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Structural-information Storage in Holograms

Abstract: The number of degrees of freedom, or structural-information content, of the object wave field recorded in a Leith-Upatnieks
hologram is expressed in terms of the resolving power and dimensions of the recording medium, the coherence properties of the primary
illumination and the position of the point reference source. In contrast with previous studies, the calculation does not involve the paraxial
approximation. It is shown that of all holograms, the Fourier-transform hologram makes the most efficient use of available resolving

power and coherence length.

Introduction

An important question in the communication theory of
holography concerns the number of degrees of freedom,
or structural-information content,’ of the object wave
field recorded in a hologram. Several authors have dealt
with the problem,””® but so far only the recording of
paraxial wave fields has been considered. The present
paper deals with the holographic recording of fields of
extended angular aperture. Its aim is to relate the struc-
tural-information content of the recorded wave field to
the 1) resolving power and dimensions of the recording
medium, 2) temporal bandwidth of the primary illumi-
nation and 3) location of an off-axis reference source.
The effects of the recording medium and reference-source
position on the amount of structural information re-
corded have been described previously in the context
of the paraxial approximation.””® To the author’s knowl-
edge, the effect of the temporal bandwidth has not yet
been discussed.

We do not account for the effects of noise. Indeed,
the statistical or metrical' aspect of holographic infor-
mation storage can be considered as separate from the
structural aspect, and has been so treated by Smith.’
The total information content of the holographic record
can be found by attaching a signal-to-noise ratio to each
degree of freedom of the recorded wave field.
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The holographic system considered in this paper is
shown in Fig. 1. The object and plate are arranged sym-
metrically about a horizontal axis, and their separation
is z. The reference source ® is located to the left of the
object and is constrained to lie on the extension of a
line AD connecting opposite edges of the object and
plate. The recording of both two- and three-dimensional
wave fields is considered. In the two-dimensional case
(cylindrical wavefronts) the object and plate can be con-
sidered to be rectilinear elements of lengths 2L 5 and 2Ly,
respectively. In the three-dimensional case (spherical
wavefronts) the object and plate are assumed to be cir-
cular in cross section with diameters 2L and 2Lg.

We allow for the possibility that each element of the
object may send out light in all directions. Of course
only a part of the total complex wave field actually falls
on the plate and, in general, even this part may not be
fully recorded for lack of adequate film resolving power
and coherence length. For analytical purposes we sim-
plify the situation by restricting the dimensions of the
object and plate to such extent that all parts of the com-
plex wave field incident on the plate are recorded. Thus
each element of the processed hologram contributes to
the reconstruction of each element of the object. It is
through the restriction on Lg and Ly that the resolving
power and temporal bandwidth limit the number of de-
grees of freedom of the recorded wave field.
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Figure 1 Hologram-recording geometry. The symbol R denotes
reference point source, AB the rectilinear or circular object
domain, and CD the rectilinear or circular holographic plate.

The remainder of the paper consists of three main
parts. The first part reviews an integral representation
of the number of degrees of freedom of a coherent wave
field. In the second part the number of degrees of freedom
of the object wave field recorded in the holographic sys-
tem of Fig. 1 is expressed in terms of the resolving power
and dimensions of the recording medium. The third part
describes the limit on the degree of freedom arising from
the finite coherence length.

The structural-information content of a
coherent wave field

The number of degrees of freedom of a wave field can
be defined as the number of independent real parameters
needed to describe the field completely.®” In the com-
munications context this number specifies the structural-
information content of the field." M. von Laue’s original
treatment’ of the subject was limited to those cases in
which the radiation field suffers the same angular limita-
tion at each element of a given cross section. In this
paper we make use of a somewhat more general defini-
tion of the degree of freedom due to Gabor.' Gabor’s
definition allows for spatial variations in angular aperture,
and is thus suited to the study of wide-angle (space-
variant) holographic imagery.
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Consider first the two-dimensional case, that of a
monochromatic (scalar) wave field propagating in the
plane of the paper. The sources of the field, radiating
at wavelength ), are distributed along a plane curve §
as shown in Fig. 2. According to Gabor,' the number F
of degrees of freedom of the field emerging from 8§ and
incident on a second plane curve 3C is given by

F=2 ff d(°°; "‘) ds, (1

where the integrand represents the differential space-
bandwidth product associated with an elementary pencil
of radiation incident on an element of arc ds in 3¢ and
confined in direction to an element of plane angle da.
Here « is the angle that the direction considered makes
with the tangent vector T at ds. The factor of 2 in this
formula accounts for the fact that the coherent wave
field has both an amplitude and a phase description.

An expression appropriate to three-dimensional wave
fields can also be given. In this case $ denotes a surface
distribution of sources and JC refers to a surface of obser-
vation (see Fig. 3). The number of degrees of freedom of
the (scalar) wave field emerging from § and incident on
3C can be written'

F= 2[[ °°ng—d—g dA, Q)

where the integrand represents the differential space-
bandwidth product associated with an elementary pencil
of radiation incident on an element of area d4 in 3C and
confined in direction to an element of solid angle 49.
Here 8 is the angle between the mean direction considered
and the normal vector n at d4. The factor of 2 in this
formula has the same meaning as in Eq. (1)

In general, the angle and space integrals appearing in
Egs. (1) and (2) are not independent. When they are
independent, the corresponding optical system can be
described as space-invariant. The factor }F is then known
as the space-bandwidth product.*

The significance of the degree of freedom for holog-
raphy can be illustrated as follows. Suppose that, in
Fig. 2 (or Fig. 3), a hologram in position § produces
a real image at 3C. The local spatial bandwidth of radia-
tion incident on a given element of 3¢ is [ d(cos &)/\
(or [ cos 8 dQ/)\*). Now the reciprocal of this factor
determines the smallest resolved interval of complex-ampli-
tude structure at the given element. Thus the quantity
L1F measures the number of resolution cells or, more
precisely, the number of independent data points™® con-
tained in the total complex-amplitude image. This is the
significance of the degree of freedom for microscopy.

Note that F also has an interpretation for visual dis-
play holography, where the smallest resolved interval of the
image is determined not by the aperture of the plate but
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Figure 2 Illustration of Gabor’s representation of the number
of degrees of freedom of a two-dimensional wave field. The field
originates at a plane curve § and is incident on a second plane
curve JC.

Figure 3 lllustration of Gabor’s representation of the number
of degrees of freedom of a three-dimensional wave field. The
field originates at a surface $ and is incident on a second
surface 3C.

by the pupil of the viewer’s eye. Suppose that a holo-
gram in position JC produces a virtual image in the loca-
tion §. In the display application two factors are of
interest, the differential angular field of view da (or dQ)
and the available increment of motion sin a ds (or cos8 dA)
of the viewer’s eye in a direction normal to the principal
ray in da (or d2). The product of these factors, when
integrated over the total field of view and hologram
aperture, is proportional to the degree of freedom F.
Thus, of two competing display systems operating at the
same wavelength, the one for which F is greater may
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be said to have the greater “visual effectiveness” (more
parallax for given angular field of view, or vice versa).

Let us now return to the holographic system of Fig. 1.
When the illumination is monochromatic, and the film
is perfect, the number of degrees of freedom of the re-
corded object wave field can be computed from Eqgs. (1)
and (2). In the two-dimensional case (rectilinear object
and plate) integration of Eq. (1) gives

F = 2(2/N\)(a — b), 3

and in the three-dimensional case (circular object and
plate), integration of Eq. (2) gives

F = 2x/\[x(a — b)*/4, @

where, in both cases, g and b are the path lengths indicated
in Fig. 1. In these expressions the factor 2 is that already
described in connection with Egs. (1) and (2), and the
second factor is the maximum spatial bandpass available
at the wavelength A. The third factor depends only on
the path difference a — b. Thus, as should be expected,
the degree of freedom is closely related to the number of
half-wavelengths contained in the interval a — b. When
the plate dimensions are small compared with the separa-
tion z, in both cases 3F reduces to the ordinary space-
bandwidth product.

Equations (3) and (4) apply when the object is per-
mitted to occupy the complete space between A and B
(Fig. 1). With this arrangement the reconstructed wave
field has superimposed on it an unwanted background
(intermodulation image) that arises as a result of the
object field interfering with itself. The effect of the back-
ground is largely removed by restricting the object to
the lower half OB of the original domain AB. As only
one-half the available field of view is used, the wave field
recorded in the hologram has 3F degrees of freedom,
where F is given by Eq. (3) or Eq. (4).

We have derived Egs. (3) and (4) on the assumptions
of perfect film and monochromatic illumination. The
same expressions can be applied to the case of imperfect
film and nonmonochromatic illumination, provided that
all parts of the complex disturbance incident on the plate
are recorded (see the Introduction). It remains to deter-
mine the largest possible value of a — b consistent with
this condition. We consider in order the following three
cases: imperfect film and monochromatic light, perfect
film and nonmonochromatic light, and imperfect film
and nonmonochromatic light.

Structural information and film resolving power

Since the path difference a — b is determined by the
separation and dimensions of the object and plate, our
first task is to relate the latter quantities to the resolving
power of the recording medium. The following treatment,
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Figure 4 The holographic system of Fig. 1, with notation
appropriate to deriving the resolution criterion, Eq. (6).

which assumes monochromatic light, can be considered
an extension of the work of Leith et al.’ and of Stigliani
et al.'

The recording medium may be assumed to have finite
depth. In general, the medium records a three-dimensional
system of standing waves, and the resolving power re-
quired is determined by the maximum standing-wave fre-
quency produced within the medium.

The standing wave of maximum spatial frequency is
formed within a small region of the plate, indicated by
M in Fig. 4. The location of the region M clearly depends
on the position of the reference source. However, because
of the symmetry of the recording system, the nodal sur-
faces of this particular standing wave are approximately
at right angles to the surface of the plate, regardless of
where the reference source is located. Thus, the basic
restriction imposed on the recording geometry by the
resolving power N (lines/mm) can always be written,

N\ > cos ay — cos ¢y ®

where, as shown in Fig. 4, a), is the inclination from the
vertical of a ray extending from the lower edge of the
plate through the region M, and ¢y, is the inclination of
a reference ray also extending through M.
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Equatijon (5) is to be solved for the object dimension
L. A somewhat involved calculation (see the Appendix)
gives

Ls+ 8Ly < pz/(1 — u%, )
where

p = NN2 0]
and

g = COS aiy — COS ¢ , 8)
CcOs ay — COS Py

where the angles oo, ¢ and ¢, are defined as in Fig. 1.
In this formula the parameter u expresses the resolving
power of the recording medium in reciprocal half wave-
lengths., The parameter 8 expresses the position of the
reference source and can take any value between zero
and one. For example, the value 8 = 1 corresponds to
plane reference waves (¢, = ¢) and 8 = 0 corresponds
to spherical reference waves emanating from a point at
the upper edge of the object (¢ = ay; lensless Fourier-
transform holography). Equation (6) shows that, in gen-
eral, the resolving power limits both the plate size and
the object size (for given z)." However, in the special
case 8 = 0, only the object size is limited.'""** Of course,
if the film is perfect (u = 1), there is in principle no
restriction on either Lg or Ly.'° It should be noted that
Eq. (6) is independent of the depth of the recording
medium, a direct consequence of the symmetrical record-
ing geometry.

The amount of structural information contained in the
recorded monochromatic object wave field can now be
calculated. The general result is obtained by eliminating
the object dimension Ly in Egs. (3) and (4) by means of
Eq. (6).

An approximate version of the general result enables
us to see more clearly the effect of the resolving power.
We write

@ — b= QLsLy/D)1 + }QLsLu/D*) + -+ ], &)

where

D = L% + L; + °. (10)
If «
1Q2LsLy/ DY K 1, a1

then only the leading term in Eq. (9) need be retained.
Note that since 2LgLg/D’ < 1 for all values of Lg and
Ly, the approximation is a good one for all but the most
extreme angles of diffraction. Within this approximation,
Egs. (9), (6) and (3) give for the rectilinear hologram

1 — Bx/u }
(1 — 28ux + (1 + 8%} °

F< 4NLH{ (12)
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and Egs. (9), (6) and (4) give for the circular hologram

1 (1 — Bx/w)’ }
2 T =B+ a4+ Y 1P

F S (WNLH)g{
where

x =1 - HUy/2). (14)
These results can be interpreted as follows.

1) The factor 4NLy appearing in Eq. (12) is the space-
bandwidth product associated with the one-dimensional
recording medium. Similarly, the factor (xLgN)® in Eq.
(13) is the space-bandwidth product associated with the
circular recording medium.'®* Now the number of inde-
pendent real data in a photographic image cannot exceed
the space-bandwidth product of the recording medium.”~*
Thus, in each expression, the factor in brackets {: -}
represents the efficiency® with which the corresponding
holographic medium is exploited for the storage of struc-
tural information.

2) From Eq. (12) we see that the system consisting of
rectilinear object and hologram has a potential storage
efficiency of one. In a strict sense, the maximum efficiency
can be attained only with perfect film (u = 1), thus
permitting an object of indefinitely large width. However,
when the film is not perfect, an approximation to unit
efficiency can be obtained by imposing the condition
x/u <& 1. A result similar to this was found by Lukosz’
for “‘single-sideband” holograms produced with plane-
wave reference illumination and paraxial wave fronts.
When the film is not perfect, and when the ratio x/u
cannot be made small, the efficiency is maximized by
choosing 8 = 0. That is, in general, the lensless Fourier-
transform arrangement makes the most efficient use of
the given storage medium. Note, however, that the storage
efficiency of this arrangement decreases with increasing
numerical aperture (or increasing x), for the resolving
power is greater than is necessary to record the inter-
ference fringes formed at the edges of the plate. In the
paraxial approximation (x << 1), and with 8 = 0, Eq. (12)
reduces to an expression given by Parrent and Reynolds®
for the amount of structural information stored in a one-
dimensional Fourier-transform hologram.

3) From Eq. (13) we see that the system consisting of
circular object and plate also has the greatest potential
storage efficiency when the film is perfect or, barring
perfect film, when x/u << 1. When the film is not perfect,
and when x/u is not small, the Fourier transform sys-
tem (3 = 0) once again provides the most efficient means
of storing structurai information.

4) However, the maximum storage efficiency of the three-
dimensional system is not one but one-half. The reason
for this is that the resolving power of the plate is not
fully utilized in the direction normal to the direction of
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Figure 5 A modified three-dimensional holographic system in
which the circular object domain, the dashed circle, is replaced
by a 180° sector of twice the area.

sideband shift (i.e., in the direction normal to the plane
of Fig. 1)."* The efficiency of the system can be improved
by replacing the circular object domain by a 180° sector
of twice the area, as shown in Fig. 5. When the object
dimension Lg is restricted by a medium of moderate
resolving power, the efficiency of the modified system is
nearly double that given by Eq. (13) for the system with
circular object domain. However, as 4 — 1, and the
allowable object dimension increases, the efficiency of the
modified system decreases in the limit to the previous
value of one-half. For when the ratio Lg/z — o, the
solid angle subtended at the plate by the 180° sector
approaches that subtended by the circular domain.

The above considerations apply equally well when the
object occupying the interval AB in Fig. 1 is replaced
by a lens of the same aperture. This lens can be used to
record the focused image of a coherent object (image-
plane hologram),* or to record its Fraunhofer diffraction
image (Fraunhofer hologram). Indeed, the lens can be
removed altogether, leaving an aperture in an opaque
screen; the hologram records the incident wave field aris-
ing from any three-dimensional distribution of coherent
objects located to the left of the aperture. The maximum
allowable dimensions of the aperture and hologram are
determined from Eq. (6), and the maximum number of
degrees of freedom in the recorded wave field is given by
Eq. (12) or (13), depending on the number of spatial
dimensions considered.

We note finally that if one requires angular separation
of the intermodulation background from the first-order
image, then the storage efficiencies will amount to about
one-half those given by Egs. (12) and (13).
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Figure 6 The holographic system of Fig. 1, with notation ap-
propriate to deriving the coherence criterion, Eq. (19). Dimen-
sion r is the distance from the reference point ® to the far edge
of the plate; s is the distance from ® to the near edge of the
plate.

Structural information and temporal coherence
Interference fringes are formed at the plate when the
absolute path differences involved are less than the co-
herence length of the illuminating wave field. When the
film is perfect, it is the finite spectral bandwidth that
limits the amount of structural information stored in the
hologram.

To calculate this limitation we proceed as follows. A
wave front propagating from the primary source of radia-
tion is split into the object-illuminating and reference
wave fronts, =g and Zy, respectively. At one instant of
time these wave fronts have the positions shown in Fig. 6.
Optical path differences are conveniently measured with
respect to these positions of Zg and Zy. To take best
advantage of the available coherence length, we impose
the following restrictions on Zg and Zg.

1) The radius of curvature of 2 is to be such that all
undiffracted object illumination falls within the aperture
of the plate, as indicated in Fig. 6 by the extensions of
the extreme rays O and P.

2) The radius of curvature R of Zy is to be such that
the maximum and minimum path differences occurring
between the object and reference fields are equal but
opposite in sign.

With condition 1) in force, it can be seen that the maxi-
mum path difference is a — (s — R), and that the mini-
mum path difference is b — (r — R), where a, b, r and s
are the path lengths indicated in Fig. 6. On imposing
condition 2) we arrive at the path-difference conditions

J. T. WINTHROP

a—(s— R < Al (15)
and
—b+ (r— R L Al (16)

where Al is the coherence length \*°/A\. On adding these
relations we obtain'®

(a— b))+ (r — s5) L 24/ 17)
or
a—b< Al— 3[(r— 5)— (a— b)), a18)

which is the basic restriction imposed on the recording
geometry by the finite coherence length Al

Equation (18) is now combined with Egs. (3) and (4),
giving, in the case of perfect film, the limit of information
storage imposed by the finite coherence length. For the
two-dimensional system

(r—=2s5)— (a—b)
F< (4>\/A>\){1 - Al } , (19)

and for the three-dimensional system

F< (w)\/AA)z{% [1 ~r=n = le o ”)] } (20)

These equations can be compared with Egs. (12) and
(13).16 In the present case the position of the reference
source is specified by the quantity (r — s) — (@ — b).
Since this quantity is either positive or zero, the quantity
in brackets {---} in each expression represents the effi-
ciency with which the available coherence length is ex-
ploited for the storing of structural information. In the
case of Eq. (20), the factor 3 has been included in the
definition of efficiency on the grounds that the efficiency
of the three-dimensional system can be effectively doubled
by making use of the modified object domain of Fig. 5.
In all cases maximum efficiency is attained when (r — )
— (a — b) = 0, i.e., when the Fourier-transform arrange-
ment is used. The maximum number of degrees of freedom
of the wave field recorded in the two-dimensional system
is proportional to the mean wavelength divided by the
spread in wave lengths. The maximum number recorded
in the three-dimensional system is proportional to the

_square of that ratio. Similar results were found by

Lohmann* in connection with a study of the space-
bandwidth properties of spatial-filtering systems.

Conclusion

The results presented in this paper suggest that, from
the standpoint of information storage, the Fourier-trans-
form arrangement has a definite advantage. The least
expensive system of this type is likely to be one in which
the coherence length is no longer than is necessary to
record the maximum amount of information possible in
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a medium of given dimensions and resolving power.
Thus, for the two-dimensional system, we can equate
the right-hand members of Egs. (12) and (19) [the former
with 8 = 0, the latter with (r — s) — (@ — b) = 0] to
obtain

= 2#LH .
1+ (0 — &Y La/2)
That is, for given values of u, Ly and z, the coherence

length Al need not exceed the value given by Eq. (21).
Note the two limiting cases

Al @n

Al = 2uLy (u= 1lorLy/z<K1) (22)
and
Al =2uz (K1 and Lyg/z> 1) (23)

In all cases the allowable object dimension is given by
Eq. (6) with 8 = 0.

These equations apply as well to the three-dimensional
Fourier-transform system. The parameter Ly in this case
refers to the radius of the circular hologram.

Acknowledgments

This work was begun under the auspices of a fellowship
granted for the academic year 1966-67 by the Institute
of Science and Technology of the University of Michigan.
The author thanks C. R. Worthington of the Mellon
Institute, Carnegie-Mellon University for his interest
and guidance in the pursuit of the solution to this problem.

Appendix

The resolution criterion, Eq. (6), can be derived with
the aid of Fig. 4. The region M denotes the location of
the interference fringes of highest spatial frequency, and
the resolving power needed to record them is given by
Eq. (5). Now by adding and subtracting identical quan-
tities to and from the right-hand side of Eq. (5), we can
write this condition in the form

NX 2 (cos ap — <08 @) — (cos ¢; — cOSs @)
+ (cos am — cOS a;)
+ (cos ¢, — cos py) — (cos ay — cosa;). (Al)

In Eq. (Al) the quantity (cos ay — cOs ¢,) measures
the numerical aperture of the system as seen from the
upper edge of the object, and the quantity (cos ¢; —
cos ¢,) measures the spatial-frequency content of the
reference wave. The quantity (cos ay — €0s a;) measures
the “numerical field of view” as seen from M.

As for the final two terms in Eq. (A1), we can make
the following observations. In the case of plane-wave
reference illumination the region M occurs at the top
of the plate, and the two terms in question each vanish
identically. When the reference illumination issues from
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a point at the upper edge of the object, the region M
occurs at the center of the plate; the two terms are in
this case equal but opposite in sign, and therefore cancel.
On geometrical grounds it is clear that in any intermediate
case the combination of these two terms can be neglected.
Hence, to a good approximation, Eq. (A1) can be written

NX 2 B(cos ap — cos ¢g) + (cos ay — cos ay), (A2)

where 8 is given by Eq. (8). We have thus expressed the
resolution criterion in terms of the numerical aperture,
the numerical field of view and the parameter 8, which
specifies the position of the reference source.

The problem of relating the structural-information
content of the recorded wave field to the resolving power
N requires that we solve Eq. (A2) for the object dimension
L. An exact solution is not available for arbitrary values
of 8. However, an approximate solution can be obtained
as follows.

When 8 = 1 (plane-wave reference illumination) an
exact solution for L g is readily obtained:

Le < —H 0 — L, (A3)
(a—u)

where p = N)\/2. An exact solution for Lg can also be

found when 8 = 0 (Fourier-transform arrangement):

Ly < —%o (A4)
T -y

Consider now the paraxial case in which (cos oy — c0s @)
R 2Ly/z and (cos ay — €OS ap) =¥ 2Lg/z. This gives,
for arbitrary values of 3,

Ly < pz — BLu. (AS5)

A comparison of Eq. (AS5) with Egs. (A3) and (A4) suggests
the following generalization of Eq. (A5) to the wide-angle
case:

Lg < El_—-u_zuT); — BLu, (A6)

which is equivalent to Eq. (6). This result is exact in the
limiting cases 8 = 1 and 8 = 0. It is not exact for inter-
mediate values of 8, but the expression no doubt provides
an adequate estimate of the resolving power needed for
given values of Ly, Lg and z.
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