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Algebraic  Topological Methods 
For  the  Synthesis of Switching  Systems 
Part Ill* 
Minimization of Nonsingular  Boolean Trees 

Abstract: An algorithm i s  given for solving a general problem  in  combinational switching-circuit minimization 

theory. The  circuits considered consist of a disjunction (OR-ing together) of trees of any set of logical elements, 

with the restriction that in any  given tree no input  appears more than once. To each logical element is attached 

a positive cost. A  method i s  presented for designing  a minimum-cost circuit of this variety for any  given  logical 

function. Two parallel treatments are given,  one viewing  it  as  an abstract mathematical problem,  the other 

considering it as an engineering  problem. 

Introduction 
This  paper is a continuation of efforts (Refs. [. 1, 2 ] ) to 
develop a theory for  the effective design of  automata.  In 
previous  publications,  algorithms for designing switching 
circuits of the so-called “normal  form” were devised. 
These “extraction”  algorithms  have been programmed on 
the IBM 704 and have been useful to some logical de- 
signers. The kind of circuit that they design, nevertheless 
is of quite  a  special  variety. This  paper makes a rather 
strong generalization of this class, for which gcncralized 
extraction  algorithms are still applicable. 

Description of the problem 

A few preliminaries are rcquirccl. The “functional ex- 
pression” 

f - -O l lX ,  p ( Y ,  z ) ,  Y ( X ,  S(x, 2111 (1)  
can be represented by the following “functional  tree” 
(circuit block diagram) : 

.r z 
7 

/-’ / y  i.:” 

The  Greek letters a, p, y,  S denote  functions,  and  the 
Latin  letters x, y ,  z ,  t the variables. In  the  functional ex- 
pression ( l ) ,  a is a function of three variables; in the 
graph  (circuit)  the node (circuit  element) labelled a has 
three  branches (wires) directed toward it, and  the  oppo- 
site  ends of these branches carry  the labels of the argu- 
ments (inputs) of a; the first argument is x, the second is 
p ( y ,  z ) ,  which is itself a function of y and z ,  et cetera. 
Conversely,  every such  functional  tree  (circuit) com- 
pletely defines some  functional expression. Note  that  the 
graph has no closed loops-it  is a tree, of a rather special 
variety,  as is precisely defined in  Section 1.1. 

The expression (1) gives t as a composite function,  but 
ultimately it is a function of the  three independent vari- 
ables x, y ,  z ;  thus t = T ( x ,  y ,  z ) .  

In general,  drawing from  an allowable set B of “primi- 
tive” functions a, p , . . . , it is possible to write T in many 
different ways as a composite function  drawn  from  the 
set ‘2.3. 

In this papcr the functions are all Boolean, that is, the 
arguments  and values of the  function  are either 0 or 1. 

The following may be considered as the  general  prob- 
lem of design of single-output  combinational  circuits: 

*Parr I of  this  srries was published  in Transactions of f h e  American  Mathe- 
matical Sor ir fy  (Ref. [ l]) .  Part IL will  appear  in T h e  Proceedings of f h e  
International Symposium o n  the TIICOQ of Switching (Ref. [Z]). 



Given a  set of allowable functions  (circuit  elements), 
given a function T of n variables, to find a functional  tree 
(circuit)  for T using primitive  functions (circuit ele- 
ments)  from 23, which uses the least possible number of 
these primitive functions  (elements).  More generally, we 
weight each  function according to its  “cost”  and seek to 
minimize the total  cost. More precisely, the  problem is to 
devise an algorithm so that, given any T ,  the algorithm 
will automatically produce a minimum tree. This algo- 
rithm must be effective in  quite  a  practical way. To convey 
the kind of practicality involved, let it be required that 
the algorithm,  when  programmed on the  IBM 704, should 
be capable of solving, say, an 8-variable  problem  with 
eight hours of machine time. These requirements  rule 
out  any kind of exhaustive procedure, even for extremely 
small  problems. 

To meet these stringent requirements, we find it ex- 
pedient to specialize the problem. An expression is said 
to be nonsingular if no variable appears  more  than once. 
We deal with disjunctions of nonsingular Boolean expres- 
sions, which are of the following form: 

v (41 ,  42 9 ., 4 k )  , 
where v is a k-variable “or” or “disjunction” and each 
4 is, by itself, a  nonsingular Boolean expression. For 
instance 

v c 4 x ,  Y ) ,  P C X ,  z ) l  
is a  disjunction of nonsingular Boolean expressions. Any 
“normal-form’’ expression, e.g., abc v acd v efz is a dis- 
junction of nonsingular Boolean expressions. 

In this paper  the extraction  algorithm is applied to find 
minima over this subclass of Boolean expressions. This 
problem may be given a logical twist. A  disjunction of 
nonsingular Boolean trees is a rather  strong generaliza- 
tion of Quine’s normal  form.  The  fundamental  formulas 
of Quine, where  no literal appears twice, is generalized to 
a Boolean tree, with the corresponding  restriction of non- 
singularity.  Just  as Quine takes  disjunctions of normal 
formulas, we take disjunctions of nonsingular Boolean 
trees. There is one  further element of generalization, 
which is essential to  the understanding of the extraction 
algorithm-it corresponds to  the  fact  that we include 
don’t-care  conditions: If K corresponds to a truth  func- 
tion f and L to a truth  function h, then the problem is to 
find a  disjunction of nonsingular Boolean trees, of mini- 
mum cost, whose output is g such  that h *g=+ f .  

References [ 81 through [ 101 are concerned  with mini- 
mization over  the class of normal forms. It is  of interest 
that  Urbano  and Mueller, as well as we, approach  the 
synthesis  problem from a  combinatorial  topological point 
of view. An algorithm for  the general  single-output prob- 
lem  described  above,  minimization that is over the class 
of all Boolean expressions, is given in Ref. [ 5 ] .  Finally 
an algorithm for  the general  multiple-output problem, 
involving no feedback, is given in  Ref. [6]. 

One  of  the difficulties in  writing  a paper in  this field 
is that it is addressed to two classes of individuals - 
engineers and mathematicians-who are generally sepa- 

rated  rather widely in  training, orientation  and language. 
Our  attempted escape from  the dilemma  implied is to 
write  two  complementary versions, one  for mathemati- 
cians,  with  algorithms,  constructions and proofs given in 
abstract  and general form;  the  other  for engineers,  sup- 
plying physical  motivation and,  for a significant special 
case,  working out  the complete  details of the algorithm. 

In  Chapter I, the  mathematical version,  cubical  com- 
plexes and  their relation to Boolean functions  are de- 
scribed in an  introductory section. Functional expres- 
sions and Boolean  trees are  treated  in Section 1. The 
question of production of expressions for a given func- 
tion is treated in  Section 2.  In Section 3, the minimization 
problem is described. In Section 4, a generalized extrac- 
tion  algorithm,  applicable to  the present problem, is 
given. The efficiency of the algorithm is considered in 
Section 5. 

In  Chapter 11, the engineering  version,  Section 1 intro- 
duces the  form of circuitry under consideration and 
shows how  each  such circuit can be  represented by a 
functional expression (composite  function). Section 2 
shows how the  output  function of a  circuit  may be repre- 
sented by matrices, one giving the  input combinations for 
which it is on  (the on-matrix) , the  other giving the com- 
binations for which it is off (the off-matrix) . A method is 
developed  whereby from  the on-matrix we can “generate” 
circuits which, when  they are “OR-ed” together, will result 
in a  circuit  with the desired output function. Section 3 
shows how we may “extract” from  the circuits developed 
by the  method of Section 2 a  set  which, when “OR-ed” 
together, will realize the desired output  function  at mini- 
mum cost.  Section 4 gives, in flow chart  form, a  com- 
plete algorithm for a  special  case of this kind of circuitry, 
followed by an example. 

Chapter I 
Mathematical Version J. Paul Roth 

Cubical complexes and Boolean functions 

A brief resum6 is given of the calculus of cubical com- 
plexes and its relation to Boolean functions.  A  complete 
description is given in Ref. [ 11. 

Let Qn={(ul,...,u,) (ui=O, 1 orx};Qn will be termed 
the n-cube. An element (u l  , . , u,) of Qn is termed a 
cube, its dimension is the  number k of ui equal  to x, its 
codirnension is n - k. A cube of dimension k is termed a 
k-cube. (Both Qm and its  element (xx x) then  are 
termed  the n-cube, but this will cause no confusion.) 
0-cubes are called vertices. Let Vn be the set of all ver- 
tices of Qn: V n = { ( u l , .  a a ,  u,) (ui=O or l}. The  cube 
c’= (vl , . . . , v,) is termed a face of c= ( u l ,  . . . , u,) if 
ui = vi or x for all i. A cubical complex K is a  subset of Q’& 
having the  property  that if c belongs to K then every face 
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of c belongs to K .  If c and c' belong to K and c' is a face 
of c then c is a coface of c'. The intersection of cubes 
a = ( a l , - . - , a , )  a n d b = ( b l , - - . , b , )   i s d e f i n e d b y t h e  
following matrix 

n l o  1 X 

0 

1 4 1 1  
0 + 0  

x O 1 x  

and  the  rule 

anb=+ if for any i ,  ainb,=+, 

a n b = ( a , n b , , . . . , a , n b , )  otherwise. 

A  cubical  complex K is termed a Boolean complex if 
it has the  following property: If K contains all the vertices 
of a cube c then it contains c itself. If C is a set of cubes, 
let K(C) denote the Boolean complex  determined by the 
vertices of C; K(C) will be referred  to as the Boolean 
complex  determined by C .  

Let f be  a Boolean function of n variables, i.e., f is a map 
of VS into VI.  Such a map  can be uniquely  extended to a 
map fx; of Q into Ql by the  rule: if all the vertices of a cube 
c of QTL are mapped into 1 by f ,  let f : s =  1, and similarly 
for  maps  into 0; if neither of these, let f * ( c )  =x. Then 
f*-1( 1 )  (as well as f*"( 0) ) determines  a Boolean com- 
plex IC( f )  . There is in fact a one-to-one correspondence 
between Boolean functions  and Boolean complexes. A 
set C of cubes of K ,  for which  all vertices of K are  faces 
of some  cubes of C, is termed a cover of K .  

1. Functional  expressions and  Boolean trees 

I .I Functional expressions 

Let f be  a  Boolean function of n variables a1 , , a,. The 
elements ai will be termed the initial variables. Let 8 be 
a  set of Boolean functions 01, p ,  - . , o to be termed  the 
bag of primitive  functions. The arguments for these func- 
tions are unspecified. As many copies of each of these 
functions  are available  as are  required  for any given 
construction. 

A functional !&expression for f ,  or  more simply, a 
functional expression for f is a formula  for f ,  written as 
an explicit composite function of primitive functions 
from  the bag 8. That is, a functional expression E ( f )  has 
the  form 

~=oc(y1,...,~~),(~€8,orZ=ai, O < i < n ,  

where 

yi=pi(Xil * * ,X iq( i ) ) , ,B iEB,  or yi=ui,  O<i<n , 
and (1)  

Xik=Yik(Wikl 9 * * '  3 W i k r ( i k ) ) , Y i k E 8 ,  or Xik'aj, O<i<n 

bik.. . m = O i k . .  . m ( a i k . .  .I, ' ' ', a i k . .  . m s ( i k . .  .m)), 

W i k . .  . T ~ L E ~  or b i k . .  . ,=at,  O<t<n . 328 
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For instance z = d a l ,  p(az, y ( a l ,  a s ) ) ,  a(a1, U a l ,  a 4 ) l  
is a functional expression. A functional expression is 
termed nonsingular if no initial  variable appears  more 
than once. 

I .2 Trees 

Let T be a tree, a  linear graph containing no cycles. Let 
each  branch of T be directed, and in such a way that  at 
each  node  (vertex) excepting one, exactly one  branch is 
directed away from  the node. For  the exceptional  node, 
let no  branch be directed  away from it. "Tree" will hence- 
forth always mean a tree which can be and is directed  in 
this sense. 

A node of a  directed graph T ,  and in particular of a 
tree,  may be placed in one of the  three categories: 1 ") All 
the branches are directed  away from it. This will be 
termed  an input node of T.  2") All the branches are 
directed toward it. This will be termed  an output node of 
T.  3") It is neither 1" nor 2", and  then  it will be called 
an interior node of T.  It will be assumed that T is non- 
trivial, that is, T consists of at least one node. An alge- 
braic structure will now be erected on  the tree T. 

1.3 Boolean trees 

1 )  Let I;, 6, 6,. . . denote  the nodes (or vertices) of T .  
Let  the branches of T be labelled in the following manner: 
Let G6 denote  the  branch connecting  node 1; to node 6, 
which is directed from G to a. 
2 )  For 6 a node of T let P(6)  denote  the  set of nodes 
d such  that $6 is a (directed)  branch of T; P(6)  = 

{ d 166 E T } .  Let P (  6)  be termed  the input nodes of 6. 

3 )  From  the definition of T ,  it follows that  each fi in T ,  
except for  the  output  node of T ,  belongs to exactly one 
P ( @ .  

4) Simply order  each P(6);  for P ( @ ) = { W l , " ' , w k } ,  

let . . < 6 k  signify the simple order introduced. 
If dq is the  qth  term in this order, let it be referred  to as 
the  qth input node of 6. 

5) To each  input  node i of T attach  an initial  variable 
a( 2 ) .  To each  other  node6 of T ,  having k input nodes, attach 
a  primitive function 01 of k variables: ~ y = o c a ( x ~ ,  - , x k )  ; 
let the  qth  argument x q  of 01 be the  function  or variable 
attached  to  the  qth  input node of 6. 

6) A Boolean tree is then  a  triple ( T ,  <, 3) consisting 
of a tree T,  a  set < of simple orders  among  the  input 
nodes of each node, and a set 3 of assignments of initial 
variables or Boolean functions  from 8 to  the nodes of T .  
A tree is termed nonsingular if a ( i )  =a(?) implies i=j. 
Par un abus de terminologie, we shall denote a Boolean 
tree as well by T .  

7)  T defines a Boolean function, the  output  function of 
T ,  attached  to its output node, in  the following way. Let 
the degree of a node .O be the length of the longest path 
from  an  input node of T to a. (The length of a path is 
the  number of branches  in the  path.)  An  input  node of T 
has degree 0. Since each  tree is assumed to be  nontrivial 



it has  at least one node. Let T1 be  a tree with  exactly one 
node;  since this node satisfies the definition of an  input 
node,  some  variable is attached  to this node-let it be ai. 
This node is also an  output node and in this case the  out- 
put  function  attached  to this node is the  function f=ai. 
Having disposed of the trivial case,  let T be a tree with 
more  than  one node, and let fj be a node of T of degree 1.  
Let il , - - ,  il, be its input nodes, simply ordered by sub- 
script. Then n ( i l )  , . . . , a ( & )  being the initial  variables 
attached  to these nodes, and a3(xl, e -  ,xk)  being the 
primitive function  attached  to a, let x l = a ( i l )  , - , 
x k = a ( i k ) .  By these identifications, b, -=a , - (n( i l ) ,  . - e ,  

a ( i k ) )  becomes a Boolean function of the initial  variables 
a l , . . .  , a,. Let  such  an identification procedure be made 
for all nodes of degree 1. 

Let I.i, be a  node of degree 2 and let iil , + e ,  12, be  its in- 
put nodes, simply ordered by subscript. Let Pa(yl,. . . ,yr) 
be the  function  attached  to I.i,. Let c(cil), . , c(&) be 
the function  attached  to these nodes: each c(I2,) is equal 
to some ai;  or else it is equal  to some a,(a(il)  , , a ( i k ) ) ,  
depending  upon  whether ii, is a node of degree 0 or 
degree 1. Let yl=c(i i l )   , . - . ,yr=c(i i r ) .  Thus 9 becomes 
associated with a function whose arguments  are variables 
of degree 0 or 1. The definition proceeds  inductively to 
the  output node of T ,  the node of highest  degree, to define 
a function f T  of the initial variables, termed the output 
function of T. 

Let K ( T )  denote  the Boolean complex defined by f v l .  

Note  that a  nonsingular tree has  as  its output  function a 
nonsingular functional expression. 

I .4 Boolean  tree of a functional  expression 

Consider the  functional expression ( 1)  of 1.1. To the 
expression a(y1 , . , yp) corresponds the Boolean tree, 
having p input nodes GI, - - - , l i p ,  or nodes of degree 0, 
simply ordered by subscript, and  one  output node 60, with 
branches filiio , , cipiio.  To Lil , . . , i i p  is attached 
y1 , , yp respectively; to ii, is attached a. Likewise each 
Pi(xi1, , xiq(i ) )  as  a functional expression in its own 
right  admits of the  same kind of representation. 

To represent the expression 

2 . ,yi-l, pi<xil,. * * 7 xiq(t)), yi+l? * * 9 yp] 7 

form  the following simplicial map of 
T[a (y l ,  * . , yP) I U T(Pi(xi1,  * * , xiq( i )  1 )  obtained by 
mapping Go on ai, mapping  each  other vertex (node)  on 
itself. Let  such  an identification be made for each i be- 
tween 0 and p+ l. Similarly in this new structure let such 
an identification  be made between the nodes to which are 
attached  the variables xik  and  the nodes  labelled Yik in 
their corresponding Boolean trees. This process is con- 
tinued up  to bik.. . m r  until all functions used in (1)  are 
accounted for. Thus is defined the Boolean tree of a 
functional expression. 

0 1.5 Equivalence of Boolean  trees 

Each vertex a of T has associated with  it, by construction, 
a Boolean function of the initial  variables: let f ;  denote 
this function. 

Boolean trees S an1 d T sha 111 be  considered  as equivalent 
if there exists a one-to-one map + of vertices of S onto 
vertices of T such  that: 

(1)  if 696 S, then +a+G;E T (simplicial map); 

(2) if a<+ in S, then +a<+$ in T ;  

( 3 )  for  each GE S, = f q e .  

Functional expressions E and E' shall  be  considered 
equivnlent if T ( E )  and T(E')  are equivalent  in the sense 
defined. Incidentally, it is always possible to represent a 
Boolean tree by a planar  graph  such  that if a<$ then a is 
to  the left of I.i,. . . . 
2. Production of expressions for a given function 

How does one find appropriate expressions for a given 
function f ,  short of some exhaustive  search  procedure? 
An answer to this question is implicit in the projection 
operators  and projective  words  introduced in this  section. 
The injection operators  and injective words are varieties 
of inverses of these, and  are used in  certain proofs  and 
constructions. 

2.1 The  projection  operator niyl,, . y~ 

Let /3 be a function of r variables y1 , - , yY belonging to 
8. Let  the following  two  matrices  represent the vertices 
of Q r ,  the first mapped on 1, the second mapped  on 0 by 
P, each column being associated  with  exactly one of the 
variables y1 , . . , y,.; let s+ t = 2n : 

Let C be a set of cardinality s, of cubes of the n-cube 
Qn. Let C be represented by an s X n matrix [C] shown 
below. Each  row corresponds to a cube of C. To each 
column is attached a  variable. The columns labelled 
y l ,  . . , yr appear,  for convenience,  as the first r columns, 
and those labelled z1,. - , zq as the last q columns,  but 
the definition of the action of the projection operator  on 
[C] does not in  any way depend upon  the  order in which 
the columns  appear. 

Y1 . Za 

The definition of the projection operator IIjyl.. . ~~ will 
be given in stages. The subscripts y l ,  . , yl. are  termed 
input labels and  the superscript y ,  the output  label. It is 
assumed that y = P ( y l ,  . . e , y7). If 1 ) , each of the col- 
umns labelled yi, 1 < i<r ,  of [C] equals the  corresponding 3: 
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column of some row  permutation of [ p ]  and 2) ,  dlk=djk 
l < k < q ,   l < j < s ,  then 

Y z1 zq 

[nj, l . . . y ~ C ] = [ l , d l l . . . d l , ] .  

That is, the  cube njyl.. ,y, C is represented by'  the 
1 X (qf 1) matrix [nB1,,. . .Y, C] , with  indicated column 
labels. If both conditions are  not  met  and s#t then IIEy,. . .Y,C is not defined. 

Let E be a set of cardinality t of cubes of Qn. Let E be 
represented by the t X n matrix, 

[ ' - *  

. y r  z1 . . zq 

ell . . elr f11 - . f l q  

et1 . e t ,  f t l  . f l q  I. [ E ] =  . . . . . . . . . '. . 

If l o ) ,  each  column labelled yi of [ E ]  equals the cor- 
responding column of some row  permutation  of [ p * ] ,  
and 2 " ) ,  flk=fjk for l < k < q  and l < j < t ,  then 

Y z1 zq 

[njyl...y,~I=[O,fll"'fl,J. 
That is, the  cube n$,. . . u, E in Qq+l is represented by the 
1 X (qfl) matrix [ n ; y l . . . u r E ]  with  column labels indi- 
cated. If both conditions are  not  met  and s # t ,  then 
[nbY,. . . y, E ]  is not defined. If s= t and neither 1 )  and 2) 
nor 1" ) and 2 " )  are  met,  then njul.. . yvE is not defined. 
Finally,  let G be a  set of m cubes of Qn represented by 
an m x n  matrix [GI with  column labels y l ,   . - - , y , . ,  
21, . , zq. For m less than s and t ,  Hiyl . .  . y,.G is not de- 
fined. For m greater than s or t ,  njul.. . 1,7G is the set of 
images of njul.. .II, acting on all subsets, of cardinality 
s or t ,  of G .  

Let I I p  denote IIjul,, , y ~ .  Let c and c' be cubes of npG. 
Let njl (c, G)  denote  the inverse  image of c under n p .  
Then 

cnc'=++rq(c,  G)  nn-$(c',.G) =+ . 
Note also that  for a II-operation  to  act nontrivially on a 
set of cubes, it is necessary that, no  column labelled with 
a y shall contain  an x. (A more general definition given 
in  Ref. [5] will allow such a  circumstance,  however.) 

Consider the following example:  let 

a b c d  

[Cl= 

Then 

e c d  

[ -  
1 0 1 x -  
O l l x  
1 1 x 1  
o o x  1 

[,I=[; :,I, ,PI=[:,  :,I. 

We shall  say that a  projection operator I I p  acts perfectly 
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on a  set C of cubes if each  cube of C is contained  in the 
inverse of some  element  in the image npC. 

2.2 Projective words 

Under what  conditions is' the  product of n-operators 
define'd? A necessary and sufficient condition that  the 
product of n-operatorp no  =n~yl...IIp and np=II;Zl...sq 
be defined, in either order, is that  the sets {y1 , , yp} 
and {zl, . , z,} of input labels be disjoint. For suppose, 
with no loss of generality, that y1=z1. Suppose,  again 
without loss of generality, that IIa acts  perfectly on a set 
C of cubes of Qn. Then [II,C] has no column labelled yl, 
for  each  column of [C] has a  label different from  that of 
each  other column. Therefore I I p  is not defined in [II,C] . 
Consequently, if the sets of labels of IIa and I I p  are  not 
disjoint, then  the  product is not defined. The converse is 
clear. If,  further,  the sets {y;, ,yp,  y} and {zl , .**,z,, z} 
of labels, input  and  output, of IIa and I I p  are disjoint, 
nanp =ITpIIa. A product of projection operators is called 
a projective  word. 

2.3 The injection operator 

Let c be  a single cube of QP, represented by the following 
1 X p matrix, , 

z1. . z p  

[c ]  = [Cl . . . cp] , 
with column labels zl , . , zp. Let /3 be a function with 
,!-I( 1 )  = [ P I  and p-1(0) = [,*I as  exhibited in ( 2 ) ,  with 
column labels y l ,  , yr. The injection  operator I I ~ Y ~ " . Y c  

acting  on c will be defined; y1 , - , yr are  termed  the in- 
put labels and zi the output label, with z i=P(y l   , - * - ,y , )  : 

Z& 

ZI ' - z p .  
nPZl1...V,[c1 . . . c p ]  = 

21 

[ 1 
[ 1 

21 . * * zi-1 y1 * * yr zit1 * * . z p  

c1 * . . ci-1 bll * * * bl, C i + l  * * cp 

c1 * . 9 ci-1 b,l * * - b,, C i t l  * * * cp 

[Cl * . . ci-1 x * * - x ci+l - . cp] if ci=x 

c1 . . * ci-1 b;, * f b;, C i + l  * . . cl, 

. . . . . . . . . . . . . . . . . . if ci= 1 

\ 

. . . . . . . . . . . . . . . . . . if ci=O 
~1 . . * ~ i - 1  b;l * - b:, c ~ + I  . ~p 

If the  cube c has  no  coordinate  labelled zi, then 
nPh...Y, [ c ]  is not defined. If c ( l ) , . . - ,  d k )  is a set of 
cubes of Q P  then ~ L % . " u r  acting on this set is defined to 
be the set {nPyl. . .Y?c(1),  , II~YI'.'~Fc(~)}. The  product 
of n a a l . . . %  and n p b 1 . . . b 8 ,  for a#b, acting on a  set C of 
cubes, is defined by the  equation 

Z t  

si 

8 4  

nau, . . .a ,npb , . . .b ,  [ C ]  = [n?" [ n p . w ] ] .  
a 



This  product is commutative when a # b. The  product of 
several  injection operators is defined by induction. Such a 
product is termed  an injective word. 

2.4 Boolean trees and projective  words 

There is a  clear  one-to-one  correspondence between the 
set of all injective words and  the set of all  projective 
words. 

A projective word 
n=rIY(s+l) . . . . . nV(2) 

a(s)V(s,l)...y(s,r(s)) ~ ( l ) ~ ( l , l ) . . . V ( l , ~ ( l ) )  

is termed tree-like if it satisfies the following two con- 
ditions : 

(1) Let A o =  {al , . . - , an},  the set of initial  variables, 

A i = A i _ l u { y ( i ) } ,   O < i < s .  

In words, Ai is the set of all input  and  output labels up  to 
the ( i -  1)st  term in II. The first condition is that  each 
subscript y ( i ,  j )  belong to  the  set Ai; this means  that  each 
input label  shall be either an initial  variable or else an 
output label from  an “earlier”  projection. 

( 2 )  The second  condition is that each  superscript, 
excepting one,  appear exactly once as  a  subscript; the 
exceptional  superscript shall not  appear as  a  subscript. 
It follows that this  exceptional  superscript is y ( s +  1). 

A tree-like injective  word is similarly defined. 
Then  there is a  clear  one-to-one  correspondence be- 

tween functional expressions and tree-like words,  either 
projective or injective. Conversely,  in view of this  cor- 
respondence and Section 1.2, with each tree-like word is 
associated a Boolean tree, this  association justifying the 
term tree-like. 

For  the  remainder of the  paper  the  term word will be 
understood to  mean tree-like word. 

Two projective  words are considered  equivalent if their 
corresponding  trees are equivalent as defined in Section 
1.5; similarly for injective words. 

3. Problem of minimization 
over class of nonsingular  Boolean trees 

A Boolean tree is nonsingular if no initial  variable is at- 
tached to  more  than  one  input node.  Otherwise it is 
singular. LetT,= Tv(al , . . , a r )  be a Boolean tree whose 
output  function is the r-variable OR function v(al,...,a,) . 
Let T1, . . e , T ,  be  nonsingular Boolean trees. 

The disjunction of T1 , - , T ,  will now be constructed. 
For each  tree Ti, let & ( i )  denote its output node.  Paste 
this node &(i) on  the ith input  node of T,, for  each i. 
The resulting structure is termed  the disjunction of the 
trees T1 , . . , T , .  In general the disjunction of nonsingu- 
lar Boolean trees is singular. The so-called normal  form 
of Quine corresponds to a special case of this. 

With  each function a! in  the bag 23 let there be associ- 
ated a positive integer p(a)  called the cost of a!. The cost 
p( T )  of a Boolean tree T shall  be the  sum of the costs of 
the primitive functions  attached  to T .  Let T be  a Boolean 
tree  and K(T) the cubical  complex of T .  If L is a  sub- 
complex of IC( T )  , then T is said to cover L .  

The minimization problem. Given complexes K and 
L, with K containing L, to find, among  the class of dis- 
junctions of nonsingular  Boolean  trees  such  that 
Q~.K~K(T)>L,oneofminimumcostp(T) .  

4. A general covering problem and  the 
extraction algorithm 

In Ref. [ 2 ] ,  two  algorithms are given for  the following 
covering problem: Let K be  a  cubical  complex and Lo a 
subset of its vertices. A  K-cover of La is a set C of cubes 
of K such  that  each vertex of Lo  lies in  some cube of C .  
The cost of C is the sum of the codimensions of the cubes 
of C. These  algorithms are termed the extraction algo- 
rithm and  the local extraction  algorithm. 

An abstraction of the covering problem,  and of the 
extraction algorithm for solving this problem, will be 
given in this  section. The  problem described in Section 3, 
as well as that described  in the preceding paragraph, is a 
special  case of this  general  covering  problem. 

4.1  A general covering problem 

Let V and W be sets with V containing W .  Let G be a  set 
and I’ a map of G into  the set of all subsets of V .  If w 
belongs to  the  set I’(g), for g in G,  then g is said to cover 
v. A cover C of W is a set of members of G such  that each 
member of W is covered by some  member of C .  

With  each  member g of G  let there be  associated  a 
positive integer p(g)  called the cost of g. The cost of a 
cover is the  sum of the costs of the members of C. 

Problem: Find a  cover C of W  having  minimum cost. 
Clearly for  the  problem  to have  a  solution it is necessary 
that  I’(G) 3 W. 

0 4.2  The general extraction  algorithm 

The general extraction algorithm  proceeds  in  iterative 
fashion. The  procedure  can be carried  out over covers of 
a single element of W, one  at a time,  as  in the local ex- 
traction algorithm of Ref. [ 2 ] ;  or it  can be carried out 
over all of G at  one  shot,  as  in  the extraction  algorithm. 
The algorithm will be given in steps. 

1”) Let W1=WandG1=(gJr (g)nW#+}.  

2 ” )  A member g’ of G1  is said to be less-than (with- 
respect-to- Wl) a member g of GI if 

r w  n w l m ( g )  n w1 , 
( 1 )  

with equality not holding  in  both  relations; if equality 
does  hold in  both relations  let one of these  be  decreed, 
by lexicographical order, less-than  (with-respect-to- W1) 
the other. Let g’<lg denote  that g’ is less-than g (with- 
respect-to-W1). The relationship C1 is a partial order. 
If g’Clg this implies that  there exists a minimum cover 
not containing g’, for g covers at least  as much as g’ and 
costs no more.  Members of G1 which are maximal under 
the  partial  order <I are said to be W1-elementary. 

The first step  in the algorithm is to find the W1-ele- 
mentary members of GI: let Z1=Z(G1,  WI) denote  this 

pL(g) Gp(g’ )  7 
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set.  In  the local version of the algorithm it is only neces- 
sary to find the subset of these which cover  a given w 
of w1. 

3")  A member e of Z1 is a W1-extrema1 if there is an 
element w of W1 which is covered by e but by no  other 
member of ZI. Let E1=E(G1 ,  Wl)  denote the  set of 
W1-extremals of Z ( G 1 ,  Wl). Clearly every minimum 
W1-cover contains El. 

The  pair ( G ,  W )  are defined as being reducible if 
E ( G ,  W) # +; otherwise  irreducible. The reducible  case 
will first be treated. 

4") The case when ( G l ,  Wl) is reducible. Let Mo=E1. 
Let (G1, W,) 2 ( G z ,  Wz) mean  that G I ~ G ~  and W11 WZ. 
Having  formed pairs ( G1, Wl) 2 ( G z ,  WZ) 2 * * * 2 (G , ,   W, )  , 
each pair assumed to be  reducible with W1# +, we define, 
for elements of G, ,  the relation  less-than  (with-respect- 
to-W,.) exactly  as  in 2", with G ,  and W, replacing G I  and 
W1,  with one  amendment: if equality  holds in  both rela- 
tionships 

r(gr) n w,cr(g) n w, , 

If  for some i ,  Wi#Q but Wi+l=+, then ( G ,  W)  is said to 
have a  terminating  sequence and is said to be completely 
reducible. The above  corollary then disposes of the case 
when ( G ,  W)  is completely  reducible. The general case 
will be considered  next. 

5 " )  The case when ( G ,  W) is not completely reducible. 
Suppose  that  the sequence associated with (G, W )  does 
not  terminate,  that is, for some r>O, W,,#Q but E,=+, 
so that 

w ~ + ~ =  w,-r (+)  = w, . 
The extraction  algorithm  treats  this  case by solving two 
problems, each simpler than  the original. The  procedure 
is termed branching. 

Branching: Let zo he  an element of G,.  The first prob- 
lem seeks a  minimum  cover  which contains Z O ;  the sec- 
ond,  one  that does  not.  Whichever  cover has lower cost 
is clearly  a minimum  for  the original  problem. The two 
problems are defined in  parallel  columns below, the  one 
on  the  left being the problem from which  a  minimum 
cover  containing zo is sought. Let 

w;+l = w,- 
and if, in  the pair (GT- l ,  FVv-l), g' was less-than g (with- 
respect-to-W,-l) then  let g' be less-than g (with-respect- 
to-W,) also. In  other words, in case of a "tie" the "in- 
herited''  relationship if it exists shall be maintained. If 
equality  holds in  both relationships (1* ) and if no less- 
than relationship exists at  an earlier  stage  then let one be 
chosen, by lexicographical order,  to be less-than the  other 
(with-respect-to- W,.). Let g'C,g denote  that g' is less-than 
g (with-respect-to-W,) . Clearly <r  is a partial order.  Ele- 
ments of G ,  which are  maximal  under this partial  order 
are said to be W,-elementary. Let  Z, .=Z(G,,   W,) denote 
the set of W,-elementary members of G , .  

A member e of 2, is termed a W,-extrema1 if there is 
an element w of  W, covered by e but by no  other mem- 
ber of Z , .  Let E,=E.( G , ,  W,) denote the set of W,- 
extremals of G, .  By hypothesis E,#+.  Let 

W,+l=Wr-I'(E,)  1 (2) 
G,.+l=Z,-{gIgEG,  and r(g) n W,+,=+} .  

Proposition: Given the pair ( G ,  W )  and  map I':G+ W 
there exists a  minimum  cover  containing M,.  

Proof: For at  each stage i, O<i<r, after  the elimination 
of the elements  non-maximal under  the  partial  order Ci, 

it was known that every minimum cover of  WiC W must 
contain Ei, so that  the choice of Ei was  forced. Q.E.D. 

Corollary: If W,+l=+, then M ,  is a  minimum  cover 
for  the original  problem. This follows from  the above 
proposition and  the  fact  that M ,  is a cover. 

M ,  = Mr-l +E,  

Let ( G ,  W) be  a  pair.  Consider the sequence 

( G ,   W ) > ( G 1 ,  W d > - . - > ( G , ,  W r ) l ( + , + ) ,  with 

Wi+l=Wi-I'(Ei), 

332 Gi+l=Z(Gi,Wi) -{SI U g )  n Wi+l=+} - 

G:+ ,=Z(G, ,  W7)-{ZlI'(Z) n W:+,=+} Gp,,=G,-{zo} 

= M r - 1 +  { ZO} M,9 =M,-1 

The  branching  procedure changes the irreducible  prob- 
lem ( G ? ,  W,) into problems (G:+,,  WK,)  and  (G:+l, 
W;+l) where the cardinality of both  G,",,  and G + + ,  is less 
than  that of G,.  

Proposition: If ( G ,   W )  is irreducible, then  the cardi- 
nality of G is at least 3. 

The proof that  the extraction  algorithm produces a 
minimum cover proceeds  as follows: By the above propo- 
sition we start off with a  problem ( G ,  W) with the car- 
dinality of G equal to 3. The  branching  operation reduces 
this  problem to two  reducible  problems which are solved 
by steps 2", 3", 4" above: the solution for  each of these 
problems  which has  the smaller  cost is a  solution for  the 
original  problem.  Assume next that  for all  irreducible 
problems for  which  the cardinality of Z ( G ,  W) is less 
than k the algorithm  produces  a  minimum. Let then 
( G ,  W) be an irreducible  problem  with the cardinality of 
G being k .  As noted  above for  the two problems into 
which the  branching  operation  transforms it, the cardi- 
nalities of the resulting G's is less than k .  Hence by induc- 
tion  hypothesis the algorithm  produces  a minimum  for 
these problems. The  minimum for the original  problem is 
the  one of these  with  lower cost. 

0 4.3 A special case of 4.1 

This is the  problem described in Section 3. Here V is 
the  cubical complex K, W is the subset Lo of vertices of 
L and G is the class of all  disjunctions of nonsingular 
Boolean trees T for which K ( T )  is contained  in K .  Prac- 
tical augmentation of the algorithm for this problem is 
discussed in Chapter 11, the engineering  version. 
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5. Estimate  of  efficiency  of  algorithm 

Crude comparisons  show that this  algorithm is enor- 
mously more effective than some  systematic  exhaustive 
procedure. We proceed  with an estimate of the expected 
number of nontrivial n-operations  that must be computed 
for a given problem. Let K be a Boolean complex in the 
n-cube. Let ‘23 be the bag of functions. To simplify com- 
putational difficulties, assume that  each element  in ‘23 is 
a function of r variables. If c is the cardinality of 8, then 
the  number of possible II-operations, when the functions 
of B are non-symmetric, is c . Cy . 

Let K be given by a v X n matrix [ K ]  of 0’s and l’s, the 
list of vertices of K.  Let N be  represented by an s x  r 
matrix [a]  of 0’s and 1’s (representing a”( 1)) .  Through- 
out let r + q = n  and s+t=2‘ .  Let  the columns of K be 
labelled a (1)  , . - . , a ( r ) ,  b ( 1 )  , - . . , b ( q ) .  With  no loss 
of generality  let II, operate  on  the first r coordinates of 
[K], IIa=II,a(l)...a(r). Then let K be divided into blocks 
of rows, each  row  of a block having the  same b-coordi- 

nates. The expected number of rows in a block can be 
shown to be w=v2-q, and hence  the  expected number of 
blocks is 24. Next, within a given block, the probability 
that r I m  shall act nontrivially on this block is C,U.2-Qs. Thus 
the probability that II, shall act nontrivially on K is the 
product P of the  number of blocks, 2q, and Cr2-gs:  
P=Cy24(1-s). In  particular when n=8, r = 4 ,  v=z7  then 
s=8, q=4 and w =8, and  thus this  probability is 2-28. For 
n=6, r = 2 ,  ~ = 2 ~ ,  s=2 ,   P=2-4 .  For n = 5 ,   r = 2 ,   s = 2 ,  
v =  16, P=2-3.  Thus  it  appears  from these  sample figures 
that really a  very  small fraction of possible II-operations 
are nontrivial.  Consequently  only an infinitestimal frac- 
tion of  the total  projective  words are considered. 

The efficiency of the algorithm is bolstered by another 
factor: by the <-operation,  which is described  in  some 
detail  in the engineering version (see  also Ref. [ 2 ] ) ,  
many of the partially formed words are almost immedi- 
ately discarded;  see  example in Section 3 . 3 ,  Chapter 11. 

Chapter I I  
Engineering  Version E. G. Wagner 

1 .  Nonsingular circuits 

I .I Logical  elements and  nonsingular circuits 

When we design logical circuits we are given some collec- 
tion or “bag” of logical elements or functions that we may 
use and some  restrictions on  the  form of the circuits that 
we may design with these elements. In this paper  there 
will be n,o restrictions on the  contents of the bag of logical 
elements  beyond  those imposed by the desire to be able 
to realize any logical function  and  the restriction that all 
the elements  have positive cost. Examples of logical ele- 
ments and various  notations,  therefore, are given in 
Table 1. We restrict ourselves to circuits  in  which each 
element drives only one  other.  We define a nonsingular 
circuit as one  in which no  input variable occurs  more 
than once. The algorithm described in  this paper  produces 
for a given function a  single-output  combinational  circuit 
with the above  restriction, consisting of a disjunction 
(“OR-ing” together) or conjunction (“AND-ing” together) 
of nonsingular circuits. 

Thus in Fig. 1, the circuit in Fig. l a  is nonsingular; 
Fig. l b  is not,  as the  input variable x1 occurs twice. The 
circuit  shown in Fig. IC is not of the  form considered  in 
this paper, since the OR circuit  drives  two other elements. 

A disjunction of nonsingular circuits consists of a  num- 
ber of nonsingular  circuits that drive  a common OR cir- 
cuit.  (Since the different  nonsingular  circuits  may have 
some inputs in common, a  disjunction of nonsingular 
circuits is in general not itself nonsingular.) 

Similarly, a conjunction of nonsingular circuits is a 
circuit consisting of a number of nonsingular  circuits 
driving  a common AND circuit. A very  simple  example of 
a  disjunction of nonsingular  circuits is circuits  in nor- 
mal  form.  The nonsingular  circuits  in that case consist of 
single AND circuits.  Examples of nonsingular  circuits and 
disjunctions of nonsingular  circuits are shown  in  Fig. 2.  

In speaking of nonsingular  circuits or disjunctions of 
nonsingular  circuits we shall use terms such as, “circuit 
inputs,”  “circuit output,” “wire,” or “output element,” 
in  accordance  with common engineering usage. 

1.2 Representation of nonsingular circuits by 
composite  functions 

Let T be a  nonsingular  circuit or disjunction of nonsingu- 
lar circuits  with n input variables al , . . . ,a,. We may 
represent T by  a unique composition of functions  from 
the bag of functions associated with our bag of logical 
elements. Indeed we may associate such a  composite 
function with  every  wire  in the circuit. If the chosen  wire 
is an  input wire then  the  function is exactly the  input 
variable on  that wire. Thus in Fig. 3 the  function f associ- 
ated  with the upper-left-hand input wire is al  =al. On  the 
other  hand, if the chosen  wire is not a circuit input,  then 
it is the  output wire of some logical element within the 
circuit; let the  function of this  logical  element  be 
a(xl , . , x , )  where each of the variables x1 , . - , x, is 
associated with one of the  input wires on  the logical ele- 
ment. If the  input wire  associated with x1 is connected 3: 
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f' i' 

i, 

3 i ' i "  

Figure 1 Examples of combinational circuits. Fig. 1 a is  of type considered in this paper; 1 b and 1 c are not. 

Table I Symbols used for circuit elements in Sections 1, 2 and 3. 

Name of Element Block Diagram Logical Function On 
On-, Ofl-Matrices* 

ofl 
Notation 

for Function 

(here t = 2 )  

~ 

2-input EXCLUSIVE-OR 21 * x2vx1 * 22 O(X1, R ? )  
circuit 

inverter  circuit 1II X1 C O I  c11 

*Defined in Section 2. 
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with some input variable ai, then we replace xi  in (Y by aj;  
if the  input wire  associated with xi is the  output of some 
other logical  element  with function p ( y l , .  . a ,  y 8 )  then 
we replace xi in (Y by p(y1 , . , y,). We do this for all i 
from 1 to r. In each  case  where xi was replaced by a func- 
tion rather  than  an  input variable, we treat  that  function 
in  the  same  manner as we treated a. We  continue in  this 
manner until we have  a  composite function in terms of 
the  input variables al , . . * , a,. Thus in  Fig. 3 we get the 
function @(v(a l ,  a ~ ) ,  as) at  the  output wire of the EX- 
CLUSIVE-OR, and  the function &(@(v(al, a z ) ,  a g ) ,  v ( a 4 ) )  
at  the  output of the circuit. The  output  functions  are also 
given on  the  other circuits  shown so far as examples. It 
will be noted that when the circuit is nonsingular, then  no 
input variable occurs  more  than  once in the correspond- 
ing composite function.  We call such composite functions 
where each  input variable occurs  at most once nonsingu- 
lar composite  functions. There is a  one-to-one corre- 
spondence between nonsingular  circuits and nonsingular 
composite  functions [See Section 1 of the  Mathematical 
Version]. In this chapter we shall  identify the two terms; 
that is, although we shall  speak of nonsingular circuits, 
we shall  most often represent them by the corresponding 
nonsingular  composite  functions. 

We shall in general  restrict  ourselves to disjunctions of 
nonsingular  circuits, although  the algorithms given will 
work  equally well for  both  the disjunctive and conjunc- 
tive cases. 

2. Generation of nonsingular circuits 

2.1 On- and off-matrices of circuits 

Let us consider  a  circuit consisting of a disjunction of 
nonsingular  circuits, with n input variables. When an 
input is “on”  (pulsed, driven, fed  into), we say it has 

value “1”; when it is “off,” it  has value “0.” Similarly the 
output  has values “1” and “0.” We  shall  describe the 
operation of the circuit by an m x n matrix of 1’s and 0’s 
called the on-matrix of the circuit. Each of the n columns 
of the  on-matrix corresponds to  one of the n input vari- 
ables of the circuit; each  column is labeled  with its cor- 
responding input variable. Each of the m rows represents 
one of the m combinations of inputs  for which the circuit 
input is “on,” i.e., is “1.” We also describe the  operation 
of the circuit by an 08-matrix, a matrix whose rows rep- 
resent the combination of  inputs  for which the circuit 
output is “off.” In  particular,  the contents of the bag 23 of 
logical  elements  can also be considered  as  nonsingular 
circuits; and hence on-  and off-matrices can be defined 
for  each logical element. The  on-  and off-matrices of the 
logical  elements given in Fig. 1 are shown  in the  fourth 
column. For simplicity of presentation, “don’t-care’’ con- 
ditions are not  considered here; cf. Chapter I. 

0 2.2 From circuit to on-matrix 

We shall now give a  means for developing the on-matrix 
of a nonsingular  circuit by inspecting the nonsingular 
circuit. The reverse process, the creation of a  nonsingular 
circuit from its on-matrix, will be central  to our circuit- 
designing algorithms. This reverse  process will allow us 
to develop from  an m x n  matrix of 1’s and 0’s a non- 
singular  circuit, or a circuit  which is a  disjunction of 
nonsingular  circuits, whose on-matrix will be the given 
matrix. 

We  can associate with every logical element appearing 
in the nonsingular  circuit the on-matrix  corresponding to 
that element. As the  inputs of an element are  the  outputs 
of other elements or circuit inputs,  the labels of columns 
of the on-matrix are  the  output functions of the element 
(or circuit inputs)  that feed  it. Thus in  Fig. 3, the AND 

Figure 2 Examples of nonsingular circuits and disjunctions of nonsingular circuits: 

a )  Carry  output of two-bit adder, v(&(xl, y l ) ,  &(@(XI, Y I ) ,  & ( x z ,  ~ 2 ) ) )  

6 )  Most significant sum bit output of two-bit adder, @ ( @ ( x l ,   y l ) ,  & ( x z ,  y 2 )  

c )  Least significant sum bit output of two-bit  adder, @(xp ,  y z )  
d )  A parity-bit  checker, @(@(@(xl, x z ) ,  @(xs, x+)) ,  @(x5, xg)) 

I 
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nonsingular  circuits rather  than a single nonsingular cir- 
cuit. Each of the individual  nonsingular  circuits  in the 
disjunction can be expanded to  an on-matrix by the 
method employed  above. For example the carry-bit cir- 
cuit shown  in Fig. 2a consists of two  nonsingular  circuits 
which have matrices: 

Figure 3 Nonsingular circuit with output functions 
shown at each  level. 

We  can combine  these two matrices into a single four- 
variable on-matrix  for  the whole circuit if we expand the 
first one  to include the variables x z  and y z .  Then combin- 
ing the two  matrices we get as the on-matrix of the whole 
circuit: 

circuit can be regarded as a  nonsingular  circuit  with input 
variables @ ( v ( a l ,  a z )  , as) and v(aa ) .  It  is then  represent- 
able by the on-matrix 

dl bl bz 
c 1 1 = c 1   1 1 ,  

where b l=@(v(a l ,  az),  a3) and bz=v(ar) .  

Considering all the elements  in  Fig. 3 we have: 

where bl and bz are as  above and c1 =v(a l ,  az) . 
To get the on-matrix of the  total circuit we combine 

these  matrices  in  accordance  with the  structure of the 
circuit. In effect this amounts  to a  substitution of variables. 
We replace  a single variable e by  a function a of variables 
dl , - , d,; where e= 1 we substitute the on-matrix of a; 
where e=O we substitute the off-matrix of a. Thus, in the 
circuit shown in Fig. 3 ,  substituting in  the  matrix of the 
EXCLUSIVE-OR and removing  parentheses, we get: 

CI a3 bz C I  a3 bz 

thereby expressing bl in  terms of c and a3. Similarly, we 
replace b2 by a4,  we express c1 in  terms of al and a2 to 
obtain 

r: : 8 
10” : ; 0”J’ 

a1 a2 a3 a4 

which is the on-matrix for  the circuit of Fig. 3 .  

x1 

1 
1 
1 
1 
1 .I B O  

Y 1  x2 Y z  

1 0 0 ’  
0 1 1  7 1 1 1  

It  happens  that in  this particular example the on-matrices 
of the two  nonsingular  circuits  were disjoint (that is, they 
had  no rows in  common). 

2.3 From on-matrix to nonsingular circuit 

We  shall  now  consider the reverse process, getting from 
an  on-matrix K to a  circuit T with  on-matrix K .  

We will first show how  to develop from  an m x n  on- 
matrix K ,  an n-input  nonsingular  circuit T whose on- 
matrix is made  up of rows of K .  The on-matrix of T will 
not necessarily contain all the rows of K. In  the next 
section we will extend  this procedure so that  it also de- 
velops the nonsingular  circuits  with less than n-inputs 
whose  on-matrices are  made  up of rows of K .  

The  procedure is essentially the reverse of that ex- 
plained in Section 2.2. Above we would replace  a  column 
labeled e = a ( a l ,  - - , a,) by columns labeled a1 , * - * , u7. 
We  now attempt  to replace the columns labeled al , . e , aI 
by a single one labeled e=a(al  , - . , a,), by “finding 
occurrences” of the  on-  and off-matrices of a in the col- 
umns labeled a1 , . . e , ar. If we succeed in this  replace- 
ment,  we  then  get a new  matrix  where e replaces 
al , - . . , a? and we operate  in a similar manner  on it. 
Eventually we will get down  to a 1 x 1 unit  matrix whose 
column label will be  a  composite function corresponding 
to  some nonsingular  circuit  with an  on-matrix whose 
rows are contained  in K .  

We shall now give a  semiformal  description of the  pro- 
cedure. Let  the initial  on-matrix K have columns labeled 
al, - e ,  a,, bl , . - -, b, where n=r+q.  We now attempt  to 
introduce  the r-variable function a from  our bag of func- 
tions  in  place of the variables al , - , a,, replacing  these 
with a new column e = a ( a l ,  + - , a,). The first step is to 
partition  the on-matrix K by permuting  (rearranging) 
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the rows so that K is broken into blocks such  that rows 
i and j are in the  same block if and only if bik=bjk for 
k=  1 , . , q where bik and bjk are  the values of the bk 
component of rows i and j respectively. We call this  oper- 
ation  partitioning K on al , a - .  ,a,. This  operation  cor- 
responds to  the  removal of the parentheses  in Section 2.2. 

For example, given the following matrix, we partition 
it on al, az. 

a1 az bl bz b3 
1 1 1 1 1  

0 1 1 1 1  
0 1 0 0 1  
0 0 1 0 0  

Let us assume that we have m blocks B1,e-a 

Block 1 

Block 2 

Block 3 

B,, . 
Let bkl , - e ,  bkq denote  the values of the variables bl , . e ,  bq 
in block Bk.  For example  in Block 2  above, bzl = 0, bzz =o, 
bZ3 = 1. From  the partitioned matrix we attempt  to  form 
a new matrix with  columns e,  b l ,  , b, where e= 
a ( a l ,  - - . ,a,) and a is an r-variable function  from  our 
bag of functions. If the kth block of the partitioned matrix 
contains  a submatrix in  the al , , a, columns which 
contains all the rows of the  on-matrix of @(al ,  . . * , a,) 
then  1, bkl , . , bkq is a row in the new matrix. For exam- 

ple, Block 1 above  contains the on-matrix 

the EXCLUSIVE-OR function, so 1, 1,  1, 1 is a  row of the 
new matrix. If the  kth block contains  a submatrix which 
contains the off-matrix of a ( a l , ” . , a r ) ,  then 0, bkl,.”,bkq 
is a row  of  the new matrix. For example, Block 3 above 

contains the off-matrix [ ] of  the EXCLUSIVE-OR 

function so 0, 1, 0, 0 is a  row of the new matrix. If the 
kth block Bk of the partitioned matrix contains  neither 
the on- nor  the off-matrix of a ( a l , .  * . , a,) then no row 
is produced from Bk for  the new matrix. After we have 
considered all blocks for  the  function a(nl ,  , a,) we 
have a new matrix which we denote as K 1 = n & .  . u , K .  
For example using the above  on-matrix, 

e 61 bz  bs 

[;:,I Of 

II&,,u2K= 1 0 0 1 [: : :] 

or if a(a l ,  az) = v ( a ~ ,  az) then 

e bl bz bs 

n:uh,2 K =  [ ‘1 0 1 0 0  

If  we get a matrix nzul,. K with no rows, that is, the 
null matrix, this means  that  there is no nonsingular  com- 
posite function f containing a ( ~ ,  e a . , a,), where the cir- 
cuit corresponding to f has  an on-matrix  contained  in K .  

Given K 1 = n & .   , u , K  we may  treat this matrix just as 
we treated K ,  that is, we partition it on some of its col- 
umns c l , .  . a ,  c8 and  then  form some new matrix 

~ ~ ~ ~ . . . c ~ K 1 = I I ~ c ~ . . . c ~ ~ ~ u ~ . .  .urK . 
If this  matrix has at least one  row we may continue oper- 
ating on it. If we reach a point where our matrix is re- 
duced to a 1 x 1 unit  matrix, then  the nonsingular function 
that is the column  variable of this matrix corresponds to 
some  nonsingular  circuit whose on-matrix is a submatrix 
of K .  It  can be  shown that if we do  not allow “double 
negation,” that is, if we do  not replace  some  column 
variable b by v( b )  and  then  later replace this by v(  v( b )  ) , 
we  will always reach either  a 1 X 1 unit matrix  or a  null 
matrix  in a finite number of steps. This  amounts  to 
restricting ourselves to circuits  in  which we do not allow 
two inverter  circuits to be placed in series. With this 
restriction,  a matrix K with n columns  can always be 
reduced to a unit  matrix or a  null  matrix  in 3n- 1 steps 
or less. 

We will now give an example  where  a matrix K is 
reduced to a  unit matrix by an  appropriate series of 
‘TI-operations.” The example is the reverse of  the exam- 
ple in Section 2.2. There we obtained the on-matrix from 
the circuit; now we obtain  a  circuit from  the matrix. Let: 

K =  

partitioning on alaz as  indicated. 

Choosing a(a l ,  a z )  =v(al, az) we get: 

c a3 a4 

n,c,,a, K = [i : ] = K 1  c=v(a1, az) .  

Then continuing, 

then 

and lastly 

2.4 Nonsingular  circuits from  submatrices 

We  shall later find it necessary to be able  to develop from 
an on-matrix K all nonsingular  circuits whose on-matrices 3: 
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are made  up of rows from K .  The operations  described 
in the preceding section are almost sufficient for doing 
this. As described,  however,  they will produce only the 
n-input  nonsingular  circuits,  where K has n variables. But 
as the example given in  Fig. 2a shows, it is possible for 
there to be  nonsingular  circuits, whose on-matrices  cover 
parts of K which have  fewer than n inputs.  Referring to 
the example of Fig.  2a we see that  although K has  four 
variables, the nonsingular  circuit consisting of the AND 

circuit has only two inputs, namely xl and y l ,  and  its 
output is consequently  independent of x z  and yz.  This 
nonsingular  circuit  can  be  represented by an on-matrix 
whose only  columns are x1 and yl. What we must  do, 
then, is to  generate nonsingular  circuits  not  only from K 
but also from those  submatrices of K that  are independent 
of certain column variables of K. Let us denote  the 
submatrix of K that is independent of the r columns 
i ( l ) , . * . , i ( r )  by the symbol Ki(ll...i(r). We may form 
K i c l , .  . . ?(,.) by means of the following rules. Given K we 
form K j  as  follows: let 9 1 ,  . - , q i  , - - , qn be a row of K ;  
then q l ,  . . qi-1, qi+l ,  . . . , qn is a  row of Ki if and only if 
there is another  row q f l ,  . , q’i , - e . , qfn in K such  that 
qj=q’i for j#i, and if q;=1 then q’i=O, and vice versa. 
We then form Kii from Ki by the  same means but by 
operating on Ki rather  than K ,  and so forth until we reach 
Ki(l  ). . . i For example, if 

I 
L 

01 a2 a3 a$  a5 
1 1 I 1 0 ’  
1 1 1 0 0  
1 1 0 1 1  
1 1 0 0 1  

K - 1 0 1 1 0  
1 0 1 0 0  
1 0 0 1 1  
1 0 0 0 1  
0 0 0 0 0  

a1 a:?, a4 a3 

If  we form all possible submatrices Ki( l ) .  . . i(?) of K by 
these rules and  then  operate on them by the  methods of 
the preceding  section,  trying all partitionings and all the 
functions from our bag of functions,  then we will have 
produced all the nonsingular  circuits that  have  on- 
matrices consisting of rows from K (with  the restriction 
against  “double inversion”). We  shall denote  the set of 
nonsingular  circuits without  double inversions whose on- 
matrices are  made  up of rows of K as G (or G ( K )  ), and 
call G ( K )  the set of nonsingular  circuits generated  from 
K .  Although  trying all partitions and all functions  from 
the bag of functions  appears  to be an extremely  exhaus- 
tive procedure, it will be found  that  many possibilities 
lead to null  matrices and only  a  fairly  small  percentage 

338 of all nonsingular  circuits of n and less inputs will actu- 

ally be produced. Furthermore, as will be shown  in Sec- 
tion 3, in certain cases it is not necessary to generate 
all of G. 

2.5 Scopes 

It is convenient to use a special notation  to indicate which 
rows of the  on-matrix of a  circuit are  contained  in  or 
covered by the  on-matrix of one of nonsingular  circuits 
that  make  up its  realization  as  a  disjunction of nonsingu- 
lar circuits.  List the m  rows  in the  on-matrix of the circuit 
in  descending  numerical order viewing them  as  binary 
numbers. Then we can say that a given nonsingular  circuit 
T generated from K covers the  ith,  jth , . . - , and  kth rows 
of an on-matrix K where i, j , . . - , k are  numbers between 
0 and  mf 1 when the on-matrix of T consists of the 
i, j , . . , kth  rows of K. For  example in the second ex- 
ample given in  Section 2.2, the first nonsingular  circuit 
covers the  lst, 2nd, 3rd,  and  4th rows; the second  non- 
singular  circuit  covers the  5th  and  6th rows. A convenient 
way to indicate this is to associate  with each nonsingular 
circuit T an m-component  vector S ( T )  called its scope, 
whose ith bit is 1 if and only if the  on-matrix of this 
nonsingular  circuit  contains (when fully expanded)  the 
ith row of the on-matrix of the complete  circuit and is 
“0” otherwise. Thus in the above  example of the scope 
of the nonsingular  circuit, “&(xl, yl) ” is 11 1100,  and  the 
scope of “&(@(XI, yl ) ,  &(xz, y z ) ) ”  is 000011. 

Just as we  speak of the scopes of nonsingular  circuits 
so can we speak of the scopes of the  matrix K and of any 
matrix 

n~u . . . , . . . n ~ , . . . g K  i ( l ) . . . i (r )=K‘  

developed from K .  The scope of K is, of course, an 
m-component  vector  with all components 1. To find the 
scope of 
K‘,ne c y ~ . . . b . “ ~ ~ f . . . g ~ i , l ) . . . i ( , ,  

we expand  this matrix back to  an on-matrix  consisting of 
rows from K by the methods given in Section 2.2 and 
develop  its  scope  just  as we did for nonsingular  circuits; 
that is, if the on-matrix developed from K contains the 
ith row of K ,  then  the ith component of the  scope of K 
is “1” and otherwise it is “0.” The on-matrix of K‘ con- 
tains the rows of any nonsingular  circuit that  can be 
generated from K’ by further operations. Thus the scope 
of any  nonsingular  circuit  generated from K’ has a “1” 
in the ith coordinate only if the  scope of K has a “1” in 
the ith coordinate. 

If the scope S( T )  of a  nonsingular  circuit T generated 
from K has a 1 in the ith  coordinate, then T covers the 
ith  row of K .  For a set of nonsingular  circuits T 1 ,  . . , T ,  
generated from K ,  we define a  joint  scope S( T1,. e - ,  T T )  
to be a vector whose ith  component is 1 if at least one of 
S ( T l )  , ,S (T , )  has a  1 in  the ith  coordinate. If 
S(T1,...,T,)=(l,l;..,l), we say that T l , - . . , T ,  
form a  cover of K .  Clearly if T 1 ,  - e - , T ,  form a  cover of 
K ,  then  the  disjunction of TI  , . , T ,  is a  circuit  with on- 
matrix K .  If our bag is such  that we can realize any func- 
tion with it,  then G ( K )  is always  a  cover of K.  
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3. The extraction algorithm 

3.1 The definition of cost 

To each element  in our bag of logical elements we attach 
some positive integer called its cost. In practice this cost 
would be arrived  at by considering such  matters as  cost of 
construction,  maintenance, power consumption, et  cetera. 
The cost of a  nonsingular  circuit is defined as the  sum of 
the costs of all the elements in it, plus, if desired,  some 
additional amount  to “pay” the cost of  “OR-ing” it to  the 
other nonsingular  circuits in the disjunction. 

The cost of a  complete  circuit  (disjunction of non- 
singular circuits) is then defined as the sum of the  costs 
of the nonsingular  circuits  which form it. Equivalently 
the cost of a  cover of an on-matrix K is the  sum of the 
cost of the nonsingular  circuits that  form it. 

In  the examples  in  this section we assume that  our bag 
consists of all the two-input logical elements, and  that all 
of them  are of cost 1. This special case has  the  property 
that  any nonsingular  circuit with n inputs  can be shown 
to have  a cost of n- 1. This  property will allow us to give 
some compact examples, for reasons  which will appear 
later.  In particular, we can say that  the cost of any  non- 
singular  circuit  generated from  the p X ( n -  r)  submatrix 
Ki(l).. .i(, .) of K has cost n-r-1. 

3.2 The minimization problem 

Given an on-matrix K ,  develop  a  circuit  T of minimal 
cost consisting of a  disjunction of nonsingular  circuits, 
such  that T  has  on-matrix K. 

We have  already given part of the solution of this  prob- 
lem. Namely, we have given a method  for getting the set 
G of all the nonsingular  circuits that cover  parts of a 
given  on-matrix K. But  as  examples  show, the  number of 
nonsingular  circuits developed is far in excess of the 
number needed to cover K .  What is needed, then, is some 
way to  extract a  cover of minimal  cost from  the set G of 
nonsingular  circuits  generated from K .  The extraction 
algorithm  does  exactly this. Proof that  the algorithm  does 
produce a minimum follows as  a  special  case of the proof 
of the validity of the general extraction algorithm given 
in Section 4 of the  Mathematical Version. 

3.3 The algorithm 

Three  operations  are employed in the extraction algo- 
rithm:  the less-than operation,  the  determination of 
extreme  nonsingular  circuits, and  the branching opera- 
tion.  We  shall  explain the first two of these operations 
separately and  then combine  them into  an algorithm, 
which will contain the  third operation. 

The less-than operation is an  operation  on covers of an 
on-matrix K that removes  unnecessary “removab1e”mem- 
bers of  the cover.  We first define the less-than relation- 
ship,  a  relationship  between  members of a  cover. 

Let T and T‘ be two nonsingular  circuits in any  cover 
Q of K made up of members from the  set G of nonsingu- 
lar circuits  generated from K. Let S( T )  and S( T ’ )  denote 
their respective scopes, p(T)  and  p(T’)  their respective 
costs. We  shall  write S( T )  LS( T’) if the ith coordinate of 

S ( T )  is “1,” then so is the ith coordinate of S(T’), and 
we say that  the scope of T is covered by the scope of T .  
Referring  back to  the meaning of scope we see that this 
means that circuit  T is on only if circuit T’ is on.  We now 
say that T is less-than T’, or T’ is greater-than T, if and 
only if S( T )  CS( T’) and p( T )  > p( T ’ )  ; in such a  case we 
will write T<T.  This  means that T<T‘ if  and only if 7 
is on only when T’ is on  and T costs  at least as much as T‘. 
Clearly then, since T does  nothing that is not  done by  T’ 
at less or  equal cost, we can always use T’ in place of T in  
our solution. Thus if we remove T from  the cover Q get- 
ting  a new cover Q’, then Q’ is less costly than Q. The 
less-than operation  on a  cover Q then consists of com- 
paring  the  members of Q by the less-than relationship, 
removing those that  are less than others as we go along. 
That is, if we find that T<T‘, then we remove T from Q 
and  do  not  compare it with  any other members  remaining 
in Q. If we perform  the less-than operation on G ( K )  
arriving at a  cover Z ,  it can be shown that Z will contain 
at least one minimal  cover of K .  

A systematic way to  carry  out the less-than operation 
will be given in the algorithm. In the special case we are 
using for our examples, we actually  employ the less-than 
operation  during  the generation of G ,  thus keeping G as 
small as possible at all times.  Namely,  as  mentioned 
before, the cost of an n-input  nonsingular  circuit in this 
special system is n- 1,  and so any nonsingular  circuit 
generated from  an n-variable  on-matrix will have  a cost 
of n -  1. Now if we consider the scope S( K’) of a matrix 

K‘,n,e,, . . . n;,gKi(l)...i(T) 

we know that it covers the scope of any of the nonsingular 
circuits that  can be formed  from it. It follows then that 
any  nonsingular  circuit  generated from K’ will have cost 
n - r - 1 and scope  covered by S (  K ‘ )  and if we have  already 
formed a  nonsingular  circuit T such that S ( K ‘ )  c S ( T )  
and  n-r- 1 >p(  T), then T will be greater  than  any of 
the nonsingular  circuits that we could possibly develop 
from K‘ and so there is no need to generate  them at all. 
In  such a case we write K’<T. (If on  the  other  hand 
S ( K ’ )  >S(  T )  or n-r-   I<(  T),  we cannot conclude any- 
thing.) This application of the less-than rule  during  the 
generation of G will usually save considerable  time and 
effort. We  note that, since the cost is directly  related to 
the number of variables, it pays to generate the nonsingu- 
lar circuits from  the submatrices K j ( l ) .  . . i(l.) of K with the 
smallest number of inputs (largest r)  first, as these have 
the lowest cost. 

The determination of extreme  nonsingular circuits: If 
we wish to find the minimal cover contained in some 
given cover Q of K we can  often immediately find certain 
elements of Q called extreme  nonsingular circuits  that 
must be in any  minimum  contained  in Q. Specifically let 
T be  a  nonsingular  circuit  in  a  cover Q of K.  Suppose that 
the ith bit of S( T) is “1” and  that  the ith bit of S( T”) is 
0 for all T“ other  than T in Q. Then T is said to be 
extreme in Q. Now clearly since  there  must be some  non- 
singular  circuit in  the disjunction that is “on”  for  the ith 
combination of input signals if the on-matrix of the cir- 3 
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cuit is to be K ,  it follows that if T i s  extreme  then T must 
be in the solution. 

We shall now show how the less-than operation  and 
the determination of extreme  nonsingular circuits can be 
employed to find minimal circuits. 

We take the  set G of nonsingular  circuits  generated 
from  an on-matrix K and perform  the less-than operation 
on it (this may have been done during  the generation of 
G )  . This gives us a new cover 2 of K .  We then  determine 
the extreme  nonsingular  circuits of Z'. Say that T1 , . , T p  
are extreme, and let their  joint  scope be S(  TI , . , T p )  . 
Since the  input combinations  denoted by S( TI , . - , T p )  
are covered by T I ,  - ,  T p  we need no longer  consider 
these  combinations in our calculations. We therefore 
eliminate these components from  our scopes (rather  than 
actually remove them  it is often more convenient to con- 
sider  these  coordinates to be 0 in all remaining scopes), 
and continue  then with a  reduced problem. The removal 
of S(  T I , .  , T p )  , as the following example (Table 2 )  
indicates, may make some  nonsingular  circuits cover 
nothing and thereby unnecessary, or may make one cir- 
cuit T less-than another TI where  before  neither one was 
less-than the  other. T,  is extreme (1st  coordinate) so the 
list of scopes reduces  as indicated in  Table 3. Now 
S(T') C S ( T )  and p ( T )  =p(T ' )  so that T'CT. Further- 
more T" covers nothing (not already covered).  Thus we 
may eliminate both T' and T". Thus the list reduces to T 
and so T is extreme. The final solution must be the dis- 
junction of T,  and T .  As the  example  indicates, the less- 
than operation and  the identification of extreme nonsin- 
gular  circuits used repeatedly  one after  the  other will 
sometimes suffice to allow us to extract  a  solution from 
G .  It may happen, however, that we  will eventually reach 
a point  where no remaining element of G is less-than any 
other and  there are no  extreme  nonsingular circuits. We 
then  must  employ  the branching operation. 

Suppose that  the less-than operation  and the identifica- 
tion of extreme  nonsingular  circuits will carry us no 
further,  and  let T be one of the  remaining  nonsingular 
circuits in G .  Now clearly either T is in a final minimal 
solution or  it is not, so what we can  do is to  try both 
possibilities and choose the better. That is, we arbitrarily 
pick some  member T from what  remains of G and first 
treat the  problem  as if T were an extreme  nonsingular 
circuit and get a  solution; we then again find a solution 
treating T as if it were less-than some other nonsingular 
circuit  remaining in G (i.e.,  we remove T from G).  One 

Table 2 Hypothetical example showing configura- 
tion of scopes and costs. 
I I I costs 

Table3 Reduction of Table 2 after first step of 
algorithm. 

Circuits Scopes 1 costs 
I I 

T 

3 0 1 0 0 0 1 0 0 1  T' 

0 1 0 0 0 1 0 0 1  1 T ' C T  

T ~ 0 0 0 0 0 0 0 0 0  l 2  
of these two solutions will certainly be a  minimal  solution 
for  the original  problem. Of course,  we may have to 
branch  on  more than  one  nonsingular  circuit in order to 
get a  solution,  but  as long as we work to  the  end,  a mini- 
mum will be achieved. 

The working out of all the branching  combinations 
involves far fewer steps than an exhaustive examination 
of solutions, as is indicated by the example at  the  end of 
the paper. (Cf. also Section 5 of Mathematical  Version.) 

The next section gives a more complete  outline of the 
algorithm in flow-chart form. 

4. Block diagram of extraction algorithm 
for a special case,  plus an example 

4.1  Block diagram of extraction  algorithm 
for a special case 

In this section we  present, in block form,  the complete 
algorithm for the special case when the bag of logical 
elements contains all the two-input logical elements and 
all  elements have  the  same cost,  as is the case for  core 
circuits. 

In the block diagrams of Fig. 4: 
1) The ten  nontrivial  2-input logical functions in  our 

bag 123 are denoted a1 , , ah , - , a10 (see Section 
4.2 for a listing of these functions). 

2 )  Let r denote  the number of columns (or column 
variables) of any matrix on which we are per- 
forming  a 11-operation. Let  the columns be labeled 
(numbered)  from 1 to r from left to right; this 
allows us to describe the  performance of the 
II-operations in a systematic  manner. 

0 4.2 Example 

In the following example of the application of the above 
algorithm we have  as our bag of functions: 

al=v(xl, x 2 )  'X1VXZ 

012 = 0 (x1 , x2 ) = X1X2VXIX2 

T ,  ~ 1 0 1 1 1 0 1 1 0  

T ~ 0 1 1 1 0 1 0 0 1  I 3 TQT' 

T' 

0 0 1 1 1 0 0 0 0  T" 

3 T'QT 0 1 0 0 0 1 1 1 1  

2 

a5=$(x1,  Xz) ' X 3 2  
* 

and their negations designated V, a, B ,  0, 4, respec- 
tively. Except for  the trivial functions, which need not 340 
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be considered, this is the set of all  functions of two vari- 
ables. We will not show the complete working out of the 
problem  but  only  the data  at various points in the algo- 
rithm. The problem is a  randomly chosen one made up 
from  the first four columns  and first eight rows of [ 4 ] 
considering odd digits as ‘1’s and even digits as ‘0’s. 

a b c d  
b c d  
1 1 1  

KQ= [ 1 0 0 1  
1 1 0 0  K= 

l l 0 O l l  a b c  
1 0 0 0  

1 0  1 1 1 1  Kd=[l 1 0  
1 1 1  

0 1 0 0   1 0 0  

a c d   a b d  

Kb= [ 1 0 0 1  Kc=[ 1 1 0 1  
1 0 1   1 1 1  

a c  q v  
& d = [  1 0 1  & a = [  1 1 1  

After we operate on all of these matrices  according to the 
algorithm12  we  will get the circuits in G indicated in 
Table 4. 

Table 4 Nonsingular circuits developed from ma- 
trix in Section 4.2. 

Nonsingulur Function Scope 1 cost 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 1   1 1 0 0 0 0  

0 0 1 1 1 1 0 0  

1 1   1 1   1 1 0 0  

1 0 0 0 0 0 1 0  

0 0 0 1 0 0 0 1  

1 0 0 1 0 0 1 1  

0 0 0 1 0 1 0 1  

1 0 1 0 0 0 1 0  

1 0 1 0 0 0 1 1  

0 1 0 0 0 0 0 1  

0 1 1 0 0 0 1 1  

2 

We now perform the LESS-THAN operation of the  above 
list, getting Table 5. 

Table5 Reduction  of Table 4 by means of LESS-THAN 

operation. 

Circuit 
Number Scope cost 

1 

2 

3 

6 

7 

9 

11 

13 

15 

17 

18 

1 1   1 1 0 0 0 0  

0 0 1 1 1 1 0 0  

1 1   1 1   1 1 0 0  

1 0 0 1 0 0 1 1  

0 0 0 1 0 1 0 1  

1 0   1 0 0 0   1 1  

0 1 1 0 0 0 1 1  

0 1 0 1 0 0 1 1  

1 1 0 0 0 0 1 1  

0 0 1 1 0 0 1 1  

1 1 1 1 0 0 1 0  

1 

1 

2 

2 

3 

3 

3 

3 

3 

3 

3 

. List  A 

None of these circuits is extreme so we branch on 
Circuit 1. We first try the case where we assume  Circuit 1 
is in  the solution. Treating Circuit 1 as an extremal, we 
change those scope  components that it covers to “0” and 
then perform  the LESS-THAN operation, giving us a new 
list (Table 6). 

Table6 Reduction of  Table 5, branching with Cir- 
cuit 1 as an extremal. 

Circuit 
Number Scope cost 

2 

0 0 0 0 0 1 0 1  7 

0 0 0 0 0 0 1  1 6 

0 0 0 0 1 1 0 0  

12 $(O(O(a, c ) ,  b ) , d )  0 1 0 1 0 0 0 1 

13 e ( o ( e ( a , c ) , d ) ,  b )  o 1 o 1 o o 1 1 l 3  Now both  Circuit 2 and Circuit 6 are extreme, and to- 
gether with Circuit 1 we see that they cover everything, 

1 1 0 0 0 0 1 0  

1 1 0 0 0 0 1 1  

3 io we have  a  cover of K consisting ofcircuits 1,2, and 6 
with a cost of 4. 

3 We now trv the case where we assume that  Circuit 1 

16 $ ( O ( O ( a , d ) ,  b ) , c )  0 0 1 1 0 0 0 1 3 is not  in  the solution, so we delete Circuit 1 from List A. 
There  are still no extremals so we branch  on Circuit 2. 

0 0 1 1 0 0 1 1  

1 1 1 1 0 0 1 0  

3 We first try  the case  where we assume that Circuit 2 is in 
the solution;  treating  Circuit 2 as  extreme and performing 
the LESS-THAN operation we get the list in Table 7. 3 
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Figure 4 Block diagram of extraction algorithm for case 
when !I3 contains all the two-input logical  ele- 
ments, and  all elements have the same cost. 
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WE ARE FINISHED. 
S IS THE ANSWER 

WE ARE FINISHED. 
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Figure5 Three minimal solutions of example  in Section 4.2. 

Table 7 Reduction of Table 5, branching with Cir- References 
cuit 1 deleted. 

Circuit 
Number c o s t  Scope 

3 

1 1 0 0 0 0 1 1  15 

1 0 0 0 0 0 1 1  6 

1 1 0 0 0 0 0 0  

Again  we  have  no  extremals so we  branch on Circuit 3. 
Taking  the  case  where  Circuit 3 is in  the  solution,  the 
LESS-THAN operation gives us 

Table8  Reduction of Table 7 by branching. 

Circuit 
Number 

Scope 1 c o s t  

6 ~ 0 0 0 0 0 0 1 1  l 2  
Circuit 6 is clearlv  extreme  and  combined  with  Circuits 

1. J.  Paul  Roth, “Algebraic  Topological  Methods for  the 
Synthesis of Switching Systems. I,” Transactions of 
American Mathematical Society, 88,301-326 (July, 1958). 
See  also ECP 56-02, Institute for Advanced Study,  April, 
1956. 

2. J.  Paul Roth, “Algebraic Topological  Methods for the 
Synthesis of Switching Systems. 11,” Proceedings of the 
International Symposium on the Theory of Switching, 
Harvard University,  April 2, 1957. To appear. 

3.  W.  V. Quine, “A Way to Simplify Truth Functions,” 
American Mathematical Monthly, 62, 627-631 (1955). 

4. The Rand Corporation, One Million Random  Digits with 
100,000 Normal Deviates, The  Free Press, Glencoe, 111. 
(1955). 

5. J .  Paul  Roth, “Algebraic  Topological  Methods for  the 
Synthesis of Switching Systems. IV. Singular Boolean 
Trees.” (To  appear.) 

6. J. Paul  Roth, “Algebraic  Topological  Methods for  the 
Synthesis of Switching Systems. V. The Multiple Output 
Problem.” (To  appear.) 

7. The Staff  of the  Harvard Computation Laboratory: Syn- 
thesis of Electronic Computing and Control  Circuits, 
Harvard University Press, 1951. 

8. M. Karnaugh,  “The Map  Method  for Synthesis of Com- 
binational  Logic  Circuits,” AIEE Transactions, 72, 1, 

9.  E.  J. McCluskey, Jr.,  “Minimization of Boolean Func- 
tions,” Bell System Technical Journal, 35, 1417-1444 
(November,  1956). 

593-598 (1953). 

2 and 3, which we had  already assumed, on this  branch, 10. k. H. Urbano  and  R. K. Mueller, “A Topological  Method 
to  be  in  the  solution, gives us a cover of K .  Thus  Circuits 
2,  3, and 6 give us a cover of cost = 5. 

for the  Determination of the Minimal Forms of a Boolean 
Function,” IRE Transactions EC-5, 126-132 (September, 
1956)  

NOW assuming  Circuit 3 is not  in  the  solution,  we  see 11. D. E. Muller, “Complexity in Electronic Switching Cir- 
by  inspection of List C that  then  Circuit 15 is  extreme, cuits,” IRE Transactions EC-5, No. 1, 15-19 (March, 

””,. 

” 

and  we  get a solution  consisting of Circuits 2 and 15 with  1956). 
cost = 4. Now  assuming  Circuit 2 is  not  in  the  solution, 12. Dr.  Gerard Salton (Harvard University) has  brought to 

we  see  by  inspection.of  List A with  Circuit 1 removed, 
our attention  the omission from  Table 4 of four functions 
that result from Dartitioning K on Columns  3 and 4. 

that  Circuit 3 is  extreme,  giving,  after  the LESS-THAN In particular  the finction e ( i ( @ ( c ,  d) ,  a ) ,  b )  with scope 
operation,  the  same  as  Table 8. So Circuit 6 is  again (1 11 1001 1) was omitted. Functions 9,  11,  13,  15, 17 and 
extreme,  and  we  have a cover  consisting of Circuits 3 18 are less-than this new function and should be elimi- 

and 6 with a cost of 4. nated from  Table 5. The first and third solutions shown 

We have  thus  found  three  minimal  solutions  at  cost=4. 
in Fig. 5 remain, but  the middle one is replaced by the 

344 
disjunction of Function 2 and the new function. 

They  are  shown  in  Fig. 5. Received July 17, 1958 
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