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A Proof  Method  for Quantification Theory: 
Its Justification and Realization 

Abstract: A  program i s  described which can provide a computer with quick logical  facility for  syllogisms and 

moderately more complicated sentences. The program  realizes  a  method for proving  that a sentence of  quan- 

tification theory i s  logically true. The program, furthermore, provides a decision procedure over a subclass of 

the sentences of quantification theory. The  subclass of sentences for which the program provides a decision 

procedure includes all syllogisms.  Full justification of the method i s  given. 

A program for the IBM 704 Data Processing Machine i s  outlined  which  realizes the method. Production  runs of 

the program  indicate  that for a class of moderately complicated sentences the program can produce proofs in 

intervals ranging  up to two minutes. 

Introduction 

Before a rigorous mathematical proof of any theorem can 
be  given, it is necessary that the theorem, and  the axioms 
from which the theorem is to be deduced, be precisely 
stated in an unambiguous language. The formal language 
variously called the first-order predicate calculus or logic, 
the first-order functional calculus or logic, or quantifica- 
tion theory, is adequate for  the expression of any theorem 
or axiom. Further, although the sentences of quantifica- 
tion theory  are ambiguous in  the sense of being capable 
of possessing many different meanings, it is an easy matter 
to remove this ambiguity simultaneously from all sen- 
tences of the language by assigning meaning to  the primi- 
tive symbols from which the sentences are formed. But 
most important of all, it is possible to give for sentences 
T ,  SI, Sz, . . . of quantification theory a precise definition 
of “T is a logical consequence of the sentences SI, S2, . . .” 
to replace the intuitive but vague notion in  natural  lan- 
guages that  one sentence is a logical consequence of 
other sentences. Thus quantification theory not only pro- 
vides a language for mathematics but also permits a 
description of what constitutes a rigorous mathematical 
proof. 

The primitive symbols of quantification theory are 
brackets (,) , the logical connectives -, &, v, 1, =, the 
predicate letters A ,  B, C, . . . the individual names, a, b, c, 
. . . the individual variables x, y ,  z, . . . and  the quantifiers 
E and A .  Any finite sequence of these primitive symbols 
is a formula of the theory. From  the formulae of the 

28 theory are selected some which in some sense are mean- 

ingful and  are  therefore called well-formed  formulae, or 
briefly wff. From  the wff of  the theory will  be selected 
the sentences of the theory. 

Inductive definitions of  wff and of “the  (individual) 
variable X occurs free  in  the wff S’ are given simultane- 

1. A  formula consisting of a predicate letter followed by 
any  number of individual names or variables is an atomic 
wff and a wff and the variables occurring in  it occur free. 

2. If S is a wff then so is ”s, and  the variables occurring 
free in S occur free  in -S. 

3. If S and T are wff then so are (S & T )  , (S v T )  , 
( S  3 T )  and (S 3 T ) ,  and the variables occurring  free 
in either S or T occur free in these wff. 

4. If S is a wff and X is any variable then ( E X ) S  and 
( A X ) S  are wff and  the variables other than X occurring 
free in S occur free in these wff. 

ously : 

A variable X which occurs in a wff but does not occur 
free is said to be bound in the wff and must, therefore, by 
part (4) of the definition, occur with quantifier symbols 
as in ( E X )  or ( A X ) .  A sentence of the theory is a wff in 
which no variable occurs free. Calling such formulae of 
the theory sentences is reasonable if the primitive symbols 
of the theory are interpreted as follows: 

Atomic sentences (atomic wff which are sentences) 
can be understood as abbreviations for sentences such as 
“1 + 3 =5”, “3 <7”, or “John is tall”; these could be ex- 
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pressed in quantification  theory  as A 135, B37, or Ca, 
allowing numerals also to be names in  quantification 
theory. Atomic wff which are  not sentences can be under- 
stood  as  abbreviations  for  sentence  forms  such  as 
“1+~=5”, or “ x + y = 5 ” ,  or “ x + y = z ” ,  or “3<y” or 
“x<y” or “x is tall”, where if variables in a sentence 
form  are replaced by names the result is a  sentence. The 
logical  connectives -, &, v, 3 and E are  to be  understood 
as expressing negation,  conjunction,  disjunction,  implica- 
tion and equivalence respectively in the sense that,  for 
example, (S & T )  is a  sentence  which is true if and only 
if both S and T are  true, and (S 3 T )  is a  sentence  which 
is  true if and only if S is false or T is true,  and -S is a 
sentence which is true if and  only if S is false. When  the 
logical connectives are  attached  to sentence forms  rather 
than sentences the result is to be understood as  a new 
sentence form with the expected  properties. For example, 
if S(x) is a  sentence form with one  free variable x, then 
- S ( x )  is a  sentence form with one  free variable x and 
such  that  for  any  name a, the sentence -S(a) formed 
from - S ( x )  by replacing x everywhere by a is true if and 
only if S(a) is false. Finally  a  sentence  such  as ( E x ) S ( x )  
can be  understood to be a  sentence  which is true if and 
only if for some name a,  S ( a )  is true, while a sentence 
( A x ) S ( x )  can  be  understood to be  a  sentence  which is 
true if and only if for every possible name a, S ( a )  is 
true.  For sentence forms S(x ,  y )  with  two free variables 
x and y ,   ( E y ) S ( x ,   y )  and ( A y ) S ( x ,   y )  are sentence forms 
with one  free variable x and  are related  in the obvious 
manner  to  the sentence form S(x, y ) .  

A  sentence is generally thought  to be either true or 
false. But  a  sentence of quantification theory  may be true 
or false  depending upon the interpretations given to  the 
predicate  letters and names  which occur  in it. Thus 
“ ( E y )   ( B a y  & C y ) ”  is true when “Bay” is understood as 
“a is the  brother of y”,  “Cy” is understood  as “ y  is tall” 
and “a” is the name of someone  with a tall  brother,  but 
can be  false under  other interpretations. 

If atomic sentences or sentences formed  from  atomic 
sentences by attaching a  negation sign “-” are called 
ground sentences, then by an  interpretation  can be under- 
stood a set I of ground sentences of quantification theory 
with the following properties: 
1. No atomic sentence and its negation are members of I 
( I  is consistent) ; 

2. For every possible atomic sentence  which can be 
formed  from  names  and predicate  letters occurring in 
ground sentences in I ,  either the sentence or its negation 
is a member of I ( I  is compZete) . 
A predicate letter or name  occurring  in a member of an 
interpretation I is said to be  a predicate letter or  name of I .  

The members of an  interpretation I are  the only ground 
sentences of the language which are  true  for  the interpre- 
tation.  A ground sentence not in I ,  but  formed  from a 
predicate letter and  names of I ,  is false for I .  Hence a 
sentence in which occurs a  predicate  letter or name  not of 
an  interpretation is neither true  nor false for  the  interpre- 
tation. For sentences  which are  not  ground sentences and 

in which occur only predicate letters and names of I ,  
“true  for  the  interpretation”  and “false for  the  interpre- 
tation”  can be readily defined considering the meanings 
which have  been given to  the logical connectives  and 
quantifiers. Thus (Ey)   (Bay  & C y )  is true  in  the  interpre- 
tation {Ca, Cb, Bab,  -Bba,  -Baa,  -Bbb} because Bab 
and Ch are  true in the  interpretation  and  therefore also 
(Bab & Cb)  and hence the above  sentence. But the same 
sentence is false  in the  interpretation {Ca, -Cb, Bab, 
-Bba,   -Baa,   ”Bbb} because there is no  name 01 such 
that both Baa and Ca are  true in the  interpretation,  and 
hence no  name a for which (Baa & C a )  is true  for  the 
interpretation. Clearly any consistent  set I of ground sen- 
tences can be completed to  an  interpretation by adding to 
I ,  for any atomic sentence formed  from a  predicate  letter 
and names of I ,  either the  atomic sentence or its negation, 
should  neither  already appear  in I .  Such an  interpretation 
will be called a completion of 1. 

This definition of interpretation will appear a  little 
strange because it does not  require  the specification of any 
set of objects  which is to be the  range of the variables 
x, y ,  z ,  . . . , to which the  names a, b, c . . . are assigned 
or the properties and relations of which are  to be assigned 
to  the predicate  letters A ,   B ,  C, . . . . But  since it is possi- 
ble for every  object of a set  to be assigned a single name, 
it is irrelevant  whether one uses names  to discuss the 
objects or simply discusses the names. However, this has 
as  a  consequence that two apparently  quite different  inter- 
pretations may be, for all practical  purposes, the  same 
interpretation. An object given a single name in one inter- 
pretation  may be given a  different name,  or  many different 
names in another  interpretation.  For this  reason  the  notion 
of a homomorphism  for  interpretations is convenient. 

Let + be  a  single  valued mapping of the  names of an 
interpretation II onto  the  names of an  interpretation 12, 
and  for  any sentence S in  which  only names of I I  occur, 
let +(S) be the sentence  obtained from S by replacing 
each  name a occurring  in S by + ( a ) .  If for  any ground 
sentence G in which  only names of Il occur, G is a mem- 
ber of Il if and only if +(G) is a member of 12, t,b is said 
to be a homomorphism of II onto ZZ. If there exists a 
homomorphism of 11 onto I z  then I 2  is said to be a  homo- 
morphic image of 11. It  can be  readily seen that if + is a 
homomorphism of 11 onto 12  then  for  any sentence S, S is 
true  or false for I 1  if and only if +(S) is true  or false 
respectively for 1 2 .  

A  counterexample for a  conjectured  theorem T in  a 
mathematical  theory with  axioms SI, Sz, . . . consists in a 
mathematical  structure  for which S1, S 2 ,  . . . are all true 
and  for which T is false. Assuming that T ,  S1, S 2 ,  . . . are 
all sentences of quantification theory, this can be more 
precisely expressed: The counterexample consists in an 
interpretation  for which SI, S 2 ,  . . . are all true and T is 
false. Thus, a conjectured theorem is actually  a  theorem 
if it is impossible to find a  counterexample for it. Hence 
one  can say that a  sentence T is a logical consequence of 
sentences SI, Sz, . . . if and only if it is not possible to find 
an  interpretation  for which SI, Sz, . . . are all true  and T 
is false. If T is a  logical  consequence of an  empty set of 29 
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sentences, that is, if it is impossible to find an interpreta- 
tion in which T i s  false,  then  T is logically true. 

A program  for the  IBM 704 Data Processing Machine 
will be described which will, for any logically true sen- 
tence T ,  construct  a proof that T is logically true.  For a 
special class M of sentences the  program will do more; for 
any member T of M the program can decide  whether or 
not T is logically true, produce  a proof of T  should it be 
logically true  and provide essentially a  counterexample to 
T  should T be  not logically true. The class M of sentences 
is sufficiently wide to include, for example, all syllogisms. 
Results of production runs will be given. In addition it 
will be shown  how  the  program can be adapted  for  pro- 
ducing  a proof that a  sentence T is a logical consequence 
of sentences S I ,  SZ, . . . . 

The theoretical basis of the  program is a process which, 
for  any sentence S of quantification  theory,  generates at 
the nth step of the process a finite number k,, k,20, of 
finite sets Inl, I n 2 ,  . . . , I n k ,  of ground sentences. Each set 
formed  at  the n+ l s t  step is either  one of the sets formed 
at the nth step or is obtained from  such a  set by adding 
new  members to it. Hence if k,>O for all n then  it is pos- 
sible to find a function + such  that In$(,) CZ,+lq( ,+l)  for 
all n. It is then  the case that  any completion of the set 

U In$( , )  is an interpretation for which S is true. Con- 
versely if there is any  interpretation whatsoever for which 
S is true, then there is also one which is a completion of 

U I n $ ( , )  for some +. It follows that there is an  interpre- 

tation for which S is true if and only if k,>O for all n. 
The process can be applied to proving that a  sentence 

T is logically true by taking  as input  to  the process the 
sentence -T. Should k,=O for some n, then T is true  for 
every  interpretation,  and  therefore logically true, since 
it is not possible for there to be an interpretation for 
which "T is true  and  thus  for which T is false. On the 
other  hand, however, the process cannot,  in general, show 
that a  sentence  T is not logically true;  that is, that - T has 
an interpretation, since it would be necessary to show that 
k,>O, for all n,  while only  a finite number of k,  can ever 
be computed.1 Nevertheless, for  one special class A4 of 
sentences of quantification  theory  the process does  actu- 
ally provide  a decision procedure; that is, for  any member 
T of M ,  if - T is used as input  for  the process, it will be 
possible to decide after a finite number of steps whether 
or  not T is logically true. For,  for any  member  T of M ,  
it is possible to  compute a number N such  that if "T is 
used  as input  to  the process then  there is an interpretation 
for which -T  is true if and only if k,>O for all n, n < N .  
Further if + is a  function  such that I n $ ( , )  C I n + 1 @ ( n + l )  for 

n < N ,  then  any completion of U I,$ (,) is an  interpreta- 

tion for which - T is true. Thus for T in M ,  if the  process 
is carried out with -T  as input and k,=O at the nth step, 
n < N ,  then T has been proven to be logically true; while 
if k,>O for  each  of  the first N steps of the process, T is 
known to be not logically true  and a  counterexample to T 

m 

n=1 

m 

n=1 

N 

n=1  

30 can actually be exhibited. 
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In  the description of the process  some well-known 
concepts and theorems from logic will be used. Two sen- 
tences are said to  be logically equivalent if and only if 
there exists no interpretation for which one is tsue and 
the other is false. A sentence in which no quantifiers 
appear,  and  which is in disjunctive normal  form, is called 
a matrix. Since a matrix consists of  one  or  more disjunc- 
tions of conjunctions of one  or  more ground sentences. 
from two matrices M1 and M Z  can be formed a product 
matrix as follows: For  each conjunction of M 1  and each 
conjunction of M P ,  form a  conjunction of the  product 
matrix by conjoining the two conjunctions.  Contradictory 
conjunctions, i.e., ones in which both  an atomic  sentence 
and its negation appear,  can be dropped  from  the  product 
matrix. 

A wff which is not  a  sentence but is in disjunctive nor- 
mal form  and does not contain any quantifiers is called a 
matrix form. A  sentence  which is in prenex form,  that is, 
one in which all of the quantifiers occur initially, and 
which consists of a  sequence of quantifiers attached  to a 
wff which is a  matrix form, will be said to be in standard 
form. For  any sentence of quantification theory,  there 
exists a sentence in  standard  form which is logically 
equivalent to  the given sentence. A  sentence which is in 
standard  form  and which is logically equivalent to  a given 
sentence will be said to be a standard  form of the given 
sentence. 

The original motivation for  the proof method of this 
paper was the  method of semantic  tableaux of Beth, 
although in its present form it is closer to  the work of 
Hintikka.2 The proof method is related in  form, if not 
entirely in motivation, to  the methods of Herbrand and 
G e n t ~ e n . ~  

Although much previous work has been done in prov- 
ing  theorems by machine, the present  work is the first 
working program for quantification  theory. The  work of 
Newell, Shaw and Simon did not  have as its primary aim 
the proof of theorems,  but  did  result in a program  for the 
propositional 10gic.~ 

Gelernter's  and Rochester's program5  for proving 
theorems in elementary  geometry is applied to proving 
theorems which can be put into the standard form: 

( A X , ) .  . e ( A X , )   ( P ( X 1 , .  . X , )   . Q ( x l , .  - 9  X , ) ) ,  
where P ( X 1 ,  . . . , X , )  and Q(X1,  . . . , X , )  are conjunc- 
tions of atomic  wff, from axioms which can be put  into 
the same standard  form. Although there exists a simple 
decision procedure for theorems in such an axiomatic 
theory, the Gelernter-Rochester program does not  make 
use of it. Their  program, with motivations  similar to those 
of Newell and Simon, instead of exhaustively generating 
substitutions for  the axioms, chooses substitutions which 
are expected to lead more directly to a proof of the 
theorem. Dunham, Fridshal and Sward  have developed a 
program which uses an efficient decision procedure for 
theorems in propositional logic.6 The work of Wang is 
most  directly  related to  the present paper.? Wang  has 
written  two  programs and  has proposed a third.  His first 
program is a decision procedure for theorems of the 



propositional logic, his second  a  decision procedure  for 
theorems of quantification  theory  which are  members of 
the Class M ,  while the proposed program is a proof 
method  for theorems of quantification theory which  incor- 
porates the decision procedure of the first  two  programs. 
Thus  the  intention of Wang's third  program is exactly 
the  same as the  program outlined in this paper;  the two 
programs differ, however,  in  several ways. For example, 
it is based on a method of proof more directly  related to 
that of Gentzen  and  Herbrand  rather  than  that of Beth 
and  Hintikka. Also, at  the  same time, Wang's program 
is to accomplish more,  for  it is to accept  as input  data  the 
sentence to be  proven, while the  input  data  for  the pro- 
gram of this paper is a standard  form of the negation of 
the sentence to be  proven. A further comparison of the 
two  programs will have  to wait upon  production  runs 
from Wang's program8 

The process  which has been described  as the theoretical 
basis of the  program of this paper is given in detail  in 
the next  section. The following  section  describes the pro- 
gram  for  the  IBM 704 Data Processing Machine  for 
proving  sentences to  be logically true,  and its  extension 
to a program  for proving that a given sentence is a  logical 
consequence of other sentences. Results of production 
runs  are given in  the subsequent  section. 

The process 

Given  any sentence,  choose  a standard  form S for it. Then 
S can be written: 

(Qlxl) ( Q z X P )  . . . ( Q m X m ) M ( X l , .  . . ,  X , ) ,  
where X I ,   X z ,  . . . , X ,  are all the variables  which occur 
free  in  the  matrix  form M ( X 1 ,  . . . , X,)  and  each Qi is 
either E or A .  If Q j  is E ( A  ) , then Xi is said to be existen- 
tially (universally) quantified. 

The  matrix  form M ( X 1 ,  . . . , X,)  consists of the dis- 
junction of one  or  more conjunctions of one  or  more basic 
sentence forms  or basic sentences. Two conjunctions are 
said to be  linked by given variables if there exists a finite 
sequence of conjunctions of the  matrix  form, beginning 
with one of the conjunctions and  ending with the  other, 
such  that  for  each adjoining  pair of conjunctions  in the 
sequence, one of the given  variables occurs  free  in  both 
members of the pair. An existentially quantified  variable 
Xi  is said to depend upon all universally quantified  vari- 
ables X i  for which i<j and which occur  free  in conjunc- 
tions  where Xi  occurs  free,  or which are linked to  the 
conjunctions in which Xi occurs  free by the universally 
quantified  variables Xk for which j<k. 

Let  there be  r universally quantified  variables X,,, X,, ,  
. . . , X+. Then a  sequence of r-tuples (pnl,  pn2, . . . , pnr),  
n= 1, 2,  . . . , of positive non-zero  integers is generated as 
follows: 
(1)  For all j ,  p l j= l ;  
(2)  Let p, be  the  maximum of pnl,   p,~,  . . . , pn7,  then 
(a) if for all j ,  l<j<r,   pni=pn,  then  pn+lr=pLn+l  and 
P , + ~ ~ =  1 for  j<r; (b) if there is a  k such  that pni=pn for 
k<j<r  and Pnk"pn-1, then Pn+li=Pni for l i j < k ,  
Pn+lk=pn, and  pn+lj=1  for  k<j<r; (C) if Pnr<pu,, then 

pn+lr=pnr+l  and  pn+li=pni  for  l<j<r; (a) if there is a 
k such  that pni=pn for  k<j<r  and Pnk<p.n-1, then 
Pn+lj=Pni for  I<j<k,  Pn+lk=Pnkfl,  Pn+l,r=pn  and 
pn+li= 1 for  k<j<r. 

The sequence of r-tuples so generated is without dupli- 
cations and is such  that  for  any k, 1 Q k<r,  and  any posi- 
tive  non-zero  integer p ,  every  k-tuple of numbers rn, 
1 < m<p,  occurs  in  the sequence  (p,(,.-k)+l, . . . , PnT), 
n= 1, 2, . . . , before  any k-tuple with a number p f  1 
appears. 

A  sentence S in standard  form is a member of the set 
D if and  only if there is no (existentially  quantified) 
variable of S dependent  upon  any (universally  quantified) 
variable of S. A sentence T i s  then  a  member of the set M 
if and only if the sentence - T has a standard  form which 
is a member of D.  

Let  there  occur s names  in S.  Let S not  be  in D. A 
sequence (qnl ,  qn2, . . . , qnm),  n= 1,2 ,  . . . , of rn-tuples 
of positive non-zero  integers is generated  as  follows: 

(1)  For all k and n, if Xk is universally quantified and 
k = q ,  then qnk'pnj; 

( 2 )  For all k, if Xk is existentially quantified and is de- 
pendent  upon  the variables Xui l ,  . . . , Xujt,  then (a) qlk 
is the  maximum of s+ 1, qll+ 1, . . . , qlk-l+ 1; (b) for 
all n> 1, if h is the smallest positive integer for which 
(pnjl, . . . , pnit) is identical  with Phil, . . . , phit), then if 
h<n, q n k  is qhk; while if h =n, qnk is the  maximum of 

qnl+ 1, . . . , qnk-lf 1; in particular if t=O, then qnk=qlk. 
Should S be  in D so that  it  can be  assumed that  in  the 

sequence Ql, Q2, . . . , Qm no A precedes an E, then a  finite 
sequence ( qnl, . . . , qnm), n = 1,2,. . . , max(  1, ( r n  - r +s) +') , 
of m-tuples of positive non-zero  integers is generated  as 
follows: 

(1)  For all k and n, if x k  is universally quantified and 
k = q ,  then q,k=pni; 

( 2 )  For all  k and n, if Xk is existentially quantified, then 
q n k  is the  maximum of s f  1, qll + 1, . . . , q1k-l-k 1. In 
particular,  therefore, if either r=O or  r=m,  then only one 
term is generated. 

Let a l ,  a2, . . . , a,, u ~ + ~ ,  . . . be  a list of names of quan- 
tification theory  in which the  names al , a2, . . . ,a, which oc- 
cur  in S are all listed first. Let P1 be the  matrix M ( a q l l ,  
. . . , aql,), and  for n > l ,  let P, be  the  product  matrix of 
P,-l with the  matrix M(aq,,, . . . , a,,,). For S in D, P, is 
definedfornGmax(1, (m-r+s)'),whileforSnotinD, 
it is defined for all n 2  1. Then  for  any n and j ,  Z n j  is the set 
of ground sentences  conjoined  together to  form  the jth 
conjunction of P,. Let k, be the  number of conjunctions 
of P,. 

0 Theorem I 

For S not in D the sets Z,i possess the following  properties: 

( 1) For  any n for which k,+l> 0 and  any j ,  1 I j <  kn+l, 
there exists an i such  that ZnicZn+li; 

( 2 )  For any function + for which CZ,+lg(,+l) for 

s + l ,  q11+1,. . , q1rnf1,. - .  , q n - l l f l , .  . 3 qn-lrnfl, 

31 
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n 2  1, S is true  for  any complction of U I n $ ( , , ) ;  

(3)  For any interpretation I" for which S is truc  thcrc 
exists an, interpretation I' ,  I'cl", for which S is true and 
a function 4 for which Z , l e ( , , ) ~ I , , + L $ ( n + l )  for n 2 1 ,  such 
that I' is the  homomorphic imagc of some  completion 

W 

n r  1 

a 
of * U I n $ ( , )  e9 

Proof 

n=1 

That they possess property ( I ) is immediate. A comple- 

tion I of a set U is formed  from the latter set by 

adding  to it ground sentences  consistent with it formed 
from  names  and predicate  letters occurring in members of 
the  latter set. Hence, all of the sentences M(a,+,!, . . . ,acinm), 
n=l ,  2, . . . , are  true  for I and therefore also S is true 
for I .  

Let S be true  for I " .  Choose  a  sequence bl,  bz,  . . . of 
names of I" as  follows: 

( 1 )  If names occur in S, list these first in the order in 
which they are listed in a l ,  a 2 ,  . . . , ( I ,  ; 

( 2 )  If no names occur  in S a n d  Q, is A ,  choose any name 
of I" as bl ; 

(3) Assume that  the sequence of names has been com- 
pleted for t members ( t  may be 0 if s ~~ 0 and Ql is E ) .  Let 
n be the smallest  integer for which q,j=t+ 1 for some j .  
It  then follows that  for only one k is q n k = t +  1, so that  one 
can assume that bqx l , .  . . , bVnk-, have already been chosen, 
and  further  that Qk is E .  Hence, choose bqnh to be such  that 

is true  for I " .  

W 

n = 1 

(Qk+lXk+l)  . . (QmXm)M(hq+,,t. . . , h'h,k,  Xl i i l ,  * * * 3x7,) 

For any n,  M(b,,, ,  . . . , b , i w , , t )  is true  for I " .  Let P'I be 
M(b,,,, . . . , bql,) and let P', be the product  matrix  of 
P'n-l and M ( b s x l , .  . . , bqnm). Let  be the set of ground 
sentences  in the jth conjunction of P T L .  Then since P', is 
true  for I" for  any n, there must be a 4' such that  the 
+'(n)th conjunction of I", is true  for I" and I'?,e,(,) c 
I 'n+l~. ( n + l )  for any n. Since I" is complete and U ( n )  

~ l " ,  there is a unique completion I' of U I ' n $ r ( n )  such 

that Z'CZ". Since for any n, M(h,,?&,, . . . , bqnm) is true  for 
I ' ,  S also is true  for I' .  

From  the  manner in which the sets Ztnor(,)  have been 
defined, it follows that if Y W j  is the set of ground  sentences 
in the j th  conjunction of M(b, , , ,  . . . ,bqnm) then there 

exists a function y such  that U . I f k y ( k ) = I ' , e . ( , , )  for all n .  

Let J,i be the  set of ground sentences in the j"' conjunc- 
tion of M(aqnl, .  . . , a,,,) and let 4 be a  function such 

that u Jky(k) =In$(n)  for all 12.  Let the map I) be the single- 

valued map of the  names a l ,  a 2 ,  . . . onto the  names bl, 
bz ,  . . . defined by:  for all i, $ ( a i )  -b i .  Let I*  be the inter- 
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n=1 
W 

n=1 

?I 

k=l 

n, 

k=l 
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+ ( G )  is in f ' .  Then since U I1 , e ( l l )  LI" ,  there exists a 

unique  completion I of U I n + ( , )  such  that ZLP. + is a 

homomorphism of I onto Z'. 
Corollary. For S not in D there exists an interpretation for 
which S is true if and only if k,>O for all n. 

Since by ( I  ) if k,>O for all IZ then there exists a func- 
tion 4 for which I n $ ( , , )  ~ I , + l g ( n + l )  for all n, and hence by 
( 2 )  there exists an interpretation for which S is true. Con- 
versely if there is a n  interpretation  for which S is true 
then by (3) there is such a 4 and hence k,>O for all n. 

Theorem 2 

When S is in D and  N==max( 1, ( n z - r + ~ ) ~ ) ,  the sets I,j 
possess the following properties: 

( I )  For any n ,  l < n < N ,  for which k,+1>0 and any j ,  
I l j <  k,, + 1 ,  there exists an i such  that I,i cZn+lj. 

(2) For any function 4 for which L Z , + I ~ ( , , ~ I )  for 

1 i n < N ,  S is true  for any  completion of U I , $ ( , , .  

( 3 )  For any  interpretation I"  for which S is true there 
cxists an interpretation I ' ,  I' c I " ,  for which S is true  and a 
function 4 for which In@(n)  C I n + l $ ( n + l ) ,  for 1 <n<N, such 
that I' is the homomorphic image of some  completion of 

u Zne(7,). 

W 

VI = 1 
W 

n= 1 

W 

n = l  

N 

n=1 

Properties ( I ) and (2) follow in exactly the  same  man- 
ner as in Theorem 1. The proof of (3) is similar to  that 
in Theorem 1 except that  the sequence b l ,  b z ,  . . . of names 
of I"  i s  finite, the sequence being terminated  after all the 
names in S have been listed and either one  member  has 
been chosen for  each existentially quantified  variable in S, 
should one exist, or otherwise after only one  member has 
been chosen. Then ( b,,,, . . . , bqnm) is defined for 1 I n  < N .  
Similarly  one can prove: 
Corollary. For S in D there exists an  interpretation  for 
which S is true if and only if k,>O for n<N. 

The program to produce proofs for 
logically true sentences 

The  input  for  the program is a standard  form of the nega- 
tion of the sentence T to be proven. The  input  data pro- 
vides, therefore, a matrix  form as well as a list of quan- 
tifiers with the dependencies of the existential  quantifiers 
indicated. The matrix form  data consists of a list of 36-bit 
computer words  each member in the list being an  atomic 
wff, negated or not, or a dividing word to indicate the 
occurrence of the connective "v". The negated and  un- 
negated atomic wff are expressed  within the  computer 
words as follows: The sign bit is used to indicate the 
occurrence of the negation sign, a negative word being a 
negated atomic wff. The next five bits are used for  the 
predicate  letter while the remaining  30 bits are used for 
the  variables  in  a manner  dependent  upon  the  number of 
variables. The  30 bits are broken up, as nearly  as possible, 
into  equal fields, the number of which is the  same as the 



maximum number  of variables attached to predicate 
letters in  the sentence to  be proven. Variables are ex- 
pressed as non-zero binary  numbers occupying the fields 
of the 30 bits. The names which replace the variables are 
also  binary  numbers and occupy the same field as the 
variable  they replace. Thus positive and negative ground 
sentences and unnegated and negated atomic wff are rep- 
resented in  the  program within a single computer word 
in exactly the same  manner. There results a  limitation on 
the maximum number  of names that  can be introduced 
which is determined by  the maximum  number of variables 
attached to predicate  letters; for example, if this number 
is 6  then the maximum number of names that  can be intro- 
duced is Z5-  1, or 31. 

In outline the program is very simple. A substitution 
generator  generates  the  rn-tuples (aqnl,. . . , uqnm), 
n= 1, 2, . . . , and  as each is produced  it is substituted  into 
the matrix form  to  produce the  matrices M(aqnl , .  . . ,u,,,,,,). 
As  each matrix M(uqml ,  . . . , u , J ,  n>l, is produced  it 
is multiplied by the previous product matrix P,-1 and  the 
resulting product matrix P ,  is tested to determine  whether 
or  not it has  any conjunctions.  Should P,  have  no con- 
junctions  then  a  proof  has been produced for  the sentence 
to be proven.  Should the sentence T to  be proven be a 
member of M and should n = N  for T ,  then if P ,  has a 
conjunction, T is not provable. Should n<N or should T 
not be a member of M then if P ,  has  a  conjunction the 
program goes on  to produce P,+l .  

This outline of the  program is not complete,  however, 
since in order to conserve computing  time  and  space, the 
matrices are coded before being multiplied. A matrix is 
coded by expressing each of its conjunctions  as  a  pair of 
36-bit computer  words  as  follows: As the  ground sen- 
tences are produced by substitution  into  the negated and 
unnegated atomic wff of the  matrix form, they receive 
in  turn a code number  from 1 to 36,  a  ground  sentence 
with a negation sign attached receiving the same  number 
as the  ground sentence  without the negation sign. In  the 
pair of words representing  the  conjunction of a matrix,  a 
zero in  the i t h  place of the first word indicates that  the 
negative ground  sentence with that  code  number is  a 
member of  the conjunction,  and  a  zero in  the ith place of 
the second word  indicates  that  the positive ground  sentence 
with that code number is a  member of the conjunction. 

The limitation of 36  on the number of distinct positive 
ground  sentences that may appear is severe. Therefore, 
immediate  consideration is being given to  writing  a  pro- 
gram  in which each conjunction of a  matrix is expressed 
by two, four, six, et  cetera, words as needed, allowing the 
limitation to be raised to 72, 108, 144, et cetera.  However, 
two features in the program for conserving code numbers 
make the limitation less severe than would first be 
apparent. 

A ground sentence which appears in every conjunction 
of some P ,  must necessarily appear  in every conjunction 
of Pn+j for j > O .  Hence such  common factors  can be 
removed from all of the conjunctions of Pn and  put  onto 
a special list called the truth  list. Since a ground sentence 
on  the  truth list does  not  require  a  code  number, the 

inclusion in the  program of a  routine to remove  common 
factors results in a saving of code numbers. 

If z n j c z n k ,  for some j and k, then  it is clear from 
Theorems 1 and 2 that  there is no loss in ignoring the set 
I n k  and considering only further  the set Z a i .  For  the pro- 
gram this amounts to discarding redundant conjunctions 
from P,, a redundant conjunction being one  for which 
another conjunction of P, exists, of which each ground 
sentence  occurs in the  redundant conjunction. After  the 
removal of redundant conjunctions,  fewer distinct atomic 
sentences may occur in a product matrix than before the 
removal so that  code  numbers  may be freed for reuse. 

The main  steps in the  program  can now be fully 
described. 

(1) Should T not  be in M or should T be  in M and n be 
not greater than N for T ,  then generate a new substitution 
(a,,,,, . . . , a,,,,) according to  the dependencies of existen- 
tially quantified variables on universally quantified vari- 
ables. Should T be in M and should n be greater than N ,  
then T is not logically true and the  program stops. 

(2) Generate  the j t h  conjunction of M(aYnlr . . . , uqnm) 
by substituting uqnl for XI, . . . , uqnm for X ,  in  the jth 
conjunction of  the matrix form of the input. If a  member 
of the conjunction  contradicts any ground  sentence on  the 
truth list, or  another ground  sentence in the  conjunction, 
discard the conjunction and go to (5). 

(3) Determine the code  numbers that  have been previ- 
ously assigned to  the  ground sentences of the conjunction, 
and assign new numbers to those  ground sentences which 
have  not previously been assigned numbers. Should  a code 
number larger than  36 be required, the  program stops. 
Express the conjunction as a  pair of words. 

(4) Form  the  product  of  the coded jth conjunction  with 
the previous product  matrix,  dropping from  the resulting 
new product  any contradictory conjunctions. As each 
conjunction of the new product matrix is formed, test to 
see if it is redundant  or if it makes  an  already  appearing 
conjunction of  the new product matrix redundant, and 
store  it according to the results of this test. 

(5) Check to see if the new product matrix is complete; 
that is check to see if j is the  number of conjunctions in 
the matrix form. If the  product matrix is not complete  go 
to (2) to generate  the j +  lth conjunction; if it is, go to (6). 

(6) Check to see if the product  matrix is empty. If it is, 
the proof is  complete and the program stops. If it is not, 
remove  common factors  from  the  product  matrix and put 
them onto  the  truth list. Determine and record all code 
numbers that  have been freed for reuse. 

The only  change that would be necessary in order  to 
use the  program for proving  theorems in an axiomatic 
theory  with axioms SI, Sz, . . . , would be in ( 1 )  and (2) .  
Instead of only  generating  substitutions for a  matrix form 
obtained from  the negation of the  theorem T to be proven, 
the  program would also have to generate  substitutions for 
matrix forms obtained from  the axioms. The remainder 
of the  program would be unchanged. 
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Table I The sentences  to be  proven.ll 

(1) ( E ~ ) ( A ~ ) ( A ~ ) { [ ( ( F ~ ~ G ~ ) ~ F ~ ) & ( ( F ~ ~ H ~ ) ~ G X ) & ( ( ( F ~ ~ G ~ ) > H ~ ) ~ H X ) ] ~ ( F Z ~ G Z ~ ~ ~ ) }  . 
(2) (Ex)(Ey)(Az){[(Fxz-Fzy)&(FzY-Fzz)&(Fxy-Fyx)]~(Fxy~Fxz)}. 

(3) (Ex)(A~)(Az){C((Fyz~(Gy~Hx))~Fxx)&((Fzx~Gx)~Hz)&Fxyl~Fzz}. 

(4) ( E x ) ( ~ ~ ~ ~ A z ) { ~ ~ x ~ ~ ~ F y z ~ F z z ) ~ ~ ~ ~ ~ x ~ ~ G ~ ~ ~ ~ ( G x z ~ G z z ) ) } .  

( 5 )  {C(Ax)(EY)(FxYvFYx)&(Ax)(Ay)(FxY~FYY)’(Ez)Fzz}. 
(6) (Ax) (Ey) (Px 3 (Py vQy)), where  the  atomic wff “Px” is replaced  by: (Eu)  (Av) (Fux 2 (Gvu & G u x ) ) ,  the 

atomic wff “Py” is replaced by a corresponding wff, and  the  atomic wff “Qy” is replaced  by: ( A u )  (Av) ( E w )  
( (Gvu v Hwyv) 2 Guw) . 

(7) {[(Ax)(Kx>(Ey)(Ly&(Fxy>Gxy)))&(Ez)(Kz&(Au)(Lu>Fzu))]~(Ev)(Ew)(K~&L~~G~~)} . 
(8) ( 3 )  in which the  atomic wff “Hx” is replaced by: ( A u )  (Ev)Huvx, and  the  atomic wff “Hz” is replaced by a corre- 

sponding  wff. 

(9)  (Ax)(Ey)(Az){(Pyx>(Pxz>Pxy))&(Pxy~(-Pxz~(Pyx&Pzy)))}, where  the  atomic wff “Pxy” is replaced 
by: ( A u )  (Ev) (Fxuv & Gyu & “ H x y )  , and  the  other  atomic wffs are replaced  by  corresponding  wffs. 

Table 2 The input. 

No. of 
Quantifier List Conjunctions 

Results from production runs10 

The sentences for which  proofs  were  attempted by the 
program  are given in  Table 1. Information  about  the 
quantifier  list and  matrix  function provided  by the sen- 
tences of Table 1 are given in  Table 2. Finally  in Table 3 
the results of the production runs  are given. No names 
appear  in  any of the sentences used as  inputs. None of 
the  inputs  to  the  program  are  in  the class D although 
Example ( 1) is a member of class M .  

In evaluating the difficulty of Examples (6) ,  (S), and 
( 9 ) ,  it is important to recognize that  although they are 
described  as  substitutions into easily proven  theorems 
(the sentence of (9)  into which the substitution is made 
can be  proven by the  program  in less than  one-hundredth 
of a minute), they are themselves only easily proven when 

Table 3 The  results. 

No. of No. of 
Status Time Proof Subst. Con j .  Truth L.  Code NO. 

(1) Yes 0.01 Yes 4 4 10 0 
(2)  no 0.01 no  11 2 0 36+ 
( 3 )  Yes 1.42 Yes 13 590 53 33 
(4) Yes 21* no 7 2900 + 7 30 
(5) Yes 0.01 Yes 3 2 4 5 
(6)  Yes 0.12 Yes 27 24 16 , 14 
(7) Yes 0.01 Yes 5 6 4 12 
(8) Yes 0.74 no  10 150 6 36+ 
(9a) Yes 15.06 no 3 1900 3 36+ 
(9b) Yes 21* no 6 1850 5 35 

SialuJ indicates whether or not the sentence is logically true. Time is  given  in minutes. Proof indicates whether or not a proof was produced. No. of Subd.  is 
the number of times a  new matrix was generated. No.  of Conj. is the maximum number of conjunctions in any product matrix. Truth L.  is the number of 
entries on the truth list. Code No. is the maximum number of code numbers used. The  two starred examples were manually stopped. 34 
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the substitutions are recognized. When the substitutions 
are disguised, as  they are  in  the  input  data  for  the  program, 
the difficulty of the example is considerably  increased. 

One  run was used to evaluate that  part of the  program 
which  removes redundant conjunctions from  the  product 
matrix,  as  this portion of the program consumes  a  large 
proportion of the  running time  when the  product  matrix 
is large. The result  was to prove conclusively the value of 
this portion of the  program. 

A number of examples other  than those used in pro- 
duction  runs were  considered but rejected  because  they 
are all too easy for  the  program;  that is, the  program  can 
produce a proof for  them in less than  one-hundredth of 
a minute.  Included in  such examples are all of the syllo- 
gisms. Indeed, as the syllogisms belong to  that special 
class of sentences  which are decidable by the  program, 

tions  in the  product  matrix can  increase  rapidly. But the 
removal of contradictory conjunctions and  redundant 
conjunctions, in  some cases at  any  rate, keeps the  number 
of conjunctions down  to a  manageable size. The limitation 
on  the  number of coding numbers,  although  quite  strin- 
gent, is not as  serious in practice  as  would first appear. 
The results  certainly encourage  the writing of programs 
with double  or triple the present number of coding num- 
bers. Pessimism regarding the  program is confirmed,  how- 
ever, in  one respect. If the quantifier list of the  input 
contains m universal  quantifiers, then  in  order  to consider 
all possible substitutions of up  to k names into  the uni- 
versally quantified variables it is necessary to generate km 
matrices and  form  their  product.  Thus,  for example, in 
(9a) if all possible substitutions of up  to only three indi- 
viduals are  to be considered  then 36 or 729 matrices must 

the  program can  decide of any syllogism whether or not be generated and multiplied, the  product  matrix of which 
it is valid within one-hundredth of a  minute. can  have  up  to 2 P 9  conjunctions!  Considering the  num- 

In  Table 2,  the  dependencies  indicated  by the  order of ber of multiplications performed by the  program in  pro- 
the quantifiers  in the quantifier list were the only  ones  indi- duction  runs,  it is clear that success can only  be had with 
cated. Two different  equivalent  quantifier lists for Exam- 
ple (9) were tried. The  number of conjunctions is the 
number in the matrix function. Variables  in  a group with 
E or A indicate a sequence of quantifiers. 

Conclusions 

Without considering the results of the  production  runs, it 
might  be  concluded that  the  program  had little chance of 
success. With  each multiplication the  number of conjunc- 
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