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Abstract:

This article describes simple methods of generating many-variable test-case problems for heuristic logic minimization studies.

Covering problems and coloring problems are converted into Boolean functions that are useful test cases for minimization.

Introduction

There are many heuristic minimization procedures [1-4]
and, no doubt, many more are being developed. In the
evaluation of these heuristic Boolean minimization al-
gorithms, one of the important criteria is the degree of
minimality obtained. The degree of minimality, however,
can be determined only by minimizing examples for which
a minimum solution is known. As the number of input
variables increases, it becomes increasingly difficult to
find examples for which this minimum is known. For some
functions, such as symmetric functions, the minimum can
be calculated. However, most minimum solutions are
obtained by actually minimizing the function with an al-
ternate algorithm. In the following, we present two
methods of generating Boolean functions with a large
number of variables for which a minimum solution is
known or easily determined. The functions generated
are derived from the problems of selecting a minimum
cover for a covering table and for an incompatibility ta-
ble. By construction, any minimum solution for the de-
fined Boolean function yields a solution to the corre-
sponding covering problem.

Minimum cover of a covering table

Classical two-level Boolean minimization methods [5]
usually proceed through two steps. First, all prime impli-
cants of a function f are generated and a table of min-
terms (or vertices) covered by prime implicant is
formed. This table has one column for each minterm of
the function and one row for each prime implicant. Ta-
ble 1 shows an example of a covering table in which a 1
in row p, and column m; means that prime implicant p,
covers minterm m;.

SEPTEMBER 1974

For each covering table, a function g that describes the
possible groupings of the minterms of f can be defined.
Each variable in the defined function g represents a min-
term of f that must be covered. For example, the function
g that corresponds to the five-variable function in Table 1
has 12 variables corresponding to the 12 minterms of
f that must be covered. In general, the minterms of f
that must be covered are given by the m columns of the
covering table. The DON’T CARE minterms of the function
fare not included in the table or as variables of g because
they need not be covered and their effect on the genera-
tion of prime implicants has already been considered.
Since the function g is to describe the possible groupings
of the minterms of £, the conditions governing the min-
terms of f must be expressed as constraints on the vari-
ables of g. In order to define the constraints on the vari-
ables of g, the correspondence between the variables of g
and the minterms of f must be given. This correspondence
is established by considering a minterm of g, X, = x, - -~
x,,» as the characteristic vector of a set of minterms of f.
The order of the list of minterms of f will be taken as that
given by the columns of the covering table. For example,
in Table 1, X, = 100110000000 is the minterm of g that
corresponds to the three minterms of f, 00000, 00100,
and 10000. Thus, for X,,, a minterm of g, the correspond-
ing set of minterms of f is F (X,,) = {m,|x,= 1}; and for
F = {m}, a set of minterms of f, the corresponding min-
termof gis X, (F)=x, - x,, where x,= 1 if m; € F and
x; = 0 otherwise. The function g is defined to operate on
the characteristic vector of a set of minterms of f. The
value of g evaluated at the characteristic vector is de-
fined to be 0 if the corresponding set of minterms cannot
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Table 1 Covering table for a five-variable function f (Y- - - Y).

Prime
implicants
p; 00000 00001 00010 00100 10000

Minterms m;

10001 01010 10010 00111 01111 10111 11111

X0X00 1 1 1
XX001 1

XX010 1

X0X11

XX111

X00XX 1 1 1 1

DON’T CARE minterms (¥, **y,): 0001101001 10100 10011 11001 11010

be combined, 1 if the set contains a single minterm, and
DON'T CARE if the set can be combined. It will be shown
that the number of implicants in the minimum represen-
tation of g gives the number of implicants in the minimum
representation of f.

The definition of g requires that the set of minterms 7
={8;0, " 8,,[l=i=m;8,=0,i+j;8,=1} be mapped
to 1. If there were no further restrictions, the minimum
representation of g would map all minterms to 1 which
corresponds to covering the entire space with one prime
implicant. However, the rows of the table in Table 1
give the maximal sets of minterms of f that can be com-
bined. These sets of minterms and all sets contained in
them correspond to minterms of g that may be mapped
to 1. Since all of these minterms need not be mapped to
1, they provide many DON’T CARE conditions. Thus, if D
is the space formed by replacing the 1's in the table by
DON’T CARE’S, the DON’T CARE space of g is given as DC
= D - [. The DON’T CARE space can be quite large and will
always include the minterm 0 - - - 0. The regions I, D, and
DC for the function g defined by Table 1 are given in
Table 2. The covering problem thus becomes the prob-
lem of finding a minimum representation for the function
g which maps the set of minterms / to 1 and has a DON'T
CARE space DC.

The covering function g is an expanded representation
of the function f. However, before discussing the rela-
tion between the minimum realizations of the two func-
tions, the nature of the minimum realization of g will be
considered.

Proposition 1 The minterms of f which correspond to
an implicant of g are contained in one prime implicant

of f.

Proof Let m, and m, be two minterms contained in a
single implicant of g. Assume that the 1’s in m, and m,
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correspond to minterms of f that are not contained in
any one prime implicant of f. It follows from the defini-
tion of an implicant that (m, + m,), the bit-wise oR of m,
and m,, is also in the implicant of g. However, if the
I’s in m, and m, are never mapped to the same prime
implicant of f, the 1’s in (m, + m,) will never be con-
tained in a prime implicant of f. But, since (m, + m,) is
in an implicant of g, the 1’s in (m, + m,) map to min-
terms of f that can be combined and must therefore map
into a prime implicant of f. This contradiction proves
the proposition. The preceding proposition is useful in
proving the following proposition which describes the
prime implicants of the new function g.

Proposition 2 If P=p p,- - p,, is a prime implicant of g,
then p, € {0, X}, 1 = i< m, where X means DON’T CARE.

Proof Assume P = p,p, - p,, is a prime implicant of
gand p;=1 Let Q= {ilp; # 0}. By Proposition 1, the
1’s in P correspond to minterms of f that are contained
in one prime implicant of f. Thus, there exists an impli-
cant E=e,e, - e, in D such that ;= X, i € Q. Because
D= DC + I, every minterm in E is either mapped to 1 or
is DON'T CARE, which means that none is required to be
mapped to 0. Therefore, the minterms in P’ =pp,- - 2
-+ p,, are either mapped to 1 or are DON’T CARE, and P
can be enlarged to P"=p,p,---p;, ,Xp;.," P, This con-
tradicts the hypothesis that P is a prime implicant and
proves the proposition.

The above proposition allows us to establish a map-
ping from the prime implicants of g into implicants of f.
Each prime implicant of g will map into the implicant of
f that contains all those minterms that correspond to X’s
in the prime implicant of g. In addition, it is possible to
define a mapping from the prime implicatns of f into im-
plicants of g that contain only 0’s and X’s. Each variable
in the implicant of g will be a 0 or an X if the corre-
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sponding minterm is absent or present respectively in
the prime implicant of . The nature of these mappings is
further described by the following proposition.

Proposition 3 There is a one-to-one correspondence
between the prime implicants of f and the prime impli-
cants of g.

Proof Let p be a prime implicant of f. Assume that the
minterms of p map to an implicant of g that is not prime.
Then, there must be another minterm in g that can be
added to the set. By Proposition 1, this larger set must
map into a prime implicant of f which contradicts the
hypothesis that p is a prime implicant. Conversely if the
minterms G of P a prime implicant of g do not form a
prime implicant of f, they must by Proposition 1 be con-
tained in a prime implicant. The set G can therefore be
expanded which contradicts the hypothesis that P is
prime, and thus the proposition follows.

Since a minimum cover of a function can always be
expanded into a prime implicant cover, it follows from
Proposition 3 that minimum covers of f and g should
have the same number of implicants. Thus if the prime
implicants of a Boolean function f are generated and
covered by one algorithm, the Boolean function g can
then be minimized by another algorithm. Although the
second function has the same number of prime impli-
cants, the number of variables and DON’T CARE conditions
can be vastly different. Thus examples constructed in
this manner should be useful in determining if a heuristic
minimization program uses DON'T CARE conditions ef-
fectively. Table 3 shows minimum realizations for the
five-variable function f and the 12-variable expanded
function g. Using Table 1 and the mapping described
above, the correspondence between the two solutions is
easily seen.

Although the discussion above dealt with a prime im-
plicant covering table, the method can be applied to a
larger class of problems. The essential information pro-
vided by the table is the compatibility of the items to be
covered. Thus any covering table in which the columns
correspond to the items to be covered and the rows cor-
respond to all collections that can be covered simulta-
neously may be used as a test example for a minimiza-
tion technique provided that a minimum cover is sepa-
rately calculated by some other method.

Minimum cover of an incompatibility table

The four-color problem has received considerable atten-
tion in the literature [6, 7]. In simple terms, this prob-
lem is stated as follows: Find the minimum number of
colors necessary to color a map so as to avoid identical
colors in lineally contiguous areas. This problem has
come to be known as the four-color problem since it has
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Table 2 Definition of g, the 12-variable expanded function that

corresponds to the five-variable function, f.

1
(X, X,,)

DC
(X, X,,)

1000000060000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
400000000100
000000000010
000000000001

a) The oN set of g.

D
(X, X,)

X00XX0000000
0X000X000000
00X000XX0000
00000000X0X0
00000000XXXX
XXX0XX0X0000

b) The implicants of
g that correspond
to the prime
implicants of f.

000000001001
000000000110
000000001010
0000000011Xx0
00000000X101
000110000000
001000100000
00000000XX11
1001X0000000
00X000110000
010001000000
100001000000
001000010000
100000010000
001010000000
100010000000
011000000000
11000X000000
X1X000010000
X1X010000000
1X10X00X0000
XX1001000000
XXX011000000
XXX010010000
000000000000
XXX0X1010000

c) The DON'T CARE
space of g.

Table 3 The minimum representations of the five-variable
function f and the 12-variable expanded function g.

(Y, - Y,) (X, X,,)
X0Xx00 X00XX0000000
XX010 00X000XX0000
XX111 00000000XXXX
X00XxXx XXX0XX0X0000

b) Minimum prime implicant
representation of g.

a) Minimum prime implicant
representation of f.

been proven possible with five colors, and there are
counter examples for three colors. To date, no map has
been found which cannot be colored with four colors.
For a given map we shall construct a Boolean function
h that has as many variables as there are regions in the
map. The function will be specified by defining those
minterms that the function must map to 1 and those min-
like-terms that the function must map to 0. The function
h may map to 1 any minterm whose 1’s correspond to
regions that can be colored with the same color. The
important property of the function is that any represen-
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Figure 1 A 14-region map.

Table 4 The coloring function, 4, for the map in Fig. 1.

1

H

10000000000000
01000000000000
00100000000000
00010000000000
00001000000000
00000100000000
00000010000000
00000001000000
00000000100000
00000000010000
00000000001000
00000000000100
00000000000010
00000000000001

a) The oN set of A.

1 1T XXXXXXXXXXXX
1 X1 XXXXXXXXXXX
1 XXXXXXXX1XXXX
I XXXXXXXXX1 XXX
X111 XXXXXXXXXXX
X1 XXXXXXX1XXXX
X1 XXXXXXXX1 XXX
XX1 XXXXXXX1 XXX
XXX11 XXXXXXXXX
XXX1 X1 XXXXXXXX
XXX1 XXXXX1 XXXX
XXXX11 XXXXXXXX
XXXX1 XXXX1 XXXX
XXXX1 XXXXXX1 XX
XXXXX1 XXX1 XXXX
XXXXX1 XXXXX1XX
XXXXXX11XXXXXX
XXXXXX1 X1 XXXXX
XXXXXX1XXX1 XXX
XXXXXX1 XXXX1XX
XXXXXXX11XXXXX
XXXXXXX1XX1 XXX
XXXXXXX1XXX1XX
XXXXXXXX1XX1 XX
XXXXXXXXX11XXX
XXXXXXXXX1 X1 XX
XXXXXXXXX1XX1X
XXXXXXXXXX11XX
XXXXXXXXXX1X1X
XXXXXXXXXX1XX1
XXXXXXXXXXX11X
XXXXXXXXXXX1 X1
XXXXXXXXXXXX11

b) The OFF set of A.

eSS,
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tation of 4 defines a coloring of the map which has as
many colors as the representation has implicants. Since
each variable represents a region of the map, and taking
the value 1 in the representation means that the region is
colored, it is necessary that all the minterms with ex-
actly one variable equal to 1 be mapped to 1.

Thus for a map with n regions, the coloring function 4
maps the set I = {8,8,,---8,,[1=i=n;8;=0,i+#j;
8, =1} to 1. Again if there were no constraints, the mini-
mum representation would map all minterms to 1 which
corresponds to coloring all vertices with the same color.
However, there are constraints which require that cer-
tain regions not be colored with the same color. In terms
of the function h, this means that minterms that contain
certain patterns of 1’s must be mapped to 0. For exam-
ple if regions 5 and 9 are contiguous, the bit-wise or of
8,8, -+ 8, with 8,8, --- 8,, must not be contained in
the representation or, alternatively, must not be mapped
to- 1 by h. Figure 1 shows a 14-region map that can’t be
colored with three colors. Table 4 defines the function %
by specifying /, the set of minterms that is mapped to 1,
and H, the set of terms that cannot be mapped to 1 and
must therefore be mapped to 0. The remaining space
(AVH) is the DON'T CARE space for this minimization
problem. The important property of the coloring function
is expressed in the following proposition.

Proposition 4 Every region corresponding to a variable
that has the value 1 or DON’T CARE in an implicant of the
coloring function may be colored with the same color.

Proof Let regions { and j, i < j, be adjacent and let § =
§.5,:- §, be an implicant of the coloring function with
§;and §; elements of {1, X}. If S, S; € {1, X}, then S, S,
o181 85 - S, is mapped to 1. How-
ever since i and j are adjacent, the implicant with §, =S,
=1and S, = X, k # i, j, is mapped to 0. Thus, the impli-
cant § cannot be mapped to 1, which proves the proposi-
tion.

It should be observed that for a solution that consists
of prime implicants, some variables may be allowed the
value 1 in more than one implicant. Because a region
can receive only one color, this requirement implies that
there is a choice in selecting the color of that region giv-
en that all other regions are colored. Each region that
can be assigned the value 1 in more than one implicant
can be assigned independently of the other regions as
long as each region is colored. The following proposition
describes the conditions under which the minimum rep-
resentation of & gives all possible grouping and hence
all possible colorings of a map.

Proposition 5 The minimum representation of the color-
ing function & provides all possible colorings of the cor-
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responding map if and only if the representation consists
of k essential prime implicants.

Proof From Proposition 4 it follows that coloring a re-
gion of a map is equivalent to assigning the value 1 to
the corresponding variable in one implicant of the repre-
sentation of A. If the minimum representation of 4 pro-
vides all colorings, then it must contain all prime impli-
cants of A. If in addition, this representation is minimal,
then all prime implicants are required. Thus, the solution
must consist of k essential prime implicants. Converse-
ly, assume that a coloring of the map corresponds to &k
implicants that are not contained in the set of k essential
prime implicants in the minimum representation of A.
Each of the k implicants can be expanded to a prime
implicant. This set of k prime implicants must differ
from the original set because they contain the k impli-
cants which are not contained in the original set. Thus
there exist two distinct solutions consisting of k prime
implicants, which contradicts the hypothesis that the
original set is essential.

The nature of the prime implicants of the coloring
function g are further described in the following proposi-
tion.

Proposition 6 If P = p,p, --* p, is a prime implicant of
the coloring function g, then p, € {0, X}, 1 =i=r, where
X means DON’T CARE.

Proof Assume p,p,- - - p, is a prime implicant of g and p,
= 1. Since the set of implicants that must be mapped to 0
do not intersect with p.p, - p, , 1 p,., " p,, they will
not intersect with p.p,---p;,_, 0 p,.,* " p,, i.e., if a set of
regions can be colored with the same color, then a sub-
set of the region can be colored with the same color.
Thus the prime implicant can be expanded to pp, -
P;_,XD;,," ** P,, a contradiction which proves the propo-
sition.

Figure 2 shows a prime implicant solution for the
function 4 defined in Table 4 and a resuitant coloring for
the map in Fig. 1.

The above procedure can be used to generate a limit-
less number of test problems with a known minimum
solution size of four cubes. These problems have a very
large DON’T CARE space, any desired number of ihput
variables, and are easily generated. If a toroid is avail-
able, six-color problems can be generated with the same
ease. The method presented is applicable to a class of
problems that is larger than just the coloring problems.
The approach is applicable to any problem in which it is
desired to group objects in sets such that no defined pair-
wise incompatibility is violated. In those cases, it would
be necessary to obtain a minimal set of covering groups
by an alternate method if the minimality of the minimiza-
tion algorithm were being tested.
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00X000X00X000X Red: 3,7,10, 14
0X0X0000000X00 Blue: 2,4,12
0000X000X0X000 Green: 59,11
X0000X0X0000X0 Yellow: 1,6,8,13

Figure 2 A minimum representation of 4 and a corresponding
coloring of the map in Figure 1.

Conclusions

In this paper we have presented two methods of generat-
ing Booledan functions having a large number of vari-
ables. In both cases, the number of implicants in the
minimum representation is known or is easily deter-
mined. The examples g’erierated should be useful as test
examples for heuristic minimization procedures since
they can be constructed with a large number of variables
and a relatively small minimum representation.

The minimization of the Boolean functions defined for
the covering and incompatibility tables is a method of
obtaining a minimum cover for any problem with these
constraints. For reasonable size problems, this approach
should be quite effective. ,

Although these examples were constructed as test
examples for heuristic Boolean minimization algorithms,
they provide information about some useful properties
of minimization algorithms. First, it is often convenient
to specify a function by specifying two of the three sets
£, £71(0), and £ (), i.e., the ON set, the OFF set,
and the DON’T CARE set. Thiis, the program should have
the ability to accept any two of these sets and still pro-
duce a minimum representation. In addition it should be
observed that proper handling of the DON"T CARE space
is necessary since neither of the above problems can be
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minimized properly if the DON’T CARE space is forced to
be either oN or oFF. Finally, the three sets are often ex-
pressed conveniently as implicants rather than as min-
terms. Thus, the program should be capable of accepting
this form of input, which should be faster, require less
storage space, and reduce the probability of errors.

The authors have used the described method fruitfuily
in evaluating various heuristic Boolean minimization
programs.
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