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Abstract: This  article  describes  simple  methods of generating  many-variable  test-case  problems for heuristic logic minimization studies. 
Covering  problems and coloring  problems are converted into Boolean functions that are useful test cases for minimization. 

Introduction 
There  are many heuristic minimization procedures [ 1-41 
and,  no  doubt, many more  are being developed. In  the 
evaluation of these  heuristic Boolean minimization al- 
gorithms, one of the  important  criteria is the  degree of 
minimality obtained. The  degree of minimality, however, 
can  be  determined  only  by minimizing examples for which 
a minimum solution is known. As the  number of input 
variables increases, it becomes increasingly difficult to 
find examples  for which  this minimum is known. For some 
functions, such  as symmetric  functions, the minimum can 
be  calculated. However, most minimum solutions are 
obtained  by  actually minimizing the function  with an al- 
ternate algorithm. In  the following, we  present  two 
methods of generating Boolean functions with a  large 
number of variables for which  a minimum solution is 
known or easily determined.  The functions generated 
are  derived from the problems of selecting a minimum 
cover  for a  covering table and for an incompatibility  ta- 
ble. By construction,  any minimum solution for  the  de- 
fined Boolean function yields a  solution to  the  corre- 
sponding  covering  problem. 

Minimum cover of a covering table 
Classical  two-level Boolean minimization methods [ 51 
usually proceed through two  steps.  First, all prime impli- 
cants of a function f are  generated  and a table of min- 
terms  (or  vertices)  covered by prime  implicant is 
formed. This table has  one column for  each minterm of 
the function  and one  row  for  each prime implicant. Ta- 
ble l shows  an example of a covering table in which a l 
in row pi and column mj means that prime  implicant pi 
covers minterm mj. 

For each covering  table,  a  function g that  describes  the 
possible  groupings of the minterms off can  be defined. 
Each variable in the defined function g represents a min- 
term offthat must be covered. For example, the function 
g that  corresponds  to  the five-variable function in Table 1 
has 12 variables  corresponding to  the 12 minterms of 
f that must  be covered.  In general, the minterms o f f  
that must be  covered  are given  by the m columns of the 
covering table. The DON’T CARE minterms of the function 
f a re  not included in the  table or as variables of g because 
they  need  not be  covered  and  their effect on  the  genera- 
tion of prime  implicants has already  been  considered. 
Since  the function g is to  describe  the possible  groupings 
of the minterms off,  the conditions  governing the min- 
terms off must  be expressed  as  constraints  on  the vari- 
ables of g. In  order  to define the  constraints  on  the vari- 
ables of g, the  correspondence between the variables of g 
and the minterms offmust  be given. This  correspondence 
is established by considering  a  minterm of g ,  X ,  = xl. . . 
x,, as  the  characteristic  vector of a set of minterms off. 
The  order of the list of minterms offwill  be  taken  as  that 
given by the columns of the covering  table. For example, 
in Table 1, X ,  = 1001 10000000 is the minterm of g that 
corresponds  to  the  three minterms off, 00000, 00100, 
and 10000. Thus,  for X, ,  a minterm of g, the  correspond- 
ing set of minterms off is F ( X , )  = {milxi  = l } ;  and for 
F = {mi}, a set of minterms off,  the corresponding min- 
termofgisX,(F)=xl...x,,wherexi=lifmiEFand 
xi = 0 otherwise. The function g is defined to  operate  on 
the  characteristic  vector of a set of minterms off.  The 
value of g evaluated at  the  characteristic  vector is de- 
fined to be 0 if the  corresponding  set of minterms cannot 459 
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Table 1 Covering table for a five-variable functionf( Y;  . . Y , ) .  

Prime 
implicants 

Minterms mj 

pi 00000 00001 00010 00100 10000 10001 01010 10010 00111 01111 10111 1 1 1 1 1  

x 0   x 0  0 1 1 1 
xxo 0 1 1 
xxo 1 0 
XOXl 1 
XXl 1 1 
x 0  0 xx 1 1 1 

1 
1 1 1 

1 1 
1 1 1 I 

1 I 1 

DON’TCAREmintermS ( y l ” ~ y s ) : o o o l ~  01001 10100 10011  11001  11010 

be combined, 1 if the  set  contains a single minterm,  and 
DON’T CARE if the  set can be combined. It will be shown 
that  the number of implicants in the minimum represen- 
tation of g gives  the number of implicants in the minimum 
representation off. 

The definition of g requires  that  the  set of minterms I 
={S,,6~,~~~S,,~15i5m;6,j=0,i#j;Sii=l}bemapped 
to 1. If there were no  further restrictions, the minimum 
representation of g would map all minterms to 1 which 
corresponds  to covering the  entire  space with one prime 
implicant. However,  the  rows of the table in Table 1 
give the maximal sets of minterms off that can  be com- 
bined. These  sets of minterms and all sets contained in 
them correspond  to  minterms of g that may  be  mapped 
to 1. Since all of these minterms  need not  be mapped to 
1, they  provide many DON’T CARE conditions. Thus, if D 
is the  space formed by replacing the 1’s in the  table by 
DON’T CARE’S, the DON’T CARE space of g is given as DC 
= D . I. The DON’T CARE space can  be quite large and will 
always  include the minterm 0 .  . . O .  The regions I ,  D ,  and 
DC for  the function g defined by Table 1 are given in 
Table 2. The covering  problem thus  becomes  the prob- 
lem of finding a minimum representation  for  the function 
g which  maps the  set of minterms I to 1 and  has a DON’T 

CARE space DC. 
The covering  function g is  an  expanded  representation 

of the function f .  However, before  discussing the rela- 
tion between  the minimum realizations of the  two func- 
tions,  the  nature of the minimum realization of g will be 
considered. 

Proposition 1 The minterms off  which correspond  to 
an implicant of g are contained in one prime  implicant 
off. 

Proof Let m1 and m, be two minterms  contained in a 
single implicant of g. Assume  that  the 1’s in m, and m, 460 
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correspond  to minterms o f f  that  are not  contained in 
any  one prime  implicant off. It follows  from the defini- 
tion of an implicant that (m, + m,), the bit-wise OR of m, 
and m,, is also in the implicant of g. However, if the 
1’s in m, and m, are  never mapped to  the  same prime 
implicant off,  the 1’s in (m, + m,) will never be  con- 
tained in a  prime  implicant off But,  since (m, + m,) is 
in an implicant of g ,  the 1’s in (m, + m,) map to min- 
terms  off  that can  be  combined and must therefore map 
into  a  prime  implicant off.  This  contradiction  proves 
the proposition. The preceding  proposition is useful in 
proving the following proposition  which describes  the 
prime  implicants of the new  function g. 

Proposition 2 If P = p l p z .  . . p ,  is a  prime  implicant of g, 
then p i  E (0 ,  X } ,  1 5 i 5  m, where X means DON’T CARE. 

Proof Assume P = p l p z  . . . p ,  is a  prime implicant of 
g and p j  = 1. Let Q = {ilp, # 0) .  By Proposition 1, the 
1’s in P correspond  to minterms off that  are contained 
in one prime  implicant off:  Thus,  there  exists  an impli- 
cant E = e,e;  e, in D such  that e, = X ,  i E Q. Because 
D = DC + I ,  every minterm in E is  either mapped to 1 or 
is DON’T CARE, which means  that  none  is required to be 
mapped to 0. Therefore,  the minterms in P’ = p l p z .  . . p j  
. . . p ,  are  either mapped to 1 or  are DON’T CARE, and P 
can  be  enlarged to P” = p 1 p 2 .  . . p j - ,   Xp j+ , .  . ‘p , .  This con- 
tradicts  the  hypothesis  that P is a prime implicant and 
proves  the proposition. 

The  above proposition  allows us  to  establish a map- 
ping from  the prime  implicants of g into implicants off. 
Each prime  implicant of g will map into  the implicant of 
f that  contains all those  minterms  that  correspond  to X’s 
in the prime  implicant of g .  In addition, it is possible to 
define a mapping from  the prime  implicatns off  into im- 
plicants of g that  contain only 0’s and X’s.  Each variable 
in the implicant of g will be a 0 or  an X if the  corre- 
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sponding  minterm is  absent  or  present respectively in 
the prime  implicant off. The  nature of these mappings is 
further described by the following proposition. 

Proposition 3 There  is a one-to-one  correspondence 
between  the prime  implicants off and the prime impli- 
cants of g .  

Proof Let p be a  prime  implicant off.  Assume  that  the 
minterms of p map to  an implicant of g that is not  prime. 
Then,  there must be  another minterm in g that  can  be 
added  to  the  set. By Proposition 1, this  larger set  must 
map into a  prime  implicant o f f  which contradicts  the 
hypothesis  that p is a prime  implicant. Conversely if the 
minterms C of P a prime implicant of g do  not  form a 
prime implicant off,  they must  by  Proposition 1 be  con- 
tained in a prime  implicant. The  set C can  therefore be 
expanded which contradicts  the  hypothesis  that P is 
prime, and  thus  the proposition  follows. 

Since a minimum cover of a  function  can always be 
expanded  into a  prime implicant cover, it follows  from 
Proposition 3 that minimum covers o f f  and g should 
have  the  same number of implicants. Thus if the prime 
implicants of a Boolean function f are  generated and 
covered by one algorithm, the Boolean function g can 
then be minimized by another algorithm.  Although the 
second function has  the same number of prime impli- 
cants,  the number of variables  and DON’T CARE conditions 
can be vastly different. Thus  examples  constructed in 
this manner should  be useful in determining if a heuristic 
minimization program uses DON’T CARE conditions ef- 
fectively. Table 3 shows minimum realizations for  the 
five-variable  function f and the 12-variable expanded 
function g .  Using Table 1 and the mapping described 
above,  the  correspondence  between  the  two solutions is 
easily seen. 

Although the discussion above  dealt with a  prime im- 
plicant  covering table,  the method  can  be  applied to a 
larger class of problems. The essential  information  pro- 
vided by the  table is the compatibility of the  items  to be 
covered.  Thus any covering table in which the columns 
correspond  to the  items to be covered  and  the rows cor- 
respond to all collections that can  be covered simulta- 
neously may be  used as a test  example  for a minimiza- 
tion technique provided that a minimum cover is sepa- 
rately  calculated by some  other  method. 

Minimum cover of an incompatibility table 
The  four-color problem has received  considerable atten- 
tion in the  literature [6, 71. In simple terms, this  prob- 
lem is stated  as follows: Find the minimum number of 
colors  necessary  to  color a map so as  to avoid  identical 
colors in lineally contiguous areas.  This problem has 
come  to be  known as  the  four-color problem  since it has 

Table 2 Definition of g, the  12-variable expanded function that 
corresponds  to  the five-variable function,f. 

100000000000 
010000000000 
001000000000 
000100000000 
000010000000 
000001000000 
000000100000 
000000010000 
000000001000 
000000000100 
000000000010 
000000000001 

a)   The ON set of g. 

D 
-~ 

( X ; . . X , , )  

xooxxooooooo 
o x o o o x o o o o o o  
ooxoooxxoooo 
o o o o o o o o x o x o  
ooooooooxxxx 
xxxo xxo x0 0 0 0 

- ” - 

0 0 0 0 0 0 0 0 1 0 0 1  
0 0 0 0 0 0 0 0 0 1 1 0  
0 0 0 0 0 0 0 0 1 0 1 0  
0 0 0 0 0 0 0 0  11x0 
o o o o o o o o x l o  I 
0 0 0 1 1 0 0 0 0 0 0 0  
0 0 1 0 0 0 1 0 0 0 0 0  
ooooooooxxl1 
1 0 0  l x o o o o o o o  
00x000 1 1 0 0 0 0  
0 1 0 0 0 1 0 0 0 0 0 0  
1 0 0 0 0 1 0 0 0 0 0 0  
0 0 I 0 0 0 0 l 0 0 0 0  
1 0 0 0 0 0 0 1 0 0 0 0  
0 0 l 0 I 0 0 0 0 0 0 0  
1 0 0 0 1 0 0 0 0 0 0 0  
0 1 1 0 0 0 0 0 0 0 0 0  
1 I o o o x o o o o o o  
xlxoooo 1 0 0 0 0  
xlxo I 0 0 0 0 0 0 0  
1 XI oxooxoooo 
xxlooloooooo 
xxxol1oooooo 
xxxo 1 0 0  I O 0 0 0  

b) The implicants of 0 0 0 0 0 0 0 0 0 0 0 0  
R that  correspond X X X O X I  0 1 0 0 0 0  
to  the prime 
implicants off. c )  The DON’T  CARE 

space of g. 

Table 3 The minimum representations of the  five-variable 
function f and the  12-variable expanded function g. 

x0 x0 0 
xxo 1 0 
XXI 1 1 
x0 0 xx 

xooxxooooooo 
ooxoooxxoooo 
ooooooooxxxx 
xxxo xxo x0 0 0 0 

a) Minimum  prime  implicant b )  Minimum  prime implicant 
representation  off.  representation of g. 

been  proven  possible with five colors,  and  there  are 
counter  examples  for  three colors. To date,  no map has 
been  found which cannot be  colored with four  colors. 

For a given map we shall construct a Boolean function 
h that  has  as many  variables as  there  are regions in the 
map. The function will be specified by defining those 
minterms that  the function  must  map to 1 and  those min- 
like-terms that  the function  must map to 0. The function 
h may map to 1 any minterm  whose 1’s correspond  to 
regions that can  be  colored with the  same color. The 
important  property of the function is that  any  represen- 461 
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Figure 1 A 14-region map. 

Table 4 The coloring function, h, for the map in Fig. 1. 

I H 

10000000000000 
01000000000000 
00100000000000 
00010000000000 
00001000000000 
00000100000000 
00000010000000 
00000001000000 
00000000100000 
00000000010000 
00000000001000 
00000000000100 
00000000000010 
00000000000001 

1 1 xxxxxxxxxxxx 
1 x1 xxxxxxxxxxx 
1 xxxxxxxx 1 xxxx 
1 xxxxxxxxx 1 xxx 
x 1 1 xxxxxxxxxxx 
x1 XXXXXXXl xxxx 
x 1 xxxxxxxx 1 xxx 
xx 1 xxxxxxx 1 xxx 
xxx 1 1 xxxxxxxxx 
xxx 1 x I xxxxxxxx 
xxx 1 xxxxx 1 xxxx 
XXXXl1 xxxxxxxx 
xxxx I xxxx 1 xxxx 
xxxx 1 xxxxxx I xx 

a) The ON set of h. XXXXXI XXXXXI xx 
XXXXXXl1 xxxxxx 
XXXXXI XXXl xxxx 

xxxxxx 1 x 1 xxxxx 
xxxxxx 1 xxx I xxx 
xxxxxx I xxxx 1 xx 
XXXXXXXl1 xxxxx 
xxxxxxx 1 xxx 1 xx 
xxxxxxxx 1 xx 1 xx 
xxxxxxxxxl1  xxx 
xxxxxxxxxl  x1  xx 
xxxxxxxxx I xx 1 x 
xxxxxxxxxx I 1 xx 
xxxxxxxxxx 1 x 1 x 
xxxxxxxxxx 1 xx 1 
xxxxxxxxxxx 1 1 x 
xxxxxxxxxxx 1 x 1 
xxxxxxxxxxxxI1 
b) The OFF set of h. 

XXXXXXXI XXl xxx 

462 

tation of h defines  a coloring of the map which has  as 
many colors  as  the  representation  has implicants. Since 
each variable represents a region of the  map,  and taking 
the  value 1 in the  representation  means  that  the region is 
colored, it is necessary  that all the minterms  with  ex- 
actly one variable equal to 1 be mapped to 1. 

Thus  for a map with n regions, the coloring  function h 
maps the  set I = {6i16i2.  . . 5 i 5 n; 6, = 0,  i # j ;  

= 1 } to 1. Again if there  were  no  constraints,  the mini- 
mum representation would map all minterms to 1 which 
corresponds  to coloring all vertices with the  same  color. 
However,  there  are  constraints which require  that cer- 
tain  regions not  be colored  with the  same color. In  terms 
of the function h, this means  that minterms that contain 
certain  patterns of 1’s must  be  mapped to 0. For exam- 
ple if regions 5 and 9 are  contiguous,  the bit-wise OR of 
6,,S5, . . . a,, with 6,,6,, . . . a,, must  not be contained in 
the  representation  or, alternatively,  must not  be mapped 
t o  1 by h. Figure 1 shows a 14-region map that can’t be 
colored with three  colors.  Table 4 defines the function h 
by specifying I ,  the  set of minterms that  is mapped to I ,  
and H ,  the  set of terms  that  cannot be  mapped to 1 and 
must  therefore  be mapped to 0. The remaining space 
(hVH)  is the DON’T CARE space  for this minimization 
problem. The  important  property of the coloring  function 
is  expressed in the following proposition. 

Proposition 4 Every region corresponding  to a  variable 
that  has  the value 1 or DON’T CARE in an implicant of the 
coloring  function may be  colored with the  same color. 

Proof Let regions i and j ,  i < j ,  be adjacent and  let S = 

S,S,. * * S, be an implicant of the coloring function with 
Si and Sj elements of { 1 ,  X } .  If Si,  Sj E { 1, X } ,  thenS,S, 
. . . Si-l 1 Sj.l . . . Sj-l I Sj+, . . . S, is mapped to 1 .  How- 
ever since I and j are  adjacent,  the implicant  with Si = Sj 
= 1 and S, = X ,  k # i ,  j ,  is mapped to 0. Thus,  the impli- 
cant S cannot  be mapped to 1 ,  which proves  the proposi- 
tion. 

__ 

It  should  be observed  that for a  solution that  consists 
of prime  implicants,  some  variables may be allowed the 
value 1 in more  than  one implicant.  Because  a region 
can  receive only one color,  this requirement implies that 
there is a choice  in  selecting the  color of that region giv- 
en  that all other regions are colored. Each region that 
can be assigned the value 1 in more than one implicant 
can  be  assigned  independently of the  other regions as 
long as  each region is colored. The following proposition 
describes  the  conditions  under which the minimum rep- 
resentation of h gives all possible  grouping and  hence 
all possible  colorings of a map. 

Proposition 5 The minimum representation of the color- 
ing function h provides all possible  colorings of the  cor- 
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responding  map if and only if the  representation  consists 
of k essential  prime  implicants. 

Proof From Proposition 4 it follows that coloring a re- 
gion of a map is equivalent  to assigning the value 1 to 
the corresponding  variable in one implicant of the repre- 
sentation of h. If the minimum representation of h pro- 
vides all colorings, then  it must contain all prime impli- 
cants of h. If in addition,  this representation is minimal, 
then all prime implicants are required. Thus,  the solution 
must consist of k essential  prime  implicants. Converse- 
ly, assume  that a coloring of the map corresponds to k 
implicants that  are  not  contained in the  set of k essential 
prime  implicants in the minimum representation of h. 
Each of the k implicants  can be  expanded  to a prime 
implicant. This  set of k prime  implicants must differ 
from  the original set  because  they  contain  the k impli- 
cants which are not contained in the original set.  Thus 
there  exist  two  distinct solutions  consisting of k prime 
implicants,  which contradicts  the  hypothesis  that  the 
original set  is essential. 

The  nature of the prime  implicants of the coloring 
function g are further described in the following proposi- 
tion. 

Proposition 6 If P = p l p z  * . . p ,  is a prime  implicant of 
the coloring  function g ,  then p i  E (0, X } ,  1 5  i5 r ,  where 
X means DON'T CARE. 

Proof Assume p , p z .  . . p ,  is a prime  implicant of g and p i  
= 1 .  Since  the  set of implicants that must  be  mapped to 0 
do not intersect with p l p z .  . . piPl 1 pi+l . . . p,., they will 
not intersect with p l p z .  . .pi-1 0 p i + l .  . . p,,  i.e., if a set of 
regions can  be colored  with the  same color, then a sub- 
set of the region can be  colored  with the  same color. 
Thus  the prime  implicant  can be  expanded  to p lpz  . . . 
pi-lXpi+l. . . p, ,  a contradiction which proves  the propo- 
sition. 

Figure 2 shows a prime  implicant  solution for  the 
function h defined in Table 4 and a  resultant  coloring for 
the map in Fig. 1. 

The  above  procedure  can be  used to generate a limit- 
less  number of test problems  with a known minimum 
solution  size of four  cubes.  These problems have a very 
large DON'T CARE space, any  desired  number of input 
variables, and  are easily generated. If  a  toroid is avail- 
able, six-color  problems can be generated with the  same 
ease. The method presented is applicable to a class of 
problems that is larger than  just the coloring  problems. 
The  approach is applicable to  any problem  in  which it is 
desired to group objects in sets  such  that  no defined pair- 
wise  iqcompatibility is violated. In  those  cases, it would 
be  necessary  to  obtain a minimal set of covering groups 
by an  alternate method if the minimality of the minimiza- 
tion  algorithm were being tested. 
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ooxoooxooxooox Red: 3 ,7 ,  10, 14 
oxoxoooooooxoo Blue: 2,4, 12 
ooooxoooxoxooo Green: 5 ,  9, 11 

Figure 2 A minimum representation of h and a corresponding 
coloring of the map in Figure 1.  

xooooxoxooooxo Yellow: 1,6, 8, 13 

Conclusions 
In this paper we have  presented  two  methods of generat- 
ing Boolean functions having a large number of vari- 
ables. In  both  cases,  the number of implicants in the 
minimum representation is known or is easily deter- 
mined. The  examples  generated should be useful as  test 
examples  for heuristic minimization procedures  since 
they  can be  constructed with a large number of variables 
and a  relatively small minimum representation. 

The minimization of the Boolean functions defined for 
the covering'  and  incompatibility  tables is a method of 
obtaining  a minimum cover  for  any problem  with these 
constraints.  For  reasonable size  problems,  this approach 
should be  quite effective. 

Although these  examples  were  constructed  as  test 
examples  for  heuristic Boolean minimization algorithms, 
they provide  information about some  useful properties 
of minimization algorithms. First, it is often convenient 
to specify  a  function  by specifying two of the  three  sets 
f" (1 ), f"  ( O ) ,  and f" (4), i.e., the ON set,  the OFF set, 
and  the DON'T CARE set.  Thus,  the program  should have 
the ability to  accept  any  two of these  sets  and still pro- 
duce a minimum representation.  In addition it should  be 
observed  that  proper handling of the DON'T CARE space 
is necessary  since neither of the  above  problems  can  be 463 
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minimized  properly if the DON’T CARE space is forced to 
be either ON or OFF. Finally, the three sets are often  ex- 
pressed  conveniently as implicants rather than as min- 
terms. Thus, the program  should be capable of accepting 
this  form  of input, which  should  be faster, require less 
storage space, and reduce the probability of errors. 

The authors have  used the described method  fruitfully 
in evaluating  various heuristic Boolean  minimization 
programs. 
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