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Optimum  Storage  Allocation for a  File  with  Open 
Addressing 

Abstract: File organizations utilizing key-to-address  transformation  and  open  addressing are studied. A simulation  method and a Markov 
model, which were  used for evaluation, are  presented.  The  cost of retrieval as a function of storage  space  and accesses is also formulated. 
The minimum of the combined costs for different  operational  conditions is determined. 

Introduction 
In file organizations using key-to-address transformation 
(KAT)  to  locate  stored  records [ 1 -31,  storage is divided 
into physical blocks called buckets.  Each  bucket  can con- 
tain s P 1 records of the file. 

The algorithm used for  KAT  [3] defines a  function 
g: K ”* A on  the possible record  keys  as domain and  the 
available bucket  addresses  as codomain.  A  record with 
key k E K is  stored, if possible, in the  bucket with ad- 
dress g ( k )  = a. If we load  a file of n records, Y, of them 
will have  the  same image a E A .  If r ,  > s, a  number of 
records ( r ,  - s) cannot be stored in the  bucket  to which 
they were assigned (the primary bucket). 

Several methods  are used to  store  these overflow 
records.  In  [4] and [5]  studies  were  reported of an  or- 
ganization that uses a separate overflow area. In this 
study,  the so-called open addressing  method [6-81  is 
analyzed. 

An overflow record from a bucket with address a E A = 
(0, 1, 2 ,  . .., b - l}, where b is number of buckets, is 
stored in the  bucket with address (a  + d ) ,  where d is the 
smallest  integer thatidentifies a nonfull bucket with ad- 
dress  greater  than a. In  other  words, when the  buckets 
with addresses a + 1, a + 2 , .  . ., a + d - 1 are filled, and 
the  bucket with address ( a  + d )  has  space available,  then 
the  record is stored in ( a  + d) .  If during the  search  for an 
open  space, ( b  - 1)  is reached  and  is full, the  process is 
continued with address 0. 

To retrieve a record,  one  access  to  the  storage  device 
is sufficient if the  record is stored in its primary bucket 
with address g ( k )  = a. If it is not,  then  the  buckets with 
addresses a + 1, a + 2; . ., a + d (modulo b )  must  be in- 
spected, resulting  in d additional accesses.  The first prob- 

106 lem in the evaluation of open addressing is to  determine 

the  average  number of additional accesses required to re- 
trieve a  record for different values of bucket  size s and 
load factor 8 = n/bs. This is usually done  under  the as- 
sumption that  the file is static, so that  no additions or 
deletions of records occur. 

Peterson  [6]  estimated  the  average number of addi- 
tional accesses by  detailed  simulation. In this paper, we 
report a new simulation  method. In  addition,  we  describe 
how the principle of this simulation method is used to 
formulate a Markov model. Using  both  the new simula- 
tion method  and the  Markov model, the required addi- 
tional accesses  are determined  and the  results  are com- 
pared with each  other and  with Peterson’s simulation 
results. 

Finally,  the  cost of retrieval as a function of storage 
space and number of accesses is formulated. Load fac- 
tors giving minimal cost  are then computed  for different 
values of bucket size  and different operational  conditions. 

Stack  method  for evaluating additional accesses 
In  an  actual  key-to-address transformation process, a file 
of n records is loaded into b buckets of size s ( n  5 bs ) .  In 
order  to calculate the  average  number of accesses re- 
quired to  retrieve  stored  records,  we consider  loading  as 
a two  phase  process.  In  the first phase  the  address of each 
record  is  computed by the  KAT and the  records  are 
sorted in the  order of their assigned addresses.  Then  the 
records  are loaded into  the  buckets in the  order of the ad- 
dresses: 0, 1,. . . , h - 1. This special  loading order and 
loading process facilitate the evaluation of the  number of 
additional accesses.  The values for  the average  obtained 
for  the special order  are  however valid for any loading 
order, as was  demonstrated by Peterson  [6]. 
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Figure 1 Records  loaded in natural  order  and in two phases. 

During  the loading, a stack of overflow records is kept. 
Starting  with a = 0 and  the stack empty, if r,, the number 
of records having the  address a as  result of the  KAT, is 
greater  than s, s records  are  loaded  into  the  bucket  and 
( r ,  - s )  are added to  the  stack. If s > ra, all records  as- 
signed to a are loaded  first,  and further,  as many records 
from the  stack  as possible are  also loaded. The number of 
overflow records assigned to  address a is then the smaller 
of (s  - r , )  and  the  number of records  currently in the 
stack.  The stack of records remaining after  the  bucket 
having address ( b  - 1)  has been  loaded is finally ex- 
hausted by filling the remaining open  spaces in the buck- 
ets having addresses 0, 1, 2 , .  * ., etc., in that  order. 

Using the  concept of a  stack  gives us an  easy way to 
count  the total number of additional accesses required to 
retrieve each of the overflow records.  The  important 
property of the stack is that  one need  not  know the identity 
of each  record in the  stack; it is sufficient for  our  purposes 
to know  only the size of the  stack. If there  are e ,  records 
in the  stack  after  bucket a has been loaded, moving these 
records  (regardless of their  identity)  to  the  next  bucket 
contributes e ,  additional accesses  to  the total  number of 
overflow accesses required. The  average  number of ad- 
ditional accesses is thus 

- 1 b-l  
a = ;  e , .  

a=O 

0  2 6 6 6 13 14 10 

This algorithm is illustrated in Fig. 1 for  the  case of 1 12 
records assigned to 14 buckets of size 8. Overflow 
records  are numbered so that  the  bucket  to which they 
were originally assigned and in which they are eventually 
stored can be  seen.  Records  are stored by making two 
passes through the 14 buckets beginning at  address a = 0 
with the stack empty.  Stack e ,  is determined  after  each 
bucket has  been  loaded  during each of the  two passes. 
In this example  after  the first pass, eI3 = 10. These 10 
records  are  stored in the remaining spaces  as  the  buckets 
are visited in the second  pass. We can now compute  on 
the  one hand 

12 

2 e a -  - 109. 
a=O 

On  the  other  hand, we can count  the displacements of 
each overflow record: 

R e c o r d : 1 2 3 4 5 6 7 8   9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7  

Displacement: 1  3 1 6  6 5 5 9  10  7 8 8 8 8 8 8 8 . 

The total of all displacements is again 109. With both 
methods we find 

- 1 0 9  a=---- ] - 0.97. 107 
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Simulation method 
The  stack provides the basis for a simulation  program. 
We  suppose  that the KAT applied to a key gives a result 
that can  be  considered to be  a random variable with a 
probability l / b  for  each a E (0, 1 , .  . ., b - l}. Under this 
assumption,  and  for large values of b and n, we can  as- 
sume  that  the  number of records r that will be  directly 
assigned to a bucket will have a Poisson  distribution 

P ( r )  = e  r!  

with rn = nlb, the average number of records assigned to 
a  bucket. The simulation can now be  done by drawing 
successive  random  numbers ra for  each  bucket ( a  = 0, 
1, . . ., b - 1 ) such  that  these  numbers  have a Poisson 
distribution (see,  for  example, [9]). After each  drawing 
of r,, the resulting stack e, can  be calculated. If eb-] > 0, 
then the  stack is “carried around”  to  address 0. The pre- 
viously calculated e,, e,, etc.,  are  corrected until eb-] is 
exhausted by filling remaing open  spaces. 

Markov model 
The deletions  from and additions to  the  stack  can be 
considered  as  trials in a Markov  chain;  see,  for exam- 
ple, [IO]. The number of records in the  stack  determines 
the  state of the  system considered. For  bucket  size 
s (S 1 1 ), the (infinite)  matrix of transition probabili- 
ties is: 

-m 

Let u = {uo,  u1; . .} be  the  steady-state solution of 

u M = u .  (1) 

Then  the  average  stack length is 

P = E iui . ( 2 )  

The  average  number of additional accesses is 

- b2 2 
n m  

I 
XI 

i = O  

108 a=”=-. ( 3  1 
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Schay  and Spruce [SI found  the  same matrix for  the 
case s = 1, based  on a somewhat different  loading  meth- 
od. They then  derived an analytic solution for u and d. 
Konheim and Weiss [7] also deal with the  case s = 1 and 
find E ( s , ) ,  the  expectation  for  the number of additional 
accesses  for  the kth record.  Then  they find 

. n  

k=l  

keeping the ratio / = n/b constant.  The result  found in 
both  papers is 

e 
d = 2 ( 1  ” e ) .  

Tainter [ 1 1 ] extended  the work of Schay  and  Spruce 
to arbitrary s. Using generating  functions he  derives s 
linear equations in s unknowns to obtain uo, i,, . * ., us-] 
and  a recursive relation to find the  other  components of 
the  steady  state  vector. Also, the  author  thanks  Dr.  A. 
Konheim of the IBM T. J. Watson  Research  Center  for 
pointing out  to him that  the  same matrix of transition 
probabilities occurs in a  queuing  problem  arising in [ 121. 
The detailed analysis given in Konheim’s paper with 
Meister  is  therefore  also applicable for finding the sta- 
tionary distribution  for  the  stack. 

In this paper a direct numerical approach  to finding u 
and d is used. 

Minimum of the cost function 
The  cost of retrieval from  the file can  be  formulated  as 
follows. We define 

cs = cost of storing one record  during  a  unit of time, 
a = file activity (the fraction of records  accessed during 

c,, = cost of a  regular access, 
e,  = cost of an additional access. 

Then  the  cost of storage and  retrieval is 

C(b,s;a) = bscs + anc,, + otnac,. ( 5  1 
It is assumed that c,, is constant.  Furthermore,  the 

variable part of C can  be  normalized by dividing it by 
nc,, the  cost  for storing n records.  The resulting  relative 
variable cost function is 

1 

the unit of time), 

7 + Y . d ,  ( 6 )  

where 

y = - .  f f c a  

CS 

It  is convenient to  factor  out  the variable y since  it repre- 
sents a ratio of application-dependent  variables. This 
application factor is discussed by the  author in [ 5 ] .  
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For  the  case s = 1 ,  we can substitute (4) into (6) and 
find the condition for a minimum: 

J+Y." 1 
e2 2 (1 - & ) z  

-0  9 

which has  the solution 

1 e= 
l + a '  

(7  1 

Thus,  for s = 1 the minimum of the relative cost function 
is 

1 + *  (8 1 

The numerical method  for computing the optimum 
value of e and  the corresponding  value of the relative 
cost function with s > 1 is explained later. 

Computations 
Computations were made using APL and an IBM  Sys- 
tem 370  Model 195. The computations  were  made for 
bucket sizes of s = 1, 2, 3 ,  5 ,  10,  20,40 and for different 
load factors f. The simulations were performed  first. 
For a  given s and & the number of buckets  was  selected 
to  be b = [ 100,000/m] with m = es .  Then a sequence of 
b drawings from a Poisson distribution  with parameter 
m was made. After  each  sequence,  the relative frequency 
function of the  numbers in the  stack  was  obtained. 

The  second relative frequency function was used to 
compute d .  For  each  case 10 sequences were  used. At 
the end of ten sequences the  overall average and the 
standard deviation in the ten results  for d were  obtained. 

A second  program was written to  compute  the  Markov- 
derived steady-state  vector u from uM = u. The method 
of iterated  vectors  was used. For a certain s the  vectors 
were  computed  for increasing  values of &. For e = 0.5, 
the begin vector  chosen was u(IJ = { I ,  0,O; ..}. For 
higher  values of e, the final result of the preceding case 
was  taken as begin vector.  Then,  the  successive  iterations 

U ( n + l )  = U(n)M ; n =  1,2;..  

were performed. 
The  terms of M are obtained from a table of values of 

P ( r ; m ) .  The  terms of this  table  were computed up to 
and including the first one less  than 0.5 . After 
each  vector matrix multiplication, the  sum of the 
elements of u("+" was  normalized to one. The itera- 
tions were performed until the maximum absolute dif- 
ference  between  elements of u('+lJ and u ' ~ )  was less  than 
0.5 . With the final resulting u we computed  the 
average  stack length t? and  the  average  number of ad- 
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Figure 2 Number of additional accesses in open  addressing. 

ditional accesses d .  Further,  the  standard deviation of the 
stack length, 

ue = JZ, 
i = O  

was computed. 
The  computations using the  Markov model are in 

most  cases much faster  than  the simulation. The compu- 
tation time for all cases listed in Table 1 was 2 minutes 
and 3 4  seconds  on  the Model 195. For values of very 
close  to  one,  the  number of iterations becomes  very  large, 
however. 

To compute u, parabolas were fitted through succes- 
sive  groups of three points of the  cost function with 
abscissas m, < m, < m,. The  abscissa m2 of each fol- 
lowing group was  the  abscissa of the minimum of the 
parabola determined by the previous  group. Abscissas 
m, and m3 were  chosen so that  the length of the interval 109 
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Table 1 Additional accesses. 

-r T Simulation Markov  model 

Stack  length 1 Peterson 
Add. 

accesses 
average 

-___ 

Add. 
accesses 
average 

0.500 
0.750 
1.167 
2.000 
2.832 
4.495 
5.049 
5.740 
6.626 
7.804 
9.444 

0.177 
0.293 
0.494 
0.903 
1.316 
2.146 
2.423 
2.768 
3.213 
3.804 
4.63 1 

0.087 
0.158 
0.286 
0.554 
0.827 
1.377 
1.562 
1.792 
2.088 
2.483 
3.035 

0.03 1 
0.066 
0.136 
0.289 
0.449 
0.777 
0.886 
1.024 
1.201 
1.438 
1.769 

0.005 
0.0 15 
0.042 
0.1 10 
0.185 
0.345 
0.399 
0.467 
0.554 
0.672 
0.837 

Add.  accesses 
Bucket 
size s 
-~ 

1 

Load 
factor 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

St.  dev. m Average 

0.250 
0.450 
0.817 
1.600 
2.407 
4.046 
4.595 
5.281 
6. I63 
7.336 
8.972 

-___. - 

0.177 
0.352 
0.69 1 
1.445 
2.238 
3.863 
4.409 
5.094 
5.976 
7.152 
8.798 

0.285 
0.131 

0.601 
1.329 
2.108 
3.719 
4.263 
4.945 
5.825 
7.001 
8.649 

0.077 
0.198 
0.474 
1.156 
1.910 
3.494 
4.033 
4.710 
5.585 
6.757 
8.403 

0.024 
0.092 
0.293 
0.879 
1.577 
3.101 
3.627 
4.292 
5.154 
6.314 
7.949 

St.  dev. Average 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.9 1 
0.92 
0.93 
0.94 
0.95 

0.541 
0.832 
1.260 
2.223 

4.526 

0.629 
0.9 12 
1.365 
2.238 
3.092 
4.775 
5.331 
6.024 
6.909 
8.081 
9.703 

0.550 
0.838 
1.301 
2.189 
3.053 
4.75 1 
5.312 
6.010 
6.905 
8.091 
9.740 

1.150 

4.465 

9.349 

0.495 

2.150 

4.764 

0.0 I9 

0.207 

1.145 

0.010 

0. I49 

0.510 

- 

2 1 .oo 
1.20 
1.40 
1.60 
1.70 
1.80 
1.82 
1.84 
1.86 
1.88 
1.90 

1 S O  
1.80 
2.10 
2.40 
2.55 
2.70 
2.73 
2.76 
2.79 
2.82 
2.85 

0.325 
0.517 
0.927 

2.148 

4.1  12 
- 

3 0.486 
0.776 
1.245 
2.145 
3.017 
4.726 
5.290 
5.992 
6.891 
8.084 
9.744 

0.285 

1.362 

3.012 

0.006 

0.061 

0.192 

5 2.50 
3.00 
3.50 
4.00 
4.25 
4.50 
4.55 
4.60 
4.65 
4.70 
4.75 

0.387 
0.673 
1.149 
2.066 
2.952 
4.679 
5.247 
5.954 
6.859 
8.060 
9.733 

0.072 
0.131 
0.280 
0.443 
0.762 

1.467 

0.136 

0.77 1 

1.649 

0.042 

0.341 

0.843 

0.002 

0.045 

0.156 

0.001 

0.01 1 

0.069 

10 5.00 
6.00 
7.00 
8.00 
8.50 
9.00 
9. IO 
9.20 
9.30 
9.40 
9.50 

0.228 
0.488 
0.959 
1.900 
2.810 
4.572 
5.149 
5.865 
6.780 
7.993 
9.68 I 

0.016 
0.042 
0.111 
0.172 
0.330 

0.755 
110 
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Table 1 Additional accesses. (Continued) 

7 

Bucket Load 
size s factor 

20 
0.60 
0.50 

0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

40 0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

‘ 1  

Markov  model  Simulation 

Stack  length 
accesses 

Add.  accesses Add.  

rn Average S t .  dev. average Average S t .  dev. 

10.00 

0.069 2.573 1.179 17.00 
0.036 1.636 0.574 16.00 

0.00 1 0.0 10 0.0 10 0.693 0.134 14.00 
0.002 0.268 0.025 12.00 
0.000 0.083 0.003 

18.20 3.100 4.973 0.170 
18.40 3.742 5.703 

0.042 0.400 0.386 9.572 7.327 19.00 
0.304 7.864 5.717 18.80 
0.246 6.634 4.581 18.60 
0.203 

20.00 0.000 0.01 1 0.000 
24.00 0.002 0.084 0.000 
28.00 0.035 0.377 0.001 0.00 1 

0.018 0.167 0.171 9.370 6.506 3 8.00 
0.131 7.63 1 4.940 37.60 
0.103 6.374 3.849 37.20 
0.083 5.420 3.053 36.80 
0.067 4.669 2.453 36.40 

0.006 0.056 0.055 4.062 1.990 36.00 
0.022 2.196 0.752 34.00 
0.009 1.248 0.290 32.00 

0.000 

18.00 0.0 1 1 0.144 0.144 4.383 2.597 

I 

(m1,m3)  decreased.  The  process was  terminated  when 
Im, - m,l < 0.0005. 

Analysis of results 
The  results obtained  by the  stack-oriented simulation 
and with the  Markov model are listed in Table 1. For 
comparison,  the  results of Peterson [6] are  also listed. 
The values of d computed with the  Markov model are 
plotted in Fig. 2 .  No effort was made  to investigate the 
sample  distribution of the  average  number of additional 
accesses.  However,  to  the  extent  that  the variance  com- 
puted from  the simulation  runs is a good estimate,  the 
results of the  Markov model and  the simulation are in 
good agreement. The  same may be  said in relation to 
Peterson’s  results,  taking  into  consideration the much 
smaller number of records used in his simulations. 

As we see,  the  standard deviation of the  stack length 
is rather large. The relative frequency  functions of the 
stack size are  J-shaped with the maximum frequency  at 
zero, and  a  very steep  drop from zero  to one. When  the 
load factor is increasing, the “tail”  becomes more ex- 
tended and  very long when / approaches 1. In Figs. 3 
and 4 some examples are given for s = 1 and s = 10, 
respectively. 

Peterson 
Add.  

accesses 
average 

0.002 
0.010 
0.033 
0.066 
0.134 

0.334 

For s = 1 ,  the values computed by the method of 
iterated  vectors can be  compared with the  results  from 
Eq. (4): 

e 
e 

Iterated 
2(1 - e)  vectors 

I 1 

0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.91 
0.92 
0.93 
0.94 
0.95 

0.500 
0.750 
1.167 
2.000 
2.833 
4.500 
5.055 
5.750 
6.643 
7.833 
9.500 

0.500 
0.750 
1.167 
2.000 
2.832 
4.495 
5.049 
5.740 
6.626 
7.804 
9.444 

For  values of e close  to 1, the method of iterated vec- 
tors gives  results that  are  too  low;  but  up  to / = 0.9, the 
method is certainly adequate  for  the  purposes of this 
study. 

In  Table 2 ,  the minimum values are listed. For com- 
parison, the  corresponding values for  an  independent 
overflow area [4] are given. 111 

c 
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0.18 1 \ 

Figure 3 Relative  frequency  functions for stack size when 
bucket  size is s = 1 .  

Figure 4 Relative frequency functions for stack size when 
bucket  size  is s = 10. 

0.14 

several additional buckets is then performed in main 
storage. 

Let y1 and yz be the application factors  for  the overflow 
area method  and open addressing,  respectively. In a 
specific case, yz = p . y1 with p < 1. The critical  value 
p, of p is the value with the  property  that  the  open ad- 
dressing and  the  other method have  the  same minimum 
cost. 

The y giving minimum cost R for a given certain  bucket 
size s can  be computed with the formulas  derived in 
[5]. By solving for y in the  expression  for  the relative 
cost function [5] we find for  cost R 

St-? 
m R" 

d 
Y =  

We  note  that  the right-hand  side is for given R a  func- 
tion + ( y ; R )  of y only; (rn is determined by the minimum 
cost  condition). 

By using 

as  iteration procedure, a  solution for y is easily found. 
Pairs of application factors giving the  same minimum 

cost  are listed in Table 3. From this table we see  that in 
general p, becomes smaller when 

O''' 0.447 
0.10 

1 .  Application factor y becomes  smaller 
2. Bucket size becomes larger. 

2 4 6 8  10 12 14 16 18 20 22 24 26 28 30 32 

For s = 1 we can again compare  the  results of the 
iterated  vectors with the  results of formulas ( 7 )  and ( 8 ) .  
For all values of y except y = 0.01, there is agreement to 
three decimal  places. For y = 0.01, the values of the 
minimum cost  agree,  but (7)  and (8) give 0.934 and 
7.875 for / and d ,  respectively. 

We  see  that  for  the  same value of y the  cost in the  case 
of open  addressing  is always  larger than  when an over- 
flow area is used. However, a comparison  for equal 
values of y does  not give a proper evaluation of the  two 
methods. In  case of an overflow area with  chained  over- 
flow records,  the  cost of an additional access will be, in 
general,  higher than  for  open addressing. In  the first 
case,  each  access will require a search and  a  read  com- 
mand, often  preceded  by a seek  command [ 141. In  the 
second  case,  the seek will be avoided most of the time 
and the  bucket  for inspection will be  found on  the  same 
track. If central storage space allows, a whole track may 

112 be read on a primary access.  The additional access  to 

When designing an overflow handling technique, a 
second consideration of importance is the use of pointers. 
When a separate overflow area is used,  an  address  pointer 
is required  from the primary bucket  to  the beginning of 
the overflow chain,  and,  further,  from  record  to  record in 
the chain. In  the  case of open addressing, no pointers 
are required. The pointers require storage space  that was 
not taken into  consideration in [4]. The relative cost of 
the required pointers is a  function of bucket size  and 
record length. The relative overhead  tends  to be high 
when the  bucket size is small and when the  records  are 
short. 

The choice between  the  two  methods is application 
dependent.  The conditions that tend to  favor  open ad- 
dressing are 

1. Large value of application factor y 
2. Short  record length 
3. Circumstances  that  prescribe a small bucket size. 

The  two  last  reasons will, in general,  not go  together, be- 
cause a short record  length will usually make a  larger 
bucket size  desirable. 

An interesting area  for  further investigation is the de- 
velopment of hybrid open addressinglchained  overflow 
techniques.  Overflow  records for example might be 
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Table 2 Minimum cost load factors. 

T Open addressing Overflow  area 

Load 
factor 

Add. 
ace. 

0.441 
0.581 
0.748 
1.222 
1.457 
2.052 

0.294 
0.424 
0.589 
1.098 
1.359 
2.027 

0.227 
0.344 
0.501 
1.01 1 
1.282 
1.987 

0.162 
0.260 
0.400 
0.893 
1.170 
1.910 

0.102 
0.175 
0.287 
0.734 
1.005 
1.768 

0.064 
0.117 
0.203 
0.588 
0.841 
1.598 

0.041 
0.078 
0.142 
0.460 
0.688 
1.416 

Load 
factor 

0.500 
0.586 
0.667 
0.817 
0.863 
0.932 

0.51 1 
0.593 
0.670 
0.818 
0.863 
0.934 

0.523 
0.600 
0.675 
0.820 
0.864 
0.934 

0.545 
0.614 
0.683 
0.821 
0.865 
0.934 

0.587 
0.643 
0.701 
0.825 
0.867 
0.935 

0.639 
0.683 
0.728 
0.832 
0.870 
0.935 

0.696 
0.728 
0.762 
0.844 
0.877 
0.936 

Add. 
acc. 

0.500 
0.707 
1 .ooo 
2.237 
3.160 
6.864 

0.375 
0.565 
0.842 
2.048 
2.958 
6.861 

0.302 
0.475 
0.736 
1.928 
2.83 1 
6.663 

0.219 
0.366 
0.599 
1.719 
2.607 
6.453 

0.133 
0.240 
0.424 
1.412 
2.248 
6.033 

0.078 
0.149 
0.281 
1.090 
1.844 
5.442 

0.046 
0.091 
0.179 
0.793 
1.426 
4.749 

Min. 
cost 

3 .OOO 
2.414 
2.000 
1.447 
1.316 
1.141 

2.705 
2.252 
1.913 
1.428 
1.306 
1.139 

2.514 
2.142 
1.851 
1.413 
1.298 
1.138 

2.273 
1.994 
1.764 
1.391 
1.286 
1.135 

1.970 
1.795 
1.638 
1.354 
1.266 
1.130 

1.720 
1.614 
1.514 
1.311 
1.241 
1.124 

1.527 
1.464 
1.402 
1.264 
1.212 
1.116 

Over- 
flow 

0.336 
0.409 
0.48 1 
0.626 
0.675 
0.760 

0.202 
0.267 
0.337 
0.494 
0.55 1 
0.654 

0.144 
0.200 
0.264 
0.416 
0.475 
0.584 

0.092 
0.134 
0.187 
0.325 
0.382 
0.494 

0.048 
0.075 
0.112 
0.221 
0.27 1 
0.376 

0.025 
0.041 
0.064 
0.143 
0.183 
0.273 

0.0 12 
0.022 
0.035 
0.089 
0.119 
0.190 

Min. 
cost 

2.351 
1.850 
1.524 
1.158 
1.09 1 
1.025 

2.052 
1.703 
1.456 
1.149 
1.089 
1.025 

1.893 
1.617 
1.412 
1.143 
1.086 
1.025 

1.719 
1.517 
1.358 
1.132 
1.082 
1.024 

1.531 
1.400 
1.289 
1.117 
1.074 
1.023 

1.391 
1.306 
1.230 
1.101 
1.066 
1.022 

1.288 
1.233 
1.181 
1.085 
1 .OS7 
1.020 

Bucket 
size s 

1 

m 

0.500 
0.586 
0.667 
0.817 
0.863 
0.932 

1.023 
1.185 
1.341 
1.636 
1.727 
1.868 

1.570 
1.800 
2.024 
2.459 
2.593 
2.801 

2.725 
3.07 1 
3.414 
4.103 
4.325 
4.67 1 

5.868 
6.433 
7.012 
8.246 
8.667 
9.345 

12.787 
13.652 
14.565 
16.641 
17.408 
18.697 

27.857 
29.124 
30.481 
33.754 
35.065 
37.435 

rn 

0.883 
1.163 
1.496 
2.445 
2.914 
4.104 

1.586 
1.977 
2.428 
3.664 
4.255 
5.705 

2.3  17 
2.795 
3.339 
4.797 
5.48 1 
7.134 

3.834 
4.454 
5.147 
6.963 
7.799 
9.778 

7.8 13 
8.697 
9.669 
12.158 
13.278 
15.876 

16.156 
17.417 
18.787 
22.245 
23.781 
27.285 

33.518 
35.308 
37.239 
42.086 
44.224 
49.054 

Y 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.0 1 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

2.00 
1 .oo 
0.50 
0.10 
0.05 
0.01 

0.883 
1.163 
1.496 
2.445 
2.914 
4.104 

2 0.793 
0.988 
1.214 
1.832 
2.127 
2.853 

3 0.772 
0.932 
1.1 13 
1.599 
1.827 
2.378 

5 

/. 

0.767 
0.891 
1.029 
1.393 
1.560 
1.956 

10 0.78 1 
0.870 
0.967 
1.216 
1.328 
1.588 

20 0.808 
0.871 
0.939 
1.1 12 
1.189 
1.364 

40 0.838 
0.883 
0.93 1 
1.052 
1.106 
1.226 

stored in adjacent  buckets (in the  open addressing way), considerably lower than y l .  
but not  farther  from  the primary bucket than dm,,. Rec- 2. The influence of the long tails in the relative  fre- 
ords still in the overflow stack  when  this limit is reached quency function of the stack on the  number of addi- 
are  stored by chaining in an overflow area. tional accesses is reduced. 

This may bring about  the following advantages: Alternatively open  buckets might be chained in an over- 
1. Up to a certain  value of dm,,, the value of y p  may be flow area. 113 
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Table 3 Equivalent  pairs of application factors. 

Bucket 
size s 

1 

5 

20 

Application  factor  for 

Open 
addressing 

7 2  

2.00 
1 .oo 
0.50 
0. IO 
0.05 
0.01 

2.00 
1.00 
0.50 
0.10 
0.05 
0.01 

2.00 
1.00 
0.50 
0. I O  
0.05 
0.01 

Overflow 
area 
71 

3.691 
2.144 
1.270 
0.401 
0.250 
0.087 

8.276 
4.297 
2.290 
0.587 
0.338 
0. IO3 

20.546 
10.026 
4.974 
1.044 
0.556 
0.144 

Critical 
factor 

P C  = 7217, 

0.542 
0.466 
0.394 
0.249 
0.200 
0.1 15 

0.242 
0.233 
0.218 
0.170 
0. I48 
0.097 

0.097 
0.100 
0.101 
0.096 
0.090 
0.069 
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