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R. E. Bonner

On Some Clustering Techniques

Abstract: The problem of organizing a large mass of data occurs frequently in research. Normally, some

process of generalization is used to compress the data so that it can be analyzed more easily. A primitive

step in this process is the “clustering” technique, which involves gathering together similar data into a cluster

to permit a significant generalization,

This paper describes a number of methods which make use of IBM 7090 computer programs to do cluster-

ing. A medical research problem is used to illustrate and compare these methods.

Introduction

The clustering problem as considered in this paper may
be stated as follows. Given: A set of objects, each of which
is defined by the values of a set of attributes associated
with it. This attribute set is the same for each object.
Find: “Clusters” of objects (subsets of the original object
set) such that members of a cluster “look like” each other
but do not look much like objects outside the cluster.

The definitions of the terms cluster and look like are
deliberately left unspecified since none of the many specific
definitions that might be given seems “‘best” in any general
sense. The value judgment of the user is the ultimate
criterion for evaluating the meaning of these terms. If
using them produces an answer of value, no more need
be asked of them.

Some characteristics of clustering problems can be cited
as follows: First, the given set of objects can be a sample
taken from an even larger set or else the set can be com-
plete in itself. Second, the experimenter might be inter-
ested in knowing the individual members of a cluster,
the members in an over-all description of the cluster, or
in both. Third, an object may be allowed in only one
cluster or in more than one, or it may be required to
be a member of at least one cluster or not allowed to be
in any cluster at all. To exemplify these characteristics we
can consider a taxonomy problem where the object set
is complete, there is interest in knowing the individual
members of a cluster, and it is required that an object be
in at least one cluster. Here the emphasis is on “structur-
ing” the objects. On the other hand, in another important
class of problems the objective is to identify possible
“causality” underlying the data as suggested by multi-
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variate dependence. Usually, the given set of objects repre-
sents a sample from a larger population. The goal is to
obtain an over-all description of the cluster which hope-
fully would be reproduced if another sample from the
same population were chosen. Objects can be in more
than one cluster. As the function of these objects is to
add to the cluster descriptions, they are devoid of any
individual importance.

In this paper, a description is given of two IBM 7090
computer programs—Clustering Programs I and II—
which are intended mainly for “structuring” problems, and
one other, Clustering Program III, which is intended for
“causality” problems. The technique employed in the
latter is compared with factor analysis, a method whose
goal is to determine ““factors” which account for the cor-
relations existing between all pairs of attributes. All three
programs deal only with binary attributes, although much
of their conceptual foundation is applicable to multistate
attributes and work is now in progress to exploit this fact.

The programs were tested on a problem in nosology,
the process of classifying diseases, which was supplied by
Dr. Hans Zinsser of the Columbia University College of
Physicians and Surgeons. From a medical point of view,
the techniques yielded a set of hypotheses which can now
be clinically evaluated, for example, by seeing whether or
not a particular therapy has different effects on people in
different clusters.

The similarity measure

Since the input to Programs I and II is a similarity matrix,
a definition of the term and a brief discussion of how a




Table 1 Example of the formation of a similarity matrix. T — similarity threshold.

Binary description

of sample object set Sy g matrix: Similarity matrix for T = 0.45
Object Attribute No. Object Attribute No. Object Attribute No.

No. 1 23 45 6 No. 1 2 3 4 5 6 7 8 No. 1 23 456 78
1 100100 1 x 2/31/5 0 2/3 0 1/4 1/4 1 11001000
2 110100 2 x 1/6 1/5 2/4 0 2/4 2/4 2 11001011
3 001111 3 x 2/5 2/5 2/4 2/5 1/6 3 00100100
4 011001 4 X 0 1/4 2/4 2/4 4 000100171
5 1 00110 5 x 1/4 1/6 1/5 5 11001000
6 001010 6 X 0 1/4 6 00100100
7 010101 7 x 1/5 7 01010010
8 111000 8 X 8 01010001

similarity matrix might be found will be useful. In its
specific form, the clustering problem requires a particular
definition of similarity for it to be possible to determine
whether two objects look alike. An intelligent choice of
this definition is quite dependent on the specific problem.
A few sample definitions follow to acquaint the reader
with some possibilities. For example, each attribute can
be considered a dimension in N-dimensional space and a
distance measure can be used as a measure of similarity D
between objects o and 8 (the smaller the distance, the
greater the similarity). To illustrate such a measure where
the k; might be normalizing or value-judgment coefficients,
we have

i=N
Dog = Z ki(xia — xiﬁ)Q- ¢))
=1

In the case where all the attributes are binary variables,
a number of similarity measures have been proposed by
various authors'~® and are discussed more fully in Ref. 5.
All of these measures involve C,g, defined as the number
of attributes which are “one”” for both object « and ob-
ject B. For example, Tanimoto® has defined similarity as

Sup = (Caﬁ)/(Caa + CBB - Caﬁ)' (2)

If a judgment is made that valid clusters arise because
of dependence between attributes in the original object
set, then the measures mentioned previously are not very
satisfactory because they put equal weight on matches
between correlated or uncorrelated attributes.

An example of a similarity measure for binary variables
which takes pairwise correlation into account is given by

i=N i=N
Sap = Z} erif[l - Ixou‘ - xﬁil]
[1 - Ixai - xg,-l][l -2 lxai - xai[]s (3)

where S, is the similarity between objects @ and 8 and r;;
is the correlation coeflicient for attributes i and ;.
A term contributes to the sum if (2) attribute i is the

same for both samples o and 3; and (b) attribute j is the
same for both samples o and B. If attribute i is the same
as attribute j, #,; is added to the sum; if they are different,
r;; is subtracted from the sum. This procedure effectively
adds a positive increment if the correlation present agrees
in sign with r;; and a negative one if not.

All of the measures under discussion here are normally
subjected to a “threshold” value, on one side of which
objects are judged “‘similar” and on the other side, “dis-
similar.” This results in a “‘similarity matrix’’ of zEros
and ones where the dimensions are objects versus objects
and oNE means two objects are similar.

The matrix is then used as the starting point for various
clustering techniques. Table 1 shows an example of the
formation of a similarity matrix using the similarity meas-
ure of Eq. (2). (In this Table S, is calculated as follows:
Cp = 2; Cy = 2; Cyy, = 3; therefore, S, = 2/3))

e Clustering Program 1

This program takes a similarity matrix (whose dimensions
are N ; objects by N, objects), considers it as a set of N,
objects each having N, binary attributes, and forms its
similarity matrix using the measure of Eq. (2). Essentially
this is taking the similarity matrix of a similarity matrix;
since the result is another similarity matrix, the procedure
can be iterated as many times as desired. The reason for
doing this is to give better definition to clusters which are
loosely connected internally and to better separate those
which overlap. For the maximum allowable sample size
of 350 objects, it takes about one minute of computer
time per iteration. The result of taking the similarity ma-
trix of the similarity matrix of Table 1 is given in Table 2.

o Clustering Program I

The input to this program is either the original similarity
matrix or the matrix that is the output from Program I.
The purpose of the program is, first, to find all clusters
where all members of the cluster are similar to each other
and no nonmember is similar to all members. (In graph
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Table 2 Similarity matrix of similarity matrix of
Table 1 for similarity threshold T — 0.45.

Sy g matrix: Similarity matrix for
T =045
Attribute No. Attribute No.

1 2345 6 7 8 12345678
1/13/50 0 3/3 0 1/51/5 1{11001000
2 1 02/63/4 0 2/62/6 2 1001000
3 10 02220 0 3 100100
4 1 0 0 2/42/4 4 10011
5 1 0 1/51/5 5 1000
6 1 0 0 6 100
7 1 2/4 7 11
8 1 8 1

theory, these are called maximal complete subgraphs of
the similarity matrix graph; for simplicity they will be
referred to as ““tight” clusters.) The second purpose is to
find, using the clusters so identified, a set of clusters where
no object is in more than one cluster and all objects in a
cluster are similar to each other. The entire procedure can
be viewed as finding a set of ““core’ clusters to use as input
to a later “‘cluster adjustment” program which attempts
to build around these “cores.”

o Algorithms for finding tight clusters

There are at least two other algorithms’*® for finding tight
clusters. An advantage of the present method over that
described in Ref. 7 is that it does not print out subsets of
clusters or the same cluster more than once. Although
it is difficult to compare utility more generally among the
three because of the differing requirements in output and
memory and because of the dependence on the input data,
the method discussed here is sufficient to handle a useful
set of inputs in a reasonable time. It should be observed
that all methods have difficulty as the number of clusters
becomes very large. Another factor which time-limits
their use is that it is difficult to avoid finding the same
cluster or its subsets over and over again. The ability of
Program 1 to keep these difficulties within bounds is im-
portant because it permits solution of problems that had
been “‘impracticable” and provides a much broader base
of the concept of a tight cluster. Figure 1 shows a dia-
grammatical representation of the similarity matrix of
Table 1 and a list of the tight clusters which are present.
A detailed description of the steps in the procedure used
is given in Appendix I.

o Procedure for picking disjoint sets using tight clusters

In a typical case, many of the tight clusters will contain
almost the same set of members. It is desirable that only
one cluster represent the core of this cluster set. It is also
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desirable to have a core for each of the other cluster sets
that are reasonably different from one another. A question
then arises as to whether an object should be allowed in
only one core or in more than one core. Both situations
are certainly admissible depending on the requirements of
the specific problem under consideration. The procedure
to be described forms disjoint core clusters. The program
builds up a set of cores one at a time. At a given level of
buildup (certain number of cores already chosen), it can
find a number of ways of choosing the next core which
are all equally satisfactory. These choices are called the
alternative set for that level of buildup. Table 3 presents
a detailed description of the buildup procedure.

Difficulty is encountered when the number of alterna-
tives becomes too large. Occasionally, this event occurs
in the trivial situation caused by attempting to choose
between many small clusters at the end of the core-form-
ing process. This problem can be greatly alleviated by
picking an arbitrary alternative when the difference set
reduces to a certain specified size.

Step 5 is interesting in that it illustrates an unsuspected
situation which arose within the program, in which it was

Figure 1 "Tight” clusters for similarity results of
Table 1.

“Tight” Clusters “Core” Clusters
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necessary to solve a clustering problem in order to break
a tie. Such a case arises in the application of the algorithm
to the tight clusters of Fig. 1; here a tie between (3, 6),
(8, 4) and (7, 4) was resolved by picking (3, 6) and (7, 4).
The complete result is given in Fig. 1. Figure 2 shows the
result of applying the algorithm to the similarity matrix
of Table 2. Note that because of the use of Program I,
the clusters have become disjoint.

Cluster adjustment program

The set of output core clusters from the program just
described can now be used as input to a cluster adjust-
ment program or interpreted in their own right. If Cluster
Program I was used before Program II, it is desirable to
use the cluster adjustment program.

This program attempts to integrate the members of the
smaller core clusters into the larger and to relocate mis-
placed members of the larger. It does this on the basis
of information from the original similarity matrix (before
the manipulation in Program I). The user specifies the
size of the smallest cluster he wishes to consider as “large.”
The program then proceeds as outlined in Table 4.

A measure of “value” for the cluster can be constructed
by subtracting from I,,, which is a measure of internal

Figure 2 "Tight” clusters for similarity matrix of
Table 2.

“Tight” Clusters
1,2, 5
4,7,8
3,6
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clustering strength, the average external interactions

y=NER

1
VZ = III —_ T II b
Nz 2; Y
where N is the number of clusters other than cluster x.
A measure of value for the whole set of clusters is the
average ‘“‘value”

1 z=Npgp+1
Voo = — V..
Ne + 1 2‘1

Table 3 Steps in forming disjoint core clusters.

i = Alternative index
j = Build up level index

Step No. Step Description

1.  Find the “tight” cluster having the largest number of

members and store it as the first “core” cluster. Set

j = 1. If there is a tie for the largest cluster, go to

Step 9.

Seti =1,

Find the “tight” cluster having the most members

different from the total set of members in all stored

“core” clusters of alternative i of build up level j.

Call this its “difference set.” Call the cluster itself a

“maximum distance” cluster.

4, If this difference set is larger than that of any of the
other alternatives of build up level j yet considered,
drop these alternatives; consider only the present
alternative and go to Step 5. If it is smaller, drop the
present alternative and go to Step 6. If it is the same
as that of other alternatives of build up level j, con-
sider all still as possible alternatives and go to Step 5.

5. If there is only one “maximum distance” cluster, store
its “difference set” as the next *“core” cluster for
alternative i and go to Step 6; if there is a tie, go to
Step 8.

6. Have all alternatives of build up level j been con-
sidered? If yes, go to Step 7. If no, add one to i and
go to Step 3.

7.  For any given alternative, are all possible objects in
one of the stored “core” clusters? If so, print out the
core clusters for all alternatives and terminate pro-
cedure; if not, add 1 to j and go to Step 2.

8. Of the set of clusters involved in the tie, pick the
smallest and store its “difference set” as a “core”
cluster for alternative i, and go to Step 6. If there is
still a tie, go to Step 9.

9. Form a “dissimilarity” matrix for the clusters in the
tie, where two clusters are considered dissimilar if
their “difference sets” contain no common member.
Find all the “tight” clusters for this matrix. Each
“tight” cluster here will represent a set of the original
“tight” clusters from the input similarity matrix whose
“difference sets” are disjoint. Store the largest such
set of “‘difference sets™ as a set of “core’ clusters. If
there is a tie for the largest set, all alternatives will
be followed in the hope that subsequent choices of
“cores” will favor some alternatives over others. They
are therefore added to the alternative list of the next
level of build up. Note that it is possible that more
than one core will be added to each alternative by
Step 9. By convention, this addition is still treated as
one level of build up. Go to Step 6.

wn
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Table 4 Steps in the cluster adjustment program.

Step No. Step Description
1. Seti=1.
2. Setj=1
3. Consider the jt» member of cluster i: Compute from

the similarity matrix the number of objects in the
first large cluster to which this jtb object is similar,
Divide this by the number of objects in the first large
cluster to produce a percentage “match” of the jtb
object to the first large cluster.

Compute such a percentage “match” of the jth
object with each of the large clusters and with each
of the small clusters already considered.

4,  Determine whether any of these matches are above
some threshold (such as 0.8). If yes, go to Step 5;
if no, go to Step 6.

5.  Delete the jtt object from its small cluster and put it
into the cluster offering the best match.

6. Add 1 to j; determine if all members of cluster i have
been considered? If no, go to Step 3; if yes, go to
Step 7.

7. Add 1 to i: determine if all clusters have been con-
sidered? If no, go to Step 2, if yes, go to Step 8.

8.  Iterate this entire procedure as many times as desired,
with the hope that stability will be eventually obtained.

9.  Compute for all remaining pairs of clusters, x and y,
a measure of their interaction, which is given by

a=Nz B=Ny

1
Izu = Z 1321 Saﬂ!

NzNy a=1

where N, is the number of members in cluster x, N,
is the number of members in cluster y, S,g is 1 if
member « of cluster x is similar to member 8 of
cluster y; is 0 if they are not similar. I., is the per-
centage of possible similarity “links” which are actu-
ally present between the members of cluster x and
the members of cluster y.

These measures can be used to judge the value of the
cluster set. If it has been decided that dependence between
variables is the only valid “cause” of clusters, another
test can be made for this similar to the one described in
the next section.

As an option, any set of binary variables associated
with an object can be entered into the computer for the
entire object set. It will then compute for each cluster the
average value of each of these variables over the set of
objects in that cluster. This procedure is useful for identi-
fying characteristics of each cluster and for noting the
effect of clustering on variables that are not used in the
clustering procedure.

Causality clusters

In an important class of clustering problems, it is desired
that the clusters be chosen to reflect the multivariate de-
pendence existing in the data. Each cluster would sup-
posedly represent the effect of one cause, so that the goal
of the clustering process would be to separate and identify
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the causes which produced the observed object set. To
do this, it is necessary to postulate the characteristics of
a cluster produced by only one cause. Of course, such a
choice must be somewhat arbitrary and the results will
therefore depend on how the model fits the particular
problem. It should also be understood that statistical
methods can never determine whether any observed multi-
variate dependence was produced by an actual cause;
rather they only suggest that a search for such a cause
might be productive.

Here it is postulated that a cause results in a particular
“state” of the attributes: in other words, if only this cause
were present, the attributes X;, X; - - - X, of each object
would theoretically be some fixed set of numbers (X;),,
(X2)o, -+ (X)). In addition, it is postulated that the
actual value of an attribute of an object can be different
from the theoretical value because of random fluctuations.
These fluctuations are such that the attributes are inde-
pendent random variables, with the means given by the
theoretical values. On this basis, the clustering problem
now becomes the problem of finding sets of objects where
the attributes are estimated to be independent within a
set.

o Test of cluster validity

To test cluster validity it is first postulated that the given
object set represents only one cluster. In testing this asser-
tion, a hypothetical object population is set up which has
attribute means and variances given by estimates of those
of the actual population. However, in this hypothetical
population, the attributes are independent and their means
are normally distributed. The philosophy of the clustering
procedure to be followed involves finding sets of objects
which do not come from this population. If none can be
found, the original object set is judged to be one cluster.
If any is found, it is removed from this set as a cluster.
The statistical test used to judge whether a cluster will be
removed will now be described.

A cluster of N, objects are drawn from the actual popu-
lation and the attribute means (%), estimated from the
objects in the cluster. A statistic G, is then computed

by (4)

T _ 12
() — %)
G, = T 4
i Zl N 4
where i = attribute index

j = object index

T number of attributes

N number of objects in total given population
N, = number of objects in cluster

() 2
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Il
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where j, is a set of objects in cluster

N ~ \2
$ = Z(xu—xi_
i=1 N — 1

For the hypothetical population, G has a x° distribution
which allows us to calculate the probability P that G > G,.
Here P is the probability that N, objects picked at random
from the hypothetical population will have a G greater
than or equal to G,. However, we have not picked N,
objects at random but instead have employed some cluster-
ing technique. Let us assume we have used a perfect
clustering technique, one which finds that set of objects
for which G is maximum (let us say G,). Then it is impor-
tant to know the probability P, of the event G > G,
occurring at least once in a sample set of size N drawn
from the hypothetical population, for if the event hap-
pened even once, our perfect clustering technique would
have found it. The probability P, is difficult to calculate,
but it is easy to calculate a probability which is suspected
to exceed P; and therefore will hopefully give a pessimistic
estimate of the situation. This latter probability, P, is
obtained in Eq. (5) by first calculating the probability

that the event will never happen in all (% ) ways of draw-

k
ing N, objects from an N object set and then subtracting

this from 1:

Pom1—(1— p )

If P, is less than some small number, such as, say, 0.01,
then we have equivalent assurance that our cluster was
not drawn from the hypothetical population. Such an
occurrence could arise because the attributes in the real
population are either not independent or their means are
not normally distributed or some of both. If P, is close
to 1, we have some assurance that our cluster could have
been drawn from the hypothetical population but we
cannot say that it could not have been drawn from a
correlated population. Calculation of P, must therefore
be viewed as a test which admittedly combines some weak-
nesses but has the advantage of physical realizability.

Let us assume now that we have found a cluster and
through (5) have shown that it is proper to separate it
from the total object set. What can we say about the inde-
pendence of attributes within the cluster? If we define
the set of objects in the cluster as a new total population,
we can then attempt to find clusters in this population
by use of our original method. If we find none, we assume
that the attributes are independent and it is therefore only
one cluster. If we find some, we repeat the procedure
using each of these in turn as the whole population. A
simple example will now be given, in which the attributes

Table 5 Ten objects with three binary attributes.

Object Attribute

1 2 3

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 0 0 0
9 0 0 0
10 0 0 0

are binary. This will provide the reader with a more intui-
tive understanding of the situation.

We will assume that we have ten objects of three binary
attributes each, as shown in Table 5.

These attributes are perfectly correlated. Calculations
yield

1 =3 2

« [(®)e — 0.7]

G, = 3 X = 2l (6)
t 21 0.233/N,

If we choose Objects 1 through 7 for association in Cluster

1 we get

G, = - X 3 X (0.3)° = 8.1
0.233

10

PP=1—(1- 0.018)(3 =~ 0.2.

If we choose as Objects 8 through 10 for association in
Cluster 2 we get

G, = 3 X 3 X (0.7)° = 18.9
0.233

)

10
P,<1—(1— 0.0001)(3 =~ 0.012.

The value of P, is too high to reject possibility that the
cluster was chosen from the hypothetical population. P,,
however, is sufficiently low to allow Cluster 2 to be judged
as valid. The object set is therefore split into two parts.

The value P, is also minimum with a choice of Cluster 2,
which is the only set of objects which would be judged
as a valid cluster. Within both Cluster 1 and 2, the attri-
butes are independent by best estimate since P,(b) = P(b)
for all attribute pairs a and b.

This is always true for a deterministic attribute (an
attribute that has only one value) since knowledge of
other events are of no help in predicting its value. There-
fore, no further clustering need be done; indeed, no valid
subclusters of Cluster 1 or 2 would be found using the
technique.

27
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This example indicates how this method of determining
value for a cluster splits the original object set in such a
way that correlations between attributes contributing to
large values of G, tend to be removed and replaced by
independence of these attributes within the chosen cluster.
This tends to take place because attributes contributing
to large values of G, usually have cluster means of 0 or 1
and are therefore deterministic attributes within their
cluster.

Factor analysis

Factor analysis® is a statistical technique for finding a
certain kind of organization in data. It starts with an
object set, forms a correlation matrix for all attribute
pairs, and proceeds to produce a structure consisting of
a set of factors where each factor is described by a set of
loadings, one for each attribute. If the factors are un-
correlated, one requirement of this structure is that the
mathematical relation of Eq. (7) hold true:

k=F
Few = 2o AXAO), ™)
k=1
where F = number of factors
k = factor index
x, y = attributes indices
r,, = correlation coefficient between x and y

f«(x) = factor loading for attribute x in factor k.

The resultant factors from a factor analysis cannot be
interpreted as over-all descriptions of the clusters. How-
ever, it is specifically shown in Appendix II that, under
certain assumptions, over-all descriptions of clusters can
be found which satisfy Eq. (7). In other words, given
clusters which satisfy the assumptions of Appendix II,
values of f,(x) can be calculated from Eq. (A8). This
procedure can be viewed as use of clustering techniques
to ultimately calculate *““factor loadings™ [only in the sense
of satisfying Eq. (7)]. Since for any set of objects there
will be a finite number of ways to produce clusters satisfy-
ing the assumptions of Appendix II, there will only be a
finite number of sets of f,(x) values. This is in contrast
to factor analysis which, through continuous rotation,
allows an infinite number of possible solutions, a direct
consequence of the fact that the correlation matrix does
not contain enough information to allow further resolu-
tion. In clustering techniques which use a test for cluster
validity as described in the previous section, advantage is
taken of complete knowledge of the object set and of its
multivariate dependence information to further restrict
allowable solutions, The situation depicted in Table 6
illustrates this point.

The three attributes are pairwise independent but are
found to be dependent when considered as a triplet. A
factor analysis of the situation yields three factors, one
for each variable. A clustering algorithm, which finds the
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Table 6 Sample object set.

Object Attribute

1 2 3

1 0 0 0
2 0 0 0
3 0 0 0
4 1 1 0
5 1 1 0
6 1 1 0
7 1 0 1
8 1 0 1
9 1 0 1
10 0 1 1
11 0 1 1
12 0 1 1

Table 7 Caleulated “factor” loadings.

Cluster or “Factor” Number

Attribute Number 1 2 3 4
1 —-0.5 0.5 0.5 —-0.5
2 —-0.5 0.5 -0.5 0.5
3 -0.5 -0.5 0.5 0.5

clusters that minimize the measure of cluster validity
of Eq. (5), yields four clusters (Objects #1 to #3, Objects
#4 to #6, Objects #7 to #9 and Objects #10 to #12). The
result of calculating ““factor loadings” for these clusters
using Eq. (A8) of Appendix II is given in Table 7.

This example shows how cluster analysis can produce a
result consistent with the mathematical structure of factor
analysis [as expressed by Eq. (7)] which could not have
been obtained from knowledge of the correlation matrix
alone.

The conclusion is that both clustering (using the test
for cluster validity) and factor analysis are techniques
which are aimed at discovering information about multi-
variate dependence; factor analysis infers this dependence
from pairwise correlations, whereas clustering observes
it directly. To compare them further, a problem was at-
tacked using each, as will be described later.

Clustering Programs I and II deal with information
contained in a similarity matrix. The number of elements
in such a matrix depends on the square of the number of
objects. This squaring effect plus a fixed amount of high
speed memory in the computer limits the allowable object
set to a maximum of 350. The number of attributes per
object can be large, however, because the size of the simi-
larity matrix does not depend on this parameter.

A required calculation in a factor analysis is a corre-
lation matrix between attributes, Here the square of the
number of attributes determines memory limitation, while




Table 8 Program lll.

Step No. Step Description

—

Pick an object to act as a cluster center.

2. Find the similarity between this object and all other
objects using Eq. (1) as the measure. All objects more
similar to the center than T are considered to be in
the crude cluster. T is an arbitrary threshold.

3. Compute the typical member of this cluster. Compute

the expected number of clusters rarer than this to be

found in an uncorrelated population, as given by

(%k)P. This quantity is a good approximation to Py

when it is very small and it is easier to calculate. If
this number is greater than a preset number X, go to
Step 7; otherwise, hill climbing will be done in Step 4.
4.  Find the similarity between the typical member and
all other objects using the following measure: Add
up the weights [as given by appropriate individual
terms of Eq. (4) as calculated for the last cluster] of
all attributes where there is bit match between an
object and the “typical” member. If this sum is greater
than a certain percentage Y of the total possible [Gi
in Eq. (4)], then this object is judged “‘similar” to the
typical member. This measure weights highly attribute
matches that contributed most to making the last
cluster as rare as it was. All objects similar to this
typical member are now members of the new cluster.
This method is intended to be a crude approximation
to the slower but better procedure of recalculating

(xk)P for each object under consideration and ac-

cepting only those that lower this measure from its
value in the previous cluster.

5. Is this cluster the same as the last? If so, go to Step 6;
if not, go to Step 3. This procedure is a check to see
if stability has been reached. Note that stability does
not signify that the rarest cluster in the vicinity has
been found. A better but more complicated procedure,
used whenever a cluster is found that is less rare than
the previous one in the iteration, would be to raise the
value of Y and recompute the cluster.

6.  Store the stable cluster as a final cluster. Delete each
member of this cluster from consideration as a future
cluster “‘center”.

7.  Have all allowable objects been used as cluster centers?
If no, pick one and go to 2; if yes, terminate the pro-
gram.

the number of objects does not affect the size of the cor-
relation matrix.

Both methods resort to matrices, the use of which limits
the size of the problem that can be handled. To circum-
vent this, and also to take advantage of the test of cluster
validity, another program was developed.

Clustering Program ll1

The input to this program is an object set with binary
attributes. The algorithm picks a random ““center,” builds
a crude cluster around this, and then “hill climbs” to a
better cluster. The yardstick of cluster “goodness” is the
measure of rarity given by Eq. (5). A detailed description
is shown in Table 8.

Tt can be seen that an object can be in more than one final

cluster when this technique is used. With some changes in
the similarity measures, the same clustering philosophy
can also be used where the attributes are continuous
variables. Such a program is now being written.

The program can handle a problem in which the input
set contains a maximum of 720,000 bits, i.e., 2000 objects
of 360 binary variables each. The problem described in
the experimental results required three minutes of com-
puter time.

Experimental results

A problem in the medical field was chosen to test these
programs. The set of objects was a set of 350 patients,
all of whom had been diagnosed by physicians as having
pyelonephritis. Each patient was described by the presence
or absence of each of eighteen symptoms. It is recognized
that a binary symptom description is sometimes less satis-
factory than a multinomial or continuous representation;
however, it was felt in this case that sufficient information
was retained by the binary representation to justify the
study.

Pyelonephritis is an inclusive term used by physicians
to classify cases that fall in a certain broad area but do
not much resemble each other. It is a poorly defined con-
dition which Dr. Hans Zinsser, of the Columbia Presby-
terian Medical Center in New York, suspected might be
a combination of better defined diseases. Finding defini-
tions for these subdiseases is, then, a clustering problem.*

Note that this is not the medical diagnosis problem?
where each given patient has a known disease and the
task is to produce a logic which will place this disease into
the proper category. The task here is to help define the
disease categories. Although the emphasis in this prob-
lem is on “causality” rather than “structure” (for the
sense of the quotes, see the Introduction), Clustering
Programs I and II were tried to judge their effectiveness
in such a problem.

A similarity matrix was formed using Program I and
the similarity definition of Eq. (2). The similarity matrix
of the similarity matrix was then taken five times, also
using Program 1. Cluster cores were now found using
Program II and these were introduced into the Cluster
Adjustment Program. A number of runs were made to
adjust parameters to yield a reasonable result as judged
by the probability measure of the last program. The
characteristics of the valid resultant clusters are given in
Table 9. This table lists the percentage of patients in each
cluster having each of the 18 symptoms.

It should be mentioned that a measure different from
Eq. (5) had been used here. The expected number of
clusters, all having attribute means farther from the cox-

* Results of the test from a medical point of view can be found in
Ref. 10,
¥ An example of medical diagnosis by computer is given in Ref. 11.
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Table 9 Subdiseases from Clustering Programs |
and Il. Percentage of patients for which vari-

Table 10 Subdiseases from Clustering Program Il

able is present in each cluster. Sub-disease 1 11 1t v
Total Residue No. of Patients in Set 56 50 42 29
Cluster Number Set 1 1I HI Set
(N
No. of Patients in Cluster 350 58 32 25 235 LN;C] P 0.2 X 105 0.2 0.8 X101 0.2 X 1010
1. Bacteria 0.75 0.95 0.84 0.80 0.68 1. Bacteria 0.95 0.86 0.76 0.00
2. Obstruction 0.57 0.95 0.59 0.48 0.48 2. Obstruction 0.66 0.62 0.57 045
3, Chills 0.18 0.17 0.94 0.16 0.09 3. Chills 0.14 1.00 0.10 0.03
4. Fever 0.33 0.09 1.00 0°12 0.31 4. Fever 0.27 1.00 0.33 0.35
5. Pain 0.499 0.36 0.94 0.80 0.44 5. Pain 0.39 0.72 0.71 0.55
6. Nausea 0.25 0.19 0.28 0.80 0.21 6. Nausea 0.25 0.26 1.00 0.28
7. Decreased Qutput 0.06 0.04 0.09 0.12 0.06 7. Decreased Output 005 0.10 0.12 0.10
8. Abdominal/Back 8. Abdominal/
Signs 0.33 0.22 0.22 0.92 0.30 Back Signs 0.20 0.32 1.00 0.38
9. Urinary WBC 0.41 0.85 0.31 0.24 0.34 9. Urinary WBC 1.00 0.38 0.43 0.10
10. Urinary Bacteria 0.26 0.45 0.13 0.08 0.25 10. Urinary Bacteria 1.00 0.18 0.19 0.03
11. Urinary RBC 0.72 0.85 0.81 0.92 0.66 11, Urinary RBC 0.79 0.76 0.74 0.00
12. WBC 0.50 0.52 0.38 0.80 0.49 12. WBC 0.57 0.52 0.62 0.21
13. Sediment Rate 0.43 0.85 0.50 0.88 0.26 13. Sediment Rate 0.61 0.46 0.55 0.24
14. Dilatation 0.11 0.09 0.03 0.04 0.13 14. Dilatation 0.18 0.10 0.19 0.14
15. Blunting 0.1 0.02 ¢.09 0.04 0.14 15. Blunting 0.07 0.10 0.10 0.07
16. Infundibula 16. Infundibula
narrowed 0.1 0.09 0.06 0.04 0.33 narrowed 0.25 0.10 0.19 0.07
17. Uremia/Toxemia 0.05 0.09 0.00 0.04 0.04 17. Uremia/Toxemia 0.13 0.02 0.00 0.00
18. Chronicity 0.44 0.48 0.38 0.40 0.40 18. Chronicity 0.50 0.42 0.43 0.52

responding attribute means in the total set than the ob-
served cluster, was calculated using a binomial distribution.
All three observed clusters had a probability of less than
0.01 using this measure.

Use of this method of clustering proved unwieldy in the
test and is not normally recommended for finding clusters
based on multivariate dependence.

In the next phase of the experiment, the problem was
attacked using Clustering Program III and four clusters
were found, as shown in Table 10. Three of these had
about the same characteristics as those from the other
clustering method. The fourth (No. IV in Table 10) seems
to represent the condition of *“hardly any symptoms”
rather than a valid subdisease. It is interesting, however,
that it was found here and missed before, since the value of
Eq. (5) gives it as much right to be considered as Clusters I
and II1. The reason for this is that the similarity measure
(Eq. 2) used in the first method considers zero matches
unimportant.

A weakness of the use of Eq. (5) can be seen by observ-
ing the large values of P, obtained for Clusters I, III
and IV. One interpretation is that they could have been
chosen from the null population, but they could also have
been chosen from a weakly correlated real population,
as was the actual case. The presence of actual correlations
in the correlation matrix gives justification for keeping
them. It is unfortunate that knowledge from a correlation
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matrix had to be used to determine this, since it intro-
duces the very kind of thing the program attempts to
avoid. A saving grace, however, is that the entire corre-
lation matrix need not be calculated, only those corre-
lations of interest.

Another idiosyncrasy of Program III is the possibility
that almost the total value of G, will be contributed by
one variable. This situation, combined with a violation of
the assumption of normality of the distribution of the
variable mean, can result in a small value of P, for the
cluster. To guard against calling such clusters valid, the
contribution of each variable to G, is indicated by the
program,

Finally, a factor analysis using a maximum likelihood
method was carried out, resulting in three factors whose
loadings are shown in Table 11. These are quite similar
in principle to the clusters of Table I (since the assump-
tions of Appendix II are not accurately met, the loadings
can be interpreted only approximately as clusters). It is
interesting to note that rotation to simple structure re-
duces the number of factors to two, essentially combin-
ing I and III. Yet cluster analysis shows two distinct sets
of people (only 5 of 93 in common) with characteristics
like these two factors.

This points up a fundamental problem in factor analy-
sis: What criterion should govern the rotation of axes?
Here the choice of simple structure leads to an unwar-




ranted combination of factors from a clustering point
of view.

In summary, the three techniques yielded similar re-
sults. Use of Clustering Programs I and II for this kind
of problem, although possible, is unwieldy and not recom-
mended. Program III gave the best results but showed
some of the shortcomings of the test for cluster validity.
Because only pairwise correlations are used in factor
analysis, this method combined two factors correspond-
ing to clusters, which cluster analysis had separated.

Conclusions

The major point to be made is that clustering methods,
as represented by Program III, can be used for problems
now done by factor analysis. It is not implied that such
a cluster analysis should replace factor analysis, but that
both methods applied to the same data should yield a
deeper understanding than either method alone.

In a factor analysis, the goal is to explain the observed
correlation matrix using as few factors or ‘““underlying
causes” as possible. In a cluster analysis, the goal is to
determine the presence and nature of multivariate de-
pendence and use this information to suggest the under-
lying causes.

Much work needs to be done to improve the clustering
techniques in the areas of: 1) the clustering algorithm,
2) the measure of cluster validity, 3) extension to multi-
state attributes.

For the more conventional type of clustering problems
where structure is of primary interest or where special
value judgments require an unconventional definition of
similarity, Programs I and II are applicable.

Table 11 Subdiseases from factor analysis.

Factor I Factor I1 Factor 111

1. Bacteria 0.44 0.08 —0.08
2. Obstruction 0.24 0.08 0.05
3. Chills 0.10 0.67 —0.12
4, Fever 0.01 0.65 —0.09
5. Pain —0.04 0.33 0.31
6. Nausea 0.11 0.12 0.37
7. Decreased Output —0.03 0.04 0.15
8. Abdominal/Back

Signs 0.08 0.11 0.41
9, Urinary WBC 0.55 —0.06 —-0.07
10. Urinary Bacteria 0.36 ~0.21 -0.25
11. Urinary RBC 0.20 0.00 —-0.01
12. WBC 0.29 0.07 0.13
13. Sediment Rate 0.32 0.03 0.13
14, Dilatation 0.18 0.00 0.13
15. Blunting —0.09 —0.04 -0.15
16, Infundibula

narrowed 0.17 0.00 0.00
17. Uremia/Toxemia 0.26 —0.05 —~0.01
18. Chronicity 0.10 —0.08 —0.02

The method of taking the similarity matrix of the simi-
larity matrix, as represented by Program I, makes finding
all tight clusters practical. Program II finds these tight
clusters using the algorithm of Appendix I, which is felt
to be an improvement over previous methods. The cluster
adjustment program is useful to reassign objects to better
clusters based on the original similarity matrix.

The ultimate value of this set of programs can be ascer-
tained only after use on a number of problems. Such an
evaluation is a goal of future work.
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Appendix 1. Algorithm for finding “tight” clusters

The algorithm builds up a cluster, one object at a time.
It keeps track of three things at each level i of buildup:

1. The set of objects (4;) in the cluster up to this point.

2. The set of objects (C;) which could possibly be added
to A, to further increase the cluster.

3. The number (L,) of the last object of C; to be con-
sidered for addition to the cluster.

These three things are stored for each ;i which is smaller
than or equal to the present i. Also needed is the similarity
matrix where the set of all members similar to object L;
is called S,

Table AI Cluster-building algorithm.

Step No. Step Description

—

Seti = 1, G = all objects, A; = no objects, L, = 1.

2. Consider C; for the presence of object L;: if it is
present, go to Step 3; if absent, add 1 to L; and go
to Step 5.

3. Store objects common to C; and S, as Ci,1, delet-
ing L; (from C;): Store objects in set 4;, plus object
L;, asset A1

4.  Add 1 to L; and store as L, then add 1 to /.

5. Is L; greater than the number of the last possible
object? If so, go to Step 6; if not, go to Step 2.

6. Determine whether C; is empty. If so, store 4; as a
cluster; if not, it means either the cluster 4; has been
found before or it is a subset of a cluster found before.
In this case, do not store A;. In any event, store A;
as T.

7.  Subtract 1 from i: Determine whether { = 0; if yes,
all clusters have been found; if no, go to Step 8.

8.  Form the set of all objects in C; with numbers greater

than L;: Determine whether this set is a subset of 7. If

s0, it means that there is no point attempting to add
these objects to A; as the result will be the same as or

a subset of 7. Therefore, go to Step 7: If not, go to

Step 2.
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Appendix Il. Calculation of “pseudo-factor”
loadings using clustering parameters

F = number of clusters

r,, = correlation coefficient between attributes x and y.
J = object index

k = cluster index

x; = value of attribute x in object j.

¥; = value of attribute y in object j.

N = number of objects

N, = number of objects in cluster k
J» = set of objects in cluster k

1 ¥
X = W'izl x;
(%) = i'fo
Nk ix
5= 1—-i=N X =%
T N &%

1 ‘X
y p—t -—N- xiy].

i=1

By definition:
==X (A1)

If all clusters are disjoint then Egs. (A2) and (A3) are
valid:

k=F
Ni
1= — A2
> (a2)
k=F
_ Ny
= —* (%), A3
£= 3 @ a3

If in addition all attributes are assumed independent
within each cluster then

k=F

7= % @) (A%)

k=1
Define now M, (x) as the mean value of attribute x in
cluster k¥ normalized by the total population means and
variance.

M(x) = [ — x/s.. (A5)
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Then form the sum of Eq. (A6)

kk:é % M(x) My(y) = kg %ﬁ(oz)ks: x> <(y)ksy_ y>.

(A6)
Expansion and use of Egs. (A1) to (A4) produces Eq. (A7):

k=F

Foy = Z %’2 Mk(x)Mk(y)~ (A7)

k=1
If we then define {.(x) as

£®) = VNJN M), (A8)

Eq. (A7) will have the same structure as Eq. (7) in the text.
It can be shown that | f(x) < 1|, a requirement for a
loading.
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