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Associative Holographic Memories

Abstract: Recently Longuet-Higgins modeled a temporal analogue of the property of holograms that allows a complete image to
be constructed from only a portion of the hologram. In the present paper a more general analogue is discussed and two two-step
transformations that imitate the recording-reconstruction sequence in holography are presented. The first transformation models
the recall of an entire sequence from a fragment while the second is more like human memory in that it provides recall of only the
part of the sequence that follows the keying fragment. Both models require only the three operations: shift, multiplication and addition.

This investigation was inspired by a note of H. C. Longuet-
Higgins' on a “Holographic Model of Temporal Recall.”
Prof. Longuet-Higgins asked whether the interesting prop-
erty of holograms that allows reconstructing a whole
picture from a fragment of the original could be reproduced
in the temporal domain. He answered his question by de-
scribing a dynamic model. This model consists of a series
of narrow-band-pass filters that cover the frequency range
of the sequence to be recalled. Each filter has an adjustable
gain that is made proportional to the work done on it or,
in other words, to the energy in its pass-band. The series of
filters is thus changed into a “matched filter”” which, when
excited by a fragment of a sequence, will automatically
continue the sequence to its recorded end.

This is indeed a temporal analogue of holography,
though a somewhat restricted one, because holography
allows not only reconstruction of the original picture from
a fragment, but also reconstruction of another picture
that has been associated with it in the recording. This
leads to the somewhat more general question: By what
two-step transformations can we imitate the properties of
the recording-reconstruction sequence in holography?
The answer is, in brief, that there must exist an infinite
family of such paired transformations, but that there is one
which recommends itself by its simplicity and this is the
one I want to explain in somewhat more detail than I
have done in two previous short notes.”'*

Consider first in a general way the fotal transfor-
mation achieved in holography from the recording to
the reconstruction. In Fig. 1a there is a first plane x, y in
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which we have two complex wave amplitudes a(x, y) and
b(x, y). We record the two together on a photographic plate
in a second plane u, v where the total complex amplitude
is A(u, v) + B(u, v). Let the distance between the two
planes be L. This arrangement is completely general in
the usual Gaussian approximation of holographic theory.
If there is some optical system between the two planes,
we need only replace the distance L by the radius of
curvature R of the spherical waves that issue from a point
in the first plane.

The amplitude A(u,v) is expressed by the Fresnel-
Kirchhoff diffraction integral*; after the familiar small-
angle and large-L approximations™® are made and some
irrelevant factors are dropped, this amplitude can be
written as

A(u D) = evri(u’+n’)/)\L

X ff a/(x, y)e—2x6(2u+yv)/)\l, dxdy, (1)
where
a'(x,y) = a(x, y)e™ TN (2

A similar result describes the amplitude B(u,v). The
expression for A is the Fresnel transform of a(x, y) and it
differs from a Fourier transform only in having two
Gaussian factors. Their effect is the same as if we had
taken a Fourier transform, but with two thin lenses
inserted, both with focal length L, each covering one
plane.

When we make a hologram, we record |4 + B|* and
the amplitude transmission of the plate contains an
interference term AB -+ AB, where the bar denotes com-
plex conjugate. Of these, the first is the “twin wave,”
which does not interest us in the present context. It is the
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Figure 1 A complete holographic transformation: (a) re-
cording; (b) reconstruction.

second term that, on illumination with the wave 4, will
give the reconstructed wave

AZB — ewi(u=+p2)/XLf/ a/e—21ri(zu+yv)/)\L dx dy
—y 271 L
X ff a/e Tilzutye) /A dxdy

X ff b/e—21ri(zu+yv)/)\L dx dy (3)
We can transform the product of the first two integral
factors into the Fourier transform of an autocorrelogram.
For simplicity, this is shown in one dimension.We suppress
the y variables in Eq. (3), label the x variables as x, x’

and x” and make the substitutions x’ = x — £ and
x'"" = 5 — & The first two factors in Eq. (3) now appear as

ff al(x)al(xl)e—-27riu(x-:’)/)\L dx dx'

= f [f a(x)a'(x —§ dx:le—”i“/““ dt

= f a ® ale” TN g, (4)

The extension of Eq. (4) to include the third integral
factor in Eq. (3) is

f l:f (@ ® @)/ (n — & dg]e—hiuq/u dn

= [t ® &) % 01 a, ©)
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We can now interpret the general result 44B as the
Fresnel transform of the convolution of b(x, y) with the
autocorrelogram of a’(x, y). That is to say, the recon-
struction &(x, y) (see Fig. 1b) differs from b(x, y) by being
redrawn, instead of with a delta-function, with a spread
function that is the autocorrelogram not of the “key wave”
a(x, y) but of its modification a'(x, y).

This theorem is usually proved for Fourier holography
only and we may note in passing that the modification
is not without interest. For instance, if q is a “slab” of
width D, its autocorrelogram is a triangle of width 2D.
With the modifier [see Eq. (2)], however, the autocorrelo-
gram in the slab case becomes

o~ T sin [7(D — i)f/)\L]
7&/AL

This function has its first zero at £, = AL/D instead of at
D; hence, if A\L/D” is a small number, there can be a gain
in resolution. In other words Fresnel holograms can be
less sensitive to the key wave than Fourier holograms.
This can be an advantage in some applications, a dis-
advantage in others.

Disregarding now the difference between a and o’ we
see that the result of a complete holographic transforma-
tion is a convolution of the associated signal b with the
autocorrelogram of the key wave a:

b=10b%(a® a) (6)

Whenever we have a key wave or key figure a which cor-
relates sharply with itself, & will not differ substantially
from b. This will be the case for all “noise-like”” functions
without a dc term and also for all figures composed of thin
lines. Since written and printed letters consist of thin lines,
this is the basis for character recognition by holography.
Moreover, parts of such noise-like or complicated figures
also correlate sharply with themselves and this is the
reason why, in holography, a part is sufficient to recall the
whole.

A first example of such a two-step transformation was
a succession of two convolutions”: To make a record, con-
volve the key sequence 4 with B. To recall B, convolve the
record with 4’, where 4’ is a fragment of 4. I now prefer
a second method, which is a succession of two correlations.’

Let the sequences in question run from ¢ = 0tot = T,
or at least be contained in this interval. In the recording

1 For some years now this property of holograms has attracted the interest
of neurophysiologists who were puzzled by the difficulty of locating the
“engram’ in the human or animal memory. As is well known, especially
since the famous experiments of Lashley,® large parts of the brain can be
destroyed without wiping out a learned pattern of behaviour. This has led
to speculation that the brain may contain a holographic mechanism. (See,
in particular, Ref. 7.) For my part I am inclined to believe that there exists
an abstract, mathematical similarity, but I am rather skeptical regarding the
existence of waves or even of tuned resonators in the brain, especially after
having found that the transformation’ by Eq. (6) can be carried out without
postulating any such intermediaries.
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we form the cross-correlation
T

#(t') = f B(r) A(r — ) dr. ™
o

The integration limits are of no great importance, since
A(r — t') is zero earlier than = = ¢ and B(7) is zero
after 7 = 7. We can therefore replace these limits by
wider ones.

In the recall we cross-correlate the key sequence A’ with
the record, and form the recall function

R = fot A'(t — He(d) dr’. (8

Again the limits can be replaced by wider ones because
A’ does not start before zero and ¢(#') does not extend
beyond ¢/ = T.

Substituting (7) into (8), extending the integration limits,
and introducing the new variables £ = ¢/ — 7 and x =
t — ¢, we obtain

it

f B A(r — ) At — t') dr dt’

f B(t — E)[f Alx — &) A'(x) dx:\ d§

= B+x(4® 4), 9

R(?)

il

the convolution of B with the cross-correlation of 4 and A’.
If now A'(f) = A(t + 1), i.e., the original key delayed
by 1,, or at least a sufficiently long fragment of it, the
cross-correlation (4 @ A’) becomes a delta-like function
which restores B, so that the recall function approximates
B(t + t,).

These operations can be visualized by means of Fig. 2.
They correspond to an integration over the time domain
delineated by the lower trapezoid (the second model) of
the triple product

B()A(r — ) A (t — )

for the case in which A4’ is only a fragment of A4 and starts
at 7,. Imagine that the bar of the reading time ¢ is first
lowered to ' = 0 and then raised. It can be seen that from
the instant at which the remembered fragment comes to an
end, the recall mechanism is acting with full strength, re-
calling B(z - t,) with a constant factor, that is to say, with
full fidelity.

Figure 2 shows also, in the upper trapezoid, the first
model, which is a succession of two convolutions. I now
prefer the second model, which is more ‘“‘brain-like,” in
that it allows one to recall only the part of 4 that follows
the remembered fragment 4’ and not the part before it.
This is a well-known weakness of our memory, in par-
ticular when something has been memorized “by rote.”
If it is a matter of constructing an artificial memory, the
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7/
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FIRS/ MODEL
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Figure 2 Holographic models of an associative memory.
The first model, represented in the upper trapezoid, is two
convolutions in series and the second model, in the lower
trapezoid, is two correlations in series.

first model may well be preferable because it allows one
to recall the whole sequence, wherever the fragment 4’
may be located.

The recording by Eq. (7) and the recall by Eq. (8) can
be carried out by any system that can perform the three
operations: shift, multiplication, and summation. There
is no difficulty in setting them up on any digital computer.
In principle it must be possible to realize them with
McCulloch-Pitts neurons. It would be desirable for experts
in neural networks to work out concrete realizations and
to look for evidence of such structures in the nervous
system. As I have insufficient knowledge in this field, I
prefer to illustrate the operations with an optical model,
shown in Fig. 3.

The simplest type of signal that is suitable for dis-
crimination and recall by correlation or convolution meth-
ods is a binary sequence of +1 and —1, of equal occur-
rence in the mean. It is also convenient, but not necessary,
to have a zero level to ensure that pauses do not give
correlation.

In the optical model, which operates with incoherent
light and a broad, diffuse source, it is necessary to arrange
the plus and the minus parts of the sequences on two sep-
arate tracks, since there is no ‘“‘negative light.” If there is
no zero level, there is a logical redundancy because the
absence of a plus indicates a minus; hence the two tracks
could be dispensed with in more sophisticated arrange-
ments in which the dc level is subtracted automatically.
Both the binary (=) and the ternary (4= and 0) codes for
the associated signals 4 and B can be realized by means
of black-or-white film, or even more simply by means of
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punched tape. In the optical correlator shown in Fig. 3a
the truth-table of multiplication is realized by means of a
mirror that throws the +— combinations into the same
track of the ¢ record as the —+ combinations, while the
+-+ and —— combinations go automatically into the
other track. To realize Eq. (8) one requires a recording
film with a transmittance proportional to the light ex-
posure.

The recall apparatus shown in Fig. 3b is essentially the
same as the recorder. The read-out can be accomplished,
for instance, with two photocells in opposition, one on the
positive, the other on the negative track.

The discriminatory power of this process is remarkably,
even surprisingly, high when applied to sequences of such
length that statistical considerations can be applied. For
example, assume that the correlator handles N bits at a
time, while the fragment 4’ has n = xN bits. Referring
again to Fig. 2, we see that at the recall line (drawn with a
thick trace) the recall signal has an amplitude 4=xN, plus

Figure 3 An associative memory with optical (incoherent)
correlation. (a) A sequence A(+) is to be associated with
B(r). Their cross-correlogram ¢(#') is recorded on the
third film strip. (b) The sequence A’(f’), which need not
be more than a fragment of A(¢), is correlated with ¢(¢)
and the sequence B(f) is reconstructed. Note that in this
system the negative track contains no information that is
not already contained in the positive track. The two tracks
are used only for convenience, since there is no “negative
light.”
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some noise arising from contributions outside this line.
Let us compare this with the signal arising from uncor-
related sequences. If we assume that N is a sufficiently
large number, the probability of an excess of one sign over
the other will have a Gaussian distribution. The cross-
correlation between two such sequences is the excess of
agreements over disagreements in the two sequences and
it also has a Gaussian distribution with a probability for
a value n of

p()) = V/2/aN exp (—n®/2N). (10)
The mean square of the spurious signal is (n°) = N; hence
random sequences of length N will give spurious signals
of the order of N Comparing this value with the true
signal n, one might think that this result does not give
much safety when the fraction x is equal to or less than
N"%. However, the frue signal of length n = xN gives not
one, but xN spikes, all consistently of value =+ xN, and the
probability of such a sequence occurring by chance is

[1 — erf (x V' N/2)T?. (11)
This can be very small, even if x is of the order of N1,
For instance, if N = 100 and x = Nt= 0.1, the prob-
ability of 10 spurious spikes of value 4= 10 is only about
107°

The power of this system for recognizing short frag-
ments of coded sequences can not only be good, but it can
be too good. One may have to take precautions lest a large
parallel store, on being given one word, offer the user all
the long sentences that contain that word—Ilike the
Thesaurus Linguae Latinae,’ for example.

Finally, I want to emphasize again that I do not suggest
that processes such as those described here are present
in the human or animal nervous system. I contend only
that on present evidence the possibility cannot be excluded
and that the hypothesis of their existence deserves careful
examination.
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