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Associative  Holographic  Memories 

Abstract: Recently  Longuet-Higgins  modeled a temporal  analogue  of  the  property  of  holograms that allows a complete  image to 
be constructed  from  only a portion of the  hologram.  In  the  present  paper a more  general  analogue  is  discussed  and  two  two-step 
transformations that imitate  the  recording-reconstruction  sequence  in  holography  are  presented.  The  first  transformation  models 
the  recall  of an entire  sequence  from a fragment  while  the  second  is  more  like  human  memory  in that  it provides  recall  of  only  the 
part of the  sequence  that  follows  the  keying  fragment.  Both  models  require  only  the  three  operations:  shift,  multiplication  and  addition. 

This investigation was inspired by a note of  H. C. Longuet- 
Higgins’ on a “Holographic Model of Temporal Recall.” 
Prof.  Longuet-Higgins  asked  whether the interesting prop- 
erty of holograms that allows  reconstructing a whole 
picture from a fragment of the original  could be reproduced 
in the temporal domain. He answered  his  question  by  de- 
scribing a dynamic  model.  This  model  consists of a series 
of narrow-band-pass  filters that cover the frequency  range 
of the sequence to be  recalled.  Each  filter has an adjustable 
gain that is made proportional to the work done on it or, 
in other words, to the energy  in its pass-band. The series of 
filters  is thus changed into a “matched  filter”  which, when 
excited by a fragment of a sequence,  will  automatically 
continue the sequence to its recorded  end. 

This is  indeed a temporal analogue of holography, 
though a somewhat  restricted  one,  because  holography 
allows not only  reconstruction of the original  picture from 
a fragment, but also  reconstruction of another picture 
that has  been  associated  with it in the recording.  This 
leads to the somewhat  more  general question: By what 
two-step transformations can we imitate the properties of 
the recording-reconstruction  sequence in holography? 
The answer  is, in brief, that there must  exist an infinite 
family of such  paired transformations, but  that there  is  one 
which recommends  itself by its simplicity and this is the 
one I want to explain in somewhat  more  detail than I 
have done in  two  previous short 

Consider  first in a general way the total transfor- 
mation  achieved  in  holography from the recording to 
the reconstruction. In Fig. l a  there  is a first  plane x, y in 
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which  we  have  two  complex  wave  amplitudes a(x, y )  and 
b(x, y ) .  We record the two  together on a photographic plate 
in a second  plane u, u where the total complex  amplitude 
is A(u, u) + B(u, u). Let the distance between the two 
planes  be L. This arrangement is  completely  general  in 
the usual Gaussian approximation of holographic  theory. 
If there is some optical system  between the two  planes, 
we need  only  replace the distance L by the radius of 
curvature R of the spherical waves that issue from a point 
in the first  plane. 

The amplitude A(u,u) is  expressed  by the Fresnel- 
Kirchhoff  diffraction integral4; after the familiar  small- 
angle and large4  approximation^^'^ are made and some 
irrelevant factors are dropped, this amplitude  can be 
written as 
A ( u ,  u) = e r i ( u ” + o a ) / X L  

x // y ) e - 2 r i ( z u + w ) / ~ ~  dx dy , (1) 

A similar  result  describes the amplitude B(u, u). The 
expression for A is the Fresnel transform of a(x, y )  and it 
differs from a Fourier transform only in having  two 
Gaussian factors. Their effect is the same as if  we had 
taken a Fourier transform, but with  two thin lenses 
inserted, both with  focal  length L, each  covering  one 
plane. 

When  we make a hologram, we record IA + BIZ and 
the amplitude transmission of the plate contains an 
interference term AB + AB, where the bar denotes com- 
plex  conjugate. Of these, the first is the “twin wave,” 
which does not interest  us  in the present  context. It is the 
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Figure 1 A complete  holographic  transformation: (a) re- 
cording; ( b )  reconstruction. 

second term that,  on illumination  with the wave A ,  will 
give the reconstructed wave 

A ~ B  = e ~ i ( u ’ + a 2 ) / X L  
-2~i(zu+vu)/XL /I a e  

dx  dy 

dx  dy 

We can transform the product of the first  two  integral 
factors into the Fourier transform of an autocorrelogram. 
For simplicity, this is shown  in one dimension.We  suppress 
the y variables in Eq. (3), label the x variables  as x ,  x’ 
and x” and make the substitutions x’ = x - 4 and 

- r]  - f .  The  first  two factors in Eq. (3) now appear as - 

ss a,(X)Sjf(X’)~-2riu(z-z’)/hL dx  dx ’ 

d l .  (4) 

The extension of Eq. (4) to include the third integral 
factor in Eq. (3) is 

We can  now interpret the general  result AAB as the 
Fresnel transform of the convolution of b(x, y )  with the 
autocorrelogram of a’(x, y) .  That is to say, the recon- 
struction &(x, y )  (see  Fig. lb) differs from b(x, y )  by  being 
redrawn,  instead of with a delta-function,  with a spread 
function that is the autocorrelogram not of the “key  wave” 
a(x, y )  but of its modification a’(x, y). 

This theorem  is  usually  proved for Fourier holography 
only and we may note in passing that the modification 
is not without  interest. For instance, if a is a “slab”  of 
width D, its autocorrelogram is a triangle of width 2 0 .  
With the modifier  [see Eq. (2)], however, the autocorrelo- 
gram in the slab case  becomes 

 rip/^^ sin [dD - tk/XLI e 

This function has its first  zero at Eo = XL/D instead of at 
D ;  hence, if XL/D’ is a small  number, there can be a gain 
in  resolution. In other words  Fresnel  holograms can be 
less  sensitive to the key  wave than Fourier holograms. 
This  can  be an advantage in some  applications, a dis- 
advantage in others. 

Disregarding now the difference  between a and a’ we 
see that the result of a complete  holographic transforma- 
tion  is a convolution of the associated  signal b with the 
autocorrelogram of the key  wave a : 

6 = b * ( a @  fi) (6) 

Whenever  we have a key  wave or key  figure a which  cor- 
relates  sharply  with  itself, 6 will not differ  substantially 
from b. This will be the case for all “noise-like”  functions 
without a dc term and also for all figures  composed of thin 
lines.  Since  written and printed letters consist of thin lines, 
this is the basis for character recognition by holography. 
Moreover, parts of such  noise-like or complicated  figures 
also  correlate  sharply  with  themselves and this is the 
reason why,  in  hologra.phy, a part is  sufficient to recall the 
whole. i 

A first  example of such a two-step transformation was 
a succession of two convolutions’: To make a record,  con- 
volve the key  sequence A with B. To recall B, convolve the 
record  with A’, where A’ is a fragment of A.  I now  prefer 
a second  method, which is a succession of two  correlation^.^ 

Let  the  sequences in question run from t = 0 to t = T, 
or at least  be  contained  in this interval. In the recording 

T.$d“* 

of neurophysiologists who were  puzzled  by the difficulty of locating the 
t For some years now this property of holograms has  attracted the interest 

“engram” in the human or animal memory. As is well known, especially 
since the  famous experiments of Lashley,S large parts of the brain  can  be 
destroyed without wiping out a learned pattern of behaviour. This  has led 
to speculation that the  brain  may  contain a holographic mechanism. (See, 

an abstract, mathematical similarity, but I am rather skeptical regarding the 
in particular, Ref. 7.) For my part I am inclined to believe that there exists 

existence of waves or even OP tuned resonators in the brain, especially after 
having found  that the transformation:by Eq. (6) can  be carried out without 
postulating any such intermediaries. 

I 
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we form the cross-correlation 

g5(t’) = ST B(7j A ( .  - t’) d r .  ( 7) 

The integration limits are of no great importance,  since 
A(r - t’) is zero  earlier than T = t’ and B(r) is zero 
after r = T. We can therefore replace  these  limits by 
wider ones. 

In the recall we cross-correlate the key  sequence A’ with 
the record, and form the recall  function 

R( t )  = /’ A’(t - t’)4(t’) dt’. ( 8) 

Again the limits  can  be  replaced by  wider ones  because 
A’ does not start before  zero and Ht’) does not extend 
beyond t’ = T. 

Substituting (7) into (S), extending the integration  limits, 
and introducing the new variables 4 = t’ - r and x = 
t - t’, we obtain 

R( t )  = // B ( ~ ) A ( T  - t’) A’(t - t’) d7 dt’ 

1 ‘  

0 

= j B(t  - tj[/ A(x - (j A’(x) dx 

= B * ( A  0 A’) ,  (9) 

the convolution of B with the cross-correlation of A and A’. 
If now A’(t) = A(t + to), i.e., the original key  delayed 
by to, or at least a sufficiently long  fragment of it, the 
cross-correlation ( A  0 A’) becomes a delta-like function 
which restores By so that the recall  function  approximates 
B(t -I- t o ) .  

These operations can  be  visualized  by  means of Fig. 2. 
They  correspond to  an integration over the time domain 
delineated by the lower  trapezoid (the second  model) of 
the triple product 

1 dt 

B(7) A(7 - t’) A’(t - t’) 

for the case  in  which A’ is only a fragment of A and starts 
at to. Imagine that the bar of the reading  time t is first 
lowered to t’ = 0 and then raised. It can be  seen that from 
the instant at which the remembered fragment comes to an 
end, the recall  mechanism is acting with full strength, re- 
calling B(t + to) with a constant factor, that is to say,  with 
Jull fidelity. 

Figure 2 shows  also, in the upper trapezoid, the first 
model,  which  is a succession of two  convolutions. I now 
prefer the second  model,  which is more  “brain-like,” in 
that it allows  one to recall  only the part of A that follows 
the remembered  fragment A’ and not the part before it. 
This  is a well-known  weakness of our memory,  in par- 
ticular when something has been  memorized  “by  rote.” 

150 If it is a matter of constructing an artificial  memory, the 
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Figure 2 Holographic  models of an  associative  memory. 
The  first  model,  represented  in  the  upper  trapezoid,  is  two 
convolutions  in  series  and the second  model, in the  lower 
trapezoid, is two correlations in  series. 

first  model may well be  preferable  because it allows  one 
to recall the whole  sequence,  wherever the fragment A’ 
may  be  located. 

The recording by Eq. (7) and the recall by Eq. (8) can 
be  carried out by any system that can  perform the three 
operations: shift,  multiplication, and summation.  There 
is no difficulty  in setting  them up on any  digital  computer. 
In principle it must  be  possible to realize  them  with 
McCulloch-Pitts  neurons. It would  be  desirable for experts 
in neural networks to work out concrete  realizations and 
to look for evidence  of  such structures in the nervous 
system. As I have  insufficient  knowledge in this field, I 
prefer to illustrate the operations with an optical model, 
shown  in  Fig. 3. 

The simplest  type of signal that is suitable for dis- 
crimination and recall by correlation or convolution  meth- 
ods is a binary  sequence of + 1 and - 1, of equal occur- 
rence  in the mean. It is  also  convenient, but not necessary, 
to have a zero level to ensure that pauses do not give 
correlation. 

In the optical model, which operates with  incoherent 
light and a broad, diffuse source, i t  is necessary to arrange 
the plus and the minus parts of the sequences on two  sep- 
arate tracks, since there is no “negative  light.” If there is 
no zero  level, there is a logical  redundancy  because the 
absence of a plus  indicates a minus; hence the two tracks 
could  be  dispensed  with  in  more  sophisticated arrange- 
ments in which the dc level is subtracted automatically. 
Both the binary (It) and  the ternary (It and 0) codes for 
the associated  signals A and B can be  realized  by means 
of black-or-white film, or even more  simply by means of 
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punched tape. In  the optical  correlator  shown in Fig. 3a 
the truth-table of multiplication is realized by means of a 
mirror  that throws the +- combinations into  the same 
track of the 4 record as  the -+ combinations, while the ++ and - - combinations go automatically into  the 
other track. To realize Eq. (8) one requires a recording 
film with a transmittance proportional to the light ex- 
posure. 

The recall apparatus shown in Fig. 3b is essentially the 
same as  the recorder. The read-out  can  be accomplished, 
for instance, with two photocells in opposition, one  on  the 
positive, the  other  on  the negative track. 

The discriminatory power of this process is remarkably, 
even surprisingly, high when applied to sequences of such 
length that statistical  considerations  can  be applied. For 
example, assume that  the correlator  handles N bits at a 
time, while the fragment A’ has n = x N  bits. Referring 
again to Fig. 2, we see that  at  the recall line (drawn  with a 
thick trace) the recall signal has  an amplitude A x N ,  plus 

Figure 3 An associative  memory  with optical (incoherent) 
correlation. (a) A sequence A ( T) is to be  associated  with 
B ( T ) .  Their cross-correlogram $( t ’ )  is recorded on the 
third film strip. (b) The sequence A’(t’), which  need  not 
be more than a fragment of A ( t ) ,  is correlated with $(r) 
and the sequence B ( f )  is  reconstructed. Note that in this 
system the negative track contains  no information that is 
not already contained in the positive track. The two tracks 
are used  only for convenience,  since there is  no  “negative 
light.” 
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some noise arising :from contributions  outside this line. 
Let us compare this with the signal arising from uncor- 
related sequences. If we assume that N is a sufficiently 
large  number, the probability of an excess of one sign over 
the  other will have a Gaussian  distribution. The cross- 
correlation between two  such sequences is  the excess of 
agreements over disagreements in  the  two sequences and 
it also has a Gaussian  distribution with a probability for 
a value n of 

p(n) = d2/?rN exp (- n 2 / 2  N )  . (10) 

The mean square of the  spurious signal is (n’) = N ;  hence 
random sequences of length N will give spurious signals 
of the  order of N’. Comparing  this value with the  true 
signal n, one might think  that  this result does  not give 
much safety when the fraction x is equal to or less than 
N-’. However, the true signal of length n = X N  gives not 
one, but xN spikes, all consistently of value f xN,  and  the 
probability of such a sequence occurring by chance is 

[I  - erf ( 1  1) 
This can be very small, even if x is of the  order of N-* ,  
For instance, if N = 100 and x = N-* = 0.1, the  prob- 
ability of 10 spurious spikes of value f 10 is only about 

The power of this system for recognizing short frag- 
ments of coded sequences can not only be good, but it can 
be too good. One  may have to take precautions lest a large 
parallel  store, on being given one word, offer the user all 
the long sentences that contain that word-like the 
Thesaurus Linguae Latinae,’ for example. 

Finally, I want to emphasize again that I do  not suggest 
that processes such as those described here are present 
in  the  human  or  animal nervous system. I contend  only 
that  on present evidence the possibility cannot be excluded 
and  that  the hypothesis of their existence deserves careful 
examination. 
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