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A Theoretical Model for Separation

in the Fluid Jet Amplifier

Abstract: A theoretical study, based on the re-entrant jet model, is made of the growth of the separation re-
gion in the fluid jet amplifier. The flow is taken to be inviscid but dissipation of momentum is obtained by
means of the re-entrant jet. The effect of control port pressure and wall angle on the size of the separation re-

gion is calculated. Several other versions of the model are suggested.

Nomenclature

Physical quantities

a ratio between the uniform jet velocity far up-
stream and that along the free boundary of the
re-entrant jet

8 angle between the wall and the axis of the channel
(see Fig. 4a)

d offset of the wall (see Fig. 4a)

Sp location of the stagnation point (see Fig. 4a)

é¢, 6 downstream widths of the main jet and the re-
entrant jet, respectively, normalized with re-
spect to the upstream jet width

Mathematical symbols

complex coordinates in the physical
plane
complex velocity

z= x4 iy

§‘=u—iu=qe_“’

w complex potential

Q= —In¢ see Eq. (1)

t auxiliary complex plane

ta, Ip, tg points on the #-plane corresponding

to 4, D, E on the Q- and w-plane
defined in Eqgs. (18) and (19)
complete elliptic integrals of the
first and second kind of moduli &
and k’, respectively

incomplete elliptic integrals of the
first and second kind of argument
¥, and modulus &/, respectively

kK,
K, E; K, E

F(ys, k'), E(Ye, k)
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1. Introduction

The fluid jet amplifier is a bistable device that offers possi-
bilities as a logic element for computers and as a control
element. It operates by switching the direction of flow
of a jet and depends on flow separation, jet entrainment,
and reattachment for its nonlinear characteristics. In the
past few years, since the announcement of the develop-
ment of the device', considerable experimental work
has been done.””* Little theoretical analysis has been
published thus far, but this is not surprising since the
problems of boundary layer separation, jet reattachment,
and turbulent jet entrainment have long presented analyti-
cal difficulties. In this paper one aspect of the flow is
considered. A hydrodynamic model is introduced for the
particular flow separation that seems important in the
operation of a jet amplifier.

There have been, of course, a number of treatments of
flow separation and of jet entrainment and reattachment.
The applications of Coanda® depend on a recognition of
these properties of bounded jet flows. Recently, Bourque
and Newman®, Newman’, and others® have discussed
aspects of the problem. In particular, Newman has con-
sidered a geometry quite close to that of the jet amplifier.”
He has, in fact, taken a constant-pressure region as a
part of the separation model just as we do. As can be
seen, however, in the sketch of the device shown in Fig. 1,
as the jet issues from the channel it is subjected to con-
trolling pressures and flows from the right- and left-hand
control ports. These produce the switching of the jet
from one wall to the other, which is the desired operation.




This imposing of conditions in control regions on the
boundaries of the jet brings in an element which is not
usually present in jet attachment considerations. In the
problem discussed by Newman, for instance, the separation
region is formed between the jet boundary and the solid
wall, and the pressure inside the region is not to be im-
posed but rather to be determined as a function of the
geometry and the flow parameters of the jet. In the jet
amplifier the pressure and flow in this region are imposed.

Our model must therefore allow the pressure in this
region to be an independent variable of the flow. Further-
more, it is desirable that calculations can be made for
any value of the angle 8. The model used by Newman’
is not valid for small angles. It should be pointed out
that the applications in mind here call for this flow to
take place in channels which are deep enough so that a
two-dimensional analysis is appropriate.

Since it is quite clear that viscous effects play an im-
portant role in the separation and in the other fluid phe-
nomena, it may seem strange to choose an inviscid fluid
model, as is done in this analysis. The use of the re-

_entrant jet model which is adopted here does, however,
allow for momentum dissipation. In a way this is just what
is accomplished in other calculations which use empirical
or semi-empirical notions of turbulent jet entrainment.

A series of flow models can be constructed of varying
degrees of complexity and, correspondingly, of different
degrees of mathematical difficulty. Such a series is shown
in Figs. 2, 3, and 4. The detailed analysis in the present
paper has been carried out for the flow in Fig. 4 since it
is the simplest of the three. As will be evident, however,
it is not so simple to calculate even for this case. It seems
worthwhile, however, to describe the other two models.

Figure 1 Fluid jet amplifier.
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In Figs. 2 and 3 the fluid issues from a chaunel at E
and B. In Fig. 2 there is a streamline from E to C which
separates this main jet flow from the fluid from the control
port at E and G. This control flow is divided into two
portions, one of which goes downstream toward C, join-
ing the main jet flow. The other part curves around a
constant-pressure region and flows back into a re-entrant
jet. The streamline which detaches from G is one along
which the pressure and, therefore, for this time-inde-
pendent flow, the velocity is constant. The re-entering
jet is assumed to go off onto a second Riemann sheet in
the physical plane in the same manner as the re-entrant
jet of cavitation flow theory created by Efros® and Kreisel."”
In Fig. 2, D is a stagnation point; the flow from DF is
assumed to have the angle of the wall GC. It is to be
understood that G lies below the jet, not on the same
sheet as F.

It is well known that a flow with a constant pressure
region of finite length cannot exist within exact, incom-
pressible, nonviscous potential theory. It is necessary to
introduce an artifice such as the re-entrant jet in order
that the physically expected properties, such as drag or
momentum loss and the correct boundary curvatures,
can be accounted for. In doing so, one can also consider
that the momentum removed is a kind of dissipation,
modeled by potential processes. This is really at the heart
of all potential wake theories that originate from the
ideas of Kirchhoff and Helmholtz. On the other hand,
the re-entrant jet destroys fluid, but one may think of
this fluid as becoming the secondary, circulating flow
of the separation region. If the amount of fluid removed
to the second Riemann sheet is small, this seems to be a
reasonable idea. The size of the separation region is to
be measured in terms of the position of the stagnation
point D.

Another version of this flow is shown in Fig. 3. This is
a simpler case in that all of the control flow forms the re-
entrant jet; it is all dissipated. In Fig. 4 an even simpler
case is shown in which the control port allows no fluid
to enter but presents only a constant pressure to the main
jet. The secondary flow and the separation region is formed
by fluid from the main jet. There is a streamline AD which
separates the fluid going downstream and that going into
the re-entrant jet. The free streamline detaches at E and
forms with 4D the boundaries of the re-entrant jet. In
this case, instead of a channel flow, the main stream is
a jet along the solid wall AE with the free boundary ex-
tending from A4 to C.

These flows all have much in common with the re-
entrant jet cavity flow at the nose of a wedge at angle
of attack, a problem discussed by Cox and Clayden.'
They are actually somewhat simpler in that, as will be seen,
they are not doubly covered in the complex velocity plane
as is the case in Ref, 11.
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Figure 2 Jet flow pattern with control port flow (I).

The three cases exhibited form a hierarchy of models
of reducing order of complexity. This can be well under-
stood by looking at Figs. 2b,c, 3b,c, and 4b,c. If one
takes the velocity of the flow to be in complex form
§ = u— iv=ge*’ and the complex potential to be
w(z), 2 = x + iy, then dw/dz = {. Tt is useful to define

Q= —In¢ = —Ingqg + i6. (1)
Then

g=e’

and

(L1, _ [ e

z—fg_dw~fe dw. 2

Following the classical hodograph methods of solving
free streamline flows, the w- plane and the Q-plane are
to be mapped simultaneously onto an auxiliary half-plane,
t. In Figs. 2, 3, and 4 the w- and Q-planes are shown for

290 each case. The increasing simplicity becomes quite clear
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Figure 3 Jet flow pattern with control port flow (lI).

although the procedure will remain quite the same.

The calculation which follows uses the model of Fig. 4
as a first effort in understanding the usefulness of the re-
entrant jet model in this context. As will be seen, the
analytical expressions produced for the separation region
size, sp, as a function of the other flow parameters are
quite complex and require numerical handling.

In Section 2 of the paper the details of the analysis are
set out. In Section 3 there is an explanation of the numerical
analysis and in Section 4 a discussion of the calculated
results, The location of the reattachment point in this
theory is a function of the control port pressure and the
angle 8. The theory seems to fit into the results obtained
by Newman’, whose calculations were carried out for
larger angles than were considered in ours. Small angles,
less than 20°, are the appropriate range for the jet ampli-
fier. There is no reason, however, why large-angle calcula-
tions cannot be made from our flow model whereas
Newman’s theory is restricted to small angles. The re-
attachment values obtained here depend on two variables
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Figure 4 Jet flow pattern without control port flow.
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while Newman’s depend only on the angle. An attempt to
give experimental confirmation of this model was per-
formed by R. E. Norwood, and this is mentioned in
Section 4,

2. Analysis

In Fig. 4a, the main jet flow is bounded by AC and ADC,
the re-entrant jet by AEF and ADF. At the stagnation
point D the flow splits along DC and forms the stream-
line DF, which is assumed to remain at angle 8. This
direction is chosen for the re-entrant jet since it seems
most plausible that the main orientation of a secondary
flow back along the wall would be in the direction of that
wall. The offset distance of the downstream wall, d, is
measured positive as shown. The flow quantities are nor-
malized in such a manner that the constant pressure region,
bounded by EF, is at a pressure which gives a velocity
magnitude along EF equal to unity. The main jet flow
has velocity magnitude « < 1 at A4 far upstream and all
along the free boundary AC.

The curves AC and EF are not known, nor is the point D.
Also, the partition of the mass flow from, say, a quantity
normalized to unity at 4 into the quantities §r and &,
at F and C must be determined. The control port width
is not a parameter in this model since we do not specify a
mass flow into this region but only a pressure along the
free streamline boundary of the re-entering jet. Thus the
region over which this pressure is exerted is computed
in obtaining the free streamline and cannot be prescribed
a priori.

It is useful to introduce in the x, y coordinate system
with origin at E, the designation of a measurement, s,
along the line FDC, as shown in Fig. 4. The equation of
the line FDC is then given as

= (s + id)e’ —o <s< . (3)

In the complex potential plane w there is a cut beginning
at D and extending on one side to F and on the other
to C. In the Q-plane A4 is the point (—In «, 0), D is at
o, and Fis at (0, i(x + Q).

The mapping from the Q- to the #-plane (Fig. 5) is
given by
a“@ _ MV
at (t = 1) \/(’ — )t — D — tx)

te > 1> 10> —1 > t,, (4)
where the labeled values of ¢ lie along the real r-axis as
shown. The value M is a real constant. It may be de-
termined by imposing the condition that at D there is a
jump of iz in the Q-plane. Calculating along a semi-
circular arc of radius e around D,

—i(—7) Res {dﬂ t = tp}
dt

ir = lim aa dt =
e—0 Je dt

one obtains

M = \/(tD — t)(1 — tp)(te — tD)_ (5)
\/1 + 1

The next steps are to ascertain the behavior of dQ/dr

along each interval on the real #-axis and to use this in-
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formation when the following conditions are imposed:

(a) Q4 — Q= —Ing
(b) Qe — Q= iB
(© Q% — Q = —i(r + B). (6)

The behavior of dl/dt is indicated in the Appendix. The
jumps in Q on the left-hand sides of (a), (b), and (c) are
obtained by integrating d/ds over the appropriate inter-
vals in ¢.

With some manipulation one obtains

B=f*1 MV 1 — ta
, Or
“oto = V(e — 1)1 ~ (ts — 1)
=—1r+ftE M\/1+tdt
V(e = tp) \/(t — t)(t — Dtg — 0
@)
—1na=f°° MV1+ tar

2t = )V — 1)t — Dt — tz)

+f~”" MV —1 — tdr

: (8)
= (to = OV (1, — )1 — Dtx — 1)

The mapping from the w-plane to the t-plane is simpler
and is most conveniently expressed in the Schwarz-
Christoffel form
d_w = N (t _ tD) (9)
dt (¢ — D+ 1) — t4)
so that dz/dt = exp () dw/dt. The constant N is chosen
in such a way that the upstream width is unity. Since
there are simple poles at £ = +1, and ¢, for dz/dt, follow-
ing the same procedure as in the determination of M
in Eq. (5), one obtains

a(l — t)(—=1 — t,)

M= w(tp — ta) , (10
and
§c = (_IM (11)
2(tp — t4)
- a (1 — 1p)(=1 — t4)
o = 2ty — ta) (12

for the widths of the main jet at infinity downstream and
of the re-entrant jet at infinity. It is to be observed that
the conservation of mass requires that

a1l = ade + 6F (13)

and that it can be shown that (11) and (12) satisfy this
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requirement. Therefore, dz/df may be written in the form

gzg{ 1 _ 6(] _ 1 — 50}29(”- (14)
Ty —t, 41 -1

Equation (14) may now be integrated. One must take
care to give the proper expression for the function Q(7)
in each interval of the r-axis. These are noted in the
Appendix. The function z(f) may be obtained and evalu-
ated along boundaries such as EF, DF, et cetera. Setting
t = 1 in the expression for z, one obtains z = (sp + id)e’*
and

;_r[sb + i(d — &5)]

1 — &,

- C'P'{f; [r—lt,,+ 1 — ¢

d¢
L 1] exp [p.(9)] dt

tE 1 1—34
+f[ — L=l
1 t— ta tr— 1

- tj_—cl:l[cos po(t) — isin py(8)] dt} , (15)

where C.P. indicates Cauchy Principal Part when ¢t — 1.
The values p,(¥) and p,(?) are real elliptic integrals defined
as

o tg —tp 1 — ¢t
n) = [ = tel—to
t t—tpltyg—1t 1 —1t
. 1/2
o tAl-}—t:I at,
t—tya 1+ ¢
tp <t <1,

n() >0 (16)
f tg —tp 1 — ¢

pz(t) =f E D D
1 ¢t — Ip tg —t t — 1

— 1/2
Ip tAI—I-t:I dt
t—ts 1+ 1p

1<t<tg, 0 po() <74 8. (17)

In a formal manner Egs. (7), (8), (11), (12), and (15)
are the results. There are six quantities sp, d, 8¢, 6, B,
and «. Given the flow and the geometry, one has g, «,
and d with which to obtain sp, 8y, and 6r. Actually,
because of the difficult expressions it is clear that one will
have to proceed in an indirect fashion, working from
parameters in the f-plane back to the physical, z-plane.
This is described in the following section.

3. Numerical analysis

The solution of the problem has been expressed in terms
of the three parameters of the mapping, 4, #z, and ?p.
Now, the angle 8 and the flow parameters «, 8¢, and 67




can be expressed in terms of two other parameters k&
and ¢, which are combinations of 74, fg, and i1p:

2 _ (tg — D(—1 — 2,) 21 2
Tt pa—e o TR
(tE + D — i)
2ty — tp) (49)

For given values of £ and ., one can compute 8 and «:

sin® y,

= sin Yo(1 + &° tan® ¥,)" K — EF(y», k')

— KE(Y», k') + KF(¢», k') (20)
n (@ %) = sin (1 + &° tan® ¢,)'° K’

- KIE('/’zv k’) + E'F(‘//Z’ k/) (21)
8¢ = (1 + K tan® )™ (22)
or = al — 3¢), (23)

where K, E and K’, E’ are the complete elliptic integrals
of moduli k and &’ respectively, and F(y,, k) and E(ys, k')
are the incomplete elliptic integrals of argument y,, and
modulus k’. These computations were accomplished by
employing existing library subroutines in the FORTRAN
program. It was found, with some experimental com-
putations, that for values of « and 8 of interest in con-
nection with the jet amplifier, £ is close to unity and y,
is small. It can be shown that for a fixed 8 < 7/4 and
k> 0.8,

#. (24)

SN ¥e = 2K — E)

Based on this relation an iteration scheme was employed
to compute an exact value of ,, and hence «, é., and éz
for a given k and a fixed 8.

The offset distance & and the stagnation point s;, could
then be computed according to the following formulas:

T g 8 = ‘E[l—ac 8¢
ol ] fl —1 T

] sin [po(#)] dt,

t —
{tln ':t — fA

-

1-60
I —t

exp [pi(t)] dt

_1—-3
T [ C
1 t — 1ty t— 1

— t—jr—l] cos [pa(f)] dt} , (26)

where p,(f) and p,(9) are given in (16) and (17).
Although p,(f) and p.(r) may be integrated explicitly

in terms of elliptic integrals, the integrals needed in
evaluating ¢ and s, cannot be integrated explicitly. The
complete expressions in (25) and (26) were therefore
integrated numerically. Note that the singularities at
t = 1t are integrable for all integrals. It can also be shown
that the first integral in evaluating sp is integrable at
t = ¢p, and the integral in evaluating d is integrable at
t = 1. The numerical integrations were carried out in the
intervals r, + e < t<l—egandl1+ e <r <tp— ¢
with

(te — D — 1)
€S N(tg — tp) ’

for some large N > 25. The contributions of the Cauchy
Principal Part and the integrals near the integrable singu-
larities were evaluated by explicitly integrating the expres-
sions using approximate integrands near these singularities.
By fixing the relative locations of t4, tz, and 7, on the
mapping plane for those combinations of k£ and ¢, used
in evaluating 8 and «, the computations of  and s could
then be carried out accordingly.

A FORTRAN program for the above numerical pro-
cedure was written for the case 2 < tz < . Numerical
results indicate that both 4 and s, increase as ¢, moves
along the real axis on the complex ¢-plane toward ¢ which
is, in turn, moved toward ¢ = 1. Thus, ¢4, may take values
such that either — < 1, < —lort ® > t, > 5> 2.
If one desires the solution for a fixed &, one would have
to find the exact relative location of ¢4, t,, and ¢, which
would include the possibility that ¢; may be located such
that —w < fy < t; < —1. This would require a new
set of formulas to compute d and sp,. It was therefore felt
that extremely small variations in 4 were tolerable in
view of the far more extensive calculations that would
be required if 4 were held fixed. The plots showing s,
vs a have, therefore, a slightly different value of 4 at each
plotted point, as indicated in Fig. 6. The actual values of
d which were computed give d > 0 for small e and d < 0
for large «. An idea of the small size of d can be obtained
from Fig. 6. Since both d and s, increase as fz moves
toward ¢ = 1, the results of the computed 4 = 0 would
mean that the computed s,’s, interpreted as d = 0, are
underestimated for large « and overestimated for small «.
If 4 < 0, this would also mean that a gap of at least
] d | csc B has to be provided between the corner E and
the beginning of the wall in the physical plane, as is
evidenced in Fig. 7.

4. Discussion of results

The main result of the work is shown in Figs. 8 and 9
where the variation of s, with « and g is indicated. For
fixed «, 55, varies linearly with 3. The actual values of sp
(recall that it is normalized with respect to the upstream
jet width) are quite small compared to those obtained by
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Newman.” R. E. Norwood of the IBM General Products
Development Laboratory has made a single experiment
with the control port completely closed off. For 8§ = 20°
and o =2 0.7, Norwood could only obtain a single constant
pressure reading to identify the separation region with his
experimental setup. This, however, indicated s, was
somewhere between 0.5 and 1.0, which gives some en-
couragement. It may be possible to rearrange the equip-
ment so as to carry out further experiments.

Figures 10 and 11 show the variation of §, and 65
with « for two values of 3. Note the small percentages
of fluid lost into the re-entrant jet.

Although the shortcomings of the model are obvious,
the results seem to fall into line with what could be ex-
pected from extending the analysis of Newman to small
values of 8. Norwood’s single experiment is also encourag-
ing. One could pursue the idea that the momentum cal-
culated here as disappearing onto a second Riemann
sheet is related to the momentum entrained by a turbulent
free jet or wall jet. What is discouraging is the difficulty

Figure 6 Plot of d, offset of wall, vs o, ratio be-
tween uniform jet velocity far upstream
and that along free boundary of re-en-
trant jet, for 8 = 11.5° and B8 = 18°.
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D

of moving upward in the hierarchy of problems described
in the Introduction because of the hard numerical cal-
culations. These are to be expected in any model wherein
the boundary conditions are mixed in terms of velocities
or pressures and flow direction. Perbaps a linearized free
streamline model, in the manner employed by Tulin'?

in cavitation problems, would lessen the calculational
difficulty.

ldtesc B

Figure 7 Minimum control port width when d < 0.

Figure 8 Location of stagnation point, 55, vs angle
of wall and axis of channel, g.
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Figure 9 location of stagnation point, 55, vs ve- Figure 11 Downstream width of re-entrant jet, r,
locity ratio, a. vs velocity ratio, «.
Figure 10 Downstream width of main jet, 8, vs .
velocity ratio, o. Appendix
1:00 1. The behavior of dQ/dt along the real z-axis:
0.99}- dQ MV 1
;— = s t > tE
t = t)V(t — 1)t — D)t — 12)
0.98-
(purely real and positive)
=11.5°
097 . —
18° = —i MVeti
0.96/~ (t — 1p) \/(t — t)(t — Llteg — 1)
1 <t < tg
0.951
(purely imaginary and negative)
0.94|-
_ MV14
= - ’
0.93 _ (t — tn) \/(t —t)(l — Dtg — 1)
& 092 ! ! | | ! | -1 <1
0.3 0.4 0.5 0.6 0.7 08 09 10
(purely real, positive when ¢ < #p,
o negative when ¢ > 1p) 295
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(_1'3_2 i M\/__l — !
dt (tr — t)\/(l — 1)l — (g — 1) ’

(purely imaginary, and positive)
_ MV 1 —;
- s t < tA

(to — OV (1, — D1 — Dts — )
(purely real and positive).
dQ/dt has a simple pole at ¢5, and is regular elsewhere.

2. The proper form of the integrals for Q(¢) in the various
intervals along the r-axis is given here.* The numbers at
the right refer to numbered integrals in Byrd and Fried-
man.'® All integrals are real.
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* Form of the integrals for Qt
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