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Diffusion  Attenuation 
Part II 

Abstract: The amount of diffusion attenuation has 
been computed as a function of frequency for the 

case of uniform electric field.  Application to drift 

transistors is discussed. 

Introduction 

This  paper contains the results of a computation of diffu- 
sion attenuation  and phase  change  as  a function of fre- 
quency for  the case of uniform electric field. These  results 
are cast  in  a form intended to maximize their  usefulness 
to those  interested  in the complex transfer efficiency of 
drift transistors. Part I of this paper describes the physi- 
cal ideas in  detail. 

The category of problems  connected  with  injected- 
carrier flow in  a uniform electric field, subject also to 
diffusion, has a  long  history  in the literature. The question 
of the  attenuation of a  minority-carrier  pulse  in  a drift- 
mobility experiment,l for example, is a  problem  in the 
category. The case of harmonic time  dependence of in- 
jected-carrier  density, as considered here,  has been treated 
by Kroemer.2  The present computational results, how- 
ever, are  more exact than previous  ones. These results will 
be expressed graphically  in  some  detail,  with  indication of 
their possible application to  the determination of transis- 
tor parameters. 

Theory 

The discussion of the  attenuation of carrier flow across 
the base must be founded upon the equation of continuity, 
which, in the presence of a uniform electric field, takes 
the form3 

where p is the injected (assumed positive) carrier concen- 
tration,  and 

v =pE,  A =  V T /  E,  ( 2 )  

where p is the mobility; E ,  the electric field; V T ,  thermal 
18 voltage (kT/e) . One recovers the usual form of the  equa- 

tion by multiplying by v, and noting that D = v A, where D 
is the diffusion constant. 

We are concerned here with the case of harmonic time 
dependence.  Since the differential equation is linear we 
should be able to  obtain  an exponential  solution, or in 
real  form, 

p=cos k(x--l l t)@", ( 3 )  

where k, u, and a are constants. This is an  attenuated  har- 
monic wave propagating  with  phase velocity u. With 
diffusion present we should  expect both signs of u to be 
possible, since signals may be propagated by diffusion 
against an electric field. Correspondingly, a will have  two 
possible values. In  fact, substituting  this expression in the 
differential equation, we find, on collecting cosine  terms, 

A(a"k2) + u = O ,  

yielding 

a =  - 1 f d 1 +4A2kz 
2x 

On collecting sine  terms we obtain 

u = ~ ( 1 + 2 a A ) = ~ ~ 2 /  1+4X'k' . 
The plus sign is, of course,  correlated with signals 

which are propagated  in the direction of the field. It will 
be convenient to  introduce a new symbol h as the  abbre- 
viation of the positive square  root 

b = + d  1+4A2kz . ( 6 )  

A solution for p which vanishes at a  point x= W can 
be  constructed by proper combination of forward  and re- 
verse signals as  follows: 
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+=kW.  (13) 

The  quantity 4 has  the meaning of Bo in I ;  i.e., it is the 
phase difference between emitter and collector currents in 
the  absence of diffusion. It is hoped that  the difference in 
significance of the symbol + in Parts I and I1 will not 
cause confusion. 

The advantage of taking the quantities r, wD, and + as 
fundamental lies in the  fact  that all other quantities may 
easily be computed  from  them,  and also in the  fact  that 
A ,   B ,   C ,  and D are functions of r and ,#, alone. The  quan- 
tity oD enters the problem  in fact only as a sort of fre- 
quency-normalizing factor.  The relation between w and 
,#, is 

W/ OD = 3 rb,#,, (14) 

where b, as defined previously, appears as 

bx 
cos k ( x -  W - v b t ) e - =  

82: 
-cos k(x- W + v b t ) e x e  - :] 

This  boundary condition is chosen to achieve  continuity 
between the case of pure diffusion, which  requires  some 
such  boundary condition in order  that a current be possi- 
ble at low frequencies, and  the case of large  electric fields, 
for which the  boundary condition at x= W is largely irrel- 
evant. The desirability of imposing  this boundary condi- 
tion,  equivalent to letting v = m  at x= W ,  led to our dis- 
cussing the problem here  in terms of the  concentration p 
rather  than directly in terms of the  current j ,  as  in the 
preceding  paper. 

We  must now compute  the  current, however. Our aim 
is to find the  attenuation  and phase  shift of the  current 
over the distance W .  In  accordance with  transistor  termi- 
nology, the  current at x = O  will be called the  emitter  cur- 
rent, j e  and  that  at x =  W the collector current, ie. We can 
certainly  write A final definition is a  mere  abbreviation 

j E  = A  cos W t  - B sin ut, (at x = O )  ( sa)  +=br /2 .  (16) 

j c  = C cos W t  - D sin ut, (at x= W )  (8b)  In terms of +, r, and  the quantities b and +, which are 

where A ,   B ,   C ,  and D are real  constants (in  time),  three 
of which are independent. The  attenuation  factor,  or A = ( b  cash + +) cos + 24 slnh . + sin +, ( 1 7 ~ )  
transfer efficiency, ,8 can be  written  in  terms of these r 

functions of ,#, and r, we find 

constants as 

and  the phase difference 0 between j ,  and j e  is 

0 = tan-l BC-AD 
AC-BD 

There is little point  in  carrying through explicitly the 
trivial but laborious  task of determining these parameters. 
Expressions for  them follow  straightforwardly from  the 
definition of the  current, j=ev (p -hp’ ) .  Before writing 
these expressions we define several  quantities which fur- 
nish a  convenient  characterization of the physical situa- 
tion. 

The region between x = 0 and x = W ,  the “base” in  tran- 
sistor  applications, is completely defined by two param- 
eters, the length W and  the potential difference AV=EW. 
It is defined as well  by two more convenient and mathe- 
matically significant parameters 

All functional  relationships  may now be computed 
rather easily by fixing values of r and ,#, and computing 
all other quantities from these. This applies, for example, 
to  the interesting function ,8( e ) .  

It should be noted that use has been made of the arbi- 
trary scale factor contained  in the constants A ,   B ,   C ,  and 
D to normalize  them at will. This freedom will also be 
tacitly employed  in the following section,  wherein certain 
interesting special cases will be examined. 

Case 1: r+m 

Discarding negative exponentials and  factors multiplied 
by r1 (except in  exponentials) we obtain 

r = A V / V ,  ( A ebr/z cos ,#, 
and B & ebrl2 sin 4 
0 ~ = 2 D /  W’. (12) c = e r / z  

The  latter is the “cutoff frequency” of a diffusion transis- 0. 
tor of base width W .  

With parameters defining the physical  situation speci- Thus 
fied, we still have the possibility of redefining the variable 
of the problem.  Instead of the frequency w we shall em- 

p & e ( 1 - b ) r / 2  

ploy the angle 0 = ,#,. 19 
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Approximating now in the exponential, Case 4: r > 4  

and hence 

p &/? 

Equation ( 18b) was derived as an asymptotic formula 
in (I) .  

0 Case 2: r-0 

After multiplying through by r/2+  and discarding  terms 
containing  a factor r (and noting 

lim I) = +)  
r+ n 

we obtain  (except for a  scale factor) 

A = cosh + cos + - sinh + sin + 
B = sinh + sin + + cosh + cos + 
C = I  

The negative exponentials can be discarded in this case 
with an  error of about one  percent or less. However, all 
other factors  must be retained. The simplification yields 

The difference between 6' and + has  an  upper limit in 
the neighborhood of ~ / 8 ,  and approaches zero  at both 
high and low frequencies. These expressions combine to 
yield the asymptotic formula of Case 1 for  28/r << 1, 
and  the  formula of Case 3 for  26'/r>>l.  The  parametric 
form  cannot be avoided for intermediate values of 8. 
The  errors involved in using the asymptotic formulas 
are (respectively) of  order  (O/r)*  and  (r/O) z. 

In  the case of the first asymptotic formula  the  error 
in a given range of 1 /3 I varies inversely as r,  and is  less 
than 3% for  r=16, O<(pl<&. 

D = 1. Results 

Thus 
The  transfer efficiency p has been computed  from  the pre- 
vious equations, and  the results are shown in Figs. 1 and 2. 

0 = tan-l(tanh + tan +) ( 1 9 ~ )  Each  Figure shows a  family of curves plotted for various 
values of the normalized drift potential rEAV/VT, the p = [Cosh2 + cos' + + sinh2 + sin?+]-& ( 19b)  ratio of the potential difference across the base to  thermal 

#E dou, where w D =  2D/ W2.  Recall that OD is the  cutoff 
These are the formulas  for  the ungraded base. The  frequency of a  corresponding diffusion transistor  with the 

( O  = + ' W D ) .  voltage. The variable 4 is the normalized frequency, 

formulas  for /3 and 6' are  often combined  in the prescrip- Same base  width. 
tion4 

~ ~ c o I l l v ~ r x )  = sech [+( l - t i ) ]  = sech 1 2 i w  . 
Figure 1 is a  polar  plot of the magnitude of the  transfer 

efficiency /3 as  a function of the phase angle. The chang- 
ing value of [ is indicated as a parameter of the curve. 
Figure 2 displays the relation  between p and [ directly. 
No curves are given for values of r  greater than  16, since 
the  approximate  formulas  for large  r given in the text are 

Unless the  transfer efficiency is the only  frequency- 
dependent  transistor  characteristic  over an extended fre- 

B = sinh + sin + + cosh + cos + quency  range, our method of determining  transistor 
parameters, in order  to be  applicable,  must  be  supple- 
mented.5 Furthermore, its applicability  in  principle  de- 

However, it is not unreasonable to expect  in  some cases a 

except that  the magnitude of /3 is increased by the  factor The existence of such a favorable situation can, of 
course, be ruled out if the  shape of the experimentally 

+ approach infinity  in the exponential  terms also. This lated for p. Where  such conformance is experimentally 
operation yields determined, at least for low frequencies, effective values 

determined by identifying ,B and d o c o ,  where a. is the  cur- 

determining  these  parameters is sketched below. 

- 
1 

Case 3: ++ 00 (@+ 00 ) 

After multiplying by r/2+ and noting I/ + +, we find  very  nearly  exact  in the  omitted range. 

A = cosh + cos + - sinh + sin + 

C = er/2 

D = er/?. pends upon  the  structural  type of the transistor  in  question. 

This  result is identical to  that  for  the ungraded case, situation allowing direct applicability. 

eT/2. 

To the Of this case, we should let measured current gain @ does not  conform  to  that calcu- 

O = +  (20a)  for  the  drift potential AV and  the base width W may be 

p = 2exp( - d-+ @D +)= 2exp( - 0 +  +). (20b)  rent gain  at zero frequency.  A  convenient procedure  for 
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Figure 1 Complex  transfer  efficiency of a drift transistor. 
All numbers on curves  are  values of t. Curves  beyond highest marked  values of [ are  projected. 

Determination  of  effective  values of AV and W 

If the  above analysis is found  to be  applicable  in  a given 
case. two measurements are sufficient to determine the two 
structure  parameters AV and W .  One may  choose, for 
example, to measure the frequency at which the complex 
current gain a takes on a  predetermined value. Two  such 
frequencies, which are  often employed to characterize 
transistors, are defined by the relations: 

1 
I d m a )  I = - 42- @" 

1 
2 

Rear(ob) = - ao. 

It is evident that is the cutoff frequency for  the  current 
gain (normalized to its value  at  zero frequency) while 

is the frequency  at which the grounded  emitter current 
gain (normalized to infinity at  zero  frequency)  has 
dropped  to unity. 

The following procedure  has been  facilitated by some 
supplementary  Figures, to which  reference will be made. 
Having  measured ma and Ob, one  may  determine 

(i) r E A V /  V r  from Fig. 3, 
(ii) t b = ~ b / ~ D  from Fig. 4, 

(iii) W from Fig. 5. 
For reference  a curve of o ~ / o ~  is also plotted  in  Fig. 4, 

and  compared with  Kroemer's approximate  formula  for 
high drift fields. 

Figure 6 contains  a  graphical  comparison of the asymp- 
totic expression for diffusion attenuation  for large r with 
the exact function. 

: 

21 
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Figure 3 The ratio of as a function of the ”built-in”  drift  potential. 
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Appendix: Inclusion of recombination 

Since  carriers are not conserved, the  equation of conti- 
nuity becomes 

hp””p’=V- ’ (p+T- lp ) ,  

where T-’P represents the local rate of removal of carriers. 
No great complication is introduced if 7 is assumed to be 
a constant independent of carrier  concentration  and posi- 
tion. The only change resulting from including  recombi- 
nation occurs in the  square root term in the expression for 
a and u as  indicated below 

4 1  +4X2k2 + dl + 4 ( ~ ~ ) - l h + 4 X 2 k 2  . 
Thus in the  parametric  form of the general expressions 
for P and 8 we need  only  change the definition of b : 

b 4 g +  ( 2 + / r ) z  , 

where g= 1 + ~ / w D T ~ ~ ,  a constant independent of +. When 
r is large  (special  case # 1 ) , the attenuation due  to  re- 
combination is constant; namely, exp(-t/T), where t is 
the time  required for  propagation of a signal across the 
base: t=  W/v = 2 / o ~ r .  Thus  for this  case  recombination is 
completely  taken into  account by the normalization of p. 
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