
W. F. King Ill
S. E. Smith
1. Wladawsky

Effects of Serial Programs in Multiprocessing Systems

Abstract: A model of a multiprocessing, multiprogramming computer system with serially reusable programs was developed to study
the effect of serial programs on system performance. Two strategies for implementing serially reusable programs were investigated,
a wait strategy in which the processor waits until the serial program is available, and a switch strategy, in which the processor is freed
to do other work. Relative performances and asymptotic conditions as functions of the number of processors, processes, serially reus-
able programs, and the fraction of time each process executes serially reusable programs were obtained. Quantitative results are pre-
sented showing that the switch strategy is superior. The wait strategy causes quick saturation when the number of processes is increased.

Introduction
In any multiprocessing, multiprogramming system [11
there are parts of the operating system code which can-
not be executed concurrently by more than one pro-
cessor, e.g., the mechanism that assigns processors to
tasks and the mechanism that assigns page frames to
tasks. This paper studies the effect of these serially re-
usable sections of code on the performance of multi-
processor systems.

To maximize the amount of concurrency possible with-
in the operating system, the entire system can be parti-
tioned into a collection of component programs. Each
portion of the system which must be executed serially is
made a separate program. We denote these as serial pro-
grams (SP). The paging algorithm and the dispatcher or
scheduler are examples of serial programs found in typi-
cal multiprocessor operating systems. Programs that can
be executed concurrently by more than one processor
are denoted as concurrent programs (CP).

Two fundamentally different strategies are available
to enforce the serial execution (one processor at a time)
of the serial programs. First, we assume that a lock or
semaphore is associated with each serial program.

1. A process [21 attempting to execute an SP will test the
lock. If the lock is not set, then the process will set it,
execute the SP, and finally reset the lock. If the lock
was set, the process and its associated processor will
wait for the lock to be reset. Because the processor
waits with the process, this strategy is called the wait
strategy.

2. Same as 1 except that if the lock was set, the process
waits for the lock but the processor is freed to do other
available work. Since the processor is switched upon
encountering a set lock, this strategy is called the
switch strategy.

It is clear that in the wait strategy, the time a process
is waiting for an SP is wasted time for the associated pro-
cessor. With the switch strategy, this wasted time can be
avoided by switching the processor to another process,
if there is another process that is ready to continue. The
extent to which the switch strategy is superior (in terms
of throughput) to the wait strategy depends on the avail-
ability of ready processes and the overhead in switching
processors among processes. The availability of ready
processes depends on the level of multiprogramming and
the characteristics of the processes, e.g., frequency of
1 / 0 operations and mean time between page faults. The
process-switching overhead is very much machine de-
pendent, and we assume an idealized switch strategy in
which switching can be accomplished in zero time. This
is taken into account when we compare the performance
of the two strategies.

In the remainder of this paper we investigate and com-
pare the throughput of systems using either the wait or
the switch strategy. A simplified model of multiprocess-
ing, multiprogramming systems is developed and ana-
lyzed using standard Markov analysis techniques. Param-
eters of the model include the number of processors, the
number of SP’s, the level of multiprogramming, and the

JULY 1974 SERIAL PROGRAA

SMITH

Serial
programs
n

Stage
2

Stage
3

e
e
e

Stage
K + l K + l

1 - PI/O 1 - PI/O

Concurrent Serial
programs
n n n

programs I/O

Stage Stage

1 - Pl /O

(b)

Figure 1 (a) Model of a multiprocessing system with serial
programs; (b) approximate model of the same system.

times processes spend in different parts of the system.
The throughputs with the two strategies are compared as
functions of these parameters. A more detailed descrip-
tion of this work can be found in an earlier internal re-
port [31.

Model
Consider an operating system with K SP’s. Processes
in the system can be in one of five types of activities:

1. Executing an SP.
2. Executing a CP.
3. Waiting for an SP.
4. Waiting for an available processor.
5. Performing an I / 0 operation.

We assume there are a fixed number of processes and
processors in the system. When a process completes its
action, we assume that another takes its place immediate-
ly. Figure 1 depicts the flow of processes among the ac-
tivities. After a process completes a CP, it selects an SP
to execute. All SP’s are equally likely to be selected, i.e.,
the probability of selecting a given SP is 1 / K . If the se-
lected SP is busy, then the process must wait until it be-
comes available. After completing the SP, the process
either attempts to execute another CP or initiates an 1 /0
operation (with

AND WLADAWSK

some fixed pl

Y

robability). After complet-

ing an I / O operation, a process attempts to execute a
CP. Any number of CP’s can be executed simultaneously
if processors are available.

The allocation of processors depends on the particular
strategy. For the wait strategy, a processor accompanies
a process from a CP to an SP and remains with the pro-
cess until completion of the SP. It is then freed and can
be assigned to another process to execute a CP.

For the switch strategy, if the SP is busy, the processor
is freed and does not wait with the process. If the SP is
not busy, the processor remains with the process and
begins executing the SP. After completion of an SP, the
processor is assigned to the next process waiting for that
SP, if any; otherwise, the processor is available to be as-
signed to another process to execute a CP. This implies
that any SP which has waiting processes also has an as-
signed processor. The assumption underlying this alloca-
tion strategy is that the SP’s are potential system bottle-
necks and hence should have higher priorities than CP’s.

The following parameters are used to characterize the
model:

N = number of processes
M = number of processors
K = number of SP’s
A . M = average time to execute a C P
B . M = average time to execute an SP
C = average time to perform an 1/0 operation
prlo = probability that an 1 / 0 operation follows an SP.

The execution times contain the factor M in order to
have the total processing power remain constant as M
increases. We assume that each processor in an M-pro-
cessor system operates at 1 / M times the speed of a
single processor in a uni-processor system. As a result,
the execution times in an M-processor system are M
times what they would be in a system with one fast pro-
cessor.

Markov analysis
To obtain analytical solutions for the behavior of the mod-
el and in order to make the analysis tractable we found it
necessary to make the usual assumption that the times to
execute a CP, an SP, and an 1 / 0 operation are each
independent, identically distributed, random variables
with exponential distributions with mean values A . M ,
B M , and C , respectively. The model of the previous
section then becomes a closed queuing network with
K + 2 stages (and queues). The queuing network is as
shown in Fig. 1 (a). The state of the system is a (K + 2)-
tuple (nl‘, n,’; . ., nK+,’), where n,’ is the number of pro-
cesses in stage i , either waiting or in service. This queuing
network differs from others which have been investigated
[4] in that the number of processors at each stage is not
fixed. One could write the set of equilibrium rate equa-

IBM J. RES. DEVELOP.

tions and solve them for the stationary state probabilities
[5] . However, the large number of states involved makes
this approach impractical except for very small values of
K and N .

To reduce the number of states we approximate the
queuing network of Fig. 1 (a) by the three-state network
shown in Fig. 1 (b). The first and third stages are the
same as in the original network. The second stage approx-
imates the behavior of the K SP's in the original model.
I t is a multiserver stage in which the number of processes
in service is given by a function of K , M , and the number
of processes in the second stage. Let ni, i = 1,2,3, repre-
sent the number of processes in stage i of the approximate
network. The number of processes in service in the sec-
ond stage is given by

The function S (K , n,) describes the contention caused
by n, processes competing for K SP's. Each of the n,
processes within the second stage is considered to have
requested one of the K SP's with equal probability;
S (K , n,) is the expected number of busy SP's which
have been requested by at least one process. We origin-
ally derived S (K , n,) by first finding an expression
P (K , n,, m) for the probability that exactly m SP's are
busy. We then found the expected number of busy SP's
from the sum 2, m P (K , n,, m). The following argu-
ment yields the same result for S (K , n,) in a simpler and
intuitive manner.

Assume that n2 processes are in the K SP stages in the
original model. For a given stage, the probability that the
stage is idle is

Hence, with probability

the stage is busy and, therefore, the expected number of
busy stages is

K [1 - (F Y I .
For a given N , M, and K and a given strategy, the state

definition for the approximate network is the pair (n , ,
n,). The remaining N - n , - n, processes are in the third
stage (I / O activity). The allocation of processors to
stages 1 and 2 and the number of processes in service
in each stage is determined by (n,, n,) and the strategy.

The service times of a process in stages 1, 2 , and 3 are
still assumed to be independent, identically distributed,
exponential random variables with means A . M , B . M ,
and C , respectively.

Because of the greatly reduced number of states, it is
possible to analyze the behavior of this approximate
model using standard Markov techniques. The equi-
librium equations can be constructed using the rates of
transition from one state to another. The Appendix con-
tains the state transition rates for the two strategies, and
the equilibrium equations can be solved for the stationary
state probabilities.

The numerical studies which follow compare the wait
and switch strategies in terms of throughput (processes
completed per unit time) of the respective systems. The
performance measure is defined as the ratio of the ob-
served throughput to the maximum throughput obtained
when all processors are 100 percent utilized, and this is
taken to be the ratio of the expected number of pro-
cessors doing useful work to the total number of pro-
cessors in the system (M) . These values are easily com-
puted from the probabilities of the states and the number
of processors doing useful work in each state.

Let p,,,, be the stationary probability that the system
is in state (n,, n 2) . For the switch strategy, if the system
is in state (nl, n,) , then min[M, S (K , n,)] processors are
busy in stage 2 and min[n,, M - min[M, S (K , n ,)]] are
busy in stage 1. Thus, the throughput for the switch
strategy is

1
T , = E 2 ~,,,~{min[M, S (K , n2) l

(nl,nZ)

+ min[n,, M - min[M, S (K , n ,)]] } . (6)

For the wait strategy, although n2 processors are in
stage 2, only S (K , n,) are doing useful work. Of the
M - n,,processors in stage 1, min[n,, M - n,] are busy.
Hence, the throughput for the wait strategy is

T W =& 2 P,,,,{S(K, n,) + min[n,, M - n z l } . (7)
(nl,n2)

Results

Comparison of throughputs
For N 5 M , processes do not have to wait for processors
in either strategy and we therefore expect T , and T , to
be identical. On the other hand, if N > M , the switch
strategy should yield a higher throughput because pro-
cessors encountering locks can be reassigned to other
processes.

An APL.program was written to compute the stationary
state probabilities and the throughput for each strategy.
A number of runs were made with different combinations
of the parameters K , N , M , A , B , C , and pIl0. Figure 2 3

SERIAL PROGRA

1 .a

.9

.8

.I

.6

.5

.4

.3

.2

.1

1 .a

.9

.8

.I

.6

.5

.4

.3

c

2 c
09 .2

I I I I I I 1

Switch

Wait

A = .5, B = 1.5, C = 2,
P I / O = . l , K = 2

1 I I I
I 1 2 3 4 5 6 1 8

Jumber of processes

1 .a

.9

.8

. I

.6

.5

.4

.3

I

2

b .1
e
r y 2

c

l

Figure 2 Wait- and switch-strategy throughputs as functions of several parameters.

- Switch "_ Wait

A = 1.5, B = .5, C = 2,
pI;o = . I , K = 1

I I I I I I I
I 1 2 3 4 5 6 1

rTumber of processes

shows the variation of throughput with the number of N , and approaches a constant value, T,,. This is be-
processes for various combinations of the other param- cause with the wait strategy, once N is large enough so
eters. The general shape of the curves is as predicted that nl + n2 is always greater than M , increasing N has
above. no effect because all processors are already allocated to

Asymptotic behavior of the wait strategy We now derive an expression for Twm for those situa-
After a certain point the throughput of the wait strategy tions in which the 1 / 0 stage is not the system bottle-
becomes independent of the level of multiprogramming, neck. As N becomes large, the second stage of the model

processes.

306

KING, SMITH AND WLADAWSKY I B M J. RES. DEVELOP.

can be analyzed as a single server whose rate of arrival
and rate of service are functions of the number of pro-
cesses waiting or in service. The stationary state proba-
bilities for such systems can be computed [6] and these
give us the probabilities p (n ,) that we have exactly
n2 processes in the second stage [3]. Using these proba-
bilities one can form the following expression for the
asymptotic throughput of the wait strategy:

="(1+$)[1- M (- - ')p p (n ,)] . (9)

M n2=0 K

If the I / 0 stage is the system bottleneck, the throughput
will be much more sensitive to the service time of the
1 /0 stage than to the scheduling strategy.

Asymptotic behavior of the switch strategy
One would expect that the switch strategy should be
capable of taking advantage of additional processes since
processors encountering locks can be switched to other
processes. However, we verify in this section that there
are cases in which the throughput of the switch strategy
saturates at a value less than one. An example of circum-
stances leading to this property is the case when K < M
and all processes are waiting or executing SP's.

The following simple argument yields an upper bound
on the steady state throughput. Let n,* and n,* be the
average numbers of busy processors doing useful work
in stages 1 and 2, respectively. From the definition of
throughput given above, the average throughput is

T =
nl* + n2*

M '

For either strategy in the steady state, the average rate
of processes completing the first stage must equal the
average rate of processes completing the second stage;
i.e.,

This makes it possible to express the throughput in terms
of only n,* or n,*:

For both strategies,

6 -

5 -

4 -

3 -

2 -

1 -

0
"

0

r

(a)

Switch

Wait "_
M = :

M = 2 4

I I I 1 I I I

(b)

Switch

Wait "_ M = 4 /
A = B = 1 , c=8,

/~"-----

I I I 1 1 I I
1 2 3 4 5 6 1

Jumber of processes

Figure 3 Number of processes in (a) stage 1 and (b) stage 2
as functions of the total number of processes.

Our numerical results (Fig. 2) indeed show that as N
becomes large, T , asymptotically approaches

Thus, we have the following upper bound on T :

as predicted above.

SERIAL PROGRAI

c a e

e
c
e0

1 .o
”-” ”

2 4 6 8 10 12

I Number of serial programs

Figure 4 Effect of the number of serial programs on the
throughput.

Figure 5 Interdependence of the numbers of processes, pro-
cessors, and serial programs for a constant throughput.

v1

P
B
e e
I

SMITH A .ND WLADAWSKY

Comparing equations (9) and (15) , one notes that

and therefore Twm is strictly less than the general through-
put upper bound derived in this section.

Discussion
The internal behavior of the two strategies is shown in
Fig. 3 as the expected number of processes in stages 1
and 2 as functions of N . The curves for M = 3 and 4
depict the behavior when the SP’s limit the throughput
of the system. In these cases, with the switch strategy,
n, remains small and n2 increases as N is increased. This
further explains the behavior of the asymptotic through-
put of the switch strategy. As N increases, all the addi-
tional processes end up in stage 2 , waiting for access to
SP’s, and n, remains too small to provide sufficient work
for the available processors. With the wait strategy, the
behavior is just the opposite; n, increases with N while
n2 remains small. I t is interesting that the observed
throughputs with the two strategies are similar, even
though the internal behavior is markedly different.

Figure 4 plots the throughputs of the two strategies as
functions of the number of SP’s, with the other param-
eters fixed. The throughputs of both strategies increase
rapidly as K is increased, and the difference between the
wait and the idealized switch strategies decreases as K
is increased. When comparing the relative performances
of the two strategies, it must be remembered that we are
considering an idealized switch strategy with no switch-
ing overhead. In a situation with a certain amount of
switching overhead, the switch strategy would not be
better unless the superiority of the idealized switch
strategy is more than enough to compensate for the over-
head of switching.

It has been observed in multiprocessor systems that
as one increases the number of processors while keeping
the total processing power constant, it is also necessary
to increase the level of multiprogramming in order to
keep the overall throughput constant. Figure 5 shows
how this effect was present in the behavior of our model.
It plots combinations of N and M which yield a through-
put of 0.6 for various values of K . Only the switch strat-
egy is considered. The curve for K = 1000 is effectively
the case where there is no contention for SP’s because
the probability of two processes concurrently trying to
execute the same SP is almost zero. As K becomes small-
er, it takes a higher level of multiprogramming (larger N)
to achieve the same throughput because additional pro-
cesses are needed to compensate for those waiting for
access to SP’s. For K = 1, there exist values of M for
which 0.6 throughput is unattainable. This occurs be-
cause for these values of M and K , the upper bound on
the throughput is less than 0.6.

IBM J. RES. DEVELOP.

Appendix
The following derivation gives the rates of transition
(probabilities of a transition per unit time) between the
states of the model shown in Fig. 1 (b). These are the
rates used to solve for the stationary state probabilities
for the model for the wait and switch strategies.

In general, when a transition can occur from stage i to
j when the model is in statek, the rate at which this transi-
tion occurs is given by

probability that a process
leaving i goes to j 1

number of processes in service
x [in stage i in state k 1
+ [mean service time

of stage i 1 .
There are four types of transitions that can occur. The
rates at which these transitions occur differ for the two
strategies. The switch strategy is considered first.

Transition 1: (n, , n ,) to (n, + 1 , n,)
This transition occurs when a process completes an I / 0
operation and moves from stage 3 to stage 1. It can occur
whenever n, + n, < N . The rate at which it occurs is
constant,

Transition 2 : (n , , n ,) to (n l , n, - I)
This occurs when a process completes stage 2 and moves
to stage 3, i.e., chooses with fixed probability pI,o to per-
form an 1 / 0 operation. It can occur whenever n, > 0.
Since there are min[M, S (K , n ,)] processes executing
in stage 2, the rate at which this transition occurs is

Transition 3: (n, , n ,) to (n, + 1 , n, - 1)
This occurs when a process completes stage 2 and moves
to stage 1 ; i.e., it chooses not to dt, an 1 /0 operation. I t
can occur whenever n, > 0 and the rate is

(1 -p1,,,) min [M , S (K , n ,) l
BM

r3 = (A41

Transition 4: (n , , n ,) to (n , - 1, n, + 1) This occurs
when a process completes stage 1 and moves to stage 2.
In order for this transition to occur, there must be pro-
cesses in stage 1, n, > 0, and processors available, M
- min[M, S (K , n ,)] > 0. The number of executing pro-

JULY 1974

cesses in stage 1 is the minimum of the number of pro-
cesses and processors, which determines the rate of this
transition as

min [n , , M - min [M , S (K , n ,)]]
r4 = AM (A5 1
This defines the set of possible state transitions which
can occur with the switch strategy, and the rates at which
they occur.

For the wait strategy, the transitions are very similar
but have the restriction that in every case n, 5 M . This
follows from the fact that processors and processes wait
together for SP’s in the second stage. The number of
executing processes in stage 2 is S (K , n ,) , and since
S(K,n,)5n,5M,min[M,S(K,n,)]=S(K,n,).Thus
the rates for transitions 1 , 2 , and 3 with the wait strategy
are the same as with the switch strategy. For transition
4 from (n l , n ,) to (n , - 1 , n, + 1), the rates are different.
With the wait strategy the number of processors available
is M - n,, and this makes the rate

min [n, , M - n,]
A M

r4 = 646

References
1. P. J. Denning, “Third Generation Computer Systems,”

ACMCompuringSurveys3,175 (1971).
2. E. G. Coffman and P. J . Denning, Operating Sysrems

Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1973.

3. W. F. King 111, S. E. Smith and I. Wladawsky, “On the
Effects of Serial Programs in Multiprocessing Systems,”
Research Report RC 4136, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York 10598,
November 1972.

4. W. J . Gordon and G. F. Newell, “Closed Queuing Systems
With Exponential Servers,” Operations Research 15, 254
(1967).

5. R. A. Howard, Dynamic Programming and Markov Pro-
cesses, M.I.T. Press, Cambridge, MA, 1960.

6. D. R. Cox and W. L. Smith, Queues, Methuen & Co., Ltd.,
London, 196 1 .

Received March 8 , 1974

W . F . King’s current address is the IBM Research
Laboratory, Monterey and Cottle Roads, San Jose,
California 95114; S. E. Smith and I . Wladawsky are
located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598.

3

SERIAL PROGRA

