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Algorithm  and  Hardware  for  a  Merge  Sort  Using  Multiple 
Processors 

Abstract: An  algorithm is  described  that allows log ( n )  processors  to  sort n records in just  over 2n write  cycles,  together with suitable 
hardware  to  support  the algorithm. The algorithm is a parallel  version of the straight  merge sort. The  passes of the  merge sort  are  run 
overlapped, with each  pass  supported by a separate  processor.  The intermediate files of a serial merge sort  are replaced by first-in first- 
out aueues.  The  processors  and  Queues may be implemented in conventional solid logic technology or in bubble  technology. A hybrid 
technology is  alsb  appropriate. ~ 

Introduction 
Most conventional sorting  algorithms operate  on a single 
processor and require of order n . log (n)  cycles  to sort n 
records.  Examples  are  the merge sort [ l ,  pp. 163-1651 and 
quicksort [ l ,  pp. 114-1161. There  are single processor al- 
gorithms with sort times  proportional to n,  but these  are 
only effective in certain circumstances.  Address sorting 
[ 1,  pp. 99-1021 requires  the  spread of sort key values to  be 
known and fairly random. Digital sorting [ l ,  p. 1701 is 
very  good for main storage  sorts of files with short  keys. 
When secondary  storage is used,  the digit length has  to be 
small to  reduce  the number of open files; the key then 
consists of many digits and  the  constant of proportional- 
ity of the  sort  is high. 

A  variety of multiple processor  sorts  exists, most of 
which require a  very  large  number of processors,  propor- 
tional to n or more. These  are  the network sorts [ 1,  pp. 
220-2431, in particular  Batcher’s  merge  exchange sort [ 1, 
pp. 111-1141, Thompson  and  Kung’s  mesh sorts [2], and 
Chen’s  parallel  bubble sort [3]. Some of these  sorts  are 
very fast, but all require  very  special  hardware and  are 
impracticable for large files with current technology. 
Even proposed a sort using r (log, n)  processors  and 
4 . [(log, n)  tape units to  sort in 3.2r(log, n) write cycles 
[4]. This sort  is made  very  complicated by the necessity 
of rewinding tapes before  they  can  be read. 

We present a sort that  is similar to  Even’s. It uses more 
sophisticated hardware, which makes it both faster and 
simpler. The basic algorithm permits [(log, n)  + I pro- 
cessors  to  sort n records in  2n + log, n - 1 write cycles. 
This requires  the  storage of 2 log, n intermediate queues 
of variable length and maximum total length n records. 

These can  be  implemented using conventional main stor- 
age or shift register (e.g., bubble) storage. Our queues dif- 
fer from Even’s  tapes in that they  can  be  read  before they 
have  been fully written, and no rewind is needed. There 
are variations on  our basic  algorithm  requiring fewer re- 
sources. 

The  proposed  sort is suitable for  use when several 
processors  are available, but not order n or more. Very 
simple processors, which are only required to  do a merge, 
can be  used.  Our  sort  is  faster  for sorting  general files 
than single processor  sorts, but not as  fast  as  the  network 
sorts. 

Our  sort could  be  used in a low cost special purpose 
sorting  machine.  Sorting is traditionally  used in batch 
processing and  also now in efficient implementations of 
relational query  systems  (e.g., [5]). Our sort would form a 
natural part of a relational data  base machine [6]. 

The algorithm is a  variant of a  straight  merge sort [ 1 ,  
pp. 163-1651. The  passes  are run  overlapped rather  than 
serially. Each  pass is supported by a separate  processor. 
Reading from  the  output of one  pass begins before the 
writing of that  output is complete, so the intermediate 
structures  are first-in first-out queues  rather than files. 
When the number of records  to be sorted is not an  exact 
power of 2,  the normal  serial algorithm deals with the  re- 
mainder at  the end of each pass;  our algorithm deals with 
it first. 

There  are  several variations of the algorithm that  are 
more  suitable in certain circumstances. A multi-way 
merge sort  reduces  the  number of processors. Small sec- 
tions of data  can  be  sorted before being introduced to  the 
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Figure 1 Four  processors  connected by six queues  sort eight 
records. An overview of the sorting process is shown  at  (a), and 
a snapshot of the sort after seven  cycles is shown  at  (b).  The - 
indicates  a  break  between  strings of records. 

Input Comments 

front of file 
" d  e g "" h f c  b  (input) Initial file. 

pass 0 File is split into 
"" 
e h c a  (first pair of two files, each  contain- 
d g f b  intermediate files) ing strings of length 1. 

h g b a  (second  pair of merged in pairs,  e.g., 
pass 1 Length 1 strings are 

e_d fc intermediate files) 2 with b to  create b 5. 

pass 2 Length 2 strings are 
f c   b g  (third  pair of merged to  make length 4 
h g e d  intermediate files) strings, e.g., f c  b a 

pass 3 Sort  ends by merging 
h  g  f  e  d c b 2 (output)  two length 4 strings to 

create a  string of all 8 
records. 

Figure 2 A serial merge sort of eight records.  Underscores 
mark the  start of each string. 

merge sort, which reduces  the number of processors  and 
the handling of very short  queues. Blocking may be used 
to  store  queued  records.  Sort  processors may be  used to 
steer  records directly  from  input to  output  queues,  rather 
than to  read them  into buffers and  later write  them into 
queues.  It may be best to let the  processors run asynchro- 
nously. Various  hardware  techniques  can  support  the al- 
gorithm, including solid logic and bubble  technologies. 
Either  can  support  both  the processing and  queue  stor- 
age,  or solid logic processors can  be  used with bubble 
queues. 

In the  next section we  discuss  the basic algorithm and 
analyze  its processor and queue requirements. We show 
how multi-way sorting and presorting affect these  require- 
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iations of the algorithm that  relate  to  the supporting hard- 
ware.  Finally,  hardware  alternatives  are  covered, with 
general comments  and  three specific implementations. 

The algorithm 
The algorithm is a variation of a straight  two-way  merge 
sort [l,  pp. 163-1651. A  serial  two-way merge sort  oper- 
ates in several  passes, with each  pass creating sorted se- 
quences (strings) of records.  The first pass creates strings 
of two  records;  the  second  pass merges these pairwise 
into four-record strings.  After  i passes, the  strings have 
length 22. After [(log, n) passes, all n records  are in one 
sorted  string. 

In our variation the  passes  are run  overlapped.  We  con- 
sider first the special case  where  the number n of records 
to be sorted is equal to 2' for integer r and where  there  are 
r + 1 processors, 0 through Y. The  output  from  the ith 
processor  consists of sorted  sequences of 2 i  records, 
created by merging two output strings from the (i - 1)th 
processor. Figure 1 shows the general setup  for  our al- 
gorithm,  Fig. 2 ,  the operation of a  serial  merge sort,  and 
Fig. 3,  the  operation of an  overlapped merge sort. We 
assume  the  processors run  synchronously and can  both 
read and write one record per  cycle.  Each  processor 
starts when the previous processor  has written one  com- 
plete string  and the first record of a second string. 

The first process is finished before the last one  starts; 
thus a single processor can  be  used for  both.  Alterna- 
tively, a sorter  can be  run  almost as a continuous  process. 
As soon as input of one file is finished,  input of the  next 
starts.  The  later  processors  act  on  the end of one file 
while the early ones  act on the start of the next file. 

With serial  processing  the  natural merge sort  reduces 
the number of passes needed  when the file is already par- 
tially sorted. This is of less  value with overlapped passes. 
The  processors  are usually preallocated, and only a  few 
cycles are  saved.  Also,  the  storage requirements for  the 
intermediate queues  are less predictable. 

In the  remainder of this  section we analyze the al- 
gorithm. We see how it must  be adapted when n is not  a 
power of 2 ,  and we discuss  the use of multi-way merge 
sorts and  the presorting of blocks of records. 

Analysis of the  algorithm 
We establish  sorting time and  bounds  on  queue lengths. 
There  are r + 1 processors ( P o ,  . * ., p,) to  sort n = 2' 
records.  The  output from pi  consists of 2"i sorted se- 
quences of 2' records each, si,l, . . ., si,zr-,. Processor po 
breaks the input into  separate  records; s O j  consists of the 
jth input record.  Sequence sij(j > 0) is created by merging 
si+l,zj-l with si-,,zj. Processors pi and  pi+l  are  connected 
by two queues,  q2i+l and  q2i+2. Output  sequence si,j from 
pi is  written  to  qZifl f o r j  odd or  qZif2 f o r j  even.  Thus  pi+l 
always  merges a sequence from q2i+l with one from  q2i+2. 
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"" 
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"" 

Pz P3 Output  Comments 

a - 

b a  

c b a  

d c b a  

e d c b a  

f e d c b a  

g f e d c b a  

h g f e d c b a  

Input consists of length  1  strings. 

po switches input to  alternate  queues. 

a to upper queue, b to lower queue. 

p, begins to merge stringsaandb. 

String b g i s  finished. 

p1 begins to merge strings c and& 

pz now starts on b_a and f c .  

p,,, p,, and p2 continue  processing. 

p,, has  passed  the last record. 

p2 completes f  c b a. 

pz starts  its 2nd output. p, ends. 

p3 now starts. 

pz, ps still going. 

p2 ends. 

p3 is now  operating exactly 
like pass 3 of the serial case. 

p3 ends. 
SORT COMPLETE 

Figure 3 Overlapped merge sort of eight records. 
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The tail of s,,2J-l (2'-I records)  is still in q2,+, 

Processor 

yet written 

The  head of s, 2J-1 (I records) 
has  been  merged by p, + , 
with the  head of (m records) 

The  middle of s. ( I +  1 records) is in q2i+2 
I32J 

( 4  

Since 1 5 2' and m 5 2', in either case: 

1 5 length(q,,,,) 5 2' + 1 ,  

0 5 length(q,,+,) I 2',  

length(q,,+J + length(q,,+J = 2t  + 1. 

A total of m + 1 records  in qZr + I 

The  head of s,,~] +, The tail of s,,2J-1 
( / + m  + 1-2' records) (2'-I records) 
is in qp + , is also in q,, + 

The tail of The  head of s, 2 j ~ ,  ( I  records) 
has  been  merged by p,+, 

q2* +2  with the  head of s,,,~ (m records) 

The tail of s. (2'" records) is in q2,+, Q 

(b) 

Figure 4 Lengths of intermediate queues. For case 1 at  (a), pi 
has not yet started writing into s ~ , ~ ~ + ~ ;  for case 2 at (b), pi is writ- 
ing into si,2j+l. 

Processor  pi+l  starts  operation  as soon as  there is input 
in both q2i+l and q2i+z, that  is, 2' + 1 cycles after pi. Pro- 
cessor po starts in cycle 1; thus pi starts in cycle 

1 + 2 (2' + 1) = cycle 2' + i .  

Processor pi operates  for n cycles  and  completes in cycle 
n + 2' + i - 1. The sort ends with processor r in cycle 
2n + log, n - 1. 

A different way to find sorting  time is to  consider  the 
case  when the last  record in is to be the first out. It passes 
pO in cycle n ,  p1 in cycle n + 1, and so on.  It emerges from 
the  sort  out of  p, in cycle n + r.  The final record  emerges 
from the  sort n - 1 cycles later in cycle 2n + r - 1. 

We establish  bounds on queue lengths.  Consider  a time 
when pi and  pi+l  are  both operating. Processor  pi+l is 
about  to write  into si+lJ, into which it  has already read  the 
head (I records) of and  the head ( m  records) of si,zj. 
Processor pi  started writing into si,zj one  cycle before pi+l 
started writing into s ' + ~ , ~ .  Either 

1 .  Processor pi has not yet  started writing into s' , ,~+~,  or 
2 .  Processor pi has  started writing into s ~ , , ~ + ~ .  

Figure 4 illustrates these  cases. 
In case (1) pi has  written 1 + m + 1 records  into si,2i and 

none into si,zj+l. The  upper  queue, qz,+l, contains  the tail 
of si,2j-l (2' - 1 records).  The  lower  queue, qZi+,, contains 
the middle of si,2j (1 + 1 records, all those 1 + m + 1 rec- 
ords written by pi except  those rn records already read by 

In case ( 2 ) ,  pi has written all 2' records into si,2j and 
1 + m + 1 - 2* records  into s ' , , ~+~ .  The  upper  queue con- 
tains the tail of s ~ , ~ ~ - ~  (2' - 1 records) and the head of s < , , ~ + ~  
(1 + m + 1 - 2' records), a  total of m + 1 records.  The 
lower queue  contains  the tail of si,zj (2' - rn records). 

i- 1 

j =O 

Pi+l). 

During the period before pi+, starts  and after Pi stops, 
the queues may be  shorter  than  these rules imply. 

The  equation  for  the sum of the  queue lengths is easily 
derived  from  the  fact  that  pi+l  starts  after pi has  written 2' 
+ 1 records  into  these  queues,  and  that from then until pi 
finishes each write cycle  sees  one  record written  by  pi and 
one  read by  pl+,. 

Number of records not a power of two 
Consider the  case  where  the  number (n )  of records is not 
a power of two.  The serial  straight  two-way  merge sort 
deals with the remaining "short" sequences at the  end of 
each pass. This  can be improved in the parallel case by 
taking the  short  sequences first. This  does not upset  the 
convenient property  that merge sort preserves the order 
of records with equal sort  key. 

Let r = [(log, n) .  We still need r + 1 processors. If the 
short  sequences  are  taken  at  the  end in the parallel case, 
p, starts at cycle 2' + r.  The  sort  ends  after n + 2' + r - 1 
cycles. 

Taking the  short  sequences  at  the  front is more  com- 
plicated.  We initialize all processors  as if they  had already 
operated  on 2' - n very small pseudo-records.  For i = 1 
to r - I ,  pi still starts  operation 2'-' + 1 cycles after pi-l. 
Processor p, starts  as soon as  there  is a  record in both  its 
input queues. String s , . - ~ , ~  contains all the pseudo-rec- 
ords,  and  thus only 2'-' - 2' + n real records. So p, 
starts 2'-' - 2' + n + 1 cycles  after  pr-l;  that  is, in cycle 
2'-' + r - 1 + 2,-' - 2" + n + 1 = cycle n + r. The  sort 
finishes in 2n + r - 1 cycles. 

We illustrate this with n = 5 ,  r = 3 (Fig. 5). The  opera- 
tion of po, pl, and  pz is similar to their operation in the 
case n = 8 (Fig. 2 ) ,  only three  cycles earlier  and with "a," 
"b," and "c" replaced  by pseudo-records.  Processor p, 
could have  started in cycle 5 rather  than  cycle 6 ,  but  it 
would have been held up in the next  cycle waiting for  the 
"d." Processor p3 is  able  to  start in cycle 8 without risk of 
being held up.  It is amusing  when the  last record is the 
smallest to watch the  lower  queues  clear  themselves  to let 
it through to  the  front. 

Multi-way merge sort 
A multi-way merge sort can  be operated with all passes in 
parallel in the  same fashion as a  two-way  merge sort. 
Fewer, more  powerful processors  are  needed. 

For a k-way merge sort r + 1 = [(log, n) + 1 processors 
sort n records in 2n + r - 1 cycles.  The output of pi con- 
sists of strings of length  k', which are merged k at a  time 
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Cycles Input po P1  Pz  pa Output Comments 

"" 

d e g h f  - _"" + +  
+ - +  + +  - + 

"" 
- 

3 

"" 

4 

-+ 

+ 
+ 

6 

"" 

7 

-+ 
-+ 

e +  - -+ h g  -+ f + + +  -, 
d +  -, 

At  start of sort,  three  pseudo-records  are al- 
ready  processed. 

Sort begins exactly  as in Fig. 3,  cycle 3,  with a, 
b, c  replaced by pseudo-records (+). 

All continues  as in Fig. 3 .  

pz  starts its second string. 
"" 

8 + + h g  -+ f c b  + d p3 writes d because p3 does  not need to wait to 
+ 

- 
+ -+ e - ,  process  the  pseudo-records. 

"" 

9 

"" 

10 

"" 

1 1  

"" 

12 + + + -+ h g f e d  

- 

Figure 5 Overlapped merge sort of five records.  The  pseudo-records  are  shown by +. 

by pi+,  into strings of length ki+'. Each  cycle involves 
each  processor in of order log, k comparisons. 

The  intermediate strings between pi and  pi+]  are held in 
k queues, qki+l, . . ., qki+k. These  are known as  queue  set 
i + 1 .  They  have  total length (k  - l ) k i  + 1 .  Processor  pr-] 
produces strings of length kr-' ,  so it only requires 

[(nlk"') output  queues.  Thus  the total  number of queues 
is (Y - 1)k + [(n/k"'). 

Table 1 shows  the number of processors  and  queues  for 
various values of k and n.  The  best  choice of k depends  on 
the  comparative  cost and speed of processors  and  queues 
for a particular implementation. 
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Table 1 Effects of multi-way merges.  Each  entry  gives  number 
of process0rs:number of queues. 

Total  Number of queues  merged  by  each  processor 
no. of 

records  2  3 4 5 6 8 1 6  

100 8:14 6:14 5:14 4:14 4:15 4:18  3:23 
1000 11:20 8:20 6:20 6:22 4:23 5:26  4:36 

10 000 15:28 10:26 8:27 7:29 7:32 6:36 5 5 1  
100 000 18:34 12:32 10:34 9:37 8:39 7:44 6:66 

1 000 000 21:40 14:38 11:40 10:43 9:46 852  6:80 

Table 2 Each  entry  gives  the  number of processors  required 
for a  two-way  merge  sort  using  presorting. 

Total  Number of records in each  presort 
no. of 

records 1 2 4 8 16 32 

100 8 7 6 5 4  3 
1000 11 10 9  8 7  6 

10000 11 12 13 15 11 10 
100OOO 18  17 16 15 14  13 

1 000 000 21  20 19  18 17 16 
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Presorting 
The first few processors  deal with  very short  strings. 
They  can be  eliminated if pa carries out an  “in  core”  pre- 
sort of sets of s input  records.  The  output  from  pa  consists 
of strings of s records, pi produces strings of s . k i  rec- 
ords, and  only [[log, ( n l s ) ]  + 1 processors  are needed to 
sort n records. 

The  numbers should be chosen so that pa can carry  out 
the sort (s . log, s comparisons) as  the  records  are  read in. 
It can  then  write the smallest record of the first string as it 
reads  the first record of the  second string. This gives  a 
delay of s read cycles before  the first write cycle.  The 
processor pa requires  storage  for s records.  Research  at 
the  University of Strathclyde  on  the LEECH processor 
[7] suggests that a very cheap special purpose  processor 
should be  able  to handle values of s up to 50 or  more. 
Table 2 shows  the effect of presorting on the  number of 
processors  used. 

When presorting is used,  sort time is 2n + [[log, (n ls ) ]  
- s write cycles plus s read  cycles before the first write 
cycle. For k and s much  smaller than n, this is very  close 
to  sort time  without presorting. 

Presorting can  make  the  total lengths of the  queue  sets 
dependent  on  record length. The total  length of queue 
sets i + 1 becomes ( k  - 1)s . k ‘  + 1 records.  Suppose s be 
limited by the  storage B available to p,, to s = L(B/I) for 

record  length 1 bytes.  The total queue length {[(k - l ) s k i  
+ 11 I} bytes  is slightly less  than B ( k  - 1)k’ + B bytes. 
This simplifies the design of hardware  for  the  inter- 
mediate queues.  Space  can be efficiently allocated to  the 
queue  sets  at  an  early  stage, which reduces allocation 
problems at  execution time. 

Variations of the algorithm 
We discuss in this  section  variations of the algorithm that 
are  made to suit particular  implementations.  They are  the 
blocking of the  records held in queues; overlapping input, 
comparison,  and  output;  and  synchronous  operation. 
These  are not important in the general behavior of the 
algorithm but must be  considered  for a specific implemen- 
tation. 

Blocking 
In some  implementations of queues  the designer may pre- 
fer to deal  with records in blocks rather than  individually. 
Blocking delays  the  transfer of a record  from pi to  and 
slightly slows down  the sort. 

If presorting is not used,  the effect of blocking on  the 
early processors is complicated as  several strings fit into 
one  block. We only  consider the  case where the  number 
of records in a  block is  equal  to  the length s of strings 
produced by the  presort, which is generally the most  con- 
venient in implementation. The  sort time becomes 2n + 
s[[log, ( n l s ) ]  - 1. If s records  are blocked into block size 
B ,  the  size of queue  set i + 1 becomes exactly B ( k  - l ) k i  
+ B.  Thus if a fixed block  size is used  independently of 
the  record  length,  there  is a fixed requirement  for  inter- 
mediate storage. 

As long as  no block  holds records  from  several  strings, 
processors  complete a block for  one  output  queue  before 
starting  a block for  another.  Thus a single buffering store 
and  write  channel  can  be shared by all output  queues. 

Overlapping  input,  comparison, and output 
For  some implementations the  processors  see  the  records 
as a stream of bits. Rather than  reading,  comparing, and 
writing records, a bit serial  comparison is made and  the 
data  steered  to  the  correct  place.  This applies  only  with 
fixed length records with the key at their  head. 

Figure 6 shows  the  setup  for overlapped input,  com- 
parison,  and  output  when merging two strings. Data  are 
read one bit at a  time into a processor, which controls  the 
crossover switch and inhibitors. In a normal cycle  the 
processor is comparing the  loser  record  (that with the 
larger key) from the  previous  cycle (which is in the buffer 
loop) with the next record  from  the winner record’s 
queue.  The  loser record’s input  queue  is inhibited. As 
long as  the  records  are  identical,  the  status of the  cross- 
over switch is not  important: one  stream of bits flows into 
the  output  queue  and  an identical stream  into  the buffer 
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loop. As soon as a difference is recorded,  the switch is set 
to  steer  the smaller  (winner) record  to  the  output  queue 
and the loser into  the buffer loop. 

During the  copy  sequences,  no  comparisons  are 
needed. To  keep a steady stream of data  the  output  is 
directed from  the input around  the buffer loop. In the last 
cycle of a copy sequence,  the first record from  the next 
string of input 1 is steered into  the buffer loop. The  pro- 
cessor  is then ready  to  start  work  on its new output string 
as  soon  as  the first input 2 record arrives.  The  output 
queue control  switch is flipped, but there is no break in 
the flow of input  data. 

When k > 2 strings are  to be  merged, k - 1 com- 
parators must  be cascaded. 

Timing  and  asynchronous  operation 
In the  analyses so far, we have  assumed  the  processors  to 
be synchronized by their output  cycles. This may prove 
inconvenient because of the different number of reads  to 
be carried out between the writes,  because of different 
comparison costs in each  cycle  or because of a queue  ac- 
cess being held up for implementation  reasons (e.g.,  stor- 
age conflict).  Reads  and  writes can be balanced by  buf- 
fering, but  the  other problems  make asynchronous  opera- 
tion desirable. 

No data comparisons are  necessary during a copy se- 
quence. Thus the amount of work involved in an output 
cycle,  particularly in the multi-way merge, is not con- 
stant. Also the  queues may not be implemented com- 
pletely independently, and storage  access may delay  a 
processor.  For  these  reasons it may be  required to run the 
processors  asynchronously. If pi+l operates  too fast for 
pi,  pi+l will attempt to read an intermediate queue  and 
find  it empty.  Thus  pi+l must then wait  until the required 
record is written by pi. If pi  operates  too  fast  for p,,,, pi 
may find that  the storage  available for the  intermediate 
queues becomes  full;  then  pi  must wait for  pi+l to read 
some records. 

Analysis of asynchronous  operation involves the  com- 
parative speed of the  processors and queue  storage,  the 
degree of independence of the  queues,  and the details of 
the file being sorted. With processors appreciably faster 
than storage  and reasonably  independent queues, the  per- 
formance is comparable to that with synchronous  opera- 
tion. 

Hardware 
The algorithm is suitable for implementation on a wide 
range of hardware. We discuss in general terms  the imple- 
mentation using solid logic technology  and  bubble tech- 
nology, with a specific implementation in each and a hy- 
brid implementation. We show how the variants of the 
algorithm are used in different circumstances.  Other  tech- 
nologies (e.g., multi-channel disks)  are not discussed. 

Output  Output 
queue I queue 2 

Output 
selection- 
switch 

Buffer 
switch 

heads 
Read 

Inhibitors 
input Input 
queue 1 queue 2 

Figure 6 Setup  for overlapped  input, comparison, and output. 
Data  are read  from the read  heads into a processor, which con- 
trols  the  selection  switches and  the inhibitors. 

Solid logic  technology 
Solid logic technology is good at providing random access 
and powerful processors but  less good with independent 
access to several  queues. In an implementation of the al- 
gorithm in this  technology we would use presorting and a 
multi-way merge sort to minimize queue traffic. 

Simultaneous accesses to a single module of main stor- 
age are very  complicated (or impossible). Thus we allo- 
cate  one  storage module for each queue  set.  The  queues 
are implemented by chaining. The bounds on  queue  set 
size determine  the size of the storage modules. 

With suitable buffering each  processor  requires  one 
read and one write access  per write cycle. All processors 
can be made  to read during the first part of a  cycle and to 
write during the second part. This avoids contention of 
one processor writing a queue while the following pro- 
cessor is reading  it. Each  processor  requires a small local 
store  for the buffered values. 

If the  sorting rate is limited by the speed with which 
data  can  be fed to a device, a very fast  store is not appro- 
priate except  for  the storage used for  the  presort. With 
fairly fast  processors a  possible design carries out  a  pre- 
sort to produce strings of records  to a  total of 1 Kbyte, 
where  K = 1024, and subsequent  processors handle a 16- 
way merge sort. A device with a sort capacity of 256 
Kbytes is shown in Fig. 7. 

Bubble technology 
Magnetic bubble  devices  are particularly  suited to han- 
dling streams of data, but not to random access.  The bit 
serial merge of Fig. 6 complete with bubble comparator 
could be implemented in bubble  technology, but pre- 
sorting is difficult. 
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Figure 7 Three-processor solid logic  technology sorter  for  files 
up to 256 Kbytes. A 16-way  merge is used. 
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Figure 8 A 16-processor  bubble  technology  sorter  for  files up 
to 4 Mbytes. A two-way  merge is used. 

Several bubble register  organizations  can  support mul- 
tiple queues with simultaneous access. It is too early to 
predict which would be the most  economical. The most 
complicated (the shift register array) handles records in- 
dependently;  the  others use blocking. 

The shift register  array [6] was  designed for  the  storage 
of multiple queues.  The  operation is analogous to  the  use 
of many tapes with independent  read  and  write heads;  the 
problem is the neat  stacking of the tape  between  the 
heads. The  bounds on queue lengths simplify the  dynamic 
allocation of space between them. 

Two  other mechanisms use blocking. Each  can  be  seen 
as  an  array of data, with each column  representing  a 
block and  several active columns from which data  can  be 
read or written. The columns  can  be moved to  transfer 
them to  an  active column position when they are  to  be 
accessed.  The control of the blocks  can  be  handled  by 
some  external processor, which remembers which is the 
next block in each  queue. Alternatively, the blocks can be 
self-identifying and retrieved  associatively. 

The first of the blocking mechanisms stores  data using a 
major-minor loop scheme [8]. Because  simultaneous ac- 
cess  to  several blocks is needed,  the  data  are retrieved  via 
a small section of shift  register array  rather  than via a 
single major  loop [9]. This  allows  several  blocks to be ac- 
cessed together, with buffering and unblocking handled in 

~ 516 

the store. 

s. TODD 

The  second blocking mechanism makes  use of much 
more  tightly  packed  bubbles in an  array [lo]. This scheme 
operates  faster  but  does not permit  one block to be  ac- 
cessed while another is being moved  towards an  access 
column. Thus  some additional support is needed to buffer 
and unblock,  or there will be  interference between 
queues. 

Of the  above,  the shift register array is the only scheme 
which effectively deals with the very short  queues  en- 
countered between  the early processors.  The  other mech- 
anisms are  more efficient for holding long queues.  The 
shift register array can  handle  many queues with little 
interference,  the  other mechanisms  only a few.  Thus 
queues produced from several processors can be imple- 
mented in one shift register array, but for  the blocking 
schemes independent modules are needed for  the dif- 
ferent sets of queues. 

Figure 8 gives a schematic diagram of one implementa- 
tion of the algorithm using bubble  technology. All pro- 
cessors  use bit serial  merge. The early queues  are imple- 
mented in a shift register array.  The  later  queues  use mi- 
nor loops  accessed via  a  shift  register array. 

The first section is organized to  produce strings of rec- 
ords  to fit a 1-Kbyte buffer. The programming depends on 
the  record  length. There  are sufficient queues  and  pro- 
cessors  to support the smallest  record  length; for longer 
records some of them are not used. This  section is ef- 
fectively a presorter. 

The  later sections each  have shift  register arrays  to 
block and buffer two input queues and buffer and  unblock 
two output  queues.  The block size is 1 Kbyte. The ith 
section has minor  loops long enough to hold 2" blocks. 
A  total of 12 of these sections gives the last  a  capacity of 
2 megabytes. The total storage required is just  over 4 
Mbytes (where M = K'), which is  the sorting capacity of 
the device. 

Hybrid implementation 
Many combinations of hardware  can be used.  Figure 9 
gives an  example. A solid logic front end is combined 
with a back end using solid logic processors  and  bubble 
queues.  Four-way merge sort is used to make reasonable 
use of the  processor without  overcomplicating queue in- 
teraction in the  store. 

Summary 
We have discussed the application of multiple processors 
to a  merge sort. Files are replaced as intermediate storage 
structures by first-in first-out queues.  For a k-way merge 
sort, [(log, n )  + 1 processors  sort n records in just  over 2n 
cycles. The algorithm has wide application  where several 
processors,  but not order n processors,  are available. 

Implementation  involves  considering  several variations 
of the algorithm and  the  hardware  to  support it. Solid 
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logic and magnetic  bubble  technologies  can  be  used to 
implement the  hardware,  or a  hybrid of these  tech- 
nologies can  be used. 

References 
1 .  D. E.  Knuth, “Sorting and  Searching,” The Art of Compu- 

ter  Programming, Vol. 3,  Addison-Wesley  Publishing Com- 
pany, Reading, MA, 1973. 

2. C. D. Thompson and  H.  T.  Kung, “Sorting on a  Mesh-Con- 
nected Parallel Computer,” Commun.  ACM 20, 263 (1977). 

3. T.  C.  Chen,  K. P. Eswaran,  V. Y. Lum, and C. Tung, “Ap- 
paratus for Transposition  Sorting of Equal-Length Records 
in Overlap Relation with Record  Loading  and Extraction,” 
U.S. Patent  Application Serial Number 685,859, 1977. 

4. S. Even, “Parallelism in Tape Sorting,” Cornrnun. ACM 17, 
202 (1974). 

5 .  S. J. P. Todd,  “The  Peterlee Relational Test Vehicle-A 
System Overview,” IBM Syst.  J. 15, 285 (1976). 

6. S. J. P. Todd,  “Bubble Memory for High Level  Data- 
bases,” Proceedings of IERE Conference on Computer 
Systems and Technology, London, 1977. 

7. D. R. McGregor, R. G .  Thomson, and W. N.  Dawson, 
“High  Performance Hardware for Database Systems,” 
Systems  for Large Databases, Preprint, P. Lockemann and 
E. J. Neuhold, eds.,  North Holland Publishing Co., Amster- 
dam, 1976. 

8. Magnetic Bubble Technology, H. Chang, ed., IEEE Press, 
New York, 1975. 

IBM I. RES.  DEVELOP. 0 VOL. 22 0 NO. 5 0 SEFTEMBER 1978 

faat 3 K b y t e s V l 2  Kbytes v 3 Mbytes 
store Minor  Shift  register 

store and buffering 
loop array access 

Figure 9 A seven-processor hybrid  technology sorter for files 

9. S.  J .  P.  Todd, “Major  Minor Loops Accessed  via Shift Reg- 
ister  Arrays,” IBM United  Kingdom  Scient$c  Centre  Tech- 
nical Note 67 (in preparation). 

10. C. K. Wong and P.  C.  Yue,  “Data Organization in Magnetic 
Bubble Lattice Files,” IBMJ.  Res.  Develop. 20, 576 (1976). 

Received  April I ,  1977; revised  November 2 ,  1977 

The author is located  at the IBM United  Kingdom  Scien- 
t$c Centre,  Neville  Road,  Peterlee,  Durham SR8 IBY, 


