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Synchronization of Traffic Signals in Grid Networks

Abstract: A method of synchronizing traffic signals interconnected in an arbitrary network is presented. The procedure consists of using
a simplified mathematical model for traffic to relate the vehicular delay within the network to the signal parameters and then searching
over these parameters to minimize the delay. The technique has been used to synchronize traffic signals in San Jose, California and has
yielded a ten percent reduction in the average delay per car in comparison with the signal settings determined by the city traffic depart-

ment with conventional engineering methods,

Introduction

This paper is concerned with synchronizing two-phase
traffic signals in an arbitrary network. The signals are
assumed to have a common period, and therefore, the
problem is to specify the relative phasing and green dura-
tion of the signals to satisfy some desired goal or criterion.
In the special case when the signals are on a single arterial
street, they can be set so that a car can go from one end
to the other without stopping, provided the driver main-
tains the speed used in setting them. The portion of the
cycle for which this is possible is called the bandwidth for
that direction. For arterials, traffic engineers traditionally
have considered that the problem is to maximize the band-
width for one direction while maintaining some specified
bandwidth in the other, Recently, Little has shown how
this problem can be defined and solved as a mixed-integer
linear program.’

In an arbitrary network of intersecting streets it may not
be possible to obtain concurrently a nonzero bandwidth for
every street. Thus, in general, maximum bandwidth may
not be a suitable design objective for networks. The work
of Helly and Baker suggests further that even for an arte-
rial, large bandwidth probably is of little value when
traffic is heavy.” One reason for this is that the presence of
queues, which inevitably form in heavy traffic, is not taken
into consideration in designing for maximum bandwidth.

In this paper, the design criterion is the total vehicular

. delay in the system. An idealized mathematical model is

used to relate the movement of traffic to the signal settings,
and the total delay in the network is computed and used
as the criterion for judging the effectiveness of the settings.
The objective is to find signal parameters that minimize
the total delay. While this approach is straightforward in
principle, the complexity of traffic flow and the com-
binatorial aspects of the problem preclude any chance of
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obtaining a complete solution. Both the modelling prob-
lem, which is to obtain an accurate, yet computationally
efficient, model of traffic flow, and the problem of mini-
mizing the objective function are extremely difficult and
are resolved here only to a limited extent.

A model for traffic flow

In this section, a model of traffic flow will be given which
is suitable for the numerical computation needed in the
synchronization problem. Typically, problems of practical
interest will have about ten intersections when the signals
are on a single arterial, and on the order of fifty when
they are in a network. As traffic flow over such areas is a
complex phenomenon involving a large number of vehicles,
it will be necessary to limit consideration to a few facets
of the flow.® In the model used here, the discrete nature of
cars is disregarded, and traffic is thought of as continuous
flow. The main physical variables considered are vehicular
flow rates and queues. Both of these variables are defined
at the intersections, and not on the streets that connect
them. In this sense, the model is discrete in space but
continuous in time.

Let the signalized intersections in the network of interest
be numbered in some way, and let i and j be any two
adjacent intersections such that cars can go from i to j.
We make the following assumption concerning all such
adjacent pairs (i, Jj):

A.1 All cars travelling from i to j move at the same speed,
Ugje

As a consequence of A.l, the flows at points on streets
connecting intersections are equal to flows at intersections

" except for a time shift. More explicitly, let f,(9), expressed

in units of cars/sec, be the rate of flow leaving intersection
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Figure 1 Schematic representation of one direction of
traffic at a pair of intersections.

i towards j at time ¢ (Fig. 1). Then the flow at a point a
distance x from j, in the absence of a queue at j extending
as far back as x, is given by the equation

f(8) = fi(t - Lv—u—x> , (1)
where d;; is the distance from i to j.

In traffic, of course, A.1 is not observed experimen-
tally. It would be more realistic, for example, to allow
the speed of each car to be a random variable with some
distribution. However, it would then be necessary to trace
the motion of each vehicle throughout the system or,
equivalently, to determine the flow at points between
intersections, and the simplicity expressed by (1) is lost.
As we intend to use the model for setting traffic signals,
the speeds v, ; may be considered the ideal or design speeds.
The actual dispersion in speeds generally becomes impor-
tant only when the system covers an area that requires a
relatively long time to traverse.

The number of cars in a queue at an intersection can be
readily expressed in terms of its initial value and the flows
from the intersection and the previous adjacent inter-
section. For notational simplicity, only the equation for
one direction of flow through j will be given, the others
being identical in form. We assume the length of a queue
is proportional to the number of cars it contains. Ac-
cordingly, let p;, which depends on the number of lanes
on the street connecting i and j, denote the length per
queued car at j. Then using (1), the queue at j at time ¢
is given by the equation

a:(t) = q,(0)
+ fo [L(T — d—_v*pq*@> — f,«(r)} dr. (2

17

In deriving (2), the length of the queue, p;q;(7), has been
assumed to be less than d;; in the interval (0, 7).

In assuming p; is a constant, we have also neglected the
time lag between when the first car in the queue starts and
when the last car begins moving. For, differentiating (2)
and putting f; = 0, the length of the queue, /;, in the model
satisfies the differential equation,

di;

il pifi(2).

In reality, the length of the queue is determined by the
position of the last car which does not begin moving until
the “starting wave” emanating from the front of the queue
propagates to the rear. For this reason, the model tends to
underestimate the number of cars which are stopped by
other stationary cars. A more realistic equation for /;
would be of the type

-l - 5 - o -0
dt o\ Ui ! v, /)’
where v, is the velocity of propagation of the starting
wave. However, in view of the other simplifying assump-
tions made, this refinement has not been considered
essential.

We now give a model for the flow variables. To ac-
complish this, it is convenient to think of a flow as arising
from two components. As before, only the equation for
one direction of flow at j will be given. First, if the signal
at j is green for the direction (i, j), and there is no queue
at j, the flow leaving j is just the flow from i delayed by
the travel time d; ;/v;; (Fig. 1). On the other hand, should
a queue form at j, it will give rise to a component of f;
once the signal turns green. We will make the following
assumption concerning the departure of cars from queues:

A.2 Cars leave queues at a constant rate, accelerating to
their desired velocity in a negligible amount of time.

With A.2, the second component of flow is equal to a
constant, r;, whenever g; > 0 and signal j is green. Note
that the two components of flow are mutually exclusive,
because a queue interrupts the free flow of vehicles from
the previous intersection. Let I, (¥), the indicator function
of q;, be defined as

L = {o if q()=0
(Lif g0 > 0.

Then, combining the two components, the flow leaving j
at time ¢ is given by

( 0 if signal is red
fi(t) =
d;;
f_) , (3)

Uij

rilai(t) + [1 - Idi(t)]fi<t -

(otherwise.

In (3), the amber phase is ignored; it may be considered as
part of either the red or green phase.

Equations (2) and (3) were derived for intersections j
in the “interior” of the network. For an intersection on
the boundary, the flow from i in (2) and (3) is replaced by
a source: f,(¢) is set equal to some prescribed function.
In principle, the source waveforms should be chosen to
match as closely as possible the flows observed empirically.
However, except for the average number of cars which
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the source should supply per cycle, the exact shape of the
waveform to use is generally difficult to determine. In lieu
of a solution to this difficulty, we will make the following
simplifying assumption:

A.3 Cars arrive at the boundary intersections in platoons.
Within each platoon, they arrive separated by the same
time interval. Furthermore, the temporal arrival pattern
repeats itself from cycle to cycle.

Corresponding to A.3, the source waveforms are periodic
piecewise constant functions. Note that A.3 includes the
case where cars arrive at a constant rate,

Assuming that each flow f; continues on to a single
intersection (i.e., there are no turns), the model is com-
plete.* For if the initial conditions in the network, the
timing of the signals, and the sources are specified, (2)
and (3) can be solved, provided there is no queue that
overflows into its adjacent intersection.

The numerical solution of (2) and (3) is greatly simplified
by A.3, since the solutions to (3) are now piecewise con-
stant and, consequently, the solutions to (2) are piecewise
linear. It therefore suffices to compute the values of the
solutions at times where their slopes change.

A second important consequence of A.3 is that the
solution of (2) and (3) is periodic for sufficiently large 7,
provided that the inputs are low enough to preclude con-
gestion. Furthermore, the periodic solution is independent
of the initial conditions in the network. These two facts
can be proven by considering a single intersection fed by a
periodic source and then showing that the flow leaving it
is eventually periodic. The periodic solution will be called
the steady-state solution.

Synchronization problem

One signal in the network may be chosen as a reference.
Then, the phasing of any other signal is determined by
specifying the interval between the beginning of “main
street” green at the two intersections. This inteval, called
the offset, may range from zero up to the period of the
signals. The other signal parameter, called the split, is the
duration of main street green. Its value is restricted by such
factors as pedestrian crossing times. The synchronization
problem is to specify the offset and split of each signal,
within their permissible range, to accomplish some ob-
jective.

The criterion which we use to judge the performance of
a set of signal parameters is the total steady state delay
in the network which we define as

D=3 foT q:(?) dt. 4)

In (4), T is the period of the signals, and the g;(¥) are the
steady-state solutions of (2) and (3) for some fixed set
of sources. The sum is taken over all intersections and

directions in the network. D is a function of the signal
parameters alone, and the objective is to find a set of these
variables which minimizes D.

Properties of D

In this section, some properties of the function D are given,
but the associated proofs are only outlined. It will be clear
from these properties that D does not have the mathe-
matical structure needed to apply directly any of the stand-
ard mathematical programming methods.

P.1 In general, D is not a continuous function of its argu-
ments.

To see this, consider an intersection with a queue being
serviced at a rate r; toward which cars are flowing in a
platoon at a rate r, > r,. Let the signal at the intersection
be set so that the queue is just dissipated when the next
platoon arrives at the intersection. Then, if the timing of
the signal is changed so that the queue is not dissipated
in time, there will be a discontinuity in the delay, because
the platoon now will be stopped, and the queue will
increase.’

It can be shown, however, that D has the following
property:

P.2 D is continuous if the queue Service rate at each inter-
section is at least as great as the possible flow rates
into the intersection.

The conditions required in P.2 are satisfied, for example,
if the cars from each source pass through intersections
that have the same queue service rates, and if the intensity
of each source is sufficiently low.

The g-functions are piecewise linear functions, so from
(4) it is clear that D is a quadratic function of all the times
t, where the slopes of the g-functions change. Let p;
denote either the offset or the split of signal i. It can be
shown that the times ¢, are piecewise linear functions of
p:. Moreover, the possible slopes of the g-functions depend
only on the source flow rates, the velocities v;;, and the
intersection constants p; and r;, and not on the signal
parameters. Combining the last two statements, it follows
that the graph of D as a function of p; with all other signal
parameters held constant is a piecewise quadratic curve.
Unfortunately, the “corner points” of such curves are not
simply related to the signal parameters, and this property
of D is not very useful for minimizing the function.

An individual signal can influence the total network
delay by affecting the delay at the signal itself. In addition,
by governing the time at which cars leave the intersection,
the signal affects the delay these cars experience at suc-
ceeding intersections. Within our model, these are the only
ways that a signal can affect the total delay. Furthermore,
because turns are excluded in the model, the effect is felt




Figure 2 The signal at j affects only the intersections in
the contour C.

only in a subset of the network. In Fig. 2, the influence of
signal j is confined to the area enclosed by the contour C.
Partitioning the network in this way is quite useful. For
example, to compute the partial derivative of D, only the
intersections in contours like C need be considered at each
step.

Procedure for minimizing D

In view of the structure of D, there is probably no fool-
proof algorithm for minimizing D short of evaluating it
for “all possible” signal settings. As the latter is not com-
putationally feasible even for moderate-size networks, it
has been necessary to resort to a heuristic search procedure.
The procedure, which has been used with some success,
normally consists of two stages. Usually a coarse search,
which may involve dividing the given network into sub-
systems, is carried out first. The result obtained is then
used as a starting point in a finer search for a local min-
imum of the function. The procedure will be described
briefly in this section, and two examples will be given in
the following section.

The search procedure for the case when all the signals
are on a single arterial will be described first. An arterial
is said to be symmetric if v;; = v;; for all pairs (i, j). It
has a half-cycle synchronization if the time between the
midpoints of the red phases of every pair of signals is an
integral multiple of a half cycle. Morgan and Little showed
that among the half-cycle synchronizations is a solution to
the maximum equal bandwidth problem.® The starting
point for the refined search is found by evaluating D for
all possible half-cycle synchronizations and choosing one
which gives the lowest delay.” If the number of signals is
n, then 2*~" evaluations of D are required. The setting ob-

tained is refined by a variable step-size gradient procedure
or a sequence of searches over regions defined by allowing
subsets of the parameters to vary.® In the latter case, the
region is usually divided with a uniform grid spacing, al-
though a Fibonacci-type search has also been used for
single variable searches.’ Some care is taken in choosing the
step size in the gradient procedure because it is more time
consuming to compute /D than D itself, and because V D
may be discontinuous.

The procedure for networks is similar to the method used
for arterials, except for the determination of a starting
point. In a typical network, it is usually possible to single
out a few streets which are more heavily travelled than the
others. These streets are treated preferentially by syn-
chronizing them as arterials in the first stage of the search.*®
The settings obtained are then combined and used as a
starting point for a gradient or sequential search procedure
as described above.

The determination of a good starting point is crucial to
the minimization procedure. In a real situation, one may
also use the settings that are currently on the street. It may
also be possible in networks, especially those with several
one-way streets, to calculate by hand a reasonably good
starting point.

Examples

The first example was studied by Morgan and Little and
is a stretch of Euclid Avenue in Cleveland.® Figure 3 shows
the space-time diagram of a maximum equal bandwidth
synchronization for the arterial given in Ref. 6. The parallel
sloping lines define the time during which a car may enter
the system and go at 50 feet/second from one end to the
other without stopping. It is clear that this synchronization

Figure 3 Space-time diagram for part of Euclid Avenue.
Maximum equal bandwidth, speed = 50 ft/second, cycle
length — 65 seconds, red times are 0.47, 0.40, 0.40, 0.47,
0.48, 0.42, 0.40, 0.40, 0.42. Horizontal lines indicate dura-
tion of red lights.
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Table 1 Search parameters used for Euclid Avenue.

Iteration N N; A (Cycles) D
0 0.89
1 2 0 0.25 0.101
2 2 2 0.25 0.101
3 2 0 0.05 0.091
4 2 0 0.02 0.088
5 2 2 0.02 0.088

Table 2 Offsets for Euclid Avenue. Maximum equal band-
width solution taken from Ref. 6.

Offset for Offset Determined
Maximum Equal by Method of
Bandwidth Paper
Intersection (Seconds) (Seconds)

Ivanhoe 0 0
Octavia 30.2 31.2
Urbania 30.2 27.9
Arabella 0 1.9
London 0.2 0.6
Wayside 29.5 31.2
Burgess 30.2 31.2
Cliffview 30.2 31.2
Shopping center 64.2 60.5
Green 64.2 63.7

gives zero delay in our model if the platoons supplied
by the sources at each end of the arterial are properly
phased and shorter than the bandwidth, which is 0.237
cycles. To test our method, the sources were set to supply
platoons 0.25 cycles long and phased so that the midpoints
of the green phase at boundary intersections and the
platoons coincided.

Only the offsets were varied in the search, and initially
all offsets were set equal to zero. The intersections were
numbered consecutively, and each step in the procedure
consisted of a search over the offsets of signal i and i - 1,
1 < i £ 9, with the other offsets held constant. Let 0.(k)
denote the offset of signal i after the &'* step. Then the
next search over the offsets of signal i and i 4 1 was in the
rectangular grid defined by the equations

0, = 0;k) + (n — NpA,
0i+l(k) + (m - Nz)A,
m=0,1,2, -+ ,2N,.

n=20,1,2,---,2N,

041 =

The grid is centered at the previously computed offsets for
the signals, A is the mesh size, and the parameters N; and
N, determine the number of points in the grid. Considering
a search over each of the nine pairs of signals as one

Figure 4 San Jose network.

iteration, the search converged after five iterations. The
set of offsets so determined has the property that varying
any two adjacent offsets cannot reduce the computed
delay. Table 1 gives the value of the parameters A, Ny, N,
and the delay after each iteration. The offsets of the max-
imum equal bandwidth solution and the computed solution
are approximately the same and are given in Table 2 (see
also Fig. 3).

The second example is a 59-intersection area in San Jose
which is shown schematically in Fig. 4. There are several
one-way streets in the system; these are indicated by
arrows in Fig. 4. The network is actually two separate
systems, because eight intersections in the western part
of the system are three-phase signals with eighty-second
cycle lengths, and the others are two-phase with 55-second
cycle lengths. Consequently, the former was treated as
an arterial (with the left-turn green considered as part of
the cross-street green) while the latter was considered a
single network.

The initial starting point for the search procedure in both
systems was zero offset with splits approximately equal to
those that had actually been in use in the city. Several signal
parameters which resulted from the preliminary coarse
search procedure were adjusted by hand. This was easy
to do because of the one-way streets. Otherwise, the search
procedure used was as described in the preceding section.

All of the signals in the area are currently controlled by
an IBM 1710 Control System. Vehicle detectors have been
placed thoughout the system in sufficient numbers so that
almost every lane on each street is covered. With the
present programming system, the number of vehicles that
pass over each detector every five seconds is recorded. By
knowing when cars pass over the detectors and the phase
of the signals, the computer determines approximately the
number of cars which stop and the vehicular delay at each
intersection. A useful figure of merit for a synchronization
is the delay/car for the total system, which is defined as
the ratio of the total delay in the system to the total
number of cars served by the intersections in the system.
In recent tests, over a two-week period, the delay/car was




about ten percent less for the signal settings determined
by our procedure in comparison to those determined by
the city traffic engineering department using conventional
engineering methods. Similar improvements also were
measured by a floating car trip-time method.
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