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Abstract: Various authors (especially Scott, Egli, and  Constable) have  introduced concepts of “basis”  for various classes of partially 
ordered sets  (posets).  This paper  studies  a  basis concept directly  analogous to the concept of a  basis  for a vector  space.  The new basis 
concept includes that of Egli and  Constable  as a  special case,  and one of their  theorems is a  corollary of our  results.  This  paper also 
summarizes some previously  reported but little  known results of wide utility. For  example, if every linearly ordered  subset  (chain) in a 
poset has a least upper bound (supremum), so does  every  directed  subset. 

Given  posets P and Q ,  it is often useful to  construct  maps g : P  + Q that  are c./zuin-c.onrinLlous: supremums of nonempty  chains are 
preserved. Chain-continuity is analogous to topological  continuity  and is generally much more difficult to verify than isofonicity: the 
preservation of the order relation. Th15 paper  introduces  the concept of an exrc,n.cion hasis: a subset B of P such that  any  is0tonefiB-Q 
has a  unique  chain-continuous  extension ,g:P+Q. Two  characterizations of the  chain-complete posets  that have  extension bases  are 
obtained. These results are then applied to the  problem of constructing an extension  basis for  the poset [ P  + Q ]  of chain-continuous 
maps from P to Q ,  given  extension bases  for P and Q. This is not  always  possible, but it becomes  possible when a mild (and indepen- 
dently  motivated) restriction is imposed  on either P or Q. A lattice structure is not  needed. 

1. Introduction 
Scott [ 11 proposed that lattice theory should play  a 
fundamental role in the  theory of computing. Various 
aspects of lattice  theory with computer  science motiva- 
tions have been  studied  by many authors, among  them 
Goguen,  Thatcher, Wagner,  and Wright [2, 31, Markow- 
sky [4, 51, Plotkin [6], and  Scott [7 ,8 ] .  Space  does  not 
permit  a full survey of the  computer  science applications 
of lattice  theory. The diversity of applications is illus- 
trated by the work of Cadiou  and Levy [9], Hitchcock 
and Park [ 101, Lewis  and  Rosen [ I l l ,  Rosen [ 121, and 
Vuillemin [ 131. Further  references can be found in the 
works  cited, especially [ 2 ] .  

Much of the applied  lattice theory in computer  science 
does not use  lattices!  Where  Scott would recommend 
complete lattices [ I ]  or  continuous  lattices  [7], a more 
general class of mathematical structures  has  been  used. 
Following [4, 51, we call members of this class chain- 
complete  posets.  This  class  is used in [ 11, 121. The 
slightly larger class of o-chain-complete  posets is used 
in [9, 131. Definitions are in Section 2. 

Chain-complete  posets  have  numerous technical ad- 
vantages over  complete lattices for computing  applica- 
tions. Certain universal constructions  are possible with 
chain-complete posets  but impossible  with complete 
lattices [ 51. One conjectured disadvantage is well known 
in the folklore of this  subject: if P ,  Q are  chain-complete 
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posets with “effectively given bases,” then the poset of 
continuous maps [ P  -+ Q ]  may not  have an effectively 
given  basis. Clearly,  the  truth of this conjecture de- 
pends on the precise definition chosen  for  the  basis con- 
cept  sketched in a lattice  oriented manner by Scott 
[ 1, Sec. 41. One  such definition is that of “recursive 
bases” proposed by  Egli and Constable [ 14, Sec. 11.21 
who show that [ P  + Q]  does  have a recursive basis 
whenever P and Q have recursive  bases. Expressed in 
terms of different  definitions, Vuillemin’s Lemma 2 
[ 15, Chap. 1111 is equivalent to this  result. In Section 5 
of this paper,  we  derive this result  as a  special case of 
more  general theorems dealing with separate  concepts 
of basis  and of recursive listability that  have indepen- 
dent mathematical  motivations. 

Section 2 begins with basic definitions and facts  about 
chain-complete  and  w-chain-complete  posets. We in- 
troduce a concept of compactness inspired by lattice 
theory and a universal construction inspired by Theorem 
4 of [ 151. The basis completion P o f  a poset P is a chain- 
complete poset such  that isotone  maps from P to Q cor- 
respond to chain-continuous maps f r o m P t o  (2. 

Section 3 defines an extension bmis  for P to be  a subset 
5 of P such  that any isotonejB + Q has a  unique  chain- 
continuous extension g : P  + Q.  Theorem 3.2 shows  that 
5 is an extension  basis for P iff P is isomorphic to B in 
a certain  natural  way. Theorem 3.3 shows that P has 
an extension  basis iff every member x of P is the  supre- 
mum of a  directed set BZ consisting of  all compact c with 
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c 5 x. This  characterization is helpful in relating exten- 
sion bases  to  the  narrower basis concepts studied by 
Egli and Constable [ 141 and by Vuillemin [ 151. 

Section 4 deals  with the poset [P + Q] of chain- 
continuous maps from P to Q. Given extension bases 
for P and Q, it need not be possible to  construct  an  ex- 
tension  basis for [ P -+ Q]. Suppose, however, that  either 
P or Q has bounded joins: every finite subset with an 
upper bound  has  a  supremum. Theorem 4.5 shows  that 
then [ P  + Q] does  have an extension basis. The con- 
struction generalizes the  one used in [ 141. 

Section 5 defines a recursive listing for a subset B of P 
to be  a  map  from the nonnegative  integers onto B with 
appropriate decidability  properties.  A  chain-complete 
poset  with an extension  basis B and a recursive listing 
for B is recursively based; this is our formalization of 
Scott’s “effectively given  basis” [ 1, Sec. 41 when  chain- 
complete  posets  that need not be  lattices are  considered. 
Theorem 5.3 shows  that [ P  + Q] is recursively  based 
whenever P, Q are recursively  based and Q has bounded 
joins.  Theorem 5.6 suggests that  stronger  results would 
require  the use of oracles.  Corollary 5.8 relates this work 
to [ 14,  151. 

Various common notations  from lattice-theoretic 
computer science are used  here: [P + Q], I, i f .  . . then 
. . . else. . ., and so on. In general  this paper is consistent 
with the notation  and terminology of standard  works 
on lattice  theory [ 16, 17, 181, with  a  few  clearly moti- 
vated departures like the  use of 1. To avoid superfluous 
parentheses,  the value of a  function f at  an argument x 
is just fx rather  than f ( x ) .  The image set {fxlxEC} is 
just fC rather  than f( C )  or f [  C]. 

2. Chain-complete posets and compactness 
A poset is a  nonempty set P together with a  partial order 
4 on P: the relation 4 must  be reflexive, antisymmetric, 
and  transitive. An upper bound for S P is any x in P 
such  that a 5 x for all a in S. A least  upper bound or 
supremum for S c P is any  upper bound x for S such  that 
x 5 y for all upper bounds y .  In general, S may not have 
upper bounds and may not have a supremum  even if it 
has  upper bounds. The supremum of S, if any, is denoted 
sup s. 

For  ease of reference we repeat  some definitions 
from [4]. 

Dejinition 2.1 Let P be a  poset and S c P. Then S is a 
chain iff, for all a, b in S, either a 5 b or b 5 a. On  the 
other  hand, S is directed iff every finite subset of S has 
an  upper bound in S. The poset P is ( w - )  chain-complete 
iff every  (countable) chain in P has a supremum. 

The  empty  set 0 is a  chain  but is not  a directed  set. 
Nonempty chains are  directed. If P is chain-complete, 
then sup 0 is a least element and is denoted 1. It is easy 
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to  construct  posets  that  are w-chain-complete but  not 
chain-complete. Chain-completeness is more convenient 
than  w-chain-completeness  and seems  to entail no sig- 
nificant loss of generality. The w-chain-complete posets 
that  have actually  arisen in computer  science  are also 
chain-complete,  and  countability has  never been  ex- 
ploited in a  completeness verification. 

Definition 2.2 Let P and Q be posets  andf:P + Q be a 
map. Thenfis isotone iff, for all x, y in P, 

x 5 y implies fx 5 fy.  ( 1 )  

The  mapfis (w-)chain-continuous iff, for  each  nonempty 
(countable) chain C with a supremum in P, the image 
set fC Q has a supremum in Q and 

( 2 )  

Isotone maps have  sometimes been called “monotone” 
or  “monotonic.”  Chain-continuous maps have  sometimes 
been called “continuous.”  The qualifier “chain” is re- 
tained here, but the following lemma shows  that it could 
be omitted in the  future without serious ambiguity. 

Lemma 2.3 Any  (countable)  directed  subset of a ( w - )  
chain-complete poset  has a  supremum. Moreover,  let P 
and Q be (o-)chain-complete  posets,  and  letf:P + Q be 
(0-) chain-continuous. Then,  for every (countable) 
directed D G P, 

f ( s u P p )  = SUP,(fD). ( 3 )  

Proof See Corollary 2 and  Corollary 3 in [4] and note 
that countability can be imposed throughout. 

Theorem 1 in [4] implies Iwamura’s Lemma [ 191, a 
very useful fact  about  directed  sets.  We  state  the lemma 
here  for  ease of reference. 

Lemma 2.4 Let  the  subsets of a poset P be partially 
oidered by set inclusion. Any infinite directed D P is 
the union of a  nonempty  chain ?Z of directed sets  that  have 
cardinalities  less  than that of D. 0 

Definition 2.5 A  member x of a poset P is (w-)chuin- 
irreducible iff, for  every nonempty (countable) chain 
c G P, 

x = sup C implies x E C.  (1)  

It is (w-)  chain-compact iff, for  every nonempty (count- 
able) chain C P ,  

X 4 sup C implies ( 3 y ~ C )  (x 5 y ) .  ( 2 )  

Note  that ( w - )  chain-compactness implies ( w - )  chain- 
irreducibility. The  converse fails, as  can  be  seen in 
Example 3.4. 

CHAIN-COMPLETE I 
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Lemma 2.6 Let x be a member of a (a-)chain-complete 
poset P,  and let D be  a (countable) directed subset. If 
x is (o-) chain-irreducible,  then 

x = sup D implies x E D.  ( 1 )  

If x is (o-) chain-compact, then 

x 5 sup D implies (3yED)  ( x  5 y ) .  (2)  

Proof We use induction on the cardinality of D.  For 
finite D ,  (1)  and (2)  are easily checked.  Now  suppose 
D is infinite and ( l ) ,  (2) hold for all directed sets of 
smaller  cardinality. Let $7 be a  chain of such  sets  from 
Lemma  2.4 with 

D = u A ,  

so that  each A has a supremum by Lemma 2.3 and 

sup D = sup  {sup A IAEg}. 

Now ( 1 ),  (2)  for D follow from 1 ), (2)  for each A in %’ 
and  the  fact  that  {sup A IAEg} is a nonempty chain. 0 

AEW 

If P is a complete lattice, then  the  above lemma may 
be  used to  show  that  chain-compactness  agrees with 
the usual notion of compactness in lattice theory [ 16, 
p. 168; 17, p. 13; 18, p. 931. We therefore  omit  the 
qualifier “chain.”  Compact  elements  have sometimes 
been called “finite” or  “isolated.” 

The following theorem can  be  derived  from Theorem 
4 of [5], but  a direct proof is more  convenient here. 

Theorem 2.7 Let P be  a poset with a  least  element 1. 
There is a  chain-complete p o s e t p  (called the basis com- 
pletion of P )  and  a map i:P +F (called the natural em- 
bedding) with the following properties.  First,  for any 
chain-complete poset Q and isotone  map f: P -+ Q, there 
is a unique g : p +  Q such  that 

g is continuous  and goi =f. ( 1 )  

Second, all x ,  y in P have 

x 5 y in P iff ix 5 iy i n P .  (2) 

Third,  for any ( in 7, the following conditions are equiv- 
alent: 

5 is chain-irreducible; ( 3 )  

( is compact; 

5 = ix for  some x in P 

Fourth,  for any 5 i n P ,  the  set 

J ,  = { iuIaEP and ia 5 (} is directed ( 6 )  

and has 

140 5 = sup J,. ( 7 )  

Proof Let 7 be the  set of  all directed D c P such  that 
x 5 y and y E D imply x E D. Partially orderPby  set  in- 
clusion. Then P i s  chain-complete, and  the  supremum of 
a  directed set is just its union as a family of sets. Define 
i by 

ix = { aEP/  a 5 x }  

to  derive (2) immediately. Now  consider J, in (6) .  If 
ia and ib are in J, ,  then a and b are in ( P and so some 
c in [ has a 5 c and b 5 c. Therefore ic in J ,  has ia 5 ic 
and ib 5 ic. This  proves ( 6 ) .  For ( 7 ) ,  note  that 

We prove  the  extension  property.  Given Q and f ,  note 
that f D  for any DEPis  directed in Q. By Lemma 2.3 for 
directed subsets of Q ,  the map g:P+ Q with 

gD = sup, j D  

is  well defined. It is easy to  check  that g satisfies ( 1 ) .  
If h does  also, then 

h D =  ~ ( s u P ~ J , )  = sup,(hJ,) 

= sup, { (hoi)x\xED} 

= sup, f D  = gD. 

We prove  that  (3) through ( 5 )  are equivalent.  Clearly 
(4) implies (3) .   To show that (5) implies (4) ,  suppose 
( 5 )  and consider  any nonempty  chain V P w i t h  4 5 
sup V. For ( = ix some A in V has x E A  and hence 5 5 A .  
To show  that (3)  implies ( 5 ) ,  suppose ( 3 )  and  apply 
Lemma  2.6(1)  to ( 6 )  and ( 7 ) .  0 

To derive  the analogous  result for only o-completeness 
and a-continuity by the  same  argument, we would need 
to add the hypothesis that P is countable.  For compari- 
sons with works such  as [ 141 that explicitly assume only 
w-completeness, it is helpful to know that  o-completeness 
implies completeness  under  some frequently  occurring 
conditions. 

Lemma  2.8 Let P be an  o-chain-complete  poset and 
B P be countable. Suppose  that  for  each xEP,   B ,  is 
directed and x = sup B,, where B ,  = {bEBI  b 5 x } .  Then 
P is chain-complete. 

Proof For  any chain C P ,  we let A = UEc B,. It is easy 
to  see  that A is directed. By Lemma 2.3 and  countability 
of A C B ,  A has  a  supremum. Clearly,  sup A = sup C. C 

Corollary 2.9 Let P be an  o-chain-complete  poset and 
B & P be countable.  Suppose  that  each member of B is 
w-compact and  each x in P has x = sup E, for some 
directed E ,  B.  Then P is chain-complete. 

ProofLet B ,  be as  above. Clearly x =  sup E, 5 sup B I Z  
x. We claim that B ,  is directed. Let a, bEB,. Because a ,  
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h 5 sup E ,  there  exist N ‘ ,  h’ € E ,  such that ( I  5 ( I ’ ,  b 5 b‘. 
However, E, is directed.  Thus  there  exists cEE, such 
that u’ ,  b’ 5 e. Because E, B,, cEB,  and B ,  is di- 
rected. 0 

3. Extension bases 
An extension basis lets us obtain continuous maps from 
isotone maps. Our definition is a direct analog of the 
following characterization of a basis for a vector  space. 
A subset B of a vector  space V is a basis iff, for  every 
vector space W and map .f’:B + W, there is a  unique 
linear  extension g:V -+ W. 

Dejinition 3.1 A subset B of a  chain-complete poset P 
is an extension basis iff, for every chain-complete  poset 
Q and  isotone map f:B -+ Q ,  there is a unique  chain- 
continuous extension g:P + Q off. 

Every finite poset with a  least  element has itself as 
extension basis. The following two  theorems  characterize 
the chain-complete posets that have extension  bases. 

Theorem 3.2 Let P be a  chain-complete  poset  and B P .  
Then B is an extension basis iff there is an isomorphism 
h:P -+x that  extends  the natural  embedding i:B -+x. 
Proof Let i :  B + x b e  the natural  embedding in Theorem 
2.7, and letj:B ”+ P be the inclusion map from B into P.  
By Theorem 2.7( I )  there is a unique g : E +  P such that 

g is continuous and p i  = j .  ( 1 )  

Now  suppose B is an extension  basis, so that  there is 
also  a  unique f:P + Bsuch  that 

f is continuous  and fsi = i .  (2) 

By ( 1 )  and ( 2 ) ,  (pf) :P  -+ P with (gof )  continuous and 
(g0f)oj = j .  By uniqueness in Definition 3.1 with j in the 
role o f f  there, ( g o f )  is the  identity  map.  Similarly, by 
uniqueness in Theorem  2.7( 1) with iin  the role offthere, 
(f.g):Z-+Bis  the identity  map. Therefore P is isomor- 
phic t o .  

Now  suppose h:P + z i s  an isomorphism that  extends 
i. Given  isotonef:B ”-* Q ,  there is a  unique g:E+ Q such 
that 2 is continuous  and pi = f. Then g = &oh is a con- 
tinuous  extension off:  Uniqueness follows  from  unique- 
ness of 2. 0 
Theorem 3.3 Let P be a chain-complete poset, and let 
B be  the  set of all compact members of P. Then P has 
an extension  basis iff, for each x in P ,  the  set 

B,  = { bEB I b 5 x} is directed ( 1 )  

and has 

x = sup B,. ( 2 )  

In  that  case any  extension  basis B‘ has 

B’ = B = {cEP/c is chain-irreducible}. (3)  

Proof Suppose B’ is  an extension  basis, so that P is 
isomorphic to B’ by Theorem 3.2. From ( 3 ) - ( 5 )  of 
Theorem 2.7  we can  derive ( 3 ) .  To  derive ( I )  and ( 2 )  
from (6)  and (7 )  of Theorem 2.7, it will suffice to  show 
that the reciprocal  isomorphisms g : B  -+ P andf:P + B 
have B, = g J f X .  Indeed, 

B, = {bEBlb 5 x} 

- 

= { g f b / b E B  &J’h 5 fx} 

= {giblib 5 fx} = g Jf,. 

Now  suppose ( 1) and (2) for all x in P. We claim that 
B is an extension  basis. Let $ B  -+ Q be isotone.  Define 
g:P -+ Q by 

gx = supQ f B,, (4) 

as is possible because f B ,  is directed. Consider any 
nonempty  chain C P. For y = supPC we calculate that 

x SupPC = SUP, .f B ,  

= sup, { f b l h E B  & b 5 y }  

=supQ{fn)bEB& (3xEC)(b5x)} 

= SUP, {sup,fB,IxEC) 

= supQ g c. 
Therefore g is a continuous extension of,f. Any such 

must  satisfy (4), so g is unique. 0 

Chain-complete  posets  that satisfy ( 1 )  and (2) in the 
above theorem have  sometimes been called “algebraic.” 
Thus  the  theorem implies that P has an extension basis 
i f f  P is algebraic. 

Example 3.4 A countable  complete lattice  need not have 
an extension basis. Let P be {l, T ,  ~ i ~ ,  uZ,. . ., b,, b,; . .}. 
ordered  as  shown in Fig. 1. The  set B of all compact 
elements of P is just {I}. There  are  two ways to apply 
Theorem 3.3 in showing that P lacks an  extension basis. 
First,  observe  that  sup B,  = I f T, contrary  to ( 2 )  in 
Theorem 3.3. Second,  observe  that P - { T }  is  the  set of 
all chain-irreducible  elements of P, contrary  to (3)  in 
Theorem 3.3. The  reader may also find  it instructive to 
derive  the lack of an extension  basis  directly from 
Definition 3.1. 0 

Exumple 3.5 Partial  function  posets have extension 
bases.  Let X ,  Y be sets, and let P be the  set of all partial 
functions mapping X into Y .  Considering  partial  functions 
as  subsets of X X Y ,  we partially order P by set inclusion. 
Then P is a  chain-complete poset, as is well known. The 
compact  elements  are  those  that  are finite subsets of 
X x Y .  Theorem 3.3 provides an extension basis. 0 141 
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Example 4.2 The  existence of extension  bases  for P and 
Q does not imply the  existence of extension  bases for 
[ P -+ Q] . Let P be { I, a ,  b, cl, cz,. . .}, ordered  as shown 
in  Fig. 2 .  For  each f in [ P  -+ PI ,  we  show  that 

fP infinite implies f not compact. ( 1 )  

Let C be {cl, c 2 , .  . .}. For each i let fi have 

&x = fx if (fx$C or f x  2 c i )  ; 

Figure 1 Countable complete lattice with no extension basis. 

4. Spaces of continuous maps 
If P and Q are chain-complete posets,  then  the  set of  all 
chain-continuous  maps f : P  + Q becomes  a  chain- 
complete poset [ P  + Q ]  under  the usual ordering: f 
5 g in [ P + Q ]  iff f x  I gx in Q for all x in P. We investi- 
gate conditions under which [ P  + Q ]  has  an extension 
basis. 

Lemma 4.1 Let P,  Q be  chain-complete posets, and let 
PEP, qEQ. Spec i fy fb ,  4 )  : P  -+ Q by 

f ( p ,  q)x = (if x 1 p then q else I). 

If p is compact, then f ( p ,  q )  is chain-continuous. If q 
142 is also  compact, then f ( p ,  q )  is compact in [ P  + Q ] .  
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fi. = cj+l if ( f x  = cj for j > i).  

Then {A,  f,, . . .} is a  chain whose  supremum is x but f i  
# f for all i. 

Let g : P  + P with gx = x, and  let B, be the  set of all 
compact f i n  [ P  + PI such  that f 5  g .  We show  that 

Bg is not  directed. (2) 

Consider f ( a ,  a )  and f ( b ,  b )  from  Lemma 4.1. Both are 
in B,. Any  upper  boundffor { f ( a ,  a ) , f ( b ,  b ) }  must  have 
f a  1 a ,  f b  1 b, and hencefC C C. B u t f 5  g then implies 
that f P  is infinite. By ( 1 ), f cannot be compact. 

Because all members of P are  compact,  Theorem 3.3 
implies that it has  an extension basis. But (2) and 
Theorem 3.3 imply that [ P  -+ PI does not have  an ex- 
tension basis. 0 

Are  there natural  conditions under which [ P  + Q ]  
has  an extension  basis? The following property is 
possessed by any  lattice and by many posets  that  are 
not lattices,  such  as  the partial  function poset  from  Ex- 
ample 3.5. 

Definition 4.3 A poset P has bounded joins iff every 
finite subset of P with an  upper bound has a supremum. 

By Lemma 2.3, if P is chain-complete  and  has  bounded 
joins,  then  every  bounded  subset of P has a supremum. 

Lemma 4.4 Let P,  Q be  chain-complete  posets.  For any 
A C [ P  + Q ]  and xEP,  let Ax be {fxlfol}. Then  the 
condition 

(VxEP) (Ax has a supremum in Q )  ( 1 )  

implies that 

A has a supremum in [ P  * Q ]  ( 2 )  

and  that all x in P have 

(sup A )x = sup ( A x ) .  (3) 

If Q has bounded joins,  then so does [ P  -+ Q ]  , and  then 
(2) implies ( 1 )  also. 

Proof Assume ( 1 )  and set gx = sup(Ax)  for  each x. Use 
associativity of supremums in Q and  continuity of each 
fo l  to calculate that g is continuous. It is clearly the 
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supremum of A .  Now  suppose Q has  bounded joins and 
/? = sup A. Then h.r is a n  upper bound of A.r and ( I )  
follows. 0 

Tl?c)c~vrm 4.5 Let P ,  Q be  chain-complete posets with 
extension bases B ,  C (respectively).  Suppose  that  either 
P or  Q has bounded joins.  Then [ P  -+ Q] has an  exten- 
sion basis Y ,  where 

Y = {sup A IA C F & A is finite & 

A has a supremum in [ P  -+ Q ] } ,  ( 1 )  

and 

F = {f(p, 4) ~ P E B  @C}. (2 )  

Proof'  Let X be the  set of  all compact members of [ P  
-Q].LetY,Fbeasin(1),(2).ThenYcXbyLemma 
4. I and the fact  that a supremum of finitely many com- 
pact items is compact.  We show that Y is an extension 
basis. 

For each x in P let B ,  be {h€Blh 5 x } .  Define C ,  for 
each Y in Q and Y,l for each I? in [ P  - Q ]  similarly. We 
show that 

s u p   Y ,  = h for all h in [ P  -+ Q]. ( 3 )  

Of course, h is an upper bound for Y,. By Theorem 3.3 
for Q,  each h in B has 

hb = sup C,,, = sup { . f ( b ,  c)h(c€C,,}. (4)  

Any c in C,,,, has f ( h ,  c . )  in Y,, so (4 )  implies that any 
upper  bound M for Y ,  has hb 5 uh. This  holds  for all b 
in B ,  so Lemma 2.3 and Theorem 3.3 for P imply that 
h 5 u for  any  upper bound u .  This  proves ( 3  1. 

We  show  that 

Y ,  is directed  for all h in [ P  + Q]. ( 5 )  

I f  Q has bounded joins. then so does [ P  -+ Q] by Lemma 
4.4, and ( 5 )  follows readily from the associativity of 
sup. Now  suppose instead that P has bounded  joins. For 
a n y  g ,  = sup A ,  and g2 = sup A, in Y,t, we  seek g3 in Y,  
with g, 5 g,, and g 2  5 g:,. 

The  set 

M = {hE:BI (LEC)  ( f ' ( h ,  c)  E A ,  U A 2 ) }  

is finite, and every  subset of the form M n B ,  for x in P 
has  a supremum in P and indeed in B,. Let 

N = {sup ( M  n B , . ) ( x E P }  C B ,  

and list the members of N as ( s , , .  . ., sk) in Bk in such a 
way that s i  < s j  implies i < j .  Now (f,,. . ., f k )  in C" is 
specified by induction. Recall that Chs, is directed  and 
that ChSi C,,,,  whenever s i  5 sj. Give i r i  for all i < , j ,  it 
is possible to  lhoose fj in ChSj with ,ql.sj 5 tj and g2sj 5 tj 
for all i such that s ,  < sj. The finite subset 
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Figure 2 For each i, u < ct and h < ci and ci+, < ci. 

A,  = { , f ( s j ,  t j )  ( I  Z . j 5  A }  

of F is now shown to have a supremum g,. For  each x in 
P ,  sup(Mn B,)  = sj for  some unique j and A,x has  a 
greatest  element, namely fj. Therefore A , x  has  a  supre- 
mum for all x and so g:, = sup A ,  exists in Y by Lemma 
4.4. For each x in P ,  thej with sj = sup(Mn B,) has g3x 
= t .  5 hsj 5 hx, so g:] is in Y,. Because g,x = g,sj also, 
g, 5 g,. Similarly, g2 Z g,. This  proves ( 5 ) .  

From ( 3 )  and ( 5 )  it followsfirstthat Y = X  (by  Lemma 
2.6) and then that Y is an extension  basis (by  Theorem 
3.3 1 .  143 
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The bounded joins assumption  and the full force of 
Theo-rem 3.3 were  only  used to obtain directedness 
above.  Under weaker  conditions we can  repeat the proof 
of ( 3  j above  to  express  any 1.1 in [ P  -+ Q ]  as the supre- 
mum of a  very simple set of compact  members of 
[ P  -+ SI. 
C o ~ ~ ~ l l n r y  4.6 Let P ,  Q be chain-complete posets, and  let 
B ,  C be any  sets of compact  members of P ,  (2 (respec- 
tively).  Suppose each x in P and each y in Q have 

x = sup B, & y = sup C,,, 

for some B, C B and Cu C ,  with B ,  directed.  Then any 
h in [ P  -+ Q ]  has 

/.I = sup {f‘(b,  e )  lb€B & cEC & c 5 hh} .  0 

For use in the next  section. we characterize  those 
finite A C F that have supremums in Theorem 4.5 for Q 
with bounded  joins. Let P .  Q ,  B .  C ,  and F be as in 
Theorem 4.5. 

Theorern 4.7 Suppose Q has bounded joins.  For  any 
finite A C F ,  consider  the  set 

ITA = { b € B /  (3cEC) ( f ‘ (b ,  c ) E A ) } .  (1) 

For each K C IIA with an  upper bound in P ,  let 

X ( A ,  K )  = { c E C / f ( b ,  ( . ) E A  & h a ? } .  (2 1 
Then A has  a  supremum in [ P  + Q ]  iff 

2 (A ,  K ) has a  supremum in Q for all bounded K ,  (3 ) 

and in that  case 

(sup A ) x  = sup 2 ( A ,  B,nrlA) for all x in P. (4) 

For  any finite A , ,  A, C F with supremums in [ P  -+ Q], 
sup A ,  5 sup A, iff eachf‘(b,, c,)EA, has 

c1 5 sup {c,ECI (3b,5 b,)  ( f ( b , ,  c , )€A , )  1. (5 1 

Proof Note  that  each x in P has 

A X =  Z ( A ,  B,  n u ) ,  (6)  

and  that  each K J l A  with an  upper bound in P has 
K C B, n n A  for some x .  Because Q has bounded joins, 
a  supremum for S ( A ,  B,nrIA ) implies a supremum for 
X ( A ,  K ). By (6)  and Lemma 4.4, A has a  supremum iff 
( 3 )  holds,  and  in that  case (4) holds. 

Now  suppose sup A ,  5 sup A,, and  consider  any 
f ’(b,, cl)€A,. Then  (4)  for A, yields 

c l = f ( b , ,  c-,)b, 5 sup H(A, ,  Bo, nllA,) 

= SUP {c,ECl(3b, 5 b,) (f’(b,, c , ) E A , ) } .  

This  proves (5).  Now  suppose  (5)  foreachf(b,, c , )  EA, ,  
so that  14)  for A, yields 

5. Recursively based posets 
A recursive listing of a subset B of a poset P maps  the 
nonnegative  integers onto B in such a way that  order 
related questions  about  members of B can be answered 
by algorithms that  compute with the integers. 

Definition 5.1 Let N be the  set of nonnegative  integers 
and P be  a  poset. A recursive listing of a subset B of P 
is a  surjection P:N + B such that, given any i , j  in N and 
any finite A4 C N, it is decidable whether 

PA4 has  an  upper bound in P ;  

PM has  an  upper bound in B ;  

PM has a supremum in P ;  

sup,, PM is in B ;  

pi = supr P M .  ( 7 )  

Restated more  formally,  Definition 5.1 ( 1 ) requires 
that  there be  a {O, I}-valued recursive function f such 
that,  for all i in N,$  = 1 iff pi = L. For any of the usual 
surjections h:N -+ { M  NIM finite}, Definition 5.1 (3)  
requires  that  there be  a (0 ,  I}-valued recursive function 
g such  that,  for all k in N, g k  = 1 iff p h k  has  an  upper 
bound in P. The  other conditions can be restated similarly. 

Note  that /3 is not required to  be injective or  to be in 
any sense “computable.” Members of P need not be 
integers or  objects  represented  as  integers in any  agreed 
upon  way, so it is meaningless to  require  that p itself be 
“computable” in any absolute  sense. For some  choices 
of P we might wish to  require computability relutive to 
other maps. 

Definition 5.2 A chain-complete  poset P is recursively 
bused iff there is an extension  basis B c P and a recur- 
sive listing of B.  

In  Example 3.5, if X and Y are  countable, then P is 
recursively  based. 

Theorem 5.3. Let P ,  Q be  recursively based chain-com- 
plete posets.  Suppose  that Q has  bounded joins.  Then 
[ P -+ Q ]  is recursively  based  and has bounded joins. 

ProojLet B, C be  extension bases  for P ,  Q with recursive 
listings /3, y.  Theorem 4.5  provides an extension basis 
Y for [ P  -+ Q ]  described in ( 1  ) and ( 2 )  from Theorem 
4.5. Bounded joins  for Q implies bounded joins for 
[ P  -+ Q]. We  must show that Y has a recursive listing 
q:N -+ Y .  
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Let A be any of the usual surjections 

h:N -+ { S  C_ N X NIS finite}, 

so that  there is a  surjection u:N 4 { A  C FIA finite} with 

oi = { f ( P j ,  ykl I ( j ,  k l  E A i } .  

Then  there is a  surjection q:N -+ Y with 

qi = [if (ui has a supremum in [ P  -+ Q]) 

then sup (oil 

else l i , . -p,l .  
We  show that r)  is a recursive listing. 

Consider first the problems of deciding 

1. Whether ui has a supremum in [ P  -+ Q]; 
2.  Whether  sup (ai) = 1. 

Given i, we  can find hi, then ni = {j1(3k) ( ( . j ,  k ) E h i ) } .  
For  each M c Ti, we  can  decide  whether PM has  an 
upper bound in P and, if so, whether X(ui, P M )  in 
Theorem 4.7(2) has a supremum in Q. By Theorem 4.7, 
we can decide 1 ) .  Decidability of 2)  follows  from 

sup (ai) = I iff ( y k  = I for all ( j ,  k j  E hi ) .  

By deciding 1) and 2 j we can decide  whether qi = 1, as 
required by Definition 5.  I ( 1 ). For Definition 5 .1(2) ,  we 
also apply Theorem 4.7. To decide  whether V i ,  5 si, 
we need  only decide  whether all ( j , ,  k , )  in hi, have 

yk ,  5 SUP {yk2I ( j z ,  k , )  E hi2 & , W 2  5 P j , } ,  

and this can easily be done. 
Because Q has bounded joins  and  because a supremum 

of finitely many members of Y is in Y ,  the  other require- 
ments of Definition 5.1 can  be met by demonstrating  the 
following claims. Given finite M c N and jEN, it is 
decidable 

3. Whether u ui has a supremum, 

and, if so, 

4. Whether r)j  f sup u oi 5 qj. 

The decidability of 3) follows  from Theorem 4.7, as  for 
1 ) .  The decidability of 4) follows  from Theorem 4.7, 
as for Definition 5.1 ( 2 ) .  0 

iEM 

L M  1 

We have actually  proved  more  than  the bare  fact  that 
[ P  + Q] is recursively based.  Given algorithms for 
deciding whether Pi = I, whether yi 5 y j ,  and so on, we 
have shown how to  construct algorithms for deciding 
whether qi = I, and so on.  Given ( j ,  k )  in N X N, we  can 
effectively find i such  that qi=J’(Pj, y k ) .  We  summarize 
these  facts in the following corollary. 

Corollary 5.4 Let P ,  Q be  recursively  based  chain- 
complete posets. Suppose Q has bounded joins.  There  is 

an effective construction of a recursive listing and as- 
sociated  decision procedures for the  extension basis of 
[ P  + Q] from  such listings and procedures  for the ex- 
tension  bases of P and Q.  0 

Even  for very simple choices of P and Q such that P 
has bounded joins but Q lacks bounded joins, there  can 
be  no effective construction of the  above kind.  Before 
proving this, it is convenient  to  consider  an example 
showing the  importance of bounded joins in Lemma 4.4. 

Example 5.5 Supremums in [ P  + Q ]  need  not be cal- 
culable  pointwise  when Q lacks bounded joins.  Let f be 
{I, a ,  b}  with 1 < a < b (so that P is a lattice).  Let Q be 
{I, a,,  a,, agr c, b} ,  ordered  as shown in Fig. 3. For i 
= 1, 2 1etA:P -+ Q withJ;1 = 1 , h a  = ai, andJ;b= b. Then 
{ j i ,  fi} C_ [ P  -+ Q] with supremum g such  that gl = I, 
g a, = u3, and g b = b. However, {f,u,@} = {a, ,  u2}  and 
has  no supremum in Q. 

Theorem 5.6 There is a finite recursively  based  chain- 
complete poset P with bounded joins  and a countable 
family {Q, IkEN} of recursively  based  chain-complete 
posets  such  that  each [ P  -+ Q,] is recursively  based  but 
there is no effective construction of a recursive listing and 
associated decision procedures for the extension  basis 
of [ P  -+ Q,] from  such listings  and procedures  for P and 
for Q,. 

Proof Consider any enumeration of the deterministic 
Turing  machines  and their  input tapes. Let H:N X N 
-+ {O, 1 } with H ( k ,  r )  = 1 iff the kth machine  halts  on  the 
kth input after exactly r steps.  Thus H is recursive 
whereas  the function T:N + (0,  l }  with 

T k =  1 iff ( 3 E N ) ( H ( k ,  r )  = 1 )  

is not  recursive,  as is well known. 
Let P be  as in Example 5.5. For  each k ,  let Q, have  the 

same  elements  as Q in Example 5.5,  but with {c,lr E N }  
rather  than  just c .  All r have a,,  a2 < c,. There is no  order 
relation  between a3 and c ,  or  between c, and c8 for r # s. 
The  other  order relations of Q still hold in Q,: 

I < a,, a2 < ag < b. 

Finally, 

c ,  < b in Q, iff H ( k ,  r )  = 1. 

Lettingf,,f,  be  as in Example 5.5, we  obtain 

{A,&}  has a  supremum iff Tk = 0. (1) 

Because P ,  Q, and [ P  4 Q,] consist entirely of com- 
pact elements, Theorem 3.3 implies that  these  spaces 
are  extension  bases  for themselves. Choose a recursive 
listing p for P and a recursive listing y ,  for  each Q,. 
Using a universal Turing machine,  this can  be  done in a 145 
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Figure 3 Poset without bounded joins. 

uniform way. Not only does a recursive function gk:N 
+ {0, I}  have 

r k j = l i n Q , i f f g k j = l ,  

but  there is also a recursive function G: N X N + {O, I }  
with 

G ( k ,  j )  = g, ( j )  for all k ,  j .  

Similarly for  the  other conditions in Definition 5.1. 
With the aid of an oracle  for  the halting problem, we 

146 can  construct a recursive listing 77, for P + Q,. The 
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oracle supplies T k .  As (1) illustrates, the  requirements 
of Definition 5.1 can  easily  be met when  this bit of in- 
formation is available. 

We claim the  oracle is necessary: No effective  con- 
struction can pass  for all k from p and y, (with  associated 
decision procedures) to a listing 6, of [ P  -+ Q,] (with 
associated  decision procedures).  Suppose otherwise. 
We may assume 

pl  = a  & /32= h; 

y,l = a1 & y,2 = a2 & y,4 = b for all k .  

Given k ,  effectiveness  permits the finding of 

TI, rz,  SEN 

such  that 

6, r 1 =f(pl, ~ ~ 1 )  = f ( a ,  a l l ;  

S,r, = f ( p l ,  ~ ~ 2 )  = f ( a ,  a z ) ;  

8,s = f ( P 2 ,  Y k 4 )  = f ( h  6). 

We can then find i , ,  i2EN such that 

Ski, = sup { S k y 1 ,  Sks} = A ;  
Ski, = sup {Q, ,  6,s) =ji .  

Now define T ‘ : N  + ( 0 ,  I }  by 

T ’ k  = 1 iff {Ski,, Sk i2}  has  no  supremum, 

so that T’ is recursive. But T = T’ by (1 )  and T is not 
recursive. 0 

In order  to  compare  Theorem 5.3 with the  results in 
[ 14, I51 we must introduce a property  stronger than 
possession of bounded joins. 

Definition 5.7 A subset A of a  poset P is pairwise com- 
patible i f f  every {x, y }  A has  an  upper bound in P .  A 
poset P is coherent iff every pairwise  compatible A C P 
has a supremum. 

In particular,  a coherent poset is chain-complete. 
Using  Corollary 2.9 to bridge the gap between w-com- 
pleteness  and  completeness, it is not hard to  show  that 
P is a coherent recursively  based  poset iff P is a “cpo 
with a recursive basis” [ 14, Sec. 11.21 iff P is a  “domain 
of calculation” [ 15, Chap. 1111. Thus  the following cor- 
ollary is equivalent to  the  theorem in [ 14, Sec. 11.21 and 
to  Lemma 2 in [ 15,  Chap. 1111. 

Corollary 5.8 Let P and Q be  coherent recursively  based 
posets.  Then [ P  -+ Q] is a coherent recursively based 
poset. 0 

Coherence is a useful property.  The partial function 
poset of Example 3.5 is coherent, and  this  fact has been 
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used countless times. To construct a total function 
F : X  + Y ,  it suffices to  construct a family 9 of partial 
functions f : X ,  -+ Y  such  that 

and  such that any f ,  g in 9 have ,fx = gx whenever 
x EX, n X,. This last  condition is pairwise  compatibility of 
9. The function F is  the supremum of 9. Coherence is 
therefore interesting in its  own right. As we have  shown, 
it is not necessary in studying recursive listings of ex- 
tension  bases. It  is not even  helpful, except  as a suf- 
ficient condition for  the possession of bounded joins. 

A very slight simplification can be  achieved by as- 
suming that Q is a  lattice: we need not  bother deciding 
whether  subsets of Q have upper  bounds. A chain-com- 
plete poset Q with bounded joins  can easily be  made into 
a complete lattice Q’ by adding  a new top element [2, 
Sec. 41. To do this  prematurely may cause  embarass- 
ment. With one new element we can  make [ P  + Q ]  into 
a  lattice [ P  + Q]’. The lattice [ P  + Q’] is cluttered with 
a  great  many  more new elements  that map some members 
of P into Q and others into Q’ - Q. Ockham’s  razor 
would have us postpone  the addition of an ad  hoc  top 
until there  is a definite need for it. 
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