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Electrical Properties of Thin-Film Semiconductors”

Abstract: The theory of the electrical properties of metal films as given by Fuchs and Sondheimer is extended
to nondegenerate semiconductors with ellipsoidal energy surfaces. A change of variables reduces the prob-

lem to a simpler one with spherical energy surfaces but with electric and magnetic fields which are tilted with
respect to the film. This is solved to first order in the applied fields. The effective mobility and Hall coefficient
vary with film thickness much as for a metal but show an anisotropy with film orientation, even for cubic
crystals. Anisotropy is observed for both diffuse and specular surface scattering and for surface channels as

well as films, and it provides a means of measuring the effective mass ratio of the carriers.

1. Introduction

Fuchs! has given the theory of the electrical conductivity
of a thin metal film, and Sondheimer,2 3 Chambers,* and
MacDonald and Sarginson® have extended it to the gal-
vanomagnetic effects. The present paper presents a similar
analysis for a thin single-crystal film of a nondegenerate
semiconductor. We shall be particularly concerned in our
derivation to take proper account of the ellipsoidal shape
of the surfaces of constant energy in the band structure of
the film material. It will be shown that the conductivity
and Hall coefficient of the film vary with the orientation
of the normal to the film with respect to the crystallo-
graphic axes, even for materials of cubic symmetry such
as germanium or silicon. This contrasts with the isotropic
behavior of these quantities in the bulk material. This
variation permits an experimental determination of the
ratio of the components of the effective mass tensor.
The problem of solving the Boltzmann equation for a
thin film and ellipsoidal energy surfaces with arbitrary
electric and magnetic fields can be reduced by a change
of variables to the simpler problem of solving the equa-
tion with spherical energy surfaces. Although many
writers have used a transformation of the propagation
vector k alone to simplify the algebra of various calcula-

*The work of this paper was done at the Department of Physics, University
of Illinois, in 1955 and reported at the Toronto meeting of the American
Physical Society of that year. It was supported in part by the Office of
Ordnance Research, U, 8. Army.

FNational Research Council Postdoctoral Fellow 1954-1955, Present ad-
dress: General Electric Research Laboratory, Schenectady, New York.

tions involving ellipsoidal surfaces,® ? the usefulness of
the complete transformation of the position vector x and
the electric and magnetic fields as well as k seems not to
have been pointed out.

Although our explicit results are given for diffuse sur-
face scattering, we shall show that even with specular
reflection the film conductivity can be anisotropic. We
shall show too that the above transformation is also
useful in the analysis of the electrical properties of a
surface channel and that the anisotropy of a channel is
similar to that for a film. Previous work on channels by
Schrieffer® and Zemel? has assumed spherical energy
surfaces.?

The anisotropy in the conductivity of thin metal films
due to ellipsoidal energy surfaces has been derived by
Englman and Sondheimer.!® Their results are very simi-
lar to ours, apart from the difference in statistics. We
also consider the Hall coefficient, and our work can be
extended in a straightforward manner to the magneto-
resistance.

2. Solution of the Boltzmann equation for a thin film

We assume that the surfaces of constant energy in the
occupied regions of the Brillouin zone are ellipsoids of
revolution centered at the extrema of the energy bands.
In the neighborhood of one such extremum the energy is
therefore

E(k) = (2/2m) [a.(ki* +k2?) +apks®] , (1)
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where m is the free electron mass and k= (kq, k2, k3) is
the propagation vector relative to the extremum. It is
convenient first to solve the Boltzmann equation for elec-
trons in the neighborhood of a single such extremum and
to calculate their contribution to the current density in
the film, then to add the contributions from the several
extrema. Accordingly, we make use of a different coordi-
nate system for the ellipsoids at the different extrema,
choosing the 3-axis to coincide with the axis of rotation
of the ellipsoid.

If the normal n to the film makes an angle 6 with the
symmetry axis of the ellipsoid, and if x= (x1, X2, X3) de-
notes a point in coordinate space, we may describe the
surfaces of the film by the equations

n1x1—|—n3x3=id, (2)

ny=sin 6, n:=0, nz=cosl. 3)

The electrons are accelerated by electric and magnetic
fields E=(E1,E2,E3) and Hff(H],HQ,H:;), and we
assume in our calculation below that these fields are
independent of position and time.

The distribution function of the electrons may be
written

f=fo(k) +f1(k x), 4

where fo=C exp(—E(Kk) /koT) is the equilibrium distri-
bution function. The Boltzmann equation then takes the
form to first order in E,

-V Vofr+ (e/Bc) (v<H) - Vifs—f1/7

=—(e/R)E - Vifo, (%)

where v is the velocity of an electron and —e¢ its charge.
We assume that scattering processes within the film may
be represented by a term —[f(k)—fo(k)]/r(k) and
that the relaxation time 7(k) depends on k only through
the energy E(k). We shall show later that the use of
such a relaxation time is not strictly correct for a thin
film even if it is correct for calculations of bulk conduc-
tivity. However, the error made with this assumption is
small.

Scattering occurring at the surface of the film imposes
boundary conditions on the solution of the Boltzmann
equation. If the electrons are diffusely scattercd by the
surface, these are!

fi(k, +d) =0
fi(k —d) =0

if (m-v)<0,
if (m-v)>0. (6)

We shall indicate in Section 4 how the calculations are
modified if the electrons are in part scattered specularly
at the surface.

It is inconvenient to solve (5) in its present form
because of the complicated geometry introduced when
the normal n is not along one of the principal axes of the
ellipsoid. We therefore make the following transforma-
tion:
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wi=a;tk; ,

yi=aiix;,

ui=a; i, (7
Ei=aL;,

-{ji': ai_é(afap) tH;,

where a;=as—«, and as=a;. The Jacobian of the trans-
formation from k, x to w, y is unity, so that the distribu-
tion function f is appropriate to either set of variables,
and in terms of the new variables the Boltzmann equation
(5) takes the form

—u-V,fit+(e/AcYy(ux9) - Vufr—f1/7
=(e/1)E - Vufo . (8)

In w-space the energy surfaces are spherical,
ﬁ2

E(k) = —— (wi2+w22-+ws®), D)
2m

and u has the form of a velocity in the new space:
u=(1/A)V,E(K).

Moreover, from (2) and (7) we obtain the equation of
the film surfaces in the new variables

niyi+ng'ys==+d" . (10)
The new direction cosines of the normal n’ are

' =(a,/a)tsin 6, ny'=0, ny'=(ap/ac)tcosf, (11)
where

a.=a, sin? @ -+ap cos® 0 .

The effective thickness is

2d'=2d/at . (12)
The new boundary conditions are found from (6) to be
fr(w, +d)=0 if (n'-w)<0

Jfu(w, —d')=0 if (n-w)>0. (13)

The equations (8) to (13) are those encountered in
calculating the response of electrons with spherical en-
ergy surfaces to electric and magnetic fields € and § in a
film of thickness 2d’. By means of this change of variables
we have therefore transformed the problem with ellip-
soidal energy surfaces into an equivalent and simpler one
with spherical surfaces; however, the calculation is now
more complicated than that given by Fuchs, Sondheimer,
and other investigators because even if E lies originally
in the plane of the film and H is perpendicular or parallel
to it, (§ and § are generally tilted with respect to the film
in the new space.

The general solution of (8) is a complicated function
with which it is difficult to satisfy the boundary condi-
tions except in simple situations in which  either is zero
or is parallel to n’. We have therefore assumed that f; can
be expanded in powers of the components of § and have




obtained all terms linear in § by replacing f; in the sec-
ond term of (8) by the solution in the absence of a
magnetic field and integrating the resulting equation. This
expansion is valid in an asymptotic sense in the limit of a
vanishingly small magnetic field. We obtain

A= (22 o3 6 4w () xgye |-

1 koT 01:=1 i i me i

. |:1—exp <——_y3,i,dl >] +< er > exp <__—y3’1jd’ )
TU3 mc TUs

o o 'Fd) , ' Fd)E
l: (ux$): B u (ux )3 EETpGYS :I;

(14)
Here the components of the vectors w, y, u, €, and
are given relative to a new coordinate system, the 3-axis
of which is parallel to n’. The components (4;) of any
such vector A relative to the reference system of the
ellipsoid axes are therefore to be obtained from those
(A41") in this new system from the relation

A=S-A’, (15)
ns' 0 ny

S= 0 1 0 . (16)
—ny’ 0 ns’

In (14) and the integrals to follow, wherever there is a
double sign the upper one goes with the half-space
u3'<0, the lower with us'>0.

We could carry this iterative process one step further
to obtain all terms in ($)?2 in order to derive the magne-
toresistance. However, for this procedure to be meaning-
ful it is necessary that it be limited to small magnetic
fields for which the electrical properties of the thin film
have asymptotic expansions in positive powers of .
There is the usual restriction, which is also applicable to
the bulk, that

|s§|<<j—’:z|s:>o|.

But in the thin-film problem there is the additional re-
quirement that the overwhelming majority of orbits
intersect both surfaces, so that the boundary condition
(13) remain applicable. This places a restriction on the
component of magnetic field perpendicular to n’,

em\/ kT /m

[§ x| e

=11

In the opposite limit of | xn'|>>|9, |, the majority
of orbits intersect neither surface and the conductivity
tensor goes to the bulk limit. While an investigation of
the strong and intermediate magnetic field properties
would be of great interest, and could be pursued along
the lines of Reference 5, it is beyond the scope of the
present work. We shall therefore limit ourselves to fields
which are small compared with o and $,:, and retain
only the linear terms.

From (14) we may now calculate the current density
Y in y'-space from the relation

g =—efu'frdw . (17)
We may write the result in the form

Y =46, (18)
where

o1(¥3") —B1(¥s) 9 (¥

M=| B1(ys')Hs’ as(ys') —n(¥s)H1 |, (19)
—£(ys) D S o3(ys')
and
2 o l—‘d’
ai(ys') = l:)T /fo(ul’)27 [1~ exp <—);31u;r—>:| dw , (20)
’ e’ ' —}’3,id,
o3(ys’) = /fo(u3)27- I:l—exp <—————,—>:| dw, (21)
kOT TU3

B()’a)-m/fo(ul) T {1 [1“' it ]
X exp <—_yﬁ>} dw , 22)
TU3Z
e’ (ys' *d')
Ny — y2., 2 1—
7(y3") eTme /fo(bh) T { [——Tusl
+ M +1:| exp <__y_3ui‘£_>} dw , (23)
27%(ug')? TU3
A 63 )22
E(ys)= W/fo(us )ir

o ’ . '/id/
x{l— l:l—f— s +,d):| exp< s - >} dw
TU TUZ

3
e , (ys'7d')?
+ — 2.2 > 0 7
koTmc _/fO(ul) T 2w
— '+ i
X exp (L_,i> dw . (24)
TU3

We may now transform the tensor A’ to the coordinate
system of the ellipsoid with use of (16) and

A=S-A .81 (25)
so that
3-*-6.

Then using (7) and comparing (17) with the equation
for the current density J in x-space

Ji=—efvifidk=ai(as’ap) 19, (26)

we may obtain the conductivity tensor o’ satisfying the
relation J=¢'- E. It is finally convenient to transform
once more to a coordinate system (r, s, t) with the r-axis
parallel to the normal n of the film, the r- and s-axes in
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the plane of the film such that the projection of the ellip-
soid symmetry axis upon the plane of the film makes an
angle ¢ with the r-axis:

J=¢-E
27
o=T: ¢ T, D
—cos f cos ¢ sing siné cos ¢
T=| —~cosfsing -—cos¢ sinfsing }. (28)

sin ¢ 0 cos ¢

We obtain the following expressions for the elements of
the conductivity tensor ¢ with respect to the (r, s, t) co-
ordinate system, the components of H having been ex-
pressed with respect to this same set of axes.

o =01(y3") plas sin? ¢+ asapas? cos? ¢ ]

+ 03(ys') pac (s —ap) 2 cos? § sin? § cos? ¢, (29a)
ys=0a1(y3") plas cos? ¢+ asapast sin2 ¢ ]

+03(y3") pac(as—ap)? cos? § sin? fsin? ¢, (29b)
au=03(y3") pac , (29c¢)
ars=01(y3") psin ¢ cos ¢ [ —as+ asapas™]

+03(ys") p sin ¢ cos dpac ! (a;—e,) ? sin? § cos? §

- ,8(}73’ ) Paxzapac_lHt

—7(y3") pas(@s—ay) sin 8 cos §[H, cos ¢+ H, sin ¢

+Ha (o, —ap) sin 6 cos 6] , (29d)
a5 —=—03(ys') p(as—ap) cos 0 sin § sin ¢

—n(¥3" ) asp{H,[ap+ (as—ap) sin? § cos? ¢]

+H(a,—ayp) sin? @ sin ¢ cos ¢

+H;:(a;—ap) cos 0 sin § cos ¢}, (29¢)
or=—03(ys") p(a,—ay) cos § sin 6 cos ¢

+7(ys") pas{H,(as—ap) cos ¢ sin ¢ sin? §

+H,[ep+ (as—ayp) sin? @ sin? ¢

+H:(a;— ap) sin 0 cos § sin ¢} , (29f)
where p= (a,2a,)%, and a,= (a, sin? §+a;, cos? §). The
components ¢, oy, o May be obtained from o4, o,
o, respectively, by changing the sign of all terms con-
taining H.12

We have indicated in (29) that the quantities o1(ys'),
o3(ys’), et cetera, depend on y;3'=y - n'. Since x;=x - n,
we may show from (11) that ys'=a.%x:. Thus the com-
ponents (29) of the conductivity tensor depend on xi,
and, as should be expected, are independent of position
in the plane of the film.
The expressions (29) represent the contribution to the

film conductivity from the electrons located near a single

extremum of the energy bands. To obtain the total con-
ductivity we may now add the contributions to each o
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from the different extrema, using the correct 8, ¢, and ys’
=[ea.(#) ] %x; for each. The total current flowing in the
film is now found by integrating the resulting expression
for the current density, as in (27), over the thickness of
the film.

Evaluation of this current requires that we specify the
energy dependence of the collision time r. The simplest
choice is that + is proportional to E-%, as is the case if
electrons in a semiconductor are scattered by lattice
vibrations and if the simple deformation potential theory
of scattering holds.” With this choice, we obtain

a
1= (Zd)‘lf o1(ys')dx,
)

= __4’1’_621__{ 1— _E_Ii%—fﬁ(a) +F3(a):l} ’

3p(2nmkoT)? 2a

d
3= (2d) ‘1/ os(ya')dx

d

. -3 —1--F3(a) ,
3p(2mmkoT) a4

d
B=(2d) f B(y3')dx:
-d

__met 3T I
B 3pmkoTc 11 a [4 Fs(a)]f’
d
ﬁ‘(Zd)‘lf 7(ys)dx:
-4

ni8312 9 1
- J)1- | ——F +Fs(a
3pmkoTc { 2a |: 4 @)+ Fs( )]

+3 I:Fo(a)*Fz(a)] + %"[F_l(a)—m(a)]} .(30)
Here
l=1u=7(2E(K)/m)*% (31)

corresponds to a constant mean free path in the case of
spherical energy surfaces, and

ni=ff0(k)dk (32)

is the equilibrium number of electrons per unit volume
obtained from (4) for a single extremum. The functions

Fm(a):flxm exp(—a/x)dx (33)

may be evaluated from tables?® of the exponential in-
tegral
F_i(a)=—Ei(—a) (34)

with use of the relation

Fp(a) = "; —~ ( ’":2 )Fm+1<a>. (35)




Finally in (30) we have used p=(as®ap) %, and tation of the film even if the bulk material has cubic
symmetry. A similar anisotropy is found for the Hall

a=2d'/l (36) coefficient. These results contrast with the electrical prop-
is a parameter specifying the ratio of the effective film erties of bulk material, for in a bulk material of cubic
thickness (12) to the length /. We note that a depends on symmetry the different ellipsoids combine to make both
@ through the effective thickness and is therefore different the mobility and Hail coefficient isotropic. The film ani-
for the ellipsoids at different extrema. sotropy is illustrated in Figs. 2 and 3, for values of the
In the limit of very thick films (a—c), &; and &; be- inverse effective mass components a,=12.5, «,=0.77
come equal, as do B8 and 7, and these quantities assume and ellipsoids oriented along the [111] axes as in n-
their bulk values, g1z and 8z respectively, given by the germanium.’% ' In Fig. 2 we plot the ratio of the average
expressions multiplying the curly brackets in (30). In effective electron mobility in the film, e, to its bulk
Fig. 1 we have plotted the ratio of these quantities to their value, up, for several orientations for which the current
bulk values as a function of a. is parallel to the applied field. We obtain u.rr by summing
The following are asymptotic expressions for these over all extrema the appropriate element, say o, of the
ratios for thin and thick films:1¢ conductivity tensor (29), and integrating this sum over
. the film thickness with use of (30) to form (2d)@.,.
Thin films: Finally, we have in this case
(31/018)~(3a/4)In(1/a) 2d)5.r 1
(53/0’13)2([—3/33)“'(361/4) (37) (ptetr) rr= ———_(Zd)Ne s (39)
(7/Bs)~(3a/8). where N is the total number of electrons per unit volume
) Thick films: in the film. The same procedure for the bulk conductivi-
ties leads to
(31/018) ~1—(3/8a)
_ = _ 4el 2astay (40)
(@s/015) = (B/Bs)~1—(3/4a) we= 3(2wmkyT)3 3 '
(7/Bs)~1=(9/8a). (38) The ratio (uess/pp) is plotted against the parameter
When the total current flowing in the film is found in 2= (2d/1) (41)
this manner upon summing the contributions from the ’
ellipsoids at the different extrema, the resulting average In Fig. 3 the ratio of the Hall coefficient R to its bulk
mobility of the electrons is found to depend on the orien- value Rjp is plotted when the magnetic field is normal to
Figure I Conductivity parameters vs film thickness. Figure 2 Thin-film anisotropy of mobility.
The ratio of the film conductivity parameters The ratio of the effective mobility to bulk
defined by Eq. (30) of text to their bulk values, mobility for carriers in a film with band struc-
for r=(mli*/2E)?, as a function of the ratio of ture similar to n-germanium and inverse effec-
the effective film thickness 2d’ to the length . tive mass components a;=12.5, a,=0.77,as a

function of film thickness z=2d /1. The curves

1.0 are labeled according to the direction of the
film normal n and the current J.
1.0
NG nin[111]

w O (n/85)
2
N n in [110) n in [110]
« jin[T10) j in [001]
> . ) 0.1
w (F3/Bw) = (8/83)
o nin []00]
Z 0.0
o
= -

X
g 3
(-4 o
w | *_oo ! I

0.01 0.1 1.0 0.01 0.1 1.0 10
FILM THICKNESS, a = (2d'4) FILM THICKNESS, z = (2d /) 147
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the film. In these cases R is isotropic in the plane of the
film, and we have, to first order in the magnetic field,

R T, 88
___2(0'1'3 ><0’rrB>(‘t_B>’ (42)
RB TrsB Grr Tss

where o,,5 is the bulk value of 7.

In our derivation above we have assumed that the
electric field is uniform, and we have not imposed the
usual requirement that the total current shali flow in the
plane of the film. Since the off-diagonal components o1,
o of the one-ellipsoid conductivity tensor (29) are zero
only for special orientations of the ellipsoid and of the
magnetic field, a current density normal to the film will
usually be induced in a single ellipsoid by a uniform
electric field along the film. Adding the current densities
arising from the different sets of ellipsoids will cancel
this normal component for certain orientations, such as
those for which Figs. 2 and 3 have been plotted for a
cubic material. But otherwise if the current is to flow
along the film, a component E; of the electric field must
be induced normal to the film such that the normal total
current density is zero throughout the film. Since the
total conductivity tensor depends on position within the
film through the dependence of a1(ys'), a3(ys'), etc., in
(20) to (24) on x;, evidently E, must itself vary with x,.%7
Furthermore, E; must satisfy Poisson’s equation if the
density of electrons is not uniform across the film, and
we find by integrating the distribution function f(k,x)
given by (4) and (14) that the density is indeed not
uniform. This observation has the further complication
that the collision term in the Boltzmann equation should
not be [f(k,x) —fo(k,x)]/7 as in (5) but more suitably

Figure 3 Thin-film anisotropy of Hall effect,
The ratio of the Hall coefficient of a film to its
bulk value, for a band structure similar to n-
germanium and inverse effective mass compo-
nents a,=12.5, a;,=0.77, as a function of film
thickness z=2d /1. The magnetic field is along
the film normal n.

7
&~
5_
41
3k
2=
o0 ‘_'
oc
~
pu 0 | !
0.01 0. 1.0 10
FILM THICKNESS, z = (2d/)
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(43)

1
Jiko e [ 14 Zatede ],

Jfo(K, x) dk

The integral term in this expression, summed over all
ellipsoids, is related to (dE,/dx,) by Poisson’s equation.
A rigorous solution taking account of these complica-
tions has not been given and would be quite difficuit.
MacDonald and Sarginson® considered the problem for
the transverse magnetoresistance of a metal in the case of
a spherical energy surface with H in the plane of the film.
They concluded that the error was not serious if one
neglected the non-uniformity of E;, omitted the integral
term in (43), and averaged the contributions to the nor-
mal current density over the film thickness in determining
E,. For a metal film in the presence of only an electric
field, Englman and Sondheimer?? found a non-uniform
expression for E,(x;) which leads to a solution of the
Boltzmann equation (5) that produces no normal com-
ponent of current density. However, they overlooked the
conditions imposed on E.(x,) by Poisson’s equation and
did not consider the modification (43), so that their solu-
tion of the problem is not complete. For most thin-film
problems it probably suffices to follow MacDonald and
Sarginson in neglecting the non-uniformity of E..

A further difficulty in our analysis is the use of a relax-
ation time r in the Boltzmann equation even if this is a
good approximation for the bulk material. If S(wy, w;)
dw, is the probability per unit time that an electron is
scattered by anything other than the film surface from the
state w; to a state in dwy, the collision terms in the Boltz-
mann equation (8) should be

T

W) / S(wy, wa)dwa ] S(Wa, Wi Fo(W2)dws . (44)

In the simple case of isotropic scattering, S(w,, wy) is a
constant if w; and w» lie on the same energy surface, and
use of a relaxation time

(1/7)=/S(wl, w2)dw: (45)

requires only that

ffl(Wz)dW2=0 . (46)

This is trivially true in bulk material. From (14) (setting
P=0) we sce for a film that (46) holds for terms in f;
proportional to the components of § in the plane of the
film (in the transformed variables) but not for the normal
component. Thus with isotropic scattering use of a relaxa-
tion time is correct in calculating o1(ys") in (19), but
not for ¢s(ys’). On transforming back to the original
coordinates, o3(ys’) enters the expressions (29) for the
conductivity in the plane of the film, so that use of a
relaxation time introduces an error through this term.
To estimate the correction to os(ys’) obtained for iso-
tropic scattering by retaining the second term in (44), we
have evaluated this term using f; as previously evaluated
in (14). Treating this term as an additional inhomogene-




ous term on the right of the Boltzmann equation (8), we
find that for thick films the asymptotic expression (38)
for @;/o15 becomes [1—(3/4a)— (0.12/a)], whereas
for thin films the correction to o3/01p in (37) is of order
a? and therefore negligible. Since &3 makes a smaller con-
tribution to werr/ug than does @4, especially for very thin
films, we conclude that use of a relaxation time does not
introduce an error of practical importance.

3. Channel conductivity in anisotropic crystals

Schrieffer® has calculated the effective mobility of carriers
in a channel at a semiconductor surface, and Zemel® has
extended his analysis to obtain the Hall coefficient for a
magnetic field normal to the surface. Both have assumed
spherical energy surfaces.

In the space-charge region at the surface, there is a
strong electric field E. normal to the surface. With ellip-
soidal energy surfaces we may again use the transforma-
tion (7), and the space-charge field §.=aE, remains
normal to the surface in the new variables. Schrieffer’s
analysis is now directly applicable to the calculation of
the quantity corresponding to ¢1(y3") in the transformed
conductivity tensor (19) for the thin film. The quantity
corresponding to o3(ys") may be derived in a similar way.
In the special case of a constant space charge field &.
and constant 7, we obtain

si=1—T[exp(z2) (1 — erf z)

s3=1—[exp(z2) T(1 —erf 2) (1—2z2) —2z7%, 47)

where z=(e8.7)*(2mkoT)? and s; and s; correspond to
(o1/018) and (o3/01p) in the analysis of the thin film.
The derivation of the actual channel conductivity in
terms of these quantities now makes use of the same alge-
braic manipulations as in the case of a film of the same
orientation, and the conductivity shows a similar anisot-
ropy.

Calculation of the channel Hall coefficient for ellip-
soidal energy surfaces would require a similar generaliza-
tion of Zemel's work, with the complication that the
magnetic field in the transformed variables is no longer
normal to the surface.

4. Specular surface scattering

Experiments on metals have supported the view that elec-
trons are scattered diffusely at the surface,® and similar
conclusions for germanium have been found by Bardeen
et al*® and by Zemel and Petritz.2® This is the boundary
condition we have imposed in the derivation of Section
2. However, Koenig’s recent studies of bismuth films indi-
cate that specular surface scattering occurs in this sub-
stance at low temperatures.2®

In a semiconductor or semi-metal, one would expect
that specular surface scattering might be more appropri-
ate if the surface is not badly disordered, so that it is of
interest to consider this alternative boundary condition in
the theory of films with anisotropic energy surfaces.
Wave functions in a crystal must fall to zero amplitude
at the crystal surface, and the Bloch-type functions that

must be combined to achieve this condition must have the
same phase relationship at all points of the surface. This
requires that the k-vectors of these Bloch-type functions
have the same components parallel to the surface. This
condition and the requirement that the functions have the
same energy define the relation between k-vectors corre-
sponding to specular reflection. When the k-vectors so
related differ by a small fraction of the reciprocal lattice
constant, as within a single ellipsoid in a semiconductor,
the wave function obtained by combining these Bloch-
type functions has a relatively small amplitude to a depth
of several lattice spacings into the crystal. An electron
described by such a function is accordingly less likely to
be scattered by atomic disorder at the surface than is one
described by a wave function that rises in the first atomic
layer or two to its bulk amplitude. Diffuse surface scatter-
ing is more likely for a metal than for a semiconductor on
this account and also because the density of final states
for scattering is greater for a metal. However, other differ-
ences in the scattering matrix elements may outweigh
these effects.

For an ellipsoidal energy surface (1) the conditions
of specular reflection lead to complicated relations be-
tween the components of the incident and reflected k-
vectors. It is easy to show that after the transformation
(7) these are equivalent to the usual relations for spec-
ular reflection with spherical energy surfaces,

(Wll)i=(W1’)r; (wzl)i:(WZI)r;

(ws')i=—(ws')r, (48)

whereas in (14) we use a coordinate system with its 3-
axis normal to the film in the transformed coordinates. If
a fraction p of the electrons incident on the surfaces at
ys'=£d' is scattered specularly, the boundary conditions
on f; are then -3

fulud, ud, us's —d')y =pfi(ud, we', —us'; —d’)
fulud, ue'y —ug’s +d') =pfr(uy’, ue, us's +d') , (49)

where the u,/’= (Aiw;’/m) are velocity components, and
us’>0. The solution of the Boltzmann equation (8) in
the absence of a magnetic field is

er

fi=— fo< Gi'us'+GE'u)| 1— (l—p)exp( Tug’

~ys'=d'
Us

koT

_ I_‘__ I’
(1+p)exp (__y3_’i>
- TU3 >

1+pexp(£2d' /rus’)

+Gs'us’ | 1

)

where we have made a simple extension of Fuchs
result’>3 and use the same notation as in (14). A mag-
netic field can be treated by the iteration procedure used
earlier.2!

The further analysis for partial specular reflection
proceeds precisely as with diffuse scattering, except that
the integrals o1(ys') and o3(y3’) in (20) and (21) are
now more complicated.

1—pexp(£2d'/Tu3’)

(50)

149

IBM JOURNAL * APRIL 1960




150

In the special case of total specular reflection, p is
unity and the terms in f; proportional to the components
of § parallel to the film are the same as for bulk material.
However, this is not true for the term proportional to the
component of (€ normal to the film, and in the limit of
very thin films (24'—>0) this term is zero. Thus in this
limit ¢5(ys") is zero while o5 (ys’) has its bulk value oz.
When we transform back to the original variables as in
(29) and add the contributions of the different ellipsoids
we find that the effective mobility in this limit approaches
a finite value less than its bulk value (40) and that this
limiting value depends on the film orientation. For spher-
ical energy surfaces, of course, we obtain per=pp for
all film thicknesses with specular scattering.

The following values of pese/pp for total specular re-
flection are obtained for the band structure of n-german-
ium,* with «,/ep==19.3, in the limit of very thin films
for several orientations of the film normal m and the
current J: 0.79 (n in [100]); 0.95 (n in [111]); 1.00
(nin [110],3in [T 1 0]);0.60 (nin [110], Jin [001]).
The corresponding values for n-silicon, with a,/a,=35.1,
are 1.00, 0.87, 0.76, and 1.00, respectively.

For certain film orientations and band structures such
as those of n-germanium or n-silicon, the conditions for
specular reflection could be satisfied by a process in which
an electron is scattered from the neighborhood of one
extremum to that of another. We have neglected such
intervalley processes in our derivation.

5. Determination of the effective mass ratio

The anisotropy in the conductivity of a film or channel
permits an experimental determination of the ratio of
the effective mass components if the nature of the surface
scattering and the general features of the band structure
are known. For a crystal of cubic symmetry, one needs
to measure only the ratio of the conductivities in the
direction of the principal axes of the conductivity tensor
for a film with normal in the [110] direction,

_o[110]
a[001]°
If the ellipsoids have their symmetry axes along the

[111] directions, as in n-germanium, we find with &=
o/ ap

n

_ (£+2) [3561-}'51*(54'2)]
X St 5. (642) (26+1) + 2oa(E 1)

(52)

Here 51, 7:*, and @ are the averages defined by (30) or
the corresponding quantities for a channel. Both &, and
o3 are for the ellipsoids with cos #=(2/3)%, and & * is
for those with cos #=0. For diffuse surface scattering we
find in the limit of very thin films that (5.*/o1) ap-
proaches [(£+2)/3£]% and (o3/01) approaches zero.
For total specular reflection in the same limit (g3/71) =0,
(% /71) =1. Thus in both cases the ratio x approaches
limiting values which depend only on the mass ratio £.

For the band structure of n-silicon, with ellipsoids
oriented in the [ 100] directions, we find
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where @, and &; are for the ellipsoids with cos #=
(1/4/2), and 7,* is for those with cos §=0. For diffuse
scattering we find in the limit of very thin films that
(1% /51) approaches [ (£+1)/2£]%, and the other ratios
have the same limiting values as for n-germanium.

One cannot distinguish between oblate and prolate
ellipsoids by means of a single measurement of this sort,
but measurements of the anisotropy in films of suitably
different orientation will yield consistent values of £ only
if the proper choice is made for this and other general
features of the band structure. The choice between spec-
ular and diffuse surface scattering will require that the
effective mobility be measured as a function of decreasing
film or channel thickness.

In order to observe the anisotropy predicted for the
limiting case of very thin films, one would need film or
channel thicknesses one-tenth or less of the length I de-
fined by (31). Since ! is 3x10-¢ cm for electrons in
germanium or silicon at room temperature, measure-
ments on these materials must be made at low tempera-
ture, or one must use the general formula (52) or (53)
for x together with estimates of the ratios (v3/7:) and
(@,*/@1). Channels have been formed with thickness as
small as 1x10-% cm,2>2% but the lower limit presently
attainable for the thickness of uniform single crystal films
is about § X 10-5 cm.>*

6. Discussion

The general features of our results for the effective mobil-
ity and Hall coefficient of thin semiconductor films are
in agreement as to their dependence on film thickness
with the results of Fuchs, Sondheimer, and Chambers on
metal films with spherical Fermi surfaces.'-* The anisot-
ropy in the effective mobility arising from ellipsoidal
energy surfaces is of the same character as that found for
metals with diffuse surface scattering by Englman and
Sondheimer.1! The decrease in the effective mobility with
specular reflection, to a finite limiting value for very thin
films, and the consequent anisotropy are novel features
which do not occur for spherical energy surfaces. This
has been noted also by Price.?®

It is not quantitatively quite precise, however, to
describe the variation with film thickness of the effective
mobility and Hall coefficient for a film with ellipsoidal
energy surfaces as being the same as for spherical sur-
faces with an appropriate effective mass. Thus, o3(¥3’)
usually makes an appreciable contribution to the com-
ponents o, and o, of the conductivity tensor for ellips-
oidal surfaces, as in (29), and it has a very different
variation from that of o1(ys'), as indicated by (37) and
(38). Only ¢1(y5') contributes to o,, and oy, for spherical
surfaces. Also, we note from Fig. 3 that (R/Rg) for
thick films is slightly less than unity for some orientations,
and greater than unity for others, while for spherical sur-
faces we find that for a semiconductor and our assumed
form for 7 the former is true. However, these differences




are small compared with probable experimental uncer-
tainties, so that use of the spherical model with a suitable
effective mass should in practice be quite satisfactory,
except of course for the case of total specular reflection.

We have found that the geometric and algebraic com-
plications introduced by ellipsoidal energy surfaces into
the theory of the electrical properties of thin films and
channels can be simplified greatly by a change of varia-
bles for the k-vectors, position vectors, velocities, and
electric and magnetic fields. This reduces the problem to
one for a film with spherical energy surfaces, except that
in the transformed problem the electric and magnetic
fields do not have simple orientations with respect to the
film. Simple extensions of previous theories permit the
solution of this problem, although a minor approximation
must be made in using a relaxation time. We have used
the further reasonable approximation of neglecting the
spatial variation of the component of the electric field
normal to the film.

The anisotropy in the effective mobility, particularly in
perpendicular directions on the same specimen, should
permit a determination of the effective mass ratio for the
carriers in a film or surface channel. Such a measure-
ment would be of interest in order to see if the band struc-
ture of the bulk material is distorted in films or near sur-
faces. However, there is a complication that we have not
considered that could change the predicted anisotropy,
namely, an anisotropic collision time. Herring and Vogt®
have shown that to a good approximation the current
components along the different principal axes of an ellips-
oid can be described as decaying with different relaxation
times and that the anisotropy in 7 can be appreciable for
lattice scattering. A similar anisotropy for ionized impur-
ity scattering in semiconductors was calculated by
Ham.?% Such a tensor form for r can be included approx-
imately in the thin-film theory by inserting the appropri-
ate component of 7 in the Boltzmann equation (8)
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