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Decomposition of a  Data  Base  and the 
Theory of Boolean  Switching  Functions 

Abstract: The notion of a functional  relation  among the  attributes of a data  set  can  be fruitfully applied in the  structuring of an  informa- 
tion system.  These relations are meaningful both  to  the  user of the system in his semantic understanding of the  data,  and  to  the designer 
in implementing the system. An important  equivalence between  operations with  functional  relations  and operations with  analogous 
Boolean functions is demonstrated in this  paper. The equivalence is computationally helpful in exploring the  properties of a  given set of 
functional  relations, as well as in the  task of partitioning a data  set  into subfiles for efficient implementation. 

1. Introduction 
The implementation of information systems  has suffered 
from a severe  dichotomy  between  the  needs of the ap- 
plications  programmer,  who  wishes to  concern himself 
only with the  inherent  properties of his data,  and  the 
viewpoint of the  system designer,  who sees  the  data in 
terms of the physical devices  and  processes  that  store 
and manipulate  it. Inevitably,  some of the designer’s 
device-dependent notions are  thrust  on  the  system user. 
In effect the  system designer says,  “Here is what I do 
with your  data; if you desire  access  to it you must. . . ,” 
and  proceeds  to burden the  user with a list of implementa- 
tional  details. 

The entanglement of logical and physical aspects of 
data  contributes  more  than  inconvenience  to large-scale 
information systems.  It  also  imposes stiff economic 
penalties in additional  training costs, in programming 
delays,  and in deficiencies in program reliability and 
flexibility. 

An  important  attempt  to alleviate these difficulties is by 
the  creation of an  interface  between  the  user and the 
system.  The  data  base sublanguages, for  example, pro- 
vide such a facility. The interface  allows the applications 
programmer to  deal with a logical representation of data. 
As exemplified in [ 1 1, however, this approach still dilutes 
properties of the application with physical  notions im- 
plied by the system. 

An  alternative  schema  has been proposed in order  to 
offer a greater  degree of independence  between  the  sys- 
tem  and  the application. In  prospect is an  abstract model 
of data,  one  that  the  user can  employ in order  to  charac- 
terize  properties of his data,  and which he can  then pass 

on  to  the designer in order  to  assist  the  latter in selecting 
the organization of the  data in a computer.  The model 
seeks  to  have both parties  communicate in the  same 
framework, while at  the  same time  permitting each  to 
concentrate  on  those  aspects of the  data  that affect him. 

Several  examples of such models currently  exist in 
various stages of development.  Childs [2 J has  described 
a data  structure incorporating the notions  and operations 
of set theory. Codd [3]  and  others [4] have proposed 
relational  models of great flexibility, and  one such model 
is  currently being implemented at   MIT under  Project 
Mac. Delobel [ 5 ] ,  Peccoud [6], and  Boittieaux [7] have 
treated relational concepts in a precise  mathematical 
fashion, placing particular  emphasis on  the role of “func- 
tional relations” in describing  the properties of data.  The 
implications of these functional  relations for  data  base 
administration have been treated by several authors: by 
Codd [8] in defining normal forms  for a  formatted data 
collection; by Heath [9] in exhibiting the  constraints  that 
functional dependencies impose  upon file operations;  and 
by  Rissanen  and Delobel [ 101 in studying the decomposi- 
tion of a file of data  into subfiles. 

In the  present  paper we show  that much of the algebra 
of functional  relations can be restated in a setting more 
familiar to  computer specialists;  namely,  combinatorial 
Boolean algebra,  also called “switching logic.” ( I t  is also 
possible to  use  the mathematical work of A. Bouchet 
[ 1 11 to  prove  the equivalence between relational  algebra 
and Boolean algebra.)  After performing  this  transforma- 
tion,  several aspects of the  data model that  are funda- 
mental to  both  user  and designer are  found  to  be classical 
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Table 1 Tabular  representation of data: (a) the  original data 
set; (b)  files 9’3, BZ, Y F ,  BqZ, and B’32. 

Attributes ( a )  
Items P T Y N H 

e(1): H a w  Surgery 4 2B 6 
e(2):  John Pathology 2 1A 3 
e ( 3 ) :  John Pathology 1 3 c  5 
e(4): Evan Pathology 2 3 c  10 
e(5) :  John Pathology 2 1A 7 
e ( 6 )  : Evan Pathology 3 2A 3 
e(7): Harry Surgery 5 1A 5 

Files ( b )  
99 Y Z  Y F  

Harry 4 Harry 6 Harry  Surgery 
John 2 John 3 John  Pathology 
John 1 John 5 Evan  Pathology 
Evan 2 Evan 10 
Evan 3 John 7 
Harry 5 Evan 3 

Harry 5 

99% Y’3.T 
P Y H P Y T 

Harry 4 6 Harry 4 Surgery 
John 2 3 John 2 Pathology 
John 1 5 John 1 Pathology 
Evan 2 10 Evan 2 Pathology 
John 2 7 Evan 3 Pathology 
Evan 3 3 Harry 5 Surgery 
Harry 5 5 

topics. This  result suggests that switching theory is a 
powerful tool for exploring the  abstract  data model. 
Moreover,  since  the manipulation of Boolean functions is 
well-developed, it is apparent  that  the  computations re- 
quired  in  applications of the model can be carried  out 
very efficiently by computer program. This  feature  is 
particularly important  to  the  designer,  who may wish to 
generate and evaluate a number of data organizations in 
order  to optimize  his  system. It  also offers an  avenue  for 
developing  design procedures  that optimize data  struc- 
ture by automatic  means alone. 

2. Preliminary notions 
A user ordinarily perceives his data  base  as consisting of 
a collection of descriptions of various  items. Each item is 
described by a set of attributes, i.e., designations of perti- 
nent  characteristics of the item, together with the  cor- 
responding attribute  values  for  that item. 

The  data  base may change with time: new  items may 
be  introduced or old ones  deleted;  values may be  changed; 
the  attributes  themselves may be augmented or sup- 
pressed.  In a more general analysis  the time-varying be- 
havior is important;  here  we shall be concerned with the 
data  base only as it exists  at a given instant,  and shall 
disregard  temporal factors. 
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Notationally we shall represent  attributes by capital 
letters, e.g., A ,  B ,  C ,  . . ., and  attribute values by lower 
case  letters, e.g., a for  the value of the  attribute A .  Nota- 
tion is simplified if we accept  that a single letter may 
denote a compound  attribute consisting of a  number of 
elementary  data  characteristics (in the  same way as,  say, 
DATE consists of YEAR,  MONTH,  DAY). The  associated 
attribute value is then a vector. 

A convenient  picture of the  data  base is as a table of 
attributes  vs items,  with  values as  the table entries.  In 
Table 1, for example,  we  have five attributes with the 
following meaning: 

Name of Professor = P = {John,  Harry,  Evan} 
Year = Y = {I ,  2, 3,4 ,  5 }  
Room Number = N = { l A ,  2 A ,  2B, 3C} 
Time  (hour) = H =  {1 ,2 ,  3 , 4 , 5 ,  6 , .  . . ,24}  
Teaching  Course = T = {Pathology, Physiology, 

Anatomy,  Surgery} 

We shall have occasion to  refer  to  such a  display of the 
data,  but we should also  bear in mind that  no  restriction 
on  the  format of the  data  as actually stored in a memory 
device  is entailed by so doing. The information may be 
stored  hierarchically, or in accordance with  list conven- 
tions, or  as a collection of separate files, etc. 

Another notational  convention is our  use of script 
capitals to  denote  subsets of the  data  base defined by 
projection over specified attributes  (Table 16). Thus 
d9Av will represent  the  extraction  from  the  data  base of 
all distinct vectors of the  form (a,b,c). In  the notation of 
set  theory we can write: 

= { (a,b,c) 3aj = a,bj = b,cj = C }  
A 

Such  a  projection,  representing all the  data available  con- 
cerning attributes A ,  B and C ,  we shall call aJile. Further- 
more, we shall consider  any  permutation of d9Av to de- 
fine the  same file; for  example, BdAv is equivalent to 
dB’%?. For  our  purposes  data  content is the essential 
thing, not  the  order in which  values occur. 

Join operation 
Let us give  a  label to  that  subset of a given data collection 
that is linked with a specified value of an  attribute  out- 
side the collection. Given a value, a, belonging to file d, 
we define 

B / a  {bl(u,b) €dB} .  

If there is no 6 such  that ( a b )  € d B  then %’/a = {$I, 
where $ represents a null element. Thus %/a always  has 
at  least  one element. 

We  can now define the join [3]  (symbolized by an 
asterisk),  an  operation  that merges  a  pair of files. The 
definition has  two  parts, depending on  whether  the files 

a 
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contains ( ie. ,  is larger than) the file 9WX. 

Harry 4 Surgery 
John 2 Pathology 
John 1 Pathology 
Evan 2 Pathology 
Evan 3 Pathology 
Harry 5 Surgery 

99 * ?Z 
P Y H 

Harry 
Harry 
Harry 
Harry 
John 
John 
John 
John 
John 
John 
Evan 
Evan 
Evan 
Evan 

4 
4 
5 
5 
2 
2 
2 
1 
1 
1 
2 
2 
3 
3 

6 
5 
6 
5 
3 
5 
7 
3 
5 
7 

10 
3 

10 
3 

do  or  do not  contain  common attributes.  In  the  latter 
case  there  are distinct attributes A and B ,  and  the  join is 
defined as  the  Cartesian  product: 

d-*.% = d X 93 = { ( a & )  la €d and b €9}. A 

In  the overlapping case let A be the  attribute(s) com- 
mon to  the  two collections. We  then define 

a E A  

Thus  the  join combines all pairs of vectors,  one from 
d93 and one from d%?, that  have a common a value. It is 
important to realize that this operation  preserves  the in- 
formation  contained in both d9 and &%?. In  fact, it may 
contain superfluous data, i.e.,  triples (a,b,c) that  are  not 
part of any item in the original data  set.  Table 2 illustrates 
this by means.of  the  joins PC?hPY and P9*93?, using 
the files of Table lb. In  certain basic cases,  as will be 
discussed,  the  join of d9 and d V  yields exactly  the file 
d!%%?. This is the  case in Table 2 where 99<!-,?7 is 
equal to 9tY.T. 

tive. In addition it  possesses  an  absorption  property: 

d-:-d!% = d9. 

The  join can  be  shown to be commutative and associa- 

~ The  join can occur in several different ways  during an 
analysis of data.  Otherwise  unrelated  attributes may be 

~ 376 linked to a  common attribute.  For  example,  consider  the 

CHILD = Timmy if and only if there is an EMPLOYEE hav- 
ing both plumbing skill and a child named  Timmy. Thus, 
it is logical to form the  composite file (EMPLOYEE, 

CHILD,SKILL) by means of the  join  operator: 

(EMPLOYEE,CHILD,SKILL) = (EMPLOYEE,SKILL) 

*(- ( EMPLOYEE,CHILD). 

The larger file would not ordinarily be  stored in the 
tabular form that  the  above  expression implies, but  rather 
in  a  hierarchical structure  as shown in a  conventional way 
in Fig. 1. However, it is  to  the point to  observe  that  the 
data relationships implied in such a structure can be 
represented algebraically using the  join. 

Functional  relations 
Another way in which the  join  arises very  naturally is in 
the  case of a functic~nal relation (FR) .  We shall say that 
there  exists a functional  relation  from attribute A to  at- 
tribute B ,  denoted A + B ,  if, for  each element (a,b) of 
d B  there is no  other element ( a & ' )  in d.95' such  that 
b # 6' (i.e., the  set of ordered pairs (a,b) is a function). 
In application it is assumed  that  the  property holds over a 
significant period of time  when data  are changing by ad- 
dition, updating  and  deletion. An  example is a personnel 
file in which an EMPLOYEE is assigned to  exactly  one 
DEPT. In this case 

EMPLOYEE + DEP? 

In a  revamping of the record-keeping  system it might 
be  decided to allow  personnel to  have several depart- 
mental assignments,  thus  destroying  the functional rela- 
tion. However, during the period in which the FR holds 
it can be useful in  file structuring. 

The definition given above can be extended  to com- 
pound-attributes.  If E and F are  two  distinct compound- 
attributes,  where E = {E, ,  E,, ..., E,} and F = { F , ,  F, ,  
. . ., F, ] } ,  we shall write either 

E + F  

or else the equivalent  notation 

{ E l ,  E,; . .,E,) + { F , ,  F, , .  . . 3  F p > .  

If  for given E and F the  above relation  holds, and if in 
addition for  every  proper  subset E' in E it is false that 
E' +. F, then  we shall  say that E +. F is  an elementary 
,functional  relation (or E F R ) .  

The  concept of a  functional  relation is similar in nature 
to that of a key attribute. If there  exists a  table of data 
89 and if E + F as  above, then  a  given  value of at- 
tribute E uniquely determines  an  entry in the table. An 
elementary functional  relation  defines an extrema1 at- 
tribute  set having this property. 
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If two  attributes  are functionally related, then  a file of 
which they are  part may be resolved into  two subcol- 
lections with no loss of information. Formally, if B -+ C 
then 

&?gg = gJgp:-gv. 
Thus functionally dependent  data  (such as attribute C )  

can be projected out of a  given file and the  complete file 
can always be  recovered by means of the  join operation. 
This resolution is important  to  the  system  designer,  for it 
allows him design freedom. He  may or may not  decide  to 
break down a file into components, depending on pos- 
sible storage savings, on the types of transactions  made 
to  the file, and  other considerations. I t  is important  for 
him to be aware of the logical possibilities that  FR’s 
offer. A  discussion of this  topic is presented in Section 4. 

The  set of elementary functional  relations can  be con- 
sidered to  be  an  inherent  property of the information in 
a  given data collection. The system  designer normally 
has  no  control  over this structure;  the  most  that  he can do 
is to  deduce  the relations. For  example, in our schedule 
for medical students  (Table 1 ), the following elementary 
functional  relations might be defined: 

e,: P -+ T 
e,: P,H -+ Y 
P3: P,H -, N 
e,: H , N  -+ P 
e,: H , N  + Y 
P,: H,Y -+ P 
e,: H , Y  -, N 

Typically these relations would be supplied by some- 
one familiar  with the application. They  express this 
person’s  semantic  understanding of properties of the 
data.  Thus,  the first  relation above  means  that a professor 
teaches only one  course, while the third means  that a 
professor  can only be present in one room at a time. A 
second observer, asked to supply  such a list, might (as 
we shall see)  express  the  same semantic  understanding 
with a different set of relations.  Relations that  exist in the 
data,  but  do not have semantic, i.e., enduring, relevance 
(for  example, P,Y -+ N in Table 1 )  would not  be de- 
clared at  this logical level. 

Properties of Functional  Relations 
The following properties  are easily proved: 
1.  Transitivity: if E -+ F and F -+ G then E -+ G ;  
2. Reflexivity: E -+ E ;  
3. Projectivity: if E C F then F -+ E ;  

(in  this case F - E cannot be an  EFR);  
4. Additivity: Let F,G represent a compound  attribute, 

the union of components F and G. Then E -+ F and 
E -+ G 3 E -+ F , G ;  

EMPLOYEE I 

CHILD 1 

CHILD 2 I CHILD 2 I 

SKILL 2 

I EMPLOYEE 2 

CHILD - - - 

Figure I Hierarchical representation of data.  Attributes  that 
are not  particularly associated with one  another  are listed in 
association  with the  attribute  to which they  relate. 

5 .  Pseudotransitivity: if E -+ F and F,G -+ H ,  then 

6. Augmentation: if E -+ G then E,F -+ G, when F is 
E,G + H ;  

any  other  attribute. 

One application of the  properties  is  to  determine  ad- 
ditional  functional  relations  from  a  given list. In  our ex- 
ample, we may use  the transitivity  rule together with  re- 
lations f, and e, to  derive 

H , Y  -+ T .  
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which is not in the original set. By pseudotransitivity 
(which is actually a more general statement of the transi- 
tivity law)  we  can induce from Y2 and Y7 the relation 

P,H -+ N ,  

which is in the list as Ys. Therefore,  the given  list is in a 
sense  redundant. 

Let  us  attempt  to define standardized  expressions of 
the information  contained in a set of functional  relations. 
In doing  this it is sufficient to  restrict  ourselves  to  EFR’s 
since  these  are  the  least  redundant  statements of FR’s. 
There  are  two different descriptions of a  relational struc- 
ture  that  appear  to be useful: 

1 .  The  set of all EFR’s  derivable from a given  list. This 
maximal set  is called the closure, and is unique. 

2 .  A nonredundant set of EFR’s from which all other 
EFR’s (i.e., the  closure)  can  be  derived. By nonre- 
dundant  we  mean  that if any relation is struck  from 
this set  the  closure  can  no longer  be  obtained. This 
minimal set  is called a minimum cover and  is  not 
unique in general. 

To  illustrate, the  closure  for  our  example  consists of 
8, - Y7 together with the relations: 

H , N  -+ T ,  
H , Y  + T .  

We can  derive  two minimum covers  for this problem; 
namely, 

1. { P  -+ T , H N  -+ P , H Y  -+ N , P H  + Y } ,  
2. ( P  -+ T , H Y  -+ P , H N  + Y , P H   N ) .  

Here,  for  clarity,  the  comma  between  attributes  to  the 
left of the + has been deleted. 

Either of the  above  sets of EFR’s  is sufficient to  derive 
the  closure  by application of rules 1 ) - 6 )  above. 

An  FR is a very  special type of relation.  Among the 
other  classes of relation that  occur in practice  are: 
1.  Attributes  whose values are calculated from many 

values of another  attribute (or attributes),  as YEARLY 

INCOME, e.g., is  derived  from MONTHLY INCOME, 

2. The notion of direct relationship; in which, for ex- 
ample, CHILD is related to EMPLOYEE and DEGREE is 
related to EMPLOYEE, but  there is no  clear-cut relation 
between DEGREE and CHILD. 

3. Boolean representation of functional  relations 

Boolean  functions 
A Boolean  expression consists of the binary operations 
(+), ( 0 )  and  the  unary  operation (‘) acting on a set of 
literals and  the  constants 0 and 1. The  operations +, 0 ,  

378 and ’ are called OR, AND, and COMPLEMENT, respectively. 
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We  refer the  reader  to  standard  references [ 12,131 for a 
detailed  exposition of the  properties of these  expressions 
and the  postulates  that  govern them. 

A Boolean  function is an  expression in which the lit- 
erals  are variables that can each be  assigned a value of 
either 0 or 1 .  For every assignment of values to variables, 
a  value  (again either 0 or 1 )  can be  determined  for  the 
function  itself, by applying the postulates. 

The  postulates  can  also be  used to transform a given 
Boolean expression  into  numerous equivalent  forms. For 
example the following functions  are equivalent: 

f =  ab’ + bc‘ + ca’ 
g = a’b + b’c + c’a 
h = a’b + b’c + c‘a + ab’ bc’ + ca’ 

9 Relational  Forms 
We shall exhibit  a  useful correspondence  between func- 
tional  relations as defined in Section 2 and a class of 
Boolean functions. Suppose we are given the relation 

x -+ Y .  

We shall associate this  relation  with the Boolean term xy’. 
The  association  is suggestive of the Boolean implica- 
tion [ 121. Using the  latter, ”x implies y” would be ex- 
pressed as 

x’ + y. 

The  term  above is the  complement of the  term  we as- 
sociate with  a  functional  relation; that is, 

xy’  = (x’ + y ) ’ .  

We  could  employ the  standard Boolean  implication to 
denote functional  relations. In  that  case  the principle of 
duality [ 121 shows  that  we would obtain dual forms of all 
the  results given here regarding the  connection  between 
functional  relations and  their Boolean correspondences. 
The  approach actually  followed has  the  virtue of dealing 
with  notions more familiar to  the switching theorist, 
namely,  disjunctive forms  and prime  implicants, rather 
than their duals. 

In this correspondence if X and Y are  compound, then 
the  constituent variables of X and Y are  connected by the 
( 0 )  operation. 

If we  are given  a set of functional relations, say 

X j  -+ Yj  j =  1, 2 ; * . ,  n,  

where 

X j ,  Yj C { A ,  B ,  e;..}, 
we shall associate  these with the Boolean  function 

n 

f = 2 X j Y j ‘ .  
j=l  
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If Y j  is compound, say 

yj: V j , >  yjz; . . 3 Y j J >  

yj’ = (yjl yjl . . ’ yjm ) ’ 

= yjl’ +j jY’  +. ’ ’ + yjm‘ 

then we have 

and 

xj yj’ = xj y,,‘ + XjYjS’ +. . . + XjYjm‘. 
Therefore  the Boolean function associated with a set of 

functional  relations can  always be expressed  as a sum of 
ANDed variables in which each AND term  contains a 
single complemented  literal.  We shall call an  expression 
having this property a relational  form. 

It is apparent  that any  boolean  function in this  form 
uniquely determines a set of functional  relations. Given a 
relational  form we simply take  each  term and  place the 
primed  variable  (i.e., the  attribute associated with it)  on 
the right of the relational  symbol (+), and the unprimed 
variables on  the left. 

Equivalence of FR’s  and  Relational  Forms 
As we have  seen,  one way in which a Boolean function 
can be  generated is  by applying the laws of Boolean al- 
gebra to  another function. Suppose  that  the initial func- 
tion,  say f ,  is formed from a set of functional  relations, 
and  suppose  that g derived  from it is also a relational 
form. Then  the basic  result to be demonstrated in this 
section is: the  relational  interpretation c . f g  is valid. That 
is,  any functional  relations implied by g, but  not present 
in f ,  can  be derived  from  the  relations  used to form f .  

Let us illustrate by an  example before  discussing the 
general case.  The  set of EFR’s e, - f7 in Section 2 de- 
fines the Boolean function 

f= pt’ + phy’ + phn‘ + hnp’ + hny’ + hyp’ + hyn’. 

This function of five variables  can  be represented by a 
Karnaugh  map [ 131 as in Fig. 2. An equivalent  function 
(i.e., one having the  same  map) is the following: 

g = pt‘ + hyt’ + hytn’ + pthn‘ + nhty’ + nythp‘ + nht’. 

Function g is in canonical  form  and is associated with 
the relations: 

a. P + T ,  
b. HY + T ,  
c. H Y T  + N ,  
d. PTH + N ,  
e. N H T  + Y ,  
f. N Y T H  + P ,  
g. N H  + T .  

Each of the functional  relations a )   -9)  is a consequence 
of relations 8 1  - f 7 .  Thus, el and a) are  the  same; b )  is 
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I h  

I Y  I 
I h  

I Y I 

Figure 2 Karnaugh map for the example. 

derivable by transitivity  from el and 86; c )  follows from 
e7; d )  is implied by f 3 ;  e )  is a consequence of 8 5 ;  f )  is a 
weaker  version of either 84 or 86; and g )  is obtainable 
from f l  and &4. 

Conversely relations &l  - f 7  can  be  deduced from 
a )  -g) .  In Appendix  A we prove  the generalization: 
equivalence of canonical forms in the Boolean  domain 
implies equivalence of the  associated  sets of functional 
relations,  and conversely. 

As a postscript  to  these  remarks we offer the following 
corollaries, which follow directly  from  what is proved in 
Appendix A. 
Corollary I :  The  “closure” of a set of functional  relations 
is  the image of the  set of prime  implicants of the  cor- 
responding Boolean form. 
Corollary 2 :  A “minimum covering” in the relational 
domain is the image of a minimum covering of the cor- 
responding Boolean form (which is expressible as a 
form  containing  only  prime  implicants, see [ 13,141 ). 

We  observe  that  the  set of prime  implicants and  the 
two minimum covers obtainable  from the map of Fig. 2 
correspond exactly to  the relational closure  and  the 
covers given in Section 2. 37s 
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4. Decomposition of a collection 

Any  data collection can be represented as a table such 
as  the example of Table 1. Such  a table would be, in 
most cases, highly redundant  and inefficient to maintain; 
however, it is a useful concept  for  the following reason. 
If a data  base is to be  resolved  into subfiles, each describ- 
ing a  different subset of the  attributes,  then it is funda- 
mental that  for this  resolution to be consistent, it must be 
possible to  regenerate  the global table from the collection 
of subfiles. 

Thus, in a  hierarchical  decomposition, for exampl’e,  in 
which the global description  is  broken  down sequentially 
into smaller and smaller attribute  sets, it is axiomatic that 
at  each  step of the  process  the  data  associated with the 
attributes being resolved should be  regenerable from  the 
several data collections  defined. 

The  join  operation,  as we have  seen in Section 2, is a 
basic procedure  for merging two files. A necessary  and 
sufficient condition for  the  join  to  reconstitute a  given 
file is given by the following proposition. 

Theorem: If and only if for  every a E d it  is  true  that 

97%?/a= (.!%/a) x (%?/a),  

then 

d93V = d%*dV.  

The proof follows  directly  from the definition of the 
join. I t  is clear  that a functional  relation A + B provides 
one way in which the conditions of the  theorem  are satis- 
fied, for then .!%/a contains exactly one element. On  the 
other hand,  satisfaction of the  theorem  does not imply the 
existence of a functional  relation. 

In  the following we consider  the general  situation 
where a set of functional  relations is given,  as well as 
(possibly) a  number of additional join relationships  not 
associated with FRs .   The  latter may arise  as illustrated 
in the (EMPLOYEE,SKILL,CHILD) example discussed 
earlier. By a decomposition of a  given data collection we 
shall mean  a set of subfiles such  that  the original collec- 
tion can  be  recreated by means of the  join  operation.  For 
example the  expression: 

dBV9Zf = d%*gg:,:d%?a *gg 

implies that  the collection &‘%’%?96? can  be  stored as  the 
set of files d9, %%?, d V 9 ,  and 9Zf. Our  objective is to 
be able  to  generate  the  entire family of file decomposi- 
tions  that  are  consistent with the given  relations. 

Process  for  decomposingJiles 
Assume  that A = {Al,  A, ,  . . ., A , }  is the  set of all attri- 
butes,  and let { E i  + Ai} where Ei C (A - Ai) be a given 
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set of FR’s.  The functional  relation Ei  + A i  permits the 
decomposition 

d,d2,’ ’ ’, d, = g i d i  dld2,. ‘ ‘, di-,di+,,. . ., dn. 
We can now seek to break down recursively the  attribute 
sets (Ei, A i )  and (Al ,  A, ,  ..., Ai-,, Ai+, ,  ..., A, )  using 
the remaining E F R s .  

The  performance of such a  decomposition is greatly 
facilitated by the  correspondence  between this process 
and  the  properties of a class of Boolean  functions. The 
analogy is similar to  that explored in Section 3 for analyz- 
ing functional  relations. Here we construct  the Boolean 
function 

f ( a l ,  a,,. . ., a,) = n ai + 2 ejaj’ 

in which the  terms ejaj’ correspond  to  the given FR’s  as 
before. 

A fundamental property of the function defined above 
(see  Appendix  B) is that a  prime  implicant offhaving  no 
complemented  variables  defines  a key,  or minimal unique 
identifier, for  the overall  collection of data.  In  addition, 
as shown  previously,  any  functionally dependent  data 
can be projected out of the main collection and into  sep- 
arate files. These  properties  open  the way for a decom- 
position of the collection in the Boolean domain. 

Let us say that a Boolean function g is included in 
another function f iff  takes  on  the value 1 whenever g 
does.  In addition we introduce  the notion of a chain. A 
product of Boolean variables 

n 

i= 1 j 

k 

b = n b i  
i= 1 

will be said to  be chained to a term x in function f if for 
each bt in b either bi appears in x or  else  there  exists a 
product of variables ci such  that cibi’ is a term  infand c i  
is chained to x. In  the  functionf= r + rs‘ + st’ + tu’, for 
example, each of r ,  s, t ,  u is chained to r. 

We can now state conditions under which a Boolean 
expression of the form 

P 

g=zgg i  
i=l 

determines a valid decomposition of the  data collection 
associated with f (al, a,,. . ., u,). In order  for  the collec- 
tion to be  regenerable from  its files, i.e., in order  for 

to be true, then the following four conditions  must hold: 
1. Every gi is included in$ 
2. At  least  one gi is included in a  key  term. 
3. Every  attribute  appears,  either primed or  unprimed, in 

4. Every variable in g is chained to  the key term. 
some g i .  
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In a  typical case  there will be  a number of decomposi- 
tions  satisfying 1-4. For example,  consider  data associ- 
ated with attributes A,B,C,D and possessing the func- 
tional relations 

A B  "* C ,  
C -+ D. 

Then we have 

f ( a ,  b ,  c ,  d )  = abcd + abc' + cd' 

with  unique key term ab. We  list below four distinct  de- 
compositions of this  collection: 

ab + abc' + abd' 
abc' + cd' 

= abc' + abd' 
abc' + bcd'. 

A designer might wish to investigate any or all of the 
valid decompositions. However, a  decomposition of 
special  note is obtained fromfby  the following procedure: 
1. Find  the key terms  off in the manner  indicated above. 
2 .  Determine a minimum cover g,,  g,, . . ., gP of the rela- 

tional  form 

2 e jx j ' .  
j 

3. If at  least  one gi is included in a key term, then the de- 
composition is 

P 

g = c. gi. 
i= 1 

Otherwise  the decomposition is 
P 

g = (key  term) + 2 gi. 

It  can be shown  that  the function g so found satisfies 
the conditions for a valid decomposition. In addition we 
show in Appendix C that  the files of g have a  special 
property: if A,B,C are  distinct  attribute  sets satisfying 
A + B -+ C ,  and C f. B f. A ,  then A and C cannot co- 
exist in the same file. 

i= 1 

Thus,  no  attribute can  be  transitively dependent  on 
other  attributes in the same file. Every file of g is there- 
fore in the  Third  Normal  Form of Codd [8], and  the  de- 
composition avoids certain  undesirable update problems 
pointed  out by Codd. 

To illustrate, consider  the  attributes and  relations 
shown in Table 3. The prime  implicants of the corre- 
sponding Boolean function are  also shown. The Boolean 
cover yields a simultaneous  decomposition of the  data; 
however, it is also interesting to view the  process se- 
quentially, as in the  tree-schema shown in Fig. 3. 

The residue (P ,D)  at  the bottom of the  tree  corre- 
sponds  to  the uncomplemented Boolean term in the 
cover.  This file, although it cannot be  resolved further, is 

( N .  s ,SL ,  YS ,  C,  P ,  PK,  D, Y D )  

Figure 3 Tree  schema  for the example of Table 3.  

Table 3 Example of the decomposition  process. A hypothetical 
personnel file is shown, together with the functional relations 
pertinent to it. 

Attributes Relational Boolean 
symbol symbol 

Name 
Skill 
Skill level 
Experience (years) 
Child name 
Pet name 
Pet kind 
Degree 
Year of Degree 

N n 
S S 
SL I 
YS X 
C C 
P P 
PK k 
D d 
Y D  z 

EFR's P + C  D + S  P + P K  
N , D  - Y D   C - N  
N,S -+ YS  N,S + SL 

Prime  implicants 
pd + PC' + ds' + pk' + nd z' + cn' + nsx' + nsl' 

+ pn' + nd x' + ndl' + cdz' + SCX' + scl' + pdz' 
+ spx' + spl' + cdx' + cdl' + pdx' + pdl' 

also probably  not meaningful in the user's reference 
frame.  Diplomas and pets  are only  related  through their 
connections  to  some person's  name. The physical in- 
clusion of a  table of diplomas versus  pets in storage 
would be rather inefficient. Nevertheless, this subfile is 
perfectly consistent  for a logical representation of the 
data in storage, 

To  obtain  a more meaningful decomposition of the 
data  base  the  user could have included extra  semantic in- 
formation in his description. For example, in addition to 
the F R s  he could have provided a partial  decomposition 
as follows: 
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Figure 4 Alternative  tree  schema.  The  Boolean  covers for 
each of the two main tree  sections  are  shown  beneath. 

( N ,  S ,  SL ,  Y S ,  C ,  P ,   P K ,   D ,   Y D )  = 

( N ,  C ,  P ,  P K ) g : ( N , S , S L ,  YS,  D ,   Y D ) .  

Here  two  attributes  appearing  on  opposite sides of the 
join  are essentially unrelated. 

The Boolean cover and the decomposition tree cor- 
responding to  this  description  are  shown in Fig. 4. Note 
that in this case  the decomposition  reflects the user’s 
point of view. The left-hand  portion of the  tree defines  a 
data  set pertaining to the employee’s  children (note in the 
Boolean cover  that CHILDREN is a key attribute  for this 
subcollection).  The right-hand portion, having NAME- 

DEGREE as a key,  relates  characteristics of the  employee 
himself. 

5. Conclusions 
In this paper  we  have shown that Boolean algebra is a 
potent tool for analyzing the decomposition of a data  base 
induced by certain  classes of relations. During  the de- 
composition process semantic concepts  are transformed 
into algebraic form, providing a  precise  framework for 
communications between system designers and  applica- 
tions specialists. 

The  study  reported  here primarily concerns functional 
relations. However,  the proofs  given for  the Boolean 
analogy depend only on several properties of this class of 
relation, namely the  laws of reflexivity,  augmentation and 
pseudotransitivity. It may be  important to realize  that 
any relation between  attributes  that satisfies these  three 
laws can be transformed  to  the Boolean  domain in an 
identical  manner. 
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Appendix A: Equivalence of operations on functional 
relations and operations on boolean functions 
Let a set of functional  relations  be  given on attributes 
A, ,   A2; . . ,  A,. 

F = { B j  + Cjl j  = 1; .., e}. 
It  can  be  assumed  without loss of generality that  the 

B,i are  compounds of the  attributes A, ,  A,; . I, A,  while the 
Cj  are simple. Suppose  that from the relations in F a new 
functional relation, X + Y ,  can  be  derived by applying 
the two  basic  rules:  pseudotransitivity  and  augmenta- 
tion. Then we have 

G = {Bi + Cj ,  X + Y }  - F ,  

where the equivalence  symbol “N” is to be read in the 
sense of a two-way  implication. That is, G can  be  de- 
rived from F and  conversely. 

Corresponding  to F and G, respectively, are  the  two 
Boolean functions, f and g ,  expressed in our canonical 
form  (only one primed  literal in each  product  term): 

f = x bjcj’ g = bjcj’ + xy’. 
j j 

We wish to show  that  for  any f, g and F ,  G that  cor- 
respond in this way, then 

F - G i f f f - g .  

The argument is clearly extendable by induction to F and 
G,  or f and g ,  differing by more than one  term. 

Thus, if the  above is shown to be true, then  more  gen- 
erally two  sets of functional  relations being equivalent, 
the  corresponding canonical Boolean functions  are equiv- 
alent,  and  conversely. 

I .  Proof that F - G 3f- ‘g: The additional term 
X + Y is derived  from F by applying  pseudotransitivity 
and  augmentation.  We  need  only show  that  the Boolean 
counterparts of these  operations  produce corresponding 
terms in order  to  prove 1 ).  

Pseudotransitivity: { A  --z B ,  B D  --z C )  N 

{ A  --z B ,   B D  -+ C ,   A D  -+ C ) .  

The Boolean image of the left-hand  side is ab’ + bdc’, 
and by the law of absorption 

ab + bdc’ - (ab’ + ab’dc’) + (abdc’ + bdc’) - ab’ + bdc’ + adc‘. 

The new  term produced, which does not change  the 
value of the  function,  is adc’, which corresponds directly 
with the  relation  derived by means of pseudotransitivity. 

Augmentation: {A -+ B )  - {A  -+ B ,   A C  + B } .  

In  the Boolean domain we may write,  correspondingly, 

ab’ - ab’ + ab’c, 
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which is  true by the law of absorption.  Thus, augmenta- 
tion is the relational counterpart of the law of absorption. 

Having proved these  two  correspondences, we have 
demonstrated 1 ) . 

2. Proof that f N g 3 F - G: The proof in this  direc- 
tion is more difficult. Equivalent Boolean forms  can  be 
generated using other  operations  than  the  counterparts of 
augmentation and pseudotransitivity. Yet  we shall 
demonstrate  that all equivalent canonical  forms can be 
produced using just  these  operations.  It then  immediately 
follows  that G is  derivable from F using the  correspond- 
ing operations  to  those  that  form g from  f,  for we have 
shown in 1 )  that  these  operations mirror one  another 
exactly. 

The proof makes  use of the following lemma: 

Lemma: All the prime  implicants off can be generated 
using only the Boolean counterparts of pseudotransitivity 
and augmentation. 

A prime  implicant (see [lo])  is an irreducible term 
derivable  from f by Boolean operations.  It follows that 
each  term of g is  either a prime  implicant or obtainable 
from some  prime implicant off by  means of the law of 
absorption.  Hence, if the lemma is true, then g can  be 
derived from f using only counterparts of relational opera- 
tions.  This is sufficient to  prove 2) .  

Proof of Lemma: Our proof rests on properties of the 
*-algorithm for generating the prime  implicants of a 
given disjunctive Boolean form [ 14, pp. 156- 1631. The 
algorithm constructs  the  set of all prime  implicants by 
successive application of two operations. One of these 
is  the law of absorption;  the  other is called the *-opera- 
tion. In  order  to  prove  the lemma we need  only to  show 
that  the *-operation on canonical forms is expressible 
in terms of absorption  and Boolean  pseudotransitivity. 

The *-operation defines  a product term from two 
given  terms. This new term  does not alter a function 
containing the given terms;  that is, if u and u are prod- 
uct  terms: 

u + u - u + u + u * u .  

We  assume  that u and u are defined on variables a,, 
a,, . . *, a,,, and  for  convenience we represent  product 
terms  as an n-vector, for example, 

= ru,, u p , .  . ’3 unI, 

where  each uj = uj, aj’ or x .  
The symbol x denotes  that  the  corresponding variable 

is absent from the term. Given  two  such  vectors, u and 
u, the  operation u * u = w is defined as follows: 
a. w is undefined (Le., the *-operation produces  no 

new term) if there  exist  distinct indices i and j such 

b. 

that ( uk, u k )  E { ( a k ,  a k ’ ) ,  ( ak’, u k )  $ for both k = i and 
k = j .  
If the  above  is not true, then 
bvj = aj if (uj ,uj)  E {(uj,uj),(uj,x),(x,uj)} 

= uj’ if (uj,uj) E {(uj’,uj’),(uj’,x),(x,uj’)} 
= x  if (uj,uj) E { (uj,uj’),(uj’,uj),(x,x)}. 

Thus w is determined by nine  different  possible com- 
binations of values of elements of u and u. Let us lump 
variables together  to  obtain  representative  terms having 
length n = 9, with each possible  combination of (uj,uj) 
exhibited once, keeping in mind that  any variable indi- 
cated in a combination may be composite, or may be 
absent.  Then we have 

u = ala2 x a4’u5’ x u7ufl’ x ,  
u = a, x u3u4’ x a6’u7’ufl x .  

If u and u represent  terms in a  canonical expression 
then there is exactly  one primed literal in each.  That is, 
u can  have only one of the  elements u4’, us’, as‘; the oth- 
ers  must be absent.  The primed  variables that  are pres- 
ent  must be simple. Likewise, u can  have only one of 
the  (simple) literals u4’, a6’ ,  u7’. Thus,  the  possibleforms 
for u and u are: 

u ( 1 )  = u1a2u4’u1 u ( 2 )  = u1u2u5’u7 u ( 3 )  = u1u2a7afl’ 
u(  1 )  = ulu3a4’ufl u ( 2 )  = u,u3u6’u8 u ( 3 )  = a1u3a7’u8 

Now  consider  the nine  possible expressions  for w: 

1 .  u ( 1 )  * 4 2 )  = u1u2u3u4’u7u* c u ( l ) ,  
2. u ( 1 )  * u ( 2 )  = u1u2u3u4’u6’u7u8 c u ( l ) ,  

4. u ( 2 )  * u ( 1 )  = u,u,u,u4’u5’u7u, c u ( 2 ) ,  
3. u (  1 )  * u ( 3 )  = alu2a3u4’uR, 

5 .  u ( 2 )  * u ( 2 )  = u,u,u,u,’u6‘u7afl c u ( 2 ) ,  
6 .  u ( 2 )  * u ( 3 )  = u1u2u3u5’u8, 

8. u ( 3 )  * u ( 2 )  = u1u2u3u6’a7, 
9. u (3  ) * u (3 ) = undefined (no term generated). 

7 .  u ( 3 )  * u ( 1 )  = u,u,u,u,’u7, 

As indicated,  the  terms produced in cases l ) ,  21, 41, 
and 5 )  can be absorbed back  into the generating terms, 
and  this is done  whenever possible in the prime impli- 
cant algorithm. Thus,  we  do not have  to  show  correspon- 
dences  for  these  cases,  nor for case 9), where  no new 
term  results. Only  cases 3 ) ,  6 ) ,  7 ) ,  and 8)  need be con- 
sidered further. 

However,  these  four *-operations can  also  be dupli- 
cated using Boolean pseudotransitivity. In  case 3 ) ,  for 
example,  we  can regroup terms  and  write 

u ( 3 )  + u ( 1 )  = ( U l U 3 U 5 ) U 7 ’  + U 7 ( U l U 2 ) U 4 ’ .  

In this  form we may apply pseudotransitivity to obtain 
the new term 

(a1a3a8) (ala, )a4’ = q q 7 p 4 ’ a 8 ,  

which is exactly u ( 1 )  * u ( 3 ) .  383 
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The  same equivalence  holds for  cases 6 ) ,  7 )  and 8). In 
each instance the new  term u u is exactly  that which 
is produced by applying the pseudotransitivity rule. 
Hence, the *-algorithm for determining  prime impli- 
cants yields terms  that could  equally well have been 
found using relational-type operations. I t  follows that 
every prime  implicant of a canonical form  has a rela- 
tional counterpart (i.e., every prime  implicant has a 
single primed literal), and that functional  relations can 
be  derived  from the functional  relations corresponding 
to  the given Boolean form. 

Appendix B:  Determination of keys by Boolean 
operations 
Dejinition: Assume a data collection defined on attri- 
butes A , ,   A , ,  . . ., A,. Let J be  a subset of the  integers 
1, 2 ,  . . ., n. A subset of the given attributes, a ( J )  = 

{ A j ~ d } ,  is called a key for  the given data if it is  true 
that 

a ( J )  - A ,  for r = 1, 2 ; .  ., n 

and if, furthermore,  there  exists  no  set 

J ’  CJ, J’ # J ,  

such  that 

a(J ’ )  - A , f o r r =  1 ,  2 ; . . ,  n. 

This definition agrees with the  ordinary notion of a 
key as an  attribute  (compound in this  case)  whose 
values are in one-to-one  correspondence with the items 
in the  data collection. 

Theorem: Letf(a,, a2; . ., a,) be a relational form,  whose 
prime  implicants constitute  the  set if,li = 1 ,  2 ,  . . ., m}. 
If  a term p = ak+lak+P~ . .a,, with each variable  uncom- 
plemented, is a prime implicant of the Boolean  function: 

n 

g = n uj +f, 
then the  attributes  corresponding  to p constitute a  key. 
That  is,  we  have 

Ak+lAk+P.  ’ .An -+ A,  r = 1 ,  2,.  . ., n, 

and  there  is  no  subset of A,+, .  . .A,  for which this is true. 

Pro05 We shall show  that  the  theorem is a consequence 
of properties of the *-algorithm. (See Appendix A for 
the definition of the *-operation.) The *-algorithm in 
this  case begins  with the  set 

C ,  = { (terms  off) , n a j }  

and  iteratively forms  the  sets 

Cjtl=Cj U Cj*Cj j = O ,  1 ,2 ; . .  

n 
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All possible absorptions  are performed within Cj+l, and 
all elements having more than ( n  - j )  literals present  are 
eliminated. 

Thus, prime  implicant p must appear by the kth step 
of this  process.  Also, p cannot  be derived  from the 
terms of f alone,  since all the prime  implicants of a 
relational  form have  one primed  literal. Therefore, uj 
must be in the  process leading to p. 

Now the *-operation has  the  property  that if terms u, 
and u, have rn, and rn, literals absent,  respectively,  then 
u, ,  u, has  at most min(m,+,, m,+,) literals absent.  There- 
fore, at each  step of a sequence of operations  on IT“ aj, 
at  most  one additional  literal  can  be  eliminated. There- 
fore, in order  to  arrive in k steps  at a  term having k 
literals absent  there  must be  a sequence of the form: 

n 

(. ‘ .((n aj * w l )  * ”2) ’ ’  ’ * wk) = p 

where  each wj may be the  product of other *-operations. 
We may write this sequence as 

u j=u j - ,  wj j =  1 , 2 ; . . , k ,  

where 

n 

uo = n aj and u, = p. 

We shall show  that  the  sequence of uj and wj must 
have  the following form (possibly after renumbering 
of literals a,, a,,. . ., a,): 

uo a, a2 u3 ’ ‘ ’ ak-l ’ ’ * 

w, Q , ’ Y  Y “’Y Y Y ” ‘ Y  
u1 x a, a3 . . . a,-, a, a,+, . - .  a, 
w2 x a 2 ’ y   “ ‘ y  y y “ ‘ y  
UP x x u3 . . . Uk-,  a, a,+, . * .  a, 
w3 x x a3’ “ ‘ y  Y Y “ ‘ Y  
w,-, x x x . . .  a k - * ‘ y  y . . .  y 

Wk x x x . . .  x a,! y “ ‘ y  
u,-, x x x . . . x a, a,+, . . . a, 

u, x x x . . .  x x a,+, . . . a, 

In  the  above, x denotes “variable absent,”  and y in 
the  jth position denotes  either aj or x. 

This  sequence illustrates the following two  basic 
properties of the wj: 
1. A  variable  appearing in complemented  form  earlier 

in the  sequence  must be absent  from all later  terms 
in the sequence. 

2.  Only  a single complemented  variable can be present 
in any wj; otherwise  the *-operation yields a null 
term. 

If some wj fails to satisfy both  conditions then no vari- 
able is eliminated at  that  step, and so the  sequence  can- 
not  generate a  prime  implicant under  the *-algorithm. 
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There  are  two possible forms  to  consider  for  the 
terms wi: 

1. wi “contains” aj (by which we mean wj + aj = 
wi), in which case wi cannot  have any complemented 
literals (otherwise it could not absorb a j ) .  But, in 
this  case, wj * uj-,  fails to eliminate  a  variable,  since 
neither wj nor uj contain  any  complemented  literals. 
Hence this case  never  occurs in a sequence leading 
to p .  

2 .  wi does  not  contain aj, in which case wj is con- 
tained in some  prime  implicant of f .  But this means 
that wj has a valid relational interpretation since it 
has only a single complemented  literal. In  correspon- 
dence with the  sequence of wi we may write 

W i :  Yi+t Yi+2 
‘i) ‘i). . . Ym(j) -+ A ,  i = 1, 2 , .  . ., k ,  

where Yj‘i) = either A j  or  else A,j is absent. 

But from such a sequence of relations we  can easily 
deduce  that . . ., A ,  is a key. For by augmentation 
W i  + V i ,  where 

V i : A i + , A i + ; . ~ A , + A i  i =  1 , 2 ; . . , k .  

If we define U i  to be the relation 

ui: A,+,A,+, . . . A,  -+ A,A,  . . * Ai ,  

then we  can  show inductively that (VI ,  V,; . ., V,) imply 
that U ,  is true,  for (VI ,  V,) imply U ,  by pseudotransi- 
tivity. If (V , ,  V,; . ., V j )  imply U j  for  somej,  then (VI ,  V,, 
. . ., V j ,   V j + , )  imply ( U j ,  Vj+,) and by pseudotransitivity 
( U j ,  Vj+,)  yields Uj+, ,  completing the proof by induction. 

Therefore, if p is a prime  implicant of g then U ,  is 
true.  It remains to  show  that a stronger relation cannot 
be true, Le., it is not  true  that 

. . . A ,  -+ A,A,  . . . A d k + ,  

If this  were true  then f would contain all the  terms 

t .  = u . ‘ u ~ + ~ u , + ~  . . . a, f o r j  = 1 ,  2 ,  . . ., k + 1 

and we would have 
J I  

n 

((. . .cn uj * t l )  * t,) . . ’ * t ,+J = a,+2a,+3 . . . a,, 

contradicting the hypothesis that p is a prime  implicant 
of g .  

Appendix C: Third normal form property of a mini- 
mum cover 

Let g = 1 aici’ 

be  a minimum cover of a  given  relational form.  Let  the 
functional  relations corresponding  to g be denoted by 

P 

i = l  

A i  -+ Ci i =  1, 2 ; . . , p ,  

where Ai  may be  an  attribute  set, but Ci is simple. Then 
the following proposition is false: 

There  exist index k E { l,p} and attribute  set X = X , ,  
X , ,  . . ., X ,  such  that  the following conditions hold: 

1. X j  Q A ,  for  eachjE{l,g}, 
2 .  C ,  # Xj for  eachjE{l,g}, 
3. C ,  $, X j  for eachjE{l,g},  
4. X $, A for  any A C A,, 
5 .  A ,  -+ X -+ C,. 

Proof: Assume  the  contrary, Le., there  are  such  an X 
and a k .  It  is not restrictive  to  consider k = 1. Let US 

also define 
P 

E = C g , .  
2 

We shall show  that  the  existence of X and k imply that 
g = g and  therefore g is not a minimum cover  since  the 
term g ,  can be deleted. 

In  order  to  prove  the equality of 2 and g it is sufficient 
to  show 

a. alx’ c E, 
b. xc,’ C E .  

If a )  and b)  are  true  then  the easily verified identity 

a,x’ + xc,) = alx’ + xc,’ + alel’ 

proves  that 2 = 2 + alel‘ = g .  
It remains  only to  prove  statements a )  and b) .  

Proof that a,x’ c 2: Since a,xr C g we  must  have 

( a $ ’ )  . g,’ c E, 
i.e., ( u p ’ )  . (a,’ + e,)  = alclx’ c 2, 
but a,c,x‘ = a,c,x,’. 

:. for  each t ,  a,c,x,’ c 2. 
I 

Then  for  each t ,  there  exists  an  index s = s ( t ) ,  where 
s f 1, such  that a,c,x,‘ C g ,  (i.e., uIclxI’ is included in 
a term of E ) .  

The  term g ,  must have  one of the following three forms: 
1. C I X t ’  

2. zclxtr where a, c z ,  c, Q z .  
3 .  zxtr 1 

But form 1)  is impossible since e,  $, xt  and if g, has 
form 2) then 

g ,  + g ,  = alclxt’ + u,c,’ = alxt‘ + alel’, 

so that g ,  is not  a  prime  implicant. But this cannot  be, 
since g is a minimum cover  and  every  term must  be a 
prime  implicant. Hence g ,  has  the third form, and so 385 
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a , ~ , ‘  C I: for  each t ,  proving alx’ C 2. 

Proof that xc,’ c E: Since xc’ c g we  must  have ( x c , ’ )  . 
g,’ c g, i.e., 

( x c , ’ )  . (a1’ +- c,) = xa,’c,’ c g. 

Since A ,  is compound, we can write: 

a, = 
r 

where  each al, is a distinct variable. 
Now 

xa,’c,’ = x xa,,’c,’ 
r 

and so 
xal,’cl’ c g 

for each r .  

In  correspondence with each r there  is u = u ( r )  , u # 1, 
such  that 

xa,,’c,‘ c g,. 

The  term g, can have  one of two  forms, namely, 

’’ z a l r ’ )  where x C z. 
2. Z C , ’  

But 1) is impossible since then Z C X and Z + Air, 
and so X -+ A, , ,  which is ruled out by hypothesis.  There- 
fore, g, has  form 2) ,  and we  have xcl’ C zc,’ C 2. 
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