
H. J. Greenberg 

Study of Head-Tape  Interaction  in  High  Speed  Rotating 
Head  Recording 

The  steady  state  tape  dynamics  resulting  from  the  interaction of a  high  speed  rotating  head  and  ajlexible recording tape 
are  formulated within the  framework of linear shell theory.  Tape  displacements  in  the  area  above  the  head  are  coupled 
with the  solution  to  the  Reynolds  equation  in order to  calculate  theJilm  thickness  flying  height)  between  head  and  tape. 
Simulated  results  for  spherical  heads  are  compared  to  observed  behavior on experimental  systems. 

Introduction 
Rotating  head  recording with stationary  or slowly moving 
magnetic  media first appeared in connection with video 
recording  and later in digital recording systems,  such  as 
IBM’s 3850 product [I]. Because  the rotating  head can be 
moved at a much higher velocity  than  a  spool of tape, 
significantly higher data  rates  can be  achieved with these 
systems.  However,  due  to  the high relative speed be- 
tween  head and  tape,  contact  between  the two surfaces 
could be catastrophic.  In  order  to  achieve high reliability 
with these high speed systems,  it is necessary  to  have  the 
head  and  magnetic medium (tape)  separated by an  air film 
large enough to  prevent  contact,  but small enough to al- 
low high density magnetic information to be  written onto, 
or  read  from,  the medium. 

Observations of high speed  rotating  head systems [2,3] 
have led to  the conclusion that  the  tape response is highly 
dynamic  and, unless stabilizing mechanisms are  pro- 
vided,  waves in the tape due  to  the traveling head will 
interfere with the head-tape separation (flying height). In 
a paper by Bogy, Greenberg,  and  Talke [4], the dynamic 
response of a  cylinder subjected to a moving load was 
formulated using linear shell theory with the assumption 
of inextensibility. While this  formulation  qualitatively 
predicted  the  wave behavior and critical  speed  phenome- 
non observed in the  tape,  the inextensibility  assumption 
(bending  without  extension) led to a strong  dependence in 
the solution on physical  dimensions and head speed, and 
this has not  been observed in actual  systems.  The in- 
extensible solution  also predicted,  for higher speeds, 

more  disparity  between the  amplitudes  and wavelengths 
of the leading and trailing waves  than  has been reported 
[ 2 ,  31. Finally, the model employed in [4] assumed  simple 
supports  at  some distance (greater than  the  mandrel gap 
length [3]) in order  to  approximate  the actual boundary 
conditions. Since  these conditions are not actually  met in 
rotating  head  configurations, it is desirable  that the solu- 
tion be somewhat insensitive to  the  distance  between  sup- 
ports;  however,  the inextensible  solution in [4] was very 
sensitive to this parameter. 

In this paper, we reformulate the  tape dynamics  prob- 
lem by removing the inextensibility  assumption and  then 
use the  tape deflection in the  area immediately above  the 
recording head, together  with the  pressure profile ob- 
tained  from the Reynolds equation, in a foil bearing simu- 
lation of the tape-head interface. 

Formulation of the  tape  dynamics 151 
The model for  the tape  dynamics is the  same  as  that given 
in [4], i.e., a circumferentially moving load on a simply 
supported cylindrical  shell; the  system configuration is 
shown in Fig. l(a), and the  geometry and loading of the 
shell are  shown in Fig. l(b). While simple support  bound- 
ary conditions are still employed in this model for mathe- 
matical convenience, it is expected  that  the removal of 
the inextensibility  assumption will also remove the sensi- 
tivity to  the  distance  between  the  supports.  The  cy- 
lindrical shell equations  are used to  express  the dimen- 
sionless  displacements for  steady motion  in coordinates 
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Figure 1 (a) Rotating  head  system  configuration  (taken  from 
Fig. 5 of Reference [I ] ,  copyright 1975 by the IEEE; reprinted 
with permission). (b) Geometry  and  loading for the  cylindrical 
shell. 

that move with the  load;  these  can  be written in the  form 

Ute + v2u** + vlut* + VTW* = 0 ,  

v,ut* + v2utt + V@* + w* = 0, 

' T u g  + "@ + + k(WtS& + 2wCC** + W@@$m) 

+ (vz - T / D )  wm,, - Y V W ,  1 d 5 ,  41, (1) 

in which Greek  subscripts refer to partial  differentiation, 

4 = $0 - Vt/a,  [ = x / u ,  

11, u ,  ~ ( 5 ,  4) [h/02(1 - v2)l[U, 6, @ ( X ,  cp, t ) l ,  

d 5 ,  4) Cl.(x, cp, 4 / E ,  v = V / [ E / ( l  - v2)  p l l i2 ,  

k = h2/12a2, D Eh/(l - v2) ,  

y = ca/{ph[E/(I  - v2) p y } ,  

v 1  = ( 1  + v ) /2 ,   v2  = ( I  - v ) / 2 ,  vT = v - T / D ,  

where h ,  a ,  V ,  E ,  and p represent shell thickness, shell 
radius,  Poisson's  ratio, Young's modulus, and density, 
respectively, while V denotes  the  speed of the  head, c the 
coefficient of damping,  and T the tension in the circum- 
ferential  direction. 

The solution  procedure for calculation of the dis- 
placements u ,  u ,  and w is similar to  that employed  in [4]; 
however, considerable  complexity is added by the  re- 
moval of the inextensibility assumption. Proceeding in a 
manner similar to [4], we obtain  the formal  solution  for 
radial  displacement of the  tape, 

~ ( 5 ,  $1 = 1 1 wm(+ + 2 n r )  sin ~ 5, (2)  

where f is the distance between assumed simple sup- 
ports.  Here, W ,  is defined in terms of the  Fourier in- 
version integral 

m a  mrra 
e n="m m=, 

1 
2rr 

Wm(0) = - 

X [ m  
[-v2p4 + (vf - vi - l)Aip2 - v2A~]Qm(p)e"P8dp 

R 

j=1 

(3 

where A m  = m?ra/f ,  Q, is the  Fourier transform of the 
mth mode of the applied load,  and p: ,  j = I ,  . . ., 8, are 
the roots of an  8th  order polynomial. The location of 
these  roots in the p plane together with the  appropriate 
inversion path is shown in Fig. 2. 

In  the evaluation of the integral by residue theory,  the 
proper  contour will encircle the  roots in the  upper half 
plane for 0 < 0 and will encircle the  roots in the lower half 
plane for 0 > 0. Since the  distance of a root from  the 
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horizontal  axis is an indication of its effective damping in 
the  solution, it can be seen  that  roots p:, p:’, p:, and p: 
are  the main contributors  to  the  far field dynamic solu- 
tion. Also, increased distance  from  the vertical  axis is as- 
sociated with shorter wavelengths, so it can be seen, for 
the  case  depicted,  that  the wavelengths leading the head 
(0 > 0) are  shorter than those trailing the head (0 < 0). 
Fig. 3 shows a  root  locus in the p plane  corresponding to 
increasing  velocity values,  and we see  that  for low veloc- 
ity the  solution is symmetric about 0 = 0 and decays rap- 
idly  in 0.  As velocity is increased,  the poles above and 
below the real  axis approach  the  axis and almost  coalesce 
at a “critical  speed” (the  poles would exactly coalesce if 
the damping coefficient were zero). As the speed in- 
creases beyond the critical speed,  the wavelengths  lead- 
ing the head  become shorter while those following be- 
come longer. Also, above  the critical  speed the waves 
show  less  tendency to dampen out. 

The  wave behavior of the tape  and  the effect of passing 
through the critical  speed as given by the solution to Eq. 
(2 )  may be  seen  from Fig. 4. Figure 4(a) shows  the low 
speed (subcritical)  tape response, and Fig. 4(b) shows  the 
high speed (supercritical) response  for a  dome-shaped 
pressure distribution over  the rotating head. Figure 5 
shows capacitance  probe  traces  taken from an  actual ro- 
tating  head  device.  Comparing  Figs.  4  and 5 ,  we see  that 
both our tape model and  the actual deflections  display  a 
static-like  behavior at low speed, a  critical  speed above 
which waves  exist, and an antisymmetric wave behavior 
with slightly shorter wavelengths leading the head  than 
trailing the head at high speeds.  The deflections calcu- 
lated from this model have  been found  to agree  very well 
with observed deflections for  both low and high speed 
(see  also  the  actual deflections presented in [2] and [ 3 ] ) .  
Thus, we believe that the  dynamic shell analysis present- 
ed  here gives the  proper deflections for a wide range of 
system configurations and is the  appropriate analysis to 
use in a foil bearing simulation of the rotating head-tape 
interface. 

Reynolds equation 
Considering slip flow due  to molecular  effects, one may 
write the  steady  state Reynolds  equation for gas-lubri- 
cated hydrodynamic  bearings [6] in the form 

In Eq. (41, 

m = Knudsen number (ratio of mean  free path length 
to minimum spacing), 

I 11 plane 

Figure 2 Root  locations for Fourier inversion  integral. 

Arrows  show \ 
increasing vclocity 

Figure 3 Root locus corresponding to increasing  velocity. 

A = gas bearing number, 

H = H ( [ ,  4) = the normalized spacing  between  head  and 
tape, and 

where p ,  = pa + T / a ,  pa = ambient  pressure, and T = 199 
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Figure 4 Tape deflection computed from tape dynamics equations: (a) low speed; (b) high speed. 

tension. If d( [ ,  4) denotes  the position of the head  with 
respect to  the mandrel, then 

H([,  4) = - [w(E, 4) - 4 5 ,  411, (6) 

where H,, is  the nominal spacing. If we assume a spherical 
contour  on  the recording head,  the head  position is given 

1 

Hn 

by 

d((, 4) = do + a - + [? - (a[ - e/2)' - u242]112 

- a[l - 42]1/2, (7) 

where do is the penetration of the  center of the head above 
the mandrel and Y is the  radius of curvature of the spheri- 
cal  head. Other recording  head contours  can also be  used 
by either  expressing d( [ ,  4) analytically or  as a matrix of 
numerical  values. 

The numerical  solution of the Reynolds equation  has 
received  considerable attention  both in its time dependent 
form [7] and  steady  state  form [8]. In this paper,  the 200 
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steady state Reynolds equation,  Eq. (4), is solved by a 
relaxation  method similar to  that described by Michael 
[SI, and  the  reader is referred to  that paper for a dis- 
cussion of the solution procedure. 

Coupling 
The elastohydrodynamic system describing the  inter- 
action between  the rotating  head and flexible tape re- 
quires the simultaneous  solution of the  tape dynamics 
equation, which gives the foil deflection for a given pres- 
sure  distribution, and the  Reynolds  equation, which gives 
the  pressure distribution necessary  to  support a  given 
spacing. The coupling procedure involves  iterating  be- 
tween the foil deflection calculation and  the Reynolds 
equation  until both  systems  are satisfied by the  same val- 
ues of pressure and  spacing. 

The coupling procedure  developed  for  the  computer so- 
lution to this system of equations is summarized in the 
flow chart of Fig. 6. With Pi and Hi the  pressure  and  spac- 
ing, respectively,  after iteration i, then  we use Hi as  input 
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Figure 5 Capacitance probe traces of actual tape deflection: (a) low speed; (b) high speed. 

into the Reynolds  equation to find the Reynolds pressure 
RP,.  Convergence is achieved  when 

2 (RP,  - Pi)' < CONV,  
all grid points 

where CONV is the convergence factor.  For  the  next it- 
eration, we form 

Pi+, = Pi + K(RP,  - Pi),  (9) 

where K is a  relaxation factor, and  then  use Pi+l  as  the 
input into  the foil deflection equation  to obtain H i + , .  

To begin execution of the  program for a new set of pa- 
rameters, an initial pressure must  be specified. A dome- 
shaped  (cosine-like) pressure of magnitude sufficient to 
lift the  tape  over  the head provides a convenient  point at 
which to begin iterating. To  save time in the iteration 
scheme,  the results from a previous solution with similar 
parameters may be  used to good advantage in the follow- 
ing manner: 

1 .  Supply the spacing from the previous  solution as in- 
put. 

2 .  Calculate  (from the Reynolds equation)  the  pressure 
necessary  to  support this spacing using current param- 
eter  values. 

3 .  Use  the foil deflection equation  to calculate the head- 
to-tape spacing for this pressure. If this  spacing is 
everywhere positive  (no  head crash), use the  pressure 
from step 2 as  the starting pressure;  otherwise, modify 
the input  spacing by decreasing it uniformly (Note: A 
lower  spacing  input to the  Reynolds  equation will re- 
sult in a higher pressure  output),  and return to  step 2. 

During program execution, a quantity called the  pres- 
sure residual is monitored. The  pressure residual is de- 
fined  by 

APi = (RP,  - Pi)', (10) 

and  from Eq. (8) it can  be seen  that AP, < CONV is the 
convergence  criterion. During execution,  the  pressure  re- 
sidual may not be monotonically decreasing,  that  is, 
may be greater than AP,. This is  to be expected during the 
early iterations but should be  avoided as convergence be- 
comes  closer.  For this reason, a fine tune  factor is used 
such that if 

AP, < TUNE and if AP,+l > APi,  

then the iteration step is not allowed  and  a new value of 
Pi+l is found by a further under-relaxation. That  is,  the 
relaxation factor K in Eq. (9) is reduced,  and the iteration 
step is repeated. 

The iteration scheme developed here  works quite well 
as long as  there is no head crash (negative  head-to-tape 
spacing). Any method of preventing  head crashes is ac- 
ceptable; the  one used here is an under-relaxation  proce- 
dure similar to  the fine tune  method. 

Even though the foil deflection equations  and  the Rey- 
nolds equation are solved separately,  the coupling al- 
gorithm connects  them, and  the  strong  interaction of the 
two  systems requires a small iteration step size (a small 
value for  the relaxation factor K )  in order  to  achieve  con- 
verged values of pressure and spacing which satisfy  both 
systems. 201 
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Figure 7 (a) Pressure and (b) spacing for small  radius  spherical  head (19 mm). 

Figure 8 (a) Pressure and (b) spacing  for  medium  radius  spherical  head (25 mm). 

I I 

Figure 9 (a) Pressure and (b) spacing for large  radius spherical head (32 mm). 

Simulation results and conclusions of a large radius  spherical head,  i.e.,  the  air bearing be- 
Talke  and  Tseng [9] have  presented  experimental  results  comes increasingly  more uniform with increasing  head 
for flying heights of several  types of heads, including both radius. 
small radius and large  radius  spherical heads.  They con- 
cluded that  the white light interferometric  fringe pattern  Contour plots of pressure  and spacing as predicted by 
of a  typical small radius  spherical  head shows a much the  simulator are  shown  for a small radius  head (19 mm) 
higher spacing gradient in both the axial and  the circum- in Fig. 7 ,  a medium radius  head (25 mm) in Fig. 8, and  a 
ferential  direction than  the corresponding fringe pattern large radius head (32 mm) in Fig. 9. From  the spacing 203 
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Figure 10 White light interferometric  fringe  pattern for a spher- 
ical  head (taken from  R.  Tseng [ 1 I ] ) .  

gradients, we  see  that  the experimental findings of Talke 
and Tseng [9] are  also predicted by the simulator,  that  is, 
the simulation also  shows a  more uniform bearing  surface 
with increasing  head radius. 

Comparing Figs. 7 through 9,  other  observations con- 
cerning the  pressure distribution  and film thickness be- 
tween the  tape  and rotating  head can be made.  For all 
heads, there is a  negative pressure  at  the trailing portion 
of the head followed by a rather  steep  gradient  to a  posi- 
tive pressure  “spike.”  For small radius heads, the area 
covered by the positive pressure is roughly the same as 
the  area  covered by the negative pressure, but the posi- 
tive pressure  amplitude is considerably  larger  than the 
negative amplitude. For  the larger radius heads,  the posi- 
tive and negative pressure amplitudes become nearly 
equal;  however,  the  area covered by the positive pressure 
becomes  larger  than that covered by negative pressure. In 
fact,  for  the 32-mm head there is an  extremely large  re- 
gion of constant positive pressure.  The  tendency toward 
larger regions of constant  pressure with  increasing  head 
radius may account  for  the  tendency  toward more  uni- 
form  spacing. In addition to  the spacing  gradients  becom- 
ing less steep with  increasing radius, it is also interesting 
to note that  the  point of minimum spacing  moves  toward 
the trailing portion of the  head; this tendency has  also 

204 been observed experimentally [ 10, 111. 
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Quantitative  prediction of the flying height is more diffi- 
cult since in addition to  the head and  tape  parameters  one 
must also consider  such things as  the  surface roughness 
of the tape and  the  fact  that  the  tape is not rigidly fixed to 
the mandrel, but  rather floats on  an  air film  [8]. However, 
comparing the interferometric fringe pattern  for a spheri- 
cal head  (Fig. lo), taken from  Tseng [ 111, with the calcu- 
lated fringe pattern  shown in Fig. 9, we see  that,  for simi- 
lar parameters,  the head-to-tape  spacing  predicted by the 
simulator correlates with the experimentally observed 
spacing. In particular,  both experimental and calculated 
results  show  fringes of the  same  shape and  size with the 
point of minimum spacing at  the trailing portion of the 
head. The spacing  gradients in both directions are  the 
same  for  both  experimental and calculated results,  and 
the  values of the minimum spacing are within 25% of each 
other.  The flying heights  obtained by this  simulator have 
been found to  be,  at  worst, of the  same  order of magni- 
tude as  those  seen experimentally,  and the simulator  has 
also  predicted the  changes in  flying height that accom- 
pany  various parameter changes. 

In general, it has been  found that  the  tape dynamics 
equations  coupled with the Reynolds equation give  re- 
sults which agree well with observed  behavior  for a rotat- 
ing spherical head; extensions to  other head contours 
would only require  the  appropriate  changes in Eq. (7). 

Acknowledgments 
The coupling procedure used in this  simulator  was  devel- 
oped  jointly with S.  Vogel. The  author  also  thanks W. 
Langlois for  the  use of several  routines relating to  the so- 
lution of the  Reynolds  equation.  The many helpful sug- 
gestions of D. Bogy, F. Talke, and R. Tseng  throughout 
the  course of the project are  also gratefully acknowl- 
edged. 

References and notes 
1. J. P. Harris, R. S. Rohde, and N. K. Arter, “The IBM 3850 

Mass  Storage System: Design Aspects,” Proc.  ZEEE 63, No. 

2. N. A. Feliss and F. E. Talke,  “Capacitance Probe Study of 
Rotating-HeadiTape  Interface,” IBM J .  Res .   Deve lop .  21, 
289-293 (1977). 

3. D.  M. Albrecht, E. G. Laenen, and  Chua Lin, “Experiments 
on  the  Dynamic  Response of a Flexible  Strip  to Moving 
Loads,” IBM J .  Res .   Deve lop .  21, 379-383 (1977). 

4. D. B. Bogy, H. J.  Greenberg,  and F. E. Talke,  “Steady So- 
lution for Circumferentially  Moving  Loads  on  Cylindrical 
Shells,” ZBM J .  Res.   Develop.  18, 395-400 (1974). 

5.  The  results in this  section  are  taken  from  an  IBM  Research 
Report by D. B. Bogy, H. J .  Greenberg,  and F. E. Talke. 

6. A. Burgdorfer,  “The  Influence of the  Molecular  Mean-Free 
Path on  the  Performance of Hydrodynamic  Gas  Lubricated 
Bearings,” Trans. A S M E  Part  D ( J .  Basic  Engineering) 81, 
94-100 (1959). 

7. K. J. Stahl, J. W. White,  and K. L. Deckert,  “Dynamic  Re- 
sponse of Self-acting  Foil  Bearings,” IBM 1. Res.   Develop.  
18, 513-520 (1974). 

8, 1171-1176 (1975). 

IBM J .  RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 



8. W. A. Michael, “A  Gas Film Lubrication Study Part 11: Nu- Received April 7 ,  1978; revised  August 18, 1978 
merical  Solution of the Reynolds Equation for Finite  Slider 
Bearings,” IBM J .  Res.  Develop. 3, 256-259 (1959). 

9. F. E. Talke  and  R. C. Tseng,  “Submicron  Transducer  Spac- 
ings in Rotating HeadTape  Interfaces,” IEEE Trans. Mag- 
netics MAG-12, 725-727 (1976). 

10. N. A. Feliss,  unpublished  experimental data, July 1974; IBM 
Research Division laboratory, 5600 Cottle  Road,  San  Jose, 

IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 

205 

H. J. GREENBERG 


