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Using  a  Desk-Top  Computer for an On-Line Flood 
Warning  System 

Abstract: The  paper  deals with the  development of an  adaptive model that  is applicable to real-time  forecasting of hydrologic processes. 
The rainfall-runoff process is considered  here.  In this model the  discharge  was modeled as  autoregressive with past  discharges  and a 
moving average  representation on the precipitation. The model makes  use of the Constrained Linear  Systems  (CLS)  technique  to split 
the precipitation into  two rainfall inputs by using  a  threshold  based on  an  antecedent precipitation index.  This  technique  can  be  thought 
of as a  piecewise  linearization of a  nonlinear process.  The real-time forecasting model is a time  invariant  linear state model where  the 
state variables, discharge  and rainfall, are  estimated by the  Kalman filtering algorithm and  the  unknown model parameters by using the 
instrumental  variables approach. This technique was  applied in a case  study using data  from  the  Ombrone River  Basin, Italy,  and  was 
implemented on a  small desk-top  computer. 

Introduction 
In most countries of the world, flood warning systems, if 
they  exist at all, are  the responsibility of some large cen- 
tral  authority  and are limited to major streams  and popu- 
lation centers.  For  the myriads of small towns and  cities 
clustered along the banks of minor rivers, flood warning 
systems  are  either nonexistent or of such a nonspecific 
nature  as  to  be of little  practical  value to  the residents. It 
is the  purpose of this paper  to  show  that  modem  tech- 
nology has advanced to the stage where small local civil 
defense  or similar authorities could consider installing 
and maintaining their  own ‘‘flash flood” warning systems. 
Further, it is suggested that local control of a flood warn- 
ing system  combined with the education and involvement 
of the  area  residents  is likely to lend more  credence to 
flood forecasts,  and lead to fewer  and less serious recrimi- 
nations following faulty forecasts. 

To issue flood warnings, local authorities  need a rela- 
tively cheap, reliable forecast  system, combined with 
some  knowledge of the variance associated with their 
forecasts. In this paper we develop an algorithm  suitable 
for  use  on a desk-top  computer which, when interfaced 
with some  telemetering  equipment connected to upstream 
sensors, could form  the basis for such a local forecast  sys- 
tem. The algorithm is applied to a flood that occurred in 
the Ombrone River Valley catchment of southern  Tus- 
cany, Italy. 

Ombrone  River  Valley 
The total catchment  area  for  the  Ombrone River is about 
3500 km2 (see Fig. l ) ,  most of which has fairly low per- 

meability. From a geologic point of view the basin is very 
heterogeneous  and  much  faulted  although three main geo- 
logic provinces are  evident. In the  north  the soils have 
developed from marine clay and sandstones;  further 
south are  limestones,  shales and quartzite  conglomerates, 
while the  southern portion of the basin is covered with 
nonmarine  alluviums [l]. The region can be classified as 
moderately hilly, with a maximum altitude of 1734 m and 
a  mean of 346 m above mean sea level. The land use is 
principally agricultural, with a few forested  areas and 
many small villages and  towns. 

Grosseto, a  town of approximately 70 000 people,  is sit- 
uated at  the mouth of the Ombrone  River some 250 km 
southwest of Florence.  The  Florence flood of November 
4,  1966 received  world-wide attention, but the flood 
which inundated Grosseto  to a depth of 3 m on  the  same 
day  received  little  publicity outside  Italy. This paper is 
concerned with the problem of making flood forecasts  for 
just such small towns situated at  the  mouths of minor riv- 
ers. 

Meteorologic  and  hydrologic  data  base 
When Grosseto was flooded in December, 1964, there 
were 1 1  recording  raingauges  functioning in the  catch- 
ment area  above  the Sasso d’Ombrone streamgauging sta- 
tion (see Fig. 1 for  their locations). The raingauges  were 
all of international standard with orifices of 1000 cm2. 
Precipitation records in two-hour increments were  avail- 
able for  these  stations  and  form  part of the  data  base  for 
this study. 
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The  catchment  area  above  the  Sasso d’Ombrone 
streamgauge amounts  to 2657 km2. If one  considers  that 
storms may move across  the basin at a rate of 50 km/h, 
and that  interspersed amongst the rain clouds  are inter- 
mittently  functioning lenses yielding intense precipi- 
tation,  one quickly  realizes the magnitude of the sampling 
problem that  exists in the rainfall component of any rain- 
fall-runoff model that  is  to be  developed. 

In this  study the individual bi-hourly rainfall measure- 
ments were  combined into a single weighted average bi- 
hourly  precipitation  measurement by using the Thiessen 
method [2]. This  method  attempts to allow for  the non- 
uniform distribution of raingauges within the basin by as- 
signing weights to  the measurements proportional  to their 
surrounding sub-areas,  on  the assumption that  the precip- 
itation between  stations varies in a  linear manner.  Other 
weightings are of course possible, but  no investigation of 
alternative  raingauge weighting systems was made in this 
study.  Further,  from  the results  obtained to date it would 
appear  that  the benefits that might accrue  from using 
some other  arbitrary weighting system  are  not likely to 
have  an overpowering influence on  the  accuracy of the 
flood forecasts. 

Quantitative  precipitation forecasts  for  the  area  above 
Sasso  d’Ombrone  are needed if one wishes to make long- 
term flood forecasts  for  the town of Grosseto. Synoptic 
meteorologic forecasts of precipitation are notoriously in- 
accurate,  and in any  case  are not  available for  the Om- 
brone region. Further, scanning radar which would allow 
for  at  least  an  accurate  forecast of the  cessation of precip- 
itation is not available for this  isolated and hilly region. 
However, during the  intense rainstorms that  cause floods 
in this  region, the previously  mentioned  Thiessen 
weighted precipitation  index has been found  to be highly 
positively autocorrelated (in excess of 0.9); this property 
forms the basis of the precipitation forecasts  that were 
developed for  use in  this study. 

The streamgauge at Sasso d’Ombrone is well situated 
in a  rocky  gorge. The stage/discharge  relationship, which 
yields the  discharge, given the level measurements,  is re- 
garded as reasonably accurate, and in addition there is a 
float gauge for measuring flood crests in the vicinity of 
Grosseto. Mathematical  models for routing flood waves 
are highly developed [3] and of sufficient accuracy  to 
make the  Sasso  d’Ombrone/Grosseto  portion of the Gros- 
seto flood warning system a  technically  trivial  problem of 
model calibration. The travel time for a flood from Sasso 
d’Ombrone to  Grosseto  has been estimated  at  three 
hours;  therefore,  for  forecasts of range greater  than  three 
hours,  the  center of attention must be  the rainfall-runoff 
modeling for  the region upstream  from Sasso d’Ombrone. 

All rainfall-runoff models that  do not have  an on-line 
updating facility produce  forecasts  that  are  either too high 
or  too low for long periods of time [4]. Most modelers in 
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Figure 1 Map of the  Ornbrone  River  catchment  showing the lo- 
cation of the  gauges. 

fact modify the rainfall input  functions or the evapo-tran- 
spiration (E.T.)  losses in order  to  adapt  the model to  the 
measured discharges  and  to  thus  update  the  forecasts in 
real  time. In this paper  an objective technique  for up- 
dating the model parameters in real time,  and  thus  the 
discharge forecasts, is presented which uses  the Con- 
strained Linear  Systems (CLS) threshold concept [5] in a 
Kalman filter formulation. The concluding sections of the 
paper give the mathematical  framework for this approach 
and  illustrate its implementation on a small desk-top com- 
puter. 

CLS approach to rainfall-runoff  modeling 
Following Dooge [6], a simplified catchment model can  be 
represented  by the  scheme shown in Fig. 2. Some of the 
precipitation p infiltrates the  ground,  depending  on  the 
soil moisture content.  The  remainder, referred to  as  the 
excess rainfall, is then responsible for a  relatively quick 
surface  water response, while some of the infiltrated wa- 
ter  reappears  at  the  outlet of the  catchment  after a  longer 
period of time. Thus soil moisture, as  it  is depleted  by 
evapo-transpiration (E.T.)  and  deep  losses,  acts as a con- 
troller of the  saturation threshold S ,  which determines 
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Figure 2 Simplified catchment model; p represents the  precipi- 
tation  collected by the  catchment  area,  and q the measured out- 
fall discharges. 

- 
Figure 3 CLS model scheme ( p ,  = p ;  + p;, V t ) .  
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Figure 4 Scheme of the MISO representation of CLS for single 
threshold T .  

how much water percolates and how much flows directly 
to  the drainage network. Though both  the  surface water 
effect and the ground water effect can be represented by 
linear systems,  the overall effect is highly nonlinear, since 
it depends on the relative  saturation of the soil during 
storm  events. 

Todini and Wallis [5] solved this  nonlinear  problem by 
466 piecewise  linearization using the so-called CLS approach. 

One of the basic ideas of CLS is  that  the precipitation p ,  
( t  = time) is transformed  into runoff 4, by a series of mu- 
tually exclusive  linear systems depending on  the initial 
condition of the soil. 

For the  Ombrone model only two linear systems  repre- 
sented the rainfall runoff phenomenon, depending on  the 
value of the  antecedent precipitation  index (API), which 
is a  function of time: 

API, = K ‘ API,-, + P , - ~ ,  

where K is an  exponential decay factor  that  accounts for 
the depletion of water in the soil due  to evapo-transpira- 
tion losses and  deep percolation. 

If the initial condition of the soil  is dry,  the value of 
APZ, is equal to  or smaller  than a threshold  value T; p ,  will 
then be transformed into q, by the first linear  model. 
When the soil  is wet, APZ, is larger  than T ;  therefore, the 
effect of the precipitation p ,  on the discharges 4, is higher. 
Thus the second  linear  model, with a  larger impulse re- 
sponse,  transforms  the precipitation p (  into runoff 4,. The 
logic scheme of CLS is represented in Fig. 3. Though  the 
overall effect is nonlinear,  once  the threshold parameters 
have been fixed, the  system’s behavior can be  repre- 
sented  as  a MISO (multiple input, single output) model 
(Fig. 4). 

A computer  program, CLSB, which allows for the  esti- 
mation of the  mknown  parameters of the MISO linear 
model for  each given set of threshold parameters, is avail- 
able [7] and was used in the identification phase of the 
Ombrone  model. 

ARMAX representation of the model 
The MISO model already  described can be easily re- 
formulated as an ARMAX model of the following general 
structure [8]: 

( 1  + 6,B + . . . + STBr)q, 

= ( w; + w;B + . . . + wfB”p;-, 

+ (ai; + w;B + . . . + w:Bs)pp;”, + wl,, ( 1 )  

where B is the backward shift operator, so that B‘q, = q,-r 
[9]; r is the  order of the  autoregressive  term, s is the order 
of the moving average  on  the exogenous variable, b is the 
time lag of the  input  function, and w is the system  noise. 
The 6 and w are  parameters  to be determined. [The  term 
ARMAX is used to point out  that  these  models, as op- 
posed to  the  pure ARMA (auto regressive moving aver- 
age) models, also accept deterministic inputs. Following 
Young et al. [lo], the X may stand  for  exogenous input 
variables.] 

As stated  previously,  the lumped rainfall input has been 
found to be highly autocorrelated;  therefore, a model to 
forecast  the rainfall during  storm  events was set up to al- 
low for a  more than  one  step ahead forecast: 
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where the a are  parameters  to be determined. 

Kalman  filter  representation 
A model to be  used for early warning must  be  very 
simple, with small CPU requirements, but also efficient 
with respect  to estimating future discharges  and  providing 
information on the probability with which some given 
warning level may be exceeded. All these  requirements, 
together with the possibility of updating in real time the 
parameters of the  model, can be  met by using a Kalman 
filter representation of the  above-mentioned ARMAX 
models. 

The Kalman filter is a recursive estimator  that performs 
unbiased and minimum variance estimates of the  quan- 
tities (state variables) chosen  to  represent  the evolution of 
a dynamic system.  The basic idea is to  provide a one  step 
ahead  extrapolation of the  state variables  and of the vari- 
ance-covariance  matrix of the errors of estimate, and to 
update  the  forecast, taking  into account  the information 
provided by the new noisy measurements. It should be 
noted  that  the advantage of the Kalman filter really 
emerges when real-world  data are considered in struc- 
tural models . 

All the models where a physical cause  and effect may 
be  hypothesized are in fact structural  models rather than 
regression  models [ 1 I] with input  variables (in our  case, 
e.g., the  lumped rainfall input p , )  which are noise cor- 
rupted.  The regression  hypothesis that  the  input (exoge- 
nous) variables  be  perfectly  measured is nullified and 
therefore the  system model should be expressed in terms 
of the true unknown quantities. A measurement model, 

where vlt  and v,' represent the measurement  errors, must 
be  added to the system model represented by Eqs. (1) and 
(2). The resulting model expresses a cause and effect rela- 
tionship between  the  true unmeasurable quantities,  thus 
allowing a filtering of the measurement  noise. It can be 
rewritten with the Kalman filter notation as 

System model = @'xt + rtwt; 

Measurement model z, = Hpt + v,. (4) 

The state transition matrix the noise transition  matrix 
rt, and the measurement matrix H, are amplified below. 

Model  identification  and  parameter  estimation 
The identification of the model structure was  performed 
by using a continuous rainfall-runoff record 160 days long 
during the falliwinter season of  1964-1965, sampled with 
two-hour  time intervals A t .  Trial and error use of the 

CLSB program [ 5 ,  7, 91 gave a threshold  value T of 475.2 
million cubic meters  that was  found to be the most appro- 
priate, together with K = 0.98 for  the APZ function. 

From the  analysis of the cross-correlation  functions  be- 
tween 4 and p;  using the  standard identification approach 
discussed in Box and  Jenkins [9], the  most  appropriate 
values for  the  parameters were  found to be r = 2 ,  s = 2 ,  
and b = 1. Therefore, 

q t = - 6 q  1 ' - 1  - 6241-2 + W6Pl-1 + WIPI-2 + 4 P I - 3  

+ w;p;-, + w;p;-, + o;p;-3 + Wit; 

P' = f f1  P'-1 - ff2 PI-, - f f3Pf-3  + w.2,; ( 5 )  

4 = q, + Dl,; 

P: = P I  + U 2 ,  (6) 

and 

are in this case  the  expanded form of the Kalman filter 
notation  previously given as Eq. (4). 

We therefore have 

State  vector X, = [4, 4t-l Pt   P t - l  P ,   P t - l  P,-,l 2 

t I I II u II T. 

Measurement vector zt = [q1) PPI'; 
System  noise W, = [wit w J ' ;  

Measurement  noise vt = [vlt  v2JT; 
State transition  matrix 

@' = 

and 

- 6 ,  -6, WI, 6J; w; w; w'i 0'; 

0  0 - f f l  -cyz - f f3  0 0  0 
I 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  
0 0 0 1 0 0 0 0  

0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0  

0  0  0  0  0 -ffl  -az - f f3  

1 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  1 for APZ, 5 T; 

Further  assumptions  are 

wt= NIP(W, Q); 

vt = NIP(V, R),  

where NIP  stands  for Normal Independent  Process, and 

E[(w, - W)(V, - V)] = 0, 

where  E[.] denotes  the  expectation.  The linear  formula- 
tion of the Kalman filter is an unbiased minimum variance 
estimator if and only if these  assumptions  are fulfilled. 
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The last approach  was  chosen  because  the Kalman filter 
itself can provide  at  each  step in time the instrumental 
variable (IV) vector  that fulfills the  requirements of being 
highly correlated with the  unobservable  true variables q, 
and p t  but  totally independent of the  measurement  errors 
u,, and u,,. The Kalman filter provides  the  necessary IV 
vector that  is  the  state  vector  estimate  to  be used for  the 
recursive parameter estimation. The algorithm used is the 
recursive  IV  algorithm  proposed by P. C. Young [13]. 

The instrumental  variables  estimation improves  its effi- 
ciency  according to  the quality of the  instrumental vari- 
able  vector provided by the Kalman  filter; therefore, the 
estimation procedure, which is carried out in parallel with 
the Kalman filter and in which a  recalibration of all pa- 
rameters is performed,  is repeated several times on  the 
same  data  set until further iteration  yields negligible 
changes in the  parameter  estimates.  Note  that this cali- 
bration of parameters is only  performed once with the ini- 
tial historical data  set. 

In Fig. 5 the plots of all the  parameter  estimates  vs  the 
number of data  used  for  the estimation are  shown, reveal- 
ing, after a certain  number of iterations,  that a high degree 
of stability is obtained.  The final values of the  parameter 
estimates  were the following: 

0.20 k :.. -6, = 1.267 -6, = -0.350 ................................ !... ........................................................ I 

!.... ....................................... m .................................................... <U 
1 0 . 1 0  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

-a1 = 0.999 -az = -0.221 -a3 0.126 
10 400 800 I 200 I600 2000 

Use  of  the model  for  short-term  forecasts 
Time ( h )  Once  the  parameters  have been  estimated by using the 

Figure 5 Computer plots of recursive  parameter  estimates vs historical record,  the model is ready  to  be used for on-line 
increasing length of historical  record. rainfall-runoff prediction. If we  denote by 

z, = [z,, Z,’ . . . .  z,] = 
[q; p1 pz qi : : : 

The estimation of the  parameters could be  made by the historical record  up  to time t, lj,,,, and fit+,, [the pre- 
means of regression,  but  as previously stated [11-14] dicted  values for  the discharges and rainfalls at time 
these  are  structural models rather  than regression  mod- (t + At)] are only a  function of the information content of 
els, since even  the  independent variables are noise-cor-  the past. We  can therefore write 
rupted, leading to  inconsistent  estimates of the parame- 
ters.  Therefore,  according  to [ 121, any of three main alter- (it,,, = f(Z,); 

468 native approaches could  be  selected: B,,,, = f ( Z , ) ,  (8) 

E. TODINI IBM J. RES. DEVELOP. VOL. 22 NO. 5 SEmEMBER 1978 



but in general, predictions IAt in advance  are of a  range 
too  short  for effective warning and  control  purposes, and 
predictions 2At or  greater in advance  are often needed. 
For  the  Ombrone, 3At advance predictions (At  = two 
hours) are needed at  the  Sasso  d’Ombrone gauging sta- 
tion, which provides nine  hours’ advance early warning 
for the city of Grosseto, given the  three  hours  for flood 
wave  travel  time from  Sasso  d’Ombrone to Grosseto. 

By using the Kalman filter without  updating to  extrapo- 
late the  predictions, it is easy to  show  that 

4,+z,, = f (Zp 4t+,t’ Bt+at);  

@,+,A, = f(Zt, it+,,); 

.. ”. . . . . .. 

and  that 

4+3at = f(ZP @,+,at, cit+*t~ Bt+zat, fit+,,); 

B,+,J = f ( Z , >  Bt+z,t’ B,,,,). ( 10) 

It should  be considered that  without  updating, the vari- 
ance of the  errors of estimate of the  state variables 
and increases with the increasing lag i of prediction 
due  to  the system errors,  or in other  words  due  to  our 
system simplified model. 

Another  consideration  comes from the physical  analy- 
sis of the rainfall-runoff process:  discharge estimates that 
are unreliable compared  to  the previous ones may be  ob- 
tained if we try to  forecast beyond the time to peak of the 
impulse response. This latter time is a characteristic of 
the  catchment. We therefore must find a tradeoff between 
our need for  forecasting with maximum lag and the  phys- 
ical behavior of the  phenomenon.  Fortunately, since we 
may have  continuous rainfall-runoff measurements,  after 
lA t  we have 

%+A, = [Z,, %+,,I = [ z,, s::]. ( 1 1 )  

and therefore the filter can  be  recalibrated and  the  states 
at time ( t  + 2At) can  be  forecast by using all the informa- 
tion up  to time (t  + At) .  Because  the filter is a recursive 
estimator, only the  known quantities at time t and the new 
measurements at time ( t  + At)  are needed to perform the 
recalibration of the model parameters  (the unknown coef- 
ficients of the  state transition  matrix @1) which are then 
used to perform the  forecast  at time (t  + 2At): 

4+zat = f ( Z t + &  

B,+z,t = f (Z t+ ,J  (12) 

Thus,  after updating with the new information content, 
we are  able  to  move  further in time to predict 

@,+sat - f(Z,+,,, 4 + 2 A t ’  at+,,,,; 

B,,,,, = f(Zt+,,, fit+*,,); (13) 

- 

/Time (h  x 2 )  

Figure 6 Measured  and  one  step  (two  hours)  ahead  forecasts  at 
Sasso d’Ombrone  (discretized computer plot). 

and 

4t+rat = f(Z,+,t, 4 , + 3 A t ,  4+*at3 @t+SAt’  Bt+zat); 

fit+,,, = f (Z ,+ ,P B t + S A t ’  fit+,,,). ( 14) 

Therefore,  after  the model is updated, G,,,,, is only a two 
step ahead forecast with a  reduction of the variance of the 
errors of estimate, which as already stated can be ex- 
pected to  increase with the number of steps. 

In any case,  the  variances  and  consequently  the esti- 
mated standard  deviations  are very small compared  to  the 
actual  discharge  values of the flood events. Figure 6 
shows an  example of one  step ahead predictions  after  sta- 
bilization of parameters, compared to  the measured dis- 
charges for  the largest storm  event of the December 1964 
record.  The  estimated  standard deviation S ,  of the  one 
step ahead  prediction over  the whole sample  is 

S ,  = 14 m3/s, 

while the high flows are measured in hundreds of m3/s. 
Using the Kalman filter variance-covariance projection 
equation, we can  determine  that  the  comparable  two  step 
ahead  prediction is 

S, = 23 m3/s, 

while the  three  step  ahead prediction yields 

S, = 32 m3/s. 

When compared  to  the values of the flood discharges, S, 
and S, are very  small. 

Figure 7 shows a series of forecasts  for lA t ,   2At ,  and 
3At  (At = two  hours), plotted with observed flows at suc- 
cessive At time increments.  Each plot represents  an in- 
crement of lht  from  the previous  plot.  Recalibration of 
model parameters is performed at  each At .  Forecast  accu- 469 
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Figure 7 Forecasts for lAr, 2At, and 3At and observed flows at successive At time increments. 

racy would be increased if the  time of the cessation of 
precipitation  had been predictable. Figure 7 may show 
that  the  forecasted values for  two  and  three  steps ahead 
lie outside the 95 percent confidence limit. This is due  to 
the  fact  that  the  standard  deviations were computed  over 
the whole record of  high and low flows, and  the  forecasts 
are  relevant  td  the largest recorded flood. 

Conclusions 
As stated  previously,  the model implemented on a desk- 
top  computer  can  be of great help to local flood-control 
authorities, enabling  them to  analyze  the benefits and 
risks of alternative strategies and  to  make decisions in 
real  time that may be close to optimal for  the local  situa- 
tion. The model in fact  not only forecasts  the  future val- 
ues of discharges  during storm  events  but  also provides 

information about  the  accuracy of the  forecasts. This  in- 
formation can be used  both  to  evaluate  the probability 
with which a warning level may be exceeded  and  to make 
a  cost-benefit analysis of different possible  courses of ac- 
tion. 
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