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Structural-information Storage in Holograms

Abstract: The number of degrees of freedom, or structural-information content, of the object wave field recorded in a Leith-Upatnieks
hologram is expressed in terms of the resolving power and dimensions of the recording medium, the coherence properties of the primary
illumination and the position of the point reference source . In contrast with previous studies, the calculation does not involve the paraxial
approximation . It is shown that of all holograms, the Fourier-transform hologram makes the most efficient use of available resolving
power and coherence length .

Introduction
An important question in the communication theory of The holographic system considered in this paper is
holography concerns the number of degrees of freedom, shown in Fig. 1 . The object and plate are arranged sym-
or structural-information content,' of the object wave metrically about a horizontal axis, and their separation
field recorded in a hologram . Several authors have dealt is z. The reference source at is located to the left of the
with the problem ,2-8 but so far only the recording of object and is constrained to lie on the extension of a
paraxial wave fields has been considered. The present line AD connecting opposite edges of the object and
paper deals with the holographic recording of fields of plate. The recording of both two- and three-dimensional
extended angular aperture . Its aim is to relate the struc- wave fields is considered. In the two-dimensional case
tural-information content of the recorded wave field to (cylindrical wavefronts) the object and plate can be con-
the 1) resolving power and dimensions of the recording sidered to be rectilinear elements of lengths 2L E ; and 2LH ,

medium, 2) temporal bandwidth of the primary illumi- respectively . In the three-dimensional case (spherical
nation and 3) location of an off axis reference source . wavefronts) the object and plate are assumed to be cir-
The effects of the recording medium and reference-source cular in cross section with diameters 2L B and 2L

xnposition on the amount of structural information re- We allow for the possibility that each element of the
corded have been described previously in the context object may send out light in all directions . Of course
of the paraxial approximation . 2

_ b To the author's knowl- only a part of the total complex wave field actually falls
edge, the effect of the temporal bandwidth has not yet on the plate and, in general, even this part may not be
been discussed . fully recorded for lack of adequate film resolving power

We do not account for the effects of noise . Indeed, and coherence length . For analytical purposes we sim-
the statistical or metrical' aspect of holographic infor- plify the situation by restricting the dimensions of the
mation storage can be considered as separate from the object and plate to such extent that all parts of the com-
structural aspect, and has been so treated by Smith ." plex wave field incident on the plate are recorded . Thus
The total information content of the holographic record each element of the processed hologram contributes to
can be found by attaching a signal-to-noise ratio to each the reconstruction of each element of the object . It is
degree of freedom of the recorded wave field.

	

through the restriction on L B and L$ that the resolving

The author is with the Research Division of the American Optical Corpora-

	

power and temporal bandwidth limit the number of de-
tion, P.O . Box 187, Framingham Centre, Mass . 01701 .

	

grees of freedom of the recorded wave field .
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Consider first the two-dimensional case, that of a
~o monochromatic (scalar) wave field propagating in the

plane of the paper. The sources of the field, radiating
at wavelength X, are distributed along a plane curve S

c as shown in Fig. 2. According to Gabor,' the number F

~n

	

of degrees of freedom of the field emerging from S and
°

	

incident on a second plane curve 3C is given by

F- 2 f f d(c X
a)

ds,

	

(1)

where the integrand represents the differential space-
bandwidth product associated with an elementary pencil
of radiation incident on an element of arc ds in 3C and
confined in direction to an element of plane angle d« .
Here a is the angle that the direction considered makes
with the tangent vector T at ds . The factor of 2 in this
formula accounts for the fact that the coherent wave
field has both an amplitude and a phase description .

An expression appropriate to three-dimensional wave
fields can also be given. In this case S denotes a surface
distribution of sources and 3C refers to a surface of obser-
vation (see Fig. 3). The number of degrees of freedom of
the (scalar) wave field emerging from S and incident on
3C can be written'

Figure 1 Hologram-recording geometry . The symbol R denotes
reference point source, AB the rectilinear or circular object
domain, and CD the rectilinear or circular holographic plate .

F- 2 ff cos BdS2
d A,

	

(2)

where the integrand represents the differential space-
bandwidth product associated with an elementary pencil

The remainder of the paper consists of three main

	

of radiation incident on an element of area dA in 3C and
parts . The first part reviews an integral representation

	

confined in direction to an element of solid angle dSl .
of the number of degrees of freedom of a coherent wave

	

Here 0 is the angle between the mean direction considered
field. In the second part the number of degrees of freedom

	

and the normal vector n at dA . The factor of 2 in this
of the object wave field recorded in the holographic sys-

	

formula has the same meaning as in Eq . (1)
tem of Fig. 1 is expressed in terms of the resolving power

	

in general, the angle and space integrals appearing in
and dimensions of the recording medium . The third part

	

Eqs. (1) and (2) are not independent . When they are
describes the limit on the degree of freedom arising from

	

independent, the corresponding optical system can be
the finite coherence length .

	

described as space-invariant . The factor F is then known
as the space-bandwidth product.'

The structural-information content of a

	

The significance of the degree of freedom for holog-
coherent wave field

	

raphy can be illustrated as follows. Suppose that, in
The number of degrees of freedom of a wave field can

	

Fig. 2 (or Fig . 3), a hologram in position S produces
be defined as the number of independent real parameters

	

a real image at 3C. The local spatial bandwidth of radia-
needed to describe the field completely. 5 ' 7 In the com-

	

tion incident on a given element of 3C is f d(cos cf)/X
munications context this number specifies the structural-

	

(or f cos 0 dtI/X2) . Now the reciprocal of this factor
information content of the field .' M. von Laue's original

	

determines the smallest resolved interval of complex-ampli-
treatment 7 of the subject was limited to those cases in

	

tude structure at the given element . Thus the quantity
which the radiation field suffers the same angular limita-

	

2F measures the number of resolution cells or, more
tion at each element of a given cross section . In this

	

precisely, the number of independent data points'' $ con-
paper we make use of a somewhat more general defini-

	

tained in the total complex-amplitude image . This is the
tion of the degree of freedom due to Gabor.' Gabor's

	

significance of the degree of freedom for microscopy .
definition allows for spatial variations in angular aperture,

	

Note that F also has an interpretation for visual dis-
and is thus suited to the study of wide-angle (space-

	

play holography, where the smallest resolved interval of the
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variant) holographic imagery .

	

image is determined not by the aperture of the plate but
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T be said to have the greater "visual effectiveness" (more
parallax for given angular field of view, or vice versa) .

Let us now return to the holographic system of Fig. 1 .
When the illumination is monochromatic, and the film
is perfect, the number of degrees of freedom of the re-

d, _ corded object wave field can be computed from Eqs . (1)
u -

	

and (2). In the two-dimensional case (rectilinear object
da

	

and plate) integration of Eq . (1) gives

F = 2(2/X)(a - b),

	

(3)

and in the three-dimensional case (circular object and
plate), integration of Eq . (2) gives

F = 2(ir/X 2)[a(a - b) 2/4],

	

(4)

where, in both cases, a and b are the path lengths indicated
in Fig . 1 . In these expressions the factor 2 is that already

Figure 2 Illustration of Gabor's representation of the number

	

described in connection with Eqs. (1) and (2), and the
of degrees of freedom of a two-dimensional wave field . The field

	

second factor is the maximum spatial bandpass available
originates at a plane curve S and is incident on a second plane

	

at the wavelength X . The third factor depends only on
curve ae . the path difference a - b. Thus, as should be expected,

the degree of freedom is closely related to the number of
half-wavelengths contained in the interval a - b . When
the plate dimensions are small compared with the separa-
tion z, in both cases ZF reduces to the ordinary space-
bandwidth product .

Equations (3) and (4) apply when the object is per-
mitted to occupy the complete space between A and B

d2

	

(Fig. 1). With this arrangement the reconstructed wave
field has superimposed on it an unwanted background

'

	

e

	

(intermodulation image) that arises as a result of the
~t dA

	

object field interfering with itself . The effect of the back-
ground is largely removed by restricting the object to
the lower half OB of the original domain AB . As only
one-half the available field of view is used, the wave field

lie

	

recorded in the hologram has ZF degrees of freedom,
where F is given by Eq . (3) or Eq . (4) .
We have derived Eqs . (3) and (4) on the assumptions

of perfect film and monochromatic illumination . The
same expressions can be applied to the case of imperfect
film and nonmonochromatic illumination, provided that
all parts of the complex disturbance incident on the plate
are recorded (see the Introduction) . It remains to deter-
mine the largest possible value of a - b consistent with

by the pupil of the viewer's eye. Suppose that a holo-

	

this condition. We consider in order the following three
gram in position 3C produces a virtual image in the loca-

	

cases: imperfect film and monochromatic light, perfect
tion S. In the display application two factors are of

	

film and nonmonochromatic light, and imperfect film
interest, the differential angular field of view da (or dSl)

	

and nonmonochromatic light .

	

0
and the available increment of motion sin ads (or cosB dA)
of the viewer's eye in a direction normal to the principal
ray in da (or dcl) . The product of these factors, when

	

Structural information and film resolving power
integrated over the total field of view and hologram

	

Since the path difference a - b is determined by the
aperture, is proportional to the degree of freedom F.

	

separation and dimensions of the object and plate, our
Thus, of two competing display systems operating at the

	

first task is to relate the latter quantities to the resolving
same wavelength, the one for which F is greater may

	

power of the recording medium. The following treatment,
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Figure 3 Illustration of Gabor's representation of the number
of degrees of freedom of a three-dimensional wave field . The
field originates at a surface S and is incident on a second
surface XC .

S

X

SEPTEMBER 1970

	

STRUCTURAL-INFORMATION STORAGE



°

Figure 4 The holographic system of Fig. 1, with notation
appropriate to deriving the resolution criterion, Eq . (6) .

which assumes monochromatic light, can be considered
an extension of the work of Leith et al ." and of Stigliani
et al . 1o

The recording medium may be assumed to have finite
depth. In general, the medium records a three-dimensional
system of standing waves, and the resolving power re-
quired is determined by the maximum standing-wave fre-
quency produced within the medium .
The standing wave of maximum spatial frequency is

formed within a small region of the plate, indicated by
M in Fig . 4 . The location of the region M clearly depends
on the position of the reference source. However, because
of the symmetry of the recording system, the nodal sur-
faces of this particular standing wave are approximately
at right angles to the surface of the plate, regardless of
where the reference source is located . Thus, the basic
restriction imposed on the recording geometry by the
resolving power N (lines/mm) can always be written,

NX > Cos a m - Cos OM ,

	

(5)

where, as shown in Fig. 4, am is the inclination from the
vertical of a ray extending from the lower edge of the
plate through the region M, and WM is the inclination of
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a reference ray also extending through M .

Equation (5) is to be solved for the object dimension
L e . A somewhat involved calculation (see the Appendix)
gives

L 8 + ILH < /,Z/(l - µ2) I/2 ,

	

(6)

where

µ = NX/2

	

(7)

and

a _ cos ao - Cos 0,

	

(8)
Cos ao - COS 4)o '

where the angles a0, ¢0 and 41 are defined as in Fig. 1 .
In this formula the parameter µ expresses the resolving
power of the recording medium in reciprocal half wave-
lengths. The parameter /3 expresses the position of the
reference source and can take any value between zero
and one. For example, the value /3 = 1 corresponds to
plane reference waves (01 = 00) and /3 = 0 corresponds
to spherical reference waves emanating from a point at
the upper edge of the object (WI = ao ; lensless Fourier-
transform holography). Equation (6) shows that, in gen-
eral, the resolving power limits both the plate size and
the object size (for given z) . 9 However, in the special
case /3 = 0, only the object size is limited ."' t2 Of course,
if the film is perfect (µ = 1), there is in principle no
restriction on either L 8 or LH . 10 It should be noted that
Eq. (6) is independent of the depth of the recording
medium, a direct consequence of the symmetrical record-
ing geometry .

The amount of structural information contained in the
recorded monochromatic object wave field can now be
calculated . The general result is obtained by eliminating
the object dimension L 8 in Eqs. (3) and (4) by means of
Eq . (6) .

An approximate version of the general result enables
us to see more clearly the effect of the resolving power .
We write

a - b = (2L sLH/D)[l + 1(2L sLH%D`)2 + . . . ],

	

( 9)

where

D 2 = Ls + L,2 -{-1

	

z 2 .

	

( 10)

If

8(2L sLH/D 2)' << 1,

	

(11)

then only the leading term in Eq . (9) need be retained .
Note that since 2L 8LH/D 2 < 1 for all values of L s and
LH, the approximation is a good one for all but the most
extreme angles of diffraction . Within this approximation,
Eqs . (9), (6) and (3) give for the rectilinear hologram

1 - /3x/µ
F < 4NLH (1 - 2(3µx + (1 + /32)x2 ] 4f '

	

(12)
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and Eqs. (9), (6) and (4) give for the circular hologram

	

I

F < (7rNL,I)2S 1
	 (1 - /3x/µY'

2

	

(13)

l2 1 - 2/3µx + (1 + Q )x -

where

x = (1 - U 2 )4(LH/z) .

	

(14)

These results can be interpreted as follows .

1) The factor 4NLH appearing in Eq. (12) is the space-
bandwidth product associated with the one-dimensional
recording medium. Similarly, the factor (irLHN)2 in Eq .
(13) is the space-bandwidth product associated with the
circular recording medium . 13 Now the number of inde-

	

Figure 5 A modified three-dimensional holographic system in
which the circular object domain, the dashed circle, is replacedpendent real data in a photographic image cannot exceed

	

by a 180° sector of twice the area .
the space-bandwidth product of the recording medium .2-5

Thus, in each expression, the factor in brackets { . . . }
represents the efficiency" with which the corresponding
holographic medium is exploited for the storage of struc-
tural information.
2) From Eq. (12) we see that the system consisting of
rectilinear object and hologram has a potential storage sideband shift (i .e ., in the direction normal to the planeefficiency of one. In a strict sense, the maximum efficiency of Fig. 1). 14 The efficiency of the system can be improvedcan be attained only with perfect film (µ = 1), thus by replacing the circular object domain by a 180° sectorpermitting an object of indefinitely large width . However, of twice the area, as shown in Fig . 5. When the objectwhen the film is not perfect, an approximation to unit dimension L & is restricted by a medium of moderateefficiency can be obtained by imposing the condition
x/µ << 1 . A result similar to this was found by Lukosz5

	

resolving power, the efficiency of the modified system is

for "sin sideband" holograms

	

nearly double that given by Eq . (13) for the system with"single-

	

grams produced with plane-

	

circular object domain . However, as p --> 1, and thewave reference illumination and paraxial wave fronts .
When the film is not perfect, and when the ratio x/µ allowable object dimension increases, the efficiency of the

cannot be made small, the efficiency is maximized by
modified system decreases in the limit to the previous

choosing B = 0 . That is, in general, the lensless Fourier-

	

value of one-half. For when the ratio Ls/z -->

	

the
solidtransform arrangement makes the most efficient use of

	

angle subtended at the plate by the 180° sector
approaches that subtended by the circular domain .the given storage medium . Note, however, that the storage

efficiency of this arrangement decreases with increasing

	

The above considerations apply equally well when the
numerical aperture (or increasing x), for the resolving

	

object occupying the interval AB in Fig. 1 is replaced
power is greater than is necessary to record the inter-

	

by a lens of the same aperture. This lens can be used to
ference fringes formed at the edges of the plate . In the

	

record the focused image of a coherent object (image-
paraxial approximation (x << 1), and with (3 = 0, Eq . (12)

	

plane hologram), 4 or to record its Fraunhofer diffraction
reduces to an expression given by Parrent and Reynolds 2

	

image (Fraunhofer hologram) . Indeed, the lens can be
for the amount of structural information stored in a one-

	

removed altogether, leaving an aperture in an opaque
dimensional Fourier-transform hologram .

	

screen; the hologram records the incident wave field aris- <
3) From Eq. (13) we see that the system consisting of

	

ing from any three-dimensional distribution of coherent
circular object and plate also has the greatest potential

	

objects located to the left of the aperture . The maximum
storage efficiency when the film is perfect or, barring

	

allowable dimensions of the aperture and hologram are
perfect film, when x/µ << 1 . When the film is not perfect,

	

determined from Eq . (6), and the maximum number of
and when x/p is not small, the Fourier transform sys-

	

degrees of freedom in the recorded wave field is given by
tem (/3 = 0) once again provides the most efficient means

	

Eq. (12) or (13), depending on the number of spatial
of storing structural information .

	

dimensions considered .
4) However, the maximum storage efficiency of the three-

	

We note finally that if one requires angular separation
dimensional system is not one but one-half . The reason

	

of the intermodulation background from the first-order
for this is that the resolving power of the plate is not

	

image, then the storage efficiencies will amount to about
fully utilized in the direction normal to the direction of

	

one-half those given by Eqs . (12) and (13) .
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a - (s - R) < Al

	

(15)

and
-R

	

-b + (r - R) < Al,

	

(16)

where Al is the coherence length \ 2/0\ . On adding these
relations we obtain15

(a - b) + (r - s) < 20l

	

(17)

or

a - b < Al - 2[(r - s) - (a - b)],

	

(18)

which is the basic restriction imposed on the recording
geometry by the finite coherence length AL

Equation (18) is now combined with Eqs . (3) and (4),
giving, in the case of perfect film, the limit of information
storage imposed by the finite coherence length . For the
two-dimensional system

Figure 6 The holographic system of Fig . 1, with notation ap-
propriate to deriving the coherence criterion, Eq . (19). Dimen-
sion r is the distance from the reference point 61 to the far edge
of the plate ; s is the distance from lR to the near edge of the
plate. F < (4X/AX){1 - (r-	

s) 2 O(a
- b)1

	

(19)

and for the three-dimensional system

F < (7rX/AX)2{2 [1 -
(r-s)	

2 p(a
	 - b)]2}

	

(20)

Structural information and temporal coherence These equations can be compared with Eqs. (12) and
Interference fringes are formed at the plate when the (13) . 18 In the present case the position of the reference
absolute path differences involved are less than the co-

	

source is
herence length of the illuminating wave field . When the

specified by the quantity (r - s) - (a - b) .

film is perfect, it is the finite spectral bandwidth that
Since this quantity is either positive or zero, the quantity

limits the amount of structural information stored in the

	

in brackets {

	

} in each expression represents the effi-
ciency with which the available coherence length is ex-

hologram.
. calculate this limitation we proceed as follows . A ploited for the storing of structural information

. In the

wave front propagating from the primary source of radia-

	

definition
case of Eq . (20), the factor a has been included in the

lion is split into the object-illuminating and reference
of efficiency on the grounds that the efficiency

wave fronts, $ and 2;R, respectively. At one instant of
of the three-dimensional system can be effectively doubled

time these wave fronts have the positions shown in Fig . 6.

	

by making use of the modified object domain of Fig . 5 .
In all cases maximum

Optical path differences are conveniently measured with

	

efficiency is attained when (r - s)
arrange-

respect to these positions of E s and 2;R . To take best

	

ment
- (a

is
- b)
used .

0, i .e., when the Fourier-transform arrange-

advantage of the available coherence length, we impose

	

. The maximum number of degrees of freedom

following restrictions on ~ s and ER .

	

of the wave field recorded in the two-dimensional system
the is proportional to the mean wavelength divided by the
1) The radius of curvature of E s is to be such that all

	

spread in wave lengths. The maximum number recorded
undiffracted object illumination falls within the aperture

	

in the three-dimensional system is proportional to the
of the plate, as indicated in Fig . 6 by the extensions of

	

square of that ratio . Similar results were fout}d by
the extreme rays 0 and P .

	

Lohmann4 in connection with a study of the space-
2) The radius of curvature R of 2; R is to be such that

	

bandwidth properties of spatial-filtering systems .
the maximum and minimum path differences occurring
between the object and reference fields are equal but

	

Conclusion
opposite in sign. The results presented in this paper suggest that, from

With condition 1) in force, it can be seen that the maxi- the standpoint of information storage, the Fourier-trans-
mum path difference is a - (s - R), and that the mini- form arrangement has a definite advantage . The least
mum path difference is b - (r - R), where a, b, r and s expensive system of this type is likely to be one in which
are the path lengths indicated in Fig . 6 . On imposing

	

the coherence length is no longer than is necessary to
506

	

condition 2) we arrive at the path-difference conditions

	

record the maximum amount of information possible in
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a medium of given dimensions and resolving power. a point at the upper edge of the object, the region M
Thus, for the two-dimensional system, we can equate occurs at the center of the plate ; the two terms are in
the right-hand members of Eqs . (12) and (19) [the former this case equal but opposite in sign, and therefore cancel .
with 0 = 0, the latter with (r - s) - (a - b) = 0] to On geometrical grounds it is clear that in any intermediate
obtain

	

case the combination of these two terms can be neglected .
Hence, to a good approximation, Eq . (Al) can be written

	2µLH		
(21)0l = [I + (I -	µ2)(L

	

NA > 0(cos ao - cos Oo) + (cos am - cos a,), (A2)

That is, for given values of µ, Lx and z, the coherence where /3 is given by Eq . (8) . We have thus expressed the
length Al need not exceed the value given by Eq . (21). resolution criterion in terms of the numerical aperture,
Note the two limiting cases the numerical field of view and the parameter /3, which

Al = 2µLH (µ = 1 or Lx/z << 1)

	

(22)

	

specifies the position of the reference source .
The problem of relating the structural-information

and content of the recorded wave field to the resolving power

A/ = 2µz (µ << 1 and LH/z >> 1) .

	

(23)

	

N requires that we solve Eq . (A2) for the object dimension
L s . An exact solution is not available for arbitrary values

In all cases the allowable object dimension is given by of /3. However, an approximate solution can be obtained
Eq. (6) with /3 = 0 .

	

as follows .
These equations apply as well to the three-dimensional

	

When ,3 = I (plane-wave reference illumination) an
Fourier-transform system . The parameter LH in this case

	

exact solution for L s is readily obtained :
refers to the radius of the circular hologram .

Ls - (, mµ2 ) 1 - Lx>

	

(A3)
Acknowledgments
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granted for the academic year 1966-67 by the Institute found when a = 0 (Fourier-transform arrangement) :
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The author thanks C. R. Worthington of the Mellon

	

L s < (1 µZµ2 ) 1 •

	

( A4)
Institute, Carnegie-Mellon University for his interest
and guidance in the pursuit of the solution to this problem.

	

Consider now the paraxial case in which (cos ao - cos (po)
,: 2LH/z and (cos am - cos ao) ti 2L,,/z. This gives,

Appendix

	

for arbitrary values of
The resolution criterion, Eq . (6), can be derived with

L
the aid of Fig. 4. The region M denotes the location of

	

s µz - BLH .

	

(A5)

the interference fringes of highest spatial frequency, and A comparison of Eq. (A5) with Eqs . (A3) and (A4) suggests
the resolving power needed to record them is given by the following generalization of Eq . (A5) to the wide-angle
Eq . (5). Now by adding and subtracting identical quan-

	

case:
tities to and from the right-hand side of Eq . (5), we can
write this condition in the form

	

L s < (1 µzµ2 ) 1 - $LH,

	

(A6)

NA > (cos ao - cos / o) - (cos 0, - cos 00 )

+ (cos aM - cos a, )

+ (cos 0, - cos Om ) - (cos ao - cos a,) . (A1)

In Eq. (Al) the quantity (cos ao - cos 4o) measures
the numerical aperture of the system as seen from the
upper edge of the object, and the quantity (cos 0, -
cos 4o) measures the spatial-frequency content of the
reference wave . The quantity (cos am - cos a,) measures
the "numerical field of view" as seen from M.

As for the final two terms in Eq . (Al), we can make
the following observations . In the case of plane-wave
reference illumination the region M occurs at the top
of the plate, and the two terms in question each vanish
identically. When the reference illumination issues from

which is equivalent to Eq . (6) . This result is exact in the
limiting cases /3 = 1 and /3 = 0 . It is not exact for inter-
mediate values of ,B, but the expression no doubt provides
an adequate estimate of the resolving power needed for
given values of LH , L s and z .
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