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A Theoretical  Model  for  Separation 
in the Fluid Jet Amplifier 

Abstract:  A theoretical study,  based on the re-entrant iet model, is made of the growth of the separation re- 

gion in the fluid jet amplifier. The flow is taken to be inviscid but dissipation of momentum is obtained by 

means of the re-entrant jet.  The  effect of control port pressure and  wall angle on  the  size of the separation re- 

gion is calculated. Several other versions of the model are suggested. 

Nomenclature 

Physical quantities 

a ratio between the uniform jet velocity far up- 
stream and  that along the free boundary of the 
re-entrant jet 

(see Fig. 4a) 
P angle between the wall and  the axis of the channel 

d offset  of the wall  (see Fig. 4a) 
su location of the  stagnation point (see Fig. 4a) 
6c, BF downstream widths of the main jet  and the re- 

entrant jet, respectively, normalized with re- 
spect to  the upstream jet width 

Mathematical symbols 

z =  x +  iy complex coordinates in the physical 

{ = u - iu = qe" complex velocity 
W complex potential 
3 =  -In{ see Eq. (1) 
t auxiliary complex plane 

plane 
' 0  

f A ,  ID, tE points on  the t-plane corresponding 
to A ,  D, E on the 3- and w-plane 

K, E; Kt ,  E' complete elliptic integrals of the 
first and second kind of moduli k 
and k', respectively 

F(+p, kt) ,  E(#*, k') incomplete elliptic integrals of the 
first and second kind of argument 

k, k', h defined in Eqs. (18) and (19) 

288 #2 and modulus kt, respectively 

1. Introduction 

The fluid jet amplifier is a bistable device that offers possi- 
bilities as a logic element for computers and  as a control 
element. It operates by switching the direction of  flow 
of a jet and depends on flow separation, jet entrainment, 
and reattachment for its nonlinear characteristics. In  the 
past few years, since the announcement of the develop- 
ment of the device', considerable experimental work 
has been Little theoretical analysis has been 
published thus  far,  but  this is not surprising since the 
problems of boundary layer separation, jet reattachment, 
and turbulent jet entrainment have long presented analyti- 
cal difficulties. In this paper one aspect of the flow is 
considered. A hydrodynamic model is introduced for the 
particular flow separation that seems important in the 
operation of a jet amplifier. 

There have been, of course, a number of treatments of 
flow separation and of jet  entrainment and reattachment. 
The applications of Coanda5 depend on a recognition of 
these properties of bounded jet flows. Recently, Bourque 
and Newman',  Newman', and others' have discussed 
aspects of the problem. In particular, Newman has con- 
sidered a geometry quite close to  that of the jet amplifier.' 
He has, in fact,  taken a constant-pressure region as a 
part of the separation model just  as we do. As can be 
seen, however, in the sketch of the device shown in Fig. 1, 
as  the  jet issues from  the channel it is subjected to con- 
trolling pressures and flows from the right- and left-hand 
control ports. These produce the switching of the  jet 
from  one wall to the  other, which  is the desired operation. 
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This imposing of conditions in control regions on the 
boundaries of the  jet brings in an element which is not 
usually present in jet attachment considerations. In the 
problem discussed  by Newman, for instance, the  separation 
region is formed between the jet boundary and  the solid 
wall, and  the pressure inside the region is not  to be im- 
posed but  rather to be determined as a function of the 
geometry and the flow parameters of the jet. In the  jet 
amplifier the pressure and flow in this region are imposed. 

Our model must therefore allow the pressure in this 
region to be an independent variable of the flow. Further- 
more, it is desirable that calculations can be made for 
any value of the angle p. The model used  by Newman' 
is not valid for small angles. It should be pointed out 
that  the applications in mind here call for  this flow to 
take place in channels which are deep enough so that a 
two-dimensional analysis is appropriate. 

Since it is quite clear that viscous effects play an im- 
portant  role in the  separation and  in  the other fluid phe- 
nomena, it may seem strange to choose an inviscid fluid 
model, as is done in this analysis. The use of the re- 
entrant jet model which is adopted here does, however, 
allow for momentum dissipation. In a way this is just what 
is accomplished in other calculations which  use empirical 
or semi-empirical notions of turbulent jet entrainment. 

A series of  flow models can be constructed of varying 
degrees  of complexity and, correspondingly, of different 
degrees  of mathematical difficulty. Such a series is shown 
in Figs. 2, 3, and 4. The detailed analysis in the present 
paper has been carried out  for  the flow in Fig. 4 since it 
is the simplest of the three. As will  be evident, however, 
it is not so simple to calculate even for this case. It seems 
worthwhile, however, to describe the other two models. 

Figure I Fluid iet amplifier. 

In Figs. 2 and 3 the fluid issues from a channel at E 
and B. In Fig. 2 there is a streamline from E to C which 
separates this main jet flow from the fluid from the control 
port at E and G. This control flow  is divided into two 
portions, one of which  goes downstream toward C, join- 
ing the  main jet flow. The other  part curves around a 
constant-pressure region and flows back into a re-entrant 
jet. The streamline which detaches from G is one  along 
which the pressure and, therefore, for  this time-inde- 
pendent flow, the velocity is constant. The re-entering 
jet is assumed to go off onto a second Riemann sheet in 
the physical plane in  the same  manner as  the re-entrant 
jet of cavitation flow theory created by  Efros' and Kreisel." 
In Fig. 2, D is a stagnation point; the flow from DF is 
assumed to have the angle of the wall GC. It is to be 
understood that G lies below the  jet,  not on the same 
sheet as F. 

It is  well known that a flow  with a constant pressure 
region of finite length cannot exist within exact, incom- 
pressible, nonviscous potential theory. It is necessary to 
introduce an artifice such as  the re-entrant jet in order 
that  the physically expected properties, such as  drag or 
momentum loss and  the correct boundary curvatures, 
can be accounted for. In doing so, one can also consider 
that the momentum removed is a kind of dissipation, 
modeled by potential processes. This is really at the heart 
of all potential wake theories that originate from the 
ideas of Kirchhoff and Helmholtz. On the other  hand, 
the re-entrant jet destroys fluid, but one may think of 
this fluid as becoming the secondary, circulating flow 
of the  separation region. If the  amount of fluid removed 
to  the second Riemann sheet is small, this seems to be a 
reasonable idea. The size  of the  separation region is to 
be measured in terms of the position of the  stagnation 
point D. 

Another version of this flow  is shown in Fig. 3. This is 
a simpler case in that all of the  control flow forms the re- 
entrant  jet; it is all dissipated. In Fig. 4 an even simpler 
case is shown in which the  control  port allows no fluid 
to enter but presents only a constant pressure to the main 
jet. The secondary flow and  the  separation region is formed 
by  fluid from the main jet. There is a streamline AD which 
separates the fluid going downstream and  that going into 
the re-entrant jet.  The free streamline detaches at E and 
forms with AD the boundaries of the  re-entrant jet. In 
this case, instead of a channel flow, the main  stream is 
a jet along  the solid wall AE with the free boundary ex- 
tending from A to C. 

These flows all have much in common with the re- 
entrant jet cavity flow at the nose of a wedge at angle 
of  attack, a problem discussed  by Cox and Clayden." 
They are actually somewhat simpler in that, as will be seen, 
they are  not doubly covered in the complex velocity plane 
as is the case in  Ref. 11. 
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Figure 2 Jet flow pattern with control port flow (I). Figure 3 Jet flow pattern with control port flow (11). 

The three cases  exhibited form a  hierarchy of models 
of reducing order of  complexity. This can  be well under- 
stood by looking at Figs.  2b,c,  3b,c, and 4b,c. If one 
takes the velocity  of the flow to be in complex form 
r = u - iu = qe" ' 0  and the complex potential to be 
w(z), z = x + iy, then dwldz = {. It is useful to define 

z = 1 f dw = / e n  dw. 

Following the classical hodograph methods of solving 
free  streamline flows, the w- plane and the &plane are 
to be  mapped  simultaneously onto an auxiliary  half-plane, 
t. In Figs.  2, 3, and 4 the w- and Q-planes are shown for 

290 each  case. The increasing  simplicity  becomes quite clear 

Y. TU AND H. COHEN 

although the procedure will remain quite the same. 
The calculation which  follows  uses the model  of  Fig.  4 

as a  first  effort in understanding the usefulness  of the re- 
entrant jet model in this  context. As will be  seen, the 
analytical  expressions  produced for the separation region 
size, sD, as a function of the other flow parameters are 
quite complex and require  numerical  handling. 

In Section  2  of the paper the details of the analysis are 
set out. In Section 3 there  is an explanation of the numerical 
analysis and in Section  4  a  discussion of the calculated 
results. The location of the reattachment point in this 
theory is  a function of the control port pressure and the 
angle p. The theory seems to fit into the results  obtained 
by  Newman',  whose calculations were carried out for 
larger  angles than were considered  in  ours.  Small  angles, 
less than 20°, are the appropriate range for the jet ampli- 
fier. There  is no reason, however,  why large-angle  calcula- 
tions cannot be made from our flow  model  whereas 
Newman's theory  is  restricted to small  angles. The re- 
attachment values  obtained  here  depend on two  variables 
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Figure 4 Jet flow pattern without control port flow. 

A - C D F  E Re(t) ,  
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Figure 5 Auxiliary complex plane (see text). 

while  Newman's depend only on the angle. An  attempt to 
give experimental confirmation of this model was per- 
formed by R. E. Norwood, and this is mentioned in 
Section 4. 

2. Analysis 

In Fig. 4a, the main jet flow is bounded by AC and ADC, 
the  re-entrant jet by AEF and ADF. At  the stagnation 
point D the flow splits along DC and forms the stream- 
line DF, which  is assumed to remain at angle 0. This 
direction is chosen for the re-entrant jet since it seems 
most plausible that  the main orientation of a secondary 
flow back  along the wall would be in  the direction of that 
wall. The offset distance of the downstream wall, d, is 
measured positive as shown. The flow quantities are nor- 
malized in such a manner that  the constant pressure region, 
bounded by EF, is at a pressure which  gives a velocity 
magnitude along EF equal to unity. The main jet flow 
has velocity magnitude (Y < 1 at A far  upstream  and all 
along the free boundary AC. 

The curves AC and EF are  not known, nor is the point D. 
Also, the  partition of the mass flow from, say, a quantity 
normalized to unity at A into  the quantities BF and BC 
at F and C must be determined. The  control  port width 
is not a parameter in this model since we do  not specify a 
mass flow into this region but only a pressure along the 
free streamline boundary of the re-entering jet.  Thus the 
region over which this pressure is exerted is computed 
in obtaining the free streamline and cannot be prescribed 
a priori. 

It is useful to introduce in the x, y coordinate system 
with origin at E, the designation of a measurement, s, 
along the line FDC, as shown in Fig. 4. The  equation of 
the line FDC is then given as 
z = (s + id)ei' - < s < + m . (3) 

In  the complex potential plane w there is a cut beginning 
at D and extending on one side to F and  on the  other 
to C.  In the Q-plane A is the  point (-ln a, 0), D is at 
m , and F is at (0, i(?r + p)). 

The mapping from  the Q- to  the t-plane (Fig. 5) is 
given by 
" dQ M d Z  

dt (t - ' D l d ( t  - f A ) ( t  - l)(t - fE) 

- 

fE  > 1 > I D  > -1 > t a ,  (4) 

where the labeled values of t lie along the real t-axis as 
shown. The value A4 is a real constant. It may be de- 
termined by imposing the condition that  at D there is a 
jump of i?r in the &plane. Calculating along a semi- 
circular arc of radius e around D, 

one  obtains 

M =  d(tD - fA)(1 - tD)(tE - tD). 
d x  ( 5 )  

The next steps are  to ascertain the behavior of dQ/dt 
along each interval on the real t-axis and  to use this in- 29 1 
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formation when the following conditions are imposed: 

(a) DA - DE = -In CY 

(b) Dc - DA = ip 

(c) D E  - DF = - i(?r + p). (6)  

The behavior  of dD/dt is indicated in the Appendix. The 
jumps in D on  the left-hand sides  of (a), (b), and (c)  are 
obtained by integrating dD/dt over the appropriate inter- 
vals  in t. 

With some manipulation one obtains 

M G f  dt 
, or 

- t > d ( t  - fA)(1 - f ) ( f E  - t )  

The mapping from the w-plane to the t-plane is simpler 
and is most  conveniently  expressed in  the Schwarz- 
Christoffel form 

dw 
" 

( t  - to) 
dt ( t  - I ) ( t  + l ) ( t  - tA)  

so that dzldt = exp (a) dw/dt. The constant N is  chosen 
in such a way that  the upstream width is unity. Since 
there are simple  poles at t = f 1, and t A  for dzldt, follow- 
ing the same procedure as  in  the determination of M 
in Eq. ( 3 ,  one obtains 

"N (9) 

for the widths of the main jet at infinity downstream and 
of the re-entrant jet at infinity. It is to be  observed that 
the conservation of mass requires that 

a.1  ff6c + 6 F  (1 3) 

292 and that it can be shown that (1 1) and (12) satisfy this 
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requirement. Therefore, dz/dt may  be written in the form 

& - E  6c 
- 

(14)  
t + l  t - 1  

Equation (14) may  now  be integrated. One must take 
care  to give the proper expression for the function D(t)  
in each interval of the t-axis.  These are noted in the 
Appendix. The function z(t) may  be obtained and evalu- 
ated along boundaries such as EF, DF, et cetera. Setting 
t = tD in the expression for z ,  one obtains z D  = (sD + id)eia 
and 

= C.P.{[L [- 1 + ~ 1 - 6c 
t"A 1 - t  

where  C.P. indicates Cauchy Principal Part when t -+ 1.  
The values pl ( t )  and pz(t) are real elliptic integrals defined 
as 

t E  - t D  1 - t D  

." t D  - f A  1 f t 1"' d t ,  
t"fA 1 + t D  

t D  < t 5 1 ,  p l ( t )  2 (16) 

. .~ - 
f - t A  1 + t D  

1 5 t 5 f E ,  0 5 pZ(t) 5 + 6.  (17) 

In a formal manner Eqs. (7), (8), (ll), (121, and (15) 
are  the results. There are six quantities sD, d, 6c, 6 ~ ,  p, 
and a. Given the flow and  the geometry, one has P, CY, 
and d with  which to obtain sD, 6c, and dF. Actually, 
because  of the difficult  expressions it is clear that one will 
have to proceed  in an indirect fashion, working from 
parameters in the t-plane back to the physical,  z-plane. 
This is  described  in the following section. 

3. Numerical analysis 

The solution of the problem has been  expressed  in terms 
of the three parameters of the mapping, tA,  tg, and tD. 
Now, the angle p and the flow parameters CY, aC, and 8~ 



can be expressed in  terms of two other parameters k 
and fiZ which are combinations of t A ,  t E ,  and tD:  

For given values of k and &, one can  compute /3 and a :  ' = sin $'(1 + k' tan' $2)1/2K - EF($.,, k') 2 

- KE($z, k') + KF($z. k') (20) 
In (a"'*) = sin $2(1 + k2 tan' $z)1/2 K' 

- K'E($z, k') + E'F($z, k') (2 1) 

6c  = (1 + k' tan' $2)-1 (22) 

6 F  = f f ( 1  - 6 c ) ,  (23) 

where K, E and K', E' are  the complete elliptic integrals 
of moduli k and k' respectively, and F(&, k') and E(&, k') 
are  the incomplete elliptic integrals of argument $z, and 
modulus k'. These computations were accomplished by 
employing existing library  subroutines  in the FORTRAN 

program. It was found, with some experimental com- 
putations, that for values of a and b of interest  in  con- 
nection with the  jet amplifier, k k close to unity and $z 

is small. It can be shown that  for a fixed b < ~ / 4  and 
k > 0.8, 

sin l l / z  b . 
2 ( K  - E)  

Based on this  relation an iteration scheme was employed 
to compute an exact value of $I~, and hence a, 6c,  and 8F 
for a given k and a fixed b. 

The offset distance d and  the stagnation  point sD could 
then be computed  according to  the following formulas: 

[d - S F ]  = [- ' E  1 - 6c 6 C  +- 
I t - 1   f + l  a 

where p , ( f )  and p2(t)  are given in (16) and (17). 
Although p l ( t )  and pz(t)  may be integrated explicitly 

in  terms of elliptic integrals, the integrals needed in 
evaluating d and sD cannot be integrated explicitly. The 
complete expressions in (25)  and (26) were therefore 
integrated numerically. Note  that  the singularities at 
t = t E  are integrable for all integrals. It can  also be shown 
that  the first integral  in  evaluating sD is integrable at 
t = tD,  and  the integral in  evaluating d is integrable at 
t = 1. The numerical integrations were carried out in the 
intervals tu + E 2 t 5 1 - E ,  and 1 + E 5 t 5 t E  - E ,  

with 

E < 

for  some large N 2 25. The contributions of the Cauchy 
Principal Part  and  the integrals near the integrable singu- 
larities were evaluated by explicitly integrating the expres- 
sions using approximate  integrands near these singularities. 
By fixing the relative locations of tA, t E ,  and tD on  the 
mapping  plane for those  combinations of k and 1c/' used 
in evaluating /3 and a, the computations of d and sD could 
then be carried out accordingly. 

A FORTRAN program for  the above  numerical  pro- 
cedure was written for the case 2 < t E  < m .  Numerical 
results indicate that  both d and sD increase as f A  moves 
along the real axis on  the complex t-plane toward t,: which 
is, in turn, moved toward t = 1. Thus, tA may take values 
such that either --oo < t A  < -1 or m > t A  > t E  > 2. 
If one desires the solution for a fixed d, one would have 
to find the exact relative location of f A ,  t E ,  and t D  which 
would include the possibility that tE  may be located such 
that - m < f B  < t A  < - 1. This would require  a new 
set of formulas to compute d and sD. It was therefore felt 
that extremely small variations  in d were tolerable  in 
view of the  far more extensive calculations that would 
be required if d were held fixed. The plots showing sD 
vs a have, therefore, a slightly different value of d at each 
plotted  point, as indicated in Fig. 6. The  actual values of 
d which were computed give d > 0 for small a and d < 0 
for large a. An idea of the small size of d can be obtained 
from Fig. 6. Since both d and sn increase as fe moves 
toward t = 1, the results of the computed d # 0 would 
mean that  the computed sD's, interpreted as d = 0, are 
underestimated for large a and overestimated for small a. 
If d < 0, this would also mean that a  gap of at least 

d csc /3 has to be provided between the corner E and 
the beginning of the wall in the physical plane, as is 
evidenced in Fig. 7. 

4. Discussion of results 

The main result of the work is shown in Figs. 8 and 9 
where the variation of sD with a and /3 is indicated. For 
fixed a, sD varies linearly with /3. The actual values of sD 
(recall that it is normalized with respect to the upstream 
jet width) are quite small compared to those  obtained  by 

( t  - 1)(1 - t ) 
- 

N ( t E  - t D >  ' 
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N e ~ m a n . ~  R. E. Norwood of the IBM General Products 
Development Laboratory has  made a single  experiment 
with the control port completely  closed off. For /3 = 20' 
and a! 0.7, Norwood  could  only obtain a single constant 
pressure  reading to identify the separation region  with  his 
experimental  setup.  This, however, indicated sD was 
somewhere  between  0.5 and 1.0, which  gives some  en- 
couragement. It may be  possible to rearrange the equip- 
ment so as to carry out further experiments. 

Figures 10 and 11 show the variation of ?iC and 8F 
with a! for two  values  of @. Note the small  percentages 
of  fluid  lost into the re-entrant jet. 

Although the shortcomings of the model are obvious, 
the results seem to fall into line with what  could  be ex- 
pected from extending the analysis of Newman to small 
values of p. Norwood's  single  experiment  is  also  encourag- 
ing.  One  could  pursue the idea that the momentum  cal- 
culated  here as disappearing onto a second  Riemann 
sheet  is  related to the momentum entrained by a turbulent 
free jet or wall jet. What  is  discouraging is the difficulty 

Figure 6 Plot of d, offset of w'all, vs a, ratio be- 
tween uniform jet velocity far upstream 
and that along free boundary of re-en- 
trant jet, for /3 = 11.5" and /3 = 18". 

m - 0.101 I I 1 I I I I 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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of moving  upward  in the hierarchy of problems  described 
in the Introduction because  of the hard numerical  cal- 
culations.  These are to be  expected in any  model  wherein 
the boundary  conditions are mixed  in  terms of velocities 
or pressures and flow direction.  Perhaps a linearized  free 
streamline  model,  in the manner  employed by  Tulin" 
in  cavitation  problems,  would lessen the calculational 
difficulty. 

Figure 7 Minimum control port width when d < 0. 

Figure 8 Location of stagnation point, sD, vs angle 
of wall  and axis of channel, p. 

$ 0 1  I I I I I I 

IO 15 20 25 30 35 40 4 
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Figure 9 location of stagnation point, sD, vs ve- Figure 11 Downstream width of re-entrant iet, ap, 
locity ratio, a. vs velocity ratio, (Y. 

Figure 10 Downstream width of main iet, &, vs 
velocity ratio, a. Appendix 

2 0.92 I I I I I I I 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

a 

1. The behavior of d0/dt along the real t-axis: 

(purely real and positive) 

l < t < t ,  

(purely imaginary and negative) 

M d l +  t 

( t  - f D > d ( t  - fJ(1 - t ) ( f E  - t )  ' 
= -  

- l < t < l  

(purely real, positive when t < t D ,  

negative when t > t D )  
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f A  < t < - 1  
(purely  imaginary,  and  positive) 

- - M d - 1 -  t 
9 < t.4 

('a - t> d ( f A  - t ) ( l  - t)( fJj  - f )  

(purely  real  and positive). 

dD/dt has a simple  pole a t  t D  and is regular elsewhere. 

2. The  proper  form  of  the  integrals  for D(t) in  the  various 
intervals  along  the r-axis is given  here.* The  numbers  at 
the  right  refer to numbered  integrals  in  Byrd  and  Fried- 
man.13 All  integrals  are  real. 
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* Form of the  integrals  for Qt 

t E  < t :  Q( t )  = M j t  - 1  - t 
dt  

t %  (tD - t)  d ( t  - te)(t  - l ) ( t  + l ) ( t  - t a )  
(258.40) 

(255.40) 

(257.40) 
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