
P. C. Gilmore

A Proof Method for Quantification Theory:
Its Justification and Realization

Abstract: A program i s described which can provide a computer with quick logical facility for syllogisms and

moderately more complicated sentences. The program realizes a method for proving that a sentence of quan-

tification theory i s logically true. The program, furthermore, provides a decision procedure over a subclass of

the sentences of quantification theory. The subclass of sentences for which the program provides a decision

procedure includes all syllogisms. Full justification of the method i s given.

A program for the IBM 704 Data Processing Machine i s outlined which realizes the method. Production runs of

the program indicate that for a class of moderately complicated sentences the program can produce proofs in

intervals ranging up to two minutes.

Introduction

Before a rigorous mathematical proof of any theorem can
be given, it is necessary that the theorem, and the axioms
from which the theorem is to be deduced, be precisely
stated in an unambiguous language. The formal language
variously called the first-order predicate calculus or logic,
the first-order functional calculus or logic, or quantifica-
tion theory, is adequate for the expression of any theorem
or axiom. Further, although the sentences of quantifica-
tion theory are ambiguous in the sense of being capable
of possessing many different meanings, it is an easy matter
to remove this ambiguity simultaneously from all sen-
tences of the language by assigning meaning to the primi-
tive symbols from which the sentences are formed. But
most important of all, it is possible to give for sentences
T , SI, Sz, . . . of quantification theory a precise definition
of “T is a logical consequence of the sentences SI, S2, . . .”
to replace the intuitive but vague notion in natural lan-
guages that one sentence is a logical consequence of
other sentences. Thus quantification theory not only pro-
vides a language for mathematics but also permits a
description of what constitutes a rigorous mathematical
proof.

The primitive symbols of quantification theory are
brackets (,) , the logical connectives -, &, v, 1, =, the
predicate letters A , B, C, . . . the individual names, a, b, c,
. . . the individual variables x, y , z, . . . and the quantifiers
E and A . Any finite sequence of these primitive symbols
is a formula of the theory. From the formulae of the

28 theory are selected some which in some sense are mean-

ingful and are therefore called well-formed formulae, or
briefly wff. From the wff of the theory will be selected
the sentences of the theory.

Inductive definitions of wff and of “the (individual)
variable X occurs free in the wff S’ are given simultane-

1. A formula consisting of a predicate letter followed by
any number of individual names or variables is an atomic
wff and a wff and the variables occurring in it occur free.

2. If S is a wff then so is ”s, and the variables occurring
free in S occur free in -S.

3. If S and T are wff then so are (S & T) , (S v T) ,
(S 3 T) and (S 3 T) , and the variables occurring free
in either S or T occur free in these wff.

4. If S is a wff and X is any variable then (E X) S and
(A X) S are wff and the variables other than X occurring
free in S occur free in these wff.

ously :

A variable X which occurs in a wff but does not occur
free is said to be bound in the wff and must, therefore, by
part (4) of the definition, occur with quantifier symbols
as in (E X) or (A X) . A sentence of the theory is a wff in
which no variable occurs free. Calling such formulae of
the theory sentences is reasonable if the primitive symbols
of the theory are interpreted as follows:

Atomic sentences (atomic wff which are sentences)
can be understood as abbreviations for sentences such as
“1 + 3 =5”, “3 <7”, or “John is tall”; these could be ex-

IBM JOURNAL * JANUARY 1960

pressed in quantification theory as A 135, B37, or Ca,
allowing numerals also to be names in quantification
theory. Atomic wff which are not sentences can be under-
stood as abbreviations for sentence forms such as
“1+~=5”, or “ x + y = 5 ” , or “ x + y = z ” , or “3<y” or
“x<y” or “x is tall”, where if variables in a sentence
form are replaced by names the result is a sentence. The
logical connectives -, &, v, 3 and E are to be understood
as expressing negation, conjunction, disjunction, implica-
tion and equivalence respectively in the sense that, for
example, (S & T) is a sentence which is true if and only
if both S and T are true, and (S 3 T) is a sentence which
is true if and only if S is false or T is true, and -S is a
sentence which is true if and only if S is false. When the
logical connectives are attached to sentence forms rather
than sentences the result is to be understood as a new
sentence form with the expected properties. For example,
if S(x) is a sentence form with one free variable x, then
- S (x) is a sentence form with one free variable x and
such that for any name a, the sentence -S(a) formed
from - S (x) by replacing x everywhere by a is true if and
only if S(a) is false. Finally a sentence such as (E x) S (x)
can be understood to be a sentence which is true if and
only if for some name a, S (a) is true, while a sentence
(A x) S (x) can be understood to be a sentence which is
true if and only if for every possible name a, S (a) is
true. For sentence forms S(x , y) with two free variables
x and y , (E y) S (x , y) and (A y) S (x , y) are sentence forms
with one free variable x and are related in the obvious
manner to the sentence form S(x, y) .

A sentence is generally thought to be either true or
false. But a sentence of quantification theory may be true
or false depending upon the interpretations given to the
predicate letters and names which occur in it. Thus
“ (E y) (B a y & C y) ” is true when “Bay” is understood as
“a is the brother of y”, “Cy” is understood as “ y is tall”
and “a” is the name of someone with a tall brother, but
can be false under other interpretations.

If atomic sentences or sentences formed from atomic
sentences by attaching a negation sign “-” are called
ground sentences, then by an interpretation can be under-
stood a set I of ground sentences of quantification theory
with the following properties:
1. No atomic sentence and its negation are members of I
(I is consistent) ;

2. For every possible atomic sentence which can be
formed from names and predicate letters occurring in
ground sentences in I , either the sentence or its negation
is a member of I (I is compZete) .
A predicate letter or name occurring in a member of an
interpretation I is said to be a predicate letter or name of I .

The members of an interpretation I are the only ground
sentences of the language which are true for the interpre-
tation. A ground sentence not in I , but formed from a
predicate letter and names of I , is false for I . Hence a
sentence in which occurs a predicate letter or name not of
an interpretation is neither true nor false for the interpre-
tation. For sentences which are not ground sentences and

in which occur only predicate letters and names of I ,
“true for the interpretation” and “false for the interpre-
tation” can be readily defined considering the meanings
which have been given to the logical connectives and
quantifiers. Thus (Ey) (Bay & C y) is true in the interpre-
tation {Ca, Cb, Bab, -Bba, -Baa, -Bbb} because Bab
and Ch are true in the interpretation and therefore also
(Bab & Cb) and hence the above sentence. But the same
sentence is false in the interpretation {Ca, -Cb, Bab,
-Bba, -Baa, ”Bbb} because there is no name 01 such
that both Baa and Ca are true in the interpretation, and
hence no name a for which (Baa & C a) is true for the
interpretation. Clearly any consistent set I of ground sen-
tences can be completed to an interpretation by adding to
I , for any atomic sentence formed from a predicate letter
and names of I , either the atomic sentence or its negation,
should neither already appear in I . Such an interpretation
will be called a completion of 1.

This definition of interpretation will appear a little
strange because it does not require the specification of any
set of objects which is to be the range of the variables
x, y , z , . . . , to which the names a, b, c . . . are assigned
or the properties and relations of which are to be assigned
to the predicate letters A , B , C, But since it is possi-
ble for every object of a set to be assigned a single name,
it is irrelevant whether one uses names to discuss the
objects or simply discusses the names. However, this has
as a consequence that two apparently quite different inter-
pretations may be, for all practical purposes, the same
interpretation. An object given a single name in one inter-
pretation may be given a different name, or many different
names in another interpretation. For this reason the notion
of a homomorphism for interpretations is convenient.

Let + be a single valued mapping of the names of an
interpretation II onto the names of an interpretation 12,
and for any sentence S in which only names of I I occur,
let +(S) be the sentence obtained from S by replacing
each name a occurring in S by + (a) . If for any ground
sentence G in which only names of Il occur, G is a mem-
ber of Il if and only if +(G) is a member of 12, t,b is said
to be a homomorphism of II onto ZZ. If there exists a
homomorphism of 11 onto I z then I 2 is said to be a homo-
morphic image of 11. It can be readily seen that if + is a
homomorphism of 11 onto 12 then for any sentence S, S is
true or false for I 1 if and only if +(S) is true or false
respectively for 1 2 .

A counterexample for a conjectured theorem T in a
mathematical theory with axioms SI, Sz, . . . consists in a
mathematical structure for which S1, S 2 , . . . are all true
and for which T is false. Assuming that T , S1, S 2 , . . . are
all sentences of quantification theory, this can be more
precisely expressed: The counterexample consists in an
interpretation for which SI, S 2 , . . . are all true and T is
false. Thus, a conjectured theorem is actually a theorem
if it is impossible to find a counterexample for it. Hence
one can say that a sentence T is a logical consequence of
sentences SI, Sz, . . . if and only if it is not possible to find
an interpretation for which SI, Sz, . . . are all true and T
is false. If T is a logical consequence of an empty set of 29

ISM JOURNAL JANUARY 1960

sentences, that is, if it is impossible to find an interpreta-
tion in which T i s false, then T is logically true.

A program for the IBM 704 Data Processing Machine
will be described which will, for any logically true sen-
tence T , construct a proof that T is logically true. For a
special class M of sentences the program will do more; for
any member T of M the program can decide whether or
not T is logically true, produce a proof of T should it be
logically true and provide essentially a counterexample to
T should T be not logically true. The class M of sentences
is sufficiently wide to include, for example, all syllogisms.
Results of production runs will be given. In addition it
will be shown how the program can be adapted for pro-
ducing a proof that a sentence T is a logical consequence
of sentences S I , SZ,

The theoretical basis of the program is a process which,
for any sentence S of quantification theory, generates at
the nth step of the process a finite number k,, k,20, of
finite sets Inl, I n 2 , . . . , I n k , of ground sentences. Each set
formed at the n+ l s t step is either one of the sets formed
at the nth step or is obtained from such a set by adding
new members to it. Hence if k,>O for all n then it is pos-
sible to find a function + such that In$(,) CZ,+lq(,+l) for
all n. It is then the case that any completion of the set

U In$(,) is an interpretation for which S is true. Con-
versely if there is any interpretation whatsoever for which
S is true, then there is also one which is a completion of

U I n $ (,) for some +. It follows that there is an interpre-

tation for which S is true if and only if k,>O for all n.
The process can be applied to proving that a sentence

T is logically true by taking as input to the process the
sentence -T. Should k,=O for some n, then T is true for
every interpretation, and therefore logically true, since
it is not possible for there to be an interpretation for
which "T is true and thus for which T is false. On the
other hand, however, the process cannot, in general, show
that a sentence T is not logically true; that is, that - T has
an interpretation, since it would be necessary to show that
k,>O, for all n, while only a finite number of k, can ever
be computed.1 Nevertheless, for one special class A4 of
sentences of quantification theory the process does actu-
ally provide a decision procedure; that is, for any member
T of M , if - T is used as input for the process, it will be
possible to decide after a finite number of steps whether
or not T is logically true. For, for any member T of M ,
it is possible to compute a number N such that if "T is
used as input to the process then there is an interpretation
for which -T is true if and only if k,>O for all n, n < N .
Further if + is a function such that I n $ (,) C I n + 1 @ (n + l) for

n < N , then any completion of U I,$ (,) is an interpreta-

tion for which - T is true. Thus for T in M , if the process
is carried out with -T as input and k,=O at the nth step,
n < N , then T has been proven to be logically true; while
if k,>O for each of the first N steps of the process, T is
known to be not logically true and a counterexample to T

m

n=1

m

n=1

N

n=1

30 can actually be exhibited.

IBM JOURNAL' JANUARY 1960

In the description of the process some well-known
concepts and theorems from logic will be used. Two sen-
tences are said to be logically equivalent if and only if
there exists no interpretation for which one is tsue and
the other is false. A sentence in which no quantifiers
appear, and which is in disjunctive normal form, is called
a matrix. Since a matrix consists of one or more disjunc-
tions of conjunctions of one or more ground sentences.
from two matrices M1 and M Z can be formed a product
matrix as follows: For each conjunction of M 1 and each
conjunction of M P , form a conjunction of the product
matrix by conjoining the two conjunctions. Contradictory
conjunctions, i.e., ones in which both an atomic sentence
and its negation appear, can be dropped from the product
matrix.

A wff which is not a sentence but is in disjunctive nor-
mal form and does not contain any quantifiers is called a
matrix form. A sentence which is in prenex form, that is,
one in which all of the quantifiers occur initially, and
which consists of a sequence of quantifiers attached to a
wff which is a matrix form, will be said to be in standard
form. For any sentence of quantification theory, there
exists a sentence in standard form which is logically
equivalent to the given sentence. A sentence which is in
standard form and which is logically equivalent to a given
sentence will be said to be a standard form of the given
sentence.

The original motivation for the proof method of this
paper was the method of semantic tableaux of Beth,
although in its present form it is closer to the work of
Hintikka.2 The proof method is related in form, if not
entirely in motivation, to the methods of Herbrand and
G e n t ~ e n . ~

Although much previous work has been done in prov-
ing theorems by machine, the present work is the first
working program for quantification theory. The work of
Newell, Shaw and Simon did not have as its primary aim
the proof of theorems, but did result in a program for the
propositional 10gic.~

Gelernter's and Rochester's program5 for proving
theorems in elementary geometry is applied to proving
theorems which can be put into the standard form:

(A X ,) . . e (A X ,) (P (X 1 , . . X ,) . Q (x l , . - 9 X ,)) ,
where P (X 1 , . . . , X ,) and Q(X1, . . . , X ,) are conjunc-
tions of atomic wff, from axioms which can be put into
the same standard form. Although there exists a simple
decision procedure for theorems in such an axiomatic
theory, the Gelernter-Rochester program does not make
use of it. Their program, with motivations similar to those
of Newell and Simon, instead of exhaustively generating
substitutions for the axioms, chooses substitutions which
are expected to lead more directly to a proof of the
theorem. Dunham, Fridshal and Sward have developed a
program which uses an efficient decision procedure for
theorems in propositional logic.6 The work of Wang is
most directly related to the present paper.? Wang has
written two programs and has proposed a third. His first
program is a decision procedure for theorems of the

propositional logic, his second a decision procedure for
theorems of quantification theory which are members of
the Class M , while the proposed program is a proof
method for theorems of quantification theory which incor-
porates the decision procedure of the first two programs.
Thus the intention of Wang's third program is exactly
the same as the program outlined in this paper; the two
programs differ, however, in several ways. For example,
it is based on a method of proof more directly related to
that of Gentzen and Herbrand rather than that of Beth
and Hintikka. Also, at the same time, Wang's program
is to accomplish more, for it is to accept as input data the
sentence to be proven, while the input data for the pro-
gram of this paper is a standard form of the negation of
the sentence to be proven. A further comparison of the
two programs will have to wait upon production runs
from Wang's program8

The process which has been described as the theoretical
basis of the program of this paper is given in detail in
the next section. The following section describes the pro-
gram for the IBM 704 Data Processing Machine for
proving sentences to be logically true, and its extension
to a program for proving that a given sentence is a logical
consequence of other sentences. Results of production
runs are given in the subsequent section.

The process

Given any sentence, choose a standard form S for it. Then
S can be written:

(Qlxl) (Q z X P) . . . (Q m X m) M (X l , . . . , X ,) ,
where X I , X z , . . . , X , are all the variables which occur
free in the matrix form M (X 1 , . . . , X,) and each Qi is
either E or A . If Q j is E (A) , then Xi is said to be existen-
tially (universally) quantified.

The matrix form M (X 1 , . . . , X,) consists of the dis-
junction of one or more conjunctions of one or more basic
sentence forms or basic sentences. Two conjunctions are
said to be linked by given variables if there exists a finite
sequence of conjunctions of the matrix form, beginning
with one of the conjunctions and ending with the other,
such that for each adjoining pair of conjunctions in the
sequence, one of the given variables occurs free in both
members of the pair. An existentially quantified variable
Xi is said to depend upon all universally quantified vari-
ables X i for which i<j and which occur free in conjunc-
tions where Xi occurs free, or which are linked to the
conjunctions in which Xi occurs free by the universally
quantified variables Xk for which j<k.

Let there be r universally quantified variables X,,, X,, ,
. . . , X+. Then a sequence of r-tuples (pnl, pn2, . . . , pnr),
n= 1, 2, . . . , of positive non-zero integers is generated as
follows:
(1) For all j , p l j= l ;
(2) Let p, be the maximum of pnl, p,~, . . . , pn7, then
(a) if for all j , l<j<r, pni=pn, then pn+lr=pLn+l and
P , + ~ ~ = 1 for j<r; (b) if there is a k such that pni=pn for
k<j<r and Pnk"pn-1, then Pn+li=Pni for l i j < k ,
Pn+lk=pn, and pn+lj=1 for k<j<r; (C) if Pnr<pu,, then

pn+lr=pnr+l and pn+li=pni for l<j<r; (a) if there is a
k such that pni=pn for k<j<r and Pnk<p.n-1, then
Pn+lj=Pni for I<j<k, Pn+lk=Pnkfl, Pn+l,r=pn and
pn+li= 1 for k<j<r.

The sequence of r-tuples so generated is without dupli-
cations and is such that for any k, 1 Q k<r, and any posi-
tive non-zero integer p , every k-tuple of numbers rn,
1 < m<p, occurs in the sequence (p,(,.-k)+l, . . . , PnT),
n= 1, 2, . . . , before any k-tuple with a number p f 1
appears.

A sentence S in standard form is a member of the set
D if and only if there is no (existentially quantified)
variable of S dependent upon any (universally quantified)
variable of S. A sentence T i s then a member of the set M
if and only if the sentence - T has a standard form which
is a member of D.

Let there occur s names in S. Let S not be in D. A
sequence (qnl , qn2, . . . , qnm), n= 1,2 , . . . , of rn-tuples
of positive non-zero integers is generated as follows:

(1) For all k and n, if Xk is universally quantified and
k = q , then qnk'pnj;

(2) For all k, if Xk is existentially quantified and is de-
pendent upon the variables Xui l , . . . , Xujt, then (a) qlk
is the maximum of s+ 1, qll+ 1, . . . , qlk-l+ 1; (b) for
all n> 1, if h is the smallest positive integer for which
(pnjl, . . . , pnit) is identical with Phil, . . . , phit), then if
h<n, q n k is qhk; while if h =n, qnk is the maximum of

qnl+ 1, . . . , qnk-lf 1; in particular if t=O, then qnk=qlk.
Should S be in D so that it can be assumed that in the

sequence Ql, Q2, . . . , Qm no A precedes an E, then a finite
sequence (qnl, . . . , qnm), n = 1,2,. . . , max(1, (r n - r +s) +') ,
of m-tuples of positive non-zero integers is generated as
follows:

(1) For all k and n, if x k is universally quantified and
k = q , then q,k=pni;

(2) For all k and n, if Xk is existentially quantified, then
q n k is the maximum of s f 1, qll + 1, . . . , q1k-l-k 1. In
particular, therefore, if either r=O or r=m, then only one
term is generated.

Let a l , a2, . . . , a,, u ~ + ~ , . . . be a list of names of quan-
tification theory in which the names al , a2, . . . ,a, which oc-
cur in S are all listed first. Let P1 be the matrix M (a q l l ,
. . . , aql,), and for n > l , let P, be the product matrix of
P,-l with the matrix M(aq,,, . . . , a,,,). For S in D, P, is
definedfornGmax(1, (m-r+s)'),whileforSnotinD,
it is defined for all n 2 1. Then for any n and j , Z n j is the set
of ground sentences conjoined together to form the jth
conjunction of P,. Let k, be the number of conjunctions
of P,.

0 Theorem I

For S not in D the sets Z,i possess the following properties:

(1) For any n for which k,+l> 0 and any j , 1 I j < kn+l,
there exists an i such that ZnicZn+li;

(2) For any function + for which CZ,+lg(,+l) for

s + l , q11+1,. . , q1rnf1,. - . , q n - l l f l , . . 3 qn-lrnfl,

31

IBM JOURNAL- JANUARY 1960

n 2 1, S is true for any complction of U I n $ (, ,) ;

(3) For any interpretation I" for which S is truc thcrc
exists an, interpretation I' , I'cl", for which S is true and
a function 4 for which Z , l e (, ,) ~ I , , + L $ (n + l) for n 2 1 , such
that I' is the homomorphic imagc of some completion

W

n r 1

a
of * U I n $ (,) e9

Proof

n=1

That they possess property (I) is immediate. A comple-

tion I of a set U is formed from the latter set by

adding to it ground sentences consistent with it formed
from names and predicate letters occurring in members of
the latter set. Hence, all of the sentences M(a,+,!, . . . ,acinm),
n=l , 2, . . . , are true for I and therefore also S is true
for I .

Let S be true for I " . Choose a sequence bl, bz, . . . of
names of I" as follows:

(1) If names occur in S, list these first in the order in
which they are listed in a l , a 2 , . . . , (I , ;

(2) If no names occur in S a n d Q, is A , choose any name
of I" as bl ;

(3) Assume that the sequence of names has been com-
pleted for t members (t may be 0 if s ~~ 0 and Ql is E) . Let
n be the smallest integer for which q,j=t+ 1 for some j .
It then follows that for only one k is q n k = t + 1, so that one
can assume that bqx l , . . . , bVnk-, have already been chosen,
and further that Qk is E . Hence, choose bqnh to be such that

is true for I " .

W

n = 1

(Qk+lXk+l) . . (QmXm)M(hq+,,t. . . , h'h,k, Xl i i l , * * * 3x7,)

For any n, M(b,,, , . . . , b , i w , , t) is true for I " . Let P'I be
M(b,,,, . . . , bql,) and let P', be the product matrix of
P'n-l and M (b s x l , . . . , bqnm). Let be the set of ground
sentences in the jth conjunction of P T L . Then since P', is
true for I" for any n, there must be a 4' such that the
+'(n)th conjunction of I", is true for I" and I'?,e,(,) c
I 'n+l~. (n + l) for any n. Since I" is complete and U (n)

~ l " , there is a unique completion I' of U I ' n $ r (n) such

that Z'CZ". Since for any n, M(h,,?&,, . . . , bqnm) is true for
I ' , S also is true for I' .

From the manner in which the sets Ztnor(,) have been
defined, it follows that if Y W j is the set of ground sentences
in the j th conjunction of M(b, , , , . . . ,bqnm) then there

exists a function y such that U . I f k y (k) = I ' , e . (, ,) for all n .

Let J,i be the set of ground sentences in the j"' conjunc-
tion of M(aqnl, . . . , a,,,) and let 4 be a function such

that u Jky(k) =In$(n) for all 12. Let the map I) be the single-

valued map of the names a l , a 2 , . . . onto the names bl,
bz , . . . defined by: for all i, $ (a i) -b i . Let I* be the inter-

32 pretation with ground sentences G as members for which

m

n=1
W

n=1

?I

k=l

n,

k=l

IBM JOURNAL JANUARY 1960

+ (G) is in f ' . Then since U I1 , e (l l) LI" , there exists a

unique completion I of U I n + (,) such that ZLP. + is a

homomorphism of I onto Z'.
Corollary. For S not in D there exists an interpretation for
which S is true if and only if k,>O for all n.

Since by (I) if k,>O for all IZ then there exists a func-
tion 4 for which I n $ (, ,) ~ I , + l g (n + l) for all n, and hence by
(2) there exists an interpretation for which S is true. Con-
versely if there is a n interpretation for which S is true
then by (3) there is such a 4 and hence k,>O for all n.

Theorem 2

When S is in D and N==max(1, (n z - r + ~) ~) , the sets I,j
possess the following properties:

(I) For any n , l < n < N , for which k,+1>0 and any j ,
I l j < k,, + 1 , there exists an i such that I,i cZn+lj.

(2) For any function 4 for which L Z , + I ~ (, , ~ I) for

1 i n < N , S is true for any completion of U I , $ (, , .

(3) For any interpretation I" for which S is true there
cxists an interpretation I ' , I' c I " , for which S is true and a
function 4 for which In@(n) C I n + l $ (n + l) , for 1 <n<N, such
that I' is the homomorphic image of some completion of

u Zne(7,).

W

VI = 1
W

n= 1

W

n = l

N

n=1

Properties (I) and (2) follow in exactly the same man-
ner as in Theorem 1. The proof of (3) is similar to that
in Theorem 1 except that the sequence b l , b z , . . . of names
of I" i s finite, the sequence being terminated after all the
names in S have been listed and either one member has
been chosen for each existentially quantified variable in S,
should one exist, or otherwise after only one member has
been chosen. Then (b,,,, . . . , bqnm) is defined for 1 I n < N .
Similarly one can prove:
Corollary. For S in D there exists an interpretation for
which S is true if and only if k,>O for n<N.

The program to produce proofs for
logically true sentences

The input for the program is a standard form of the nega-
tion of the sentence T to be proven. The input data pro-
vides, therefore, a matrix form as well as a list of quan-
tifiers with the dependencies of the existential quantifiers
indicated. The matrix form data consists of a list of 36-bit
computer words each member in the list being an atomic
wff, negated or not, or a dividing word to indicate the
occurrence of the connective "v". The negated and un-
negated atomic wff are expressed within the computer
words as follows: The sign bit is used to indicate the
occurrence of the negation sign, a negative word being a
negated atomic wff. The next five bits are used for the
predicate letter while the remaining 30 bits are used for
the variables in a manner dependent upon the number of
variables. The 30 bits are broken up, as nearly as possible,
into equal fields, the number of which is the same as the

maximum number of variables attached to predicate
letters in the sentence to be proven. Variables are ex-
pressed as non-zero binary numbers occupying the fields
of the 30 bits. The names which replace the variables are
also binary numbers and occupy the same field as the
variable they replace. Thus positive and negative ground
sentences and unnegated and negated atomic wff are rep-
resented in the program within a single computer word
in exactly the same manner. There results a limitation on
the maximum number of names that can be introduced
which is determined by the maximum number of variables
attached to predicate letters; for example, if this number
is 6 then the maximum number of names that can be intro-
duced is Z5- 1, or 31.

In outline the program is very simple. A substitution
generator generates the rn-tuples (aqnl,. . . , uqnm),
n= 1, 2, . . . , and as each is produced it is substituted into
the matrix form to produce the matrices M(aqnl , . . . ,u,,,,,,).
As each matrix M(uqml , . . . , u , J , n>l, is produced it
is multiplied by the previous product matrix P,-1 and the
resulting product matrix P , is tested to determine whether
or not it has any conjunctions. Should P, have no con-
junctions then a proof has been produced for the sentence
to be proven. Should the sentence T to be proven be a
member of M and should n = N for T , then if P , has a
conjunction, T is not provable. Should n<N or should T
not be a member of M then if P , has a conjunction the
program goes on to produce P,+l .

This outline of the program is not complete, however,
since in order to conserve computing time and space, the
matrices are coded before being multiplied. A matrix is
coded by expressing each of its conjunctions as a pair of
36-bit computer words as follows: As the ground sen-
tences are produced by substitution into the negated and
unnegated atomic wff of the matrix form, they receive
in turn a code number from 1 to 36, a ground sentence
with a negation sign attached receiving the same number
as the ground sentence without the negation sign. In the
pair of words representing the conjunction of a matrix, a
zero in the i t h place of the first word indicates that the
negative ground sentence with that code number is a
member of the conjunction, and a zero in the ith place of
the second word indicates that the positive ground sentence
with that code number is a member of the conjunction.

The limitation of 36 on the number of distinct positive
ground sentences that may appear is severe. Therefore,
immediate consideration is being given to writing a pro-
gram in which each conjunction of a matrix is expressed
by two, four, six, et cetera, words as needed, allowing the
limitation to be raised to 72, 108, 144, et cetera. However,
two features in the program for conserving code numbers
make the limitation less severe than would first be
apparent.

A ground sentence which appears in every conjunction
of some P , must necessarily appear in every conjunction
of Pn+j for j > O . Hence such common factors can be
removed from all of the conjunctions of Pn and put onto
a special list called the truth list. Since a ground sentence
on the truth list does not require a code number, the

inclusion in the program of a routine to remove common
factors results in a saving of code numbers.

If z n j c z n k , for some j and k, then it is clear from
Theorems 1 and 2 that there is no loss in ignoring the set
I n k and considering only further the set Z a i . For the pro-
gram this amounts to discarding redundant conjunctions
from P,, a redundant conjunction being one for which
another conjunction of P, exists, of which each ground
sentence occurs in the redundant conjunction. After the
removal of redundant conjunctions, fewer distinct atomic
sentences may occur in a product matrix than before the
removal so that code numbers may be freed for reuse.

The main steps in the program can now be fully
described.

(1) Should T not be in M or should T be in M and n be
not greater than N for T , then generate a new substitution
(a,,,,, . . . , a,,,,) according to the dependencies of existen-
tially quantified variables on universally quantified vari-
ables. Should T be in M and should n be greater than N ,
then T is not logically true and the program stops.

(2) Generate the j t h conjunction of M(aYnlr . . . , uqnm)
by substituting uqnl for XI, . . . , uqnm for X , in the jth
conjunction of the matrix form of the input. If a member
of the conjunction contradicts any ground sentence on the
truth list, or another ground sentence in the conjunction,
discard the conjunction and go to (5).

(3) Determine the code numbers that have been previ-
ously assigned to the ground sentences of the conjunction,
and assign new numbers to those ground sentences which
have not previously been assigned numbers. Should a code
number larger than 36 be required, the program stops.
Express the conjunction as a pair of words.

(4) Form the product of the coded jth conjunction with
the previous product matrix, dropping from the resulting
new product any contradictory conjunctions. As each
conjunction of the new product matrix is formed, test to
see if it is redundant or if it makes an already appearing
conjunction of the new product matrix redundant, and
store it according to the results of this test.

(5) Check to see if the new product matrix is complete;
that is check to see if j is the number of conjunctions in
the matrix form. If the product matrix is not complete go
to (2) to generate the j + lth conjunction; if it is, go to (6).

(6) Check to see if the product matrix is empty. If it is,
the proof is complete and the program stops. If it is not,
remove common factors from the product matrix and put
them onto the truth list. Determine and record all code
numbers that have been freed for reuse.

The only change that would be necessary in order to
use the program for proving theorems in an axiomatic
theory with axioms SI, Sz, . . . , would be in (1) and (2) .
Instead of only generating substitutions for a matrix form
obtained from the negation of the theorem T to be proven,
the program would also have to generate substitutions for
matrix forms obtained from the axioms. The remainder
of the program would be unchanged.

IBM .I

33

lOURNAL JANUARY 1960

Table I The sentences to be proven.ll

(1) (E ~) (A ~) (A ~) { [((F ~ ~ G ~) ~ F ~) & ((F ~ ~ H ~) ~ G X) & (((F ~ ~ G ~) > H ~) ~ H X)] ~ (F Z ~ G Z ~ ~ ~) } .
(2) (Ex)(Ey)(Az){[(Fxz-Fzy)&(FzY-Fzz)&(Fxy-Fyx)]~(Fxy~Fxz)}.

(3) (Ex)(A~)(Az){C((Fyz~(Gy~Hx))~Fxx)&((Fzx~Gx)~Hz)&Fxyl~Fzz}.

(4) (E x) (~ ~ ~ ~ A z) { ~ ~ x ~ ~ ~ F y z ~ F z z) ~ ~ ~ ~ ~ x ~ ~ G ~ ~ ~ ~ (G x z ~ G z z)) } .

(5) {C(Ax)(EY)(FxYvFYx)&(Ax)(Ay)(FxY~FYY)’(Ez)Fzz}.
(6) (Ax) (Ey) (Px 3 (Py vQy)), where the atomic wff “Px” is replaced by: (Eu) (Av) (Fux 2 (Gvu & G u x)) , the

atomic wff “Py” is replaced by a corresponding wff, and the atomic wff “Qy” is replaced by: (A u) (Av) (E w)
((Gvu v Hwyv) 2 Guw) .

(7) {[(Ax)(Kx>(Ey)(Ly&(Fxy>Gxy)))&(Ez)(Kz&(Au)(Lu>Fzu))]~(Ev)(Ew)(K~&L~~G~~)} .
(8) (3) in which the atomic wff “Hx” is replaced by: (A u) (Ev)Huvx, and the atomic wff “Hz” is replaced by a corre-

sponding wff.

(9) (Ax)(Ey)(Az){(Pyx>(Pxz>Pxy))&(Pxy~(-Pxz~(Pyx&Pzy)))}, where the atomic wff “Pxy” is replaced
by: (A u) (Ev) (Fxuv & Gyu & “ H x y) , and the other atomic wffs are replaced by corresponding wffs.

Table 2 The input.

No. of
Quantifier List Conjunctions

Results from production runs10

The sentences for which proofs were attempted by the
program are given in Table 1. Information about the
quantifier list and matrix function provided by the sen-
tences of Table 1 are given in Table 2. Finally in Table 3
the results of the production runs are given. No names
appear in any of the sentences used as inputs. None of
the inputs to the program are in the class D although
Example (1) is a member of class M .

In evaluating the difficulty of Examples (6) , (S), and
(9) , it is important to recognize that although they are
described as substitutions into easily proven theorems
(the sentence of (9) into which the substitution is made
can be proven by the program in less than one-hundredth
of a minute), they are themselves only easily proven when

Table 3 The results.

No. of No. of
Status Time Proof Subst. Con j . Truth L. Code NO.

(1) Yes 0.01 Yes 4 4 10 0
(2) no 0.01 no 11 2 0 36+
(3) Yes 1.42 Yes 13 590 53 33
(4) Yes 21* no 7 2900 + 7 30
(5) Yes 0.01 Yes 3 2 4 5
(6) Yes 0.12 Yes 27 24 16 , 14
(7) Yes 0.01 Yes 5 6 4 12
(8) Yes 0.74 no 10 150 6 36+
(9a) Yes 15.06 no 3 1900 3 36+
(9b) Yes 21* no 6 1850 5 35

SialuJ indicates whether or not the sentence is logically true. Time is given in minutes. Proof indicates whether or not a proof was produced. No. of Subd. is
the number of times a new matrix was generated. No. of Conj. is the maximum number of conjunctions in any product matrix. Truth L. is the number of
entries on the truth list. Code No. is the maximum number of code numbers used. The two starred examples were manually stopped. 34

IBM JOURNAL JANUARY 1960

the substitutions are recognized. When the substitutions
are disguised, as they are in the input data for the program,
the difficulty of the example is considerably increased.

One run was used to evaluate that part of the program
which removes redundant conjunctions from the product
matrix, as this portion of the program consumes a large
proportion of the running time when the product matrix
is large. The result was to prove conclusively the value of
this portion of the program.

A number of examples other than those used in pro-
duction runs were considered but rejected because they
are all too easy for the program; that is, the program can
produce a proof for them in less than one-hundredth of
a minute. Included in such examples are all of the syllo-
gisms. Indeed, as the syllogisms belong to that special
class of sentences which are decidable by the program,

tions in the product matrix can increase rapidly. But the
removal of contradictory conjunctions and redundant
conjunctions, in some cases at any rate, keeps the number
of conjunctions down to a manageable size. The limitation
on the number of coding numbers, although quite strin-
gent, is not as serious in practice as would first appear.
The results certainly encourage the writing of programs
with double or triple the present number of coding num-
bers. Pessimism regarding the program is confirmed, how-
ever, in one respect. If the quantifier list of the input
contains m universal quantifiers, then in order to consider
all possible substitutions of up to k names into the uni-
versally quantified variables it is necessary to generate km
matrices and form their product. Thus, for example, in
(9a) if all possible substitutions of up to only three indi-
viduals are to be considered then 36 or 729 matrices must

the program can decide of any syllogism whether or not be generated and multiplied, the product matrix of which
it is valid within one-hundredth of a minute. can have up to 2 P 9 conjunctions! Considering the num-

In Table 2, the dependencies indicated by the order of ber of multiplications performed by the program in pro-
the quantifiers in the quantifier list were the only ones indi- duction runs, it is clear that success can only be had with
cated. Two different equivalent quantifier lists for Exam-
ple (9) were tried. The number of conjunctions is the
number in the matrix function. Variables in a group with
E or A indicate a sequence of quantifiers.

Conclusions

Without considering the results of the production runs, it
might be concluded that the program had little chance of
success. With each multiplication the number of conjunc-

References and footnotes

1. Actually, from a theorem of Church in “An Unsolvable
Problem of Elementary Number Theory,” American
Journal of Mathematics, 58, 345-363, it can be concluded
that there can exist no effective process for the construc-
tion of interpretations for sentences. In particular, there-
fore, there can exist no effective process for determining,
in general, whether or not it is true that k,>O for all n.

2. E. W. Beth, “Semantic Entailment and Formal Deriva-
bility,” Amsterdam, North Holland Publishing Co., 1955.
K. J . J. Hintikka, “Form and Content in Quantification
Theory,” appearing in “Two Papers on Symbolic Logic,”
Helsinki, Acta Philosophica Fennica, Fasc. VIII, 1955.

3. G. Gentzen, “Untersuchungen iiber das logische Schlies-
sen,” Mathematische Zeitschrift 39, 176-210, 405-43 1
(1934-5). J. Herbrand, Recherches sur la thdorie de la
dimonstration, Travaux de la SociCt6 des Sciences et des
Lettres de Varsovie, Classe 111 sciences mathkmatiques
et physiques, No. 33 (1930).

4. A. Newell, J . C. Shaw and H. A. Simon, “Empirical Ex-
plorations of the Logic Theory Machine: A Case Study
in Heuristics,” Proceedings o f The Western Joint Com-
puter Conference, 218-230 (1957). Further references
can be obtained from this paper.

5. H. L. Gelernter and N. Rochester, “Intelligent Behavior
in Problem-Solving Machines,” IBM Journal, 2, 336-345
(1958). See also, H. Gelernter, “Realization of a Geom-
etry Theorem Proving Machine,” Proceedings of the
International Conference on Information Processing,
Paris, 1959.

i 6. B. Dunham, R. Fridshal and G. L. Sward, “A Non-
Heuristic Program for Proving Elementary Logical Theo-

such a problem by a program which is more discriminat-
ing in the matrices that it generates and multiplies. Exam-
ple (4) is a good case in point. A very short proof of this
sentence can be produced by hand simulation if a very
obvious refinement is added to the routine for generating
matrices. Nevertheless, the program has succeeded in
producing proofs for moderately complicated sentences.
For simple logical deductions such as the syllogisms, the
program has very fast logical facility.

rems,” Proceedings of the International Conference on
Information Processing, Paris, 1959.

7. Hao Wang, “Toward Mechanical Mathematics,” see p. 2,
this journal.

8. There has come to my attention the work of D. Prawitz,
H. Prawitz, and Neri Voghera of Stockholm. A brief
outline of their work appears in the Proceedings of the
International Conference on Information Processing,
Paris, 1959, in the discussion of the session on theorem
proving.

9. A stronger result can be proven but is not needed for the
purposes of this paper. For the stronger result I’ is such
that any sentence is true for I’ if and only if it is true
for I ” .

10. First announced in a paper “A Program for the Produc-
tion of Proofs for Theorems Derivable within the First
Order Predicate Calculus from Axioms,” Proceedings of
the International Conference on Information Processing,
Paris, 1959.

1 1 . Alonzo Church, Introduction to Mathematical Logic,
Princeton University Press, 1956, is the source of Exam-
ple 1 to 4 and 9. They are, respectively, Ex. 3, p. 262;
2, p. 265; 1, p. 262; 5, p. 265; and 2, p. 262. Example 7
appears in Rosser, J. B., Logic for Mathematicians,
McGraw-Hill Book Co., New York, p. 150 Ex. (e).
Example 6 and the modification for Example 9 are due
to J. D. Rutledge.

Received April 20, 1959 35

IBM JOURNAL JANUARY 1960

