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R. G. Casey

Decomposition of a Data Base and the
Theory of Boolean Switching Functions

Abstract: The notion of a functional relation among the attributes of a data set can be fruitfully applied in the structuring of an informa-
tion system. These relations are meaningful both to the user of the system in his semantic understanding of the data, and to the designer
in implementing the system. An important equivalence between operations with functional relations and operations with analogous
Boolean functions is demonstrated in this paper. The equivalence is computationally helpful in exploring the properties of a given set of
functional relations, as well as in the task of partitioning a data set into subfiles for efficient implementation.

1. Introduction

The implementation of information systems has suffered
from a severe dichotomy between the needs of the ap-
plications programmer, who wishes to concern himself
only with the inherent properties of his data, and the
viewpoint of the system designer, who sees the data in
terms of the physical devices and processes that store
and manipulate it. Inevitably, some of the designer’s
device-dependent notions are thrust on the system user.
In effect the system designer says, “‘Here is what I do
with your data; if you desire access toityoumust. . . ,”
and proceeds to burden the user with a list of implementa-
tional details.

The entanglement of logical and physical aspects of
data contributes more than inconvenience to large-scale
information systems. It also imposes stiff economic
penalties in additional training costs, in programming
delays, and in deficiencies in program reliability and
flexibility.

An important attempt to alleviate these difficulties is by
the creation of an interface between the user and the
system. The data base sublanguages, for example, pro-
vide such a facility. The interface allows the applications
programmer to deal with a logical representation of data.
As exemplified in [1], however, this approach still dilutes
properties of the application with physical notions im-
plied by the system.

An alternative schema has been proposed in order to
offer a greater degree of independence between the sys-
tem and the application. In prospect is an abstract model
of data, one that the user can employ in order to charac-
terize properties of his data, and which he can then pass
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on to the designer in order to assist the latter in selecting
the organization of the data in a computer. The model
seeks to have both parties communicate in the same
framework, while at the same time permitting each to
concentrate on those aspects of the data that affect him.

Several examples of such models currently exist in
various stages of development. Childs [2] has described
a data structure incorporating the notions and operations
of set theory. Codd [3] and others [4] have proposed
relational models of great flexibility, and one such model
is currently being implemented at MIT under Project
Mac. Delobel {5], Peccoud [6], and Boittieaux [7] have
treated relational concepts in a precise mathematical
fashion, placing particular emphasis on the role of “func-
tional relations” in describing the properties of data. The
implications of these functional relations for data base
administration have been treated by several authors: by
Codd [8] in defining normal forms for a formatted data
collection; by Heath [9] in exhibiting the constraints that
functional dependencies impose upon file operations; and
by Rissanen and Delobel [ 10] in studying the decomposi-
tion of a file of data into subfiles.

In the present paper we show that much of the algebra
of functional relations can be restated in a setting more
familiar to computer specialists; namely, combinatorial
Boolean algebra, also called ““switching logic.” (It is also
possible to use the mathematical work of A. Bouchet
[11] to prove the equivalence between relational algebra
and Boolean algebra.) After performing this transforma-
tion, several aspects of the data model that are funda-
mental to both user and designer are found to be classical
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Table 1 Tabular representation of data: (a) the original data
set; (b) files P¥, P¥#, PT , PU¥, and PY £.

Attributes (a)

Items P T Y N H
e(l): Harry Surgery 4 2B 6
e(2): John Pathology 2 1A 3
e(3): John Pathology 1 3C S
e(4): Evan Pathology 2 3C 10
e(5): John Pathology 2 1A 7
e(6): Evan Pathology 3 2A 3
e(7): Harry Surgery 5 1A 5
Files (b)
PY PH PT

Harry 4 Harry 6 Harry Surgery
John 2 John 3 John Pathology
John 1 John 5 Evan Pathology
Evan 2 Evan 10
Evan 3 John 7
Harry 5 Evan 3

Harry 5

PY K PYT
P Y H P Y T

Harry 4 6 Harry 4 Surgery
John 2 3 John 2 Pathology
John 1 5 John 1 Pathology
Evan 2 10 Evan 2 Pathology
John 2 7 Evan 3 Pathology
Evan 3 3 Harry 5 Surgery
Harry 5 S

topics. This result suggests that switching theory is a
powerful tool for exploring the abstract data model.
Moreover, since the manipulation of Boolean functions is
well-developed, it is apparent that the computations re-
quired in applications of the model can be carried out
very efficiently by computer program. This feature is
particularly important to the designer, who may wish to
generate and evaluate a number of data organizations in
order to optimize his system. It also offers an avenue for
developing design procedures that optimize data struc-
ture by automatic means alone.

2. Preliminary notions

A user ordinarily perceives his data base as consisting of
a collection of descriptions of various items. Each item is
described by a set of attributes, i.e., designations of perti-
nent characteristics of the item, together with the cor-
responding attribute values for that item.,

The data base may change with time: new items may
be introduced or old ones deleted; values may be changed;
the attributes themselves may be augmented or sup-
pressed. In a more general analysis the time-varying be-
havior is important; here we shall be concerned with the
data base only as it exists at a given instant, and shall
disregard temporal factors.
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Notationally we shall represent attributes by capital
letters, e.g., A, B, C, . . ., and attribute values by lower
case letters, e.g., a for the value of the attribute 4. Nota-
tion is simplified if we accept that a single letter may
denote a compound attribute consisting of a number of
elementary data characteristics (in the same way as, say,
DATE consists of YEAR, MONTH, DAY). The associated
attribute value is then a vector.

A convenient picture of the data base is as a table of
attributes vs items, with values as the table entries. In
Table 1’, for example, we have five attributes with the
following meaning:

Name of Professor = P = {John, Harry, Evan}

Year =Y={1,2,3,4,5}
Room Number =N = {14, 24, 2B, 3C}
Time (hour) =H=1{1,2,3,4,5,6,.. .24}

Teaching Course = T = {Pathology, Physiology,
Anatomy, Surgery}

We shall have occasion to refer to such a display of the
data, but we should also bear in mind that no restriction
on the format of the data as actually stored in 2 memory
device is entailed by so doing. The information may be
stored hierarchically, or in accordance with list conven-
tions, or as a collection of separate files, etc.

Another notational convention is our use of script
capitals to denote subsets of the data base defined by
projection over specified attributes (Table 1b). Thus
' B% will represent the extraction from the data base of
all distinct vectors of the form (a,b,c). In the notation of
set theory we can write:

A% L {(ab,c) 330, = ab, = b,c,=c}

Such a projection, representing all the data available con-
cerning attributes 4, B and C, we shall call a file. Further-
more, we shall consider any permutation of &/ %% to de-
fine the same file; for example, 4% is equivalent to
A %%. For our purposes data content is the essential
thing, not the order in which values occur.

& Join operation

Let us give a label to that subset of a given data collection
that is linked with a specified value of an attribute out-
side the collection. Given a value, «, belonging to file .,
we define

Bla 2 {bl(ah) e B).

If there is no b such that (a,b) €/ then Bla 2 {4},
where ¢ represents a null element. Thus %Bla always has
at least one element.

We can now define the join [3] (symbolized by an
asterisk ), an operation that merges a pair of files. The
definition has two parts, depending on whether the files
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Table 2 The joins 2%*? ¢ and P% =75 . Note that the first
join is equal to the file #%_¢ (Table 1b), while the second
contains (i.e., is larger than) the file %57,

PY = PT
P Y T

Harry
John
John
Evan
Evan
Harry

Surgery
Pathology
Pathology
Pathology
Pathology
Surgery

N W=D

DY« PH
P Y

x

Harry
Harry
Harry
Harry
John
John
John
John
John
John
Evan
Evan
Evan
Evan

—

—
WOWDJnW-JunnwWwunhun

WWNN =~ =NV SN

do or do not contain common attributes. In the latter
case there are distinct attributes 4 and B, and the join is
defined as the Cartesian product:

A+B B o X B={(ab)|a€A and bERB).
In the overlapping case let A be the attribute(s) com-
mon to the two collections. We then define

AR+ AC = gA {a} X (Bla) X (¥la).

Thus the join combines all pairs of vectors, one from
&% and one from /%, that have a common a value. It is
important to realize that this operation preserves the in-
formation contained in both .«/% and .#%. In fact, it may
contain superfluous data, i.e., triples (a,b,c) that are not
part of any item in the original data set. Table 2 illustrates
this by means.of the joins 2%« 27 and P *PH , using
the files of Table 1b. In certain basic cases, as will be
discussed, the join of /% and /¥ yields exactly the file
A B%. This is the case in Table 2 where P¥+PJ is
equal to 297 .

The join can be shown to be commutative and associa-
tive. In addition it possesses an absorption property:

A AR = ADB.

The join can occur in several different ways during an
analysis of data. Otherwise unrelated attributes may be
linked to a common attribute. For example, consider the
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two files (EMPLOYEE,SKILL) and (EMPLOYEE,CHILD).
There is an association between SKILL = plumber and
cHILD = Timmy if and only if there is an EMPLOYEE hav-
ing both plumbing skill and a child named Timmy. Thus,
it is logical to form the composite file (EMPLOYEE,
CHILD,SKILL) by means of the join operator:

(EMPLOYEE,CHILD,SKILL) = (EMPLOYEE,SKILL )
«+(EMPLOYEE,CHILD).

The larger file would not ordinarily be stored in the
tabular form that the above expression implies, but rather
in a hierarchical structure as shown in a conventional way
in Fig. 1. However, it is to the point to observe that the
data relationships implied in such a structure can be
represented algebraically using the join.

e Functional relations

Another way in which the join arises very naturally is in
the case of a functional relation (FR). We shall say that
there exists a functional relation from attribute 4 to at-
tribute B, denoted A — B, if, for each element (a,b) of
A% there is no other element (a,b’) in /% such that
b # b’ (i.e., the set of ordered pairs (a,b) is a function).
In application it is assumed that the property holds overa
significant period of time when data are changing by ad-
dition, updating and deletion. An example is a personnel
file in which an EMPLOYEE is assigned to exactly one
DEPT. In this case

EMPLOYEE — DEPT.

In a revamping of the record-keeping system it might
be decided to allow personnel to have several depart-
mental assignments, thus destroying the functional rela-
tion. However, during the period in which the FR holds
it can be useful in file structuring.

The definition given above can be extended to com-
pound-attributes. If E and F are two distinct compound-
attributes, where E= {E, E,, -+, E,} and F={F, F,,

- F p}, we shall write either

E—->F
or else the equivalent notation
{El’EZ,' " En} - {Fszv. Y Fp}

If for given E and F the above relation holds, and if in
addition for every proper subset E’ in E it is false that
E' — F, then we shall say that E — F is an elementary

functional relation (or EFR).

The concept of a functional relation is similar in nature
to that of a key attribute. If there exists a table of data
#F and if E — F as above, then a given value of at-
tribute E uniquely determines an entry in the table. An
elementary functional relation defines an extremal at-
tribute set having this property.
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If two attributes are functionally related, then a file of
which they are part may be resolved into two subcol-
lections with no loss of information. Formally, if B — C
then

A RBEC = ARB*BE.

Thus functionally dependent data (such as attribute C)
can be projected out of a given file and the complete file
can always be recovered by means of the join operation.
This resolution is important to the system designer, for it
allows him design freedom. He may or may not decide to
break down a file into components, depending on pos-
sible storage savings, on the types of transactions made
to the file, and other considerations. It is important for
him to be aware of the logical possibilities that FR’s
offer. A discussion of this topic is presented in Section 4.

The set of elementary functional relations can be con-
sidered to be an inherent property of the information in
a given data collection. The system designer normally
has no control over this structure; the most that he can do
is to deduce the relations. For example, in our schedule
for medical students (Table 1), the following elementary
functional relations might be defined:

£ P->T
£, PH—=Y
¢, PH— N
£, HN - P
o HN—->Y
£ HY = P
£ HY — N

Typically these relations would be supplied by some-
one familiar with the application. They express this
person’s semantic understanding of properties of the
data. Thus, the first relation above means that a professor
teaches only one course, while the third means that a
professor can only be present in one room at a time. A
second observer, asked to supply such a list, might (as
we shall see) express the same semantic understanding
with a different set of relations. Relations that exist in the
data, but do not have semantic, i.e., enduring, relevance
(for example, P,Y — N in Table 1) would not be de-
clared at this logical level.

o Properties of Functional Relations

The following properties are easily proved:

1. Transitivity: if E - F and F — G then E — G;

2. Reflexivity: £E — E;

3. Projectivity: if E C F then F — E;
(in this case F — E cannot be an EFR);

4. Additivity: Let F,G represent a compound attribute,
the union of components F and G. Then E — F and
E—-> G=>E-F,G;
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EMPLOYEE 1
CHILD 1
CHILD 2
I I |
[ I I
! I |
SKILL 1
SKILL 2
I I I
I | I
I I [
EMPLOYEE 2
CHILD — —

I
I
I

Figure 1 Hierarchical representation of data. Attributes that
are not particularly associated with one another are listed in
association with the attribute to which they relate.

5. Pseudotransitivity: if E— F and F,G — H, then
E.G — H;

6. Augmentation: if £ — G then E,F — G, when F is
any other attribute.

One application of the properties is to determine ad-
ditional functional relations from a given list. In our ex-
ample, we may use the transitivity rule together with re-
lations ¢, and ¢ to derive

HY —>T,
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which is not in the original set. By pseudotransitivity
(which is actually a more general statement of the transi-
tivity law) we can induce from ¢, and ¢, the relation

PH—N,

which is in the list as ¢,. Therefore, the given list is in a
sense redundant.

Let us attempt to define standardized expressions of
the information contained in a set of functional relations.
In doing this it is sufficient to restrict ourselves to EFR’s
since these are the least redundant statements of FR’s,
There are two different descriptions of a relational struc-
ture that appear to be useful:

1. The set of all EFR’s derivable from a given list. This
maximal set is called the closure, and is unique.

2. A nonredundant set of EFR’s from which all other
EFR’s (i.e., the closure) can be derived. By nonre-
dundant we mean that if any relation is struck from
this set the closure can no longer be obtained. This
minimal set is called a minimum cover and is not
unique in general.

To illustrate, the closure for our example consists of
¢, — ¢, together with the relations:

H,N - T,
HY —>T.

We can derive two minimum covers for this problem;
namely,

1. {P->THN —> PHY - N,PH - Y},
2. {P—>T,HY - PHN - Y,PH - N}.

Here, for clarity, the comma between attributes to the

left of the — has been deleted.

Either of the above sets of EFR’s is sufficient to derive
the closure by application of rules 1) - 6) above.

An FR is a very special type of relation. Among the
other classes of relation that occur in practice are:

1. Attributes whose values are calculated from many
values of another attribute (or attributes), as YEARLY
INCOME, €.g., is derived from MONTHLY INCOME,

2. The notion of direct relationship; in which, for ex-
ample, CHILD is related to EMPLOYEE and DEGREE is
related to EMPLOYEE, but there is no clear-cut relation
between DEGREE and CHILD.

3. Boolean representation of functional relations

® Boolean functions

A Boolean expression consists of the binary operations
(+), (*) and the unary operation (') acting on a set of
literals and the constants 0 and 1. The operations +, o,
and ' are called or, AND, and COMPLEMENT, respectively.
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We refer the reader to standard references [12,13] fora
detailed exposition of the properties of these expressions
and the postulates that govern them.

A Boolean function is an expression in which the lit-
erals are variables that can each be assigned a value of
either 0 or 1. For every assignment of values to variables,
a value (again either 0 or 1) can be determined for the
function itself, by applying the postulates.

The postulates can also be used to transform a given
Boolean expression into numerous equivalent forms. For
example the following functions are equivalent:

f=ab’' + bc’ +ca’
g=ab+bc+ca
h=ab+b'c+c'a+ ab’ bc' +ca’

» Relational Forms

We shall exhibit a useful correspondence between func-
tional relations as defined in Section 2 and a class of
Boolean functions. Suppose we are given the relation

X—-Y.

We shall associate this relation with the Boolean term xy’.
The association is suggestive of the Boolean implica-
tion [12]. Using the latter, "x implies y” would be ex-
pressed as

x" +y.

The term above is the complement of the term we as-
sociate with a functional relation; that is,
xy' = (x'+y).

We could employ the standard Boolean implication to
denote functional relations. In that case the principle of
duality [12] shows that we would obtain dual forms of all
the results given here regarding the connection between
functional relations and their Boolean correspondences.
The approach actually followed has the virtue of dealing
with notions more familiar to the switching theorist,
namely, disjunctive forms and prime implicants, rather
than their duals.

In this correspondence if X and Y are compound, then
the constituent variables of X and Y are connected by the
(*) operation.

If we are given a set of functional relations, say
X,->Y, j=12,,n
where
X, Y, C{4,B,C,--},

we shall associate these with the Boolean function

f= E X3y
j=1
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Ify, is compound, say
Yj: {}/jp sz,' Ty Y]m}a
then we have
yj, = (yj'l ° yj AR yjm)l
= yjl/ +jj2' 4+t y]_mf
and
xpoy =x ey gy oy

Therefore the Boolean function associated with a set of
functional relations can always be expressed as a sum of
ANDed variables in which each AND term contains a
single complemented literal. We shall call an expression
having this property a relational form.

It is apparent that any boolean function in this form
uniquely determines a set of functional relations. Given a
relational form we simply take each term and place the
primed variable (i.e., the attribute associated with it) on
the right of the relational symbol (—), and the unprimed
variables on the left.

s Equivalence of FR’s and Relational Forms
As we have seen, one way in which a Boolean function
can be generated is by applying the laws of Boolean al-
gebra to another function. Suppose that the initial func-
tion, say f, is formed from a set of functional relations,
and suppose that g derived from it is also a relational
form. Then the basic result to be demonstrated in this
section is: the relational interpretation of g is valid. That
is, any functional relations implied by g, but not present
inf, can be derived from the relations used to form f.

Let us illustrate by an example before discussing the
general case. The set of EFR’s #, — ¢, in Section 2 de-
fines the Boolean function

f=pt' + phy' + phn' + hnp' + hny' + hyp' + hyn'.

This function of five variables can be represented by a
Karnaugh map [13] as in Fig. 2. An equivalent function
(i.e., one having the same map) is the following:

g=pt' + hyt' + hytn' + pthn' + nhty’ + nythp' + nht'.

Function g is in canonical form and is associated with
the relations:

P—>T,
HY = T,
HYT — N,
PTH — N,
NHT =Y,
NYTH — P,
NH — T.

® e a0 T

Each of the functional relations a) —~g) is a consequence
of relations £1 — £7. Thus, 1 and a) are the same; b) is
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y

Figure 2 Karnaugh map for the example.

derivable by transitivity from #1 and £6; c) follows from
£7; d) is implied by #3; e) is a consequence of #5; f) isa
weaker version of either £4 or £6; and g) is obtainable
from #1 and #4.

Conversely relations £1 — ¢7 can be deduced from
a)-g). In Appendix A we prove the generalization:
equivalence of canonical forms in the Boolean domain
implies equivalence of the associated sets of functional
relations, and conversely.

As a postscript to these remarks we offer the following
corollaries, which follow directly from what is proved in
Appendix A.

Corollary 1: The “closure” of a set of functional relations
is the image of the set of prime implicants of the cor-
responding Boolean form.

Corollary 2: A “minimum covering” in the relational
domain is the image of a minimum covering of the cor-
responding Boolean form (which is expressible as a
form containing only prime implicants, see [13,14]).

We observe that the set of prime implicants and the
two minimum covers obtainable from the map of Fig. 2
correspond exactly to the relational closure and the
covers given in Section 2.
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4. Decomposition of a collection

Any data collection can be represented as a table such
as the example of Table 1. Such a table would be, in
most cases, highly redundant and inefficient to maintain;
however, it is a useful concept for the following reason.
If a data base is to be resolved into subfiles, each describ-
ing a different subset of the attributes, then it is funda-
mental that for this resolution to be consistent, it must be
possible to regenerate the global table from the collection
of subfiles.

Thus, in a hierarchical decomposition, for example, in
which the global description is broken down sequentially
into smaller and smaller attribute sets, it is axiomatic that
at each step of the process the data associated with the
attributes being resolved should be regenerable from the
several data collections defined.

The join operation, as we have seen in Section 2, is a
basic procedure for merging two files. A necessary and
sufficient condition for the join to reconstitute a given
file is given by the following proposition.

Theorem: If and only if for every a € & it is true that
HBEla= (Bla) X (€la),

then

A RBE = oA B+ AE.

The proof follows directly from the definition of the
join. It is clear that a functional relation 4 — B provides
one way in which the conditions of the theorem are satis-
fied, for then %/a contains exactly one element. On the
other hand, satisfaction of the theorem does not imply the
existence of a functional relation.

In the following we consider the general situation
where a set of functional relations is given, as well as
(possibly) a number of additional join relationships not
associated with FR’s. The latter may arise as illustrated
in the (EMPLOYEE,SKILL,CHILD) example discussed
earlier. By a decomposition of a given data collection we
shall mean a set of subfiles such that the original collec-
tion can be recreated by means of the join operation. For
example the expression:

ARBEDE = A B> BC *ACD +DE

implies that the collection &/ B#¥2& can be stored as the
set of files &%, B, 4€Z, and 2&. Our objective is to
be able to generate the entire family of file decomposi-
tions that are consistent with the given relations.

® Process for decomposing files
Assume that A= {4, A,, -, A,} is the set of all attri-
butes, and let {E; = A,} where E;C (A ~ A4,) be a given
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set of FR’s. The functional relation E; — A4, permits the
decomposition

A\ Ay A= A A\ Ay A A A

-
We can now seek to break down recursively the attribute
sets (E,, A;) and (4, A,, -+ A A, A,) using
the remaining EFR’s.

The performance of such a decomposition is greatly
facilitated by the correspondence between this process
and the properties of a class of Boolean functions. The
analogy is similar to that explored in Section 3 for analyz-
ing functional relations. Here we construct the Boolean
function

i-1?

fla, ay 5 a,)=[]a;+ 2 ea;

in which the terms e;a;’ correspond to the given FR’s as
before.

A fundamental property of the function defined above
(see Appendix B) is that a prime implicant of fhaving no
complemented variables defines a key, or minimal unique
identifier, for the overall collection of data. In addition,
as shown previously, any functionally dependent data
can be projected out of the main collection and into sep-
arate files. These properties open the way for a decom-
position of the collection in the Boolean domain.

Let us say that a Boolean function g is included in
another function f if f takes on the value 1 whenever g
does. In addition we introduce the notion of a chain. A
product of Boolean variables

will be said to be chained to a term x in function f if for
each b, in b either b, appears in x or else there exists a
product of variables c; such that c;b;’ is a term in fand ¢,
is chained to x. In the function f=r + rs' + st’ + tu’, for
example, each of r, s, ¢, u is chained to r.

We can now state conditions under which a Boolean
expression of the form

g =

M

8

T

1

determines a valid decomposition of the data collection
associated with f(a,, a,,- -, a,). In order for the collec-
tion to be regenerable from its files, i.e., in order for

ﬂlﬂz...&@nzgl*gz*...*gll

to be true, then the following four conditions must hold:

1. Every g, is included in f.

2. At least one g, is included in a key term.

3. Every attribute appears, either primed or unprimed, in
some g,.

4. Every variable in g is chained to the key term.
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In a typical case there will be a number of decomposi-
tions satisfying 1-4. For example, consider data associ-
ated with attributes 4,B,C,D and possessing the func-
tional relations

AB - C,
C—-D.

Then we have
f(a, b, c,d) = abcd + abc’ + cd'

with unique key term ab. We list below four distinct de-
compositions of this collection:

ab + abc’ + abd’

_jabc' +cd
) abe' + abd’

abc’ + bed'.

A designer might wish to investigate any or all of the
valid decompositions. However, a decomposition of
special note is obtained from f by the following procedure:
1. Find the key terms of f in the manner indicated above.
2. Determine a minimum cover g, g,,* * -, g, of the rela-

tional form

E ex;.
j

3. If at least one g; is included in a key term, then the de-
composition is

14
&=y &
i=t

Otherwise the decomposition is

g = (key term) + i g
i=1

It can be shown that the function g so found satisfies
the conditions for a valid decomposition. In addition we
show in Appendix C that the files of g have a special
property: if A,B,C are distinct attribute sets satisfying
A— B — C,and C + B -» A, then A and C cannot co-
exist in the same file,

Thus, no attribute can be transitively dependent on
other attributes in the same file. Every file of g is there-
fore in the Third Normal Form of Codd {8], and the de-
composition avoids certain undesirable update problems
pointed out by Codd.

To illustrate, consider the attributes and relations
shown in Table 3. The prime implicants of the corre-
sponding Boolean function are also shown. The Boolean
cover yields a simultaneous decomposition of the data;
however, it is also interesting to view the process se-
quentially, as in the tree-schema shown in Fig. 3.

The residue (P,D) at the bottom of the tree corre-
sponds to the uncomplemented Boolean term in the
cover. This file, although it cannot be resolved further, is
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(N,S,SL,YS,C,P,PK,D, YD)

\

NS,
V.5, ¥5) (N,S,SL,C,P,PK,D, YD)

\

(N, $.5L) (N,S,C,P,PK,D, YD)

\

s
(.5 (N,C,P,PK,D, YD)

\

Boolean cover:
pd + pc’ + en’ 4 pk’ + ndz’
- ds’ + nst’ + nsx’

(N.D, YD) (N,C,P,PK, D)

\

(P. PK) (N.C,P,D)

\

N (C,P,D)

\

(P,C) (P, D)

Figure 3 Tree schema for the example of Table 3.

Table 3 Example of the decomposition process. A hypothetical
personnel file is shown, together with the functional relations
pertinent to it.

Attributes Relational Boolean
symbol symbol
Name N n
Skill S s
Skill level SL I
Experience (years) Y X
Child name C c
Pet name P p
Pet kind PK k
Degree D d
Year of Degree YD z
EFR’s P—C D—-S P - PK
N,.D - YD C—->N
N.S—-YS N,S - SL

Prime implicants
pd + pc’ +ds’ + pk’ +nd z' + cn’ + nsx’ + nsl’
+ pn’ + nd x’ + ndl’ + cdz’ + scx’ + scl’ + pdz’
+ spx’ + spl’ + cdx’ + cdl’ + pdx’ + pdl’

also probably not meaningful in the user’s reference
frame. Diplomas and pets are only related through their
connections to some person’s name. The physical in-
clusion of a table of diplomas versus pets in storage
would be rather inefficient. Nevertheless, this subfile is
perfectly consistent for a logical representation of the
data in storage,

To obtain a more meaningful decomposition of the
data base the user could have included extra semantic in-
formation in his description. For example, in addition to
the FR’s he could have provided a partial decomposition
as follows: 38
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N.§8,SL,YS,C,P,PK,D, YD

(N,C,P,PK) (N,S,SL,YS,D, YD)
(P, PK) (N,C,P) (N.5. ¥5) (N,S,SL,D, YD)
(€N (C,P) (N.5,5L) (N,8.D, YD)
——
C+pk'+cn'+cp' (D S)/’

(N,D, YD)

nd + nsx’ + ns¢’ 4 ds’ + ndz’

Figure 4 Alternative tree schema. The Boolean covers for
each of the two main tree sections are shown beneath.

(N,S,SL,YS,C,P,PK,D, YD) =
(N,C,P,PK)+(N,S,SL,YS, D, YD).

Here two attributes appearing on opposite sides of the
join are essentially unrelated.

The Boolean cover and the decomposition tree cor-
responding to this description are shown in Fig. 4. Note
that in this case the decomposition reflects the user’s
point of view. The left-hand portion of the tree defines a
data set pertaining to the employee’s children (note in the
Boolean cover that CHILDREN is a key attribute for this
subcollection). The right-hand portion, having NAME-
DEGREE as a key, relates characteristics of the employee
himself.

5. Conclusions

In this paper we have shown that Boolean algebra is a
potent tool for analyzing the decomposition of a data base
induced by certain classes of relations. During the de-
composition process semantic concepts are transformed
into algebraic form, providing a precise framework for
communications between system designers and applica-
tions specialists.

The study reported here primarily concerns functional
relations. However, the proofs given for the Boolean
analogy depend only on several properties of this class of
relation, namely the laws of reflexivity, augmentation and
pseudotransitivity. It may be important to realize that
any relation between attributes that satisfies these three
laws can be transformed to the Boolean domain in an
identical manner.
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Appendix A: Equivalence of operations on functional
relations and operations on boolean functions

Let a set of functional relations be given on attributes
A, Ay, A,

F={B,>Cli=1,¢}

It can be assumed without loss of generality that the
B, are compounds of the attributes 4,, 4, - -, 4, while the
C, are simple. Suppose that from the relations in F a new
functional relation, X — Y, can be derived by applying
the two basic rules: pseudotransitivity and augmenta-
tion. Then we have

G={Bj—>Cj,X—> Y} ~F,

where the equivalence symbol “~" is to be read in the
sense of a two-way implication. That is, G can be de-
rived from F and conversely.

Corresponding to F and G, respectively, are the two
Boolean functions, f and g, expressed in our canonical
form (only one primed literal in each product term):

=3 bg/ g=> b/ +xy'.
J j

We wish to show that for any f, g and F, G that cor-
respond in this way, then

F~Gifff~g.

The argument is clearly extendable by induction to F and
G, or fand g, differing by more than one term.

Thus, if the above is shown to be true, then more gen-
erally two sets of functional relations being equivalent,
the corresponding canonical Boolean functions are equiv-
alent, and conversely.

1. Proof that F ~ G = f~'g: The additional term
X — Y is derived from F by applying pseudotransitivity
and augmentation. We need only show that the Boolean
counterparts of these operations produce corresponding
terms in order to prove 1).

Pseudotransitivity: {4 — B, BD — C} ~
{4 B,BD — C,AD — C}.

The Boolean image of the left-hand side is ab’ + bdc’,
and by the law of absorption

ab + bdc' ~ (ab' + ab'dc’) + (abdc’ + bdc’)
~ ab’ + bdc' + adc'.

The new term produced, which does not change the
value of the function, is adc’, which corresponds directly
with the relation derived by means of pseudotransitivity.

Augmentation: {A - B} ~ {4 - B, AC — B}.
In the Boolean domain we may write, correspondingly,

ab’'~ab' +ab'c,
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which is true by the law of absorption. Thus, augmenta-
tion is the relational counterpart of the law of absorption.

Having proved these two correspondences, we have
demonstrated 1).

2. Proof that f~ g=> F ~ G: The proof in this direc-
tion is more difficult. Equivalent Boolean forms can be
generated using other operations than the counterparts of
augmentation and pseudotransitivity. Yet we shall
demonstrate that all equivalent canonical forms can be
produced using just these operations. It then immediately
follows that G is derivable from F using the correspond-
ing operations to those that form g from f, for we have
shown in 1) that these operations mirror one another
exactly.
The proof makes use of the following lemma:

Lemma: All the prime implicants of f can be generated
using only the Boolean counterparts of pseudotransitivity
and augmentation.

A prime implicant (see [10]) is an irreducible term
derivable from f by Boolean operations. It follows that
each term of g is either a prime implicant or obtainable
from some prime implicant of f by means of the law of
absorption. Hence, if the lemma is true, then g can be
derived from fusing only counterparts of relational opera-
tions. This is sufficient to prove 2).

Proof of Lemma: Our proof rests on properties of the
-algorithm for generating the prime implicants of a
given disjunctive Boolean form [14, pp. 156-163]. The
algorithm constructs the set of all prime implicants by
successive application of two operations. One of these
is the law of absorption; the other is called the ¥-opera-
tion. In order to prove the lemma we need only to show
that the Y-operation on canonical forms is expressible
in terms of absorption and Boolean pseudotransitivity.

The ¥-operation defines a product term from two
given terms. This new term does not alter a function
containing the given terms; that is, if ¥ and v are prod-
uct terms:

utv~u+v+tukv

We assume that # and v are defined on variables a,,
a,, - -+, a,, and for convenience we represent product
terms as an n-vector, for example,

u= [”1’ H2,' T “n]v

where each u; = a, aj' or x.

The symbol x denotes that the corresponding variable
is absent from the term. Given two such vectors, « and
v, the operation u % v = w is defined as follows:

a. w is undefined (i.e., the %-operation produces no
new term) if there exist distinct indices i and j such
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that (u,,v,) € {(a,,a,’), (a,,a,)} forbothk =iand
k=j.
b. If the above is not true, then
w, = a; if (uj,vj) S {(aj,aj),(aj,x),(x,aj)}
=a; if (u,v;) € {(aj’,aj’),(aj’,x),(x,aj’)}
= x if (u,v;) € {(aj,aj’),(aj',aj),(x,x)}.

Thus w is determined by nine different possible com-
binations of values of elements of 4 and v. Let us lump
variables together to obtain representative terms having
length n =9, with each possible combination of (uj,vj)
exhibited once, keeping in mind that any variable indi-
cated in a combination may be composite, or may be
absent. Then we have

—_ ’ ’ ’
u=aa,xa/a’ xaay x,
p— ! ’ !
v=a, x aa,' x ajaa, x.

If u and v represent terms in a canonical expression
then there is exactly one primed literal in each. That is,
u can have only one of the elements a,’, a,’, a,'; the oth-
ers must be absent. The primed variables that are pres-
ent must be simple. Likewise, v can have only one of
the (simple) literals a,’, a,', a,’. Thus, the possible forms
for u and v are:

u(l) =a,a,a,'a,
v(l) =a,a,aa,

u(2) =a,a,a/a,
v(2) = a,a,a;a,

u(3) =aa,a,a
v(3)=a,a,a'a,
Now consider the nine possible expressions for w:
Cu(l) Y v(2) = aa,a,a,'a,a, Cu(l),

- u(l) % v(2) =aa,a,a,/aa,a, Cu(l),

. u(l) % v(3) =a,a,a,aa,,

L u(2) *v(l)=aa,a,a,a’aa, Cu(2),

L u(2) )% v(2) = aa,a.a/aaa, Cu(2),

. u(2) % v(3) =a,a,a,a;a,

. u(3) *v(l) =aa,a,a,a,

. u(3) * v(2) =aa,a,0/a,

. u(3) % v(3) = undefined (no term generated).

O 00 N N b W e

As indicated, the terms produced in cases 1), 2), 4),
and 5) can be absorbed back into the generating terms,
and this is done whenever possible in the prime impli-
cant algorithm. Thus, we do not have to show correspon-
dences for these cases, nor for case 9), where no new
term results. Only cases 3), 6), 7), and 8) need be con-
sidered further.,

However, these four ¥%-operations can also be dupli-
cated using Boolean pseudotransitivity. In case 3), for
example, we can regroup terms and write

v(3) +u(l) = (a,a,a,)a’ +a,(aa,)a,.

In this form we may apply pseudotransitivity to obtain
the new term

(alasas) (a,a,)a, = a,a,a,a,'ag,

which is exactly u(1) % v(3).
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The same equivalence holds for cases 6), 7) and 8). In
each instance the new term u ¥ v is exactly that which
is produced by applying the pseudotransitivity rule.
Hence, the y-algorithm for determining prime impli-
cants yields terms that could equally well have been
found using relational-type operations. It follows that
every prime implicant of a canonical form has a rela-
tional counterpart (i.e., every prime implicant has a
single primed literal), and that functional relations can
be derived from the functional relations corresponding
to the given Boolean form.

Appendix B: Determination of keys by Boolean
operations

Definition: Assume a data collection defined on attri-
butes 4, A,,---, A,. Let J be a subset of the integers
1, 2,4 n. A subset of the given attributes, a{J) =
{A;yeJ}, is called a key for the given data if it is true
that

a(Jy =>4 forr=1,2,--,n

and if, furthermore, there exists no set
J'cJ,J #J,

such that

alJ’y > A, forr=1,2,---, n.

This definition agrees with the ordinary notion of a
key as an attribute (compound in this case) whose
values are in one-to-one correspondence with the items
in the data collection.

Theorem: Let f(a,, a,,- - -, a,) be arelational form, whose
prime implicants constitute the set {f|i=1, 2,- -+, m}.
If a term p = q,_,a,,," * ‘a,, with each variable uncom-
plemented, is a prime implicant of the Boolean function:

n
g=[la+1
then the attributes corresponding to p constitute a key.
That is, we have

A, A

k+r k+2".An—>Ar r=1’2’.”’n’

and there is no subset of 4, , ;- - -4, for which this is true.

E+1

Proof: We shall show that the theorem is a consequence
of properties of the ¥-algorithm. (See Appendix A for
the definition of the Yr-operation.) The Y-algorithm in
this case begins with the set

n
C,= {(terms of f), H a;}
and iteratively forms the sets

Cn=C,UC, %C,  j=0,12,""

C. DELOBEL AND R. G. CASEY

All possible absorptions are performed within C, ;, and
all elements having more than (n —) literals present are
eliminated.

Thus, prime implicant p must appear by the kth step
of this process. Also, p cannot be derived from the
terms of f alone, since all the prime implicants of a
relational form have one primed literal. Therefore, [I" a;
must be in the process leading to p.

Now the Y-operation has the property that if terms v,
and v, have m, and m, literals absent, respectively, then
v,, U, has at most min(m,,,, m,_,) literals absent. There-
fore, at each step of a sequence of operations on H" a,
at most one additional literal can be eliminated. There-
fore, in order to arrive in k steps at a term having k
literals absent there must be a sequence of the form:

n
Co(Ta ke ow) howy) o dkow,) =p
where each w; may be the product of other J-operations.
We may write this sequence as
uj=uj_1*wj ji=12,k,
where
n
uy,=1] a; and u, = p.
We shall show that the sequence of u; and w; must

have the following form (possibly after renumbering
of literals a,, a,," - -, a,):

Uy, a, a, a TOp_y Gy Gyt 4y
w,oa’y y yYyy Y
u, x a, ag Ty g Gy 0 4,
w, x a4,y "y oy y Ty
U, x X dy TAp_y Gy Gyt 4y
w, x x a 'y y Yy "y
We_ X X X ca .y Yy -y
U, x x x ‘X a, a,, " a,
W, X X X © X a,’y ©y
u, x x x - X X a., - 'a,

In the above, x denotes “‘variable absent,” and y in

the jth position denotes either a; or x.

This sequence illustrates the following two basic

properties of the w;:

1. A variable appearing in complemented form earlier
in the sequence must be absent from all later terms
in the sequence.

2. Only a single complemented variable can be present
in any wj; otherwise the Yr-operation yields a null
term.

If some w; fails to satisfy both conditions then no vari-
able is eliminated at that step, and so the sequence can-
not generate a prime implicant under the Jr-algorithm.
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There are two possible forms to consider for the
terms w;:

1. w, “contains” []" a; (by which we mean w; + [] ;=
w,), in which case w, cannot have any complemented
literals (otherwise it could not absorb [* g;). But, in
this case, w; * u_, fails to eliminate a variable, since
neither w; nor u; contain any complemented literals.
Hence this case never occurs in a sequence leading
to p.

2. w; does not contain [I" a, in which case w; is con-
tained in some prime implicant of f. But this means
that w; has a valid relational interpretation since it
has only a single complemented literal. In correspon-
dence with the sequence of w; we may write

. ) W,y @ P
we Yo, P v, Yy, Y >4, i=1,2,k,

(i)

where Y, = either A; or else A, is absent.

But from such a sequence of relations we can easily
deduce that 4,,,, -, 4, is a key. For by augmentation
W=V, where

Vi:A Ai+2”'An_>Ai i=1,2,"k

i+l
If we define U, to be the relation

U:A4, A

=+ 1

e A, > AA, A,

then we can show inductively that (V, V,,- -+, V) imply

that U, is true, for (V,, V,) imply U, by pseudotransi-

tivity. If (V,, V,,- -+, V) imply U; for some j, then V., Vs,
V;, V;.,) imply (U o Vied) and by pseudotransitivity

(U 5 V; +1) yields U e completing the proof by induction.

Therefore, if p is a prime implicant of g then U, is
true. It remains to show that a stronger relation cannot
be true, i.e., it is not true that

ApApg A, > AA, - A A,
If this were true then f would contain all the terms

t.=a'a

J J k+2ak+3.'.anforj=192,"'sk+1

and we would have

n

((-- (H a; K1) K)o K ) = 4,
contradicting the hypothesis that p is a prime implicant
of g.
Appendix C: Third normal form property of a mini-
mum cover

p
Letg=Y ac/

i=1

be a minimum cover of a given relational form. Let the
functional relations corresponding to g be denoted by
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A4,>C, i=1,2,-,p,

where A, may be an attribute set, but C, is simple. Then
the following proposition is false:
There exist index k€ {1,p} and attribute set X = X,

X, n X, such that the following conditions hold:

29

1. X; ¢ A, for eachjE{1,¢},
2. C, # X, for each j€{1,g},
3. C,+ X, for eachje{l,g},
4. X+ Aforany 4 C A4,,

5

A, > X->C,.

Proof: Assume the contrary, i.e., there are such an X
and a k. It is not restrictive to consider k= 1. Let us
also define

D
§=2gi.
2

We shall show that the existence of X and k imply that
2 = g and therefore g is not a minimum cover since the
term g, can be deleted.

In order to prove the equality of g and g it is sufficient
to show

a ax Cg,
b. xc,' C 2.

If a) and b) are true then the easily verified identity
ax'+xc/=ax"+xc'  +ac/
proves that g =g +a,c,' = g.
It remains only to prove statements a) and b).
Proof that ax' C g: Since a,x’ C g we must have
(apx’) - g,/ Cg,
ie, (ax') - (a) +¢c)=acx Cg,
buta,cx’ = acx/.
.. for each ¢, ctz]c,x,’ Cg.

Then for each ¢, there exists an index s = s(¢), where
s # 1, such that a,c x/ C g, (i.e., a,c.x/ is included in
a term of g).

The term g, must have one of the following three forms:
1. cx/
2. zex,/  wherea, C z,¢, € z.
3./

But form 1) is impossible since ¢, + x, and if g, has
form 2) then
g, tg =acx/+ac'=ax/+ac/,

so that g, is not a prime implicant. But this cannot be,
since g is a minimum cover and every term must be a
prime implicant. Hence g, has the third form, and so
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a,x, C g for each ¢, proving a,x’ C g.

Proof that xc,' C g: Since x¢’ C g we must have (xc¢,’) -
g/  Cgie.,

(x¢,) - (a," +¢,) =2xa,c,' Cg.

Since A4, is compound, we can write:

a,= H Ay
r

where each a,, is a distinct variable.
Now

Pt — Pt
xa,'c,' = xa,'c,
r
and so
’ ! -
xa,. c Cg
for each r.

In correspondence with each rthereis u = u(r),u # 1,
such that

’ ’
xa, ¢, C g,
The term g, can have one of two forms, namely,

1. za,

'
N ZCf}wherexcz.

1

But 1) is impossible since then Z C X and Z — 4,
and so X — A,,, which is ruled out by hypothesis. There-
fore, g, has form 2), and we have xc," C zc,’ C g.
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