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Synchronization  of Traffic Signals in Grid Networks 

Abstract: A method of synchronizing  traffic  signals  interconnected  in  an  arbitrary  network is presented.  The  procedure  consists of using 
a simplified  mathematical  model For traffic to relate  the  vehicular  delay  within  the  network to the  signal  parameters  and  then  searching 
over  these  parameters to minimize the delay.  The  technique  has  been  used to synchronize  traffic  signals  in  San  Jose,  California  and has 
yielded a ten  percent  reduction  in the average  delay  per  car  in  comparison  with  the  signal  settings  determined  by  the  city  traffic  depart- 
ment  with  conventional  engineering  methods. 

Introduction 

This  paper is concerned with synchronizing two-phase 
traffic signals in  an  arbitrary network. The signals are 
assumed to  have a common  period, and therefore, the 
problem is to specify the relative phasing and green dura- 
tion of the signals to satisfy some desired goal or criterion. 
In  the special case when the signals are  on a single arterial 
street, they can  be set so that a car  can  go  from  one  end 
to  the  other without  stopping, provided the driver main- 
tains  the speed used in setting  them. The  portion of the 
cycle for which this is possible is called the bandwidth for 
that direction. For arterials, traffic engineers traditionally 
have considered that  the problem is to maximize the  band- 
width for  one direction while maintaining  some specified 
bandwidth in  the  other, Recently, Little has shown  how 
this  problem can  be defined and solved as a mixed-integer 
linear program.' 

In  an  arbitrary network of intersecting streets it may not 
be possible to obtain concurrently a nonzero  bandwidth for 
every street.  Thus, in general, maximum  bandwidth may 
not be a suitable design objective for networks. The  work 
of Helly and Baker suggests further that even for  an arte- 
rial, large  bandwidth  probably is of little value when 
traffic is heavy.' One  reason for this is that  the presence of 
queues, which inevitably form  in heavy traffic, is not  taken 
into consideration  in designing for maximum  bandwidth. 

In this  paper, the design criterion is the  total vehicular 
delay in  the system. An idealized mathematical  model is 
used to relate the movement of traffic to  the signal settings, 
and  the  total delay in the network is computed and used 
as  the criterion for judging the effectiveness of the settings. 
The objective is to find signal parameters that minimize 
the  total delay. While this  approach is straightforward  in 
principle, the complexity of traffic flow and  the com- 

436 binatorial aspects of the problem preclude any chance of 

obtaining a complete solution.  Both the modelling prob- 
lem, which is to obtain  an accurate, yet computationally 
efficient, model of traffic flow, and  the problem of mini- 
mizing the objective function are extremely difficult and 
are resolved here  only to a limited extent. 

A model for traffic flow 

In  this section, a model of traffic flow will be given which 
is suitable for  the numerical  computation needed in  the 
synchronization problem. Typically, problems of practical 
interest will have about ten  intersections when the signals 
are on a single arterial, and  on  the order of  fifty when 
they are  in a network. As traffic flow over such areas is a 
complex phenomenon involving a large  number of vehicles, 
it will be necessary to limit consideration to a few facets 
of the flow.3 In  the model used here, the discrete nature  of 
cars  is disregarded, and traffic is thought of as continuous 
flow. The main physical variables considered are vehicular 
flow rates and queues. Both of these variables are defined 
at  the intersections, and  not  on  the streets that connect 
them. In this sense, the model is discrete in space but 
continuous in time. 

Let  the signalized intersections in  the network of interest 
be  numbered in some way, and let i and j be  any two 
adjacent intersections such that  cars can go from i to j .  
We make  the following assumption concerning all such 
adjacent  pairs (i, j ) :  

A.l All cars travelling from i to j moue at the same speed, 
ui j .  

As a consequence of A.l,  the flows at points on streets 
connecting intersections are  equal  to flows at intersections 
except for a time shift. More explicitly, let fi(t),  expressed 
in units of cars/sec, be the  rate of flow leaving intersection 

IBM JOURNAL JULY 1967 



Figure 1 Schematic  representation of one direction of 
traffic at a pair of intersections. 

i towards j at time t (Fig. 1). Then  the flow at a point a 
distance x from j ,  in the absence of a queue at j extending 
as far  back as x ,  is given by the equation 

where di is the distance from i to j .  
In traffic, of course,  A.l is not observed experimen- 

tally. It would be  more realistic, for example, to allow 
the speed of each car  to be a random variable with  some 
distribution. However, it would then  be necessary to trace 
the  motion of each vehicle throughout  the system or, 
equivalently, to determine the flow at points between 
intersections, and  the simplicity expressed by (1) is lost. 
As we intend to use the model for setting traffic signals, 
the speeds v i  may be considered the ideal or design speeds. 
The  actual dispersion in speeds generally becomes impor- 
tant only when the system covers an area that requires a 
relatively long  time to traverse. 

The number of cars in a queue at  an intersection can be 
readily expressed in terms of its initial value and  the flows 
from  the intersection and  the previous adjacent  inter- 
section. For notational simplicity, only the  equation  for 
one direction of flow through j will be given, the  others 
being identical in form. We assume the length of a queue 
is proportional to the number of cars  it contains. Ac- 
cordingly, let p i ,  which depends on  the number of lanes 
on  the street  connecting i and j ,  denote the length per 
queued car at  j .  Then using (l), the queue at j at time t 
is given by the equation 

In deriving (2), the length of the queue, p i q j ( T ) ,  has been 
assumed to be less than di in the interval (0, t). 

In assuming p i  is a constant, we have  also neglected the 
time lag between when the first car in the queue starts  and 
when the last car begins moving. For, differentiating (2) 
and putting f i  = 0, the length of the queue, l i ,  in  the model 
satisfies the differential equation, 

” = -pj f j ( t )  
dli 
dt 

In reality, the length of the queue is determined by the 
position of the last car which does not begin moving until 
the “starting wave” emanating from  the  front of the queue 
propagates to the rear. For this  reason, the model  tends to 
underestimate the number of cars which are stopped  by 
other stationary cars. A more realistic equation  for li 
would be of the type 

where u, is  the velocity of propagation of the starting 
wave. However, in view of the  other simplifying assump- 
tions made, this refinement has  not been considered 
essential. 

We now give a model for  the flow variables. To ac- 
complish  this, it is convenient to think of a flow as arising 
from  two components.  As before, only the equation for 
one direction of flow at j will be given. First, if the signal 
at  j is green for  the direction (i, j ) ,  and  there is no queue 
at  j ,  the flow leaving j is  just  the flow from i delayed by 
the travel  time di ,./vi (Fig. 1). On  the  other  hand, should 
a queue form  at j ,  it will give rise to a component of f i  
once the signal turns green. We will make  the following 
assumption concerning the  departure of cars  from queues: 

A.2 Cars leave queues at a constant rate, accelerating to 
their desired velocity in a negligible amount of time. 

With A.2, the second component of flow is equal to a 
constant, r i ,  whenever qi > 0 and signal j is green. Note 
that  the  two components of flow are mutually exclusive, 
because a queue  interrupts the free flow of vehicles from 
the previous intersection. Let ZQj(t) ,  the indicator  function 
of q j ,  be defined as 

Then,  combining the  two components, the flow leaving j 
at time t is given by 

[o if signal is red 

I (otherwise. 

In (3), the amber  phase is ignored; it may be considered as 
part of either the red or green phase. 

Equations (2) and (3) were derived for intersections j 
in  the “interior” of the network. For  an intersection on 
the  boundary,  the flow from i in (2) and (3) is replaced by 
a source: f i ( t )  is set equal  to some prescribed function. 
In principle, the source waveforms should  be chosen to 
match as closely as possible the flows observed empirically. 
However, except for  the average number of cars which 437 
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the source should supply  per  cycle, the exact shape of the 
waveform to use is generally  difficult to determine. In lieu 
of a solution to this difficulty, we will  make the following 
simplifying  assumption : 

A.3 Cars arrive at  the boundary intersections in platoons. 
Within each platoon,  they arrive separated by  the same 
time interval. Furthermore, the temporal arrival pattern 
repeats itself from cycle to cycle. 

Corresponding to A.3, the source  waveforms are periodic 
piecewise constant functions. Note that A.3 includes the 
case  where cars arrive at a constant rate. 

Assuming that each  flow f i  continues on to a single 
intersection  (i.e., there are no turns), the model  is  com- 
~ l e t e . ~  For if the initial conditions in the network, the 
timing of the signals, and the sources are specified, (2) 
and (3) can be  solved,  provided there is no queue that 
overflows into its adjacent  intersection. 

The numerical solution of (2) and (3) is greatly  simplified 
by A.3,  since the solutions to (3) are now  piecewise con- 
stant and, consequently, the solutions to (2) are piecewise 
linear. It therefore suffices to compute the values of the 
solutions at times  where their slopes  change. 

A second important consequence of  A.3 is that  the 
solution of (2) and (3) is periodic for sufficiently large t, 
provided that  the inputs are low  enough to preclude  con- 
gestion. Furthermore, the periodic solution is  independent 
of the initial conditions in the network.  These  two  facts 
can be  proven by considering a single  intersection  fed by a 
periodic  source and then showing that the flow  leaving it 
is eventually  periodic. The periodic solution will be  called 
the steady-state  solution. 

Synchronization problem 

One  signal in the network may be  chosen as a reference. 
Then, the phasing of any other signal  is  determined by 
specifying the interval between the beginning of “main 
street” green at the two  intersections.  This  inteval,  called 
the offset, may  range from zero  up to the period of the 
signals. The other signal parameter, called the split, is the 
duration of main  street  green. Its value  is  restricted by such 
factors as pedestrian  crossing  times. The synchronization 
problem  is to specify the offset and split of each  signal, 
within their permissible  range, to accomplish  some ob- 
jective. 

The criterion which  we  use to judge the performance of 
a set of signal parameters is the  total steady state delay 
in the network which  we  define as 

D = IT qj(t)  dt. (4) 
3 0  

In (4), Tis the period of the signals, and the qi(t)  are the 
steady-state solutions of (2) and (3) for some  fixed set 
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directions in the network. D is a function of the signal 
parameters alone, and the objective is to find a set of these 
variables which  minimizes D. 

Properties of D 

In this section,  some  properties of the function D are given, 
but the associated proofs are only  outlined. It will be  clear 
from these properties that D does not have the mathe- 
matical structure needed to apply  directly  any of the stand- 
ard mathematical  programming  methods. 

P.l In general, D is not  a continuous function of its argu- 
ments. 

To see this, consider an intersection  with a queue  being 
serviced at a rate r, toward which cars are flowing  in a 
platoon at a rate r2 > rl. Let the signal at the intersection 
be set so that the queue is just dissipated when the next 
platoon arrives at  the intersection. Then, if the timing of 
the signal is changed so that the queue is not dissipated 
in  time, there will  be a discontinuity in the delay,  because 
the platoon now  will  be stopped, and the queue will 
increase.’ 

It can be  shown,  however, that D has the following 
property: 

P.2 D is continuous if the queue service rate at each inter- 
section is  at least as great as the possible flow rates 
into  the intersection. 

The conditions required  in P.2 are satisfied, for example, 
if the cars from each  source  pass through intersections 
that have the same queue  service rates, and if the intensity 
of  each  source  is  sufficiently  low. 

The q-functions are piecewise linear  functions, so from 
(4) it is  clear that D is a quadratic function of all the times 
tk where the slopes of the q-functions  change.  Let pi  
denote either the offset or the split of signal i. It can be 
shown that the times t k  are piecewise linear  functions Of 

p i .  Moreover, the possible  slopes of the q-functions  depend 
only on the source flow rates, the velocities v i  j ,  and the 
intersection constants p and r i ,  and not on the signal 
parameters.  Combining the last two  statements, it follows 
that the graph of D as a function of pi  with all other signal 
parameters  held constant is a piecewise quadratic curve. 
Unfortunately, the “corner  points” of such  curves are not 
simply  related to the signal  parameters, and this property 
of D is not very  useful for minimizing the function. 

An individual  signal can influence the total network 
delay by affecting the delay at  the signal  itself. In addition, 
by governing the time at which cars leave the intersection, 
the signal  affects the delay these cars experience at SUC- 

ceeding  intersections.  Within our model,  these are the only 
ways that a signal can affect the total delay. Furthermore, 
because turns are excluded in the model, the effect  is  felt 
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Figure 2 The signal at j affects  only  the  intersections  in 
the  contour C .  

only  in a subset of the network. In Fig. 2, the influence of 
signal j is confined to  the area enclosed by the  contour C. 
Partitioning the network in this way is quite useful. For 
example, to compute the  partial derivative of D, only the 
intersections  in contours like C need be considered at each 
step. 

Procedure for minimizing D 
In view  of the  structure of D, there  is probably no fool- 
proof  algorithm for minimizing D short of evaluating it 
for "all possible" signal settings. As the  latter is not com- 
putationally feasible even for moderate-size networks, it 
has been necessary to resort to a heuristic search  procedure. 
The procedure, which has been used with  some success, 
normally consists of two stages. Usually a coarse  search, 
which may involve dividing the given network into sub- 
systems, is carried out first. The result obtained is then 
used as a starting point in a finer search for a local  min- 
imum of the function. The procedure will be described 
briefly in  this section, and two examples will be given in 
the following section. 

The search  procedure for  the case when all the signals 
are  on a single arterial will be described first. An  arterial 
is said to be symmetric if ui = u i i  for all  pairs (i, j ) .  It 
has a half-cycle synchronization if the time between the 
midpoints of the red phases of every pair of signals is  an 
integral  multiple of a half cycle. Morganand Little showed 
that  among  the half-cycle synchronizations is a solution to 
the maximum equal bandwidth problem.6 The starting 
point for  the refined search is found by evaluating D for 
all possible half-cycle synchronizations and choosing one 
which gives the lowest delay.7 If the number of signals is 
n, then 2"" evaluations of D are required. The setting  ob- 

tained is refined by a variable step-size gradient  procedure 
or a sequence of searches over regions defined by allowing 
subsets of the parameters to vary.' In  the  latter case, the 
region is usually divided with a uniform grid spacing, al- 
though a Fibonacci-type  search has  also been used for 
single variable ~ea rches .~  Some  care is taken  inchoosing  the 
step size in the gradient  procedure because it is more time 
consuming to compute VD than D itself, and because V D  
may be discontinuous. 

The procedure for networks is similar to the method used 
for arterials, except for  the determination of a starting 
point. In a typical  network, it is usually possible to single 
out a few streets which are  more heavily travelled than  the 
others. These streets are treated preferentially by syn- 
chronizing them as arterials in  the first stage of the search." 
The settings obtained are  then combined and used as a 
starting  point for a gradient or sequential search procedure 
as described above. 

The determination of a good  starting  point is crucial to 
the minimization procedure. In a real  situation, one may 
also use the settings that  are currently on  the street. It may 
also be possible in networks, especially those with several 
one-way streets, to calculate by hand a reasonably good 
starting point. 

Examples 

The first example was studied  by Morgan  and Little and 
is a stretch of Euclid Avenue in Cleveland.' Figure 3 shows 
the space-time diagram of a maximum equal bandwidth 
synchronization for  the  arterial given in Ref. 6. The parallel 
sloping lines define the time  during which a car may enter 
the system and  go at 50 feet/second from  one  end to the 
other without stopping. It is clear that  this synchronization 

Figure 3 Space-time  diagram for part of Euclid  Avenue. 
Maximum  equal  bandwidth, speed = 50 ft/second, cycle 
length = 65 seconds,  red  times are 0.47, 0.40, 0.40, 0.47, 
0.48, 0.42, 0.40, 0.40, 0.42. Horizontal lines  indicate dura- 
tion of red  lights. 
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Table 1 Search  parameters  used  for  Euclid  Avenue. I N 

Iteration N I  Nz A (Cycles) D 

0 0.89 
1 2 0 0.25  0.101 
2  2  2 0.25 0.101 
3  2 0 0.05 0.091 
4  2 0 0.02 0.088 
5 2  2 0.02 0.088 

Figure 4 San  Jose  network. 
Table 2 Offsets for Euclid  Avenue.  Maximum  equal  band- 
width  solution  taken  from Ref. 6. 

Offset for Offset Determined 
Maximum Equal by Method of 

Bandwidth Paper 
Intersection (Seconds)  (Seconds) 

Ivanhoe 
Octavia 
Urbania 
Arabella 
London 
Wayside 
Burgess 
Cliffview 
Shopping  center 
Green 

0 
30.2 
30.2 

0 
0.2 

29.5 
30.2 
30.2 
64.2 
64.2 

0 
31.2 
27.9 

1.9 
0.6 

31.2 
31.2 
31.2 
60.5 
63.7 

gives zero delay in our model if the platoons supplied 
by the sources at each end of the arterial are properly 
phased and shorter than  the bandwidth, which  is 0.237 
cycles. To test our method, the sources were  set to supply 
platoons 0.25 cycles long and phased so that the midpoints 
of the green phase at boundary intersections and the 
platoons coincided. 

Only the offsets  were  varied  in the search, and initially 
all offsets  were set equal to zero. The intersections were 
numbered consecutively, and each step in  the procedure 
consisted of a search over the offsets  of signal i and i + 1, 
1 5 i 5 9, with the other offsets  held constant. Let oi(k) 
denote the offset of signal i after the k t h  step. Then the 
next search over the offsets of signal i and i + 1 was in the 
rectangular grid defined  by the equations 

oi = oi(k) + (n - N,)A, n = 0, 1, 2, . . . 9 2N1 

~ i + l  = o,+,(k)  + ( m  - NJA, 

m = 0, 1 , 2 ,  . . .  9 2N2. 

The grid is centered at  the previously computed offsets for 
the signals, A is the mesh  size, and  the parameters Nl and 
N2 determine the number of points in the grid. Considering 

440 a search over each of the nine pairs of signals as one 

iteration, the search converged after five iterations. The 
set of offsets so determined has  the property that varying 
any two adjacent offsets cannot reduce the computed 
delay. Table 1 gives the value of the parameters A, N,, N2 
and the delay after each iteration. The offsets of the max- 
imum equal bandwidth solution and  the computed solution 
are approximately the same and are given  in Table 2 (see 
also Fig. 3). 

The second  example  is a 59-intersection area in San Jose 
which  is  shown  schematically in Fig. 4. There are several 
one-way streets in  the system; these are indicated by 
arrows in Fig. 4. The network is actually two separate 
systems,  because  eight intersections in  the western part 
of the system are three-phase signals  with  eighty-second 
cycle lengths, and the others are two-phase  with  55-second 
cycle lengths. Consequently, the former was treated as 
an arterial (with the left-turn green  considered as  part of 
the cross-street green)  while the latter was considered a 
single  network. 

The initial starting point for the search procedure in  both 
systems  was zero offset  with splits approximately equal to 
those that had actually been  in  use in  the city.  Several  signal 
parameters which  resulted from the preliminary coarse 
search procedure were adjusted by hand. This was  easy 
to do because of the one-way streets. Otherwise, the search 
procedure used  was as described in the preceding section. 

All of the signals in the area are currently controlled by 
an IBM 1710 Control System.  Vehicle detectors have been 
placed thoughout the system in sufficient numbers so that 
almost every lane on each street is  covered. With the 
present programming system, the number of  vehicles that 
pass over each detector every  five  seconds  is  recorded. By 
knowing when cars pass over the detectors and  the phase 
of the signals, the computer determines approximately the 
number of cars which stop and the vehicular  delay at each 
intersection. A useful  figure of merit for a synchronization 
is the  delaylcar for the  total system,  which  is  defined as 
the  ratio of the  total delay in  the system to the  total 
number of cars served by the intersections in the system. 
In recent tests, over a two-week period, the delay/car was 
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about  ten  percent  less  for the signal  settings  determined 
by  our  procedure in comparison to those determined  by 
the  city traffic engineering  department  using  conventional 
engineering  methods.  Similar  improvements  also  were 
measured  by a floating car trip-time  method. 
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