
W. F. King Ill 
S. E. Smith 
1. Wladawsky 

Effects of Serial Programs in Multiprocessing  Systems 

Abstract: A model of a  multiprocessing,  multiprogramming computer  system with serially  reusable  programs was developed to study 
the  effect of serial programs  on system performance. Two strategies for implementing serially reusable  programs were investigated, 
a wait strategy in which the  processor waits until the  serial  program is available, and a switch strategy, in which the processor is freed 
to  do  other work.  Relative  performances and  asymptotic conditions as functions of the  number of processors,  processes, serially reus- 
able programs, and the  fraction of time each  process  executes serially reusable  programs  were  obtained. Quantitative  results  are pre- 
sented showing that  the switch strategy is superior. The wait  strategy causes quick saturation when the  number of processes is increased. 

Introduction 
In  any multiprocessing, multiprogramming system [ 11 
there  are  parts of the operating system  code which can- 
not  be executed  concurrently by more  than one pro- 
cessor, e.g., the mechanism that assigns processors  to 
tasks  and  the mechanism that assigns page frames  to 
tasks. This  paper  studies  the effect of these serially  re- 
usable  sections of code on the performance of multi- 
processor systems. 

To maximize the  amount of concurrency possible with- 
in the operating system,  the  entire system can be  parti- 
tioned into a collection of component programs. Each 
portion of the  system which must be  executed serially is 
made a separate program.  We denote  these  as serial pro- 
grams (SP).  The paging algorithm and the  dispatcher  or 
scheduler  are  examples of serial  programs  found in typi- 
cal  multiprocessor  operating systems. Programs that  can 
be executed  concurrently by more  than one  processor 
are  denoted  as concurrent  programs (CP).  

Two fundamentally different strategies are available 
to  enforce  the serial  execution (one  processor  at a time) 
of the serial  programs. First, we assume  that a lock or 
semaphore is associated with each serial  program. 

1. A process [ 21 attempting to  execute  an  SP will test  the 
lock. If the lock is not set,  then  the  process will set  it, 
execute  the  SP,  and finally reset  the lock. If the lock 
was  set,  the  process and  its associated  processor will 
wait for  the lock to be  reset. Because  the  processor 
waits with the  process, this  strategy is called the wait 
strategy. 

2. Same  as 1 except  that if the lock was set,  the  process 
waits for  the lock but  the  processor is freed to  do  other 
available work. Since  the  processor  is switched  upon 
encountering a set  lock, this  strategy is called the 
switch strategy. 

It is clear that in the wait strategy,  the time a process 
is waiting for  an SP  is wasted  time for  the associated  pro- 
cessor. With the switch strategy, this  wasted  time can be 
avoided by switching the  processor  to  another  process, 
if there is another  process  that is ready  to continue. The 
extent  to which the switch strategy is superior (in terms 
of throughput)  to  the wait strategy depends  on  the avail- 
ability of ready  processes  and  the  overhead in switching 
processors among processes.  The availability of ready 
processes  depends  on  the level of multiprogramming and 
the  characteristics of the  processes, e.g., frequency of 
1 / 0  operations  and mean time  between page faults. The 
process-switching overhead is very much machine de- 
pendent,  and we assume  an idealized  switch  strategy in 
which switching can be  accomplished in zero time. This 
is taken  into  account when we compare  the performance 
of the two  strategies. 

In  the remainder of this paper we investigate and com- 
pare  the throughput of systems using either  the wait or 
the switch strategy. A simplified model of multiprocess- 
ing, multiprogramming systems is developed  and ana- 
lyzed using standard  Markov analysis  techniques. Param- 
eters of the model include the number of processors,  the 
number of SP’s, the level of multiprogramming, and  the 
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Figure 1 (a) Model of a multiprocessing system with  serial 
programs; (b)  approximate model of the same system. 

times processes spend in different parts of the system. 
The throughputs  with the two  strategies are  compared  as 
functions of these  parameters. A more detailed  descrip- 
tion of this work can  be found in an earlier  internal re- 
port [ 31. 

Model 
Consider  an operating system with K SP’s. Processes 
in the  system  can  be in one of five types of activities: 

1. Executing an  SP. 
2. Executing  a CP. 
3. Waiting for  an  SP. 
4. Waiting for  an available processor. 
5. Performing an I / 0 operation. 

We  assume  there  are a fixed number of processes  and 
processors in the system. When a process  completes  its 
action,  we  assume  that  another  takes  its place  immediate- 
ly. Figure 1 depicts  the flow of processes among the ac- 
tivities. After a process  completes a CP, it selects an  SP 
to  execute. All SP’s  are equally likely to  be  selected, i.e., 
the probability of selecting  a  given SP is 1 / K .  If the se- 
lected SP is busy, then the  process  must wait until it be- 
comes available. After completing the  SP,  the  process 
either  attempts  to  execute  another CP  or initiates an 1 /0  
operation  (with 
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robability). After complet- 

ing an I / O  operation, a process  attempts  to  execute a 
CP.  Any number of CP’s can be  executed simultaneously 
if processors  are available. 

The allocation of processors  depends  on  the particular 
strategy. For  the wait strategy, a processor  accompanies 
a process  from a CP  to an SP and remains with the pro- 
cess until  completion of the  SP.  It is then  freed  and can 
be  assigned to  another  process  to  execute a CP. 

For  the switch strategy, if the SP is  busy,  the  processor 
is freed  and  does  not wait with the  process. If the  SP is 
not  busy,  the  processor  remains with the  process  and 
begins  executing the  SP.  After completion of an  SP,  the 
processor is assigned to  the  next  process waiting for  that 
SP, if any;  otherwise,  the  processor is available to  be  as- 
signed to  another  process  to  execute a CP.  This implies 
that  any  SP which has waiting processes  also  has  an  as- 
signed processor.  The  assumption underlying  this  alloca- 
tion strategy  is  that  the SP’s are potential system bottle- 
necks  and  hence should have higher priorities than CP’s. 

The following parameters  are used to characterize  the 
model: 

N = number of processes 
M = number of processors 
K = number of SP’s 
A . M = average time to execute a C P  
B . M = average time to execute  an  SP 
C = average time to perform an 1/0 operation 
prlo = probability that  an 1 / 0  operation follows an  SP. 

The execution times  contain  the  factor M in order  to 
have  the total  processing power remain constant  as M 
increases.  We assume  that  each  processor in an  M-pro- 
cessor  system  operates  at 1 / M  times the  speed of a 
single processor in a uni-processor system. As a result, 
the execution  times in an  M-processor  system  are M 
times  what  they would be in a system with one  fast pro- 
cessor. 

Markov  analysis 
To obtain analytical  solutions for  the behavior of the mod- 
el and in order to make  the analysis tractable we found it 
necessary  to  make  the usual assumption  that  the times to 
execute a CP,  an  SP,  and  an 1 / 0  operation  are  each 
independent, identically distributed,  random variables 
with exponential distributions with  mean  values A . M ,  
B M ,  and C ,  respectively. The model of the previous 
section then becomes a closed  queuing network with 
K + 2 stages  (and  queues).  The queuing network  is  as 
shown in Fig. 1 (a). The  state of the  system is a ( K  + 2)-  
tuple (nl‘, n,’; . ., nK+,’), where n,’ is  the  number of pro- 
cesses in stage i ,  either waiting or in service. This queuing 
network differs from  others which have  been investigated 
[4] in that  the  number of processors  at  each  stage is not 
fixed. One could  write the  set of equilibrium rate equa- 
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tions  and  solve them for  the  stationary  state probabilities 
[ 5 ] .  However,  the large number of states involved makes 
this  approach impractical except  for  very small values of 
K and N .  

To reduce  the  number of states  we  approximate  the 
queuing  network of Fig. 1 (a) by the  three-state  network 
shown in Fig. 1 (b).  The first and third stages  are  the 
same  as in the original network. The  second  stage approx- 
imates  the behavior of the K SP's in the original model. 
I t  is a multiserver stage in which the  number of processes 
in service  is given  by a function of K ,  M ,  and  the  number 
of processes in the  second stage. Let ni,  i = 1,2,3,  repre- 
sent  the number of processes in stage i of the  approximate 
network. The  number of processes in service in the sec- 
ond  stage  is given  by 

The function S ( K ,  n,) describes  the  contention  caused 
by n, processes competing for K SP's. Each of the n, 
processes within the second  stage is considered to  have 
requested  one of the K SP's with equal probability; 
S ( K ,  n,)  is  the  expected  number of busy SP's which 
have been requested by at  least  one  process. We origin- 
ally derived S ( K ,  n,) by first finding an  expression 
P ( K ,  n,, m )  for  the probability that  exactly m SP's are 
busy. We  then  found  the  expected  number of busy SP's 
from the  sum 2, m P ( K ,  n,, m).  The following argu- 
ment yields the  same result for S (  K ,  n,) in a simpler and 
intuitive  manner. 

Assume  that n2 processes  are in the K SP stages in the 
original model. For a given stage,  the probability that  the 
stage is idle is 

Hence, with  probability 

the  stage  is busy and,  therefore,  the  expected  number of 
busy stages is 

K [ 1 -  ( F Y I .  
For a given N ,  M, and K and a given strategy,  the  state 

definition for the  approximate  network  is  the pair ( n , ,  
n,). The remaining N - n ,  - n, processes  are in the third 
stage ( I / O  activity).  The allocation of processors  to 
stages 1 and 2 and  the number of processes in service 
in each stage is determined by (n,, n,) and  the strategy. 

The  service times of a process in stages  1, 2 ,  and 3 are 
still assumed  to  be  independent, identically distributed, 
exponential random variables with means A . M ,  B . M ,  
and C ,  respectively. 

Because of the greatly reduced  number of states, it is 
possible to  analyze  the  behavior of this approximate 
model using standard  Markov techniques. The equi- 
librium equations  can  be  constructed using the  rates of 
transition from  one  state  to  another.  The  Appendix con- 
tains the  state  transition  rates  for  the two strategies,  and 
the equilibrium equations  can  be solved for  the  stationary 
state probabilities. 

The numerical studies which  follow compare  the wait 
and switch  strategies in terms of throughput (processes 
completed per unit time) of the  respective systems. The 
performance  measure is defined as  the  ratio of the ob- 
served throughput to  the maximum throughput obtained 
when all processors  are  100  percent utilized, and  this is 
taken  to  be  the  ratio of the  expected  number of pro- 
cessors doing  useful  work to  the total number of pro- 
cessors in the  system ( M ) .  These  values  are easily  com- 
puted  from  the probabilities of the  states  and  the  number 
of processors doing  useful work in each  state. 

Let p,,,, be  the  stationary probability that  the  system 
is in state (n,, n 2 ) .  For  the switch strategy, if the system 
is in state (nl, n,) ,  then  min[M, S ( K ,  n,)] processors  are 
busy in stage  2 and min[n,, M - min[M, S ( K ,  n , ) ] ]  are 
busy in stage 1. Thus,  the  throughput  for  the switch 
strategy is 

1 
T ,  = E 2 ~,,,~{min[M, S ( K ,  n2) l  

(nl,nZ) 

+ min[n,, M - min[M, S ( K ,  n , ) ] ] } .  (6) 

For  the wait strategy, although n2 processors  are in 
stage 2, only S ( K ,  n,)  are doing  useful  work.  Of the 
M - n,,processors in stage 1, min[n,, M - n,] are busy. 
Hence,  the throughput for  the wait strategy is 

T W =& 2 P,,,,{S(K, n,) + min[n,, M -  n z l } .  (7) 
(nl,n2) 

Results 

Comparison of throughputs 
For N 5 M ,  processes  do not have  to wait for  processors 
in either strategy and  we  therefore  expect T ,  and T ,  to 
be  identical. On  the  other hand, if N > M ,  the switch 
strategy  should yield a higher  throughput because pro- 
cessors encountering locks  can be  reassigned to  other 
processes. 

An APL.program was  written to  compute  the  stationary 
state probabilities  and the throughput for  each strategy. 
A number of runs were made with  different combinations 
of the  parameters K ,  N ,  M ,  A ,  B ,  C ,  and pIl0. Figure 2 3 
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Figure 2 Wait-  and switch-strategy throughputs as functions of several parameters. 
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shows  the variation of throughput with the  number of N ,  and approaches a constant value, T,,. This  is be- 
processes for various  combinations of the  other param- cause with the wait strategy,  once N is large  enough so 
eters.  The general shape of the  curves is as predicted that nl + n2 is always  greater  than M ,  increasing N has 
above. no effect because all processors  are already  allocated to 

Asymptotic  behavior of the wait strategy We now derive  an  expression  for Twm for  those situa- 
After a certain  point  the  throughput of the wait strategy tions in which the 1 / 0  stage is not the  system bottle- 
becomes  independent of the level of multiprogramming, neck. As N becomes large, the  second  stage of the model 

processes. 
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can be  analyzed as a single server whose rate of arrival 
and  rate of service  are  functions of the  number of pro- 
cesses waiting or in service. The  stationary  state proba- 
bilities for  such  systems  can  be  computed [6] and  these 
give us the probabilities p ( n , )  that we have  exactly 
n2 processes in the second stage [3]. Using these proba- 
bilities one  can  form  the following expression  for  the 
asymptotic  throughput of the wait strategy: 

="(1+$)[1- M (- - ')p p ( n , ) ] .  (9) 

M n2=0 K 

If the I / 0 stage is the system bottleneck,  the throughput 
will be much more sensitive to  the service  time of the 
1 /0  stage than to  the scheduling  strategy. 

Asymptotic  behavior of the  switch  strategy 
One would expect  that  the switch strategy should  be 
capable of taking advantage of additional processes since 
processors encountering locks  can be  switched to  other 
processes.  However,  we verify in this  section that  there 
are  cases in which the throughput of the switch  strategy 
saturates  at a  value less than one.  An  example of circum- 
stances leading to this property is the  case when K < M 
and all processes  are waiting or executing SP's. 

The following simple  argument  yields an  upper bound 
on  the  steady  state throughput. Let n,* and n,* be the 
average  numbers of busy  processors doing  useful  work 
in stages 1 and 2, respectively. From  the definition of 
throughput given above,  the  average throughput is 

T =  
nl* + n2* 

M '  

For  either strategy in the  steady  state,  the  average  rate 
of processes completing the first stage  must equal the 
average  rate of processes completing the  second stage; 
i.e., 

This  makes it possible to  express  the  throughput in terms 
of only n,* or n,*: 

For both  strategies, 
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Figure 3 Number of processes in (a)  stage 1 and (b) stage 2 
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Our numerical results  (Fig. 2)  indeed show  that  as N 
becomes large, T ,  asymptotically approaches 

Thus,  we  have  the following upper bound on T :  

as predicted above. 
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Comparing  equations (9) and ( 15) ,  one  notes  that 

and  therefore Twm is strictly less  than  the general  through- 
put upper bound derived in this  section. 

Discussion 
The internal behavior of the  two strategies is shown in 
Fig. 3 as  the  expected  number of processes in stages 1 
and 2 as  functions of N .  The  curves  for M = 3 and 4 
depict  the behavior when  the SP’s limit the  throughput 
of the  system.  In  these  cases, with the switch strategy, 
n, remains small and n2 increases  as N is increased. This 
further explains the  behavior of the  asymptotic through- 
put of the switch strategy. As N increases, all the addi- 
tional processes  end  up in stage 2 ,  waiting for  access  to 
SP’s, and n, remains too small to  provide sufficient work 
for  the available processors.  With  the wait strategy,  the 
behavior is just  the  opposite; n, increases with N while 
n2 remains small. I t  is interesting that  the  observed 
throughputs with the  two strategies are similar, even 
though the internal behavior is markedly different. 

Figure 4 plots the  throughputs of the  two  strategies  as 
functions of the  number of SP’s, with the  other param- 
eters fixed. The  throughputs of both strategies increase 
rapidly as K is increased, and the difference between  the 
wait and  the idealized  switch strategies  decreases  as K 
is increased. When comparing the relative performances 
of the  two  strategies, it must  be  remembered  that  we  are 
considering an idealized  switch strategy with no switch- 
ing overhead.  In a situation  with  a certain  amount of 
switching overhead,  the switch  strategy would not  be 
better  unless  the superiority of the idealized  switch 
strategy is more  than enough to  compensate  for  the over- 
head of switching. 

It  has been observed in multiprocessor systems  that 
as  one  increases  the  number of processors while keeping 
the  total processing power  constant, it is  also  necessary 
to  increase  the level of multiprogramming in order  to 
keep  the overall throughput  constant.  Figure 5 shows 
how this effect was present in the behavior of our model. 
It plots  combinations of N and M which yield a through- 
put of 0.6 for various  values of K .  Only the switch strat- 
egy is considered.  The  curve for K = 1000 is effectively 
the  case  where  there is no  contention  for SP’s because 
the probability of two  processes  concurrently trying to 
execute  the  same SP is  almost  zero. As K becomes small- 
er, it takes a higher  level of multiprogramming (larger N )  
to  achieve  the  same throughput because additional  pro- 
cesses  are  needed  to  compensate for those waiting for 
access  to SP’s. For K = 1, there  exist values of M for 
which 0.6 throughput is unattainable. This  occurs be- 
cause  for  these values of M and K ,  the  upper bound on 
the throughput is less  than 0.6. 
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Appendix 
The following derivation gives the  rates of transition 
(probabilities of a transition per unit time)  between  the 
states of the model shown in Fig. 1 (b).  These  are  the 
rates used to  solve  for  the  stationary  state probabilities 
for  the model for  the wait and switch  strategies. 

In  general, when a transition can  occur  from  stage i to 
j when the model is in statek,  the  rate  at which this  transi- 
tion occurs is given  by 

probability  that  a  process 
leaving i goes  to j 1 

number of processes in service 
x [ in stage i in state  k 1 
+ [  mean  service  time 

of stage  i 1 . 
There  are four types of transitions that  can  occur.  The 
rates  at which these  transitions  occur differ for  the two 
strategies. The switch  strategy is considered first. 

Transition 1: (n, ,   n , )   to   (n,  + 1 ,  n,)  
This transition occurs when a process  completes  an I / 0 
operation and moves  from stage 3 to  stage 1. It  can  occur 
whenever n, + n, < N .  The  rate  at which it occurs is 
constant, 

Transition 2 :  (n , ,   n , )   to   (n l ,  n, - I )  
This  occurs when a process  completes stage 2 and moves 
to stage 3, i.e., chooses with fixed probability pI,o to per- 
form  an 1 / 0  operation. It  can  occur  whenever n, > 0. 
Since  there  are min[M, S ( K ,   n , ) ]  processes executing 
in stage 2, the  rate  at which this  transition occurs is 

Transition 3: (n, ,   n , )   to   (n,  + 1 ,  n, - 1 ) 
This  occurs when a process  completes stage 2 and  moves 
to  stage 1 ;  i.e., it chooses not to dt, an 1 /0  operation. I t  
can  occur  whenever n, > 0 and  the  rate  is 

( 1  -p1,,,) min [ M ,   S ( K ,   n , ) l  
BM 

r3 = (A41 

Transition 4:  (n , ,   n , )   to   (n ,  - 1,  n, + 1 )  This  occurs 
when a process  completes stage 1 and moves to  stage 2.  
In  order  for this  transition to  occur,  there must be pro- 
cesses in stage 1, n, > 0, and  processors available, M 
- min[M, S ( K ,  n , ) ]  > 0. The  number of executing pro- 
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cesses in stage 1 is  the minimum of the number of pro- 
cesses  and  processors, which determines  the  rate of this 
transition as 

min [n , ,  M - min [ M ,   S ( K ,   n , ) ] ]  
r4 = AM (A5 1 
This defines the  set of possible state  transitions which 
can  occur with the switch strategy,  and  the  rates  at which 
they occur. 

For  the wait strategy,  the  transitions  are very  similar 
but  have  the  restriction  that in every  case n, 5 M .  This 
follows from  the  fact  that  processors  and  processes wait 
together  for SP’s in the second stage. The  number of 
executing processes in stage 2 is S ( K ,   n , ) ,  and  since 
S(K,n,)5n,5M,min[M,S(K,n,)]=S(K,n,).Thus 
the  rates  for  transitions 1 ,  2 ,  and 3 with the wait strategy 
are  the  same  as with the switch  strategy. For transition 
4 from (n l ,   n , )  to (n ,  - 1 ,  n, + 1 ), the  rates  are different. 
With the wait strategy  the number of processors available 
is M - n,, and this makes  the  rate 

min [n, ,   M - n,] 
A M  

r4 = 646 
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