S. Todd

Algorithm and Hardware for a Merge Sort Using Multiple

Processors

Abstract: An algorithm is described that allows log {n) processors to sort n records in just over 2n write cycles, together with suitable
hardware to support the algorithm. The algorithm is a parallel version of the straight merge sort. The passes of the merge sort are run
overlapped, with each pass supported by a separate processor. The intermediate files of a serial merge sort are replaced by first-in first-
out queues. The processors and queues may be implemented in conventional solid logic technology or in bubble technology. A hybrid

technology is also appropriate.

Introduction

Most conventional sorting algorithms operate on a single
processor and require of order n - log (n) cycles to sort n
records. Examples are the merge sort [1, pp. 163-165] and
quicksort [1, pp. 114-116]. There are single processor al-
gorithms with sort times proportional to »n, but these are
only effective in certain circumstances. Address sorting
[1, pp. 99-102] requires the spread of sort key values to be
known and fairly random. Digital sorting [1, p. 170] is
very good for main storage sorts of files with short keys.
When secondary storage is used, the digit length has to be
small to reduce the number of open files; the key then
consists of many digits and the constant of proportional-
ity of the sort is high.

A variety of multiple processor sorts exists, most of
which require a very large number of processors, propor-
tional to n or more. These are the network sorts [1, pp.
220-243], in particular Batcher’s merge exchange sort [1,
pp. 111-114], Thompson and Kung’s mesh sorts [2], and
Chen’s parallel bubble sort [3]. Some of these sorts are
very fast, but all require very special hardware and are
impracticable for large files with current technology.
Even proposed a sort using [(log, n) processors and
4 - [(log, n) tape units to sort in 3.2[(log, n) write cycles
[4]. This sort is made very complicated by the necessity
of rewinding tapes before they can be read.

We present a sort that is similar to Even’s. It uses more
sophisticated hardware, which makes it both faster and
simpler. The basic algorithm permits [(log, n) + 1 pro-
cessors to sort n records in 2n + log, n — 1 write cycles.
This requires the storage of 2 log, n intermediate queues
of variable length and maximum total length n records.

These can be implemented using conventional main stor-
age or shift register (e.g., bubble) storage. Our queues dif-
fer from Even’s tapes in that they can be read before they
have been fully written, and no rewind is needed. There
are variations on our basic algorithm requiring fewer re-
sources.

The proposed sort is suitable for use when several
processors are available, but not order » or more. Very
simple processors, which are only required to do a merge,
can be used. Our sort is faster for sorting general files
than single processor sorts, but not as fast as the network
sorts.

Our sort could be used in a low cost special purpose
sorting machine. Sorting is traditionally used in batch
processing and also now in efficient implementations of
relational query systems (e.g., [5]). Our sort would form a
natural part of a relational data base machine [6].

The algorithm is a variant of a straight merge sort [1,
pp. 163-165]. The passes are run overlapped rather than
serially. Each pass is supported by a separate processor.
Reading from the output of one pass begins before the
writing of that output is complete, so the intermediate
structures are first-in first-out queues rather than files.
When the number of records to be sorted is not an exact
power of 2, the normal serial algorithm deals with the re-
mainder at the end of each pass; our algorithm deals with
it first.

There are several variations of the algorithm that are
more suitable in certain circumstances. A multi-way
merge sort reduces the number of processors. Small sec-
tions of data can be sorted before being introduced to the

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The
title and abstract may be used without further permission in computer-based and other information-service systems. Permission to

republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. ® VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

509

S. TODD

510

S. TODD

q 4 45

e-h-c-a- hg-ba fcba
d-e-g-h-f-c-b-a hgfedeba
X X 5 X
Input, g, Output, q,
d-g-f-b ed-fe hged
9 44 96
ql q3 qS
e-h- g ba-
d-
— &P, & P 3R
Input, g, Output, q,
fc
49, 4y 9

Figure 1 Four processors connected by six queues sort eight
records. An overview of the sorting process is shown at (a), and
a snapshot of the sort after seven cycles is shown at (b). The -
indicates a break between strings of records.

Input Comments
front of file
deghfcba (input) Initial file.
pass 0 , File is split into
ehca (first pair of two files, each contain-
dgfb intermediate files) ing strings of length 1.
pass 1 Length 1 strings are
hgba (second pair of merged in pairs, e.g.,
edfc intermediate files) a with b to create b a.
pass 2 Length 2 strings are
fcba (third pair of merged to make length 4
hged intermediate files) strings,e.g.,fcba
pass 3 Sort ends by merging
hgfedcba (output) two length 4 strings to

create a string of all 8
records.

Figure 2 A serial merge sort of eight records. Underscores
mark the start of each string.

merge sort, which reduces the number of processors and
the handling of very short queues. Blocking may be used
to store queued records. Sort processors may be used to
steer records directly from input to output queues, rather
than to read them into buffers and later write them into
queues. It may be best to let the processors run asynchro-
nously. Various hardware techniques can support the al-
gorithm, including solid logic and bubble technologies.
Either can support both the processing and queue stor-
age, or solid logic processors can be used with bubble
queues.

In the next section we discuss the basic algorithm and
analyze its processor and queue requirements. We show
how multi-way sorting and presorting affect these require-
ments. The following section discusses more detailed var-

iations of the algorithm that relate to the supporting hard-
ware. Finally, hardware alternatives are covered, with
general comments and three specific implementations.

The algorithm

The algorithm is a variation of a straight two-way merge
sort [1, pp. 163-165]. A serial two-way merge sort oper-
ates in several passes, with each pass creating sorted se-
quences (strings) of records. The first pass creates strings
of two records; the second pass merges these pairwise
into four-record strings. After i passes, the strings have
length 2°. After [(log, n) passes, all n records are in one
sorted string.

In our variation the passes are run overlapped. We con-
sider first the special case where the number n of records
to be sorted is equal to 2" for integer r and where there are
r + 1 processors, 0 through ». The output from the ith
processor consists of sorted sequences of 2! records,
created by merging two output strings from the (i — 1)th
processor. Figure 1 shows the general setup for our al-
gorithm, Fig. 2, the operation of a serial merge sort, and
Fig. 3, the operation of an overlapped merge sort. We
assume the processors run synchronously and can both
read and write one record per cycle. Each processor
starts when the previous processor has written one com-
plete string and the first record of a second string.

The first process is finished before the last one starts;
thus a single processor can be used for both. Alterna-
tively, a sorter can be run almost as a continuous process.
As soon as input of one file is finished, input of the next
starts. The later processors act on the end of one file
while the early ones act on the start of the next file.

With serial processing the natural merge sort reduces
the number of passes needed when the file is already par-
tially sorted. This is of less value with overlapped passes.
The processors are usually preallocated, and only a few
cycles are saved. Also, the storage requirements for the
intermediate queues are less predictable.

In the remainder of this section we analyze the al-
gorithm. We see how it must be adapted when » is not a
power of 2, and we discuss the use of multi-way merge
sorts and the presorting of blocks of records.

® Analysis of the algorithm

We establish sorting time and bounds on queue lengths.
There are r + 1 processors {p,, * * -, p,) to sort n = 2"
records. The output from p, consists of 277" sorted se-
quences of 2' records each, Si1» " > Sy PrOCESSOr Py
breaks the input into separate records; s, ; consists of the
Jjth input record. Sequence s, (j > 0) is created by merging
8 12—, With s,_, .. Processors p, and p,,, are connected
by two queues, q,,,, and q,,,,. Output sequence s, ; from
p; is written to q,,,, for j odd or q,,,, for jeven. Thus p,,,
always merges a sequence from q,,,, with one from q,,, ,.

IBM J. RES. DEVELOP. & VOL. 22 e NO. 5 & SEPTEMBER 1978

Cycles Input Po o P ps Output Comments

0 deghfcba : : : : Input consists of length 1 strings.
1 . .
deg hfcb : : : : Po switches input to alternate queues.
2 - a - - N
deghfc b - - _ a to upper queue, b to lower queue.
3 deghf : E : 2 : : p, begins to merge strings a and b.
4 - ¢ — ba — — . s
degh = - String b a is finished.
——=_ = f - — — =
5 deg :)) -E- : b E : : p. begins to merge strings ¢ and f.
6 de : g : ¢ E : a : p. now startsonbaand fc.
7 d ~ eh — g - ba — d . .
= - — fc — - Po, P1, and p, continue processing.
8 _": i : hﬁf : cba : p, has passed the last record.
9 h fcb
: - : - (gi : cha : p: completesfc b a.
h f .
10 :: —__: % : cb % : p. starts its 2nd output. p, ends.
1 — — h — fcb — a
N N g N e Q _ = p;now starts.
12 - — h — fc — ba till goi
= = . ged — P2, Ds still going.
13 — — — f - cba
= o o hged — p, ends.
14 - - — f — dcba psisnow operating exactly
- — — hge — like pass 3 of the serial case.
15 - — — f — edcba
— — — hg —
16 - - - - fedcba
— — — hg —
17 g - - — gfedcba
had g - h —
18 : : : : hgfedcba p, ends.
- SORT COMPLETE
Figure 3 Overlapped merge sort of eight records. 511

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978 S. TODD

512

S. TODD

The tail of s, (2'-/ ecords)is still in g |

Processor
p; has not
yet written
the tail of s,
1,2f

The head of s, . | (! records)
has been merged by Pity
with the head of s; 5 (m records)

The middle of S ({41 records) is in Qyisa
(@

Atotal of m+1recordsin qy,
The head O,f Si3j+1 Tkl_le tail of $;9j-1
(I+m+1-2 records) (2-/ records)
Isinq, isalsoing,,

The tail of

o The head of 5; 231 (I records)
is not &

has been merged by Piat
with the head of s, % (m records)

Sigj+1
yet written by p;
The tail of S (2i—m records) isin qy, . ,
(b)
Figure 4 Lengths of intermediate queues. For case 1 at (a), p;

has not yet started writing into s, ,, ; for case 2 at (b), p, is writ-
inginto s, .

Processor p,,, starts operation as soon as there is input
in both q,,,, and q,,,,, that is, 2" + 1 cycles after p,. Pro-
cessor p, starts in cycle 1; thus p, starts in cycle

i-1
1+ > @+ 1) =cycle2' +1i.
i=0

Processor p, operates for n cycles and completes in cycle
n + 2' + i — 1. The sort ends with processor r in cycle
2n + log, n — L.

A different way to find sorting time is to consider the
case when the last record in is to be the first out. It passes
p, incycle n, p, in cycle n + 1, and so on. It emerges from
the sort out of p, in cycle n + r. The final record emerges
from the sort n — 1 cycles later in cycle 2n + r — 1.

We establish bounds on queue lengths. Consider a time
when p, and p, , are both operating. Processor p,,, is
about to write into s, ;, into which it has already read the
head (/ records) of s, ,,_, and the head (m records) of s, .
Processor p, started writing into s, ,; one cycle before p
started writing into s Either

i+1
i+1,3°
1. Processor p, has not yet started writing into S; 95410 OF

2. Processor p; has started writing into s, ,,, .

Figure 4 illustrates these cases.

In case (1) p, has written / + m + 1 records into $; 2 and
none into s, ., ,. The upper queue, q,,, ,, contains the tail
of s,,, , (2" — Irecords). The lower queue, g,,, ,, contains
the middle of s, ,, (/ + 1 records, all those ! + m + 1 rec-
ords written by p, except those m records already read by

Pisy)-
In case (2), p, has written all 2* records into 8, 25 and
[+ m+1- 2 records into s, The upper queue con-

. i,2j+1°
tains the tail of s, | (2" — Irecords) and the head of s,

t 4,2j+1
(I + m + 1 — 2" records), a total of m + 1 records. The

lower queue contains the tail of 8.0 (' — m records).

Since I = 2' and m =< 2%, in either case:
1 < length(q,,,) =2'+ 1,
0 =< length(q,,,,) =< 2,
length(q,,,,) + length(q,,,,) = 20+ 1.

During the period before p,,, starts and after p, stops,
the queues may be shorter than these rules imply.

The equation for the sum of the queue lengths is easily
derived from the fact that p, | starts after p, has written 2
+ 1 records into these queues, and that from then until p,
finishes each write cycle sees one record written by p, and
one read by p,, ;-

® Number of records not a power of two

Consider the case where the number (n) of records is not
a power of two. The serial straight two-way merge sort
deals with the remaining ‘‘short’’ sequences at the end of
each pass. This can be improved in the parallel case by
taking the short sequences first. This does not upset the
convenient property that merge sort preserves the order
of records with equal sort key.

Let r = [(log, n). We still need r + 1 processors. If the
short sequences are taken at the end in the parallel case,
p, starts at cycle 2" + r. The sort ends aftern + 2" + r — 1
cycles.

Taking the short sequences at the front is more com-
plicated. We initialize all processors as if they had already
operated on 2" — n very small pseudo-records. Fori = 1
tor — 1, p, still starts operation 27! + 1 cycles after Pi_y
Processor p,_ starts as soon as there is a record in both its
input queues. String s,_,, contains all the pseudo-rec-
ords, and thus only 2" — 2" + n real records. So p,
starts 2"~ — 2" + n + 1 cycles after p,.,; thatis, in cycle
27 4+ = 142" =27+ n+ 1 =cyclen + r. The sort
finishes in 2n + r — 1 cycles.

We illustrate this with n = 5, r = 3 (Fig. 5). The opera-
tion of p,, p,, and p, is similar to their operation in the
case n = 8 (Fig. 2), only three cycles earlier and with “‘a,”’
“b,”” and ‘¢’ replaced by pseudo-records. Processor p,
could have started in cycle 5 rather than cycle 6, but it
would have been held up in the next cycle waiting for the
‘“d.”” Processor p, is able to start in cycle 8 without risk of
being held up. It is amusing when the last record is the
smallest to watch the lower queues clear themselves to let
it through to the front.

® Multi-way merge sort
A multi-way merge sort can be operated with all passes in
parallel in the same fashion as a two-way merge sort.
Fewer, more powerful processors are needed.

For a k-way merge sort r + 1 = [(log, n) + 1 processors
sort n records in 2n + r — 1 cycles. The output of p, con-
sists of strings of length k', which are merged k at a time

IBM J. RES. DEVELOP. ¢ VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

Cycles Input Po o P2 Ps Output Comments
0 - +r - + - — At start of sort, three pseudo-records are al-
deghf x
o =EEss - + - — — ready processed.
1 degh + - ++ - - Sort begins exactly as in Fig. 3, cycle 3, with a,
L gegnr f - — — b, ¢ replaced by pseudo-records (+).
2 d — h - ++ - —
3 d — h - + - + -
£e g — f+ — —
4 - eh — g — ++ -
d - - — f¥f — — I
L - All continues as in Fig. 3.
5 - e — hg — +++ -
— d — f - —
6 — e - h g - f+++ —
— - d — —
7 - - hg - fret - p. starts its second string.
— — e — d —
8 — — h — fcb — d ps writes d because p; does not need to wait to
o — — - e — process the pseudo-records.
9 — - h — fec — ed
— - — g —>
10 — — — - fe (_j_
— — — hg —
11 — — — - gfed
- - — h —
12 — — — — hgfed

Figure 5 Overlapped merge sort of five records. The pseudo-records are shown by +.

by p,,, into strings of length k**'. Each cycle involves
each processor in of order log, & comparisons.

The intermediate strings between p, and p,,, are held in
k queues, q,;,,» * * *, q,;,,- These are known as queue set
i + 1. They have total length (k — 1)k* + 1. Processorp,_,
‘produces strings of length k™%, so it only requires

IBM J. RES. DEVELOP. & VOL. 22 & NO. 5 & SEPTEMBER 1978

[(n/k"") output queues. Thus the total number of queues
is(r = Dk + [(n/k™™".

Table 1 shows the number of processors and queues for
various values of k and n. The best choice of k depends on
the comparative cost and speed of processors and queues
for a particular implementation.

513

S. TODD

514

S. TODD

Table 1 Effects of multi-way merges. Each entry gives number
of processors:number of queues.

Total Number of queues merged by each processor
no. of

records 2 3 4 5 6 8 16
100 8:14 6:14 5:14 414 4:15 4:18 3:23
1000 11:20 8:20 6:20 622 4:23 5:26 4:36
10000 15:28 10:26 8:27 729 732 6:36 5:51
100 000 18:34 12:32 10:34 9:37 8:39 7:44 6:66
1 000 000 21:40 14:38 11:40 10:43 9:46 8:52 6:80

Table 2 Each entry gives the number of processors required
for a two-way merge sort using presorting.

Total Number of records in each presort
no. of

records 1 2 4 8 16 32
100 8 7 6 5 4 3
1000 11 10 9 8 7 6
10 000 11 12 13 15 11 10
100 000 18 17 16 15 14 13
1 000 000 21 20 19 18 17 16

® Presorting

The first few processors deal with very short strings.
They can be eliminated if p, carries out an ‘‘in core’ pre-
sort of sets of s input records. The output from p, consists
of strings of s records, p, produces strings of s - k' rec-
ords, and only [[log, (n/s)] + 1 processors are needed to
sort n records.

The number s should be chosen so that p, can carry out
the sort (s - log, s comparisons) as the records are read in.
1t can then write the smallest record of the first string as it
reads the first record of the second string. This gives a
delay of s read cycles before the first write cycle. The
processor p, requires storage for s records. Research at
the University of Strathclyde on the LEECH processor
[7] suggests that a very cheap special purpose processor
should be able to handle values of s up to 50 or more.
Table 2 shows the effect of presorting on the number of
processors used.

When presorting is used, sort time is 2n + [[log, (n/s)]
— s write cycles plus s read cycles before the first write
cycle. For k and s much smaller than #, this is very close
to sort time without presorting.

Presorting can make the total lengths of the queue sets
dependent on record length. The total length of queue
setsi + 1 becomes (k — 1)s - k' + 1 records. Suppose s be
limited by the storage B available to p, to s = |[(B/]) for

record length I bytes. The total queue length {[(k — 1)sk’
+ 1]/} bytes is slightly less than B(k — Dk' + B bytes.
This simplifies the design of hardware for the inter-
mediate queues. Space can be efficiently allocated to the
queue sets at an early stage, which reduces allocation
problems at execution time.

Variations of the algorithm

We discuss in this section variations of the algorithm that
are made to suit particular implementations. They are the
blocking of the records held in queues; overlapping input,
comparison, and output; and synchronous operation.
These are not important in the general behavior of the
algorithm but must be considered for a specific implemen-
tation.

® Blocking

In some implementations of queues the designer may pre-
fer to deal with records in blocks rather than individually.
Blocking delays the transfer of a record from p, to p,_, and
slightly slows down the sort.

If presorting is not used, the effect of blocking on the
early processors is complicated as several strings fit into
one block. We only consider the case where the number
of records in a block is equal to the length s of strings
produced by the presort, which is generally the most con-
venient in implementation. The sort time becomes 2n +
sl[log, (n/s)] — 1. If s records are blocked into block size
B, the size of queue set i + 1 becomes exactly B(k — 1)k’
+ B. Thus if a fixed block size is used independently of
the record length, there is a fixed requirement for inter-
mediate storage.

As long as no block holds records from several strings,
processors complete a block for one output queue before
starting a block for another. Thus a single buffering store
and write channel can be shared by all output queues.

i+l

® Overlapping input, comparison, and output

For some implementations the processors see the records
as a stream of bits. Rather than reading, comparing, and
writing records, a bit serial comparison is made and the
data steered to the correct place. This applies only with
fixed length records with the key at their head.

Figure 6 shows the setup for overlapped input, com-
parison, and output when merging two strings. Data are
read one bit at a time into a processor, which controls the
crossover switch and inhibitors. In a normal cycle the
processor is comparing the loser record (that with the
larger key) from the previous cycie (which is in the buffer
loop) with the next record from the winner record’s
queue. The loser record’s input queue is inhibited. As
long as the records are identical, the status of the cross-
over switch is not important: one stream of bits flows into
the output queue and an identical stream into the buffer

IBM J. RES. DEVELOP. e VOL. 22 e NO. 5 » SEPTEMBER 1978

loop. As soon as a difference is recorded, the switch is set
to steer the smaller (winner) record to the output queue
and the loser into the buffer loop.

During the copy sequences, no comparisons are
needed. To keep a steady stream of data the output is
directed from the input around the buffer loop. In the last
cycle of a copy sequence, the first record from the next
string of input 1 is steered into the buffer loop. The pro-
cessor is then ready to start work on its new output string
as soon as the first input 2 record arrives. The output
queue control switch is flipped, but there is no break in
the flow of input data.

When k > 2 strings are to be merged, £ — 1 com-
parators must be cascaded.

® Timing and asynchronous operation

In the analyses so far, we have assumed the processors to
be synchronized by their output cycles. This may prove
inconvenient because of the different number of reads to
be carried out between the writes, because of different
comparison costs in each cycle or because of a queue ac-
cess being held up for implementation reasons (e.g., stor-
age conflict). Reads and writes can be balanced by buf-
fering, but the other problems make asynchronous opera-
tion desirable.

No data comparisons are necessary during a copy se-
quence. Thus the amount of work involved in an output
cycle, particularly in the multi-way merge, is not con-
stant. Also the queues may not be implemented com-
pletely independently, and storage access may delay a
processor. For these reasons it may be required to run the
processors asynchronously. If p,,, operates too fast for
p;» P;,, Will attempt to read an intermediate queue and
find it empty. Thus p,,, must then wait until the required
record is written by p,. If p, operates too fast for p,, , p,
may find that the storage available for the intermediate
queues becomes full; then p, must wait for p,, to read
some records.

Analysis of asynchronous operation involves the com-
parative speed of the processors and queue storage, the
degree of independence of the queues, and the details of
the file being sorted. With processors appreciably faster
than storage and reasonably independent queues, the per-
formance is comparable to that with synchronous opera-
tion.

i+1

Hardware

The algorithm is suitable for implementation on a wide
range of hardware. We discuss in general terms the imple-
mentation using solid logic technology and bubble tech-
nology, with a specific implementation in each and a hy-
brid implementation. We show how the variants of the
algorithm are used in different circumstances. Other tech-
nologies (e.g., multi-channel disks) are not discussed.

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

Output Output
queue 1 queue 2

Output

selection—

switch
Input
selection— Buffer
switch loop

Inhibitors

Input Input
queue] queue 2

Figure 6 Setup for overlapped input, comparison, and output.
Data are read from the read heads into a processor, which con-
trols the selection switches and the inhibitors.

e Solid logic technology

Solid logic technology is good at providing random access
and powerful processors but less good with independent
access to several queues. In an implementation of the al-
gorithm in this technology we would use presorting and a
multi-way merge sort to minimize queue traffic.

Simultaneous accesses to a single module of main stor-
age are very complicated (or impossible). Thus we allo-
cate one storage module for each queue set. The queues
are implemented by chaining. The bounds on queue set
size determine the size of the storage modules.

With suitable buffering each processor requires one
read and one write access per write cycle. All processors
can be made to read during the first part of a cycle and to
write during the second part. This avoids contention of
one processor writing a queue while the following pro-
cessor is reading it. Each processor requires a small local
store for the buffered values.

If the sorting rate is limited by the speed with which
data can be fed to a device, a very fast store is not appro-
priate except for the storage used for the presort. With
fairly fast processors a possible design carries out a pre-
sort to produce strings of records to a total of 1 Kbyte,
where K = 1024, and subsequent processors handle a 16-
way merge sort. A device with a sort capacity of 256
Kbytes is shown in Fig. 7.

® Bubble technology
Magnetic bubble devices are particularly suited to han-
dling streams of data, but not to random access. The bit
serial merge of Fig. 6 complete with bubble comparator
could be implemented in bubble technology, but pre-
sorting is difficult.

516

S. TODD

Py

T

Input Py P Output
el 8
1-Kbyte 16-Kbyte 241-Kbyte
fast slow slow
store store store

Figure 7 Three-processor solid logic technology sorter for files
up to 256 Kbytes. A 16-way merge is used.

Py
lnput P, B1 Py Py Pia Pis

auijj
=

2-Kbyte shift 1 Kbyte 2 Kbyles\/
register array 2 Mby{;s\

multiple queue store Shift register Minor loop
array access storage
and buffering

Output

Figure 8 A 16-processor bubble technology sorter for files up
to 4 Mbytes. A two-way merge is used.

Several bubble register organizations can support mul-
tiple queues with simultaneous access. It is too early to
predict which would be the most economical. The most
complicated (the shift register array) handles records in-
dependently; the others use blocking.

The shift register array [6] was designed for the storage
of multiple queues. The operation is analogous to the use
of many tapes with independent read and write heads; the
problem is the neat stacking of the tape between the
heads. The bounds on queue lengths simplify the dynamic
allocation of space between them.

Two other mechanisms use blocking. Each can be seen
as an array of data, with each column representing a
block and several active columns from which data can be
read or written. The columns can be moved to transfer
them to an active column position when they are to be
accessed. The control of the blocks can be handled by
some external processor, which remembers which is the
next block in each queue. Alternatively, the blocks can be
self-identifying and retrieved associatively.

The first of the blocking mechanisms stores data using a
major-minor loop scheme [8]. Because simultaneous ac-
cess to several blocks is needed, the data are retrieved via
a small section of shift register array rather than via a
single major loop [9]. This allows several blocks to be ac-
cessed together, with buffering and unblocking handled in
the store.

The second blocking mechanism makes use of much
more tightly packed bubbles in an array [10]. This scheme
operates faster but does not permit one block to be ac-
cessed while another is being moved towards an access
column. Thus some additional support is needed to buffer
and unblock, or there will be interference between
queues.

Of the above, the shift register array is the only scheme
which effectively deals with the very short queues en-
countered between the early processors. The other mech-
anisms are more efficient for holding long queues. The
shift register array can handle many queues with little
interference, the other mechanisms only a few. Thus
queues produced from several processors can be imple-
mented in one shift register array, but for the blocking
schemes independent modules are needed for the dif-
ferent sets of queues.

Figure 8 gives a schematic diagram of one implementa-
tion of the algorithm using bubble technology. All pro-
cessors use bit serial merge. The early queues are imple-
mented in a shift register array. The later queues use mi-
nor loops accessed via a shift register array.

The first section is organized to produce strings of rec-
ords to fit a 1-Kbyte buffer. The programming depends on
the record length. There are sufficient queues and pro-
cessors to support the smallest record length; for longer
records some of them are not used. This section is ef-
fectively a presorter.

The later sections each have shift register arrays to
block and buffer two input queues and buffer and unblock
two output queues. The block size is 1 Kbyte. The ith
section has minor loops long enough to hold 2°™" blocks.
A total of 12 of these sections gives the last a capacity of
2 megabytes. The total storage required is just over 4
Mbytes (where M = K, which is the sorting capacity of
the device.

® Hybrid implementation

Many combinations of hardware can be used. Figure 9
gives an example. A solid logic front end is combined
with a back end using solid logic processors and bubble
queues. Four-way merge sort is used to make reasonable
use of the processor without overcomplicating queue in-
teraction in the store.

Summary
We have discussed the application of multiple processors
to a merge sort. Files are replaced as intermediate storage
structures by first-in first-out queues. For a k-way merge
sort, [(log, n) + 1 processors sort n records in just over 2n
cycles. The algorithm has wide application where several
processors, but not order n processors, are available.
Implementation involves considering several variations
of the algorithm and the hardware to support it. Solid

IBM J. RES. DEVELOP. & VOL. 22 & NO. 5 &« SEPTEMBER 1978

logic and magnetic bubble technologies can be used to
implement the hardware, or a hybrid of these tech-
nologies can be used.

References

1. D. E. Knuth, ““Sorting and Searching,” The Art of Compu-
ter Programming, Vol. 3, Addison-Wesley Publishing Com-
pany, Reading, MA, 1973.

2. C. D. Thompson and H. T. Kung, ‘‘Sorting on a Mesh-Con-
nected Parallel Computer,’”” Commun. ACM 20, 263 (1977).

3. T. C. Chen, K. P. Eswaran, V. Y. Lum, and C. Tung, ‘‘Ap-
paratus for Transposition Sorting of Equal-Length Records
in Overlap Relation with Record Loading and Extraction,”
U.S. Patent Application Serial Number 685,859, 1977.

4. S. Even, ‘‘Parallelism in Tape Sorting,”” Commun. ACM 17,
202 (1974).

5. S. J. P. Todd, *“The Peterlee Relational Test Vehicle—A
System Overview,”” IBM Syst. J. 15, 285 (1976).

6. S.J. P. Todd, ‘‘Bubble Memory for High Level Data-
bases,”” Proceedings of IERE Conference on Computer
Systems and Technology, London, 1977.

7. D. R. McGregor, R. G. Thomson, and W. N. Dawson,
‘‘High Performance Hardware for Database Systems,”
Systems for Large Databases, Preprint, P. Lockemann and
E. J. Neuhold, eds., North Holland Publishing Co., Amster-
dam, 1976.

8. Magnetic Bubble Technology, H. Chang, ed., IEEE Press,
New York, 1975.

IBM J. RES. DEVELOP. » VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

Output

1-Kbyte
fast 3 Kbytes 12 Kbytes 3 Mbytes

store

Minor Shift register
loop array access
store and buffering

Figure 9 A seven-processor hybrid technology sorter for files
up to 4 Mbytes. A four-way merge is used.

9. S. J. P. Todd, ‘““Major Minor Loops Accessed via Shift Reg-
ister Arrays,”’ IBM United Kingdom Scientific Centre Tech-
nical Note 67 (in preparation).

10. C. K. Wong and P. C. Yue, ‘‘Data Organization in Magnetic
Bubble Lattice Files,”” IBM J. Res. Develop. 20, 576 (1976).

Received April 1, 1977; revised November 2, 1977

The author is located at the IBM United Kingdom Scien-
tific Centre, Neville Road, Peterlee, Durham SR8 1BY,
England.

517

S. TODD

