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R. E. Bonner 

On Some Clustering  Techniques 

Abstract:  The problem of organizing a large mass of data occurs frequently in research. Normally, some 

process of generalization is used to compress  the data 50 that it can be analyzed more easily.  A primitive 

step in this  process is the  ”clustering”  technique,  which  involves gathering together similar data into a cluster 

to permit a  significant generalization. 

This paper describes a number of methods  which make use of I B M  7090 computer programs to  do  cluster- 

ing. A medical research problem is used  to illustrate and compare these  methods. 

introduction 

The clustering  problem  as  considered in this paper may 
be stated as follows. Given: A set of objects,  each of  which 
is  defined  by the values of a set of attributes associated 
with it. This attribute set  is the same for each  object. 
Find: “Clusters” of objects  (subsets of the original  object 
set) such that members of a cluster “look like”  each other 
but do not look much  like  objects outside the cluster. 

The definitions of the terms cluster and look  like are 
deliberately  left  unspecified  since none of the many  specific 
definitions that might  be given  seems “best” in any  general 
sense. The value  judgment of the user  is the ultimate 
criterion for evaluating the meaning of these  terms. If 
using  them  produces an answer of value, no more need 
be  asked of them. 

Some  characteristics of clustering  problems  can be  cited 
as follows: First, the given  set  of  objects  can be a sample 
taken from an even larger  set or else the set  can  be  com- 
plete  in  itself.  Second, the experimenter  might  be  inter- 
ested  in  knowing the individual  members of a cluster, 
the members  in an over-all  description of the cluster, or 
in both. Third, an object may  be  allowed  in  only  one 
cluster or in  more than one, or it may  be required to 
be a member  of at least  one  cluster or not allowed to be 
in any  cluster at all. To exemplify these  characteristics we 
can consider a taxonomy  problem where the object  set 
is  complete, there is  interest in knowing the individual 
members of a cluster, and it is  required that  an object  be 
in at least one cluster.  Here the emphasis is on “structur- 
ing” the objects. On the other hand, in another important 
class of problems the objective  is to identify  possible 
“causality”  underlying the data as suggested by multi- 

variate  dependence.  Usually, the given set of objects  repre- 
sents a sample from a larger population. The goal  is to 
obtain an over-all  description of the cluster which hope- 
fully  would  be  reproduced if another sample from the 
same population were chosen.  Objects can be in more 
than one cluster. As the function of these  objects is to 
add to the cluster  descriptions,  they are devoid  of  any 
individual  importance. 

In this paper, a description  is given  of two IBM 7090 
computer  programs-Clustering  Programs I and II- 
which are intended  mainly for “structuring” problems, and 
one other, Clustering Program 111, which  is  intended for 
“causality”  problems. The technique  employed  in the 
latter is  compared  with factor analysis, a method  whose 
goal  is to determine “factors” which account  for the cor- 
relations  existing  between all pairs of attributes. All three 
programs  deal  only  with  binary attributes, although much 
of their  conceptual foundation is applicable to multistate 
attributes and work  is  now  in  progress to exploit this fact. 

The programs were tested on a problem  in  nosology, 
the process  of  classifying  diseases,  which  was  supplied  by 
Dr. Hans Zinsser  of the Columbia  University  College  of 
Physicians and Surgeons. From a medical  point of  view, 
the techniques yielded a set of hypotheses  which can now 
be  clinically  evaluated, for example, by seeing  whether or 
not a particular therapy  has  different effects on people  in 
different  clusters. 

The similarity measure 

Since the input to Programs I and I1 is a similarity matrix, 
a definition of the term and a brief  discussion  of  how a 
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Tab2e I Example of the formation of a similarity matrix. T = similarity threshold. 

Binary description 
of sample object set S, matrix : Similarity  matrix  for T = 0.45 

Object 
N O .  1 2 3 4 5  

Attribute No. 

1 0 0 1 0  
1 1 0 1 0  
0 0 1 1 1  
0 1 1 0 0  
1 0 0 1 1  
0 0 1 0 1  
0 1 0 1 0  
1 1 1 0 0  

6 

0 
0 
1 
1 
0 
0 
1 
0 

- 

Object 
No. 1 2 3 4 5 6  

Attribute No. 

x 2/3 1/5 0 2/3 0 
x 1/6 1/5 2/4 0 

x 2/5  2/5  2/4 
x 0 114 

x 1/4 
x 

I 8  

1/4 1/4 
2/4 2/4 
2/5 1/6 
2/4 2/4 
1/6 1/5 
0 1/4 
x 1/5 

X 

Object 
No. 1 2 3 4 5 6  

Attribute No. 
7 8  

1 1 0 0 1 0  
1 1 0 0 1 0  
0 0 1 0 0 1  
0 0 0 1 0 0  
1 1 0 0 1 0  
0 0 1 0 0 1  
0 1 0 1 0 0  
0 1 0 1 0 0  

0 0  
1 1  
0 0  
1 1  
0 0  
0 0  
1 0  
0 1  

similarity matrix might  be found will be useful. In  its 
specific form,  the clustering problem requires a particular 
definition of similarity for it to be possible to determine 
whether two  objects look alike. An intelligent choice of 
this definition is quite dependent on  the specific problem. 
A few sample definitions follow to acquaint the reader 
with some possibilities. For example, each attribute  can 
be considered a dimension in N-dimensional space and a 
distance measure can be used as a measure of similarity D 
between objects a and p (the smaller the distance, the 
greater the similarity). To illustrate such a measure where 
the ki might be normalizing or value-judgment coefficients, 
we have 

In  the case where all the  attributes  are binary variables, 
a number of similarity measures have been proposed by 
various  authors*-5 and  are discussed more fully in Ref. 5. 
All of these measures involve Cmp, defined as  the number 
of attributes which are “one” for  both object a and  ob- 
ject @. For example, Tanimoto3 has defined similarity as 

8.8 = (Caa)/(Ca, + COP - Ca@). ( 2 )  

If a judgment is made that valid clusters arise because 
of dependence between attributes in the original object 
set, then  the measures mentioned previously are  not very 
satisfactory because they put  equal weight on matches 
between correlated or uncorrelated  attributes. 

An example of a similarity measure for binary variables 
which takes pairwise correlation into account is given by 

* = 1  , = I  

[I  - jxai - xpiI1[1 - 2 Ix,, - x a i [ ] ,  (3) 

where Sap is the similarity between objects a and /3 and ri i  
is the correlation coefficient for  attributes i and j ,  

A term contributes to the  sum if (a) attribute i is the 

same for  both samples a and p ;  and (b) attribute j is the 
same  for both samples a and p. If attribute i is the  same 
as attribute j ,  rii is added  to  the  sum; if they are different, 
ri i  is subtracted from  the sum.  This  procedure effectively 
adds a positive increment if the correlation present agrees 
in sign with ri i  and a negative one if not. 

All of the measures under discussion here are normally 
subjected to a “threshold” value, on  one side of which 
objects are judged “similar” and  on  the  other side, “dis- 
similar.” This results in a “similarity matrix” of ZEROS 

and ONES where the dimensions are objects versus objects 
and ONE means  two  objects are similar. 

The matrix is then used as  the  starting point for various 
clustering techniques. Table 1 shows an example of the 
formation of a similarity matrix using the similarity meas- 
ure of Eq. (2).  (In  this  Table SI, is calculated as follows: 
C,, = 2 ;  Cl l  = 2; C,, = 3; therefore, Slz = 2/3.) 

Clustering Program I 
This  program  takes a similarity matrix (whose dimensions 
are N T  objects by  NT objects), considers it as a set of NT 

objects  each having NT binary  attributes, and forms  its 
similarity matrix using the measure of Eq. (2).  Essentially 
this is taking  the similarity matrix of a similarity matrix; 
since the result is another similarity matrix, the procedure 
can  be  iterated as  many times as desired. The reason for 
doing  this is to give better definition to clusters which are 
loosely connected internally and to better  separate  those 
which overlap. For  the maximum allowable sample size 
of 350 objects, it takes about  one minute of computer 
time per iteration. The result of taking  the similarity ma- 
trix of the similarity matrix of Table l is given in Table 2. 

Clustering Program II 

The  input  to this  program is either the original similarity 
matrix or the matrix that is the  output  from Program I. 
The purpose of the program is, first, to find all clusters 
where all members of the cluster are similar to each other 
and  no nonmember is similar to all members. (In graph 23 
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Table 2 Similarity matrix of similarity matrix of 
Table 1 for similarity threshold T = 0.45. 

Sa@ matrix: Similarity  matrix  for 
T = 0.45 

1 2 3 4 5  6 7 8 
Attribute No. 

1 2 3 4 5 6 7 8  
Attribute No. 

1 3/5 0 0 3/3 0 1/5  1/5 1 

1 0   0 2 / 2 0  0 3 

1 1 0 0 I 0 0 0 

1 0 0 0  1 0 1/5 1/5 5 

1 0 0 1 0 0  

- 

1 0 216 3/4 0 2/6 216 2 

1 0 0 2/4  2/4 4 

1 0 0 1 0 0 0 

1 0 0  1 0 0  6 

1 0 0 1  1 

1 2/4 7 1 1  
1 8 1 

theory, these are called maximal complete subgraphs of 
the similarity  matrix graph; for  simplicity  they  will  be 
referred to as “tight” clusters.) The second  purpose is to 
find,  using the clusters so identified, a set of clusters where 
no object  is  in  more than one cluster and all objects  in a 
cluster are similar to each other. The entire procedure  can 
be  viewed  as  finding a set of “core” clusters to use  as input 
to a later “cluster adjustment” program which attempts 
to build around these  “cores.” 

Algorithms  for Jinding tight clusters 

There are at least  two other  algorithm^'^^ for finding tight 
clusters. An advantage of the present  method  over that 
described  in  Ref. 7 is that it does not print out subsets of 
clusters or the same  cluster  more than once.  Although 
it is  difficult to compare  utility  more  generally  among the 
three because  of the differing  requirements  in output and 
memory and because of the dependence on the input data, 
the method  discussed  here  is  sufficient to handle a useful 
set of inputs in a reasonable  time. It should be  observed 
that all methods  have difficulty as the number  of  clusters 
becomes  very  large.  Another factor which time-limits 
their use  is that it is  difficult to avoid  finding the same 
cluster or its  subsets  over and over  again. The ability of 
Program I to keep  these difficulties  within bounds is  im- 
portant because it permits  solution of  problems that had 
been “impracticable” and provides a much broader base 
of the concept of a tight  cluster.  Figure 1 shows a dia- 
grammatical  representation of the similarity  matrix of 
Table 1 and a list of the tight clusters which are present. 
A detailed  description of the steps  in the procedure used 
is given  in  Appendix I. 

Procedure for picking disjoint sets using tight clusters 

In a typical  case,  many  of the tight clusters will contain 
almost the same  set of members. It is  desirable that only 

24 one cluster  represent the core of this  cluster  set. It is  also 

desirable to have a core for each of the other cluster  sets 
that are reasonably  different  from one another. A question 
then  arises as to whether an object  should  be  allowed  in 
only  one  core or in more than one  core.  Both situations 
are certainly  admissible  depending on the requirements of 
the specific problem  under  consideration. The procedure 
to be  described  forms  disjoint  core  clusters. The program 
builds  up a set  of  cores one at a time. At a given  level  of 
buildup  (certain  number of cores  already  chosen), it can 
find a number of  ways  of choosing the next  core  which 
are all equally  satisfactory.  These  choices are called the 
alternative set for that level of  buildup.  Table 3 presents 
a detailed  description of the buildup  procedure. 

Difficulty  is encountered when the number of alterna- 
tives  becomes too large.  Occasionally, this event  occurs 
in the trivial situation caused by attempting to choose 
between  many  small  clusters at the end of the core-form- 
ing  process.  This  problem  can  be  greatly  alleviated by 
picking an arbitrary alternative when the difference  set 
reduces to a certain specified  size. 

Step 5 is  interesting in that it illustrates an unsuspected 
situation which arose  within the program,  in which it was 

Figure 1 ”Tight”  clusters for similarity results  of 
Table 1. 

‘I Tight” Clusters  “Core”  Clusters 
1, 2, 5 
3. 6 
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necessary to solve a clustering  problem  in  order to break 
a tie. Such a case arises in the application of the algorithm 
to  the  tight  clusters  of  Fig. 1 ; here a tie between (3, 6), 
(8, 4) and (7, 4) was resolved  by  picking (3, 6) and (7, 4). 
The  complete  result is given in Fig. 1. Figure 2 shows  the 
result  of  applying the algorithm to the similarity  matrix 
of  Table 2. Note that because  of  the  use  of  Program I, 
the  clusters  have  become  disjoint. 

Cluster adjustment program 

The  set  of  output core clusters  from  the  program  just 
described  can  now be used as input to a cluster  adjust- 
ment  program or interpreted  in  their own right.  If  Cluster 
Program I was  used  before  Program 11, it is desirable to 
use  the  cluster  adjustment  program. 

This  program  attempts to integrate  the  members of the 
smaller core clusters  into  the  larger  and to relocate  mis- 
placed  members  of the larger. It does  this on the basis 
of  information  from the original  similarity  matrix  (before 
the  manipulation in Program I). The  user specifies the 
size  of  the  smallest  cluster he wishes to consider  as “large.” 
The  program  then  proceeds  as  outlined in Table 4. 

A measure  of  “value”  for  the  cluster  can be constructed 
by  subtracting  from Zzz, which is a measure  of  internal 

Figure 2 ”Tight”  clusters for similarity matrix of 
Table 2. 

“Tight” Clusters 
1, 2, 5 
4, 7, 8 
3. 6 

I 2 

/ 

a 

clustering  strength,  the  average  external  interactions 
I ~ = N P  

where N E  is the  number  of  clusters  other  than  cluster x.  
A measure  of  value  for  the  whole set of  clusters is the 
average  “value” 

Table 3 Steps in forming disjoint core  clusters. 

i = Alternative index 
j = Build up level index 

Step No. Step  Descripiion 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

Find  the  “tight” cluster having the largest number of 
members and store it  as the first “core” cluster. Set 
j = 1. If there is a tie for  the largest cluster, go to 
Step 9. 
Set i = 1. 
Find  the  “tight” cluster having the most members 
different from the  total set of members in all stored 
“core” clusters of alternative i of build up level j .  
Call this its “difference set.” Call the cluster itself a 
“maximum distance” cluster. 
If this difference set is larger than  that of any of the 
other alternatives of build up level j yet considered, 
drop these alternatives; consider only the present 
alternative and go to Step 5. If it is smaller, drop the 
present alternative and go to Step 6. If it is the same 
as that of other alternatives of build up level j ,  con- 
sider all still as possible alternatives and go to Step 5. 
If there is only one “maximum distance” cluster, store 
its “difference set”  as the next “core” cluster for 
alternative i and go to Step 6; if there is a tie, go to 
Step 8. 
Have all alternatives of build up level j been con- 
sidered? If  yes, go to Step 7. If no, add  one to i and 
go to Step 3. 
For any given alternative, are all possible objects in 
one of the  stored “core” clusters? If so, print out the 
core clusters for all alternatives and terminate pro- 
cedure; if not, add 1 to j and go to Step 2. 
Of the set of clusters involved in  the tie, pick the 
smallest and store  its “difference set” as a “core” 
cluster for alternative i, and go to Step 6. If there is 
still a tie, go to Step 9. 
Form a “dissimilarity” matrix for  the clusters in  the 
tie, where two clusters are considered dissimilar if 
their “difference sets” contain no common member. 
Find all the  “tight” clusters for  this matrix. Each 
“tight” cluster here will represent a set of the original 
“tight” clusters from  the  input similarity matrix whose 
“difference sets” are disjoint. Store the largest such 
set of “difference sets” as a set of “core” clusters. If 
there is a tie for  the largest set, all alternatives will 
be followed in the  hope that subsequent choices of 
“cores” will favor some alternatives over others. They 
are therefore added to the alternative list of the next 
level  of build up. Note that it is possible that more 
than one  core will  be added to each alternative by 
Step 9. By convention, this  addition  is still treated as 
one level of build up. Go to Step 6. 

25 
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Table 4 Steps in the cluster adjustment program. 

Step No. Step  Description 

1.  
2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

Set i = 1. 

Consider  the j t h  member  of  cluster i: Compute  from 
Set j = 1. 

the similarity  matrix  the  number of objects  in  the 
first  large  cluster to which  this jth object  is  similar. 
Divide  this by the  number of  objects in the  first  large 
cluster to produce a percentage  “match” of the j th  
object to the first  large  cluster. 

Compute such a percentage  “match” of the j t h  
object  with  each  of the  large  clusters  and  with  each 
of the small  clusters  already  considered. 
Determine  whether  any of these  matches  are  above 
some  threshold  (such  as 0.8). If  yes, go to Step 5 ;  
if no, go to Step 6. 
Delete the j t h  object  from  its  small  cluster and put  it 
into the  cluster  offering the best  match. 
Add 1 to j ;  determine  if  all  members of cluster i have 
been considered? If no, go to Step 3 ;  if  yes, go to 
Step I .  
Add 1 to i: determine  if  all  clusters  have  been con- 
sidered? If no, go to Step 2, if yes, go to Step 8. 
Iterate this  entire  procedure  as  many  times as desired, 
with the hope that stability will  be  eventually  obtained. 
Compute  for  all  remaining  pairs of clusters, x and y ,  
a measure  of  their interaction, which  is  given  by 

where N, is the number  of  members  in  cluster x, N ,  
is  the  number of members  in  cluster y ,  Sa@ is 1 if 
member LY of  cluster x is  similar to member p of 
cluster y ;  is 0 if  they are not similar. I,, is the  per- 
centage of possible  similarity  “links”  which are actu- 
ally  present  between the members  of  cluster x and 
the  members  of  cluster y. 

These measures can be used to judge the value of the 
cluster set. If it has been decided that dependence between 
variables is the only valid “cause” of clusters, another 
test can be made for  this similar to the  one described in 
the next section. 

As an  option, any  set of binary  variables  associated 
with an object can be  entered into  the computer for  the 
entire object set. It will then  compute for  each cluster the 
average value of each of these  variables over the set of 
objects  in that cluster. This  procedure is useful for identi- 
fying characteristics of each cluster and  for noting the 
effect of clustering on variables that  are  not used in  the 
clustering procedure. 

Causality clusters 

In  an  important class of clustering problems, it is desired 
that  the clusters be chosen to reflect the multivariate de- 
pendence existing in the  data. Each cluster would sup- 
posedly represent the effect  of one cause, so that  the goal 

26 of the clustering process would be to  separate  and identify 

the causes which produced the observed object set. To 
do this, it is necessary to postulate the Characteristics of 
a cluster produced by only one cause. Of course,  such a 
choice must  be somewhat arbitrary  and  the results will 
therefore  depend on how the model fits the particular 
problem. It should  also  be  understood that statistical 
methods can never determine whether any observed multi- 
variate dependence was produced  by an  actual cause; 
rather they  only suggest that a search  for  such a cause 
might be  productive. 

Here it is postulated that a cause results in a particular 
“state” of the attributes: in  other words, if only  this  cause 
were present, the  attributes X,, X, . . . X, of each  object 
would theoretically be some fixed set of numbers (X , ) , ,  
(X,),, . (X,) , .  In  addition, it is postulated that  the 
actual value of an  attribute of an object can be different 
from  the theoretical  value because of random fluctuations. 
These  fluctuations are such that  the  attributes  are inde- 
pendent random variables, with the means given  by the 
theoretical values. On this basis, the clustering problem 
now becomes the problem of finding sets of objects where 
the  attributes  are estimated to be independent within a 
set. 

Test of cluster validity 

To test cluster validity it is first postulated that  the given 
object set represents only one cluster. In testing this asser- 
tion, a hypothetical  object  population is set up which has 
attribute means and variances given by estimates of those 
of the  actual population. However, in this  hypothetical 
population, the  attributes  are independent and their  means 
are normally  distributed. The philosophy of the clustering 
procedure to be followed involves finding sets of objects 
which do not come from this  population. If none  can be 
found, the original  object  set is judged to be one cluster. 
If any is found, it is removed from this  set as a cluster. 
The statistical  test used to judge whether a cluster will be 
removed will now be described. 

A cluster of Nk objects are drawn from  the  actual popu- 
lation  and  the  attribute means ( z i ) k  estimated from  the 
objects in  the cluster. A statistic Gk is then computed 
by (4) 

where i = attribute index 
j = object index 
T = number of attributes 
N = number of objects  in total given population 
Nk = number of objects in cluster 

Ri = (;). N xii 

i = 1  
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where j ,  is a set of objects in cluster 
N 

s: = Z I - .  (x ’ - z y  
i = 1  N - 1 

For  the hypothetical  population, G has a x2 distribution 
which allows us to calculate the probability P that G 2 G,. 
Here P is the probability that Nk objects picked ut random 
from  the hypothetical  population will have  a G greater 
than or equal to G,. However, we have not picked Nk 
objects at  random  but instead have employed some cluster- 
ing technique. Let us assume we have used a perfect 
clustering technique, one which finds that set of objects 
for which G is maximum (let us say G,). Then it is impor- 
tant to know the probability Pd of the event G 2 G, 
occurring at least once in a sample set of size N drawn 
from  the hypothetical  population,  for if the event hap- 
pened even once, our perfect clustering technique would 
have found  it. The probability Pd is  difficult to calculate, 
but it is easy to calculate a probability which is suspected 
to exceed Pd and therefore will hopefully give a pessimistic 
estimate of the situation.  This latter probability, P,,  is 
obtained  in Eq. (5) by first calculating the probability 

that  the event will never happen in all 

Table 5 Ten  objects with three binary attributes. 

Object Attribute 
3 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
0 0 0 
0 0 0 
0 0 0 

are binary. This will provide the reader with  a more intui- 
tive understanding of the situation. 

We will assume that we have ten objects of three binary 
attributes  each, as shown in Table 5. 

These attributes  are perfectly correlated.  Calculations 
yield 

If we choose Objects 1 through 7 for association in  Cluster 
1 we get 

ing Nk objects from  an N object  set and  then subtracting 7 
this from 1 : GI __ 0.233 

X 3 X (0.3)’ = 8.1 

P k = 1 - ( 1 - P )  (3 f 

( 5 )  P I  z 1 - (1 - 0.018) - 0.2. (‘3”) 

If Pk is  less than some  small  number,  such as, say, 0.01, 
then we have equivalent assurance that our cluster was 
not drawn from  the hypothetical  population.  Such an ‘luster we get 
occurrence could  arise because the attributes  in the real  3 
population are either not independent or their means are G z  ~ X 3 X (0.7)2 = 18.9 
not normally  distributed or some of both. If P ,  is close 
to 1, we have some  assurance that our cluster could  have p z  < - - o ~ o o o l ) ~ ~ o )  o.012. 
been drawn from  the hypothetical  population  but we 

If we choose as Objects 8 through 10 for association in 

0.233 

cannot say that it could not have been drawn from a 
correlated  population.  Calculation of P ,  must  therefore 
be viewed as a test which admittedly combines some weak- 
nesses but has  the advantage of physical realizability. 

Let us assume now that we have found a cluster and 
through ( 5 )  have shown that it is proper to separate it 
from  the  total object set. What can we say about  the inde- 
pendence of attributes within the cluster?  If we define 
the set of objects  in the cluster as a new total population, 
we can  then  attempt to find clusters in this  population 
by use of our original  method. If  we find none, we assume 
that  the attributes are independent and  it is therefore only 
one cluster. If we find some, we repeat the procedure 
using each of these in  turn  as  the whole population. A 
simple example will now be given, in which the attributes I 

The value of Pl is too high to reject possibility that  the 
cluster was chosen from  the hypothetical  population. Pz, 
however, is sufficiently low to allow Cluster 2 to be  judged 
as valid. The object set is therefore  split into  two parts. 

The value Pz is also minimum with a choice of Cluster 2, 
which is the only  set of objects which would be judged 
as a valid cluster. Within both Cluster 1 and 2, the  attri- 
butes are independent by best estimate since P,(b) = P(b) 
for  all attribute pairs u and b. 

This is always true for a deterministic attribute  (an 
attribute  that  has only one value) since knowledge of 
other events are of no help  in predicting its value. There- 
fore, no further clustering need be done; indeed, no valid 
subclusters of Cluster 1 or 2 would be found using the 
technique. 27 
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This  example  indicates  how this method of determining 
value  for a cluster  splits the original  object  set  in  such a 
way that correlations between attributes contributing to 
large  values  of Gk tend to be  removed and replaced by 
independence  of  these attributes within the chosen  cluster. 
This tends to  take place  because attributes contributing 
to large  values of Gk usually  have  cluster  means of 0 or 1 
and are therefore  deterministic attributes within their 
cluster. 

Factor analysis 

Factor analysis’  is a statistical technique  for  finding a 
certain kind of organization in data. It starts with an 
object  set,  forms a correlation matrix  for all attribute 
pairs, and proceeds to produce a structure consisting of 
a set of factors where  each  factor  is  described by a set of 
loadings,  one for each attribute. If the factors are un- 
correlated, one requirement of this structure is that  the 
mathematical relation of E q .  (7) hold true: 

k = F  

rz, = c fk(Xlfk(Y), (7) 
k = l  

where F = number  of factors 
k = factor index 
x, y = attributes indices 

fk(x) = factor  loading  for attribute x in  factor k.  
rz, = correlation coefficient  between x and y 

The resultant factors from a factor  analysis cannot be 
interpreted as over-all  descriptions of the clusters.  How- 
ever, it is  specifically  shown  in  Appendix I1 that, under 
certain assumptions,  over-all  descriptions of clusters can 
be found which satisfy Eq. (7). In other words, given 
clusters which  satisfy the assumptions of Appendix 11, 
values  of fk(x) can be  calculated from Eq. (AS). This 
procedure  can  be viewed as use of clustering  techniques 
to ultimately  calculate “factor loadings”  [only in the sense 
of satisfying Eq. (711. Since  for  any  set  of  objects there 
will  be a finite  number of  ways to produce  clusters  satisfy- 
ing the assumptions of Appendix 11, there will  only  be a 
finite number of sets of fk(x) values.  This  is in contrast 
to factor analysis  which, through continuous rotation, 
allows an infinite  number of possible solutions, a direct 
consequence  of the fact that the correlation matrix  does 
not contain enough information to allow further resolu- 
tion. In clustering  techniques which  use a test for cluster 
validity as described in the previous  section, advantage is 
taken of complete  knowledge  of the object  set and of its 
multivariate  dependence information to further restrict 
allowable  solutions. The situation depicted in Table 6 
illustrates  this point. 

The three attributes are pairwise  independent but are 
found to be  dependent when considered as a triplet. A 
factor analysis  of the situation yields three factors, one 
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Table 6 Sample  object set. 

Object 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1  2 3 

0 0 0 
0 0 0 
0 0 0 
1  1 0 
1 1 0 
1 1 0 
1 0 1 
1 0 1 
1 0 1 
0 1 1 
0 1  1 
0 1 1 

Attribute 

Table 7 Calculated “factof’ loadings. 

I 1  Cluster or “Factor”  Number 
Attribute  Number 2 3 4 

1 
2 
3 

-0 .5 0.5 0.5 -0.5 
-0.5 0.5 -0.5 0.5 
- 0 . 5  -0.5 0.5 0 .5  

clusters that minimize the measure of cluster  validity 
of E q .  ( 9 ,  yields four  clusters  (Objects #1 to #3, Objects 
#4 to #6, Objects #7 to #9 and Objects #lo to #12). The 
result of calculating “factor loadings” for these  clusters 
using Eq. (AS)  of  Appendix I1 is  given in Table 7. 

This  example  shows  how  cluster  analysis can produce a 
result  consistent  with the mathematical structure of factor 
analysis  [as  expressed by Eq. (711 which could not have 
been obtained from knowledge  of the correlation matrix 
alone. 

The  conclusion is that both clustering  (using the test 
for cluster  validity) and factor  analysis are techniques 
which are aimed at discovering information about multi- 
variate dependence; factor analysis  infers this dependence 
from pairwise correlations, whereas  clustering  observes 
it directly. To compare  them further, a problem was at- 
tacked using  each, as will  be  described later. 

Clustering  Programs I and I1 deal  with information 
contained in a similarity  matrix. The number of elements 
in  such a matrix  depends on the square of the number of 
objects.  This  squaring effect  plus a fixed amount of  high 
speed  memory  in the computer  limits the allowable  object 
set to a maximum of 350. The number of attributes per 
object can be large,  however,  because the size of the simi- 
larity matrix  does not depend on this parameter. 

A required  calculation in a factor  analysis is a corre- 
lation matrix between attributes. Here the square of the 
number of attributes determines  memory limitation, while 



Table 8 Program 111. 

Step No. Step  Description 

1. Pick  an  object to  act as a cluster  center. 
2. Find  the  similarity  between  this  object  and  all  other 

objects  using Eq. (1) as the  measure.  All  objects  more 
similar to the  center than T are  considered to be  in 
the  crude  cluster. Tis an arbitrary  threshold. 

3. Compute  the  typical  member of this  cluster.  Compute 
the expected  number  of  clusters rarer than this to be 
found  in  an  uncorrelated  population,  as  given by 
(ck)P. This  quantity  is a good approximation to Pk 
when it is  very  small and it is  easier to calculate.  If 
this  number  is  greater than a preset  number K, go to 
Step 7;  otherwise,  hill  climbing  will  be  done  in  Step 4. 

4. Find the similarity  between the  typical  member  and 
all other  objects  using  the  following  measure:  Add 
up the weights  [as  given  by appropriate  individual 
terms  of Eq. (4) as  calculated  for  the  last  cluster]  of 
all attributes where there is  bit  match  between  an 
object and the  “typical” member.  If  this  sum  is  greater 
than a certain  percentage Y of the total possible [Gk 
in Eq. (411, then  this  object  is  judged  “similar” to the 
typical  member.  This  measure  weights  highly attribute 
matches that contributed  most to making  the  last 
cluster  as rare as  it  was.  All  objects  similar to this 
typical  member are now members  of the new  cluster. 
This  method  is  intended to be a crude  approximation 
to the slower but  better  procedure of  recalculating 
(:k)P for  each  object  under  consideration  and  ac- 
cepting  only  those that lower  this  measure from  its 
value  in the previous  cluster. 

5. Is this  cluster  the  same  as  the last? If so, go to Step 6; 
if not, go to Step 3. This  procedure  is a check to see 
if stability  has  been  reached.  Note that stability does 
not signify that the  rarest  cluster  in  the  vicinity  has 
been  found. A better  but  more  complicated  procedure, 
used  whenever a cluster  is  found that is  less rare than 
the  previous  one  in the iteration, would  be to raise  the 
value  of Y and  recompute the cluster. 

6. Store  the  stable  cluster  as a final  cluster.  Delete  each 
member  of  this  cluster from  consideration  as a future 
cluster  “center”. 

7. Have  all  allowable  objects  been  used as cluster  centers? 
If no, pick  one and go to 2; if  yes, terminate  the  pro- 
gram. 

the number of objects  does not affect the size of the cor- 
relation matrix. 

Both methods  resort to matrices, the use of which limits 
the size of the problem that can  be  handled. To circum- 
vent this, and also to take advantage of the test of cluster 
validity, another program was developed. 

Clustering Program I l l  

The  input to this  program is an object set with binary 
attributes. The algorithm picks a random “center,” builds 
a crude cluster around this, and then “hill climbs” to a 
better cluster. The yardstick of cluster “goodness” is the 
measure of rarity given  by Eq. (5). A detailed description 
is shown in Table 8. 

It can  be seen that  an object can be in more than  one final 

cluster when this  technique is used. With  some changes in 
the similarity measures, the same clustering philosophy 
can  also  be used where the  attributes  are continuous 
variables. Such a program is now being written. 

The  program can  handle a problem in which the  input 
set  contains a maximum of 720,000 bits, i.e., 2000 objects 
of 360 binary variables each. The problem described in 
the experimental results  required three minutes of com- 
puter time. 

Experimental results 

A problem in the medical field was chosen to test  these 
programs. The set of objects was a set of 350 patients, 
all of whom had been diagnosed by physicians as having 
pyelonephritis. Each  patient was described by the presence 
or absence of each of eighteen symptoms. It is recognized 
that a binary  symptom  description is sometimes less satis- 
factory than a multinomial or  continuous representation; 
however, it was felt in  this case that sufficient information 
was retained by the binary representation to justify  the 
study. 

Pyelonephritis is an inclusive term used by physicians 
to classify cases that fall in a certain broad  area  but  do 
not much resemble each  other. It is a poorly defined con- 
dition which Dr.  Hans Zinsser, of the Columbia Presby- 
terian Medical Center in New York, suspected might be 
a combination of better defined diseases. Finding defini- 
tions for these subdiseases is, then, a clustering problem.* 

Note  that this is not  the medical diagnosis problem? 
where each given patient  has a known disease and  the 
task is to produce a logic which will place this disease into 
the proper category. The task  here is to help define the 
disease categories. Although the emphasis in this prob- 
lem is on “causality” rather  than “structure” (for the 
sense of the quotes, see the Introduction),  Clustering 
Programs I and I1 were tried to judge  their effectiveness 
in such a problem. 

A similarity matrix was formed using Program I and 
the similarity definition of Eq. (2). The similarity matrix 
of the similarity matrix was then  taken five times, also 
using Program I. Cluster cores were now found using 
Program I1 and these were introduced into  the Cluster 
Adjustment  Program. A number of runs were made  to 
adjust  parameters to yield a reasonable result as judged 
by the probability  measure of the last  program. The 
characteristics of the valid resultant clusters are given in 
Table 9. This table lists the percentage of patients  in each 
cluster having each of the 18 symptoms. 

It should  be  mentioned that a measure different from 
Eq. (5) had been used here. The expected number of 
clusters, all having attribute means farther from  the cor- 

* Results of the  test from a  medical  point of view  can be found in 
Ref. 10. 
t An example of medical  diagnosis by computer  is  given  in Ref. 11. 29 



Table 9 Subdiseases from Clustering  Programs I 
and II. Percentage of patients  for  which  vari- 
able  is  present in each cluster. 

Total Residue 
Clusier Number Set I I1 111 Set 

No. of Patientsin Cluster 350  58  32  25  235 

1. Bacteria 0.75 0.95 0.84 0.80 0.68 
2. Obstruction 0.57  0.95  0.59  0.48  0.48 
3. Chills 0.18  0.17  0.94  0.16 0.09 
4. Fever 0.33 0.09 1.00 0’12  0.31 
5. Pain 0.49  0.36  0.94 0.80 0.44 
6. Nausea 0.25  0.19  0.28 0.80 0.21 
7. Decreased Output 0.06  0.04  0.09  0.12  0.06 
8. Abdominal/Back 

Signs 0.33  0.22  0.22  0.92  0.30 
9. Urinary WBC 0.41 0.85 0.31  0.24  0.34 

10. Urinary  Bacteria 0.26  0.45  0.13 0.08 0.25 
11. Urinary RBC 0.72  0.85  0.81  0.92  0.66 
12. WBC 0.50 0.52  0.38 0.80 0.49 
13. Sediment Rate 0.43 0 . 8 5  0.50 0.88 0.26 
14. Dilatation 0.11  0.09  0.03  0.04  0.13 
15. Blunting 0.11 0.02  0.09  0.04  0.14 
16. Infundibula 

narrowed 0.11 0.09  0.06 0.04 0.33 
17. Uremia/Toxemia 0.05 0.09 0.00 0.04  0.04 
18. Chronicity 0.44  0.48  0.38  0.40  0.40 

responding attribute means in  the  total set than  the  ob- 
served cluster, was calculated using a binomial  distribution. 
All three observed clusters had a probability of less than 
0.01 using this measure. 

Use of this  method of clustering proved unwieldy in the 
test and is not normally recommended for finding clusters 
based on multivariate dependence. 

In  the next phase of the experiment, the problem was 
attacked using Clustering Program I11 and  four clusters 
were found,  as shown  in  Table 10. Three of these had 
about  the same characteristics as those from  the  other 
clustering method. The  fourth (No. IV  in  Table 10) seems 
to represent the condition of “hardly  any  symptoms” 
rather than a valid subdisease. It is interesting, however, 
that it was found here and missed before, since the value of 
Eq. ( 5 )  gives it as much right to be considered as Clusters I 
and 111. The reason for this is that  the similarity measure 
(Eq. 2) used in the first method considers zero matches 
unimportant. 

A weakness of the use of Eq. ( 5 )  can  be seen by observ- 
ing the large values of Pk obtained for Clusters I, I11 
and IV. One  interpretation is that they  could have been 
chosen from  the null  population, but they could also have 
been chosen from a weakly correlated real  population, 
as was the  actual case. The presence of actual correlations 
in  the correlation  matrix gives justification for keeping 
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Table 10 Subdiseases from Clustering Program 111. 

Sub-disease I 11 111 IV 

No. of Patients in Set 56 50 42  29 

IKl P 0.2 x 1015 0.2 0.8 x 1015 0.2 x 1010 

1. Bacteria 0.95 0.86  0.76 0.00 
2. Obstruction 0.66  0.62  0.57 0.45 
3. Chills 0.14 1.00 0.10 0.03 
4. Fever 0.27 1.00 0.33 0.35 
5. Pain 0.39  0.72  0.71 0.55 
6. Nausea 0.25  0.26  1.00  0.28 
7. Decreased Output 0 05 0.10  0.12 0.10 
8. Abdominal/ 

Back  Signs 0.20  0.32 1.00 0.38 
9. Urinary WBC 1.00 0.38  0.43  0.10 

10. Urinary  Bacteria 1.00 0.18  0.19  0.03 
11. Urinary  RBC 0.79  0.76 0.74 0.00 
12. WBC 0.57  0.52  0.62  0.21 
13. Sediment  Rate 0.61  0.46 0.55 0.24 
14. Dilatation 0.18 0.10 0.19  0.14 
15. Blunting 0.07 0.10 0.10 0.07 
16. Infundibula 

narrowed 0.25  0.10  0.19  0.07 
17. Uremia/Toxemia 0.13  0.02 0.00 0.00 
18. Chronicity 0.50 0.42  0.43  0.52 

matrix had to be used to determine  this, since it intro- 
duces the very kind of thing  the program attempts to 
avoid. A saving grace, however, is that  the  entire corre- 
lation  matrix need not be calculated, only  those  corre- 
lations of interest. 

Another idiosyncrasy of Program 111 is the possibility 
that almost the  total value of G, will be contributed by 
one variable. This  situation, combined with a violation of 
the assumption of normality of the distribution of the 
variable mean,  can result in  a small value of Pk for  the 
cluster. To guard against calling such clusters valid, the 
contribution of each variable to Gk is indicated by the 
program. 

Finally, a factor analysis using a  maximum  likelihood 
method was carried out, resulting in three  factors whose 
loadings are shown in  Table 11. These are  quite similar 
in principle to the clusters of Table I (since the assump- 
tions of Appendix I1 are  not accurately met, the loadings 
can  be  interpreted  only  approximately  as clusters). It is 
interesting to note  that  rotation  to simple structure  re- 
duces the number of factors to two, essentially combin- 
ing I and 111. Yet cluster analysis shows two  distinct sets 
of people (only 5 of 93 in  common) with characteristics 
like these two factors. 

This  points up a fundamental  problem  in  factor  analy- 
sis: What criterion  should govern the  rotation of axes? 
Here  the choice of simple structure leads to an unwar- 



ranted combination of factors from a clustering  point 
of  view. 

In summary, the three techniques  yielded  similar re- 
sults.  Use of Clustering Programs I and I1 for this kind 
of problem, although possible,  is  unwieldy and not recom- 
mended. Program Ill gave the best results but  showed 
some of the shortcomings of the test for cluster  validity. 
Because  only  pairwise correlations are used  in  factor 
analysis, this method  combined  two factors correspond- 
ing to clusters, which cluster  analysis had separated. 

Conclusions 

The major point to be made is that clustering  methods, 
as  represented by Program 111, can be  used for problems 
now done by factor analysis. It is not implied that such 
a cluster  analysis  should  replace  factor  analysis, but that 
both methods  applied to the same data should yield a 
deeper understanding than either  method  alone. 

In a factor analysis, the goal  is to explain the observed 
correlation matrix  using as few factors or "underlying 
causes" as possible. In a cluster  analysis, the goal  is to 
determine the presence and nature of multivariate de- 
pendence and use this information to suggest the under- 
lying  causes. 

Much work needs to be done to improve the clustering 
techniques  in the areas of: 1) the clustering algorithm, 
2) the measure of cluster  validity, 3) extension to multi- 
state attributes. 

For the more  conventional  type of clustering  problems 
where structure is of primary interest or where  special 
value judgments require an unconventional  definition of 
similarity,  Programs I and I1 are applicable. 

Table I 1  Subdiseases from factor analysis. 

Factor I Factor I 1  Factor 111 

1. Bacteria 0.44 0.08 -0.08 
2. Obstruction 0.24 0.08 0.05 
3. Chills 0.10 0.67  -0.12 
4. Fever 0.01  0.65 -0.09 
5. Pain -0.04  0.33  0.31 
6. Nausea 0.11  0.12  0.37 
7. Decreased Output  -0.03  0.04  0.15 
8. Abdominal/Back 

Signs 0.08 0.11  0.41 
9. Urinary WBC 0.55 -0.06  -0.07 

10. Urinary Bacteria 0.36  -0.21  -0.25 
11. Urinary  RBC 0.20 0.00 
12.  WBC 0.29 0.07 

-0.01 
0.13 

13. Sediment Rate  0.32  0.03  0.13 
14. Dilatation 0.18 0.00 0.13 
15. Blunting -0.09  -0.04 -0.15 
16. Infundibula 

narrowed 0.17 0.00 0.00 
17. Uremia/Toxemia 0.26 -0.05 -0.01 
18. Chronicity 0.10 -0.08 -0.02 

The method of taking the similarity  matrix of the simi- 
larity matrix, as represented by Program I, makes  finding 
all tight clusters  practical. Program I1 finds  these tight 
clusters  using the algorithm of Appendix I, which  is felt 
to be an improvement  over  previous  methods. The cluster 
adjustment program  is  useful to reassign  objects to better 
clusters  based on the original similarity  matrix. 

The ultimate  value of this set of programs can be  ascer- 
tained only  after use on a number of problems.  Such an 
evaluation is a goal of future work. 
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Appendix 1. Algorithm for finding "tight" clusters 

The algorithm  builds  up a cluster, one object at a time. 
It keeps track of three things at each  level i of buildup: 

1. The set  of  objects (A i )  in the cluster  up to this point. 
2. The set of objects (C,) which could  possibly  be  added 

3. The number (L , )  of the last object of Ci to be  con- 
to Ai to further increase the cluster. 

sidered  for addition to the cluster. 

These three things are stored for each i which  is  smaller 
than or equal to the present i. Also  needed  is the similarity 
matrix where the set  of all members  similar to object Li 
is called S, 

Table  AI Cluster-building algorithm. 

Step  No. Step Description 

I .  Set i = 1, CI = all objects, At = no objects, L1 = 1. 
2. Consider C, for  the presence  of object LC:  if it is 

present, go to Step 3; if absent, add 1 to Li and go 
to Step 5. 

3. Store objects common to Ci and SLi as C,+l, delet- 
ing Li (from Ci+l): Store objects in set A i ,  plus object 
Li, as set Ai+l. 

4. Add 1 to L, and store as Li+ l :  then add 1 to i. 
5. Is Li greater than the number of the  last possible 

object? If so, go to Step 6; if not, go to Step 2. 
6. Determine whether C ,  is empty. If so, store Ai as  a 

cluster; if not,  it means either the cluster A ,  has been 
found before or  it is a subset of a cluster found before. 
In this case, do  not store Ai. In any event, store Ai 
as T. 

7. Subtract 1 from i :  Determine whether i = 0; if yes, 
all clusters have been found; if no, go to Step 8. 

8. Form the set of all objects in Ci with numbers greater 
than Li:  Determine whether this set is  a subset of T. If 
so, it means that there is no point attempting to add 
these objects to A i  as the result will  be the same as or 
a subset of T. Therefore, go to Step 7: If not,  go to 
Step 2. 
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Appendix I I .  Calculation of ”pseudo-factor“ 
loadings using  clustering parameters 

F = number  of  clusters 
r,, = correlation coefficient between  attributes x and y .  
j = object  index 
k E cluster  index 
x i  E value  of  attribute x in object j .  
y i  = value  of  attribute y in object j .  
N = number  of  objects 
Nk = number  of  objects  in  cluster k 
j k  = set  of  objects in cluster k 

By definition : 

r,, - 
xy - X j j .  -~ 

SJlI 

If all clusters  are  disjoint  then Eqs. (A2) and (A3) are 
valid : 

If  in  addition  all  attributes  are  assumed  independent 
within  each  cluster  then 
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Then  form  the  sum  of Eq. (A6) 

(‘46) 

Expansion  and  use  of Eqs. (Al) to (A4) produces E q .  (A7): 

If  we  then define f k ( X )  as 

Eq. (A7) will have the same  structure  as Eq. (7) in  the  text. 
It can be shown that I f k ( X )  5 1 1, a requirement  for a 

loading. 
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