
J. Paul Roth
E. G. Wagner

326

Algebraic Topological Methods
For the Synthesis of Switching Systems
Part Ill*
Minimization of Nonsingular Boolean Trees

Abstract: An algorithm i s given for solving a general problem in combinational switching-circuit minimization

theory. The circuits considered consist of a disjunction (OR-ing together) of trees of any set of logical elements,

with the restriction that in any given tree no input appears more than once. To each logical element is attached

a positive cost. A method i s presented for designing a minimum-cost circuit of this variety for any given logical

function. Two parallel treatments are given, one viewing it as an abstract mathematical problem, the other

considering it as an engineering problem.

Introduction
This paper is a continuation of efforts (Refs. [. 1, 2]) to
develop a theory for the effective design of automata. In
previous publications, algorithms for designing switching
circuits of the so-called “normal form” were devised.
These “extraction” algorithms have been programmed on
the IBM 704 and have been useful to some logical de-
signers. The kind of circuit that they design, nevertheless
is of quite a special variety. This paper makes a rather
strong generalization of this class, for which gcncralized
extraction algorithms are still applicable.

Description of the problem

A few preliminaries are rcquirccl. The “functional ex-
pression”

f - -O l lX , p (Y , z) , Y (X , S(x, 2111 (1)
can be represented by the following “functional tree”
(circuit block diagram) :

.r z
7

/-’ / y i.:”

The Greek letters a, p, y, S denote functions, and the
Latin letters x, y , z , t the variables. In the functional ex-
pression (l) , a is a function of three variables; in the
graph (circuit) the node (circuit element) labelled a has
three branches (wires) directed toward it, and the oppo-
site ends of these branches carry the labels of the argu-
ments (inputs) of a; the first argument is x, the second is
p (y , z) , which is itself a function of y and z , et cetera.
Conversely, every such functional tree (circuit) com-
pletely defines some functional expression. Note that the
graph has no closed loops-it is a tree, of a rather special
variety, as is precisely defined in Section 1.1.

The expression (1) gives t as a composite function, but
ultimately it is a function of the three independent vari-
ables x, y , z ; thus t = T (x , y , z) .

In general, drawing from an allowable set B of “primi-
tive” functions a, p , . . . , it is possible to write T in many
different ways as a composite function drawn from the
set ‘2.3.

In this papcr the functions are all Boolean, that is, the
arguments and values of the function are either 0 or 1.

The following may be considered as the general prob-
lem of design of single-output combinational circuits:

*Parr I of this srries was published in Transactions of f h e American Mathe-
matical Sor ir fy (Ref. [l]) . Part IL will appear in T h e Proceedings of f h e
International Symposium o n the TIICOQ of Switching (Ref. [Z]).

Given a set of allowable functions (circuit elements),
given a function T of n variables, to find a functional tree
(circuit) for T using primitive functions (circuit ele-
ments) from 23, which uses the least possible number of
these primitive functions (elements). More generally, we
weight each function according to its “cost” and seek to
minimize the total cost. More precisely, the problem is to
devise an algorithm so that, given any T , the algorithm
will automatically produce a minimum tree. This algo-
rithm must be effective in quite a practical way. To convey
the kind of practicality involved, let it be required that
the algorithm, when programmed on the IBM 704, should
be capable of solving, say, an 8-variable problem with
eight hours of machine time. These requirements rule
out any kind of exhaustive procedure, even for extremely
small problems.

To meet these stringent requirements, we find it ex-
pedient to specialize the problem. An expression is said
to be nonsingular if no variable appears more than once.
We deal with disjunctions of nonsingular Boolean expres-
sions, which are of the following form:

v (41 , 42 9 ., 4 k) ,
where v is a k-variable “or” or “disjunction” and each
4 is, by itself, a nonsingular Boolean expression. For
instance

v c 4 x , Y) , P C X , z) l
is a disjunction of nonsingular Boolean expressions. Any
“normal-form’’ expression, e.g., abc v acd v efz is a dis-
junction of nonsingular Boolean expressions.

In this paper the extraction algorithm is applied to find
minima over this subclass of Boolean expressions. This
problem may be given a logical twist. A disjunction of
nonsingular Boolean trees is a rather strong generaliza-
tion of Quine’s normal form. The fundamental formulas
of Quine, where no literal appears twice, is generalized to
a Boolean tree, with the corresponding restriction of non-
singularity. Just as Quine takes disjunctions of normal
formulas, we take disjunctions of nonsingular Boolean
trees. There is one further element of generalization,
which is essential to the understanding of the extraction
algorithm-it corresponds to the fact that we include
don’t-care conditions: If K corresponds to a truth func-
tion f and L to a truth function h, then the problem is to
find a disjunction of nonsingular Boolean trees, of mini-
mum cost, whose output is g such that h *g=+ f .

References [81 through [101 are concerned with mini-
mization over the class of normal forms. It is of interest
that Urbano and Mueller, as well as we, approach the
synthesis problem from a combinatorial topological point
of view. An algorithm for the general single-output prob-
lem described above, minimization that is over the class
of all Boolean expressions, is given in Ref. [5] . Finally
an algorithm for the general multiple-output problem,
involving no feedback, is given in Ref. [6].

One of the difficulties in writing a paper in this field
is that it is addressed to two classes of individuals -
engineers and mathematicians-who are generally sepa-

rated rather widely in training, orientation and language.
Our attempted escape from the dilemma implied is to
write two complementary versions, one for mathemati-
cians, with algorithms, constructions and proofs given in
abstract and general form; the other for engineers, sup-
plying physical motivation and, for a significant special
case, working out the complete details of the algorithm.

In Chapter I, the mathematical version, cubical com-
plexes and their relation to Boolean functions are de-
scribed in an introductory section. Functional expres-
sions and Boolean trees are treated in Section 1. The
question of production of expressions for a given func-
tion is treated in Section 2. In Section 3, the minimization
problem is described. In Section 4, a generalized extrac-
tion algorithm, applicable to the present problem, is
given. The efficiency of the algorithm is considered in
Section 5.

In Chapter 11, the engineering version, Section 1 intro-
duces the form of circuitry under consideration and
shows how each such circuit can be represented by a
functional expression (composite function). Section 2
shows how the output function of a circuit may be repre-
sented by matrices, one giving the input combinations for
which it is on (the on-matrix) , the other giving the com-
binations for which it is off (the off-matrix) . A method is
developed whereby from the on-matrix we can “generate”
circuits which, when they are “OR-ed” together, will result
in a circuit with the desired output function. Section 3
shows how we may “extract” from the circuits developed
by the method of Section 2 a set which, when “OR-ed”
together, will realize the desired output function at mini-
mum cost. Section 4 gives, in flow chart form, a com-
plete algorithm for a special case of this kind of circuitry,
followed by an example.

Chapter I
Mathematical Version J. Paul Roth

Cubical complexes and Boolean functions

A brief resum6 is given of the calculus of cubical com-
plexes and its relation to Boolean functions. A complete
description is given in Ref. [11.

Let Qn={(ul,...,u,) (ui=O, 1 orx};Qn will be termed
the n-cube. An element (u l , . , u,) of Qn is termed a
cube, its dimension is the number k of ui equal to x, its
codirnension is n - k. A cube of dimension k is termed a
k-cube. (Both Qm and its element (xx x) then are
termed the n-cube, but this will cause no confusion.)
0-cubes are called vertices. Let Vn be the set of all ver-
tices of Qn: V n = { (u l , . a a , u,) (ui=O or l}. The cube
c’= (vl , . . . , v,) is termed a face of c= (u l , . . . , u,) if
ui = vi or x for all i. A cubical complex K is a subset of Q’&
having the property that if c belongs to K then every face

IBM JOURNAL OCTOBER 1

327

1959

of c belongs to K . If c and c' belong to K and c' is a face
of c then c is a coface of c'. The intersection of cubes
a = (a l , - . - , a ,) a n d b = (b l , - - . , b ,) i s d e f i n e d b y t h e
following matrix

n l o 1 X

0

1 4 1 1
0 + 0

x O 1 x

and the rule

anb=+ if for any i , ainb,=+,

a n b = (a , n b , , . . . , a , n b ,) otherwise.

A cubical complex K is termed a Boolean complex if
it has the following property: If K contains all the vertices
of a cube c then it contains c itself. If C is a set of cubes,
let K(C) denote the Boolean complex determined by the
vertices of C; K(C) will be referred to as the Boolean
complex determined by C .

Let f be a Boolean function of n variables, i.e., f is a map
of VS into VI. Such a map can be uniquely extended to a
map fx; of Q into Ql by the rule: if all the vertices of a cube
c of QTL are mapped into 1 by f , let f : s = 1, and similarly
for maps into 0; if neither of these, let f * (c) =x. Then
f*-1(1) (as well as f*"(0)) determines a Boolean com-
plex IC(f) . There is in fact a one-to-one correspondence
between Boolean functions and Boolean complexes. A
set C of cubes of K , for which all vertices of K are faces
of some cubes of C, is termed a cover of K .

1. Functional expressions and Boolean trees

I .I Functional expressions

Let f be a Boolean function of n variables a1 , , a,. The
elements ai will be termed the initial variables. Let 8 be
a set of Boolean functions 01, p , - . , o to be termed the
bag of primitive functions. The arguments for these func-
tions are unspecified. As many copies of each of these
functions are available as are required for any given
construction.

A functional !&expression for f , or more simply, a
functional expression for f is a formula for f , written as
an explicit composite function of primitive functions
from the bag 8. That is, a functional expression E (f) has
the form

~=oc(y1,...,~~),(~€8,orZ=ai, O < i < n ,

where

yi=pi(Xil * * ,X iq(i)) , ,B iEB, or yi=ui, O<i<n ,
and (1)

Xik=Yik(Wikl 9 * * ' 3 W i k r (i k)) , Y i k E 8 , or Xik'aj, O<i<n

bik.. . m = O i k . . . m (a i k . . .I, ' ' ', a i k . . . m s (i k . . .m)),

W i k . . . T ~ L E ~ or b i k . . . ,=at, O<t<n . 328

IBM JOURNAL OCTOBER 1959

For instance z = d a l , p(az, y (a l , a s)) , a(a1, U a l , a 4) l
is a functional expression. A functional expression is
termed nonsingular if no initial variable appears more
than once.

I .2 Trees

Let T be a tree, a linear graph containing no cycles. Let
each branch of T be directed, and in such a way that at
each node (vertex) excepting one, exactly one branch is
directed away from the node. For the exceptional node,
let no branch be directed away from it. "Tree" will hence-
forth always mean a tree which can be and is directed in
this sense.

A node of a directed graph T , and in particular of a
tree, may be placed in one of the three categories: 1 ") All
the branches are directed away from it. This will be
termed an input node of T. 2") All the branches are
directed toward it. This will be termed an output node of
T. 3") It is neither 1" nor 2", and then it will be called
an interior node of T. It will be assumed that T is non-
trivial, that is, T consists of at least one node. An alge-
braic structure will now be erected on the tree T.

1.3 Boolean trees

1) Let I;, 6, 6,. . . denote the nodes (or vertices) of T .
Let the branches of T be labelled in the following manner:
Let G6 denote the branch connecting node 1; to node 6,
which is directed from G to a.
2) For 6 a node of T let P(6) denote the set of nodes
d such that $6 is a (directed) branch of T; P(6) =

{ d 166 E T } . Let P (6) be termed the input nodes of 6.

3) From the definition of T , it follows that each fi in T ,
except for the output node of T , belongs to exactly one
P (@ .

4) Simply order each P(6); for P (@) = { W l , " ' , w k } ,

let . . < 6 k signify the simple order introduced.
If dq is the qth term in this order, let it be referred to as
the qth input node of 6.

5) To each input node i of T attach an initial variable
a(2) . To each other node6 of T , having k input nodes, attach
a primitive function 01 of k variables: ~ y = o c a (x ~ , - , x k) ;
let the qth argument x q of 01 be the function or variable
attached to the qth input node of 6.

6) A Boolean tree is then a triple (T , <, 3) consisting
of a tree T, a set < of simple orders among the input
nodes of each node, and a set 3 of assignments of initial
variables or Boolean functions from 8 to the nodes of T .
A tree is termed nonsingular if a (i) =a(?) implies i=j.
Par un abus de terminologie, we shall denote a Boolean
tree as well by T .

7) T defines a Boolean function, the output function of
T , attached to its output node, in the following way. Let
the degree of a node .O be the length of the longest path
from an input node of T to a. (The length of a path is
the number of branches in the path.) An input node of T
has degree 0. Since each tree is assumed to be nontrivial

it has at least one node. Let T1 be a tree with exactly one
node; since this node satisfies the definition of an input
node, some variable is attached to this node-let it be ai.
This node is also an output node and in this case the out-
put function attached to this node is the function f=ai.
Having disposed of the trivial case, let T be a tree with
more than one node, and let fj be a node of T of degree 1.
Let il , - - , il, be its input nodes, simply ordered by sub-
script. Then n (i l) , . . . , a (&) being the initial variables
attached to these nodes, and a3(xl, e - ,xk) being the
primitive function attached to a, let x l = a (i l) , - ,
x k = a (i k) . By these identifications, b, -=a , - (n(i l) , . - e ,

a (i k)) becomes a Boolean function of the initial variables
a l , . . . , a,. Let such an identification procedure be made
for all nodes of degree 1.

Let I.i, be a node of degree 2 and let iil , + e , 12, be its in-
put nodes, simply ordered by subscript. Let Pa(yl,. . . ,yr)
be the function attached to I.i,. Let c(cil), . , c(&) be
the function attached to these nodes: each c(I2,) is equal
to some ai; or else it is equal to some a,(a(il) , , a (i k)) ,
depending upon whether ii, is a node of degree 0 or
degree 1. Let yl=c(i i l) , . - . ,yr=c(i i r) . Thus 9 becomes
associated with a function whose arguments are variables
of degree 0 or 1. The definition proceeds inductively to
the output node of T , the node of highest degree, to define
a function f T of the initial variables, termed the output
function of T.

Let K (T) denote the Boolean complex defined by f v l .

Note that a nonsingular tree has as its output function a
nonsingular functional expression.

I .4 Boolean tree of a functional expression

Consider the functional expression (1) of 1.1. To the
expression a(y1 , . , yp) corresponds the Boolean tree,
having p input nodes GI, - - - , l i p , or nodes of degree 0,
simply ordered by subscript, and one output node 60, with
branches filiio , , cipiio. To Lil , . . , i i p is attached
y1 , , yp respectively; to ii, is attached a. Likewise each
Pi(xi1, , xiq(i)) as a functional expression in its own
right admits of the same kind of representation.

To represent the expression

2 . ,yi-l, pi<xil,. * * 7 xiq(t)), yi+l? * * 9 yp] 7

form the following simplicial map of
T[a (y l , * . , yP) I U T(Pi(xi1, * * , xiq(i) 1) obtained by
mapping Go on ai, mapping each other vertex (node) on
itself. Let such an identification be made for each i be-
tween 0 and p+ l. Similarly in this new structure let such
an identification be made between the nodes to which are
attached the variables xik and the nodes labelled Yik in
their corresponding Boolean trees. This process is con-
tinued up to bik.. . m r until all functions used in (1) are
accounted for. Thus is defined the Boolean tree of a
functional expression.

0 1.5 Equivalence of Boolean trees

Each vertex a of T has associated with it, by construction,
a Boolean function of the initial variables: let f ; denote
this function.

Boolean trees S an1 d T sha 111 be considered as equivalent
if there exists a one-to-one map + of vertices of S onto
vertices of T such that:

(1) if 696 S, then +a+G;E T (simplicial map);

(2) if a<+ in S, then +a<+$ in T ;

(3) for each GE S, = f q e .

Functional expressions E and E' shall be considered
equivnlent if T (E) and T(E') are equivalent in the sense
defined. Incidentally, it is always possible to represent a
Boolean tree by a planar graph such that if a<$ then a is
to the left of I.i,. . . .
2. Production of expressions for a given function

How does one find appropriate expressions for a given
function f , short of some exhaustive search procedure?
An answer to this question is implicit in the projection
operators and projective words introduced in this section.
The injection operators and injective words are varieties
of inverses of these, and are used in certain proofs and
constructions.

2.1 The projection operator niyl,, . y~

Let /3 be a function of r variables y1 , - , yY belonging to
8. Let the following two matrices represent the vertices
of Q r , the first mapped on 1, the second mapped on 0 by
P, each column being associated with exactly one of the
variables y1 , . . , y,.; let s+ t = 2n :

Let C be a set of cardinality s, of cubes of the n-cube
Qn. Let C be represented by an s X n matrix [C] shown
below. Each row corresponds to a cube of C. To each
column is attached a variable. The columns labelled
y l , . . , yr appear, for convenience, as the first r columns,
and those labelled z1,. - , zq as the last q columns, but
the definition of the action of the projection operator on
[C] does not in any way depend upon the order in which
the columns appear.

Y1 . Za

The definition of the projection operator IIjyl.. . ~~ will
be given in stages. The subscripts y l , . , yl. are termed
input labels and the superscript y , the output label. It is
assumed that y = P (y l , . . e , y7). If 1) , each of the col-
umns labelled yi, 1 < i<r , of [C] equals the corresponding 3:

IBM JOURNAL OCTOBER 191

1 330

column of some row permutation of [p] and 2) , dlk=djk
l < k < q , l < j < s , then

Y z1 zq

[nj, l . . . y ~ C] = [l , d l l . . . d l ,] .

That is, the cube njyl.. ,y, C is represented by' the
1 X (qf 1) matrix [nB1,,. . .Y, C] , with indicated column
labels. If both conditions are not met and s#t then IIEy,. . .Y,C is not defined.

Let E be a set of cardinality t of cubes of Qn. Let E be
represented by the t X n matrix,

[' - *

. y r z1 . . zq

ell . . elr f11 - . f l q

et1 . e t , f t l . f l q I. [E] = '. .

If l o) , each column labelled yi of [E] equals the cor-
responding column of some row permutation of [p *] ,
and 2 ") , flk=fjk for l < k < q and l < j < t , then

Y z1 zq

[njyl...y,~I=[O,fll"'fl,J.
That is, the cube n$,. . . u, E in Qq+l is represented by the
1 X (qfl) matrix [n ; y l . . . u r E] with column labels indi-
cated. If both conditions are not met and s # t , then
[nbY,. . . y, E] is not defined. If s= t and neither 1) and 2)
nor 1") and 2 ") are met, then njul.. . yvE is not defined.
Finally, let G be a set of m cubes of Qn represented by
an m x n matrix [GI with column labels y l , . - - , y , . ,
21, . , zq. For m less than s and t , Hiyl . . . y,.G is not de-
fined. For m greater than s or t , njul.. . 1,7G is the set of
images of njul.. .II, acting on all subsets, of cardinality
s or t , of G .

Let I I p denote IIjul,, , y ~ . Let c and c' be cubes of npG.
Let njl (c, G) denote the inverse image of c under n p .
Then

cnc'=++rq(c, G) nn-$(c',.G) =+ .
Note also that for a II-operation to act nontrivially on a
set of cubes, it is necessary that, no column labelled with
a y shall contain an x. (A more general definition given
in Ref. [5] will allow such a circumstance, however.)

Consider the following example: let

a b c d

[Cl=

Then

e c d

[-
1 0 1 x -
O l l x
1 1 x 1
o o x 1

[,I=[; :,I, ,PI=[:, :,I.

We shall say that a projection operator I I p acts perfectly

IBM JOURNAL OCTOBER 1959

1

on a set C of cubes if each cube of C is contained in the
inverse of some element in the image npC.

2.2 Projective words

Under what conditions is' the product of n-operators
define'd? A necessary and sufficient condition that the
product of n-operatorp no =n~yl...IIp and np=II;Zl...sq
be defined, in either order, is that the sets {y1 , , yp}
and {zl, . , z,} of input labels be disjoint. For suppose,
with no loss of generality, that y1=z1. Suppose, again
without loss of generality, that IIa acts perfectly on a set
C of cubes of Qn. Then [II,C] has no column labelled yl,
for each column of [C] has a label different from that of
each other column. Therefore I I p is not defined in [II,C] .
Consequently, if the sets of labels of IIa and I I p are not
disjoint, then the product is not defined. The converse is
clear. If, further, the sets {y;, ,yp, y} and {zl , .**,z,, z}
of labels, input and output, of IIa and I I p are disjoint,
nanp =ITpIIa. A product of projection operators is called
a projective word.

2.3 The injection operator

Let c be a single cube of QP, represented by the following
1 X p matrix, ,

z1. . z p

[c] = [Cl . . . cp] ,
with column labels zl , . , zp. Let /3 be a function with
,!-I(1) = [P I and p-1(0) = [,*I as exhibited in (2) , with
column labels y l , , yr. The injection operator I I ~ Y ~ " . Y c

acting on c will be defined; y1 , - , yr are termed the in-
put labels and zi the output label, with z i=P(y l , - * - ,y ,) :

Z&

ZI ' - z p .
nPZl1...V,[c1 . . . c p] =

21

[1
[1

21 . * * zi-1 y1 * * yr zit1 * * . z p

c1 * . . ci-1 bll * * * bl, C i + l * * cp

c1 * . 9 ci-1 b,l * * - b,, C i t l * * * cp

[Cl * . . ci-1 x * * - x ci+l - . cp] if ci=x

c1 . . * ci-1 b;, * f b;, C i + l * . . cl,

. if ci= 1

\

. if ci=O
~1 . . * ~ i - 1 b;l * - b:, c ~ + I . ~p

If the cube c has no coordinate labelled zi, then
nPh...Y, [c] is not defined. If c (l) , . . - , d k) is a set of
cubes of Q P then ~ L % . " u r acting on this set is defined to
be the set {nPyl. . .Y?c(1), , II~YI'.'~Fc(~)}. The product
of n a a l . . . % and n p b 1 . . . b 8 , for a#b, acting on a set C of
cubes, is defined by the equation

Z t

si

8 4

nau, . . .a ,npb , . . .b , [C] = [n?" [n p . w]] .
a

This product is commutative when a # b. The product of
several injection operators is defined by induction. Such a
product is termed an injective word.

2.4 Boolean trees and projective words

There is a clear one-to-one correspondence between the
set of all injective words and the set of all projective
words.

A projective word
n=rIY(s+l) nV(2)

a(s)V(s,l)...y(s,r(s)) ~ (l) ~ (l , l) . . . V (l , ~ (l))

is termed tree-like if it satisfies the following two con-
ditions :

(1) Let A o = {al , . . - , an}, the set of initial variables,

A i = A i _ l u { y (i) } , O < i < s .

In words, Ai is the set of all input and output labels up to
the (i - 1)st term in II. The first condition is that each
subscript y (i , j) belong to the set Ai; this means that each
input label shall be either an initial variable or else an
output label from an “earlier” projection.

(2) The second condition is that each superscript,
excepting one, appear exactly once as a subscript; the
exceptional superscript shall not appear as a subscript.
It follows that this exceptional superscript is y (s + 1).

A tree-like injective word is similarly defined.
Then there is a clear one-to-one correspondence be-

tween functional expressions and tree-like words, either
projective or injective. Conversely, in view of this cor-
respondence and Section 1.2, with each tree-like word is
associated a Boolean tree, this association justifying the
term tree-like.

For the remainder of the paper the term word will be
understood to mean tree-like word.

Two projective words are considered equivalent if their
corresponding trees are equivalent as defined in Section
1.5; similarly for injective words.

3. Problem of minimization
over class of nonsingular Boolean trees

A Boolean tree is nonsingular if no initial variable is at-
tached to more than one input node. Otherwise it is
singular. LetT,= Tv(al , . . , a r) be a Boolean tree whose
output function is the r-variable OR function v(al,...,a,) .
Let T1, . . e , T , be nonsingular Boolean trees.

The disjunction of T1 , - , T , will now be constructed.
For each tree Ti, let & (i) denote its output node. Paste
this node &(i) on the ith input node of T,, for each i.
The resulting structure is termed the disjunction of the
trees T1 , . . , T , . In general the disjunction of nonsingu-
lar Boolean trees is singular. The so-called normal form
of Quine corresponds to a special case of this.

With each function a! in the bag 23 let there be associ-
ated a positive integer p(a) called the cost of a!. The cost
p(T) of a Boolean tree T shall be the sum of the costs of
the primitive functions attached to T . Let T be a Boolean
tree and K(T) the cubical complex of T . If L is a sub-
complex of IC(T) , then T is said to cover L .

The minimization problem. Given complexes K and
L, with K containing L, to find, among the class of dis-
junctions of nonsingular Boolean trees such that
Q~.K~K(T)>L,oneofminimumcostp(T) .

4. A general covering problem and the
extraction algorithm

In Ref. [2] , two algorithms are given for the following
covering problem: Let K be a cubical complex and Lo a
subset of its vertices. A K-cover of La is a set C of cubes
of K such that each vertex of Lo lies in some cube of C .
The cost of C is the sum of the codimensions of the cubes
of C. These algorithms are termed the extraction algo-
rithm and the local extraction algorithm.

An abstraction of the covering problem, and of the
extraction algorithm for solving this problem, will be
given in this section. The problem described in Section 3,
as well as that described in the preceding paragraph, is a
special case of this general covering problem.

4.1 A general covering problem

Let V and W be sets with V containing W . Let G be a set
and I’ a map of G into the set of all subsets of V . If w
belongs to the set I’(g), for g in G, then g is said to cover
v. A cover C of W is a set of members of G such that each
member of W is covered by some member of C .

With each member g of G let there be associated a
positive integer p(g) called the cost of g. The cost of a
cover is the sum of the costs of the members of C.

Problem: Find a cover C of W having minimum cost.
Clearly for the problem to have a solution it is necessary
that I’(G) 3 W.

0 4.2 The general extraction algorithm

The general extraction algorithm proceeds in iterative
fashion. The procedure can be carried out over covers of
a single element of W, one at a time, as in the local ex-
traction algorithm of Ref. [2] ; or it can be carried out
over all of G at one shot, as in the extraction algorithm.
The algorithm will be given in steps.

1”) Let W1=WandG1=(gJr (g)nW#+}.

2 ”) A member g’ of G1 is said to be less-than (with-
respect-to- Wl) a member g of GI if

r w n w l m (g) n w1 ,
(1)

with equality not holding in both relations; if equality
does hold in both relations let one of these be decreed,
by lexicographical order, less-than (with-respect-to- W1)
the other. Let g’<lg denote that g’ is less-than g (with-
respect-to-W1). The relationship C1 is a partial order.
If g’Clg this implies that there exists a minimum cover
not containing g’, for g covers at least as much as g’ and
costs no more. Members of G1 which are maximal under
the partial order <I are said to be W1-elementary.

The first step in the algorithm is to find the W1-ele-
mentary members of GI: let Z1=Z(G1, WI) denote this

pL(g) Gp(g’) 7

31

IBM JOURNAL OCTOBER 19: Q

set. In the local version of the algorithm it is only neces-
sary to find the subset of these which cover a given w
of w1.

3") A member e of Z1 is a W1-extrema1 if there is an
element w of W1 which is covered by e but by no other
member of ZI. Let E1=E(G1 , Wl) denote the set of
W1-extremals of Z (G 1 , Wl). Clearly every minimum
W1-cover contains El.

The pair (G , W) are defined as being reducible if
E (G , W) # +; otherwise irreducible. The reducible case
will first be treated.

4") The case when (G l , Wl) is reducible. Let Mo=E1.
Let (G1, W,) 2 (G z , Wz) mean that G I ~ G ~ and W11 WZ.
Having formed pairs (G1, Wl) 2 (G z , WZ) 2 * * * 2 (G , , W,) ,
each pair assumed to be reducible with W1# +, we define,
for elements of G, , the relation less-than (with-respect-
to-W,.) exactly as in 2", with G , and W, replacing G I and
W1, with one amendment: if equality holds in both rela-
tionships

r(gr) n w,cr(g) n w, ,

If for some i , Wi#Q but Wi+l=+, then (G , W) is said to
have a terminating sequence and is said to be completely
reducible. The above corollary then disposes of the case
when (G , W) is completely reducible. The general case
will be considered next.

5 ") The case when (G , W) is not completely reducible.
Suppose that the sequence associated with (G, W) does
not terminate, that is, for some r>O, W,,#Q but E,=+,
so that

w ~ + ~ = w,-r (+) = w, .
The extraction algorithm treats this case by solving two
problems, each simpler than the original. The procedure
is termed branching.

Branching: Let zo he an element of G,. The first prob-
lem seeks a minimum cover which contains Z O ; the sec-
ond, one that does not. Whichever cover has lower cost
is clearly a minimum for the original problem. The two
problems are defined in parallel columns below, the one
on the left being the problem from which a minimum
cover containing zo is sought. Let

w;+l = w,-
and if, in the pair (GT- l , FVv-l), g' was less-than g (with-
respect-to-W,-l) then let g' be less-than g (with-respect-
to-W,) also. In other words, in case of a "tie" the "in-
herited'' relationship if it exists shall be maintained. If
equality holds in both relationships (1*) and if no less-
than relationship exists at an earlier stage then let one be
chosen, by lexicographical order, to be less-than the other
(with-respect-to- W,.). Let g'C,g denote that g' is less-than
g (with-respect-to-W,) . Clearly <r is a partial order. Ele-
ments of G , which are maximal under this partial order
are said to be W,-elementary. Let Z, .=Z(G,, W,) denote
the set of W,-elementary members of G , .

A member e of 2, is termed a W,-extrema1 if there is
an element w of W, covered by e but by no other mem-
ber of Z , . Let E,=E.(G , , W,) denote the set of W,-
extremals of G, . By hypothesis E,#+. Let

W,+l=Wr-I'(E,) 1 (2)
G,.+l=Z,-{gIgEG, and r(g) n W,+,=+} .

Proposition: Given the pair (G , W) and map I':G+ W
there exists a minimum cover containing M,.

Proof: For at each stage i, O<i<r, after the elimination
of the elements non-maximal under the partial order Ci,

it was known that every minimum cover of WiC W must
contain Ei, so that the choice of Ei was forced. Q.E.D.

Corollary: If W,+l=+, then M , is a minimum cover
for the original problem. This follows from the above
proposition and the fact that M , is a cover.

M , = Mr-l +E,

Let (G , W) be a pair. Consider the sequence

(G , W) > (G 1 , W d > - . - > (G , , W r) l (+ , +) , with

Wi+l=Wi-I'(Ei),

332 Gi+l=Z(Gi,Wi) -{SI U g) n Wi+l=+} -

G:+ ,=Z(G, , W7)-{ZlI'(Z) n W:+,=+} Gp,,=G,-{zo}

= M r - 1 + { ZO} M,9 =M,-1

The branching procedure changes the irreducible prob-
lem (G ? , W,) into problems (G:+,, WK,) and (G:+l,
W;+l) where the cardinality of both G,",, and G + + , is less
than that of G,.

Proposition: If (G , W) is irreducible, then the cardi-
nality of G is at least 3.

The proof that the extraction algorithm produces a
minimum cover proceeds as follows: By the above propo-
sition we start off with a problem (G , W) with the car-
dinality of G equal to 3. The branching operation reduces
this problem to two reducible problems which are solved
by steps 2", 3", 4" above: the solution for each of these
problems which has the smaller cost is a solution for the
original problem. Assume next that for all irreducible
problems for which the cardinality of Z (G , W) is less
than k the algorithm produces a minimum. Let then
(G , W) be an irreducible problem with the cardinality of
G being k . As noted above for the two problems into
which the branching operation transforms it, the cardi-
nalities of the resulting G's is less than k . Hence by induc-
tion hypothesis the algorithm produces a minimum for
these problems. The minimum for the original problem is
the one of these with lower cost.

0 4.3 A special case of 4.1

This is the problem described in Section 3. Here V is
the cubical complex K, W is the subset Lo of vertices of
L and G is the class of all disjunctions of nonsingular
Boolean trees T for which K (T) is contained in K . Prac-
tical augmentation of the algorithm for this problem is
discussed in Chapter 11, the engineering version.

IBM JOURNAL' OCTOBER 1959

5. Estimate of efficiency of algorithm

Crude comparisons show that this algorithm is enor-
mously more effective than some systematic exhaustive
procedure. We proceed with an estimate of the expected
number of nontrivial n-operations that must be computed
for a given problem. Let K be a Boolean complex in the
n-cube. Let ‘23 be the bag of functions. To simplify com-
putational difficulties, assume that each element in ‘23 is
a function of r variables. If c is the cardinality of 8, then
the number of possible II-operations, when the functions
of B are non-symmetric, is c . Cy .

Let K be given by a v X n matrix [K] of 0’s and l’s, the
list of vertices of K. Let N be represented by an s x r
matrix [a] of 0’s and 1’s (representing a”(1)) . Through-
out let r + q = n and s+t=2‘ . Let the columns of K be
labelled a (1) , . - . , a (r) , b (1) , - . . , b (q) . With no loss
of generality let II, operate on the first r coordinates of
[K], IIa=II,a(l)...a(r). Then let K be divided into blocks
of rows, each row of a block having the same b-coordi-

nates. The expected number of rows in a block can be
shown to be w=v2-q, and hence the expected number of
blocks is 24. Next, within a given block, the probability
that r I m shall act nontrivially on this block is C,U.2-Qs. Thus
the probability that II, shall act nontrivially on K is the
product P of the number of blocks, 2q, and Cr2-gs:
P=Cy24(1-s). In particular when n=8, r = 4 , v=z7 then
s=8, q=4 and w =8, and thus this probability is 2-28. For
n=6, r = 2 , ~ = 2 ~ , s=2 , P=2-4 . For n = 5 , r = 2 , s = 2 ,
v = 16, P=2-3. Thus it appears from these sample figures
that really a very small fraction of possible II-operations
are nontrivial. Consequently only an infinitestimal frac-
tion of the total projective words are considered.

The efficiency of the algorithm is bolstered by another
factor: by the <-operation, which is described in some
detail in the engineering version (see also Ref. [2]) ,
many of the partially formed words are almost immedi-
ately discarded; see example in Section 3 . 3 , Chapter 11.

Chapter I I
Engineering Version E. G. Wagner

1 . Nonsingular circuits

I .I Logical elements and nonsingular circuits

When we design logical circuits we are given some collec-
tion or “bag” of logical elements or functions that we may
use and some restrictions on the form of the circuits that
we may design with these elements. In this paper there
will be n,o restrictions on the contents of the bag of logical
elements beyond those imposed by the desire to be able
to realize any logical function and the restriction that all
the elements have positive cost. Examples of logical ele-
ments and various notations, therefore, are given in
Table 1. We restrict ourselves to circuits in which each
element drives only one other. We define a nonsingular
circuit as one in which no input variable occurs more
than once. The algorithm described in this paper produces
for a given function a single-output combinational circuit
with the above restriction, consisting of a disjunction
(“OR-ing” together) or conjunction (“AND-ing” together)
of nonsingular circuits.

Thus in Fig. 1, the circuit in Fig. l a is nonsingular;
Fig. l b is not, as the input variable x1 occurs twice. The
circuit shown in Fig. IC is not of the form considered in
this paper, since the OR circuit drives two other elements.

A disjunction of nonsingular circuits consists of a num-
ber of nonsingular circuits that drive a common OR cir-
cuit. (Since the different nonsingular circuits may have
some inputs in common, a disjunction of nonsingular
circuits is in general not itself nonsingular.)

Similarly, a conjunction of nonsingular circuits is a
circuit consisting of a number of nonsingular circuits
driving a common AND circuit. A very simple example of
a disjunction of nonsingular circuits is circuits in nor-
mal form. The nonsingular circuits in that case consist of
single AND circuits. Examples of nonsingular circuits and
disjunctions of nonsingular circuits are shown in Fig. 2.

In speaking of nonsingular circuits or disjunctions of
nonsingular circuits we shall use terms such as, “circuit
inputs,” “circuit output,” “wire,” or “output element,”
in accordance with common engineering usage.

1.2 Representation of nonsingular circuits by
composite functions

Let T be a nonsingular circuit or disjunction of nonsingu-
lar circuits with n input variables al , . . . ,a,. We may
represent T by a unique composition of functions from
the bag of functions associated with our bag of logical
elements. Indeed we may associate such a composite
function with every wire in the circuit. If the chosen wire
is an input wire then the function is exactly the input
variable on that wire. Thus in Fig. 3 the function f associ-
ated with the upper-left-hand input wire is al =al. On the
other hand, if the chosen wire is not a circuit input, then
it is the output wire of some logical element within the
circuit; let the function of this logical element be
a(xl , . , x ,) where each of the variables x1 , . - , x, is
associated with one of the input wires on the logical ele-
ment. If the input wire associated with x1 is connected 3:

IBM JOURNAL OCTOBER 19f

334

f' i'

i,

3 i ' i "

Figure 1 Examples of combinational circuits. Fig. 1 a is of type considered in this paper; 1 b and 1 c are not.

Table I Symbols used for circuit elements in Sections 1, 2 and 3.

Name of Element Block Diagram Logical Function On
On-, Ofl-Matrices*

ofl
Notation

for Function

(here t = 2)

~

2-input EXCLUSIVE-OR 21 * x2vx1 * 22 O(X1, R ?)
circuit

inverter circuit 1II X1 C O I c11

*Defined in Section 2.

IBM JOURNAL-OCTOBER 1959

with some input variable ai, then we replace xi in (Y by aj;
if the input wire associated with xi is the output of some
other logical element with function p (y l , . . a , y 8) then
we replace xi in (Y by p(y1 , . , y,). We do this for all i
from 1 to r. In each case where xi was replaced by a func-
tion rather than an input variable, we treat that function
in the same manner as we treated a. We continue in this
manner until we have a composite function in terms of
the input variables al , . . * , a,. Thus in Fig. 3 we get the
function @(v(a l , a ~) , as) at the output wire of the EX-
CLUSIVE-OR, and the function &(@(v(al, a z) , a g) , v (a 4))
at the output of the circuit. The output functions are also
given on the other circuits shown so far as examples. It
will be noted that when the circuit is nonsingular, then no
input variable occurs more than once in the correspond-
ing composite function. We call such composite functions
where each input variable occurs at most once nonsingu-
lar composite functions. There is a one-to-one corre-
spondence between nonsingular circuits and nonsingular
composite functions [See Section 1 of the Mathematical
Version]. In this chapter we shall identify the two terms;
that is, although we shall speak of nonsingular circuits,
we shall most often represent them by the corresponding
nonsingular composite functions.

We shall in general restrict ourselves to disjunctions of
nonsingular circuits, although the algorithms given will
work equally well for both the disjunctive and conjunc-
tive cases.

2. Generation of nonsingular circuits

2.1 On- and off-matrices of circuits

Let us consider a circuit consisting of a disjunction of
nonsingular circuits, with n input variables. When an
input is “on” (pulsed, driven, fed into), we say it has

value “1”; when it is “off,” it has value “0.” Similarly the
output has values “1” and “0.” We shall describe the
operation of the circuit by an m x n matrix of 1’s and 0’s
called the on-matrix of the circuit. Each of the n columns
of the on-matrix corresponds to one of the n input vari-
ables of the circuit; each column is labeled with its cor-
responding input variable. Each of the m rows represents
one of the m combinations of inputs for which the circuit
input is “on,” i.e., is “1.” We also describe the operation
of the circuit by an 08-matrix, a matrix whose rows rep-
resent the combination of inputs for which the circuit
output is “off.” In particular, the contents of the bag 23 of
logical elements can also be considered as nonsingular
circuits; and hence on- and off-matrices can be defined
for each logical element. The on- and off-matrices of the
logical elements given in Fig. 1 are shown in the fourth
column. For simplicity of presentation, “don’t-care’’ con-
ditions are not considered here; cf. Chapter I.

0 2.2 From circuit to on-matrix

We shall now give a means for developing the on-matrix
of a nonsingular circuit by inspecting the nonsingular
circuit. The reverse process, the creation of a nonsingular
circuit from its on-matrix, will be central to our circuit-
designing algorithms. This reverse process will allow us
to develop from an m x n matrix of 1’s and 0’s a non-
singular circuit, or a circuit which is a disjunction of
nonsingular circuits, whose on-matrix will be the given
matrix.

We can associate with every logical element appearing
in the nonsingular circuit the on-matrix corresponding to
that element. As the inputs of an element are the outputs
of other elements or circuit inputs, the labels of columns
of the on-matrix are the output functions of the element
(or circuit inputs) that feed it. Thus in Fig. 3, the AND

Figure 2 Examples of nonsingular circuits and disjunctions of nonsingular circuits:

a) Carry output of two-bit adder, v(&(xl, y l) , &(@(XI, Y I) , & (x z , ~ 2)))

6) Most significant sum bit output of two-bit adder, @ (@ (x l , y l) , & (x z , y 2)

c) Least significant sum bit output of two-bit adder, @(xp , y z)
d) A parity-bit checker, @(@(@(xl, x z) , @(xs, x+)) , @(x5, xg))

I

33

IBM JOURNAL. OCTOBER 195

336

IBM .I

nonsingular circuits rather than a single nonsingular cir-
cuit. Each of the individual nonsingular circuits in the
disjunction can be expanded to an on-matrix by the
method employed above. For example the carry-bit cir-
cuit shown in Fig. 2a consists of two nonsingular circuits
which have matrices:

Figure 3 Nonsingular circuit with output functions
shown at each level.

We can combine these two matrices into a single four-
variable on-matrix for the whole circuit if we expand the
first one to include the variables x z and y z . Then combin-
ing the two matrices we get as the on-matrix of the whole
circuit:

circuit can be regarded as a nonsingular circuit with input
variables @ (v (a l , a z) , as) and v(aa) . It is then represent-
able by the on-matrix

dl bl bz
c 1 1 = c 1 1 1 ,

where b l=@(v(a l , az), a3) and bz=v(ar) .

Considering all the elements in Fig. 3 we have:

where bl and bz are as above and c1 =v(a l , az) .
To get the on-matrix of the total circuit we combine

these matrices in accordance with the structure of the
circuit. In effect this amounts to a substitution of variables.
We replace a single variable e by a function a of variables
dl , - , d,; where e= 1 we substitute the on-matrix of a;
where e=O we substitute the off-matrix of a. Thus, in the
circuit shown in Fig. 3 , substituting in the matrix of the
EXCLUSIVE-OR and removing parentheses, we get:

CI a3 bz C I a3 bz

thereby expressing bl in terms of c and a3. Similarly, we
replace b2 by a4, we express c1 in terms of al and a2 to
obtain

r: : 8
10” : ; 0”J’

a1 a2 a3 a4

which is the on-matrix for the circuit of Fig. 3 .

x1

1
1
1
1
1 .I B O

Y 1 x2 Y z

1 0 0 ’
0 1 1 7 1 1 1

It happens that in this particular example the on-matrices
of the two nonsingular circuits were disjoint (that is, they
had no rows in common).

2.3 From on-matrix to nonsingular circuit

We shall now consider the reverse process, getting from
an on-matrix K to a circuit T with on-matrix K .

We will first show how to develop from an m x n on-
matrix K , an n-input nonsingular circuit T whose on-
matrix is made up of rows of K . The on-matrix of T will
not necessarily contain all the rows of K. In the next
section we will extend this procedure so that it also de-
velops the nonsingular circuits with less than n-inputs
whose on-matrices are made up of rows of K .

The procedure is essentially the reverse of that ex-
plained in Section 2.2. Above we would replace a column
labeled e = a (a l , - - , a,) by columns labeled a1 , * - * , u7.
We now attempt to replace the columns labeled al , . e , aI
by a single one labeled e=a(al , - . , a,), by “finding
occurrences” of the on- and off-matrices of a in the col-
umns labeled a1 , . . e , ar. If we succeed in this replace-
ment, we then get a new matrix where e replaces
al , - . . , a? and we operate in a similar manner on it.
Eventually we will get down to a 1 x 1 unit matrix whose
column label will be a composite function corresponding
to some nonsingular circuit with an on-matrix whose
rows are contained in K .

We shall now give a semiformal description of the pro-
cedure. Let the initial on-matrix K have columns labeled
al, - e , a,, bl , . - -, b, where n=r+q. We now attempt to
introduce the r-variable function a from our bag of func-
tions in place of the variables al , - , a,, replacing these
with a new column e = a (a l , + - , a,). The first step is to
partition the on-matrix K by permuting (rearranging)

[OURNAL ’ OCTOBER 1959

the rows so that K is broken into blocks such that rows
i and j are in the same block if and only if bik=bjk for
k= 1 , . , q where bik and bjk are the values of the bk
component of rows i and j respectively. We call this oper-
ation partitioning K on al , a - . ,a,. This operation cor-
responds to the removal of the parentheses in Section 2.2.

For example, given the following matrix, we partition
it on al, az.

a1 az bl bz b3
1 1 1 1 1

0 1 1 1 1
0 1 0 0 1
0 0 1 0 0

Let us assume that we have m blocks B1,e-a

Block 1

Block 2

Block 3

B,, .
Let bkl , - e , bkq denote the values of the variables bl , . e , bq
in block Bk. For example in Block 2 above, bzl = 0, bzz =o,
bZ3 = 1. From the partitioned matrix we attempt to form
a new matrix with columns e, b l , , b, where e=
a (a l , - - . ,a,) and a is an r-variable function from our
bag of functions. If the kth block of the partitioned matrix
contains a submatrix in the al , , a, columns which
contains all the rows of the on-matrix of @(al , . . * , a,)
then 1, bkl , . , bkq is a row in the new matrix. For exam-

ple, Block 1 above contains the on-matrix

the EXCLUSIVE-OR function, so 1, 1, 1, 1 is a row of the
new matrix. If the kth block contains a submatrix which
contains the off-matrix of a (a l , ” . , a r) , then 0, bkl,.”,bkq
is a row of the new matrix. For example, Block 3 above

contains the off-matrix [] of the EXCLUSIVE-OR

function so 0, 1, 0, 0 is a row of the new matrix. If the
kth block Bk of the partitioned matrix contains neither
the on- nor the off-matrix of a (a l , . * . , a,) then no row
is produced from Bk for the new matrix. After we have
considered all blocks for the function a(nl , , a,) we
have a new matrix which we denote as K 1 = n & . . u , K .
For example using the above on-matrix,

e 61 bz bs

[;:,I Of

II&,,u2K= 1 0 0 1 [: : :]

or if a(a l , az) = v (a ~ , az) then

e bl bz bs

n:uh,2 K = [‘1 0 1 0 0

If we get a matrix nzul,. K with no rows, that is, the
null matrix, this means that there is no nonsingular com-
posite function f containing a (~ , e a . , a,), where the cir-
cuit corresponding to f has an on-matrix contained in K .

Given K 1 = n & . , u , K we may treat this matrix just as
we treated K , that is, we partition it on some of its col-
umns c l , . . a , c8 and then form some new matrix

~ ~ ~ ~ . . . c ~ K 1 = I I ~ c ~ . . . c ~ ~ ~ u ~ . . .urK .
If this matrix has at least one row we may continue oper-
ating on it. If we reach a point where our matrix is re-
duced to a 1 x 1 unit matrix, then the nonsingular function
that is the column variable of this matrix corresponds to
some nonsingular circuit whose on-matrix is a submatrix
of K . It can be shown that if we do not allow “double
negation,” that is, if we do not replace some column
variable b by v(b) and then later replace this by v(v(b)) ,
we will always reach either a 1 X 1 unit matrix or a null
matrix in a finite number of steps. This amounts to
restricting ourselves to circuits in which we do not allow
two inverter circuits to be placed in series. With this
restriction, a matrix K with n columns can always be
reduced to a unit matrix or a null matrix in 3n- 1 steps
or less.

We will now give an example where a matrix K is
reduced to a unit matrix by an appropriate series of
‘TI-operations.” The example is the reverse of the exam-
ple in Section 2.2. There we obtained the on-matrix from
the circuit; now we obtain a circuit from the matrix. Let:

K =

partitioning on alaz as indicated.

Choosing a(a l , a z) =v(al, az) we get:

c a3 a4

n,c,,a, K = [i :] = K 1 c=v(a1, az) .

Then continuing,

then

and lastly

2.4 Nonsingular circuits from submatrices

We shall later find it necessary to be able to develop from
an on-matrix K all nonsingular circuits whose on-matrices 3:

IBM JOURNAL OCTOBER 19

are made up of rows from K . The operations described
in the preceding section are almost sufficient for doing
this. As described, however, they will produce only the
n-input nonsingular circuits, where K has n variables. But
as the example given in Fig. 2a shows, it is possible for
there to be nonsingular circuits, whose on-matrices cover
parts of K which have fewer than n inputs. Referring to
the example of Fig. 2a we see that although K has four
variables, the nonsingular circuit consisting of the AND

circuit has only two inputs, namely xl and y l , and its
output is consequently independent of x z and yz. This
nonsingular circuit can be represented by an on-matrix
whose only columns are x1 and yl. What we must do,
then, is to generate nonsingular circuits not only from K
but also from those submatrices of K that are independent
of certain column variables of K. Let us denote the
submatrix of K that is independent of the r columns
i (l) , . * . , i (r) by the symbol Ki(ll...i(r). We may form
K i c l , . . . ?(,.) by means of the following rules. Given K we
form K j as follows: let 9 1 , . - , q i , - - , qn be a row of K ;
then q l , . . qi-1, qi+l , . . . , qn is a row of Ki if and only if
there is another row q f l , . , q’i , - e . , qfn in K such that
qj=q’i for j#i, and if q;=1 then q’i=O, and vice versa.
We then form Kii from Ki by the same means but by
operating on Ki rather than K , and so forth until we reach
Ki(l). . . i For example, if

I
L

01 a2 a3 a$ a5
1 1 I 1 0 ’
1 1 1 0 0
1 1 0 1 1
1 1 0 0 1

K - 1 0 1 1 0
1 0 1 0 0
1 0 0 1 1
1 0 0 0 1
0 0 0 0 0

a1 a:?, a4 a3

If we form all possible submatrices Ki(l) . . . i(?) of K by
these rules and then operate on them by the methods of
the preceding section, trying all partitionings and all the
functions from our bag of functions, then we will have
produced all the nonsingular circuits that have on-
matrices consisting of rows from K (with the restriction
against “double inversion”). We shall denote the set of
nonsingular circuits without double inversions whose on-
matrices are made up of rows of K as G (or G (K)), and
call G (K) the set of nonsingular circuits generated from
K . Although trying all partitions and all functions from
the bag of functions appears to be an extremely exhaus-
tive procedure, it will be found that many possibilities
lead to null matrices and only a fairly small percentage

338 of all nonsingular circuits of n and less inputs will actu-

ally be produced. Furthermore, as will be shown in Sec-
tion 3, in certain cases it is not necessary to generate
all of G.

2.5 Scopes

It is convenient to use a special notation to indicate which
rows of the on-matrix of a circuit are contained in or
covered by the on-matrix of one of nonsingular circuits
that make up its realization as a disjunction of nonsingu-
lar circuits. List the m rows in the on-matrix of the circuit
in descending numerical order viewing them as binary
numbers. Then we can say that a given nonsingular circuit
T generated from K covers the ith, jth , . . - , and kth rows
of an on-matrix K where i, j , . . - , k are numbers between
0 and mf 1 when the on-matrix of T consists of the
i, j , . . , kth rows of K. For example in the second ex-
ample given in Section 2.2, the first nonsingular circuit
covers the lst, 2nd, 3rd, and 4th rows; the second non-
singular circuit covers the 5th and 6th rows. A convenient
way to indicate this is to associate with each nonsingular
circuit T an m-component vector S (T) called its scope,
whose ith bit is 1 if and only if the on-matrix of this
nonsingular circuit contains (when fully expanded) the
ith row of the on-matrix of the complete circuit and is
“0” otherwise. Thus in the above example of the scope
of the nonsingular circuit, “&(xl, yl) ” is 11 1100, and the
scope of “&(@(XI, yl) , &(xz, y z)) ” is 000011.

Just as we speak of the scopes of nonsingular circuits
so can we speak of the scopes of the matrix K and of any
matrix

n~u . . . , . . . n ~ , . . . g K i (l) . . . i (r)=K‘

developed from K . The scope of K is, of course, an
m-component vector with all components 1. To find the
scope of
K‘,ne c y ~ . . . b . “ ~ ~ f . . . g ~ i , l) . . . i (, ,

we expand this matrix back to an on-matrix consisting of
rows from K by the methods given in Section 2.2 and
develop its scope just as we did for nonsingular circuits;
that is, if the on-matrix developed from K contains the
ith row of K , then the ith component of the scope of K
is “1” and otherwise it is “0.” The on-matrix of K‘ con-
tains the rows of any nonsingular circuit that can be
generated from K’ by further operations. Thus the scope
of any nonsingular circuit generated from K’ has a “1”
in the ith coordinate only if the scope of K has a “1” in
the ith coordinate.

If the scope S(T) of a nonsingular circuit T generated
from K has a 1 in the ith coordinate, then T covers the
ith row of K . For a set of nonsingular circuits T 1 , . . , T ,
generated from K , we define a joint scope S(T1,. e - , T T)
to be a vector whose ith component is 1 if at least one of
S (T l) , ,S (T ,) has a 1 in the ith coordinate. If
S(T1,...,T,)=(l,l;..,l), we say that T l , - . . , T ,
form a cover of K . Clearly if T 1 , - e - , T , form a cover of
K , then the disjunction of TI , . , T , is a circuit with on-
matrix K . If our bag is such that we can realize any func-
tion with it, then G (K) is always a cover of K.

IBM JOURNAL OCTOBER 1959

3. The extraction algorithm

3.1 The definition of cost

To each element in our bag of logical elements we attach
some positive integer called its cost. In practice this cost
would be arrived at by considering such matters as cost of
construction, maintenance, power consumption, et cetera.
The cost of a nonsingular circuit is defined as the sum of
the costs of all the elements in it, plus, if desired, some
additional amount to “pay” the cost of “OR-ing” it to the
other nonsingular circuits in the disjunction.

The cost of a complete circuit (disjunction of non-
singular circuits) is then defined as the sum of the costs
of the nonsingular circuits which form it. Equivalently
the cost of a cover of an on-matrix K is the sum of the
cost of the nonsingular circuits that form it.

In the examples in this section we assume that our bag
consists of all the two-input logical elements, and that all
of them are of cost 1. This special case has the property
that any nonsingular circuit with n inputs can be shown
to have a cost of n- 1. This property will allow us to give
some compact examples, for reasons which will appear
later. In particular, we can say that the cost of any non-
singular circuit generated from the p X (n - r) submatrix
Ki(l).. .i(, .) of K has cost n-r-1.

3.2 The minimization problem

Given an on-matrix K , develop a circuit T of minimal
cost consisting of a disjunction of nonsingular circuits,
such that T has on-matrix K.

We have already given part of the solution of this prob-
lem. Namely, we have given a method for getting the set
G of all the nonsingular circuits that cover parts of a
given on-matrix K. But as examples show, the number of
nonsingular circuits developed is far in excess of the
number needed to cover K . What is needed, then, is some
way to extract a cover of minimal cost from the set G of
nonsingular circuits generated from K . The extraction
algorithm does exactly this. Proof that the algorithm does
produce a minimum follows as a special case of the proof
of the validity of the general extraction algorithm given
in Section 4 of the Mathematical Version.

3.3 The algorithm

Three operations are employed in the extraction algo-
rithm: the less-than operation, the determination of
extreme nonsingular circuits, and the branching opera-
tion. We shall explain the first two of these operations
separately and then combine them into an algorithm,
which will contain the third operation.

The less-than operation is an operation on covers of an
on-matrix K that removes unnecessary “removab1e”mem-
bers of the cover. We first define the less-than relation-
ship, a relationship between members of a cover.

Let T and T‘ be two nonsingular circuits in any cover
Q of K made up of members from the set G of nonsingu-
lar circuits generated from K. Let S(T) and S(T ’) denote
their respective scopes, p(T) and p(T’) their respective
costs. We shall write S(T) LS(T’) if the ith coordinate of

S (T) is “1,” then so is the ith coordinate of S(T’), and
we say that the scope of T is covered by the scope of T .
Referring back to the meaning of scope we see that this
means that circuit T is on only if circuit T’ is on. We now
say that T is less-than T’, or T’ is greater-than T, if and
only if S(T) CS(T’) and p(T) > p(T ’) ; in such a case we
will write T<T. This means that T<T‘ if and only if 7
is on only when T’ is on and T costs at least as much as T‘.
Clearly then, since T does nothing that is not done by T’
at less or equal cost, we can always use T’ in place of T in
our solution. Thus if we remove T from the cover Q get-
ting a new cover Q’, then Q’ is less costly than Q. The
less-than operation on a cover Q then consists of com-
paring the members of Q by the less-than relationship,
removing those that are less than others as we go along.
That is, if we find that T<T‘, then we remove T from Q
and do not compare it with any other members remaining
in Q. If we perform the less-than operation on G (K)
arriving at a cover Z , it can be shown that Z will contain
at least one minimal cover of K .

A systematic way to carry out the less-than operation
will be given in the algorithm. In the special case we are
using for our examples, we actually employ the less-than
operation during the generation of G , thus keeping G as
small as possible at all times. Namely, as mentioned
before, the cost of an n-input nonsingular circuit in this
special system is n- 1, and so any nonsingular circuit
generated from an n-variable on-matrix will have a cost
of n - 1. Now if we consider the scope S(K’) of a matrix

K‘,n,e,, . . . n;,gKi(l)...i(T)

we know that it covers the scope of any of the nonsingular
circuits that can be formed from it. It follows then that
any nonsingular circuit generated from K’ will have cost
n - r - 1 and scope covered by S (K ‘) and if we have already
formed a nonsingular circuit T such that S (K ‘) c S (T)
and n-r- 1 >p(T), then T will be greater than any of
the nonsingular circuits that we could possibly develop
from K‘ and so there is no need to generate them at all.
In such a case we write K’<T. (If on the other hand
S (K ’) >S(T) or n-r- I<(T), we cannot conclude any-
thing.) This application of the less-than rule during the
generation of G will usually save considerable time and
effort. We note that, since the cost is directly related to
the number of variables, it pays to generate the nonsingu-
lar circuits from the submatrices K j (l) . . . i(l.) of K with the
smallest number of inputs (largest r) first, as these have
the lowest cost.

The determination of extreme nonsingular circuits: If
we wish to find the minimal cover contained in some
given cover Q of K we can often immediately find certain
elements of Q called extreme nonsingular circuits that
must be in any minimum contained in Q. Specifically let
T be a nonsingular circuit in a cover Q of K. Suppose that
the ith bit of S(T) is “1” and that the ith bit of S(T”) is
0 for all T“ other than T in Q. Then T is said to be
extreme in Q. Now clearly since there must be some non-
singular circuit in the disjunction that is “on” for the ith
combination of input signals if the on-matrix of the cir- 3

IBM JOURNAL OCTOBER 19

cuit is to be K , it follows that if T i s extreme then T must
be in the solution.

We shall now show how the less-than operation and
the determination of extreme nonsingular circuits can be
employed to find minimal circuits.

We take the set G of nonsingular circuits generated
from an on-matrix K and perform the less-than operation
on it (this may have been done during the generation of
G) . This gives us a new cover 2 of K . We then determine
the extreme nonsingular circuits of Z'. Say that T1 , . , T p
are extreme, and let their joint scope be S(TI , . , T p) .
Since the input combinations denoted by S(TI , . - , T p)
are covered by T I , - , T p we need no longer consider
these combinations in our calculations. We therefore
eliminate these components from our scopes (rather than
actually remove them it is often more convenient to con-
sider these coordinates to be 0 in all remaining scopes),
and continue then with a reduced problem. The removal
of S(T I , . , T p) , as the following example (Table 2)
indicates, may make some nonsingular circuits cover
nothing and thereby unnecessary, or may make one cir-
cuit T less-than another TI where before neither one was
less-than the other. T, is extreme (1st coordinate) so the
list of scopes reduces as indicated in Table 3. Now
S(T') C S (T) and p (T) =p(T ') so that T'CT. Further-
more T" covers nothing (not already covered). Thus we
may eliminate both T' and T". Thus the list reduces to T
and so T is extreme. The final solution must be the dis-
junction of T, and T . As the example indicates, the less-
than operation and the identification of extreme nonsin-
gular circuits used repeatedly one after the other will
sometimes suffice to allow us to extract a solution from
G . It may happen, however, that we will eventually reach
a point where no remaining element of G is less-than any
other and there are no extreme nonsingular circuits. We
then must employ the branching operation.

Suppose that the less-than operation and the identifica-
tion of extreme nonsingular circuits will carry us no
further, and let T be one of the remaining nonsingular
circuits in G . Now clearly either T is in a final minimal
solution or it is not, so what we can do is to try both
possibilities and choose the better. That is, we arbitrarily
pick some member T from what remains of G and first
treat the problem as if T were an extreme nonsingular
circuit and get a solution; we then again find a solution
treating T as if it were less-than some other nonsingular
circuit remaining in G (i.e., we remove T from G). One

Table 2 Hypothetical example showing configura-
tion of scopes and costs.
I I I costs

Table3 Reduction of Table 2 after first step of
algorithm.

Circuits Scopes 1 costs
I I

T

3 0 1 0 0 0 1 0 0 1 T'

0 1 0 0 0 1 0 0 1 1 T ' C T

T ~ 0 0 0 0 0 0 0 0 0 l 2
of these two solutions will certainly be a minimal solution
for the original problem. Of course, we may have to
branch on more than one nonsingular circuit in order to
get a solution, but as long as we work to the end, a mini-
mum will be achieved.

The working out of all the branching combinations
involves far fewer steps than an exhaustive examination
of solutions, as is indicated by the example at the end of
the paper. (Cf. also Section 5 of Mathematical Version.)

The next section gives a more complete outline of the
algorithm in flow-chart form.

4. Block diagram of extraction algorithm
for a special case, plus an example

4.1 Block diagram of extraction algorithm
for a special case

In this section we present, in block form, the complete
algorithm for the special case when the bag of logical
elements contains all the two-input logical elements and
all elements have the same cost, as is the case for core
circuits.

In the block diagrams of Fig. 4:
1) The ten nontrivial 2-input logical functions in our

bag 123 are denoted a1 , , ah , - , a10 (see Section
4.2 for a listing of these functions).

2) Let r denote the number of columns (or column
variables) of any matrix on which we are per-
forming a 11-operation. Let the columns be labeled
(numbered) from 1 to r from left to right; this
allows us to describe the performance of the
II-operations in a systematic manner.

0 4.2 Example

In the following example of the application of the above
algorithm we have as our bag of functions:

al=v(xl, x 2) 'X1VXZ

012 = 0 (x1 , x2) = X1X2VXIX2

T , ~ 1 0 1 1 1 0 1 1 0

T ~ 0 1 1 1 0 1 0 0 1 I 3 TQT'

T'

0 0 1 1 1 0 0 0 0 T"

3 T'QT 0 1 0 0 0 1 1 1 1

2

a5=$(x1, Xz) ' X 3 2
*

and their negations designated V, a, B , 0, 4, respec-
tively. Except for the trivial functions, which need not 340

IBM JOURNAL'OCTOBER 1959

be considered, this is the set of all functions of two vari-
ables. We will not show the complete working out of the
problem but only the data at various points in the algo-
rithm. The problem is a randomly chosen one made up
from the first four columns and first eight rows of [4]
considering odd digits as ‘1’s and even digits as ‘0’s.

a b c d
b c d
1 1 1

KQ= [1 0 0 1
1 1 0 0 K=

l l 0 O l l a b c
1 0 0 0

1 0 1 1 1 1 Kd=[l 1 0
1 1 1

0 1 0 0 1 0 0

a c d a b d

Kb= [1 0 0 1 Kc=[1 1 0 1
1 0 1 1 1 1

a c q v
& d = [1 0 1 & a = [1 1 1

After we operate on all of these matrices according to the
algorithm12 we will get the circuits in G indicated in
Table 4.

Table 4 Nonsingular circuits developed from ma-
trix in Section 4.2.

Nonsingulur Function Scope 1 cost

1

2

3

4

5

6

7

8

9

10

11

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 1 0 0 1 1

0 0 0 1 0 1 0 1

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 1

0 1 0 0 0 0 0 1

0 1 1 0 0 0 1 1

2

We now perform the LESS-THAN operation of the above
list, getting Table 5.

Table5 Reduction of Table 4 by means of LESS-THAN

operation.

Circuit
Number Scope cost

1

2

3

6

7

9

11

13

15

17

18

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 0 0 1 0 0 1 1

0 0 0 1 0 1 0 1

1 0 1 0 0 0 1 1

0 1 1 0 0 0 1 1

0 1 0 1 0 0 1 1

1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1

1 1 1 1 0 0 1 0

1

1

2

2

3

3

3

3

3

3

3

. List A

None of these circuits is extreme so we branch on
Circuit 1. We first try the case where we assume Circuit 1
is in the solution. Treating Circuit 1 as an extremal, we
change those scope components that it covers to “0” and
then perform the LESS-THAN operation, giving us a new
list (Table 6).

Table6 Reduction of Table 5, branching with Cir-
cuit 1 as an extremal.

Circuit
Number Scope cost

2

0 0 0 0 0 1 0 1 7

0 0 0 0 0 0 1 1 6

0 0 0 0 1 1 0 0

12 $(O(O(a, c) , b) , d) 0 1 0 1 0 0 0 1

13 e (o (e (a , c) , d) , b) o 1 o 1 o o 1 1 l 3 Now both Circuit 2 and Circuit 6 are extreme, and to-
gether with Circuit 1 we see that they cover everything,

1 1 0 0 0 0 1 0

1 1 0 0 0 0 1 1

3 io we have a cover of K consisting ofcircuits 1,2, and 6
with a cost of 4.

3 We now trv the case where we assume that Circuit 1

16 $ (O (O (a , d) , b) , c) 0 0 1 1 0 0 0 1 3 is not in the solution, so we delete Circuit 1 from List A.
There are still no extremals so we branch on Circuit 2.

0 0 1 1 0 0 1 1

1 1 1 1 0 0 1 0

3 We first try the case where we assume that Circuit 2 is in
the solution; treating Circuit 2 as extreme and performing
the LESS-THAN operation we get the list in Table 7. 3

IBM JOURNAL-OCTOBER 1951

Figure 4 Block diagram of extraction algorithm for case
when !I3 contains all the two-input logical ele-
ments, and all elements have the same cost.

342 L
YES -

IBM JOURNAL OCTOBER 1959

WE ARE FINISHED.
S IS THE ANSWER

WE ARE FINISHED.

3

IBM JOURNAL OCTOBER 19

i R !

T
I L l

4 t i

Figure5 Three minimal solutions of example in Section 4.2.

Table 7 Reduction of Table 5, branching with Cir- References
cuit 1 deleted.

Circuit
Number c o s t Scope

3

1 1 0 0 0 0 1 1 15

1 0 0 0 0 0 1 1 6

1 1 0 0 0 0 0 0

Again we have no extremals so we branch on Circuit 3.
Taking the case where Circuit 3 is in the solution, the
LESS-THAN operation gives us

Table8 Reduction of Table 7 by branching.

Circuit
Number

Scope 1 c o s t

6 ~ 0 0 0 0 0 0 1 1 l 2
Circuit 6 is clearlv extreme and combined with Circuits

1. J. Paul Roth, “Algebraic Topological Methods for the
Synthesis of Switching Systems. I,” Transactions of
American Mathematical Society, 88,301-326 (July, 1958).
See also ECP 56-02, Institute for Advanced Study, April,
1956.

2. J. Paul Roth, “Algebraic Topological Methods for the
Synthesis of Switching Systems. 11,” Proceedings of the
International Symposium on the Theory of Switching,
Harvard University, April 2, 1957. To appear.

3. W. V. Quine, “A Way to Simplify Truth Functions,”
American Mathematical Monthly, 62, 627-631 (1955).

4. The Rand Corporation, One Million Random Digits with
100,000 Normal Deviates, The Free Press, Glencoe, 111.
(1955).

5. J . Paul Roth, “Algebraic Topological Methods for the
Synthesis of Switching Systems. IV. Singular Boolean
Trees.” (To appear.)

6. J. Paul Roth, “Algebraic Topological Methods for the
Synthesis of Switching Systems. V. The Multiple Output
Problem.” (To appear.)

7. The Staff of the Harvard Computation Laboratory: Syn-
thesis of Electronic Computing and Control Circuits,
Harvard University Press, 1951.

8. M. Karnaugh, “The Map Method for Synthesis of Com-
binational Logic Circuits,” AIEE Transactions, 72, 1,

9. E. J. McCluskey, Jr., “Minimization of Boolean Func-
tions,” Bell System Technical Journal, 35, 1417-1444
(November, 1956).

593-598 (1953).

2 and 3, which we had already assumed, on this branch, 10. k. H. Urbano and R. K. Mueller, “A Topological Method
to be in the solution, gives us a cover of K . Thus Circuits
2, 3, and 6 give us a cover of cost = 5.

for the Determination of the Minimal Forms of a Boolean
Function,” IRE Transactions EC-5, 126-132 (September,
1956)

NOW assuming Circuit 3 is not in the solution, we see 11. D. E. Muller, “Complexity in Electronic Switching Cir-
by inspection of List C that then Circuit 15 is extreme, cuits,” IRE Transactions EC-5, No. 1, 15-19 (March,

””,.

”

and we get a solution consisting of Circuits 2 and 15 with 1956).
cost = 4. Now assuming Circuit 2 is not in the solution, 12. Dr. Gerard Salton (Harvard University) has brought to

we see by inspection.of List A with Circuit 1 removed,
our attention the omission from Table 4 of four functions
that result from Dartitioning K on Columns 3 and 4.

that Circuit 3 is extreme, giving, after the LESS-THAN In particular the finction e (i (@ (c , d) , a) , b) with scope
operation, the same as Table 8. So Circuit 6 is again (1 11 1001 1) was omitted. Functions 9, 11, 13, 15, 17 and
extreme, and we have a cover consisting of Circuits 3 18 are less-than this new function and should be elimi-

and 6 with a cost of 4. nated from Table 5. The first and third solutions shown

We have thus found three minimal solutions at cost=4.
in Fig. 5 remain, but the middle one is replaced by the

344
disjunction of Function 2 and the new function.

They are shown in Fig. 5. Received July 17, 1958

IBM JOURNAL OCTOBER 1959

