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Abstract: This  paper  describes  two  hydrodynamic numeric  models and their  application to the Lagoon of Venice,  Italy.  The models are 
based  on the  same  mesh, bottom topography, boundary conditions,  and spatial  distribution of the  bottom  friction coefficient (Chezy 
coefficient). Although  quite  different in structure, both  models  ultimately provide  sea level  fluctuation and  current  speed  at  each mesh- 
point as functions of time. The first model  numerically integrates  the time-dependent, nonlinear, hyperbolic  shallow water  equations, 
written in conservation  form, with a space-staggered  leapfrog-type  (time dense)  scheme.  The model is suited to  episode simulation and is 
a particularly useful tool for  system management and  control.  The  second model is suited to long-term  simulations  and  models  only the 
astronomic  tide; it solves a  hybrid (differential-algebraic) system resulting from  semilinearization of the  shallow water  equations  under 
harmonic assumptions  for  the  tide.  Because of the superior  computational efficiency of this second model, it has been  used in conjunction 
with Powell's  algorithm to identify the a  priori unknown  spatial  distribution of the  Chezy parameter. If the same  Chezy distribution is fed 
into  the  two  models,  there  can  be  obtained a complete, self-calibrating, consistent modeling tool for tidal basins with arbitrary geometric 
configurations and boundary conditions in the  presence of hydraulic works. 

Introduction 
Numerous  theories have  been advocated [l-51 in an  at- 
tempt  to  provide  tractable solutions to  the  equations  gov- 
erning tidal propagation in basins  and  coastal areas. 
With the  advent of digital computers it has become cus- 
tomary  to  use numeric techniques in tidal calculations. 
Also, it has become  feasible to model irregular bottom 
topographies, complicated  geometric  configurations and 
boundary conditions,  and  to include equation  non- 
linearities. The numeric methods fall naturally  into two 
categories [6], harmonic methods and  timestepping meth- 
ods. 

In  the first class [7-91 there is assumed  to  exist ab initio 
a  harmonic nature in the variations of the tidal character- 
istics  with time,  or more generally, a  linear decomposi- 
tion of these variations by means of a finite group of har- 
monic constituents. According to this assumption,  the lin- 
earized  tidal  dynamics equations  are reduced to a system 
of partial  differential equations of elliptic  type with re- 
spect  to  the  complex amplitude of tidal  oscillations of the 
sea level. The formulated  boundary-value  problem has a 
unique  solution (under suitable  conditions on  the  angular 
velocities of the tidal wave and on  the Coriolis parameter) 
if the values of the amplitudes are known on a  part of the 
boundary of the body of water, while on  the  other  part 

there  is a condition of no flow [6].  The solution is  then 
found by standard numeric methods  for elliptic problems 
[lo]; mild nonlinearities in the original tidal dynamics 
equations  can be treated by iterating the  procedure  just 
described [5]. The primary output of harmonic methods  is 
given by the complex  amplitudes of the  harmonic constit- 
uents of the sea level as functions of space;  current veloc- 
ity and  water  depth,  as  functions of space  and  time,  are 
hence  obtained by Fourier  synthesis. 

In the timestepping methods  no a priori assumptions 
are  made  about  the  nature of the time  variations of the 
tide. Instead,  arbitrary initial conditions  are  set  for  water 
depths and  velocities. No-flow or no-slip conditions are 
also prescribed  at  the sea-land boundary, while at  the  sea- 
ward boundary  the vertical tide is given. The integration 
of the time-dependent, nonlinear,  hyperbolic tidal dynam- 
ics equations  is then  carried out numerically in a stepwise 
manner by using well known finite difference [2, 6, 11-22] 
or finite element [23] techniques.  The  current velocity  and 
water  depth  are obtained  directly at  discrete  intervals in 
space and  time. 

It is the  purpose of this paper  to illustrate how the  two 
methodologies can be  consistently  integrated in order  to 
build models of tidal  propagation that  are less subject  to 
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limitations associated with definition of the  bottom fric- 
tion parameter (Chezy parameter C )  necessary  for  the so- 
lution. One  distinct  advantage of such a procedure  is  that 
both immediate  and  long-term  effects of modifications of 
the physical system  to be  modeled can be  analyzed by 
appropriate  means. For instance,  permanent  changes in 
the  geometric configuration can  be rapidly analyzed  by 
the harmonic method, while episode simulation and  com- 
putations of extremal values (high and low water  levels, 
maximum  velocities) are best carried  out by the nonlinear 
timedependent  method.  These  methods  have been spe- 
cifically applied to  the Lagoon of Venice,  Italy.  In partic- 
ular, a proposal  to  construct engineering works at the in- 
lets of the lagoon  (Fig. 1)  raised many questions regarding 
the effects such  works would have  on  the hydraulics of 
the  system. Many considerations  are involved, and a 
number of investigations  from various  standpoints  were 
undertaken  both  at  the IBM Venice Scientific Center 
(VSC) [24-291 and by other  research groups [9, 30-321. 
The  studies  at VSC  were centered  on a  nonlinear,  time- 
dependent numeric  model of the shallow water flow in the 
lagoon. In  addition, a second  harmonic-type  numeric 
model was  applied,  the principal  function of which was  to 
play a supporting role to the  nonlinear  model. 

The mathematical  techniques  developed in construct- 
ing the numeric  models are  presented in the first two parts 
of this paper.  The way in which the harmonic  model pro- 
vides essential  support  to the  nonlinear model is then  de- 
scribed,  and finally, a summary of the applications and 
results of the models is given. 

Timedependent nonlinear  model 

0 Basic  equations for shallow water flow 
In a partly  enclosed  basin of small size,  tidal  motions 
are formed by interaction of horizontal  gradient forces, 
inertial forces, Coriolis forces, and  bottom  friction.  Since 
in this paper we make application exclusively to a system 
of small scale and shallow water  depth,  where frictional 
forces  are dominant, we can neglect the effect of earth 
rotation [ 181. On the  other hand,  the nonlinear momentum 
advection is included. Within the basin  domain the verti- 
cally  integrated equations of motion  and  continuity in the 
divergence form [33-351 are 
au a a 
at ax aY 
- + - (UU) + ~ (UV) 

av a  a 
at  ax aY 
- + - (Vu) + ~ (VV) 

Figure 1 The  Lagoon of Venice. Typical  values of depth (in  m) 
are  reported.  The  oceanographic  stations whose data  were used 
in this work  are also shown; Venice is station no. 5.  

and 

- + - + -  = o ,  a g  au av 
at  ax aY 

in which x and y are horizontal Cartesian  coordinates; t is 
the  time; U(x,  y ,  t )  and V(x ,  y ,  t )  are  the  respective verti- 
cally  integrated x and y components of transport  per unit 
width; g is the  gravity; q(x, y ,  t )  is the  water level  eleva- 
tion relative to  the local mean  sea level (msl) datum; 
g(x, y ,  t )  is  the  water  depth  at position x, y and time t ,  and 
5 = q + H ,  where -H(x ,  y )  is the elevation of the sea bed 
relative to  the msl datum; u = U / (  and 21 = V / ( ;  and Q = 

( v "  + V')''' is  the magnitude of the  transport  per unit 473 
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Figure 2 Staggered mesh  system. 

width. It must  be noted that  the frictional  effects of turbu- 
lence are  represented only by a bottom  stress  vector T in 
the  quadratic  form 

where C is a bottom  friction coefficient (Chezy coeffi- 
cient) the determination of which requires special atten- 
tion [2-31. 

Initial and  boundary  conditions 
In  order to get a well defined mathematical formulation, 
Eqs. (1) - (3)  must  be  supplemented by initial and bound- 
ary  conditions.  Due  to  the  friction,  the influence of initial 
conditions disappears  as the computation  progresses; 
thus, we can freely set U = V = 7 = 0 at f = 0. With 
regard to  the boundary conditions, we will set to zero  the 
normal component of the transport  at  the sea-land  bound- 
aries y l ,  prescribing the elevation 7 as a  function of time 
at  the  open  (seaward) boundary yo. 

Formulation of difference equations 
A number of numeric techniques  are available to  solve 
Eqs. ( 1 ) - ( 3 )  when they are  supplemented by boundary 
and initial conditions [ 2 ,   6 ,  11-22, 361. Following [ 151, we 474 
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adopt a  finite-difference,  leapfrog type (time-dense)  nu- 
meric scheme [37] that is explicit, space-staggered,  and 
second-order-accurate. In this scheme  the values of U ,  V ,  
and ( are  evaluated  for uniform time steps At on a  uniform 
Cartesian mesh (see Fig. 2) of spacing As, which covers 
the  computational domain R; is regarded as  represen- 
tative of ( [ ( l  - 1/2)As,   (m - 1/2)As,  nAt], where 1,  m ,  and 
n are  integers; U is evaluated at t = nAt, x = lAs, and y = 

(rn - 1/2)As; V is evaluated at t = nAt, x = (I - 1/2)As, 
and y = mAs. By using these  notations and the  conven- 
tions 

* x f  l,m = f i + I / z , m  - f1-1/2,rn' ( 5 )  

*ufi ,m = f i , m + l / z  - f i ,m-l /z '  (6 )  

1 
p,f i ,m = y ( f , + l / , , m  + fi-l/z,rn)' (7)  

1 
~ u f i , m  = 1 ( f , ,m+ , , z  + f i ,m- l / z ) '  (8) 

CL = PXPY' (9) 

D A , m  = A+,,, - fi-1,m' (10) 

and 

D u f i , m  = f i , m + 1  - f,,m-l3 ( 1   1 )  

we define the finite difference analogs of Eqs. (1) - (3)  as 

U"+l - U'" + p{D,(Ui)  + I*.(6)DYU + 2U*,[px(6)] 

+ 2gCLz(5)QY + 7 %At - n + l - n - 1  - 4 - 0 ,  (12) 

V"+' - V"" + p{p(U)D,V + 2V*,[pLY(ii)] + DY(V6) 

+ 2gcLY(5)~,71" + 7 2gAt -n+l -n- I  - q - 0 ,  ( 1 3 )  

and 

t;"+l - 6"" + 2p(8,U + suv)" = 0 ,  (14) 

where p = At/As,  and 6" refers globally to a l l  values (I,,; 
similar definitions apply to  U"  and V'; moreover, U 
stands  for U / p x ( ,  0 stands  for V / p u ( ,  and 4 = [ii' + 
(pij)2]112 or [(pi)' + i j 2 ] 1 1 2 ,  depending on  the  place.  It 
should be noted that  the friction terms in Eqs. (12) and 
( 1 3 ) ,  nominally centered  at time t = nAt, make explicit 
use (following [ 181) of the  values U"" and Vn+' to  be  pre- 
dicted. This prevents  the friction from causing  unrealistic 
velocity inversions.  Equations (12)-(14) provide a consis- 
tent,  second-order-accurate, conditionally stable [19] ap- 
proximation to  Eqs. (1) - (3) .  The discussion on  the appli- 
cation and  results of these  equations  is deferred to a later 
section. 

IBM I .  RES. DEVELOP. VOL. 22 NO. 5 SEmEMBER 1978 



Semilinear  model 

Semilinearization of the  shallow  water  equations 
Under  the assumption that  the elevation 77 is small with 
respect  to H ,  the  advective  terms can be  dropped [4] and 
Eqs. (1)-(3) change [ 1 ,  4, 141 into  the semilinear system: 

av a77 
aY at 

- + gH - = ry ,  

and 

3+" au + -  av = o ,  
at a x  aY 

where T is  the  bottom  stress  vector; 

A further simplification can  be  obtained  by  replacing the 
quadratic dissipation form (18) with the linear form 

T = - r ( U ,  V), (19) 

where r = r(x, y )  is  to  be  determined. Following in prin- 
ciple  Refs. [2, 381, we substitute  the solution vector 
( U ,  V ,  v) of Eqs. (15)-(17),(19) into  Eqs. (15)-(18) to  get 
the residual  vector [(g/c")(UQ/H') - rU,   (g /c")(VQ/Hz)  
- rV,  01. If we now prescribe  the orthogonality between 
this  residual and  the solution of Eqs. (15)-(17), (19) in the 
time  interval ( t l ,  t'), we obtain the relation 

which links the dissipation coefficients C and r of the  two 
forms, (18) and (19), and  expresses  the equivalence in the 
mean of the energies  dissipated by (18) and (19) in the 
time interval ( t l ,   t 2 ) .  We can  heuristically conclude  that 
the solution of the hybrid  (differential-algebraic) system 
[Eqs. (15)-(17),  (19), (20)] in the unknowns U ,  V ,  7, and r 
provides  a  solution (in a weaker  sense) of the semilinear 
system (15)-(18), under  the  same initial and boundary 
conditions;  therefore, we now investigate Eqs. (15)-( 17), 
(191, (20). 

Harmonic  method 
Following [2,  7,  9, 391, we assume a representation of the 
solution vector of Eqs. (15)-(17), (19), (20) by means of a 
finite group of harmonic constituents: 

K 

?(x,  Y ,  t )  = Re 2 Ek(x ,  Y )  exp (iwkt), (21) 
k = l  

K 

U(x,  y ,  t )  = Re 1 Uk(x,  y )  exp (iw,t), (22) 
k= 1 
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and 

V(x,  y ,  t )  = Re 1 Pk(x ,  y )  exp (iwkt), 

where l?, ir", and wk are  the complex amplitude and 
the angular frequency,  respectively, of the kth component 
of the solution vector.  It is easily seen  that if we sub- 
stitute  Eqs. (21)-(23) in to  Eqs. (15)-(17) we obtain 

K 

k = l  

- a if") abk + ay a a E k  + w t E k  = 0 ,  
ax 

for k = 1 ,  2,  * . ., K ,  (24) 

where 

provided 

and 

This is a system of K elliptic  partial differential equations 
in the (complex) sea level oscillation  amplitudes E k ,  

coupled  by the algebraic  relation 

and Eqs. (22)-(23), (25)-(27). 

Boundary  conditions 
Since Eq. (24) does not  need initial conditions, only the 
boundary  conditions  must be specified. They  are 

E k J y o  = E; (29) 

on  the  seaward  boundary yo (where  the  subscript A refers 
to  the Adriatic Sea), while on  the sea-land boundary y1 
the no-flow condition can be recast  as 

where v is  the normal to  the  coastline. 

Finite difference  formulation 
We solve  Eqs. (21)-(30) numerically by finite difference, 
using the space-staggered  grid  discussed  previously and 
centered,  second-order-accurate formulae [40]. For in- 
stance,  Eq. (24) has  the numeric  analog 
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Figure 3 Gray-tone map of the lagoon depth. 

For fixed r = r (x ,  y )  and f IC given  by Eq. (25), the  set of K 
sparse  linear systems (31) can be  solved  by iterative 
methods [41-421 or, more efficiently, by direct  methods. 
For  instance, Gaussian  decomposition  techniques  can  be 
applied to  sparse matrices [43] to significantly reduce  exe- 
cution  time and  storage  requirements.  Because r = r ( x ,  y 1 
E', k = 1 ,  . . ., K) is a  nonlinear  function of E k  by virtue 
of Eqs. (21)-(23), (25)-(28), Eqs. (28) and (31) must be 
solved iteratively for given C = C(x, y )  until convergence 
is reached. More exactly,  the iterative process  has  the 
following steps: 

476 
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a. Guess  the distribution r = r ( x ,  y ) .  
b. Solve Eqs. (21)-(23), (25)-(27), (29)-(31) by direct 

c. Get a new distribution of r by using 
methods with the  last distribution of r .  

where N is  an  iteration  subscript, E; is  the solutic ,n of 
Eq. (31) when r = rN, and r ( x ,  y I E:, k = 1 ,  . . ., K) is 
given by Eqs. (22)-(23), (25)-(28). 

d. If the old and  the new r distributions differ too much 
go  to  step  b;  otherwise  exit. 

Identification of the  Ch6zy coefficient 
Wave motion in shallow areas is mainly influenced by 
bottom  friction [18]. If Chtzy's law (4) is chosen  to  repre- 
sent the  resistance,  the determination of the  Chtzy coeffi- 
cient C requires special care.  The C values depend  on  the 
depth,  shape,  and composition of the  bottom,  and  accu- 
rate field estimates of these  parameters  are  diacult  to ob- 
tain [2]. In  the  absence of direct  measurements it is  neces- 
sary to  resort  to simple schematization,  e.g.,  the postula- 
tion of a  logarithmic dependence of C on  the  depth 
[3, 151: 

c = a ,  1% (a,d), (33) 

where d = ((x, y ,  t )  for  the nonlinear  model, and d = 

H ( x ,  y )  for  the semilinear  model; or  the postulation of a 
power  law as in [24]. In any  case  we will be  given  a  rela- 
tion of the general form 

C = C(d I a,, a,, . . ., up) ,  (34) 

where  the aq, q = 1,2 ,  . . ., p ,  are  disposable  parameters 
to be  indirectly  estimated  from field data.  The identifica- 
tion procedure  can  be  conducted in principle on  the non- 
linear  model; however, given the considerably greater 
computational efficiency of the semilinear  model, we  use 
the latter.  Assume  that we are given a set of observed 
tidal oscillation  amplitudes i:  for k = 1,2 ,  . ., K and j = 
1 ,  2, . . ., J at fixed locations P j  in our computational do- 
main R ,  and that we are  required  to  estimate  the  unknown 
parameters up. As a natural error criterion we first choose 
the  function 

where Ek(Pj  1 a,, u2, * . ., a,,) is the solution of Eqs. (21)- 
(30), (34) in P j ,  and  then consider  as optimal the aq that 
minimize F.  

Local minima of the  function F can  be  obtained by 
iterative methods.  Some of these, like the  gradient 
method,  make explicit use of the partial derivatives of F 
with respect  to  the  parameters uq, which in turn  must  be 
computed  by  introducing and solving an adjoint set of 
equations in the variables dEk/daq [obtained  formally  by 
differentiating Eqs. (21)-(30), (34)]  r44-461. This is the 
procedure followed  in [47] for a simpler case. Although 
very  promising from a theoretical  standpoint, this proce- 
dure  requires  cumbersome algebraic  manipulations and 
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(a)  (b) ( C )  

Figure 4 (a) Contour  map of the  phase  delay (in minutes) of the M, component. (b) Typical  ebb  tide  velocity  field. (c) Contour  map of 
the  phase  delay (in minutes) of the M, component  corresponding  to a permanent  narrowing of the  inlets (A = 0.35). 

considerably increases  the time-space  computational 
complexity of the original problem. In practice, satisfac- 
tory results can  be  obtained with minimization algorithms 
(like Powell's  algorithm)  that do not make explicit use of 
the  derivatives dF/daq [48]. 

The  complete  procedure is summarized in four  steps: 

a.  Guess  the  parameter  vector a = (a,,  a,,  . . ., a J .  
b.  Compute C(a) by Eq. (34). 
c. Solve Eqs. (21)-(23), (25)-(31). 
d. Exit if F is  less than  a prefixed tolerance;  otherwise 

get a new parameter  vector a by Powell's algorithm 
and go to  step  b. 

Application of results 

Description of the  physical  environment 
The numeric  models  described in this paper have  been 
applied to  the Lagoon of Venice. The  basin, which has a 
surface of about 450 km2 and an  average  depth of about 
1 m,  is located in the northern part of the Adriatic Sea,  at 
approximately 48" north  latitude  and 12" east longitude; it 
extends SW-NE  about 50 km and about 10 km  in the  or- 
thogonal direction,  as shown in Fig. 1 .  The lagoon is con- 
nected  with the Adriatic Sea through three inlets (Lido, 
Malamocco, and Chioggia); its complicated  internal 
structure  consists of a  network of channels 2 to 18 meters 
deep  that  cut  across large areas of very shallow waters 
(Fig. 3). Tidal propagation  originates at the  inlets and is 
mainly affected by bottom shape and  roughness. Indeed, 
the tidal harmonic components inside the Lagoon are re- 
duced in amplitude and delayed in phase [27] with respect 
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to  the Adriatic Sea.  The very  thorough sea level fluctua- 
tion data, recorded by several oceanographic stations 
(shown in Fig. 1)  during 1972 and 1973 and  made  available 
to us, have  made  use of the outlined  technique  possible. 

0 Characteristics of the  numeric  models 
The two  numeric  models are  based  on  the same grid of 
612.5 m  size with 1201 meshpoints; they  use the  same 
bottom  topography and the same  Chezy coefficient. Both 
models use relation ( 3 3 )  with a,  = 17.7 and a,  = 

103.6, obtained by the calibrating procedure previously 
discussed. 

The  number K of tidal components in the relations (21)- 
(23) of the semilinear  model, following [27, 491, is  seven. 
These  are grouped in two bands, of diurnal  and  semi- 
diurnal frequencies, respectively,  and are conventionally 
designated as 0,, P,, K , ,  N,, M,, S,, and K,. The  interval 
(t l ,   t2) of the relation (28) covers  the  two years (1972- 
1973) of available sea level data. 

0 Results of the  semilinear  model 
With the choice of a,  = 17.7 and a, = 103.6 the relative 
root mean square (rms)  deviation  between the  computed 
and  observed astronomical  tide  amplitudes is less than 
0.1. In Table 1 we show,  for all stations,  the values of the 
harmonic constants  for  the  two most  important compo- 
nents, M,  (of period 12 hr 25 min) and K, (of period 23 hr 
56 min). The relative  rms errors  are about 0.09 and 0.05, 
respectively. Figure 4(a) shows a contour map of the 
phase delay, with respect  to  the  inlets, of the semidiurnal 
component M,. Figure 4(b) shows  a typical ebb tide veloc- 
ity  field (tidal current regime). 477 
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Table 1 Harmonic constants (p, 4) for components M, and K, at oceanographic stations; p k  exp (i9k) is the polar form of E k ;  pk ex 
(i4:) is the complex amplitude at the lagoon inlets; the Punta della Salute station is located in the city of Venice; circled numbers afte 
the station names refer to Fig. I .  

.P 
:r 

Station 

Treporti @ 
Le Saline 0 
Pagliaga 0 
Punta Salute @ 
S . Giorgio  Alega @ 
Faro Rocchetta @I 
Ex Poveglia 0 
Canale Melison @ 
Torson di Sotto @ 

Settemorti 
Chioggia @ 
PettadeBo 0 
Fogolana @ 

P / P A  9 7 9* 
(in mlnutes) 

“2 K1 M2 K1 

Computed  Observed  Computed  Observed  Computed  Observed  Computed  Observed 

0.73 0.85 0.87 0.95 76  72  93 
0.62 

80 
0.74 

0.74 
0.82  0.86  130  135  153  156 

0.72 0.88 0.85 148  149  164  172 
0.99  1.06 0.99 1 .oo 59 58 59 
1.01 1.03 

60 
0.99 I .02  64  79  63 80 

0.98 1.01  0.99 1.01 25  33  25  32 
1 .oo 1.05 0.99  1.01  58  57  56 
0.99 

56 
1 .oo 0.99 0.99 55 65  54 68 

1 .oo 1.03 0.99 1.00  57  69  56  68 
0.97  0.98 0.98 0.98 64  64  72 
0.92 

69 
0.89 0.97 0.95 92  93  94  100 

0.98 0.97 0.99  0.97  30  23  30 
0.96 0.96 

19 
0.98 0.97 69 61  70  64 

0.88 0.77 0.95 0.95 146  136 150 152 

Table 2 Amplitude reduction re and time delay de for components M, and K,,  at oceanographic stations, caused by narrowing of the 
inlets (varying A values). 

Station re de 

M2 

(in minutes) 
K I  M2 K1 

~ 

A = 0.52 0.35 0.17  0.52  0.35  0.17 A = 0.52  0.35 0.17 0.52 0.35 0.17 

Treporti 0.97 0.89 0.59 0.99 0.96 0.79 3 12  43 4 17 78 
Le Saline 0.97 0.91 0.65  0.99 0.96 0.81 3 10  34 4 

0.97 Pagliaga 
15 64 

0.90 0.61 0.99 0.96 0.79 
Punta Salute 0.96 

3 8 24 4 14  59 
0.85 0.52 0.98 0.94 0.74 4 49 6 24 93 

0.96 
16 

S. Giorgio  Alega 0.85 0.52 0.98 0.94 0.74 5 18 52 7 26  96 
0.94 Faro Rocchetta 0.82 0.49 0.98 0.93 0.73 
0.95 

9 28  79  11  37  122 
Ex Poveglia 0.85 0.52 0.98 0.94  0.74 6 21 60 8 29  103 

0.95 Canale Melison 0.84  0.52 0.98 0.94 0.74 7 23 
Torson di Sotto 0.95 

64 9 31  106 
0.85 0.53 0.98 0.94 0.74 

Valgrande 0.95 
7 23  64 9 31  106 

0.85 0.53 0.98 0.94 0.75 7 22 62 8 
0.96 Settemorti 

30  103 
0.86 0.56 0.98 0.95 0.76 6 20 

Chioggia 0.96 
53 7 27  92 

0.85 0.52 0.98 0.94 0.75 
Petta de Bo 

6 
0.96 

23  69 7 30  110 
0.86 0.54 0.98 0.94 0.75 6 21  60 8 28 99 

0.96 Fogolana 0.88 0.59 0.98 0.95 0.77 5 15  35 6 21  72 

After  the  calibration, the  model can be  used to  predict 1 

the  astronomical tide under different conditions,  such  as, b 
for  example, conditions following the  construction of en- 
gineering works.  One interesting  problem is the  assess- 
ment of the  impact of reducing  inlet cross  sections (by where C, is the so-called contraction coefficient; bn and b, 
means of new dams)  on  the tidal dynamics.  The reduction are  the  respective new and old values of the inlet cross 
can be  simulated by suitable modification of the C values  sections.  Table 2 shows the  amplitude reduction re and 
at  the  meshpoints involved in the  restriction. As in the time  delay de (with respect  to  the original lagoon con- 
[24,50-511, the chosen  relation  between  new (Cn) and old figuration) at  the oceanographic stations  for  the  two  most 
(C,) values of C is important  components, M, and K,, and  three  values of 

(36) 
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the  parameter A = Ccb,/bo. Similarly, the  contour lines of 
the  phase of M, after  the narrowing are  reported in Fig. 
4(c). 

Results of the  t ime-dependent  nonlinear model 
The effectiveness of the  time-dependent nonlinear  model 
is best illustrated by its ability to  show evolution of the 
flow field. Particularly  interesting, as  far  as  the Venice 
Lagoon is  concerned,  are the cases in which the forcing 
tide at  the  inlets  cannot be represented by formulae  like 
(21)-(23) due,  for  instance, to superposition of the  mete- 
orologic (wind-driven)  and astronomic  components.  In 
such  cases exceptionally high (or low) tides  can  be  gener- 
ated  inside the lagoon.  Figure 5 shows  an  episode of 
flooding of the  city of Venice, as actually recorded  (Feb- 
ruary 13, 1972), and as computed by the model. Figure 6 
demonstrates how the flooding could have been  avoided 
by suitably operating mobile sluices  at  the inlets of the 
Lagoon. On the  other  hand,  the  numeric simulations have 
clearly  indicated that  the flooding cannot be  prevented by 
a  permanent but incomplete  narrowing of the inlets. 

Summary 
Two differently structured  hydrodynamic numeric mod- 
els of the Lagoon of Venice have been presented.  One  is a 
nonlinear  model; the  other is semilinear. Each  can  pro- 
vide time-dependent values for  sea level fluctuation and 
current velocity. 

The nonlinear model is particularly  useful for single- 
episode  simulation,  whereas  the semilinear model is best 
suited for long-term simulation problems and is much 
more  computationally efficient. 

This model has been used in conjunction with Powell’s 
algorithm to identify the spatial  distribution of the  Chezy 
parameter C ;  this  distribution can  then be input  to  the 
nonlinear  model to provide accurate  results.  Thus,  the 
two models,  when used in a  complementary fashion, can 
provide  a complete,  consistent, and  self-calibrating 
method for studying the effects of various  natural  and 
manmade phenomena  on the lagoon dynamics. 

In particular,  the  two numeric models  have been  used 
not only to predict circumstances  that  can lead to flooding 
in the city of Venice, but  also to  evaluate many of  the 
projects proposed  to achieve  a better hydraulic settle- 
ment of the Lagoon of Venice. In fact, it has  been deter- 
mined that although the use of mobile  sluices at  the inlets 
of Venice  Lagoon will successfully prevent flooding, a 
permanent but incomplete narrowing of the inlets will not. 
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