Diffusion Attenuation
Part 1l

Introduction

This paper contains the results of a computation of diffu-
sion attenuation and phase change as a function of fre-
quency for the case of uniform electric field. These results
are cast in a form intended to maximize their usefulness
to those interested in the complex transfer efficiency of
drift transistors. Part I of this paper describes the physi-
cal ideas in detail.

The category of problems connected with injected-
carrier flow in a uniform electric field, subject also to
diffusion, has a long history in the literature. The question
of the attenuation of a minority-carrier pulse in a drift-
mobility experiment,! for example, is a problem in the
category. The case of harmonic time dependence of in-
jected-carrier density, as considered here, has been treated
by Kroemer.2 The present computational results, how-
ever, are more exact than previous ones, These results will
be expressed graphically in some detail, with indication of
their possible application to the determination of transis-
tor parameters.

Theory

The discussion of the attenuation of carrier flow across
the base must be founded upon the equation of continuity,
which, in the presence of a uniform electric field, takes
the form?

p'—p =vp, (1)

where p is the injected (assumed positive) carrier concen-
tration, and

v=pE, A=Vy/E, )

where g is the mobility; E, the electric field; Vr, thermal
voltage (k7T/e). One recovers the usual form of the equa-
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tion by multiplying by v, and noting that D=v\, where D
is the diffusion constant.

We are concerned here with the case of harmonic time
dependence. Since the differential equation is linear we
should be able to obtain an exponential solution, or in
real form,

p=cos k(x—ut)e, 3)

where k, u, and a are constants. This is an attenuated har-
monic wave propagating with phase velocity u. With
diffusion present we should expect both signs of u to be
possible, since signals may be propagated by diffusion
against an electric field. Correspondingly, a will have two
possible values. In fact, substituting this expression in the
differential equation, we find, on collecting cosine terms,

A(a*—k?) +a=0,

yielding
4o —lEVIEAE 4)
2\
On collecting sine terms we obtain
u=v(1+2ar) =xv V T+4rAE . (5

The plus sign is, of course, correlated with signals
which are propagated in the direction of the field. It will
be convenient to introduce a new symbol b as the abbre-
viation of the positive square root

b=+ V11412 . (6)

A solution for p which vanishes at a point x=W can
be constructed by proper combination of forward and re-
verse signals as follows:




= bz
p=e2 | cos k(x—W—vbt)e 2>

e W
—cos k(x—W+vbt)e2re * |°* (7N

This boundary condition is chosen to achieve continuity
between the case of pure diffusion, which requires some
such boundary condition in order that a current be possi-
ble at low frequencies, and the case of large electric fields,
for which the boundary condition at x= W is largely irrel-
evant. The desirability of imposing this boundary condi-
tion, equivalent to letting v=% at x=W, led to our dis-
cussing the problem here in terms of the concentration p
rather than directly in terms of the current j, as in the
preceding paper.

We must now compute the current, however. Qur aim
is to find the attenuation and phase shift of the current
over the distance W. In accordance with transistor termi-
nology, the current at x=0 will be called the emitter cur-
rent, je and that at x=W the collector current, j.. We can
certainly write

(at x=0) (8a)
(atx=W) (8b)

je=A cos ot —B sin of,
je=C cos wt—D sin ot,
where A, B, C, and D are real constants (in time), three
of which are independent. The attenuation factor, or

transfer efficiency, 8 can be written in terms of these
constants as

C2+ Dz 1/2
== , 9
- (522) ”
and the phase difference 6 between j. and j, is
—A
f#=tan-? LD— . (10)
AC—BD

There is little point in carrying through explicitly the
trivial but laborious task of determining these parameters.
Expressions for them follow straightforwardly from the
definition of the current, j=ev(p—Ap’). Before writing
these expressions we define several quantities which fur-
nish a convenient characterization of the physical situa-
tion.

The region between x=0 and x=W, the “base” in tran-
sistor applications, is completely defined by two param-
eters, the length W and the potential difference AV=EW.,
It is defined as well by two more convenient and mathe-
matically significant parameters

b=kW. (13)

The quantity ¢ has the meaning of 4§, in I; i.e., it is the
phase difference between emitter and collector currents in
the absence of diffusion. It is hoped that the difference in
significance of the symbol ¢ in Parts I and II will not
cause confusion.

The advantage of taking the quantities 7, op, and ¢ as
fundamental lies in the fact that all other quantities may
easily be computed from them, and also in the fact that
A, B, C, and D are functions of r and ¢ alone. The quan-
tity wp enters the problem in fact only as a sort of fre-
quency-normalizing factor. The relation between « and
¢ is
o/ op=3%rbo, (14)

where b, as defined previously, appears as

b=J1+(Z_¢)2, (15)
r

A final definition is a mere abbreviation
y=>br/2. (16)

In terms of ¢, r, and the quantities b and ¢, which are
functions of ¢ and r, we find

A= (bcoshy + sinh ¢) cos p — iﬁ—sinh ¢ sin ¢, (17a)
r

B (bsinh y + cosh ¢) sin ¢ + —2- cosh y cos ¢, (17b)
r
C—berr, (17¢)

D= —Zie'/z. (17d)
r

All functional relationships may now be computed
rather easily by fixing values of r and ¢ and computing
all other quantities from these. This applies, for example,
to the interesting function 8(4).

It should be noted that use has been made of the arbi-
trary scale factor contained in the constants 4, B, C, and
D to normalize them at will. This freedom will also be
tacitly employed in the following section, wherein certain
interesting special cases will be examined.

eCasel:r>w

Discarding negative exponentials and factors multiplied
by r (except in exponentials) we obtain

r=AV/Vry (11) A = eb"/2 cos ¢
and B = ¢¥/2sin ¢
op=2D/ W23, (12) C = emr®
The latter is the “cutoff frequency” of a diffusion transis- D=0
tor of base width W.
With parameters defining the physical situation speci- Thus
fied, we still have the possibility of redefining the variable B = et
of the problem. Instead of the frequency » we shall em- -
ploy the angle 9= ¢. (18a) 19
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Approximating now in the exponential,

by 200 . 20°
r? r?
and hence
B - e-oz/r
or
(o= > wp). (18b)

Equation (18b) was derived as an asymptotic formula
in (I).
® Case 2: r—0

After multiplying through by r/2¢ and discarding terms
containing a factor  (and noting

lim br

— =1,

; lim ¢ = ¢)
r—> 2¢ r—=0
we obtain (except for a scale factor)
A = cosh ¢ cos ¢ — sinh ¢ sin ¢

B = sinh ¢ sin ¢ + cosh ¢ cos ¢

C =1

D=1.

Thus

6 = tan-!(tanh ¢ tan ¢) (19a)
B = [cosh? ¢ cos? ¢ + sinhZ ¢ sin2¢]* (19b)
(0 = ¢op).

These are the usual formulas for the ungraded base. The
formulas for 8 and @ are often combined in the prescrip-
tion*

B(complex) = sech [¢(1+1)] = sech \/ 21_(.0_
wp

& Case 3: p—> o0 (0—>00)

After multiplying by r/2¢ and noting ¢~ ¢, we find
A = cosh ¢ cos ¢ — sinh ¢ sin ¢

B == sinh ¢ sin ¢ + cosh ¢ cos ¢

C = e"/?

D = er/2,

This result is identical to that for the ungraded case,
except that the magnitude of {3 is increased by the factor
e/,

To complete the analysis of this case, we should let
¢ approach infinity in the exponential terms also. This
operation yields

§Case4:r>4

The negative exponentials can be discarded in this case
with an error of about one percent or less. However, all
other factors must be retained. The simplification yields

§=¢—tan? [—2‘7’4(1+b+2 ( d )2)_1] (21a)
r ¥

=2 —(b-1)7, 21b
. (_2¢ ) ) e
’

The difference between 6 and ¢ has an upper limit in
the neighborhood of =/8, and approaches zero at both
high and low frequencies. These expressions combine to
yield the asymptotic formula of Case 1 for 20/r<<1,
and the formula of Case 3 for 24/r>>1. The parametric
form cannot be avoided for intermediate values of 6.
The errors involved in using the asymptotic formulas
are (respectively) of order (6/r)2 and (r/6)2

In the case of the first asymptotic formula the error
in a given range of |B| varies inversely as r, and is less
than 3% for r=16, 0<|B|<%.

Results

The transfer efficiency 8 has been computed from the pre-
vious equations, and the results are shown in Figs. 1 and 2.
Each Figure shows a family of curves plotted for various
values of the normalized drift potential ¥=AV/V7y, the
ratio of the potential difference across the base to thermal
voltage. The variable £ is the normalized frequency,
£=w/wp, where wp=2D/W2, Recall that wp is the cutoff
frequency of a corresponding diffusion transistor with the
same base width.

Figure 1 is a polar plot of the magnitude of the transfer
efficiency B as a function of the phase angle. The chang-
ing value of £ is indicated as a parameter of the curve.
Figure 2 displays the relation between 3 and £ directly.
No curves are given for values of r greater than 16, since
the approximate formulas for large r given in the text are
very nearly exact in the omitted range.

Unless the transfer efficiency is the only frequency-
dependent transistor characteristic over an extended fre-
quency range, our method of determining transistor
parameters, in order to be applicable, must be supple-
mented.? Furthermore, its applicability in principle de-
pends upon the structural type of the transistor in question.
However, it is not unreasonable to expect in some cases a
situation allowing direct applicability.

The existence of such a favorable situation can, of
course, be ruled out if the shape of the experimentally
measured current gain « does not conform to that calcu-
lated for 8. Where such conformance is experimentally
determined, at least for low frequencies, effective values

6=¢ (20a) for the drift potential AV and the base width W may be

determined by identifying 8 and o/ @, where «y is the cur-

20 B =2exp ( _ ‘/ ©_ r ) -2 exp( o+ r . (20b) rent gain at zero frequency. A convenient procedure for
wp 2 2 determining these parameters is sketched below.
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Complex transfer efficiency of a drift transistor.

All numbers on curves are values of £&. Curves beyond highest marked values of £ are projected.

Determination of effective values of AV and W

If the above analysis is found to be applicable in a given
case, two measurements are sufficient to determine the two
structure parameters AV and W. One may choose, for
example, to measure the frequency at which the complex
current gain « takes on a predetermined value. Two such
frequencies, which are often employed to characterize
transistors, are defined by the relations:

1
NC
1

Rea(wy) = — ao.

la(w,) |

It is evident that o, is the cutoff frequency for the current
gain (normalized to its value at zero frequency) while o,

is the frequency at which the grounded emitter current
gain (normalized to infinity at zero frequency) has
dropped to unity.

The following procedure has been facilitated by some
supplementary Figures, to which reference will be made.
Having measured o, and wp, one may determine

(i) r=AV/Vy from Fig. 3,
(ii) £, =wp/ wp from Fig. 4,
(iii) W from Fig. 5.

For reference a curve of wq/ wp is also plotted in Fig. 4,
and compared with Kroemer’s approximate formula for
high drift fields.
Figure 6 contains a graphical comparison of the asymp-
totic expression for diffusion attenuation for large » with
the exact function. 21
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Figure 2 Variation of the magnitude of the transfer efficiency of a drift transistor with (normalized) frequency.

Figure 3 The ratio of wa/ o as a function of the “built-in" drift potential.
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Figure 4 (Normalized) cutoff frequency as a function of the
onship between the effective base width and cutoff frequencies of germa

“hyilt-in" drift potential.
Figure 5 The relati nium drift
transistors.
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Figure 6 Showing the relation between asymptotic (dashed line) and exact (solid line) functions SB(0).
All numbers on curves are values of £.

Appendix: Inclusion of recombination

Since carriers are not conserved, the equation of conti-
nuity becomes

Ap"—p'=v(p+p),

where 7~1p represents the local rate of removal of carriers.
No great complication is introduced if 7 is assumed to be
a constant independent of carrier concentration and posi-
tion. The only change resulting from including recombi-

nation occurs in the square root term in the expression for
a and u as indicated below

VITakE = Vit+a(or) AL arzke .

Thus in the parametric form of the general expressions
for B8 and # we need only change the definition of b:

b=+ @2e/n)? ,
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where g=1+8/wp7r?, a constant independent of ¢. When
r is large (special case #1), the attenuation due to re-
combination is constant; namely, exp(—t/7), where ¢ is
the time required for propagation of a signal across the
base: t=W/v=2/wpr. Thus for this case recombination is
completely taken into account by the normalization of B.
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