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Random-walk Model of Stream Network Development*

Abstract: A random-walk, headward-growth model of stream network development in a region of uniform lithology and uniform
slope is proposed. The principal difference from previous models is that the probability of growth is made dependent on the area
contributing runoff to the stream tip. Two versions of the model have been studied in detail and shown to give satisfactory results.
A major advantage is that all of the important network variables, including drainage density and outlet density, come naturally out

of the simulation processes.

Introduction
Natural channel networks produced by fluvial erosion
exhibit patterns that are related to the geologic structure
of the area in which they are incised [1]. Networks formed
in regions of negligible geologic controls have a typical
dendritic character of the kind illustrated in Fig. 1.
In the earliest, largely qualitative, scientific discussions
of network patterns, dendritic networks were considered
as examples of random or nearly random drainage de-
velopment. In 1945 Horton [2] showed that quantitative
analysis of topological and geometrical properties of
such networks disclosed certain regularities that he
described in his now-famous laws of drainage composition.
Horton’s findings were later confirmed and extended by
Strahler and his students [3]. In recent theoretical in-
vestigations, Shreve [4-6] and Smart [7, 8] showed that
assumptions of topological randomness and random
distributions of link lengths are sufficient to explain not
only the Horton-Strahler empirical laws but also the
nature of the observed deviations from those laws.
Simulation techniques have provided an alternative
approach to the problem of dendritic drainage develop-
ment. Most of the simulation models have been based
on random walks on a square lattice. In the first such
model, proposed by Leopold and Langbein [9], channel
networks were generated by downstream growth and
coalescence of streams starting from randomly selected
sources. The dimensionless parameters (such as bifurcation
and length ratios) of the Leopold-Langbein networks
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Figure 1 Dry Creek (Milltown, Ind.) channel network,
taken from U. S. Geological Survey map (scale 1:24,000). 197
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Figure 2 Drainage network for a homoclinal ridge (Clinch
Mountain, Va.)—scarp slope, low dip.
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Figure 3 Headward-growth, random-walk simulation: O—
outlets; A—one of several active sites. The potential con-
tributing area for A is indicated by cross-hatching.
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were very similar to those of actual systems. Schenck [10]
and Smart, Surkan and Considine [11] programmed the
model for a digital computer. Later, Howard [12] sug-
gested, programmed and studied several random-walk
models in which the networks were generated from
randomly selected outlets byr headward growth and
branching. Other models of the random development of
drainage networks have been devised by Scheidegger [13]
and by Seginer [14].

One common feature of most of the random-walk
models is that the growth probabilities are isotropic.
Networks generated under this rule may be expected to
correspond to natural networks developed in regions
without geologic controls, i.e., in regions of uniform
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lithology with no pronounced regional slope. Most
natural areas, of course, do have some geologic structure,
and it would be desirable to generalize the simulation
models so that they can be applied to such situations.
Smart and Moruzzi [15] made a start in this direction
by designing a random-walk, headward-growth model for
drainage patterns formed on a homoclinal ridge. The
results of their model were tested by comparison with
an actual system, Clinch Mountain, Va., which has
uniform lithology and structural parameters (dip, relief)
that vary along the strike. The drainage network for this
region is shown in Fig. 2.

Overall agreement between simulated and actual systems
was good, but Smart and Moruzzi noted two specific
weaknesses of their model. First, the reduced outlet
density, one of the more important geomorphic parameters,
had to be specified in the input data, rather than emerge
as a natural consequence of the simulation rules. Second,
uniform drainage density (channel length per unit area)
had to be achieved by making empirical adjustments on
two probability ratios whose relation to the actual
processes involved in network development was not clear.
In the next section we describe a new simulation model
intended to remedy these defects.

Simulation rules

The principal difference between the new and the old
models is the replacement of arbitrary probabilities for
growth and branching by rules that more closely reflect
the actual processes involved. In any drainage system
developing by headward growth, one of the most im-
portant factors in the rate of growth is the amount of
runoff reaching the tip of the stream, and this runoff is in
turn largely determined by the upland area contributing
to the tip. Accordingly, in the current model, a decision
as to whether a given stream segment should be allowed
to grow is reached by examining the area immediately
upslope. The detailed implementation of such rules is
described below.

In its initial form, this model is intended to apply to
regions of uniform lithology and uniform regional slope,
such as a homoclinal ridge or pediment. As in other
random-walk models, an array of squares of horizontal
dimension L and vertical dimension W is constructed.
The L squares along the bottom row are considered to
be possible outlet locations and are identified as active
sites. The potential contributing area for an active site
consists of the three columns of squares immediately
above and to each side of it; Fig. 3 shows an example for
a case in which the active site is not an outlet.

One of the active sites is chosen at random and the
V rule (see below) is used to determine whether this site
becomes an outlet. The V rule is based on the configuration
of streams already in the contributing area; examples are

IBM J. RES. DEVELOP.




given below. If the site is allowed to become an outlet
(as of course it always will for the first active site chosen),
a segment of stream is created that runs into the outlet
from the square above; this square is then added to the
active-site list. The outlet location is removed from the
active-site list regardless of the outcome of the V-rule test.

Another site is now chosen at random from the revised
active-site list. If the new site is an outlet location, the
procedure described above is repeated. If the site is an
interior location, the number of streams already entering
it is determined and the three neighboring sites (one above,
one on each side) are examined to see if they are occupied.
A location is removed from the active-site list if it is
the junction of two streams or if there is no unoccupied
neighboring site; then a new random selection is made.
Otherwise, one of the permitted directions of growth
(toward an unoccupied site) is chosen at random.

If the vertical direction is chosen, the V rule is again
used to determine whether growth occurs; if one of the
horizontal directions is chosen, the H rule is used. In
either case, if growth is not allowed the site is removed
from the active list; if growth is allowed the newly con-
nected site is added to the active list unless it is in the top
row. Next, a new site is chosen at random from the
revised active list and the process is repeated until no
active site remains.

To obtain an indication of the range and applicability
of this model, several versions (i.e., different sets of H
and V rules) were programmed and tested. Two particular
versions, called simply A and B, are described as follows.

& Version A

V rule Growth is not allowed if any square in the central
column of the potential contributing area is
occupied.

H rule Growth to the right (left) is not allowed if any
square in the right (left) column of the potential
contributing area is occupied or if the active
site is on the second row from the top.

& Version B

V rule Same as for version A.

H rule Growth is not allowed if any square in the
potential contributing area is occupied or if the
active site is on the second row from the top.

The general idea behind these rules is that the presence
of other streams in the contributing area reduces the
runoff available to the active site. The H rules are made
more restrictive than the V rules because regional slope
will favor channel extension in the “uphill” direction.
The major difference between the two versions is illustrated
in Fig. 3, where version A would allow no growth at all
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Figure 4 Mean drainage density vs width for versions A
and B.
Table 1 Dimensionless variables used in stream network
analysis.
Symbol Definition Description
Ne Number of exterior links
N; Number of interior links
N, N, — N; Number of outlets
W, WD Reduced width
s Ni/N, Branching factor
o N,/LD Reduced outlet density
Ae 1.D Reduced mean exterior link length
i 1D Reduced mean interior link length
Ar I/l Mean link-length ratio
P (N. + Ny/WLD? Reduced link density
Ke N./WLD? Reduced exterior link density

at active site A, while version B would allow growth to
the right only.

Results of simulation tests

The simulation programs were written in APL\360 and
executed on an IBM System/360 Model 91 computer.
CPU times for a 10 X 30 array were about 18 and 21
seconds for versions B and A, respectively.

Each version was run 25 times for each of six different
values of W, which were chosen so that the reduced
width (width times drainage density) ranged between
about 2.5 and 10. For all runs L was set equal to 40,
a value considered to be sufficiently large to make end
effects negligible and yet sufficiently small to keep com-
puter time to a reasonable amount. With each run data
on the numbers and lengths of exterior and interior links
were collected and stored to be analyzed as a function of W.
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Figure 5 Typical simulation runs: (a) version A; (b) version B. That the ‘“square” lattice is rectangular, and that there are two arrows
in horizontal steps and a single arrow in vertical steps, are artifacts of the APL graphic output.

(An exterior link is a channel segment between a source
and the first junction downstream; an interior link is a
channel segment between two successive junctions.) As
mentioned in our previous paper [15], network data of
these types are best reported as dimensionless guantities.
The dimensionless variables studied in this investigation
are listed in Table 1. The quantity x was introduced
into the geomorphological literature by Shreve [5].

One of the most important requirements on simulation
models for areas of uniform lithology is that the drainage
density D be reasonably uniform and independent of area.
In Fig. 4 the mean values of D (for 25 runs) are plotted
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as a function of W (for constant L) for both versions.
Seventeen of the 25 observations (68 percent) for each
width fall within the range indicated by the brackets.
The results based on version A rules show no perceptible
dependence of D on W, while for version B rules there
is an apparently significant decrease in D of about seven
percent with increasing W over the range investigated.
Version A gives a lesser variability in D than does version
B, the coefficients of variation being about 0.02 and 0.055,
respectively. It would be interesting to check these values
against natural systems, but we have not been able to
find any data that are directly comparable. The uniformity
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of D is harder to characterize quantitatively than is the
dependence on area. Computer-generated ‘“‘maps” of
sample runs of both versions are shown in Fig. 5. The
reader may judge for himself whether the degree of
uniformity is similar to that in natural systems (cf. Fig. 2).

Figure 6 shows the mean values of the branching
factor plotted against the mean reduced width. The
vertical brackets again indicate the ranges for 17 of 25
observations of fg; the corresponding ranges for W, are
much smaller and are not shown. The relation is so
nearly linear that we have made a least-squares fit to an
equation of the form

fB = a(Wr - WO)s

which is suggested by the fact that in our models no
branching occurs unless W > 2. Therefore the mean
branching factor should go to zero at a value of W, 2D.
Results are given in Table 2.

The combined dip-slope and scarp-slope data for
Clinch Mountain [15] are shown for comparison (here the
branching factors are individual values, not means).
The occurrence of a non-zero intercept in the natural
data suggests the possibility of a critical distance for
branching.

Tables 3 and 4 list the mean values for all measured
and derived variables. The general behavior of W (or W,)
is similar to that produced by our previous simulation
program and so is similar to that observed for the Clinch
Mountain system. The important point here is that the
current model yields results that are as quantitatively
satisfactory as those of the previous model while requiring
less input data and fewer arbitrary rules.

Some specific features may be noted. The reduced
outlet density v, is quite different for the two versions
but is essentially independent of W, in both cases. In
version B the mean link-length ratio becomes less than
unity for W, > 4, a result that does not agree with most
observations. The two reduced link densities behave
quite differently; «, decreases with increasing W, in
both versions, while « shows a slight but significant
increase in version A and no change in version B. The
reduced exterior link length A\, decreases linearly with
W, both cases.

To give an indication of the inherent variability of
each parameter, we have calculated the coefficient of
variation for each set of 25 runs and recorded the average
of the six values in the last column of both Table 3 and
Table 4. The quantities with the lowest coefficients of
variation are the drainage density and the number of
exterior links.

Discussion
This model represents a considerable improvement over
our previous one. In particular, the drainage development
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Figure 6 Mean branching ratio vs mean reduced width for
versions A and B. The straight lines represent the least-
squares fits with the parameters given in Table 2.

Table 2 Least-squares fit to branching-factor data.
_ Correlation
Data a W, 2D coefficient
Version A 0.351 1.65 1.83 0.999
Version B 0.302 1.45 1.26 0.998
Clinch Mountain 0.434 2.14 0.925

terminates automatically, much as in actual systems.
The only input data required are the width and length
of the map; all of the network variables (including D
and N,, which had to be specified as input in the previous
model) come naturally out of the simulation process.

All of the essential properties of the model are contained
in the H and V rules. This feature provides a great deal
of flexibility, since different versions are created simply
by changing the criteria for growth. Thus, to simulate
drainage development in an area underlain by a permeable,
erosion-resistant rock such as sandstone, one would
require that a large fraction of the’ contributing area be
unoccupied before growth can occur; such a choice
automatically leads to an appropriately low drainage
density. Another attractive feature of our model is that
it is easy to change from one version of the program to
another, since only the statements relating to the H and V
rules (four, in our case) need be altered.

The two versions used to illustrate the properties and
range of the model were chosen for their simplicity.
We believe that more realistic versions are certainly
possible, but that the details will depend rather sensitively
on the type of area being simulated. We offer here two
general suggestions for improvement to be incorporated
in any more sophisticated model. First, in the current
versions, if horizontal (vertical) growth is not allowed,
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Table 3  Mean values of network variables for version A.
w
Coefficient
Variable 3 4 6 8 10 11 of variation
D 0.913 0.919 0.918 0.917 0.913 0.921 0.022
W, 2.74 3.67 5.51 7.34 9.13 10.13
Ne 39.6 48.4 66.2 84.4 101.6 112.8 0.046
N; 9.92 19.9 38.3 56.5 73.6 83.8 0.114
N, 29.6 28.6 27.9 27.9 28.1 29.0 0.092
fn 0.34 0.71 1.39 2.05 2.65 2.92 0.164
Vo 0.811 0.777 0.761 0.761 0.769 0.787 0.093
Ao 2.30 2.26 2.15 2.07 2.01 2.0t 0.078
i 0.91 1.31 1.57 1.69 1.77 1.74 0.084
Anr 2.52 1.73 1.38 1.22 1.14 1.17 0.093
K 0.495 0.507 0.518 0.524 0.526 0.527 0.072
Ke 0.396 0.360 0.328 0.314 0.305 0,302 0.062
Table 4 Mean values of network variables for version B.
w
Coefficient
Variable 4 6 7 9 10 15 of variation
D 0.645 0.641 0.651 0.626 0.616 0.604 0.054
W, 2.58 3.58 4.56 5.63 6.16 9.06
N, 43.2 54.6 60.5 71.4 75.6 103.6 0.067
N 10.5 22.8 29.2 31.5 44.4 71.9 0.143
N, 32.8 31.8 31.3 31.5 31.2 31.8 0.072
In 0.32 0.73 0.94 1.27 1.44 2.28 0.183
o 1.27 1.24 1.20 1.26 1.27 1.32 0.086
e 1.31 1.28 1.31 1.22 1.17 1.15 0.098
i 0.98 1.29 1.37 1.37 1.43 1.40 0.113
AR 1.37 1.00 0.96 0.90 0.83 0.82 0.128
K 0.809 0.785 0.759 0.794 0.793 0.805 0.084
Ke 0.651 0.555 0.512 0.510 0.500 0.476 0.083
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