
J. A. van der Pool

Optimum Storage Allocation for a File with Open
Addressing

Abstract: File organizations utilizing key-to-address transformation and open addressing are studied. A simulation method and a Markov
model, which were used for evaluation, are presented. The cost of retrieval as a function of storage space and accesses is also formulated.
The minimum of the combined costs for different operational conditions is determined.

Introduction
In file organizations using key-to-address transformation
(KAT) to locate stored records [1 -31, storage is divided
into physical blocks called buckets. Each bucket can con-
tain s P 1 records of the file.

The algorithm used for KAT [3] defines a function
g: K ”* A on the possible record keys as domain and the
available bucket addresses as codomain. A record with
key k E K is stored, if possible, in the bucket with ad-
dress g (k) = a. If we load a file of n records, Y, of them
will have the same image a E A . If r , > s, a number of
records (r , - s) cannot be stored in the bucket to which
they were assigned (the primary bucket).

Several methods are used to store these overflow
records. In [4] and [5] studies were reported of an or-
ganization that uses a separate overflow area. In this
study, the so-called open addressing method [6-81 is
analyzed.

An overflow record from a bucket with address a E A =
(0, 1, 2 , . .., b - l}, where b is number of buckets, is
stored in the bucket with address (a + d) , where d is the
smallest integer thatidentifies a nonfull bucket with ad-
dress greater than a. In other words, when the buckets
with addresses a + 1, a + 2 , . . ., a + d - 1 are filled, and
the bucket with address (a + d) has space available, then
the record is stored in (a + d) . If during the search for an
open space, (b - 1) is reached and is full, the process is
continued with address 0.

To retrieve a record, one access to the storage device
is sufficient if the record is stored in its primary bucket
with address g (k) = a. If it is not, then the buckets with
addresses a + 1, a + 2; . ., a + d (modulo b) must be in-
spected, resulting in d additional accesses. The first prob-

106 lem in the evaluation of open addressing is to determine

the average number of additional accesses required to re-
trieve a record for different values of bucket size s and
load factor 8 = n/bs. This is usually done under the as-
sumption that the file is static, so that no additions or
deletions of records occur.

Peterson [6] estimated the average number of addi-
tional accesses by detailed simulation. In this paper, we
report a new simulation method. In addition, we describe
how the principle of this simulation method is used to
formulate a Markov model. Using both the new simula-
tion method and the Markov model, the required addi-
tional accesses are determined and the results are com-
pared with each other and with Peterson’s simulation
results.

Finally, the cost of retrieval as a function of storage
space and number of accesses is formulated. Load fac-
tors giving minimal cost are then computed for different
values of bucket size and different operational conditions.

Stack method for evaluating additional accesses
In an actual key-to-address transformation process, a file
of n records is loaded into b buckets of size s (n 5 bs) . In
order to calculate the average number of accesses re-
quired to retrieve stored records, we consider loading as
a two phase process. In the first phase the address of each
record is computed by the KAT and the records are
sorted in the order of their assigned addresses. Then the
records are loaded into the buckets in the order of the ad-
dresses: 0, 1,. . . , h - 1. This special loading order and
loading process facilitate the evaluation of the number of
additional accesses. The values for the average obtained
for the special order are however valid for any loading
order, as was demonstrated by Peterson [6].

J. A. VAN DER POOL IBM J. RES. DEVELOP.

Overflow
records

8-record
buckets

Bucket addresses a 0 1 2 3 4 5 6 I

No.of records assigned r, 10 I 9 5 6 2 I 10

First-pass stack e , 2 1 2 0 0 0 0 2

Second-pass stack e, 10 10 10 9 7 1 0 0

r
I

I

I

t +
+

1
""_

9

8

I

6

_""
_""
""-
-

8

12

6

0

16

15

14

13

12

11

10

1
I
i
1
-I

1
-I
I

-
11

15

13

0

"_"

7 14 12 9 13 4

10

0 0

Total 12 11 12 9 I 1

Figure 1 Records loaded in natural order and in two phases.

During the loading, a stack of overflow records is kept.
Starting with a = 0 and the stack empty, if r,, the number
of records having the address a as result of the KAT, is
greater than s, s records are loaded into the bucket and
(r , - s) are added to the stack. If s > ra, all records as-
signed to a are loaded first, and further, as many records
from the stack as possible are also loaded. The number of
overflow records assigned to address a is then the smaller
of (s - r ,) and the number of records currently in the
stack. The stack of records remaining after the bucket
having address (b - 1) has been loaded is finally ex-
hausted by filling the remaining open spaces in the buck-
ets having addresses 0, 1, 2 , . * ., etc., in that order.

Using the concept of a stack gives us an easy way to
count the total number of additional accesses required to
retrieve each of the overflow records. The important
property of the stack is that one need not know the identity
of each record in the stack; it is sufficient for our purposes
to know only the size of the stack. If there are e , records
in the stack after bucket a has been loaded, moving these
records (regardless of their identity) to the next bucket
contributes e , additional accesses to the total number of
overflow accesses required. The average number of ad-
ditional accesses is thus

- 1 b-l
a = ; e , .

a=O

0 2 6 6 6 13 14 10

This algorithm is illustrated in Fig. 1 for the case of 1 12
records assigned to 14 buckets of size 8. Overflow
records are numbered so that the bucket to which they
were originally assigned and in which they are eventually
stored can be seen. Records are stored by making two
passes through the 14 buckets beginning at address a = 0
with the stack empty. Stack e , is determined after each
bucket has been loaded during each of the two passes.
In this example after the first pass, eI3 = 10. These 10
records are stored in the remaining spaces as the buckets
are visited in the second pass. We can now compute on
the one hand

12

2 e a - - 109.
a=O

On the other hand, we can count the displacements of
each overflow record:

R e c o r d : 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Displacement: 1 3 1 6 6 5 5 9 10 7 8 8 8 8 8 8 8 .

The total of all displacements is again 109. With both
methods we find

- 1 0 9 a=----] - 0.97. 107

OPEN ADDRESSING FILE ANALYSIS

Simulation method
The stack provides the basis for a simulation program.
We suppose that the KAT applied to a key gives a result
that can be considered to be a random variable with a
probability l / b for each a E (0, 1 , . . ., b - l}. Under this
assumption, and for large values of b and n, we can as-
sume that the number of records r that will be directly
assigned to a bucket will have a Poisson distribution

P (r) = e r!

with rn = nlb, the average number of records assigned to
a bucket. The simulation can now be done by drawing
successive random numbers ra for each bucket (a = 0,
1, . . ., b - 1) such that these numbers have a Poisson
distribution (see, for example, [9]). After each drawing
of r,, the resulting stack e, can be calculated. If eb-] > 0,
then the stack is “carried around” to address 0. The pre-
viously calculated e,, e,, etc., are corrected until eb-] is
exhausted by filling remaing open spaces.

Markov model
The deletions from and additions to the stack can be
considered as trials in a Markov chain; see, for exam-
ple, [IO]. The number of records in the stack determines
the state of the system considered. For bucket size
s (S 1 1), the (infinite) matrix of transition probabili-
ties is:

-m

Let u = {uo, u1; . .} be the steady-state solution of

u M = u . (1)

Then the average stack length is

P = E iui . (2)

The average number of additional accesses is

- b2 2
n m

I
XI

i = O

108 a=”=-. (3 1

J . A. VAN DER POOL

Schay and Spruce [SI found the same matrix for the
case s = 1, based on a somewhat different loading meth-
od. They then derived an analytic solution for u and d.
Konheim and Weiss [7] also deal with the case s = 1 and
find E (s ,) , the expectation for the number of additional
accesses for the kth record. Then they find

. n

k=l

keeping the ratio / = n/b constant. The result found in
both papers is

e
d = 2 (1 ” e) .

Tainter [1 1] extended the work of Schay and Spruce
to arbitrary s. Using generating functions he derives s
linear equations in s unknowns to obtain uo, i,, . * ., us-]
and a recursive relation to find the other components of
the steady state vector. Also, the author thanks Dr. A.
Konheim of the IBM T. J. Watson Research Center for
pointing out to him that the same matrix of transition
probabilities occurs in a queuing problem arising in [121.
The detailed analysis given in Konheim’s paper with
Meister is therefore also applicable for finding the sta-
tionary distribution for the stack.

In this paper a direct numerical approach to finding u
and d is used.

Minimum of the cost function
The cost of retrieval from the file can be formulated as
follows. We define

cs = cost of storing one record during a unit of time,
a = file activity (the fraction of records accessed during

c,, = cost of a regular access,
e, = cost of an additional access.

Then the cost of storage and retrieval is

C(b,s;a) = bscs + anc,, + otnac,. (5 1
It is assumed that c,, is constant. Furthermore, the

variable part of C can be normalized by dividing it by
nc,, the cost for storing n records. The resulting relative
variable cost function is

1

the unit of time),

7 + Y . d , (6)

where

y = - . f f c a

CS

It is convenient to factor out the variable y since it repre-
sents a ratio of application-dependent variables. This
application factor is discussed by the author in [5] .

IBM J . RES. DEVELOP.

For the case s = 1 , we can substitute (4) into (6) and
find the condition for a minimum:

J+Y." 1
e2 2 (1 - &) z

-0 9

which has the solution

1 e=
l + a '

(7 1

Thus, for s = 1 the minimum of the relative cost function
is

1 + * (8 1

The numerical method for computing the optimum
value of e and the corresponding value of the relative
cost function with s > 1 is explained later.

Computations
Computations were made using APL and an IBM Sys-
tem 370 Model 195. The computations were made for
bucket sizes of s = 1, 2, 3 , 5 , 10, 20,40 and for different
load factors f. The simulations were performed first.
For a given s and & the number of buckets was selected
to be b = [100,000/m] with m = es . Then a sequence of
b drawings from a Poisson distribution with parameter
m was made. After each sequence, the relative frequency
function of the numbers in the stack was obtained.

The second relative frequency function was used to
compute d . For each case 10 sequences were used. At
the end of ten sequences the overall average and the
standard deviation in the ten results for d were obtained.

A second program was written to compute the Markov-
derived steady-state vector u from uM = u. The method
of iterated vectors was used. For a certain s the vectors
were computed for increasing values of &. For e = 0.5,
the begin vector chosen was u(IJ = { I , 0,O; ..}. For
higher values of e, the final result of the preceding case
was taken as begin vector. Then, the successive iterations

U (n + l) = U(n)M ; n = 1,2;..

were performed.
The terms of M are obtained from a table of values of

P (r ; m) . The terms of this table were computed up to
and including the first one less than 0.5 . After
each vector matrix multiplication, the sum of the
elements of u("+" was normalized to one. The itera-
tions were performed until the maximum absolute dif-
ference between elements of u('+lJ and u ' ~) was less than
0.5 . With the final resulting u we computed the
average stack length t? and the average number of ad-

MARCH 1973

9 -

-

8 -

-

1 -

-

6 -

-

5 -

-

4 -

-

3 -

2 -

1 -

s = 1

s = 2

s = 3

1+

Figure 2 Number of additional accesses in open addressing.

ditional accesses d . Further, the standard deviation of the
stack length,

ue = JZ,
i = O

was computed.
The computations using the Markov model are in

most cases much faster than the simulation. The compu-
tation time for all cases listed in Table 1 was 2 minutes
and 3 4 seconds on the Model 195. For values of very
close to one, the number of iterations becomes very large,
however.

To compute u, parabolas were fitted through succes-
sive groups of three points of the cost function with
abscissas m, < m, < m,. The abscissa m2 of each fol-
lowing group was the abscissa of the minimum of the
parabola determined by the previous group. Abscissas
m, and m3 were chosen so that the length of the interval 109

OPEN ADDRESSING FILE ANALYSIS

Table 1 Additional accesses.

-r T Simulation Markov model

Stack length 1 Peterson
Add.

accesses
average

-___

Add.
accesses
average

0.500
0.750
1.167
2.000
2.832
4.495
5.049
5.740
6.626
7.804
9.444

0.177
0.293
0.494
0.903
1.316
2.146
2.423
2.768
3.213
3.804
4.63 1

0.087
0.158
0.286
0.554
0.827
1.377
1.562
1.792
2.088
2.483
3.035

0.03 1
0.066
0.136
0.289
0.449
0.777
0.886
1.024
1.201
1.438
1.769

0.005
0.0 15
0.042
0.1 10
0.185
0.345
0.399
0.467
0.554
0.672
0.837

Add. accesses
Bucket
size s
-~

1

Load
factor

0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

St. dev. m Average

0.250
0.450
0.817
1.600
2.407
4.046
4.595
5.281
6. I63
7.336
8.972

-___. -

0.177
0.352
0.69 1
1.445
2.238
3.863
4.409
5.094
5.976
7.152
8.798

0.285
0.131

0.601
1.329
2.108
3.719
4.263
4.945
5.825
7.001
8.649

0.077
0.198
0.474
1.156
1.910
3.494
4.033
4.710
5.585
6.757
8.403

0.024
0.092
0.293
0.879
1.577
3.101
3.627
4.292
5.154
6.314
7.949

St. dev. Average

0.50
0.60
0.70
0.80
0.85
0.90
0.9 1
0.92
0.93
0.94
0.95

0.541
0.832
1.260
2.223

4.526

0.629
0.9 12
1.365
2.238
3.092
4.775
5.331
6.024
6.909
8.081
9.703

0.550
0.838
1.301
2.189
3.053
4.75 1
5.312
6.010
6.905
8.091
9.740

1.150

4.465

9.349

0.495

2.150

4.764

0.0 I9

0.207

1.145

0.010

0. I49

0.510

-

2 1 .oo
1.20
1.40
1.60
1.70
1.80
1.82
1.84
1.86
1.88
1.90

1 S O
1.80
2.10
2.40
2.55
2.70
2.73
2.76
2.79
2.82
2.85

0.325
0.517
0.927

2.148

4.1 12
-

3 0.486
0.776
1.245
2.145
3.017
4.726
5.290
5.992
6.891
8.084
9.744

0.285

1.362

3.012

0.006

0.061

0.192

5 2.50
3.00
3.50
4.00
4.25
4.50
4.55
4.60
4.65
4.70
4.75

0.387
0.673
1.149
2.066
2.952
4.679
5.247
5.954
6.859
8.060
9.733

0.072
0.131
0.280
0.443
0.762

1.467

0.136

0.77 1

1.649

0.042

0.341

0.843

0.002

0.045

0.156

0.001

0.01 1

0.069

10 5.00
6.00
7.00
8.00
8.50
9.00
9. IO
9.20
9.30
9.40
9.50

0.228
0.488
0.959
1.900
2.810
4.572
5.149
5.865
6.780
7.993
9.68 I

0.016
0.042
0.111
0.172
0.330

0.755
110

J . A. VAN DER POOL IBM J. RES. DEVELOP.

Table 1 Additional accesses. (Continued)

7

Bucket Load
size s factor

20
0.60
0.50

0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

40 0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

‘ 1

Markov model Simulation

Stack length
accesses

Add. accesses Add.

rn Average S t . dev. average Average S t . dev.

10.00

0.069 2.573 1.179 17.00
0.036 1.636 0.574 16.00

0.00 1 0.0 10 0.0 10 0.693 0.134 14.00
0.002 0.268 0.025 12.00
0.000 0.083 0.003

18.20 3.100 4.973 0.170
18.40 3.742 5.703

0.042 0.400 0.386 9.572 7.327 19.00
0.304 7.864 5.717 18.80
0.246 6.634 4.581 18.60
0.203

20.00 0.000 0.01 1 0.000
24.00 0.002 0.084 0.000
28.00 0.035 0.377 0.001 0.00 1

0.018 0.167 0.171 9.370 6.506 3 8.00
0.131 7.63 1 4.940 37.60
0.103 6.374 3.849 37.20
0.083 5.420 3.053 36.80
0.067 4.669 2.453 36.40

0.006 0.056 0.055 4.062 1.990 36.00
0.022 2.196 0.752 34.00
0.009 1.248 0.290 32.00

0.000

18.00 0.0 1 1 0.144 0.144 4.383 2.597

I

(m1,m3) decreased. The process was terminated when
Im, - m,l < 0.0005.

Analysis of results
The results obtained by the stack-oriented simulation
and with the Markov model are listed in Table 1. For
comparison, the results of Peterson [6] are also listed.
The values of d computed with the Markov model are
plotted in Fig. 2 . No effort was made to investigate the
sample distribution of the average number of additional
accesses. However, to the extent that the variance com-
puted from the simulation runs is a good estimate, the
results of the Markov model and the simulation are in
good agreement. The same may be said in relation to
Peterson’s results, taking into consideration the much
smaller number of records used in his simulations.

As we see, the standard deviation of the stack length
is rather large. The relative frequency functions of the
stack size are J-shaped with the maximum frequency at
zero, and a very steep drop from zero to one. When the
load factor is increasing, the “tail” becomes more ex-
tended and very long when / approaches 1. In Figs. 3
and 4 some examples are given for s = 1 and s = 10,
respectively.

Peterson
Add.

accesses
average

0.002
0.010
0.033
0.066
0.134

0.334

For s = 1 , the values computed by the method of
iterated vectors can be compared with the results from
Eq. (4):

e
e

Iterated
2(1 - e) vectors

I 1

0.50
0.60
0.70
0.80
0.85
0.90
0.91
0.92
0.93
0.94
0.95

0.500
0.750
1.167
2.000
2.833
4.500
5.055
5.750
6.643
7.833
9.500

0.500
0.750
1.167
2.000
2.832
4.495
5.049
5.740
6.626
7.804
9.444

For values of e close to 1, the method of iterated vec-
tors gives results that are too low; but up to / = 0.9, the
method is certainly adequate for the purposes of this
study.

In Table 2 , the minimum values are listed. For com-
parison, the corresponding values for an independent
overflow area [4] are given. 111

c

MARCH 1973 OPEN ADDRESSING FILE ANALYSIS

0.18 1 \

Figure 3 Relative frequency functions for stack size when
bucket size is s = 1 .

Figure 4 Relative frequency functions for stack size when
bucket size is s = 10.

0.14

several additional buckets is then performed in main
storage.

Let y1 and yz be the application factors for the overflow
area method and open addressing, respectively. In a
specific case, yz = p . y1 with p < 1. The critical value
p, of p is the value with the property that the open ad-
dressing and the other method have the same minimum
cost.

The y giving minimum cost R for a given certain bucket
size s can be computed with the formulas derived in
[5]. By solving for y in the expression for the relative
cost function [5] we find for cost R

St-?
m R"

d
Y =

We note that the right-hand side is for given R a func-
tion + (y ; R) of y only; (rn is determined by the minimum
cost condition).

By using

as iteration procedure, a solution for y is easily found.
Pairs of application factors giving the same minimum

cost are listed in Table 3. From this table we see that in
general p, becomes smaller when

O''' 0.447
0.10

1 . Application factor y becomes smaller
2. Bucket size becomes larger.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

For s = 1 we can again compare the results of the
iterated vectors with the results of formulas (7) and (8) .
For all values of y except y = 0.01, there is agreement to
three decimal places. For y = 0.01, the values of the
minimum cost agree, but (7) and (8) give 0.934 and
7.875 for / and d , respectively.

We see that for the same value of y the cost in the case
of open addressing is always larger than when an over-
flow area is used. However, a comparison for equal
values of y does not give a proper evaluation of the two
methods. In case of an overflow area with chained over-
flow records, the cost of an additional access will be, in
general, higher than for open addressing. In the first
case, each access will require a search and a read com-
mand, often preceded by a seek command [141. In the
second case, the seek will be avoided most of the time
and the bucket for inspection will be found on the same
track. If central storage space allows, a whole track may

112 be read on a primary access. The additional access to

When designing an overflow handling technique, a
second consideration of importance is the use of pointers.
When a separate overflow area is used, an address pointer
is required from the primary bucket to the beginning of
the overflow chain, and, further, from record to record in
the chain. In the case of open addressing, no pointers
are required. The pointers require storage space that was
not taken into consideration in [4]. The relative cost of
the required pointers is a function of bucket size and
record length. The relative overhead tends to be high
when the bucket size is small and when the records are
short.

The choice between the two methods is application
dependent. The conditions that tend to favor open ad-
dressing are

1. Large value of application factor y
2. Short record length
3. Circumstances that prescribe a small bucket size.

The two last reasons will, in general, not go together, be-
cause a short record length will usually make a larger
bucket size desirable.

An interesting area for further investigation is the de-
velopment of hybrid open addressinglchained overflow
techniques. Overflow records for example might be

IBM J . RES. DEVELOP.

Table 2 Minimum cost load factors.

T Open addressing Overflow area

Load
factor

Add.
ace.

0.441
0.581
0.748
1.222
1.457
2.052

0.294
0.424
0.589
1.098
1.359
2.027

0.227
0.344
0.501
1.01 1
1.282
1.987

0.162
0.260
0.400
0.893
1.170
1.910

0.102
0.175
0.287
0.734
1.005
1.768

0.064
0.117
0.203
0.588
0.841
1.598

0.041
0.078
0.142
0.460
0.688
1.416

Load
factor

0.500
0.586
0.667
0.817
0.863
0.932

0.51 1
0.593
0.670
0.818
0.863
0.934

0.523
0.600
0.675
0.820
0.864
0.934

0.545
0.614
0.683
0.821
0.865
0.934

0.587
0.643
0.701
0.825
0.867
0.935

0.639
0.683
0.728
0.832
0.870
0.935

0.696
0.728
0.762
0.844
0.877
0.936

Add.
acc.

0.500
0.707
1 .ooo
2.237
3.160
6.864

0.375
0.565
0.842
2.048
2.958
6.861

0.302
0.475
0.736
1.928
2.83 1
6.663

0.219
0.366
0.599
1.719
2.607
6.453

0.133
0.240
0.424
1.412
2.248
6.033

0.078
0.149
0.281
1.090
1.844
5.442

0.046
0.091
0.179
0.793
1.426
4.749

Min.
cost

3 .OOO
2.414
2.000
1.447
1.316
1.141

2.705
2.252
1.913
1.428
1.306
1.139

2.514
2.142
1.851
1.413
1.298
1.138

2.273
1.994
1.764
1.391
1.286
1.135

1.970
1.795
1.638
1.354
1.266
1.130

1.720
1.614
1.514
1.311
1.241
1.124

1.527
1.464
1.402
1.264
1.212
1.116

Over-
flow

0.336
0.409
0.48 1
0.626
0.675
0.760

0.202
0.267
0.337
0.494
0.55 1
0.654

0.144
0.200
0.264
0.416
0.475
0.584

0.092
0.134
0.187
0.325
0.382
0.494

0.048
0.075
0.112
0.221
0.27 1
0.376

0.025
0.041
0.064
0.143
0.183
0.273

0.0 12
0.022
0.035
0.089
0.119
0.190

Min.
cost

2.351
1.850
1.524
1.158
1.09 1
1.025

2.052
1.703
1.456
1.149
1.089
1.025

1.893
1.617
1.412
1.143
1.086
1.025

1.719
1.517
1.358
1.132
1.082
1.024

1.531
1.400
1.289
1.117
1.074
1.023

1.391
1.306
1.230
1.101
1.066
1.022

1.288
1.233
1.181
1.085
1 .OS7
1.020

Bucket
size s

1

m

0.500
0.586
0.667
0.817
0.863
0.932

1.023
1.185
1.341
1.636
1.727
1.868

1.570
1.800
2.024
2.459
2.593
2.801

2.725
3.07 1
3.414
4.103
4.325
4.67 1

5.868
6.433
7.012
8.246
8.667
9.345

12.787
13.652
14.565
16.641
17.408
18.697

27.857
29.124
30.481
33.754
35.065
37.435

rn

0.883
1.163
1.496
2.445
2.914
4.104

1.586
1.977
2.428
3.664
4.255
5.705

2.3 17
2.795
3.339
4.797
5.48 1
7.134

3.834
4.454
5.147
6.963
7.799
9.778

7.8 13
8.697
9.669
12.158
13.278
15.876

16.156
17.417
18.787
22.245
23.781
27.285

33.518
35.308
37.239
42.086
44.224
49.054

Y

2.00
1 .oo
0.50
0.10
0.05
0.01

2.00
1 .oo
0.50
0.10
0.05
0.01

2.00
1 .oo
0.50
0.10
0.05
0.0 1

2.00
1 .oo
0.50
0.10
0.05
0.01

2.00
1 .oo
0.50
0.10
0.05
0.01

2.00
1 .oo
0.50
0.10
0.05
0.01

2.00
1 .oo
0.50
0.10
0.05
0.01

0.883
1.163
1.496
2.445
2.914
4.104

2 0.793
0.988
1.214
1.832
2.127
2.853

3 0.772
0.932
1.1 13
1.599
1.827
2.378

5

/.

0.767
0.891
1.029
1.393
1.560
1.956

10 0.78 1
0.870
0.967
1.216
1.328
1.588

20 0.808
0.871
0.939
1.1 12
1.189
1.364

40 0.838
0.883
0.93 1
1.052
1.106
1.226

stored in adjacent buckets (in the open addressing way), considerably lower than y l .
but not farther from the primary bucket than dm,,. Rec- 2. The influence of the long tails in the relative fre-
ords still in the overflow stack when this limit is reached quency function of the stack on the number of addi-
are stored by chaining in an overflow area. tional accesses is reduced.

This may bring about the following advantages: Alternatively open buckets might be chained in an over-
1. Up to a certain value of dm,,, the value of y p may be flow area. 113

MARCH 1973

I

OPEN ADDRESSING FILE ANALYSIS

Table 3 Equivalent pairs of application factors.

Bucket
size s

1

5

20

Application factor for

Open
addressing

7 2

2.00
1 .oo
0.50
0. IO
0.05
0.01

2.00
1.00
0.50
0.10
0.05
0.01

2.00
1.00
0.50
0. I O
0.05
0.01

Overflow
area
71

3.691
2.144
1.270
0.401
0.250
0.087

8.276
4.297
2.290
0.587
0.338
0. IO3

20.546
10.026
4.974
1.044
0.556
0.144

Critical
factor

P C = 7217,

0.542
0.466
0.394
0.249
0.200
0.1 15

0.242
0.233
0.218
0.170
0. I48
0.097

0.097
0.100
0.101
0.096
0.090
0.069

References
1. W. Buchholz, “File Organization and Addressing,” IBM

Systems Journal 2,86- 11 1 (June 1963).
2. R. Morris, “Scatter Storage Techniques.” Communications

ofthe ACM 11, No. 1 , 38-44 (January 1968).
3. V. Y . Lum, P. S. T. Yuen, and M. Dodd, “Key-to-Address

Transform Techniques: A Fundamental Performance Study
on Large Existing Formatted Files,” Communications of
the ACM 14, No. 4, 228-239 (April 1971).

4. J. A. van der Pool, “Optimal Storage Allocation for Initial
Loading of a File,” IBM J . Res. Develop. 16, No. 6, 579
(1972).

5. J. A. van der Pool, “Optimal Storage Allocation for a File
in Steady State,” IBM J. Res. Develop. 17, No. 1 , 27
(1973).

6. W. W. Peterson, “Addressing for Random-Access Storage,”
IBMJ. Res. Develop. 1, No. 2, 130- 146 (April 1957).

7. A. G. Konheim and B. Weiss, “An Occupancy Discipline
and Applications,” SlAM J. Appl. Math. 14, No. 6, 1266-
1272 (November 1966).

8. G. Schay and W. G. Spruce, “Analysis of a File Addressing
Method,” Communications of the ACM 5, No. 8,459 -462
(August 1962).

Load factor

Open Overflow
addressing area

0.500

2.540 0.932
1.887 0.863
1.612 0.8 I7
1.060 0.667
0.857 0.586
0.679

0.545 0.561
0.614 0.648
0.683 0.744
0.821 0.996
0.865 1.1 I3
0.934 1.385

0.639 0.638
0.683 0.684
0.728 0.734
0.832 0.867
0.870 0.929
0.935 1.072

Minimum
cost

~ _ _
3 .OOO
2.414
2.000
1.447
1.316
1.141

2.273
1.994
1.764
1.391
1.286
1.135

1.720
1.614
1.514
1.311
1.241
1.124

9. D. E. Knuth, The Art of Computer Programming, Vol. 2
“Seminumerical Algorithms,” Addison-Wesley Publishing

IO. W. Feller, An Introduction to Probability Theory and Its
Applications, John Wiley & Sons, Inc., New York, 338 ff.

13. E. Bodewig, Matrix Calculus, North Holland Publishing
Co., Amsterdam, 296 ff.

14. Introduction to IBM System1360 Direct Access Storage
Devices and Organization Methods, Form No. GC20-1649,
IBM Corporation, Data Processing Division, White Plains,
New York.

1 1. M. Tainiter, “Addressing for Random Access Storage with
Multiple Bucket Capacities,” Journal ofthe ACM 10, 307 -
315 (1963).

12. A. G. Konheim and B. Meister, “Service in a Loop Sys-
tem,”JournaloftheACM19,92-108 (1972).

CO., 1969,117- 118.

Received March 9 , 1972; revised January 9 , 1973

The author is located at the head ofice of IBM Neder-
land N.V. Amsterdam. The Netherlands.

114

J. A. VAN DER POOL 1BM J . RES. DEVELOP.

