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Electrical Properties of Thin-Film  Semiconductors* 

Abstract: The theory of the electrical properties of metal films as given by Fuchs and Sondheimer is extended 

to nondegenerate semiconductors with ellipsoidal energy surfaces. A change of variables reduces the prob- 

lem to a simpler one with spherical energy surfaces but with electric and magnetic fields which are tilted with 

respect to the film. This is  solved to first order in the applied fields. The effective mobility and  Hall coefficient 

vary with film thickness  much as for a metal but show an anisotropy with  film orientation, even for cubic 

crystals. Anisotropy i s  observed for both diffuse and specular  surface scattering and for surface channels as 

well as films, and  it provides a means of measuring the effective mass ratio of the carriers. 

1. Introduction 

Fuchs’ has given the  theory of the electrical  conductivity 
of a thin  metal film, and Sondheimer,21 3 Chambers?  and 
MacDonald  and Sarginsons  have  extended it  to  the gal- 
vanomagnetic effects. The present paper presents  a similar 
analysis for a  thin single-crystal film of a  nondegenerate 
semiconductor. We shall be particularly concerned  in  our 
derivation to  take  proper  account of the ellipsoidal shape 
of the surfaces of constant energy in  the  band  structure of 
the film material. It will be shown that  the conductivity 
and  Hall coefficient of the film vary  with the  orientation 
of the  normal  to  the film with respect to  the crystallo- 
graphic axes, even for materials of cubic  symmetry such 
as  germanium  or silicon. This contrasts  with the isotropic 
behavior of these quantities  in the bulk material. This 
variation  permits an experimental  determination of the 
ratio of the components of the effective mass tensor. 

The problem of solving the Boltzmann  equation for a 
thin film and ellipsoidal energy  surfaces  with arbitrary 
electric and magnetic fields can be reduced by a change 
of variables to  the simpler  problem of solving the  equa- 
tion  with  spherical  energy  surfaces. Although  many 
writers have used a transformation of the propagation 
vector k alone  to simplify the algebra of various  calcula- 
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tions invc dving ellipsoidal surfaces,6a the usefulness of 
the complete transformation of the position vector x and 
the electric  and  magnetic fields as well as k seems not  to 
have been  pointed out. 

Although our explicit  results are given for diffuse sur- 
face scattering, we shall  show that even with  specular 
reflection the film conductivity can be anisotropic. We 
shall show too  that  the above transformation is also 
useful in the analysis of the electrical  properties of a 
surface  channel  and  that  the anisotropy of a channel is 
similar to  that  for a film. Previous  work on channels by 
Schrieffers and Zemel!’ has assumed  spherical  energy 
surfaces.1o 

The anisotropy  in the conductivity of thin  metal films 
due  to ellipsoidal energy  surfaces  has been derived by 
Englman  and  Sondheimer.ll  Their results are very simi- 
lar  to ours, apart  from  the difference in statistics. We 
also consider the  Hall coefficient, and  our  work  can be 
extended i n  a straightforward  manner  to  the magneto- 
resistance. 

2. Solution of the Boltzmann equation for a thin film 

We assume that  the surfaces of constant  energy  in the 
occupied regions of the Brillouin zone are ellipsoids of 
revolution  centered at  the extrema of the energy bands. 
In  the neighborhood of one  such  extremum  the energy is 
therefore 

E(k) = (ti2/2m) [a8(k~’+k2z)  +ocpks3] , (1) 143 
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the propagation  vector  relative to  the  extremum.  It is 
convenient first to solve the Boltzmann  equation for elec- 
trons in the neighborhood of a single such  extremum  and 
to calculate  their  contribution to  the  current density  in 
the film, then to  add  the contributions from the  several 
extrema.  Accordingly, we make use of a different coordi- 
nate system for  the ellipsoids at  the different extrema, 
choosing the 3-axis to coincide with the axis of rotation 
of the ellipsoid. 

If the  normal n to  the film makes an angle 0 with the 
symmetry axis of  the ellipsoid, and if x-= (XI, .x2, XQ) de- 
notes a point in coordinate space, we may describe the 
surfaces of the film by the  equations 

yi = .-x 

ui= ffi-5vi , (7) 
I -Xi 9 

& = , 

,’&=ai-*(a8*aI,) ;Hi , 
where a1 = a2 = ad and aQ =ap.  The  Jacobian of the  trans- 
formation  from k, x to w, y is unity, so that  the distribu- 
tion function f is appropriate  to either  set of variables, 
and in  terms of the new variables the Boltzmann  equation 
(5) takes the  form 

- u . V , f l  + (e/hc) (u x 4) . v,fi-fl/T 
nlxl +nsxa = i. d , ( 2 )  

nl=sin 0, nz=O, n3=cos 0 . (3)  In w-space the energy  surfaces are spherical, 

= (e/h)E - V , h .  (8) 

The electrons are accelerated by clcctric  and  magnetic t i 2  

fields E=(El ,E2 ,EQ)  and H - = ( H I ,  H z ,  H : j ) ,  and we 2m 
E(k) - ( w I ’ + w ~ ’ + w ~ ~ ) ,  

assume  in our calculation below that these fields are 
independent of position and  tinx. and u has the  form of a velocity in the new space: 

The distribution function  of  the electrons  may  be u-= ( l/ii) V,E(k) . 
Moreover, from ( 2 )  and (7) we obtain the  equation of 

(4) the film surfaces  in the new variables 

where fo=C exp( -E(k)/koT) is the  equilibrium distri- nl’yl+n3‘y3= +-d’ . (10) 
bution function.  The Boltzmann  equation  then  takes the 

I form  to first order in E, 
The new direction cosines of the  normal n‘ are 

where v is the velocity of an electron and - e  its charge. 
We  assume that scattering processes within the film may 
be represented by a term - [ f (k ) - f , , (k ) ] /~ (k )  and 
that  the relaxation  time T(k) depends on k only through 
the energy E(k). We shall show later  that  the use of 
such a  relaxation  time is not  strictly correct  for a thin 
film even if it is correct  for calculations of bulk conduc- 
tivity. However, the  error  made with this assumption is 
small. 

Scattering occurring  at  the  surface of the film imposes 
boundary conditions on  the solution of the Boltzmann 
equation. If the electrons are diffusely scattercd by the 
surface, these are1 

f,(k, + d )  = O  if (n . v ) < O ,  

fl(k, -d)=O if ( n . v ) > O .  (6) 

We shall  indicate  in  Section 4 how the calculations are 
modified if the electrons are in  part  scattercd  specularly 
at  the  surface. 

It is inconvenient to solve (5) in its present form 
because of  the complicated  geonlctry  introduced when 
the  normal n is not  along one of the principal axes of the 
ellipsoid. We therefore  make  the following transforma- 
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The effective thickness is 

2d‘= 2d/ff ,+ . (12) 

The new boundary conditions are  found  from (6) to be 

fl(w, + d ’ ) = O  if (n ’ .w)<O 

fl(w, - d ’ ) = O  if ( n ’ - w ) > O .  ( 1 3 )  

The equations (8) to ( 13)  are those  encountered  in 
calculating the response of electrons with spherical  en- 
ergy  surfaces to electric  and  magnetic fields Q and $ in a 
film of thickness 2d’. By means of this change of variables 
we have therefore  transformed  the problem with ellip- 
soidal  energy  surfaces into  an equivalent and simpler one 
with  spherical  surfaces;  however, the calculation is now 
more complicated than  that given by Fuchs, Sondheimer, 
and  other investigators  because even if E lies originally 
in the plane of the film and H is perpendicular or parallel 
to it, 6 and s j  are generally tilted with  respect to the film 
in the new space. 

The general  solution of (8) is a  complicated  function 
with which it is difficult to satisfy the  boundary condi- 
tions  except  in  simple  situations in which S, either is zero 
or is parallel to n’. We  have  therefore assumed that fl can 
be expanded  in powers of the  components of s j  and have 



obtained all terms  linear  in 4 by replacing fl in the sec- 
ond  term of (8) by the solution  in the absence of a 
magnetic field and  integrating the resulting  equation. This 
expansion is valid in  an asymptotic sense in  the limit of a 
vanishingly small  magnetic field. We  obtain 

(14) 
Here  the components of the vectors w ,  y, u, Q, and ,e 
are given relative to a  new coordinate system, the 3-axis 
of which is parallel to n‘. The components ( A i )  of any 
such vector A relative to  the  reference system of the 
ellipsoid axes are  therefore  to be  obtained from those 
(Al’) in  this new system from  the relation 

c A = S *  A ‘ ,  (15) 

.-( 123’ 0 0 1 ?). 
-n1’ 0 ns’ 

In  (14)  and  the integrals to follow,  wherever there is a 
double sign the  upper  one goes with  the  half-space 
?c3‘<0, the lower with u3’>0. 

We could carry this iterative  process one step further 
to  obtain all terms  in (4) in order  to derive the magne- 
toresistance.  However, for this procedure  to be meaning- 
ful it is necessary that it be limited to small  magnetic 
fields for which the electrical  properties of the  thin film 
have  asymptotic  expansions in positive powers of 4. 
There is the usual  restriction,  which is also applicable to 
the bulk, that 

But in  the thin-film problem there is the  additional  re- 
quirement  that  the overwhelming  majority of orbits 
intersect both surfaces, so that  the  boundary condition 
(13)  remain applicable. This places a  restriction on  the 
component of magnetic field perpendicular to n‘, 

I$xn‘l<< -1411 c m  d m  
2de 

In  the opposite  limit of I 4 X n’l>> I 1, the majority 
of orbits intersect  neither surface  and  the conductivity 
tensor goes to  the bulk  limit.  While an investigation of 
the strong  and intermediate  magnetic field properties 
would be of great interest, and could be pursued  along 
the lines of Reference 5 ,  it is beyond the scope of the 
present  work.  We  shall therefore limit ourselves to fields 
which are small compared with .Q0 and @ I ,  and retain 
only the linear  terms. 

From  (14) we may now calculate the  current density 
3’ in y’-space from  the relation 

&‘ = - e/ui’fldw . (17) 

We may write the result in the  form 

%‘=A’. @‘, (18) 

where 

and 

u l ( y 3 ’ ) =  - / f o ( u 1 ) 2 . r  ’ [ 1-exp ( - : i T d ‘ ) ]  ~ dw, ( 2 0 )  
ko T 

x (1- [1+ TUQ’ TU3‘ 

+ -Sf.( U 1 ’ )  ‘T’ (Y3’Td’)Z 
koTmc 2T2 ( us’) ’ 

We  may  now transform  the  tensor X’ to  the  coordinate 
system of the ellipsoid with use of (16)  and 

A=S. A’. s-1 

so that 

( 2 5 )  

$=A.@. 

Then using (7)  and comparing ( 17) with the  equation 
for  the  current density J in x-space 

Ji= -elvif ldk=oli’ .(as2~,)-~di,  ( 2 6 )  

we may  obtain the conductivity  tensor U‘ satisfying the 
relation J=u‘ . E. It is finally convenient to  transform 
once  more  to a coordinate system ( r ,  s, t )  with the t-axis 
parallel to  the  normal n of the film, the r- and s-axes in 145 
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angle + with the r-axis: 

J = u . E  

=T . 0’ T-1 , 

( 
-cos 0 cos + sin + sin 0 cos + 

sin I9 0 cos 0 
T= -cos0s in+  -cos+  s in0s in+ ) . (28) 

We obtain  the following  expressions for  the elements of 
the conductivity  tensor u with  respect to  the (Y, s, t )  co- 
ordinate system, the  components of H having  been ex- 
pressed with respect to this same set of axes. 

uTr = ul(y3’) p I: a8 sin2 + + a8aPaC-1 cos2 $1 
+ ~ 3 ( y 3 ’ ) p a ~ - ~ ( a ~ - a ~ ) ~  cosz I9 sin2 6’ cos? + , (29a) 

cas = ul(y3’) p [ a8 cos2 + + sin2 $1 
+ a 3 ( ~ 3 ’ ) p a ~ - ~ ( a ~ - a ~ ) ~  cos2 6‘ sin2 0 sin2 +,  (29b) 

utt = u3 ( y 3 ’ )  pa, , ( 2 9 ~ )  

uT8 = u1 ( y 3 ’ )  p sin + cos + [ - a8 + a8aPac-l] 

+ u3 ( ~ 3 ’ )  p sin + cos +a,-1 (as - aP) sin2 6’ cos2 0 

--P(Y3’)pas2apae-1Ht 

- - (y3’ )pa8(a8-ap)  sin 0 cos OIHr cos + + H ,  sin + 
+Hta,” (a8- aP) sin 0 cos 01 , (29d) 

ust=-u3(y3’)p(as-aP) cos 0 sin 0 sin + 
-7(Y3’)asp{Hr[ap+ ( a g - a P )  sin2 0 cos2 $1 
+ H , (  as-ap) sin2 0 sin + cos + 
+ H t  ( as - aP) cos 0 sin 0 cos +} , ( 2% 1 

a,t=-u3(y3’)p(as-ap) cos 0 sin 0 cos + 
+7(y3’)pa8{H,(a8-aa,) cos +sin + sin2 0 

+ H 8 [ a p + ( a a - a p )  sin2 0 sin2 $1 
+Ht(a8-ap)  sin 0 cos 0 sin +} , ( 2 9 0  

where p = ( o ( ~ ~ o ( ~ )  -9, and a, = ( a8 sin2 I9 + aP cos2 6‘). The 
components usr, uts, ut7 may  be  obtained from urs, u8t, 

uTt, respectively, by changing the sign of all terms con- 
taining H.12 

We  have indicated in  (29)  that  the quantities al(y3’),  
u3 (y3 ‘ ) ,  et cetera, depend on y3’=y - n’. Since xt=x. n, 
we may  show from  (1  1)  that y3’=a,-9xt. Thus the  com- 
ponents (29) of the conductivity  tensor  depend on xt, 
and, as  should  be  expected, are independent of position 
in  the plane of the film. 

The expressions (29) represent the  contribution  to  the 
film conductivity from  the electrons  located near a single 
extremum of the energy  bands. To  obtain  the  total con- 

~ 146 ductivity we may now add  the contributions to  each uii 

film is now found by integrating the resulting expression 
for  the  current density,  as in (27),  over  the thickness of 
the film. 

Evaluation of this current requires that we specify the 
energy  dependence of the collision time T. The simplest 
choice is that T is proportional to E-+, as is the case if 
electrons in a semiconductor are scattered by lattice 
vibrations and if the simple deformation potential theory 
of scattering holds.? With this  choice, we obtain 

Here 

l = ~ u = r ( 2 E ( k ) / m ) &  (31 )  

corresponds to a constant  mean  free  path  in  the case of 
spherical  energy  surfaces, and 

n i = J ’ f O c t ) a  (32 )  

is the equilibrium number  of electrons per unit volume 
obtained from (4) for a single extremum.  The functions 

F,,(a) = l l x m  exp(-u/x)dx  (33 )  

may be evaluated from tables13  of the  exponential in- 
tegral 

F-l(U) = -Ei( -a )  ( 3 4 )  

with use of the relation 
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Finally in (30) we have used p= (a8*aP)-*, and 

a = 2 d / l  (36)  

is a parameter specifying  the ratio of the effective film 
thickness (12) to  the length 1. We note  that a depends on 
6 through  the effective thickness and is therefore different 
for  the ellipsoids at different extrema. 
In the limit of very thick films (a+m ) , 5 1  and 5 3  be- 

come equal, as do lis and 4, and these quantities  assume 
their  bulk values, U1B and PB respectively, given by the 
expressions multiplying the curly  brackets in (30). In 
Fig. 1 we have plotted the  ratio of these quantities to their 
bulk  values  as  a function of a. 

The following are asymptotic expressions for these 
ratios for thin and thick films:I4 

Thin films: 

(5 l /u l~) - (3a /4) ln( l /a )  

( 5 3 / c 1 B )  = ( P / p B ) - ( 3 a / 4 >  (37 )  

(V/Pe)-(3a/8). 

Thick films: 

( ~ I / u I E ) - ~  - ( 3 / 8 a )  

(53/ulLI)=(~/ /PB)-1-(3/4~)  

( T / P B ) - ~ -  ( 9 / 8 a ) .  ( 3 8 )  

When  the total current flowing in  the film is found in 
this manner upon summing  the  contributions  from  the 
ellipsoids at the different  extrema, the resulting  average 
mobility of the electrons is found  to depend on  the orien- 

Figure 1 Conductivity parameters vs film thickness. 
The ratio of the film conductivity  parameters 
defined by Eq. (30) of text to their bulk values, 
for T =  (m12/2E) 2 ,  as a function of the ratio of  
the effective film thickness 2 d  to the length 1.  
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tation of the film even if the bulk material  has cubic 
symmetry. A similar  anisotropy is found  for  the  Hall 
coefficient. These  results contrast with the electrical  prop- 
erties of bulk  material, for in  a  bulk material of cubic 
symmetry the different ellipsoids combine to  make  both 
the mobility and  Hall coefficient isotropic. The film ani- 
sotropy is illustrated  in Figs. 2 and 3, for values of the 
inverse effective mass components aI= 12.5, a,=0.77 
and ellipsoids oriented along the [ 11 11 axes as in n- 
germanium.15, l6 In Fig. 2 we plot  the ratio of the average 
effective electron mobility in the film, ,ueff, to its bulk 
value, p ~ ,  for several orientations  for which the  current 
is parallel to the  applied field. We  obtain peff by summing 
over all extrema  the  appropriate element,  say uTr, of the 
conductivity  tensor ( 2 9 ) ,  and integrating  this sum over 
the film thickness  with use of (30)  to  form (2d)Zr7. 
Finally, we have in this case 

(39)  

where N is the  total number of electrons per unit  volume 
in  the film. The  same procedure for  the bulk conductivi- 
ties leads to 

The  ratio (pLeff /pB)  is plotted  against the  parameter 

t= ( 2 d / I )  . (41) 

In Fig. 3 the  ratio of the  Hall coefficient R to its  bulk 
value RB is plotted when the magnetic field is normal  to 

Figure 2 Thin-film anisotropy of mobility. 
The ratio of the effective  mobility to bulk 
mobility for carriers in a film with band struc- 
ture similar to n-germanium and inverse effec- 
tive mass components as= 12.5, a,=0.77, as a 
function of film thickness z=2d/ l .  The curves 
are labeled according to the direction of the 
film normal n and the current J. 

1 F I L M   T H I C K N E S S ,  z = ( 2 d / 4 )  147 
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the film. In these cases R is isotropic  in the plane of the 
fiIm, and we have, to first order in the magnetic field, 

where U , ~ B  is the bulk  value of &. 
In  our derivation  above we have assumed that  the 

electric field is uniform,  and we have not imposed the 
usual requirement  that  the  total  current shall flow in  the 
plane of the film. Since the off-diagonal components urt, 
ust of the one-ellipsoid conductivity  tensor (29)  are  zero 
only for special  orientations of the ellipsoid and of the 
magnetic field, a current density normal  to  the film will 
usually be induced  in  a single ellipsoid by a uniform 
electric field along the film. Adding  the  current densities 
arising from  the different sets of ellipsoids will cancel 
this normal component for certain  orientations, such  as 
those for which Figs. 2 and 3 have been  plotted for a 
cubic material.  But  otherwise if the  current is to flow 
along the film, a  component Et of the electric field must 
be induced normal  to  the film such  that  the  normal  total 
current density is zero  throughout  the film. Since the 
total conductivity  tensor  depends on position  within the 
film through  the dependence of ul(y3‘),  u3(y3’), etc., in 
(20)  to (24) on x t ,  evidently Et must itself vary with xt.I7 
Furthermore, Et must  satisfy Poisson’s equation if the 
density of electrons is not uniform across the film, and 
we find by integrating the distribution function f (k,x)  
given by (4) and (14) that  the density is indeed not 
uniform.  This observation has  the  further complication 
that  the collision term  in  the Boltzmann equation should 
not be [f(k,x)-fO(k,x)]/r as  in (5) but more suitably 

Figure3 Thin-film anisotropy of  Hall effect. 
The  ratio of the Hall coefficient of a  film to its 
bulk  value, for a  band  structure  similar to n- 
germanium and inverse  eflective  mass  compo- 
nents as= 12.5, a,=0.77, as a function of film 
thickness z=2d/l. The magnetic field is along 
the film normal n. 
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The integral term  in this  expression, summed  over all 
ellipsoids, is related to (dEt/dxt) by Poisson’s equation. 

A  rigorous  solution  taking account  of these  complica- 
tions has not been given and would  be  quite difficult. 
MacDonald  and Sarginson5  considered the problem for 
the transverse  magnetoresistance of a  metal in  the case of 
a  spherical  energy surface with H in the plane of the film. 
They concluded that  the  error was not serious if one 
neglected the non-uniformity of Et, omitted the integral 
term in (43),  and averaged the contributions to  the nor- 
mal  current density  over the film thickness in determining 
Et. For a  metal film in  the presence of only an electric 
field, Englman  and  Sondheimerll  found a  non-uniform 
expression for E t ( x t )  which  leads to a  solution of the 
Boltmann  equation  (5)  that produces no  normal com- 
ponent of current density.  However,  they  overlooked the 
conditions  imposed on Et(xt) by Poisson’s equation  and 
did not consider the modification (43), so that  their solu- 
tion of the problem is not complete. For most thin-film 
problems it probably suffices to follow MacDonald  and 
Sarginson in neglecting the non-uniformity of Et. 

A further difficulty in our analysis is the use of a relax- 
ation  time T in  the Boltzmann equation even if this is a 
good approximation  for  the bulk  material. If S(WI, WZ) 
dwz is the probability per unit  time that  an electron is 
scattered by anything other  than  the film surface  from  the 
state w1 to a state  in dwz, the collision terms in the Boltz- 
mann  equation (8) should be 

- f l (w l )  S(wl, Wz)dWz+ ~(WZ,  wl)fl(wz)dwz. (44) s s 
In  the simple  case of isotropic  scattering, S(WZ,WI) is a 
constant if w1 and wz lie  on  the  same energy surface,  and 
use of a  relaxation  time 

f1(wz)dwz=O. (46) 

This is trivially true  in bulk material. From (14) (setting 
@=O) we see for a film that  (46) holds for terms in fl 
proportional  to  the  components of 6 in the plane of the 
film (in  the  transformed variables) but not for  the  normal 
component.  Thus with  isotropic  scattering use of a relaxa- 
tion  time is correct  in calculating ul(ya’) in (19),  but 
not  for u3(y3’). On  transforming back to  the original 
coordinates, u3(y3’) enters the expressions (29)  for  the 
conductivity  in the plane of the film, so that use of a 
relaxation  time  introduces an  error  through this term. 

To estimate the correction to u3(y3’) obtained  for iso- 
tropic scattering by retaining the second term  in  (44), we 
have evaluated this term using f l  as previously evaluated 
in (14). Treating this term as an additional  inhomogene- 



ous term on the  right of the Boltzmann  equation ( S ) ,  we 
find that  for thick films the asymptotic  expression ( 3 8 )  
for &/UlB becomes [ 1 - (3 /4a)  - (0.12/a) 1, whereas 
for  thin films the correction to t?3/UlB in (37) is of order 
uz and  therefore negligible. Since & makes  a  smaller  con- 
tribution  to p e f f / p ~  than does TI, especially for very thin 
films, we conclude that use of a  relaxation time does not 
introduce  an  error of practical importance. 

3. Channel conductivity in anisotropic crystals 

Schrieffers has calculated the effective mobility of carriers 
in  a channel  at a  semiconductor surface,  and Zemel@ has 
extended his analysis to  obtain  the  Hall coefficient for a 
magnetic field normal  to  the surface.  Both have assumed 
spherical  energy surfaces. 

In  the space-charge  region at  the  surface,  there is a 
strong electric field E, normal  to  the surface. With ellip- 
soidal  energy  surfaces we may  again use the  transforma- 
tion (7 ) ,  and  the space-charge field 6,=a,+E,  remains 
normal  to  the  surface in the new variables. Schrieffer’s 
analysis is now  directly  applicable to  the calculation of 
the quantity corresponding to ul(ys’) in  the transformed 
conductivity  tensor (19)  for  the  thin film. The  quantity 
corresponding to ~ ( y 3 ’ )  may  be derived in a  similar way. 
In  the special  case of a constant space charge field 6 ,  
and  constant T, we obtain 

s ~ = l - [ e x p ( z ~ ) ] ( l - e r f z )  

s ~ = 1 - [ e x p ( z 2 ) ] ( 1 - e r f z ) ( 1 - 2 z 2 ) - 2 ~ ~ - ~ ,  (47) 

where z = ( e 6  e ~ )  -l(ZrnkoT) and s1 and s3 correspond to 
(t?l/UlB) and (t?3/UIB) in  the analysis of the  thin film. 
The derivation of the  actual  channel conductivity in 
terms of these  quantities  now  makes  use of the  same alge- 
braic manipulations  as  in the case of a film of the  same 
orientation,  and  the conductivity shows a  similar  anisot- 
ropy. 

Calculation of the  channel  Hall coefficient for ellip- 
soidal  energy  surfaces would require a  similar  generaliza- 
tion of Zemel’s work, with the complication that  the 
magnetic field in  the  transformed variables is  no longer 
normal  to  the surface. 

4. Specular surface scattering 

Experiments  on metals have supported the view that elec- 
trons  are  scattered diffusely at  the s u r f a ~ e , ~  and similar 
conclusions for  germanium  have been found by Bardeen 
et  alls  and by Zemel and  Petritz.lg  This is the  boundary 
condition we have imposed  in the derivation of Section 
2. However, Koenig’s recent studies of bismuth films indi- 
cate  that specular surface scattering occurs  in this  sub- 
stance  at low  temperatures.20 

In a  semiconductor or semi-metal, one would expect 
that specular surface scattering might be more  appropri- 
ate if the  surface is not badly disordered, so that  it is of 
interest to consider  this  alternative boundary  condition  in 
the  theory of films with anisotropic  energy  surfaces. 
Wave functions in  a  crystal  must  fall to  zero  amplitude 
at  the crystal  surface, and  the Bloch-type functions  that 

must  be  combined to achieve  this  condition  must have  the 
same phase  relationship at all points of the surface. This 
requires that  the k-vectors of these Bloch-type functions 
have  the  same components  parallel to  the surface. This 
condition and  the  requirement  that  the  functions have the 
same energy define the relation  between  k-vectors corre- 
sponding to specular reflection. When  the k-vectors so 
related differ by a  small fraction of the reciprocal  lattice 
constant,  as within a single ellipsoid in  a  semiconductor, 
the wave function obtained by combining  these Bloch- 
type functions has a relatively small amplitude  to a depth 
of several  lattice  spacings into  the crystal. An electron 
described by such a function is accordingly less likely to 
be  scattered by atomic disorder at  the  surface  than is one 
described  by  a wave function  that rises in  the first atomic 
layer  or two to its  bulk  amplitude. Diffuse surface scatter- 
ing is more likely for a  metal than  for a semiconductor on 
this account  and also because the density of final states 
for scattering is greater for a  metal.  However, other differ- 
ences  in the scattering matrix elements  may outweigh 
these effects. 

For an ellipsoidal energy surface (1) the conditions 
of specular reflection lead to complicated  relations be- 
tween the  components of the incident and reflected k- 
vectors. It is easy to show that  after  the  transformation 
(7)  these are equivalent to  the usual  relations for spec- 
ular reflection with  spherical  energy  surfaces, 

whereas in  (14)  we use a coordinate system with its 3- 
axis normal to the film in  the  transformed coordinates. If 
a fraction p of the electrons  incident on  the  surfaces at 
y3’= f d is scattered specularly, the  boundary conditions 
on fl are  then 1l  

fl(Ul’, uz‘, us’; - d )  =pf1(u1’, uz’, “ 3 ’ ;  -8)  

fl(Ul’, uz’, -243’; +d‘) =Pfl(ul’, u2’, u3‘; + d l ,  (49) 

where  the ui’=(hwi’/rn) are velocity components, and 
u3’>0. The solution of the Boltzmann equation (8) in 
the absence of a  magnetic field is 

1 ”p exp( f 2 d ’ / T U 3 ’ )  

where we have  made a  simple  extension of Fuchs’ 
result1> and use the  same  notation as in ( 14). A mag- 
netic field can be treated by the iteration procedure used 
earlier.21 

The  further analysis for  partial specular reflection 
proceeds precisely as  with diffuse scattering,  except that 
the integrals Ul(y3‘) and a3(y3’)  in (20)  and  (21)  are 
now  more complicated. 
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In  the special case of total  specular reflection, p is 
unity and  the terms  in f1 proportional  to  the  components 
of Q parallel to  the film are  the  same as for bulk  material. 
However,  this is not  true  for  the  term  proportional  to  the 
component of 6 normal  to  the film, and in the limit of 
very thin films (2d'+0) this term is zero. Thus  in this 
limit us(y3') is zero while Ul(y3') has its bulk value U1B. 

When we transform  back  to  the original  variables  as  in 
(29)  and  add  the contributions of the different ellipsoids 
we find that  the effective mobility  in this limit approaches 
a finite value less than its bulk value (40) and  that this 
limiting  value  depends on  the film orientation. For  spher- 
ical  energy  surfaces, of course, we obtain /J.eff'pB for 
all film thicknesses with  specular  scattering. 

The following Values  of & f f / p B  for  total specular re- 
flection are obtained for  the  band  structure of n-german- 
ium,16 with a,/a,=19.3,  in  the limit of very  thin films 
for several  orientations of the film normal n and  the 
current J: 0.79 (n  in  [loo]);  0.95  (n in [ I l l ] ) ;  1.00 
(n in  [110], J i n  [TI  0]);0.60  (nin  [110],  Jin [OOl]). 
The corresponding values for n-silicon, with as/a,=5.1, 
are 1.00, 0.87, 0.76, and 1.00, respectively. 

For certain film orientations and  band  structures  such 
as those of n-germanium or n-silicon, the conditions for 
specular reflection could  be satisfied by a process in  which 
an electron is scattered from  the neighborhood of one 
extremum  to  that of another. We have neglected such 
intervalley processes in our derivation. 

5. Determination of the effective mass ratio 

The anisotropy  in the conductivity of a film or  channel 
. permits an experimental determination of the  ratio of 

the effective mass components if the  nature of the  surface 
scattering and  the general features of the  band  structure 
are known. For a crystal of cubic symmetry,  one needs 
to  measure only the  ratio of the conductivities in  the 
direction of the principal  axes of the conductivity  tensor 
for a film with normal in the [ 1 101 direction, 

u[i I 01 
x' 

If the ellipsoids have their  symmetry  axes  along the 
[ 1111  directions, as in  n-germanium, we find with [= 

a s / %  

Here el*, and a3 are  the averages defined by (30) or 
the corresponding  quantities for a channel.  Both c1 and 
c3 are  for  the ellipsoids with  cos 0 = (2/3) 3, and el* is 
for those  with  cos 8=0. For diffuse surface scattering we 
find in the limit of very thin films that (a l*/~l)  ap- 
proaches [([+2) /3[]6 and (i?s/Fl) approaches zero. 
For total specular reflection in  the  same limit ( ~ 3 / ( ~ 1 )  =0, 
(al*/F1) = 1. Thus  in both cases the  ratio x approaches 
limiting values which  depend  only on  the mass ratio [. 

For  the band structure of n-silicon, with ellipsoids 
150 oriented  in the [ 1001 directions, we find 
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X =  

where el and c3 are  for  the ellipsoids with COS e= 
(l/vT), and el* is for those  with  cos O=O. For diffuse 
scattering we find in the limit of very  thin films that 
( & * / F ~ )  approaches  [([+1)/2[]4,  and  the  other ratios 
have  the  same limiting values as for n-germanium. 

One  cannot distinguish  between oblate  and prolate 
ellipsoids by means of a single measurement of this  sort, 
but measurements of  the anisotropy  in films of suitably 
different orientation will yield consistent values of only 
if the  proper choice is made  for this and  other general 
features  of  the band structure.  The choice between spec- 
ular  and diffuse surface scattering will require  that  the 
effective mobility  be  measured  as  a function of decreasing 
film or channel thickness. 

In  order  to observe the anisotropy  predicted for  the 
limiting  case of very thin films, one would  need film or 
channel thicknesses one-tenth or less of the length 1 de- 
fined by (31). Since 2 is 3 X cm  for electrons in 
germanium  or silicon at  room  temperature, measure- 
ments on these  materials  must be made  at low tempera- 
ture, or one  must use the general formula  (52)  or  (53) 
for x together with  estimates of the ratios (&/&) and 
( F ~ * / z ~ ) .  Channels  have been formed with  thickness  as 
small  as 1 x 10-6  cm,22,23 but  the lower  limit  presently 
attainable  for  the thickness of uniform single crystal films 
is about 5 X 10-5 

6. Discussion 

The general features of our results for  the effective mobil- 
ity and  Hall coefficient of thin  semiconductor films are 
in  agreement  as to their  dependence  on film thickness 
with the results of Fuchs, Sondheimer, and  Chambers  on 
metal films with  spherical Fermi  s~rfaces.I-~  The anisot- 
ropy  in  the effective mobility arising from ellipsoidal 
energy surfaces is of the  same  character as that  found  for 
metals  with diffuse surface scattering by Englman  and 
Sondheimer.ll The decrease in  the effective mobility  with 
specular reflection, to a finite limiting  value for very thin 
films, and  the consequent  anisotropy are novel features 
which do  not  occur  for spherical  energy  surfaces. This 
has been noted  also by 

It is not quantitatively quite precise,  however, to 
describe the variation  with film thickness of the effective 
mobility and  Hall coefficient for a film with ellipsoidal 
energy  surfaces  as being the  same as for spherical sur- 
faces  with an  appropriate effective mass. Thus, u3(ys') 
usually makes an appreciable contribution  to  the  com- 
ponents urr and us, of the conductivity  tensor for ellips- 
oidal surfaces,  as  in (29),  and it has  a  very different 
variation from  that of u1(y3'), as indicated by (37)  and 
(38). Only ul(y3') contributes to ury and u , ~  for spherical 
surfaces. Also, we note  from Fig.  3 that (R/Rs) for 
thick films is slightly less than unity for some  orientations, 
and greater than unity for  others, while for spherical sur- 
faces we find that  for a semiconductor and  our assumed 
form  for T the  former is true. However,  these  differences 

4F~[+a3([-1)'++a1*[([+1) , (53) 
(t+1)(2Z&+&*) 



are small compared with  probable  experimental  uncer- 
tainties, so that use of the spherical  model  with  a  suitable 
effective mass  should in practice  be quite satisfactory, 
except of course for the case of total specular reflection. 

We  have found  that  the geometric and algebraic  com- 
plications introduced by ellipsoidal energy surfaces  into 
the  theory of the electrical  properties of thin films and 
channels  can be simplified greatly by a change of varia- 
bles for  the k-vectors, position  vectors, velocities, and 
electric and magnetic fields. This reduces the  problem  to 
one  for a film with  spherical  energy  surfaces,  except that 
in  the  transformed  problem  the electric and magnetic 
fields do not  have simple  orientations  with  respect to  the 
film. Simple  extensions of previous  theories permit  the 
solution of this  problem,  although  a minor  approximation 

obtained by using in the inhomogeneous term  the compo- 
nent of the  transformed electric field along the direction 
of one principal axis of the original ellipsoid. After  soh- 
ing the  equation  for  each principal axis in  turn with the 
different T, the results can be  combined to give the  total 
distribution function.  The algebra is straightforward  but 
tedious. 

We  have suggested that specular surface scattering is 
more likely for semiconductors than  for metals  because 
the difference between the k-vectors  related by the condi- 
tions for specular reflection on  the occupied part of a 
single ellipsoid in  a semiconductor is much smaller than 
the  diameter of the  Fermi  surface  in a metal. This  has  the 
consequence that  the semiconductor wave function  has 
a relatively small  amplitude  in several atomic layers 

must  be made in using a  relaxation  time.  We have used beneath the  surface,  and consequently the probability of 
the  further reasonable approximation of neglecting the  random scattering by surface  disorder is reduced. This 
spatial  variation of the  component of the electric field discussion also suggests that  in a  metal with a  compli- 
normal  to  the film. cated  Fermi  surface, electrons in small  pockets may  be 

The anisotropy  in the effective mobility,  particularly in  scattered specularly if the film surface is relatively perfect, 
perpendicular  directions on  the  same specimen,  should  while those  on  the main Fermi  surface  undergo diffuse 
permit  a determination of the effective mass ratio  for  the scattering. The  contribution  of  the  latter  to  the conductiv- 
carriers  in  a film or surface channel. Such a measure- 
ment would be of interest  in order  to see if the  band struc- 
ture of the bulk material is distorted in films or  near  sur- 
faces.  However, there is a  complication that we have  not 
considered that could change  the predicted  anisotropy, 
namely, an anisotropic collision time. Herring  and Vogt7 
have  shown that  to a  good approximation  the  current 
components along the different  principal axes of an ellips- 
oid can be described  as  decaying  with different relaxation 
times and  that  the anisotropy  in T can be appreciable for 
lattice  scattering. A similar  anisotropy for ionized impur- 
ity scattering  in  semiconductors was calculated by 
Ham.z6 Such  a  tensor form  for T can be  included  approx- 
imately in  the thin-film theory by  inserting  the appropri- 
ate  component of T in the  Boltzmann equation ( 8 )  

""_ 
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