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Study of Head-Tape Interaction in High Speed Rotating

Head Recording

The steady state tape dynamics resulting from the interaction of a high speed rotating head and a flexible recording tape
are formulated within the framework of linear shell theory. Tape displacements in the area above the head are coupled
with the solution to the Reynolds equation in order to calculate the film thickness (flying height) between head and tape.
Simulated results for spherical heads are compared to observed behavior on experimental systems.

Introduction

Rotating head recording with stationary or slowly moving
magnetic media first appeared in connection with video
recording and later in digital recording systems, such as
IBM’s 3850 product [1]. Because the rotating head can be
moved at a much higher velocity than a spool of tape,
significantly higher data rates can be achieved with these
systems. However, due to the high relative speed be-
tween head and tape, contact between the two surfaces
could be catastrophic. In order to achieve high reliability
with these high speed systems, it is necessary to have the
head and magnetic medium (tape) separated by an air film
large enough to prevent contact, but small enough to al-
low high density magnetic information to be written onto,
or read from, the medium.

Observations of high speed rotating head systems [2, 3]
have led to the conclusion that the tape response is highly
dynamic and, unless stabilizing mechanisms are pro-
vided, waves in the tape due to the traveling head will
interfere with the head-tape separation (flying height). In
a paper by Bogy, Greenberg, and Talke [4], the dynamic
response of a cylinder subjected to a moving load was
formulated using linear shell theory with the assumption
of inextensibility. While this formulation qualitatively
predicted the wave behavior and critical speed phenome-
non observed in the tape, the inextensibility assumption
(bending without extension) led to a strong dependence in
the solution on physical dimensions and head speed, and
this has not been observed in actual systems. The in-
extensible solution also predicted, for higher speeds,

more disparity between the amplitudes and wavelengths
of the leading and trailing waves than has been reported
[2, 3]. Finally, the model employed in [4] assumed simple
supports at some distance (greater than the mandrel gap
length [3]) in order to approximate the actual boundary
conditions. Since these conditions are not actually met in
rotating head configurations, it is desirable that the solu-
tion be somewhat insensitive to the distance between sup-
ports; however, the inextensible solution in [4] was very
sensitive to this parameter.

In this paper, we reformulate the tape dynamics prob-
lem by removing the inextensibility assumption and then
use the tape deflection in the area immediately above the
recording head, together with the pressure profile ob-
tained from the Reynolds equation, in a foil bearing simu-
lation of the tape-head interface.

Formulation of the tape dynamics [5]

The model for the tape dynamics is the same as that given
in [4], i.e., a circumferentially moving load on a simply
supported cylindrical shell; the system configuration is
shown in Fig. 1(a), and the geometry and loading of the
shell are shown in Fig. 1(b). While simple support bound-
ary conditions are still employed in this model for mathe-
matical convenience, it is expected that the removal of
the inextensibility assumption will also remove the sensi-
tivity to the distance between the supports. The cy-
lindrical shell equations are used to express the dimen-
sionless displacements for steady motion in coordinates
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Figure 1 (a) Rotating head system configuration (taken from
Fig. 5 of Reference [ 1], copyright 1975 by the IEEE; reprinted

with permission). (b) Geometry and loading for the cylindrical
198 shell.
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that move with the load; these can be written in the form
Upe T Vol + V0, T vyw, =0,

Vil T V0, + Uy + W, = 0,

vl T vy, + Wt k(w,,,, + 2w +w

1114 600 d>d>d>d>)

+ (V2 = T/D) wyy — yVw, = q(&, ), M
in which Greek subscripts refer to partial differentiation,
b =¢— Vit/a, & = x/a,

u, v, w¢, ¢) = [h/a’(1 = )@, o, w(x, e, 1],

&, ¢) = qlx, ¢, D/E, V = V/[E/(1 = v*) p]'",

k= h/124a°, D = Eh/(1 — %),

y = ca/{phlE/(1 = v*) p]'*},
vi=0+v)/2,v,=0-v)/2,v,=v-T/D,

where h, a, v, E, and p represent shell thickness, shell
radius, Poisson’s ratio, Young’s modulus, and density,
respectively, while V denotes the speed of the head, ¢ the

coefficient of damping, and T the tension in the circum-
ferential direction.

The solution procedure for calculation of the dis-
placements u, v, and w is similar to that employed in [4];
however, considerable complexity is added by the re-
moval of the inextensibility assumption. Proceeding in a
manner similar to [4], we obtain the formal solution for
radial displacement of the tape,
mma

w(g, ¢) = i i W, (¢ + 2nm) sin

n=—o m=1

¢ @

where ¢ is the distance between assumed simple sup-
ports. Here, W, _ is defined in terms of the Fourier in-
version integral

)

y [ [-v,p* + &y — v, = DA2p" — v\ 010, (p)e ™ dp

8
- —vk [] [p — p})]

=1
(3)
where A = mma/¢, Q, is the Fourier transform of the
mth mode of the applied load, and p”, j = 1, - - -, 8, are
the roots of an 8th order polynomial. The location of
these roots in the p plane together with the appropriate

inversion path is shown in Fig. 2.

In the evaluation of the integral by residue theory, the
proper contour will encircle the roots in the upper half
plane for § < 0 and will encircle the roots in the lower half
plane for # > 0. Since the distance of a root from the
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horizontal axis is an indication of its effective damping in
the solution, it can be seen that roots p>’, p', p® and py’
are the main contributors to the far field dynamic solu- e 52
tion. Also, increased distance from the vertical axis is as- "® e
sociated with shorter wavelengths, so it can be seen, for

the case depicted, that the wavelengths leading the head & @

(8 > 0) are shorter than those trailing the head (6§ < 0). Pm Pin

Fig. 3 shows a root locus in the p plane corresponding to Tnversion
increasing velocity values, and we see that for low veloc- ) ) " path

ity the solution is symmetric about # = 0 and decays rap- "® e

idly in 4. As velocity is increased, the poles above and
below the real axis approach the axis and almost coalesce G) ®)
at a ‘‘critical speed’’ (the poles would exactly coalesce if Y e
the damping coefficient were zero). As the speed in-
creases beyond the critical speed, the wavelengths lead-
ing the head become shorter while those following be-

come longer. Also, above the critical speed the waves
show less tendency to dampen out. Figure 2 Root locations for Fourier inversion integral.

pplane

The wave behavior of the tape and the effect of passing
through the critical speed as given by the solution to Eq.
(2) may be secen from Fig. 4. Figure 4(a) shows the low
speed (subcritical) tape response, and Fig. 4(b) shows the
high speed (supercritical) response for a dome-shaped
pressure distribution over the rotating head. Figure 5 & l

shows capacitance probe traces taken from an actual ro-
Arrows show

tating head device. Comparing Figs. 4 and 5, we see that increasing velocity

both our tape model and the actual deflections display a

static-like behavior at low speed, a critical speed above

which waves exist, and an antisymmetric wave behavior Critical speed y/ \

with slightly shorter wavelengths leading the head than \ N -

trailing the head at high speeds. The deflections calcu- - ﬂ+ Real ’*‘/, p——

lated from this model have been found to agree very well
with observed deflections for both low and high speed K
(see also the actual deflections presented in [2] and [3]).

Thus, we believe that the dynamic shell analysis present-

ed here gives the proper deflections for a wide range of

system configurations and is the appropriate analysis to 7
use in a foil bearing simulation of the rotating head-tape r

interface.

Imaginary
.

Reynolds equation

Considering slip flow due to molecular effects, one may Figure 3 Root locus corresponding to increasing velocity.
write the steady state Reynolds equation for gas-lubri-

cated hydrodynamic bearings [6] in the form

] [ 2 0 } 3 [ 5 aP}
. 2+ 2 o )
b ad a¢ ¢ A = gas bearing number,
P _ _ i X
+ 6m li{Hz a_} . 9 {HZ ili] —A i[PH]. @) H = H(¢, ¢) = the normalized spacing between head and
Ip Lo} & & ap tape, and
In Eq. @), R (X} 5
p/E

m = Knudsen number (ratio of mean free path length
to minimum spacing), where p, = p, + T/a, p, = ambient pressure, and T = 199
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Figure 4 Tape deflection computed from tape dynamics equations: (a) low speed; (b) high speed.

tension. If d(¢, ¢) denotes the position of the head with
respect to the mandrel, then

1
H(¢, ¢) = 0 [w(E, ¢) — d(&, D), (6)

where H_ is the nominal spacing. If we assume a spherical
contour on the recording head, the head position is given
by

dé¢. ¢)=d,+a—r+ (7 - (ag — €/2 — d*¢*]'"
~a[l — ¢"1'*, @)

where d| is the penetration of the center of the head above
the mandrel and r is the radius of curvature of the spheri-
cal head. Other recording head contours can also be used
by either expressing d(£, ¢) analytically or as a matrix of
numerical values.

The numerical solution of the Reynolds equation has
received considerable attention both in its time dependent
form [7] and steady state form [8]. In this paper, the
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steady state Reynolds equation, Eq. (4), is solved by a
relaxation method similar to that described by Michael
[8], and the reader is referred to that paper for a dis-
cussion of the solution procedure.

Coupling

The elastohydrodynamic system describing the inter-
action between the rotating head and flexible tape re-
quires the simultaneous solution of the tape dynamics
equation, which gives the foil deflection for a given pres-
sure distribution, and the Reynolds equation, which gives
the pressure distribution necessary to support a given
spacing. The coupling procedure involves iterating be-
tween the foil deflection calculation and the Reynolds
equation until both systems are satisfied by the same val-
ues of pressure and spacing.

The coupling procedure developed for the computer so-
lution to this system of equations is summarized in the
flow chart of Fig. 6. With P, and H, the pressure and spac-
ing, respectively, after iteration /, then we use H, as input
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Figure § Capacitance probe traces of actual tape deflection: (a) low speed; (b) high speed.

into the Reynolds equation to find the Reynolds pressure
RP,. Convergence is achieved when

> (RP,— P)* < CONV, (8)
all grid points
where CONYV is the convergence factor. For the next it-
eration, we form

P, =P + K(QRP,—- P), €

where K is a relaxation factor, and then use P as the
input into the foil deflection equation to obtain H,, .

To begin execution of the program for a new set of pa-
rameters, an initial pressure must be specified. A dome-
shaped (cosine-like) pressure of magnitude sufficient to
lift the tape over the head provides a convenient point at
which to begin iterating. To save time in the iteration
scheme, the results from a previous solution with similar
parameters may be used to good advantage in the follow-
ing manner:

1. Supply the spacing from the previous solution as in-
put.

2. Calculate (from the Reynolds equation) the pressure
necessary to support this spacing using current param-
eter values.

3. Use the foil deflection equation to calculate the head-
to-tape spacing for this pressure. If this spacing is
everywhere positive (no head crash), use the pressure
from step 2 as the starting pressure; otherwise, modify
the input spacing by decreasing it uniformly (Note: A
lower spacing input to the Reynolds equation will re-
sult in a higher pressure output), and return to step 2.

IBM J. RES. DEVELOP. & VOL. 23 & NO. 2 & MARCH 1979

During program execution, a quantity called the pres-
sure residual is monitored. The pressure residual is de-
fined by

AP, = (RP,— P)*, (10)

and from Eq. (8) it can be seen that AP, < CONV is the
convergence criterion. During execution, the pressure re-
sidual may not be monotonically decreasing, that is, AP, |
may be greater than AP,. This is to be expected during the
early iterations but should be avoided as convergence be-
comes closer. For this reason, a fine tune factor is used

such that if
AP, < TUNE and if AP, > AP,

then the iteration step is not allowed and a new value of
P, is found by a further under-relaxation. That is, the
relaxation factor K in Eq. (9) is reduced, and the iteration
step is repeated.

The iteration scheme developed here works quite well
as long as there is no head crash (negative head-to-tape
spacing). Any method of preventing head crashes is ac-
ceptable; the one used here is an under-relaxation proce-
dure similar to the fine tune method.

Even though the foil deflection equations and the Rey-
nolds equation are solved separately, the coupling al-
gorithm connects them, and the strong interaction of the
two systems requires a small iteration step size (a small
value for the relaxation factor K) in order to achieve con-
verged values of pressure and spacing which satisfy both
systems.
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202 Figure 6 Program flow for rotating head-tape simulator.
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Figure 7 (a) Pressure and (b) spacing for small radius spherical head (19 mm).
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Figure 8 (a) Pressure and (b) spacing for medium radius spherical head (25 mm).
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Figure 9 (a) Pressure and (b) spacing for large radius spherical head (32 mm).

Simulation results and conclusions

Talke and Tseng [9] have presented experimental results
for flying heights of several types of heads, including both
small radius and large radius spherical heads. They con-
cluded that the white light interferometric fringe pattern
of a typical small radius spherical head shows a much
higher spacing gradient in both the axial and the circum-
ferential direction than the corresponding fringe pattern

IBM J. RES. DEVELOP. » VOL. 23 & NO. 2 « MARCH 1979

of a large radius spherical head, i.e., the air bearing be-
comes increasingly more uniform with increasing head
radius.

Contour plots of pressure and spacing as predicted by
the simulator are shown for a small radius head (19 mm)
in Fig. 7, a medium radius head (25 mm) in Fig. 8, and a
large radius head (32 mm) in Fig. 9. From the spacing
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Figure 10 White light interferometric fringe pattern for a spher-
ical head (taken from R. Tseng [11]).

gradients, we see that the experimental findings of Talke
and Tseng [9] are also predicted by the simulator, that is,
the simulation also shows a more uniform bearing surface
with increasing head radius.

Comparing Figs. 7 through 9, other observations con-
cerning the pressure distribution and film thickness be-
tween the tape and rotating head can be made. For all
heads, there is a negative pressure at the trailing portion
of the head followed by a rather steep gradient to a posi-
tive pressure ‘‘spike.’” For small radius heads, the area
covered by the positive pressure is roughly the same as
the area covered by the negative pressure, but the posi-
tive pressure amplitude is considerably larger than the
negative amplitude. For the larger radius heads, the posi-
tive and negative pressure amplitudes become nearly
equal; however, the area covered by the positive pressure
becomes larger than that covered by negative pressure. In
fact, for the 32-mm head there is an extremely large re-
gion of constant positive pressure. The tendency toward
larger regions of constant pressure with increasing head
radius may account for the tendency toward more uni-
form spacing. In addition to the spacing gradients becom-
ing less steep with increasing radius, it is also interesting
to note that the point of minimum spacing moves toward
the trailing portion of the head; this tendency has also
been observed experimentally [10, 11].

H. J. GREENBERG

Quantitative prediction of the flying height is more diffi-
cult since in addition to the head and tape parameters one
must also consider such things as the surface roughness
of the tape and the fact that the tape is not rigidly fixed to
the mandrel, but rather floats on an air film [8]. However,
comparing the interferometric fringe pattern for a spheri-
cal head (Fig. 10), taken from Tseng [11}, with the calcu-
lated fringe pattern shown in Fig. 9, we see that, for simi-
lar parameters, the head-to-tape spacing predicted by the
simulator correlates with the experimentally observed
spacing. In particular, both experimental and calculated
results show fringes of the same shape and size with the
point of minimum spacing at the trailing portion of the
head. The spacing gradients in both directions are the
same for both experimental and calculated results, and
the values of the minimum spacing are within 25% of each
other. The flying heights obtained by this simulator have
been found to be, at worst, of the same order of magni-
tude as those seen experimentally, and the simulator has
also predicted the changes in flying height that accom-
pany various parameter changes.

In general, it has been found that the tape dynamics
equations coupled with the Reynolds equation give re-
sults which agree well with observed behavior for a rotat-
ing spherical head; extensions to other head contours
would only require the appropriate changes in Eq. (7).
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