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Using a Desk-Top Computer for an On-Line Flood
Warning System

Abstract: The paper deals with the development of an adaptive model that is applicable to real-time forecasting of hydrologic processes.
The rainfall-runoff process is considered here. In this model the discharge was modeled as autoregressive with past discharges and a
moving average representation on the precipitation. The model makes use of the Constrained Linear Systems (CLS) technique to split
the precipitation into two rainfall inputs by using a threshold based on an antecedent precipitation index. This technique can be thought
of as a piecewise linearization of a nonlinear process. The real-time forecasting model is a time invariant linear state model where the
state variables, discharge and rainfall, are estimated by the Kalman filtering algorithm and the unknown model parameters by using the
instrumental variables approach. This technique was applied in a case study using data from the Ombrone River Basin, Italy, and was

implemented on a small desk-top computer.

Introduction

In most countries of the world, flood warning systems, if
they exist at all, are the responsibility of some large cen-
tral authority and are limited to major streams and popu-
lation centers. For the myriads of small towns and cities
clustered along the banks of minor rivers, flood warning
systems are either nonexistent or of such a nonspecific
nature as to be of little practical value to the residents. It
is the purpose of this paper to show that modern tech-
nology has advanced to the stage where small local civil
defense or similar authorities could consider installing
and maintaining their own ‘‘flash flood’” warning systems.
Further, it is suggested that local control of a flood warn-
ing system combined with the education and involvement
of the area residents is likely to lend more credence to
flood forecasts, and lead to fewer and less serious recrimi-
nations following faulty forecasts.

To issue flood warnings, local authorities need a rela-
tively cheap, reliable forecast system, combined with
some knowledge of the variance associated with their
forecasts. In this paper we develop an algorithm suitable
for use on a desk-top computer which, when interfaced
with some telemetering equipment connected to upstream
sensors, could form the basis for such a local forecast sys-
tem. The algorithm is applied to a flood that occurred in
the Ombrone River Valley catchment of southern Tus-
cany, Italy.

Ombrone River Valley
The total catchment area for the Ombrone River is about
3500 km” (see Fig. 1), most of which has fairly low per-

meability. From a geologic point of view the basin is very
heterogeneous and much faulted although three main geo-
logic provinces are evident. In the north the soils have
developed from marine clay and sandstones; further
south are limestones, shales and quartzite conglomerates,
while the southern portion of the basin is covered with
nonmarine alluviums [1]. The region can be classified as
moderately hilly, with a maximum altitude of 1734 m and
a mean of 346 m above mean sea level. The land use is
principally agricultural, with a few forested areas and
many small villages and towns.

Grosseto, a town of approximately 70 000 people, is sit-
uated at the mouth of the Ombrone River some 250 km
southwest of Florence. The Florence flood of November
4, 1966 received world-wide attention, but the flood
which inundated Grosseto to a depth of 3 m on the same
day received little publicity outside Italy. This paper is
concerned with the problem of making flood forecasts for
just such small towns situated at the mouths of minor riv-
ers.

Meteorologic and hydrologic data base

When Grosseto was flooded in December, 1964, there
were 11 recording raingauges functioning in the catch-
ment area above the Sasso d’Ombrone streamgauging sta-
tion (see Fig. 1 for their locations). The raingauges were
all of international standard with orifices of 1000 cm®.
Precipitation records in two-hour increments were avail-
able for these stations and form part of the data base for
this study.
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The catchment area above the Sasso d’Ombrone
streamgauge amounts to 2657 km®. If one considers that
storms may move across the basin at a rate of 50 km/h,
and that interspersed amongst the rain clouds are inter-
mittently functioning lenses yielding intense precipi-
tation, one quickly realizes the magnitude of the sampling
problem that exists in the rainfall component of any rain-
fall-runoff model that is to be developed.

In this study the individual bi-hourly rainfall measure-
ments were combined into a single weighted average bi-
hourly precipitation measurement by using the Thiessen
method [2]. This method attempts to allow for the non-
uniform distribution of raingauges within the basin by as-
signing weights to the measurements proportional to their
surrounding sub-areas, on the assumption that the precip-
itation between stations varies in a linear manner. Other
weightings are of course possible, but no investigation of
alternative raingauge weighting systems was made in this
study. Further, from the results obtained to date it would
appear that the benefits that might accrue from using
some other arbitrary weighting system are not likely to
have an overpowering influence on the accuracy of the
flood forecasts.

Quantitative precipitation forecasts for the area above
Sasso d’Ombrone are needed if one wishes to make long-
term flood forecasts for the town of Grosseto. Synoptic
meteorologic forecasts of precipitation are notoriously in-
accurate, and in any case are not available for the Om-
brone region. Further, scanning radar which would allow
for at least an accurate forecast of the cessation of precip-
itation is not available for this isolated and hilly region.
However, during the intense rainstorms that cause floods
in this region, the previously mentioned Thiessen
weighted precipitation index has been found to be highly
positively autocorrelated (in excess of 0.9); this property
forms the basis of the precipitation forecasts that were
developed for use in this study.

The streamgauge at Sasso d’Ombrone is well situated
in a rocky gorge. The stage/discharge relationship, which
yields the discharge, given the level measurements, is re-
garded as reasonably accurate, and in addition there is a
float gauge for measuring flood crests in the vicinity of
Grosseto. Mathematical models for routing flood waves
are highly developed [3] and of sufficient accuracy to
make the Sasso d’Ombrone/Grosseto portion of the Gros-
seto flood warning system a technically trivial problem of
model calibration. The travel time for a flood from Sasso
d’Ombrone to Grosseto has been estimated at three
hours; therefore, for forecasts of range greater than three
hours, the center of attention must be the rainfall-runoff
modeling for the region upstream from Sasso d’Ombrone.

All rainfall-runoff models that do not have an on-line
updating facility produce forecasts that are either too high
or too low for long periods of time [4]. Most modelers in
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Figure 1 Map of the Ombrone River catchment showing the lo-
cation of the gauges.

fact modify the rainfall input functions or the evapo-tran-
spiration (E.T.) losses in order to adapt the model to the
measured discharges and to thus update the forecasts in
real time. In this paper an objective technique for up-
dating the model parameters in real time, and thus the
discharge forecasts, is presented which uses the Con-
strained Linear Systems (CLS) threshold concept [5] in a
Kalman filter formulation. The concluding sections of the
paper give the mathematical framework for this approach
and illustrate its implementation on a small desk-top com-
puter.

CLS approach to rainfall-runoff modeling

Following Dooge [6], a simplified catchment model can be
represented by the scheme shown in Fig, 2. Some of the
precipitation p infiltrates the ground, depending on the
soil moisture content. The remainder, referred to as the
excess rainfall, is then responsible for a relatively quick
surface water response, while some of the infiltrated wa-
ter reappears at the outlet of the catchment after a longer
period of time. Thus soil moisture, as it is depleted by
evapo-transpiration (E.T.) and deep losses, acts as a con-
troller of the saturation threshold S, which determines
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Figure 2 Simplified catchment model; p represents the precipi-
tation collected by the catchment area, and g the measured out-
fall discharges.
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Figure 3 CLS model scheme (p, = p, + p;, ¥V 1.
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Figure 4 Scheme of the MISO representation of CLS for single
threshold 7.

how much water percolates and how much flows directly
to the drainage network. Though both the surface water
effect and the ground water effect can be represented by
linear systems, the overall effect is highly nonlinear, since
it depends on the relative saturation of the soil during
storm events.

Todini and Wallis [5] solved this nonlinear problem by
piecewise linearization using the so-called CLS approach.

One of the basic ideas of CLS is that the precipitation p,
(+ = time) is transformed into runoff ¢, by a series of mu-
tually exclusive linear systems depending on the initial
condition of the soil.

For the Ombrone model only two linear systems repre-
sented the rainfall runoff phenomenon, depending on the
value of the antecedent precipitation index (AP[), which
is a function of time:

API, = K - API_, + p,_,

where K is an exponential decay factor that accounts for
the depletion of water in the soil due to evapo-transpira-
tion losses and deep percolation.

If the initial condition of the soil is dry, the value of
API is equal to or smaller than a threshold value T; p, will
then be transformed into ¢, by the first linear model.
When the soil is wet, API, is larger than T; therefore, the
effect of the precipitation p, on the discharges ¢, is higher.
Thus the second linear model, with a larger impulse re-
sponse, transforms the precipitation p, into runoff ¢,. The
logic scheme of CLS is represented in Fig. 3. Though the
overall effect is nonlinear, once the threshold parameters
have been fixed, the system’s behavior can be repre-
sented as a MISO (multiple input, single output) model
(Fig. 4).

A computer program, CLSB, which allows for the esti-
mation of the unknown parameters of the MISO linear
model for each given set of threshold parameters, is avail-
able [7] and was used in the identification phase of the
Ombrone model.

ARMAX representation of the model

The MISO model already described can be easily re-
formulated as an ARMAX model of the following general
structure [8]:

(1+8B+---+3§B)g,
=(w, +twB+ -+ aB)p,_,
+ (@ + B+ -+ B+ oW, (1

where B is the backward shift operator, so that B'q, = q,_,
[9]; r is the order of the autoregressive term, s is the order
of the moving average on the exogenous variable, b is the
time lag of the input function, and w is the system noise.
The & and @ are parameters to be determined. [The term
ARMAX is used to point out that these models, as op-
posed to the pure ARMA (auto regressive moving aver-
age) models, also accept deterministic inputs. Following
Young et al. [10], the X may stand for exogenous input
variables. ]

As stated previously, the lumped rainfall input has been
found to be highly autocorrelated; therefore, a model to
forecast the rainfall during storm events was set up to al-
low for a more than one step ahead forecast:
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(I+aB+ - +aBp =w,, )

where the a are parameters to be determined.

Kalman filter representation

A model to be used for early warning must be very
simple, with small CPU requirements, but also efficient
with respect to estimating future discharges and providing
information on the probability with which some given
warning level may be exceeded. All these requirements,
together with the possibility of updating in real time the
parameters of the model, can be met by using a Kalman
filter representation of the above-mentioned ARMAX
models.

The Kalman filter is a recursive estimator that performs
unbiased and minimum variance estimates of the quan-
tities (state variables) chosen to represent the evolution of
a dynamic system. The basic idea is to provide a one step
ahead extrapolation of the state variables and of the vari-
ance-covariance matrix of the errors of estimate, and to
update the forecast, taking into account the information
provided by the new noisy measurements. It should be
noted that the advantage of the Kalman filter really
emerges when real-world data are considered in struc-
tural models.

All the models where a physical cause and effect may
be hypothesized are in fact structural models rather than
regression models [11] with input variables (in our case,
€.g., the lumped rainfall input p) which are noise cor-
rupted. The regression hypothesis that the input (exoge-
nous) variables be perfectly measured is nullified and
therefore the system model should be expressed in terms
of the true unknown quantities. A measurement model,

q(; = qt + vlt;
P =D+ vy, 3)

where v, and v,, represent the measurement errors, must
be added to the system model represented by Egs. (1) and
(2). The resulting model expresses a cause and effect rela-
tionship between the true unmeasurable quantities, thus
allowing a filtering of the measurement noise. It can be
rewritten with the Kalman filter notation as

System model x,,, = ®x, + [\w,;
Measurement model z, = Hx, + v, 4)

The state transition matrix ¥, the noise transition matrix
T,, and the measurement matrix H, are amplified below.

Model identification and parameter estimation

The identification of the model structure was performed
by using a continuous rainfall-runoff record 160 days long
during the fall/winter season of 1964-1965, sampled with
two-hour time intervals Ar. Trial and error use of the
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CLSB program [5, 7, 9] gave a threshold value T of 475.2
million cubic meters that was found to be the most appro-
priate, together with K = 0.98 for the API function.
From the analysis of the cross-correlation functions be-
tween q(; and p(; using the standard identification approach
discussed in Box and Jenkins [9], the most appropriate
values for the parameters were found tobe r = 2, 5 = 2,

and b = 1. Therefore,
q,= =84, = 8,4, , + e, + wip;_, + @p;_,

11 golt 7" ot 11t .
+ wopt~1 + wlptvz + w2pt—3 + wlt’

P, = 0P — QaDy g — UyDyg F Wop (5)
and

4 =4q,+ v,

Py =P, t v, - (6)

are in this case the expanded form of the Kalman filter
notation previously given as Eq. (4).
We therefore have

’ ’ ! " " " T.
State vector x, = [q, q,_, P, Pi_, Pi_y P} Pi_, Pis)

0 o7

Measurement vector z, = [q, p,] ;
. — T_
System noise w, = [w,, w,];

. _ T.
Measurement noise v, = [v,, v, ];
State transition matrix

F_al —82 (u(/) w; (u; (u'(; w'{ w/z/ ]
1 0 0 0 0 0 0 0
0 0 —a, —a, —a, 0 0 0
& 0 0 1 0 0 0 0 0|
10 0 0 1 6 o 0o o]
0 0 0 0 0 - —a —a,
0 0 0 0 0 1 0 0
L O 0 0 0 0 0 1 0 J
and
10000000
{00100000} for APL = T:
]‘7t' =H =
10000000
> T.
{00000100} for API, > T
Further assumptions are
w,= NIP(W, Q);
v,= NIP, R),

where NIP stands for Normal Independent Process, and
E[(w, — W)(v, - 9)] = 0,

where E[-] denotes the expectation. The linear formula-
tion of the Kalman filter is an unbiased minimum variance
estimator if and only if these assumptions are fulfilled. 467
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Figure 5 Computer plots of recursive parameter estimates vs
increasing length of historical record.

The estimation of the parameters could be made by
means of regression, but as previously stated [11-14]
these are structural models rather than regression mod-
els, since even the independent variables are noise-cor-
rupted, leading to inconsistent estimates of the parame-
ters. Therefore, according to[12], any of three main alter-
native approaches could be selected:

f

a. the classical approach, which requires fairly strong as-
sumptions about the probability distributions of the er-
ror terms;

b. other approaches based on grouping the observations
and making less stringent assumptions about the error
terms; or

c. the use of instrumental variables.

The last approach was chosen because the Kalman filter
itself can provide at each step in time the instrumental
variable (IV) vector that fulfills the requirements of being
highly correlated with the unobservable true variables g,
and p, but totally independent of the measurement errors
v,, and v,,. The Kalman filter provides the necessary 1V
vector that is the state vector estimate to be used for the
recursive parameter estimation. The algorithm used is the
recursive IV algorithm proposed by P. C. Young [13].

The instrumental variables estimation improves its effi-
ciency according to the quality of the instrumental vari-
able vector provided by the Kalman filter; therefore, the
estimation procedure, which is carried out in parallel with
the Kalman filter and in which a recalibration of all pa-
rameters is performed, is repeated several times on the
same data set until further iteration yields negligible
changes in the parameter estimates. Note that this cali-
bration of parameters is only performed once with the ini-
tial historical data set.

In Fig. 5 the plots of all the parameter estimates vs the
number of data used for the estimation are shown, reveal-
ing, after a certain number of iterations, that a high degree
of stability is obtained. The final values of the parameter
estimates were the following:

-8, =1267 -5, =—0.350
o) = 0.002 w, = 0.014 w,= 0.010

wy = 0.045 o’ = 0.015 w, = —0.008
—a, = 0.999 -«

—0.221 —a 0.126

1

Use of the model for short-term forecasts
Once the parameters have been estimated by using the
historical record, the model is ready to be used for on-line
rainfall-runoff prediction. If we denote by
0 0
- — |4, 95 -
t_[zpzza""zt]_ ! 2 qt

9
Pl p

the historical record up to time ¢, §,, ,, and p,, ,, [the pre-
dicted values for the discharges and rainfalls at time
(t + Ar)] are only a function of the information content of
the past. We can therefore write

ét+At = f(Zt)5
Pua=SZ), ®
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but in general, predictions 1Af in advance are of a range
too short for effective warning and control purposes, and
predictions 2Ar or greater in advance are often needed.
For the Ombrone, 3Ar advance predictions (At = two
hours) are needed at the Sasso d’Ombrone gauging sta-
tion, which provides nine hours’ advance early warning
for the city of Grosseto, given the three hours for flood
wave travel time from Sasso d’Ombrone to Grosseto.

By using the Kalman filter without updating to extrapo-
late the predictions, it is easy to show that

éz+2At - f(Zt’ ét+At’ ﬁH—At);
ﬁt+2At = f(Zt’ f)t+At); ®

and that

qt+3At = f(Zt’ qt+2At’ qH—At’ pt+2At’ pt+At)’

ﬁt+3At = f(Zt’ ﬁt+2At’ ﬁt+At)' (10)

It should be considered that without updating, the vari-
ance of the errors of estimate of the state variables q,,,,,
and p,, ., increases with the increasing lag i of prediction
due to the system errors, or in other words due to our
system simplified model.

Another consideration comes from the physical analy-
sis of the rainfall-runoff process: discharge estimates that
are unreliable compared to the previous ones may be ob-
tained if we try to forecast beyond the time to peak of the
impulse response. This latter time is a characteristic of
the catchment. We therefore must find a tradeoff between
our need for forecasting with maximum lag and the phys-
ical behavior of the phenomenon. Fortunately, since we
may have continuous rainfall-runoff measurements, after
1At we have

0
Zt+At = [Zc’ zt+At] = [Zt’ qt0+M :|’ amn
pt+At

and therefore the filter can be recalibrated and the states
at time (¢ + 2A¢) can be forecast by using all the informa-
tion up to time (¢ + Af). Because the filter is a recursive
estimator, only the known quantities at time ¢ and the new
measurements at time (f + Af) are needed to perform the
recalibration of the model parameters (the unknown coef-
ficients of the state transition matrix @) which are then
used to perform the forecast at time (¢ + 2A?):

Gerone = FZyys)s
Prrone = F(Zyy s (12)

Thus, after updating with the new information content,
we are able to move further in time to predict

Qrizae = F @y Griane Prrond

Prrsar = FZyppps Prraad (13)
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Figure 6 Measured and one step (two hours) ahead forecasts at
Sasso d’Ombrone (discretized computer plot).

and

qt+4At = f(Zt+At’ qt+3At’ qt+2At’ pt+3Al’ pt+2At)’

Prisar = f(Zt-mz’ Prrsar Prezar)- (14)

Therefore, after the model is updated, g, +aa 1S Only a two
step ahead forecast with a reduction of the variance of the
errors of estimate, which as already stated can be ex-
pected to increase with the number of steps.

In any case, the variances and consequently the esti-
mated standard deviations are very small compared to the
actual discharge values of the flood events. Figure 6
shows an example of one step ahead predictions after sta-
bilization of parameters, compared to the measured dis-
charges for the largest storm event of the December 1964
record. The estimated standard deviation S, of the one
step ahead prediction over the whole sample is

S, = 14 m’s,

while the high flows are measured in hundreds of m®s.
Using the Kalman filter variance-covariance projection
equation, we can determine that the comparable two step
ahead prediction is

_ 3
, =23 m’/s,
while the three step ahead prediction yields
S, = 32 m%s.

When compared to the values of the flood discharges, S,
and S, are very small.

Figure 7 shows a series of forecasts for 1A¢, 2A¢, and
3At (At = two hours), plotted with observed flows at suc-
cessive Az time increments. Each plot represents an in-
crement of 1Ar from the previous plot. Recalibration of
model parameters is performed at each At. Forecast accu-
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Figure 7 Forecasts for 1A¢, 2At, and 3Ar and observed flows at successive At time increments.

racy would be increased if the time of the cessation of

precipitation had been predictable. Figure 7 may show
that the forecasted values for two and three steps ahead
lie outside the 95 percent confidence limit. This is due to
the fact that the standard deviations were computed over
the whole record of high and low flows, and the forecasts
are relevant to the largest recorded flood.

Conclusions
As stated previously, the model implemented on a desk-

top computer can be of great help to local flood-control
authorities, enabling them to analyze the benefits and
risks of alternative strategies and to make decisions in
real time that may be close to optimal for the local situa-
tion. The model in fact not only forecasts the future val-
ues of discharges during storm events but also provides

E. TODINI

information about the accuracy of the forecasts. This in-
formation can be used both to evaluate the probability
with which a warning level may be exceeded and to make
a cost-benefit analysis of different possible courses of ac-

tion.
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