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Abstract: This paper describes two hydrodynamic numeric models and their application to the Lagoon of Venice, Italy. The models are
based on the same mesh, bottom topography, boundary conditions, and spatial distribution of the bottom friction coefficient (Chézy
coefficient). Although quite different in structure, both models ultimately provide sea level fluctuation and current speed at each mesh-
point as functions of time. The first model numerically integrates the time-dependent, nonlinear, hyperbolic shallow water equations,
written in conservation form, with a space-staggered leapfrog-type (time dense) scheme. The model is suited to episode simulation and is
a particularly useful tool for system management and control. The second model is suited to long-term simulations and models only the
astronomic tide; it solves a hybrid (differential-algebraic) system resulting from semilinearization of the shallow water equations under
harmonic assumptions for the tide. Because of the superior computational efficiency of this second model, it has been used in conjunction
with Powell’s algorithm to identify the a priori unknown spatial distribution of the Chézy parameter. If the same Chézy distribution is fed
into the two models, there can be obtained a complete, self-calibrating, consistent modeling tool for tidal basins with arbitrary geometric

configurations and boundary conditions in the presence of hydraulic works.

Introduction
Numerous theories have been advocated [1-53] in an at-
tempt to provide tractable solutions to the equations gov-
erning tidal propagation in basins and coastal areas.
With the advent of digital computers it has become cus-
tomary to use numeric techniques in tidal calculations.
Also, it has become feasible to model irregular bottom
topographies, complicated geometric configurations and
boundary conditions, and to include equation non-
linearitiecs. The numeric methods fall naturally into two
categories [6], harmonic methods and timestepping meth-
ods.

In the first class [7-9] there is assumed to exist ab initio
a harmonic nature in the variations of the tidal character-
istics with time, or more generally, a linear decomposi-
tion of these variations by means of a finite group of har-
monic constituents. According to this assumption, the lin-
earized tidal dynamics equations are reduced to a system
of partial differential equations of elliptic type with re-
spect to the complex amplitude of tidal oscillations of the
sea level. The formulated boundary-value problem has a
unique solution (under suitable conditions on the angular
velocities of the tidal wave and on the Coriolis parameter)
if the values of the amplitudes are known on a part of the
boundary of the body of water, while on the other part

there is a condition of no flow [6]. The solution is then
found by standard numeric methods for elliptic problems
[10]; mild nonlinearities in the original tidal dynamics
equations can be treated by iterating the procedure just
described [5]. The primary output of harmonic methods is
given by the complex amplitudes of the harmonic constit-
uents of the sea level as functions of space; current veloc-
ity and water depth, as functions of space and time, are
hence obtained by Fourier synthesis.

In the timestepping methods no a priori assumptions
are made about the nature of the time variations of the
tide. Instead, arbitrary initial conditions are set for water
depths and velocities. No-flow or no-slip conditions are
also prescribed at the sea-land boundary, while at the sea-
ward boundary the vertical tide is given. The integration
of the time-dependent, nonlinear, hyperbolic tidal dynam-
ics equations is then carried out numerically in a stepwise
manner by using well known finite difference [2, 6, 11-22]
or finite element [23] techniques. The current velocity and
water depth are obtained directly at discrete intervals in
space and time.

It is the purpose of this paper to illustrate how the two
methodologies can be consistently integrated in order to
build models of tidal propagation that are less subject to
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limitations associated with definition of the bottom fric-
tion parameter (Chézy parameter C) necessary for the so-
lution. One distinct advantage of such a procedure is that
both immediate and long-term effects of modifications of
the physical system to be modeled can be analyzed by
appropriate means. For instance, permanent changes in
the geometric configuration can be rapidly analyzed by
the harmonic method, while episode simulation and com-
putations of extremal values (high and low water levels,
maximum velocities) are best carried out by the nonlinear
time-dependent method. These methods have been spe-
cifically applied to the Lagoon of Venice, Italy. In partic-
ular, a proposal to construct engineering works at the in-
lets of the lagoon (Fig. 1) raised many questions regarding
the effects such works would have on the hydraulics of
the system. Many considerations are involved, and a
number of investigations from various standpoints were
undertaken both at the IBM Venice Scientific Center
(VSC) [24-29] and by other research groups [9, 30-32].
The studies at VSC were centered on a nonlinear, time-
dependent numeric model of the shallow water flow in the
lagoon. In addition, a second harmonic-type numeric
model was applied, the principal function of which was to
play a supporting role to the nonlinear model.

The mathematical techniques developed in construct-
ing the numeric models are presented in the first two parts
of this paper. The way in which the harmonic model pro-
vides essential support to the nonlinear model is then de-
scribed, and finally, a summary of the applications and
results of the models is given.

Time-dependent nonlinear model

® Basic equations for shallow water flow

In a partly enclosed basin of small size, tidal motions
are formed by interaction of horizontal gradient forces,
inertial forces, Coriolis forces, and bottom friction. Since
in this paper we make application exclusively to a system
of small scale and shallow water depth, where frictional
forces are dominant, we can neglect the effect of earth
rotation [18]. On the other hand, the nonlinear momentum
advection is included. Within the basin domain the verti-
cally integrated equations of motion and continuity in the
divergence form [33-35] are

U L0 e+ w
at ax (VW) F T ()
O & QU
+g§ ax + Cz ( Cz )_Oa (1)
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Figure 1 The Lagoon of Venice. Typical values of depth (in m)
are reported. The oceanographic stations whose data were used
in this work are also shown; Venice is station no. 5.

and
;14 oU A%
at ox dy

=0, 3

in which x and y are horizontal Cartesian coordinates; ¢ is
the time; U(x, y, 1) and V(x, y, t) are the respective verti-
cally integrated x and y components of transport per unit
width; g is the gravity; n(x, y, t) is the water level eleva-
tion relative to the local mean sea level (msl) datum;
Ux, v, t) is the water depth at position x, y and time ¢, and
{ =m + H, where —H(x, y) is the elevation of the sea bed
relative to the msl datum; u = U/{and v = V/{;and Q =
(U* + V»Y is the magnitude of the transport per unit
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Figure 2 Staggered mesh system.

width. It must be noted that the frictional effects of turbu-
lence are represented only by a bottom stress vector 7 in
the quadratic form

g 1Y
=G )“{ v, v), )
where C is a bottom friction coefficient (Chézy coeffi-
cient) the determination of which requires special atten-
tion [2-3].

e [nitial and boundary conditions

In order to get a well defined mathematical formulation,
Egs. (1)-(3) must be supplemented by initial and bound-
ary conditions. Due to the friction, the influence of initial
conditions disappears as the computation progresses;
thus, we can freely set U = V = oy = 0 at r = 0. With
regard to the boundary conditions, we will set to zero the
normal component of the transport at the sea-land bound-
aries y,, prescribing the elevation 1 as a function of time
at the open (seaward) boundary v,.

o Formulation of difference equations

A number of numeric techniques are available to solve
Egs. (1)-(3) when they are supplemented by boundary
and initial conditions [2, 6, 11-22, 36]. Following[15], we
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adopt a finite-difference, leapfrog type (time-dense) nu-
meric scheme [37] that is explicit, space-staggered, and
second-order-accurate. In this scheme the valuesof U, V,
and { are evaluated for uniform time steps Af on a uniform
Cartesian mesh (see Fig. 2) of spacing As, which covers
the computational domain ; {';’m is regarded as represen-
tative of {[(/ — 1/2)As, (m — 1/2)As, nAt], where [, m, and
n are integers; U is evaluated at t = nAt, x = [As,and y =
(m — 1/2)As; V is evaluated at t = nAt, x = (I — 1/2)As,
and y = mAs. By using these notations and the conven-
tions

8. fim= fl+1/2,m =Sz &)

ayft,m = ft,m+1/2 - ft,m-—llz’ (©)
1

”'rf;,m = —2_ (fl+1/2,m +fl—1/2,m)’ (7)
1

I“‘yf;,m = —2_ (f;,m+1/2 + fl,m—uz)’ ®

b= My, 9

D.rfl,m = ﬂ+\,m - f;—l,m’ (10)

and

Dyf;,m = f;,m+1 - f;,m—l’ (11)

we define the finite difference analogs of Egs. (1)-(3) as

U™ — U™ + p{D (Ui) + w(®)D,U + 2Us [ (5)]

2gAt _
+ 2gu, (08, m}" + i A" = 0, (12)

vV — v+ p{u@@)D,V + 2V [u (@)] + D, (VD)

n 28At iy
+ 2gp,08)" + — 5 b Tg"t =0, (13)
and
gt ="+ 2p, U+ 8 V)" =0, (14)

where p = At/As, and {" refers globally to all values §';,m;
similar definitions apply to U™ and V"; moreover, i
stands for U/p L, © stands for V/p {, and ¢ = [@* +
(ud)]"* or [(ui)* + 9°]'%, depending on the place. It
should be noted that the friction terms in Egs. (12) and
(13), nominally centered at time ¢ = nAt, make explicit
use (following [18]) of the values U™ " and V""" to be pre-
dicted. This prevents the friction from causing unrealistic
velocity inversions. Equations (12)-(14) provide a consis-
tent, second-order-accurate, conditionally stable [19] ap-
proximation to Egs. (1)=(3). The discussion on the appli-
cation and results of these equations is deferred to a later
section.
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Semilinear model

® Semilinearization of the shallow water equations
Under the assumption that the elevation % is small with
respect to H, the advective terms can be dropped [4] and
Egs. (1)-(3) change [1, 4, 14] into the semilinear system:

4 gH— =1, 15
at & ox Te {13
av an

— _— =, 16)
at & oy v (

and

d oU A%

- +— =0, an
at dx ay

where 7 is the bottom stress vector;

8
T= - ngf u, V). (18)

A further simplification can be obtained by replacing the
quadratic dissipation form (18) with the linear form

T=-rU,V), a9

where r = r(x, y) is to be determined. Following in prin-
ciple Refs. [2, 38], we substitute the solution vector
(U, V, n) of Egs. (15)-(17),(19) into Eqs. (15)-(18) to get
the residual vector [(g/CY(UQ/HY) — rU, (g/C)(VQ/H)
- rV, 0]. If we now prescribe the orthogonality between
this residual and the solution of Eqs. (15)-(17), (19) in the
time interval (¢, £,), we obtain the relation

1, ty
c‘i] _ L | o%dt = r L 0%, 20)
which links the dissipation coefficients C and r of the two
forms, (18) and (19), and expresses the equivalence in the
mean of the energies dissipated by (18) and (19) in the
time interval (¢, t,). We can heuristically conclude that
the solution of the hybrid (differential-algebraic) system
[Egs. (15)-(17), (19), (20)] in the unknowns U, V,n, and r
provides a solution (in a weaker sense) of the semilinear
system (15)-(18), under the same initial and boundary
conditions; therefore, we now investigate Egs. (15)-(17),
(19), (20).

e Harmonic method

Following[2, 7, 9, 39], we assume a representation of the
solution vector of Egs. (15)-(17), (19), (20) by means of a
finite group of harmonic constituents:

n(x,y, ) = Re 3, E*(x,y) exp (iw,1), @D

k

M = =

Ulx,y, t) = Re U*(x, y) exp (iw,?), (22)

k=1
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and

K
Vix,y, 0 = Re > Vix, ) exp (iw,1), (23)
k=1
where £, U, V* and w, are the complex amplitude and
the angular frequency, respectively, of the kth component
of the solution vector. It is easily seen that if we sub-
stitute Eqgs. (21)-(23) in to Eqgs. (15)-(17) we obtain

3 oEX 3 oE" .
TR N S R

ax ox ay ay
for k=1,2,---,K, (24)
where
H
fr=—= 25)
1-i(r/o,)
provided
k ik
. aE
Uk = ( S ) , 26)
W, ax
and
k i~k
. oF
v = i( S ) . @7
®, oy

This is a system of K elliptic partial differential equations
in the (complex) sea level oscillation amplitudes E*,
coupled by the algebraic relation
g LIS 2\3/2 s 2 2 B
= —— U+ v dt][J U+th] 28
r CgHz[L( il [ yt| (28)

1

and Eqs. (22)-(23), 25)-(27).

® Boundary conditions
Since Eq. (24) does not need initial conditions, only the
boundary conditions must be specified. They are

Ef, = E} (29)

on the seaward boundary vy, (where the subscript A refers
to the Adriatic Sea), while on the sea-land boundary vy,
the no-flow condition can be recast as

a

o (30)

where v is the normal to the coastline.

o Finite difference formulation

We solve Egs. (21)-(30) numerically by finite difference,
using the space-staggered grid discussed previously and
centered, second-order-accurate formulae {40]. For in-
stance, Eq. (24) has the numeric analog

(8.(fymd Ev )l + [8,(£,,8, EL,)] + (A9’ ’Ey, = 0,
for (x,y,)€Mhk=12,- - K 31
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Figure 3 Gray-tone map of the lagoon depth.

For fixed r = r(x, y) and f* given by Eq. (25), the set of K
sparse linear systems (31) can be solved by iterative
methods [41-42] or, more efficiently, by direct methods.
For instance, Gaussian decomposition techniques can be
applied to sparse matrices [43] to significantly reduce exe-
cution time and storage requirements. Because r = r(x, y |
E*, k=1, -, K)is a nonlinear function of £* by virtue
of Eqs. (21)—(23), (25)-(28), Egs. (28) and (31) must be
solved iteratively for given C = C(x, y) until convergence
is reached. More exactly, the iterative process has the
following steps:

a. Guess the distribution r = r(x, y).

b. Solve Egs. (21)-(23), (25)-(27), (29)-(31) by direct
methods with the last distribution of r.

¢. Get a new distribution of r by using

Py (X5 9)

1 .
= o [, ) + rle, y | BV k= 1,2, K)),
(32)
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where N is an iteration subscript, £}, is the solution of
Eq. 31) when r = ry, and r(x, y | E;, k=1,---,K)is
given by Eqgs. (22)-(23), (25)-(28).

d. If the old and the new r distributions differ too much
go to step b; otherwise exit.

Identification of the Chézy coefficient

Wave motion in shallow areas is mainly influenced by
bottom friction [18]. If Chézy’s law (4) is chosen to repre-
sent the resistance, the determination of the Chézy coeffi-
cient C requires special care. The C values depend on the
depth, shape, and composition of the bottom, and accu-
rate field estimates of these parameters are difficult to ob-
tain [2]. In the absence of direct measurements it is neces-
sary to resort to simple schematization, e.g., the postula-
tion of a logarithmic dependence of C on the depth
[3, 15]:

C = a, log (a,d), (33)

where d = {(x, y, t) for the nonlinear model, and d =
H(x, y) for the semilinear model; or the postulation of a
power law as in [24]. In any case we will be given a rela-
tion of the general form

C=Cd|a,a, -, a,), (34)

where the a,9=1,2,-- -, p,are disposable parameters
to be indirectly estimated from field data. The identifica-
tion procedure can be conducted in principle on the non-
linear model; however, given the considerably greater
computational efficiency of the semilinear model, we use
the latter. Assume that we are given a set of observed
tidal oscillation amplitudes £ fork = 1,2, - - -, Kand j =
1,2, - -, Jat fixed locations P, in our computational do-
main 1, and that we are required to estimate the unknown
parameters a . As a natural error criterion we first choose
the function

Fla, ay, -+, a,)

= % [E*P,|a,, a,,
M

where Ek(PJ. |a,, a , ap) is the solution of Eqs. 21)-
(30}, (34) in P;, and then consider as optimal the a, that
minimize F.

Local minima of the function F can be obtained by
iterative methods. Some of these, like the gradient
method, make explicit use of the partial derivatives of F
with respect to the parameters a,, which in turn must be
computed by introducing and solving an adjoint set of
equations in the variables d£*/da,_ [obtained formally by
differentiating Eqs. (21)-(30), (34)] [44-46]. This is the
procedure followed in [47] for a simpler case. Although
very promising from a theoretical standpoint, this proce-
dure requires cumbersome algebraic manipulations and

va)— & T, 35
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(c)

Figure 4 (a) Contour map of the phase delay (in minutes) of the M, component. (b) Typical ebb tide velocity field. (¢c) Contour map of
the phase delay (in minutes) of the M; component corresponding to a permanent narrowing of the inlets (A = 0.35).

considerably increases the time-space computational
complexity of the original problem. In practice, satisfac-
tory results can be obtained with minimization algorithms
(like Powell’s algorithm) that do not make explicit use of
the derivatives dF/da, [48].

The complete procedure is summarized in four steps:

Guess the parameter vector a = {a,, a,, - * *, a,).

. Compute C(a) by Eq. (34).

. Solve Egs. 21)-(23), (25)-(31).

. Exit if F is less than a prefixed tolerance; otherwise
get a new parameter vector a by Powell’s algorithm
and go to step b.

o6 o

Application of results

& Description of the physical environment

The numeric models described in this paper have been
applied to the Lagoon of Venice. The basin, which has a
surface of about 450 km® and an average depth of about
1 m, is located in the northern part of the Adriatic Sea, at
approximately 48° north latitude and 12° east longitude; it
extends SW-NE about 50 km and about 10 km in the or-
thogonal direction, as shown in Fig. 1. The lagoon is con-
nected with the Adriatic Sea through three inlets (Lido,
Malamocco, and Chioggia); its complicated internal
structure consists of a network of channels 2 to 18 meters
deep that cut across large areas of very shallow waters
(Fig. 3). Tidal propagation originates at the inlets and is
mainly affected by bottom shape and roughness. Indeed,
the tidal harmonic components inside the Lagoon are re-
duced in amplitude and delayed in phase [27] with respect
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to the Adriatic Sea. The very thorough sea level fluctua-
tion data, recorded by several oceanographic stations
(shown in Fig. 1) during 1972 and 1973 and made available
to us, have made use of the outlined technique possible.

® Characteristics of the numeric models

The two numeric models are based on the same grid of
612.5 m size with 1201 meshpoints; they use the same
bottom topography and the same Chézy coefficient. Both
models use relation (33) with ¢, = 17.7 and a, =
103.6, obtained by the calibrating procedure previously
discussed.

The number K of tidal components in the relations (21)-
(23) of the semilinear model, following [27, 49], is seven.
These are grouped in two bands, of diurnal and semi-
diurnal frequencies, respectively, and are conventionally
designated as O, P, K|, N,, M,, S,, and K,. The interval
(t,, t,) of the relation (28) covers the two years (1972-
1973) of available sea level data.

® Results of the semilinear model

With the choice of a, = 17.7 and a, = 103.6 the relative
root mean square (rms) deviation between the computed
and observed astronomical tide amplitudes is less than
0.1. In Table 1 we show, for all stations, the values of the
harmonic constants for the two most important compo-
nents, M, (of period 12 hr 25 min) and K, (of period 23 hr
56 min). The relative rms errors are about 0.09 and 0.05,
respectively. Figure 4(a) shows a contour map of the
phase delay, with respect to the inlets, of the semidiurnal
component M,. Figure 4(b) shows a typical ebb tide veloc-
ity field (tidal current regime).
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Table 1 Harmonic constants (p, ¢) for components M, and K, at oceanographic stations; p* exp (i¢*) is the polar form of £¥; pk exp
(i¢%) is the complex amplitude at the lagoon inlets; the Punta della Salute station is located in the city of Venice; circled numbers after
the station names refer to Fig. 1.

Station p/pA . [ - ba
(in minutes)
M, K, M, K,
Computed Observed Computed Observed Computed Observed Computed  Observed
Treporti @ 0.73 0.85 0.87 0.95 76 72 93 80
Le Saline 3 0.62 0.74 0.82 0.86 130 135 153 156
Pagliaga @ 0.74 0.72 0.88 0.85 148 149 164 172
Punta Salute (3 0.99 1.06 0.99 1.00 59 58 59 60
S. Giorgio Alega ® 1.01 1.03 0.99 1.02 64 79 63 80
Faro Rocchetta 0.98 1.01 0.99 1.01 25 33 25 32
Ex Poveglia @ 1.00 1.05 0.99 1.01 58 56 57 56
Canale Melison (9 0.99 1.00 0.99 0.99 55 65 54 68
Torson di Sotto (0 1.00 1.03 0.99 1.00 57 69 56 68
Valgrande % 0.97 0.98 0.98 0.98 64 69 64 72
Settemorti 0.92 0.89 0.97 0.95 92 93 94 100
Chioggia @ 0.98 0.97 0.99 0.97 30 23 30 19
Pettade Bo (13 0.96 0.96 0.98 0.97 69 61 70 64
Fogolana ({4 0.88 0.77 0.95 0.95 146 136 150 152

Table 2 Amplitude reduction 7, and time delay d, for components M, and K, at oceanographic stations, caused by narrowing of the
inlets (varying A values).

Station re d,

(in minutes)
M. K, M, K,

A =0.52 0.35 0.17 0.52 0.35 0.17 A =0.52 0.35 0.17 0.52 0.35 0.17
Treporti 0.97 0.89 0.59 0.99 0.96 0.79 3 12 43 4 17 78
Le Saline 0.97 0.91 0.65 0.99 0.96 0.81 3 10 34 4 15 64
Pagliaga 0.97 0.90 0.61 0.99 0.96 0.79 3 8 24 4 14 59
Punta Salute 0.96 0.85 0.52 0.98 0.94 0.74 4 16 49 6 24 93
S. Giorgio Alega 0.96 0.85 0.52 0.98 0.94 0.74 5 18 52 7 26 96
Faro Rocchetta 0.94 0.82 0.49 0.98 0.93 0.73 9 28 79 11 37 122
Ex Poveglia 0.95 0.85 0.52 0.98 0.94 0.74 6 21 60 8 29 103
Canale Melison 0.95 0.84 0.52 0.98 0.94 0.74 7 23 64 9 31 106
Torson di Sotto 0.95 0.85 0.53 0.98 0.94 0.74 7 23 64 9 31 106
Valgrande 0.95 0.85 0.53 0.98 0.94 0.75 7 22 62 8 30 103
Settemorti 0.96 0.86 0.56 0.98 0.95 0.76 6 20 53 7 27 92
Chioggia 0.96 0.85 0.52 0.98 0.94 0.75 6 23 69 7 30 110
Pettade Bo 0.96 0.86 0.54 0.98 0.94 0.75 6 21 60 8 28 99
Fogolana 0.96 0.88 0.59 0.98 0.95 0.77 5 15 35 6 21 72

After the calibration, the model can be used to predict ) ) _%

the astronomical tide under different conditions, such as, C = [( _1 > + H ( b, _ 1) } (36)
for example, conditions following the construction of en- ! C, 2gAs \ Cb,

gineering works. One interesting problem is the assess-
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ment of the impact of reducing inlet cross sections (by
means of new dams) on the tidal dynamics. The reduction
can be simulated by suitable modification of the C values
at the meshpoints involved in the restriction. As in
[24, 50-51], the chosen relation between new (C, ) and old
(C,) values of C is

SGUAZZERO ET AL.

where C, is the so-called contraction coefficient; b and b,
are the respective new and old values of the inlet cross
sections. Table 2 shows the amplitude reduction r, and
the time delay d_ (with respect to the original lagoon con-
figuration) at the oceanographic stations for the two most
important components, M, and K,, and three values of
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the parameter . = C b /b . Similarly, the contour lines of
the phase of M, after the narrowing are reported in Fig.
4(c).

® Results of the time-dependent nonlinear model

The effectiveness of the time-dependent nonlinear model
is best illustrated by its ability to show evolution of the
flow field. Particularly interesting, as far as the Venice
Lagoon is concerned, are the cases in which the forcing
tide at the inlets cannot be represented by formulae like
(21)-(23) due, for instance, to superposition of the mete-
orologic (wind-driven) and astronomic components. In
such cases exceptionally high (or low) tides can be gener-
ated inside the lagoon. Figure 5 shows an episode of
flooding of the city of Venice, as actually recorded (Feb-
ruary 13, 1972), and as computed by the model. Figure 6
demonstrates how the flooding could have been avoided
by suitably operating mobile sluices at the inlets of the
Lagoon. On the other hand, the numeric simulations have
clearly indicated that the flooding cannot be prevented by
a permanent but incomplete narrowing of the inlets.

Summary

Two differently structured hydrodynamic numeric mod-
els of the Lagoon of Venice have been presented. Oneisa
nonlinear model; the other is semilinear. Each can pro-
vide time-dependent values for sea level fluctuation and
current velocity.

The nonlinear model is particularly useful for single-
episode simulation, whereas the semilinear model is best
suited for long-term simulation problems and is much
more computationally efficient.

This model has been used in conjunction with Powell’s
algorithm to identify the spatial distribution of the Chézy
parameter C; this distribution can then be input to the
nonlinear model to provide accurate results. Thus, the
two models, when used in a complementary fashion, can
provide a complete, consistent, and self-calibrating
method for studying the effects of various natural and
manmade phenomena on the lagoon dynamics.

In particular, the two numeric models have been used
not only to predict circumstances that can lead to flooding
in the city of Venice, but also to evaluate many of the
projects proposed to achieve a better hydraulic settle-
ment of the Lagoon of Venice. In fact, it has been deter-
mined that although the use of mobile sluices at the inlets
of Venice Lagoon will successfully prevent flooding, a
permanent but incomplete narrowing of the inlets will not.
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