

Probable Causes	Action	Comments
1. Incorrect voltages	Measure A2 board voltages: D2D03 $=+4.5$ to +5.5 V dc D2B11 $=+7.7$ to +9.3 V dc D2B06 $=-4.5$ to -5.5 V dc	For missing or out-of-tolerance voltages, go to 8100 PA MIM section
2. Loose or defective cables. See TA431 for locations	Inspect for loose or defective cables: 1. Y1 to Bus 2. $Z 1$ to Tag 3. SCF cable 4. Bus and Tag cables to tape drive (inspect both ends)	See Note.
3. Defective tape adapter cards	Exchange A2B2, A2C2, and A2D2 cards with new ones.	See Note.
4. Defective SCF card	Exchange card A2A2 with a new one.	See Note.

Note: To verify the fix, run the TA tests and loop for a minimum of 15 minutes leach loop takes 7 return the system to the customer. Obtain a new error log after the customer has used the systerm. If the same error has occurred, replace any cards that were exchanged and go to the next step in the ble. If all steps have been performed and the error persists, request aid.

TA352 8809 Model 1A Intermittent Failure Action Plan (Adapter in 8140)

Probable Causes	Action	Comments
1. Incorrect voltages	Measure voltages on adapter board (C2 or D2): $\mathrm{J} 2 \mathrm{D} 03=+4.5$ to +5.5 V dc $\mathrm{J} 2 \mathrm{~B} 11=+7.7$ to +9.3 V dc J2B06 $=-4.5$ to -5.5 V dc	For missing or out-of-tolerance voltages, go to PA section.
2. Loose or defective cables. See TA432 for locations.	Inspect for loose or defective cables: 1. Y3 to bus 2. $\mathrm{Z3}$ to tag 3. SCF cables (on C2A2 card) 4. Bus and tag cables to tape drive (inspect both ends).	See Note.
3. Defective tape adapter cards.	Exchange G2, H 2, and J2 on adapter board (C2 or D2) with new ones.	See Note.
4. Defective SCF card	Exchange card C2A2 with a new one.	See Note.

Note: To verify the fix, run the TA tests and loop for a minimum of 15 minutes leach loop takes 7 minutes). If the tests fail, use the TA MAP to find the failure. If the tests do not fail after looping, return the system to the customer. Obtain a new error log after the customer has used the systam. If table. If all steps heve been performed and the error persists, request aid.

TA353 8809 Model 1B Intermittent Failure Action Plan

Probable Causes	Action	Comments
1. Incoirect voltages	Measure 01A Gate voltages: E2D03 $=+4.5$ to +5.5 V dc $\mathrm{E} 2 \mathrm{~B} 11=+7.7$ to +9.3 V dc $\mathrm{E} 2 \mathrm{BO} 0=-4.5$ to -5.5 V dc Measure the 01 B gate voltage B2D03 $=+4.5$ to +5.5 V dc	For inissing or out-of-tolerance voltayes, go to 8809 Start MAP
2. Loose or defective cables. See TA433 for locations.	Inspect for loose or defective SCF cables: 1. From 01A-B2 to 018-A2 2. From SCF top-cald connectors to I/O panel	See Note 1.
3. Defective tape adapter cards	Exchange 01A-D2 and 01A-E2 cards with new ones.	See Note 1.
4. Defective SCF card	Exchange 018-82 card with a new one.	See Notes 1 and 2

Notes: 1. To verify the fix, run the TA tests and loop for a minimum of 15 minutes leach loop takes 7 minutes.) If the tests fail, use the TA MAP to find the failure. If the tests do not fail a fter looping,
return the system to the customer. Obtain a new error log after the customer has used the system. return the system to the customer. Obtain a new error log after the customer has used the system.
If the same error has occurred, replace any cards that were exchanged and go on to the next step
in the table. If all steps have been performed and the error persists, request ald.
2. The 8809 Local/Remote power switch should be in Local, and the 8809 should be powered oft before exchanging the SCF card.

TA400 Signal Paths and Detailed Operational Description

This section contains point-to-point wiring diagrams and data flow illustrations of the 8809 apter cards. Figure TA400-1 shows the detailed data flow of the tape adapter

Figure TA400-1 (Part 1 of 2). Adapter Detailed Data Flow Diagram

CARD 2

Adapter Card 1		Adapter Card 2
	- Sample TD Sync	
W27	- Wrap	W27
$\times 02$	- NE or CE	$\times 02$
Y02	+ Seg Even	02
Y03	- Cycle Proc	Y03
Y24	- TD Delay	V24
202	- End Burst	203
203	- TD Sync	223
223	+ Read - Write	223
222	+ OPSAR 1	Y08
Y 42	+ OP SAR 2	Y27
Y27	+ OPSAR 3	Y28
Y28	+ OP SAR 4	Y28
Y33	+ OPCL1	Y33
Y 413	+OPCL2	Y13
Y32	+ OPCL3	Y32
Y12	+OPCL4	Y12
W07	- Reset 6 Sec	w07
w08	+ High / - Low	W08
W26	- EN Timer 2	W26
W28	- POR To Int Adapter	W28
$\times 08$	- DHFOC 1	$\times 08$
$\times 22$	- Selected Alert Int	$\times 22$
$\times 28$	$+\mathrm{Cl}=0$	$\times 28$
Y05	+ SB9 = SB9	Y05
Y06	- Storage Check	Y06
Y22	- TD Gone	Y22
Y23	+ Proc Full	Y23
Y25	+ PSAR = SAR	Y25
Y26	- Proc	Y26
Y30	+Clopl	Y30
Y10	+CLOP	Y10
Y09	$+\mathrm{CLOP} 3$	Y09
Y29	$+\mathrm{CLOP} 4$	Y29
Y11	-Gate Off SAR	rit
wo2	- CS Req Pulse	W03
W03 W05	- Reset CSR	wos
wo6	- Cs Req Ctl	W06
W22	-R Tag Valid	W22
w23	-CM Tag Valid	W23
W25	- Data Bus Int PO	W25
227	- Data Bus $\operatorname{lnt} 0$	227
213	- Data Bus int 1	213
208	- Data Bus $\operatorname{lnt} 2$	208
209	- Data Bus $\operatorname{lnt} 3$	206
230	- Data Bus Int 4	230
211	- Data Bus $\operatorname{lnt} 5$	211
210	- Data Bus int 6	210
232	- Data Bus int 7	232

intercard Connections

Figure TA410-2. Logic Signals Between Adapter Card

	Model 1A			Model 18
	Adapter in 8101	Adapter in 8140 C2 Board	Adapter in 8140 D2 Board	Adapter in 8809
Adapter Card 1	A2B2	C2G2	D2G2	A1D2
Adapter Card 2	A2C2	C2H2	D2H2	A1E2

Figure TA410-3. Adapter Card Locations

Sections TA421-1, TA422-1, and TA423-1 show the point-to-point connections from the
SSCF (SC5) card to adapter card 1 (TA1) and from adapter card 2 (TA2) to the tag and SSCF (SC5) card to adapter card 1 (TA1) and from adapter card 2 (TA2) to the tag and
bus cables for 8809 Models 1 A and 1B. bus cables for 8809 Models 1A and 1B.
TA421 8809 Model 1A Adapter Card Wiring (Adapter in 8101)

TA422 8809 Model 1A Adapter Card Wiring (Adapter in 8140)

TA430 Adapter Card and Top Card Connector Locations and Illustrations

The figures in the following sections show the location and pin numbering scheme of the tape adapter card top card connectors, as well as locations and illustrations of the adapte
cards for 8809 Models 1 A and 1 B .

TA431 8809 Model 1A Adapter Card and Too Card Connector Locations (Adapter in 8101)

Top Card Connector
Each top card pin is connected to the
corresponding pin corresponting pard.
on the other
Example:
B2 $\times 23$ to $\mathrm{C} 2 \times 23$ 82×23 to $\mathrm{C} 2 \times 23$
82×10 to $\mathrm{C} 2 \times 10$
Note: There are 4 Note card connectors.

Figure TA431-2. Adapter Card and Cable Locations-8101 01A-A2 Board (Card Side)

TA432 8809 Model 1A Adapter Card and Top Card
 Connector Locations (Adapter in 8140)

Figure TA432-1. Top Card Connector Location and Pin Numbering, Model 1A (Adapter in 8140)

Note: SSCF card in C2 board only.
Figure TA432-2. Adapter and SCF Card Locations -
8140 C2 or D2 Board

Top Card
Connections

Figure TA433-2. Adapter Card and Cable Locations-8809 01A-A1 Board (Card Side)

Note: $\begin{aligned} & 8101 \\ & 8809 \text { Location } \\ &=A 2822\end{aligned}$ 8809 Location $=$ A1D2
8140 Location $=$ C2G2 or D2G2
Figure TA434-1. TA1 Card

Note: 8101 Location $=$ A2C2
8809 Location $=$ A2C2
A1E2
Figure TA434-2. TA2 Card

Note: Used only for Model 1 A . 8101 Location $=A 2 D 2$
8140 Location $=$ C 252 or D2J2

Figure TA434-3. TA3 Card

TA440 Tape Adapter Voltage Check

To ensure correct voltages to the tape adapter cards, meter the voltages as follows: 8809 Model 1A Voltage Check Pins (Adapter in 8101)*

Pin	Range
D2D03	+4.5 V to +5.5 V dc
D2B11	+7.7 V to +9.3 V dc
D2B06	-4.5 V to -5.5 V dc

*Meter these voltages on the 8101 01A.A2 board
8809 Model 1A Voltage Check Pins (Adapter in 8140)*

Pin	Range
J2D03	+4.5 V to +5.5 V d
J2B11	+7.7 V to +9.3 V dg
J 2 B	

+7.2 V to +9.3 V d
*Meter these voltages on the 8140 adapter board (01A-C2 or D2).
8809 Model 1B Voltage Check Pins

Pin	Range
E2D03	+4.5 V to +5.5 V dc
E2B11	+7.7 V to +9.3 V dc
E2B06	-4.5 V to -5.5 V dc

"Meter these voltages on the 8809 board. In addition, check the D03 pin on the SCF card for the presence of +5.0 V dc .

A450 Adapter Point-to-Point Net Checklists

TA451 8809 Model 1A Point-to-Point Net Checklist (Adapter in 8101)
Find the test error message pattern in Figure TA451-1. All nets in the figure refer to all test error patterns indicated. Line entries reading from left to right are separate hets, and apply for any error listed in the test error pattern column. Check continuity between the test points, which are all located on the 8101 A2 board. If any net does not indicate continuity, correct by wire-wrapping the points together.

Test Error Pattern	Point A	Point B	Point C	Point D	Point E
Pabo	в2803	C2M04			
PA95	B2804	B2D04			
PA96	B2B12	A2J05			
ххв ${ }^{\text {c }}$	B2D02	C2P06			
Paxe 01xX	B2005	A2G12			
PAXE 02xx	B2D06	C2P12			
Paxe 03xx	82009	$82 \mathrm{PO2}$	C2M07		
PAXE 09xx	B2D12	B2G04	B2G05	C2P07	C2P09
	B2G02	${ }^{\text {B2 }}$ J06	C2M05		
	B2G03	A2804			
	${ }^{\text {B2GO8 }}$	${ }^{\text {A } 2805}$			
	B2G09 B2G10	A2J06 A2 202			
	в2, ${ }^{\text {2 }}$	A2007			
	${ }^{\text {B2 }} 304$	GND			
	${ }^{82} 305$	A2D09			
	82, 209 B2J10	A2G02 A 204			
	B2J11	A2D06			
	${ }^{\text {B2M } 23} 3$	${ }^{\text {A2808 }}$			
	B2M04 B2M05	A2M12 A2802			
	в2M07	A2, 07			
	${ }^{\text {B2, } 2088}$	${ }^{\text {A } 220606}$			
	B2M09 B2M10	A2G04 A2D13			
	B2M12	A2B10			
	B2M13	A2G08			
	${ }^{\text {B2P04 }}$	A2J09			
	B2P05 B2P06	${ }^{\text {A2M02 }}$			
	B2P07	A2P11			
	82P09	A2P13			
	B2P10 B2P11	A2GO5 A2G09			
	${ }_{\text {B2P12 }}$	A2P10			
	B 2213	A2005			
	B2SO4 B2S13	A2G10 A2B12			
	С2M09	GND			
	$\mathrm{C}_{2} 503$	C2U09			
	C2SO4 B2J07	C2S09 H2603	C2P04	B2S09	B2S10
	${ }_{\text {B2G07 }}$	G2507			

Note: If an adapter is installed, the jumper at B2GO7 to B2JO7 MUST be removed

Test Error Pattern	Point A	Point B	Point C	Point D	Point E
PAXE 04xX	B2808	${ }^{\text {B2G12 }}$			
through	${ }^{\text {B2B09 }}$	82 J 12			
PAXE 08xX	B2G02	${ }^{82} 206$	C2M05		
and	C2G02 C2G12	С2м03	D2J05		
PAXE 11x ${ }^{\text {d }}$	$\mathrm{C}^{\text {c2M02 }}$	С2M08			
through	с2м03	C2G02			
PAXE 15xX	C2M10	C2P10			
	C2P05	C2U11			
	$\mathrm{C2PO}^{\text {c2P }}$	${ }^{\text {c2P09 }}$	82012	B2604	B2G05
	C2P13 C2U10	$\begin{aligned} & \text { C2SO5 } \\ & \text { GND } \end{aligned}$			
	${ }_{82} \mathbf{3} 10$	${ }_{\text {A2 }}$			

Test Error Pattorn	Point A	Point B	Test Error Pattorn	Point A	Point B
PAXE 40XX through PAXE 43XX	${ }^{\text {B2B13 }}$	C2PO2	PAXE 40XX	C2311	D2311
	B2U11	C2J04	through	C2J12	D2312
	B2U13	C2604	PAXE 43XX	C2J13	D2113
	C2802	D2802	(contod)	C2M13	C2U04
	C2803	D2803		D2M02	B6A02
	C2804	D2804		D2M04	B6802
	C2805	D2805		D2M07	${ }_{\text {clall }}$
	C2807	D2807		D2M08	A1E11
	C2808	D2808		D2M09	B1811
	C2B09	${ }^{2} 2809$		D2M10	B1011
	C2810	22810		D2M12	c6C04
	C2B12	D2B12		D2M13	C1013
	C2B13	${ }^{2} 2813$		D2P02	A6E02
	C2002	D2002		D2P04	C1E11
	C2004	02004		${ }^{\text {02P06 }}$	C1D11
	C2005	${ }^{20205}$		02P07	C1811
	${ }^{\text {c2206 }}$	${ }^{2} 2006$		D2P09	${ }^{\text {B1A11 }}$
	C2207	${ }^{2} 2007$		${ }^{\text {D2P10 }}$	${ }^{\text {B1C11 }}$
	C2209	02009		$\mathrm{D} 2 P 11$	C1A11
	C2D10	D2010		02P13	C6A04
	C2D11	02011		D2502	C6804
	C2D12	D2D12		D2504	B6E04
	C2D13	D2D13		D2S05	B6C04
	$\mathrm{CL2GO5}^{\text {cen }}$	${ }^{2} 2605$		02507	${ }^{\text {C1A }} 13$
	${ }^{\text {C2607 }}$	${ }^{2} 2607$		${ }^{\text {D2S08 }}$	${ }^{\text {Ald }} 13$
	C2608 c2609	D2608 D2609		D2S09 D2S10	B1A13 B1C13
	c2610	D2610		D2512	${ }^{1} 1813$
	C2G13	D2G13		D2002	A6D04
	C2J02 C 206	A2P09 D2306		D2U04	C6004
	C2J06 $\mathrm{C2} 107$	D2306 D2307		D2V05 D2U09	B6804 A1E13
	C2J09	${ }^{\text {D2 } 2099}$		${ }^{0} 22010$	${ }_{\text {A1B13 }}$
	C2J10	D2310		D2U11 D2413	B1E13 1813
				D2U13	C1C13

Test Error Pattern	Point A	Point B	Point C
PAXE 44XX	${ }^{\text {B2J11 }}$	${ }^{\text {A2006 }}$	
through	B2S13	A2812	
PAXE 56xX	B2U13	C2604	
	C2805	D2805	
	C2009	D2009	
	C2G10	02610	
	C2612	D2612	D2J05
	D2M05	86002	
	D2M09	81811	
	D2M12	C6C04	
	D2M13	C1013	
	${ }^{\text {D2P04 }}$	C1E11	
	${ }^{\text {D2P05 }}$	86602	
	D2P11	C1A11	
	D2S10 D2S13	81C13 B6A04	
	D2U04	${ }_{6} 66004$	
	D2U06	A6E04	

The net check points listed below do not cause test failures when both open and
grounded, but should be checked to ensure proper tape logic continuity and operation.

Point A	Point B	Point C	Point D	Point E
82808	B2G12			
B2813	C2P02			
$82 \mathrm{DO9}$	$82 \mathrm{PO2}$	C2M07		
$82 \mathrm{G03}$	A2804			
82G08	A2805			
$82 \mathrm{C09}$	A2J06			
82M02	Gnd			
$82 \mathrm{U11}$	C2J04			
C2D12	D2012			
C2013	02013			
C2G03	$\mathrm{C}_{2} \mathrm{P}_{1} 11$			
C2G13	D2G13			
C2M10	C2P10			
C2M12	Gnd			
C2M13	c2u04			
C2S02	A2813			
C2504	C2SO9	C2P04	B2S09	82510
${ }^{\text {c2P05 }}$	${ }^{\text {c2U11 }}$			
${ }^{\text {D2S13 }}$	B6A04			
${ }^{2} 2206$	A6E04			
B2.07	H2G03			
C2J02	A2P09			
D2D08	C1E13	81013	A1011	
D2U08	C6E04	B6D04	A6D02	

Find the test error message pattern in Figure TA452-1. All nets in the figure refer to all test error patterns indicated. Line entries reading from left to right are separate nets,
and apply for any error listed in the test error pattern column. Check continuity between
indicate continuity, correct by wire-wrapping the points together

Test Error Pattern	Point A	Point B	Point \mathbf{C}	Point D	Point E
Pabo	G2803	H2M04			
PA95	G2B04	G2004			
PA96	62812	A2J05			
xXBC	G2D02	H2P06			
PAXE 01xX	G2D05	A2G12			
PAXE 02xx	G2006	H2P12			
PAXE 03XX	G2009	G2P02	H2M07		
PAXE 09xx	G2D12	$\mathrm{G}^{\mathrm{G}, \mathrm{GO4}}$	${ }^{\text {G2GO5 }}$	H2P07	H2P09
	G2602	G2J06	H2M05		
	${ }^{\text {G2G03 }}$	${ }^{\text {A2804 }}$			
	G2608	${ }^{\text {A2805 }}$			
	G2G09 G2G10	A2J06			
	G2J02	${ }^{\text {A20 }}$			
	G2J04	GND			
	G2J05	A2D09			
	G2J09	A2G02			
	G2J11	A2D06			
	G2M03	A2808			
	G2M04 G2M05	A2M12			
	62M07	${ }^{\text {A2 }}$ A 21027			
	G2M08	${ }^{\text {A2PO6 }}$			
	G2M09	${ }^{\text {A2G04 }}$			
	62M10	A2D13 ${ }^{\text {A }}$ A 10			
	G2M13	A2608			
	G2P04	A2J09			
	G2P05	A2M02			
	G2P07	A2P11			
	G2P09	${ }^{\text {A2P13 }} 13$			
	${ }_{6} \mathrm{G2P10}_{\text {G2P11 }}$	A2G605 A2G09			
	G2P11 G2P12	A2G09 A2P10			
	G2P13	A2D05			
	G2S04	A2G10			
	62S13 H2M09	A2B12 GND			
	${ }^{\mathrm{H} 2503}$	H2U09			
	H 2504 $\mathrm{G2J07}$	H2SO9 K2PO2	H2P04	G2S09	G2S10
	G2G07	${ }_{\text {A2PO2 }}$			

Note: If an adapter is installed, the jumper at G2GO7 to G2JO7 MUST be removed.

Figure TA452-1 (Part 1 of 2). Model 1A Adapter Net Checklist (Adapter in 8140)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Test Error Pattern \& Point A \& Point B \& Test Error Pattern \& Point A \& Point B

\hline \multirow[t]{32}{*}{PAXE 40XX through PAXE 43XX} \& G2B13 \& H2P02 \& PAXE 40xX \& H2J11 \& J2J11

\hline \& 62U11 \& H2J04 \& through \& H2J12 \& J2312

\hline \& $\mathrm{G}^{2} \mathbf{1 1 3}$ \& H2G04 \& PAXE 43xX \& $\mathrm{H}_{2} \mathrm{JIV}^{3}$ \& J2,13

\hline \& H2802 \& J2802 \& \& H2M13 \& H2U04

\hline \& H2803 \& J2803 \& (cont'd) \& J2M02 \& H6C02

\hline \& H2804 \& J2804 \& \& J2M04 \& H6D02

\hline \& H2B05 \& J2805 \& \& J2M07 \& J1E11

\hline \& H2807 \& J2807 \& \& J2M08 \& H1811

\hline \& H2808 \& J2B08 \& \& J2M09 \& H1D11

\hline \& H2809

$H 2810$ \& J2809 \& \& J2M10 \& J1A11

\hline \& H2810 \& J2B10 \& \& J2M12 \& J6E04

\hline \& ${ }^{\mathrm{H} 2812}$ \& ${ }^{2} 2812$ \& \& J2M13 \& K1A13

\hline \& ${ }^{\text {H2B13 }}$ \& J2B13 \& \& J2P02 \& H6802

\hline \& ${ }^{\text {H2D02 }}$ \& ${ }^{2} 2 \mathrm{DO2}$ \& \& J2P04 \& K1811

\hline \& H2D04

H \& J2004 \& \& ${ }^{\text {J2P06 }}$ \& K1A11

\hline \& ${ }^{\text {H2005 }}$ \& J2005 \& \& J2P07 \& J1D11

\hline \& $\begin{array}{r}\text { H2006 } \\ \\ \hline\end{array}$ \& J2006 \& \& J2P09 \& H1C11

\hline \& H2D07

H2009 \& J2007 \& \& J2P10 \& H1E11

\hline \& H2D09 \& J2009 \& \& J2P11 \& J1C11

\hline \& H2D10 \& $\mathrm{J} 2 \mathrm{D10}$ \& \& J2P13 \& J6C04

\hline \& H2D11
H2D12 \& J2011
J2012 \& \& J2SO2
J2S04 \& J6D04
J6B04

\hline \& H2D13 \& J2D13 \& \& J2S05 \& H5E04

\hline \& H2G05 \& J2G05 \& \& J2S07 \& J1C13

\hline \& H2G07 \& J2G07 \& \& J2508 \& H1A13

\hline \& H2G08
H2GO9 \& J2G08 \& \& J2S09 \& H 1413

\hline \& H2G09
H2G10 \& J2G09 \& \& J2S10
J2S12 \& H1E13
J1D13

\hline \& H2G13 \& J2G13 \& \& J2002 \& H6A04

\hline \& $\mathrm{H} 2 \mathrm{JO2}$
H 2 L \& A2P09 \& \& J2U04 \& K6A04

\hline \& ${ }^{\text {H2J06 }}$ \& J2J06 \& \& J2U05 \& H6D04

\hline \& H2J07
H2J09 \& J2J07
J2J09 \& \& J2009

2010 \& H1813
H1D13

\hline \& H2J10 \& J2J10 \& \& J2U11 \& J1B13

\hline \& \& \& \& J2U13 \& J1E13

\hline
\end{tabular}

Test Error Pattern	Point A	Point B	Point C
PAXE 44xX	G2J11	A2006	
through	G2S13	A2812	
PAXE 56xX	G2U13	H2G04	
	H 2813 H 2 O	${ }^{2} 2805$	
	H2D09	J2009	
	H2G10 H2612	J2G10 J2G12	J2J05
	J2M05	J6A02	
	J2M09	H1D11	
	J2M12 J2M13	J6E04 K1A13	
	J2P04	K1811	
	${ }^{2} 2 \mathrm{PO5}$	H6E02	
	J2P11 J2S10	${ }^{11 C 11}$	
	J2S10 J2S13	H1E13 H6C04	
	J2U04	K6A04	
	J2006	H6B04	

The net check points listed below do not cause test failures when both open and

\begin{tabular}{|c|c|c|c|c|}
\hline Point A \& Point B \& Point C \& Point D \& Point E

\hline G2B08 \& G2G12 \& \& \&

\hline G2813 \& H2PO2 \& \& \&

\hline G2D09 \& G2P02 \& H2M07 \& \&

\hline $\mathrm{G2GO3}^{\text {G20 }}$ \& ${ }^{\text {A2B04 }}$ \& \& \&

\hline G2G08
G2G09 \& A2B05
A2J06 \& \& \&

\hline G2M02 \& GND \& \& \&

\hline G2U11 \& H2J04 \& \& \&

\hline H2D12
H2D13 \& J2012

2013 \& \& \&

\hline H2G03 \& H2P11 \& \& \&

\hline H2G13 \& J2G13 \& \& \&

\hline H2M10
H2M12 \& H2P10
GND \& \& \&

\hline H2M13 \& H2U04 \& \& \&

\hline H2SO2 \& A2813 \& \& \&

\hline ${ }^{\mathrm{H} 2504}$ \& H2SO9 \& H2PO4 \& G2S09 \& G2S10

\hline H2PO5
J2S13 \& H2U11
H6C04 \& \& \&

\hline J2406 \& H6804 \& \& \&

\hline G2J07
H2J02 \& K2PO2
A2PO9 \& \& \&

\hline
\end{tabular}

Figure TA452-1 (Part 2 of 2). Model 1A Adapter Net checklist (Adapter in 8140)

Find the test error message pattern in Figure TA452-1. All nets in the figure refer to all test error patterns indicated. Line entries reading from left to right are separate nets, and apply for any error listed in the test error pattern column. Check continuity between the test points, which are all located on the 880901 A gate unless otherwise indicated.
my net does not indicate continuity, correct by wire-wrapping the points together.

Test Error Pattern	Point A	Point B	Point C	Point D	Point E
PAB0	D2B12	B2J05	Cable $\mathrm{B}^{\text {3 }}$	018.A2J05	018-82J05
PA95	D2005	82612	Cable 3	01B-A2G12	018-82612
PA96	D2603	82804	Cable B^{2}	01B-A2804	018-82804
x×BC	02608	B2805	Cable 82	01B-A2B05	018-82805
PAXE 01xX	D2609	B2J06	Cable 3	01B-A2J06	018-82J06
PAXE 02xx	D2302	B2007	Cable 82	018-A2007	018-82D07
paxe 03xx	D2J05	82009	Cable B^{2}	01B-A2D09	018-82009
PAXE 09xX	D2J09	B2G02	Cable 3	01B-A2G02	018-B2602
	D2311	82006	Cable B^{2}	01B-A2D06	018-82006
	D2M03	82808	Cable B^{2}	01B-A2808	018-82808
	D2M04	$82 \mathrm{M12}$	Cable ${ }^{\text {8 }}$	018-A2M12	018-82M12
	D2M05	B2802	Cable $\mathbf{B 2}^{2}$	018-A2802	018-82802
	D2M07	82 J 07	Cable 3	01B-A2J07	018-82.507
	D2M08	B2P06	Cable B^{4}	01B-A2P06	018-82P06
	D2M09	82G04	Cable ${ }^{\text {b }}$	01B-A2G04	018-82604
	D2M10	82013	Cable B^{2}	01B-A2D13	018-B2D13
	D2M12	B2810	Cable B^{2}	01B-A2B10	018-82810
	D2M13	B2G08	Cable 33	01B-A2G08	018-82608
	D2P04	82J09	Cable B3	018-A2J09	018-82.509
	D2P05	в2M02	Cable $\mathrm{B}^{\text {4 }}$	01B-A2M02	018-82M02
	D2P06	82 D 11	Cable B	018-A2D11	018-82D11
	D2P07	B2P11	Cable $\mathrm{B}^{\text {4 }}$	018-A2P11	018-82P11
	D2P09	$82 \mathrm{P13}$	Cable ${ }^{\text {B4 }}$	018-A2P13	018-B2P13
	D2P10	B2G05	Cable B3	01B-A2G05	018-82G05
	D2P11	B2609	Cable 3	01B-A2G09	018-82G09
	D2P12	B2P10	Cable $\mathrm{B}^{\text {4 }}$	01B-A2P 10	018-82P10
	D2P13	82005	Cable B^{2}	018-A2D05	018-82D05
	D2S04	B2G10	Cable B	018.A2G 10	018-82G10
	D2S13	B2812	Cable B^{2}	018-A2812	018-82812
	D2607	B2P02	Cable ${ }^{\text {B4 }}$	01B-A2PO2	018-82P02
	D2G10	${ }^{2} \mathrm{~J} 02$	Cable B3	018-A2J02	018-82J02
	D2310	${ }^{82304}$	Cable ${ }^{\text {B }}$	018-A2.J04	018-82J04
	${ }^{\text {D2803 }}$	E2M04			
	D2804	D2004			
	D2002	E2P06			
	D2006	E2P12			
	D2009	D2P02	E2M07		
	D2012	D2604	D2605	E2P07	E2P09
	D2602 D2J04 220	D2306 GND	E2M05		
	02509	D2S10	E2S04	E2S09	E2P04
	$\begin{aligned} & \text { E2MO9 } \\ & \text { E2SO3 } \end{aligned}$	GND E2U09			

Figure TA453-1 (Part 1 of 2). Model 1B Adapter Net Checklist

Test Error Pattern	Point A	Point B	Point C	Point D	Point E
PAXE 04xX	${ }^{\text {D2J10 }}$	${ }^{82} \mathrm{JO4}$	Cable B3	018-A2.04	018-82.04
through	${ }^{2} 2808$	D2612			
PAXE 08xX	D2809	${ }^{\text {D2312 }}$			
and	O2602 E2G02	D2J06 E2M03	E2M05		
	E2G12	C2612	G2G12		
PAXE 11XX through	E2U02	C2305 E2M08	G2J05		
PAXE 15xX	E2M03	E2G02			
	E2M10	E2P10			
	E2P05	E2U11	D2012	D2604	D2G05
	E2P13	E2SO5			D2605

Test Error Pattern	Point A	Point B	Point C	Point D	Point E
PAXE 40XX	D2B13	E2P02			
through	D2U11	E2J04			
PAXE 43XX	D2U13	E2G04			
	E2B02	C2802	G2802		
	E2803	C2803	G 2803		
	E2804	C2804	G2804		
	E2805 E2B07	C2805 $\mathrm{C2B07}$	G2805 G 2807		
	E2807 E2808	C2807 C2808	${ }^{\text {G2807 }}$ 62808		
	E2B09	С2809	G2809		
	E2B10	C2B10	G2810		
	E2B12	C2812	G2812		
	E2B13	C2B13	G2813		
	E2D02	C2002	62D02		
	E2004	C2D04	G2D04		
	E2D05	C2D05	62D05		
	E2006	C2006	G2006		
	E2207	C2007	62007		
	E2009	C2D09	G2D09		
	E2D10	C2D 10 C 2011	${ }_{\text {G2D10 }}$		
	E2D12	$\mathrm{C2D12}^{\text {C20 }}$	G2012		
	E2D13	C2D13	G2D13		
	E2G05	C2G05	G2G05		
	E2607	C2G07	62607		
	E2G08 E2G09	C2G08 C2G09	G2G08 C2G09		
	E2G10	C2610	G2G10		
	E2G13	C2G13	G2G13		
	E2J02	${ }^{\text {B2P09 }}$	Cable B4	01B-A2P09	018-82P09
	E2J06 E2JO7	C2J06 C2J07	G2J06 G2J07		
	E2.09	C2309	62J09		
	E2J10	C2J10	G2J10		
	E2J11	C2J11	G2J11		
	E2J12 E2J13	C2J12 C2J13	G2J12 T2J13		
	E2M13	E2U04			

Figure TA453-1 (Part 2 of 2). Model 1B Adapter Net Checklist

Test Error Pattern	Point A	Point B	Point C	Point D	Point E
PAXE 44xX	D2J11	B2D06	Cable 82	01B-A2D06	018-82D06
PAXE 56XX	D2S13	B2B12	Cable B^{2}	01B-A2B12	018-82812
	D2U13	E2G04			
	E2B05	С2805	G2805		
	E2D09	C2D09	G2009		
	E2G10	C2G10	G2610		
	E2G12	${ }^{\text {C2G12 }}$	G2612 G2J05		

The net check points listed below do not cause test failures when both open and
grounded, but should be checked to ensure proper tape logic continuity and operation.

Point A	Point B	Point C	Point D	Point E
D2G03	B2804	Cable B2	01B-A2804	01B-82804
D2G08	B2805	Cable B^{2}	01B-A2B05	018-82805
D2G09	B2J06	Cable B^{2}	01B-A2J06	01B-82J06
E2S02	B2B13	Cable B^{2}	01B-A2B13	018-82B13
E2J02	B2P09	Cable B^{2}	01B-A2P09	01B-82P09
D2808	D2G12			
D2813	E2P02			
D2009	D2P02	E2M07		
D2m02	GND			
D2U11	E2J04			
E2012	C2D12	62012		
E2D13	C2D13	G2D13		
E2G03	E2P11			
E2M10	E2P10	G2613		
E2M12	GND			
E2M13	E2V04			
$\begin{aligned} & \text { E2SO4 } \\ & \text { E2PO5 } \end{aligned}$	E2S09	E2P04	D2S09	D2S10

Each permanent error generates a console message to the control operator. The operato then refers to the system messages and codes manual for appropriate action. The following paragraphs show the format and content of the console messages for DPPX and DPCX.

TA510 DPPX

There are nine different console messages, each representing a different category of error: 1. HDIT0052P

PA $=x \times$ SCA $=x x x x$ DT $=x x x x$ TAPE MEDIA PROBLEM
PA $=X X$ SCA $=X X X X$
ERROR CODE $=X X X X$
2. HDIT0053P

PA = XX SCA = XXXX DT= XXXX TAPE OVERRUN ERROR CODE $=X X X X$
3. HDIT0055P

PA = XX SCA= XXXX DT= XXXX INCORRECT TAPE MODE ERROR CODE $=X X X X$
4. HDIT0056P

PA $=X X$ SCA $=X X X X D T=X X X X$ TAPE MARKER SENSOR FAILURE -TAPE DRIVE DEACTIVATED-ERROR CODE $=X X X X$
5. HDIT0057P

PA $=X X$ SCA $=X X X X \quad D T=X X X X$ TAPE DATA UNSAFE-ERASE HEAD IS LIVE, REMOVE TAPE FROM UNIT WITHOUT MOVING IT PAST HEADSTAPE DRIVE DEACTIVATED-ERROR CODE $=X X X X$
6. HDIV0051P

PA $=X X$ SCA $=X X X X$ DT= XXXX LOGIC ADAPTER CARD ERROR-LOGIC CARD DEACTIVATED-ERROR CODE $=$ XXXX
7. HDIV0054P

PA $=X X$ SCA $=X X X X$ DT= $x X X X$ DEVICE NOT READY-INTERVENTION REQUIRED-ERROR CODE $=X X X X$
8. HDIV0058P

PA = XX SCA = XXXX DT= XXXX PERMANENT I/O ERROR-DEVICE DEACTIVATED-ERROR CODE $=X X X X$
9. HDIV0059P

PA = $x X \quad$ SCA $=X X X X \quad D T=X X X X$ INTERNAL SEQUENCE ERRORDEVICE DEACTIVATED-ERROR CODE $=X X X X$

Where:

```
PA = Physical address of the tape adapter
SCA \(=\) Secondary component address
DT = Device type
ERROR CODE = Tape adapter return code
```

Refer to the DPPX General Failure Index (Chapter 1, ST110) for associated action plans.

The DPCX console message has the following format

XXXX-LA=nn FPID=nnnn LOC=nnnnn OPID=nn I/O ERROR, COMPLETION CODE=nnn ERROR CODE=xnn

Where:

XXXX $=$ System message number (SMN)
$L A=$ The logical address (nn) of the unit on which the failure occurred.
FPID $=$ The functional program identification number ($n n n n$). LOC $=$ The address (nnnnn) of the instruction being performed when the error occurred.
OPID $=$ The operator ID number (n n).
COMPLETION CODE $=$ The code (nnn) assigned by the program to indicate the category of error that occurred (for example; media, tape
drive, tape control). drive, tape control).
ERROR CODE $=x=0 \quad$ Error while not accessing a tape data set.
$=1$ Error while processing a label for input.
$=2$ Error while processing a label for output.
$=2$ Error while processing a label for output.
$=3$ Error while reading from an opened data set.
$=4 \quad$ Error while writing to an
nn Translated tape adapter return code (TARC) (in decimal) Translated tape adapter return code (TARC)
The TARC is derived from the last two digits of the adapter return code (ARC) returned by the FDM. Th TARC and the ARC are the same except when the ARC $=6 \mathrm{X}$ or EX. Then the ARC translates into 4 X and 5 X respectively. See TA333 for list of TARCs.

Refer to the DPCX General Failure Index (Chapter 1, ST210) for associated action plan

This page intentionally left blank.

Appendix A. Hexadecimal-to-Binary Conversion

Appendix A. Hexadecimal-to-Binary Conversion

Hexadecimal messages consist of two to four hex values. Use the following chart to convert the hex value to a binary bit value:
$\begin{array}{ll}\text { Hex } & \text { Binary } \\ \text { Value } & \text { Bits }\end{array}$
Value Bits 0123
4567
$0 \quad 0000$
$\begin{array}{ll}1 & 000 \\ 2 & 0010 \\ 3 & 0011\end{array}$

4	010
5	010

0101
0110
0111
1000
1001
1010
1010
1011
1011
1100
1100
1101
1110
1111
Two hex values equal one byte of status or sense information. For example Status byte $=3 A($ hex $)$.

Status Byte	0	1	2	3	4	5	6	7				
Hex Representation	3						A					
Binary Bits	0	0	1	1	1	0	1	0				

Active bits are 2, 3, 4, and 6 .

8130/8140/8101

8130/8140/810
Maintenance Information
Order No. SY27-2521-3

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
perators of IBM systems. This form may be used to communicate your views about this publication. They will be sent to the author's department for whatever review and action, if any, is deemed appropriate comments may be written in your own language; use of English is not required.
IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you supply

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. eesse direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality

How did you use this publication?

As an introduction
As a reference manual
[] As a text (student)
For another purpose (explain)
[] As a text (instructor)
st there any thing you especially like or dislike about the organization, presentation, or writing in this manual? elpful comments include general usefulness of the book; posible additions, deletions, and clarifications specific errors and ommissions.
age Number:
Comment:

What is your occupation? \qquad
Newsletter number of la test Technical Newsletter (if any) concerning this publication:
If you wish a reply, give your name and addrem:

IBM branch office serving yo

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or represen tative will be happy to forward you
in the Edition Notice on the back of the title page.)

Fold and tape

BUSINESS REPLY MAIL
first class permit no. 40 armonk, n.y.

POSTAGE WILL BE PAID BY ADDRESSEE:
nternational Business Machines Corporation Department 520
Neighborhood Road
Kingston, New York 1240

$\overline{\overline{\underline{E}} \overline{\overline{E x}} \overline{\bar{E}}}$

ernational Business Machines Corporation
Data Processing Division
133 Westchester Avenue, White Plains, N.Y. 1060
IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9 , North Tarrytown, N.Y, U.S.A. 10591
IBM World Trade Europe/Middle East/Africa Corporatio

Iternational Business Machines Corporation
Data Processing Division
133 Westchester Avenue, White Plains, N.Y. 10604
BM World Trade Americas/Far East Corporation
Jown of Mount Pleasant, Route 9 , North Tarrytown, N.Y., U.S.A. 10591
IBM World Trade Europe/Middle East/Aitrica Corporatio

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Pleins, M, Y 10604
IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9 , North Tarrytown, N.Y., U.S.A. 10591

[^0]: Volts
 PA +5 VDC
 PA
 +12 VDC
 $P A+12 \mathrm{VDC}$
 $P A+24 \mathrm{VDC}$
 A +24 VDC
 Ground
 A -12 VDC
 $(T P)=$ test point

 D03, J03, PO3, U03
 B11
 s02
 D08, J08, P08, U08

[^1]: Figure PA440-2. $\mathbf{8 1 4 0}$ Models AXX DC Power

[^2]:

[^3]: *Present only on 8101 Model A25.

[^4]: Figure SC111-2. 8130 without System Expansion Feature SCF Basic Data Flow

[^5]: Figure TA331-2. DPPX Error Log Display for Error Records (Format 1)

