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Variance  Reduction  Techniques  for  the  Simulation of 
Markov  Processes, I: Multiple  Estimates 

A method  for  reducing  the  variance  of  simulation-generated  estimates is proposed  and  discussed.  The  method  may he 
applied  to  the  estimation  of  steady  state  parameters  of  discrete  and  continuous  time  Markov  chuins,  semi-Markov  pro- 
cesses,  und  regenerative  discrete  time  Markov  processes  on a general  state  spuce  (such  as  the  waiting  time  process in a 
multiple-server  queue).  The  method is similar  to  the  technique  of  control  variables,  hut  differs in thut  the  means  of  the 
controls  need  not  he  explicitly  known.  Numerical  results for  a variety  of  simple  queueing  models  are  presented. 

1. Introduction and summary 
In recent years  computer simulation has become  a  very 
important  tool for analyzing the behavior of stochastic 
processes. As the  structures of widely used processes be- 
come increasingly complex, analytic results become  more 
difficult to  obtain.  Frequently simulation is the only  com- 
putationally  feasible  method to  study a process. 

Unfortunately  simulation can be  a very expensive  tool 
to use.  It is therefore desirable to  develop methods that 
can reduce the run  lengths  (and hence  cost) of simulation 
without a decrease in the  accuracy of estimates.  Such 
methods are called  variance  reduction techniques. This 
paper will propose  and  test a new variance reduction 
technique for  the special case when the  stochastic  pro- 
cess being simulated is a Markov process. A subsequent 
paper will describe  several  other related techniques appli- 
cable  when the  Markov  process  has a finite state  space. 

As an  example of how expensive simulations can  be, 
consider  estimating via simulation E[W], the  expected 
stationary waiting time in an M/M/I queue.  The M/M/I 
queue is not  something that  one would ordinarily simulate 
since  analytic results  for it are readily  available.  How- 
ever,  despite  its simplicity the waiting  time process  for 
this queue  can be a very expensive  process  to simulate.  It 
is therefore a good candidate  for testing  simulation  meth- 
odologies. Let p be the usual traftic intensity of the  queue 
and let wN be the average of the first N waiting times.  It is 

known that i fp  < 1 (see  Crane  and Iglehart [l] or Iglehart 
[ 2 ] ) ,  then vN has  an asymptotically  normal  distribution 
with mean E[ W] and variance r 2 / N  for  some  constant u2 
(0 < r2 < m). The  variance term r 2 / N  includes the effect 
of correlation between  the waiting times.  From this  cen- 
tral limit theorem confidence intervals  for E[W] may be 
formed. 

A major problem faced by simulators is how long to run 
a  simulation.  One  possible  stopping criterion is to run the 
simulation until the half length of a confidence  interval is 
some  prespecified  fraction of the  quantity  to be  esti- 
mated. Table 1 provides  an indication of the run  lengths 
needed for  the M/M/I queue when such a stopping rule is 
used.  It is  seen  that  as p increases (beyond p = 0.3), the 
required  run  lengths increase rapidly  until for large values 
of p one must  simulate such  an  enormous number of cus- 
tomers  to  obtain  “decent”  estimates  that simulation is no 
longer  a  feasible alternative.  It is run  lengths such  as 
these  that variance reduction  techniques  are designed to 
shorten. 

One of the most  effective variance reduction tech- 
niques is that of control variables. A good  introduction to 
this  technique is given in Gaver  and  Thompson [3]. Re- 
cent studies involving control variables may be  found in 
Carson [4], Gaver  and  Shedler [5 ] ,  Iglehart  and Lewis [6], 
Lavenberg [7] ,  Lavenberg, Moeller, and  Sauer [8], Lav- 
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enberg, Moeller, and Welch [9, lo], Lavenberg and  Shed- 
ler [l I], and Lavenberg and Welch [12]. Since  the tech- 
nique about  to be proposed is closely related  to this 
method, we now present a brief outline of control vari- 
ables  before  proceeding. Let {X,,  n 2 0) be a sequence of 
independent and identically distributed (i.i.d.) random 
variables with unknown mean r = E[X,]. We shall be in- 
terested in estimating r via simulation. Let {C,, n 2 0} be 
another  sequence of i.i.d.  random  variables  with  known 
mean rc and  assume  that X ,  and C,  are  correlated (usually 
achieved by simulating X ,  and C, with the  same random 
number streams).  Let /3 be  some constant  and  set Z,(p) = 

X, + p(C, - rc).  Then {Z ,@) ,  n 2 0} are i.i.d.  with mean r 
and  variance  which will be denoted by (~ ' (p ) .  Defining 

v 

Z,@) = x Z,(P)/N, 
n=1 

by the strong law of large  numbers 

lim Z,Jp) = r almost surely (a.s.1, 

and by the  central limit theorem 

N-m 

d W , ( L o  - 4 3 N(0,  1) as N + m. 

Here + denotes weak  convergence or convergence in 
distribution (see Billingsley [13]) and N(0,  1 )  is a normally 
distributed  random  variable with mean 0 and variance 1 .  
The choice /3 = 0 corresponds  to straightforward simula- 
tion and (~'(0) = var ( X n ) .  We now pick p = p* to mini- 
mize the variance  term ( ~ ' ( p ) .  It is easy  to  show  that 

p* = "cov (X,,  C,)/var (C,), 

(T'(P*) = [ I  - P'W,, c,)] var (X,) ,  

PI 

where p ( X , ,  C,) is the coefficient of correlation between 
X, and C,. Since 0 5 p'(X,, C,) 5 1 ,  a reduction in vari- 
ance has  been obtained and we  are  thus able to form 
shorter confidence  intervals for r .  C, is called  a  control 
variable for X, .  The method can be extended  to allow 
multiple controls  (see [8]). 

The key things to  observe  about this  method are  that rc 
= E[C,] must  be known  and  that X ,  and  C, must be highly 
correlated to  get large  variance reductions. It is often 
very difficult to  devise good controls, particularly if the 
stochastic process being simulated is quite complicated. 
The method to be proposed in this paper  circumvents this 
difficulty by devising controls which will usually be highly 
correlated with the  process of interest  and  for which the 
means of the controls need not be explicitly known. The 
reason for this is that  the  controls  are  chosen in such a 
way that their means actually equal  the  parameter of in- 
terest. 
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Table 1 Sample sizes for the M/M/I queue. 

P E[WI U N 2 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 
0.99 

0.111 
0.250 
0.429 
0.667 
1 .oo 
1.50 
2.33 
4.00 
9.00 

19.0 
99.0 

0.375 
1.39 
3 .% 
10.6 
290 

88.5 
335 

1,976 
35,901 

607,600 
3.95 x IO8 

~ 

8,200 
6,020 
5,830 
6,430 
7,850 

10,600 
16,700 
33,400 

119,000 
455,000 

1.09 X IO' 

N = Number of customers that must be simulated for a 90% confidence interval for 

A = arrival rate; p = Alp; E[W = A/& - A). 
E[W to have a halflength ofO.lOE[W = (1.645v/0.l0E[~)"*; p = service rate = 1; 

We shall restrict  ourselves  to studying controls  for 
functionals of the  stationary distribution of irreducible, 
aperiodic,  positive recurrent Markov chains.  The method 
may be extended  to  continuous time  Markov chains, 
semi-Markov processes,  and regenerative discrete  time 
Markov processes  on a general state  space  such  as  the 
waiting time process in multiple server  queues in light 
traffic. In Section 2 we introduce  notation and  state pre- 
liminary results  for Markov chains upon  which the tech- 
nique is based.  Section 3 contains a description and dis- 
cussion of the  variance reduction technique. Numerical 
examples taken  from queueing theory which demonstrate 
the use of the  method  are  presented in Section 4. 

2. Markov chains 
Let X = {X,,  n 2 0} be an irreducible, aperiodic, positive 
recurrent Markov chain with state  space E = {0,  1 ,  2, 
. . .}, transition matrix P = { p i j  : i ,  j E E} and initial distri- 
bution p = {pi : i E E} (see Chung [ 141 for  the definitions 
of these  terms  and a  more  detailed analysis of Markov 
chains).  It is well known  that  there  then  exists a probabil- 
ity distribution rr = {rri : i E E} on E and a  random vari- 
able X ,  having distribution rr, such  that Xn j X for  any 
initial distribution p. If P" = { p ;  : i , j  E E} is the matrix of 
n-step  transition  probabilities, then 

for all i and j in E.  The  stationary distribution of X is rr and 
it satisfies the  stationary  equations rr = rrP, which may be 
written componentwise  as 

Let f be a  real-valued  function on E and  set 

(2) 
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We shall be interested in finding r for  the given  functionf. 
To  do so we could solve  the  stationary  equations ( I )  and 
then  apply (2), but if the  state  space is very large (and in 
many interesting cases it is infinite) these  equations may 
be  quite difficult to  solve numerically. In this case it be- 
comes necessary to  estimate r via  simulation. It is the effi- 
cient  estimation of such quantities that is our concern. 

The regenerative structure of Markov  chains will be ex- 
ploited by the  variance reduction technique. This struc- 
ture is now outlined (see Crane and Iglehart [I51 or [I61 
for a  more complete discussion). Since  the method re- 
quires the  use of a multidimensional central limit theo- 
rem, results will be stated  for  the multidimensional case. 

For some  (typically small) integer k letfv, u = 0, . . ., k 
be real-valued functions on E and let ry = rf”. Pick some 
state in E ,  say 0, called the return state.  Set X ,  = 0 and To 
= 0. Define 

T ,  = inf{n > Tm-l : X, = 0} rn 2 1 ,  

and  let T, = T,  - T,-,. Because X is positive recurrent, 
X n  = 0 infinitely often, E[T,] < 00, T,  < m, and T,  in- 
creases  to m as rn -+ a. Notice  that T,  is  the rnth time the 
process enters  state 0. The process is said to be in the rnth 
cycle  between  times T,-l and T, - 1 and  the length of the 
rnth cycle is 7,. The  process  “regenerates” itself at  each 
time T,; i .e. ,  { X n ,  n 2 T,} has  the same  distribution as 
{ Xn,  n 2 0) and  furthermore is independent of {X,, n < T,}. 
A consequence of this is that  the behavior of X during  a 
cycle  has the  same distribution and is independent of the 
behavior of X during any other  cycle.  The importance of 
this in a  simulation context is that  for  such a process a 
single simulation run can be broken up into randomly 
spaced i.i.d. blocks, or cycles. This  allows the use of clas- 
sical statistical techniques in analyzing the  output of the 
simulation. Define 

Y,(v) = 1 f,(~,) rn 2 1, 
T,- 1 

n=T,,-, v = o , . . .  , k.  

Then, by the  regenerative  property, {(T,, Ym(0),  . . ., 
Ym(k)) ,  rn 2 1) is a sequence of i.i.d. random vectors. De- 
fine 

iv(N = 2 f,(Xn)/N + 1 ,  
N 

n=o 
M 

m=1 /j1 7 m .  
i”(W = 1 Y m ( 4  

The following proposition,  the proof of which may be 
found in [16], shows how point estimates  for r,, may be 
found. 572 
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M-m 
lim iY(W = ry a.s. 

Notice  that iU(iV) estimates ry based  on a simulation  run 
of N transitions, whereas iy(M) estimates ru based on M 
cycles. 

We now turn  to  the formation of confidence  intervals 
for ru. Let 

Zm(v)  = Y,(u) - r,r, m 2 1, 

u = 0 ,  . . ., k.  

By (3) ,  E[Z,(u)] = 0. Let 

u” = E[Z,(i)Z,(j)] 0 i ,  j I k ,  

X, = {u” : 0 5 i , j  5 k} and u: = uii. We will assume  that 

E [(y n=O lf;.(Xn)lj;?] < m9 (4) 

E[T:] < 00, and (5 )  

Z, is positive  definite. (6) 

The elements of X, exist and are finite by (4) and (5). In 
general Z, will be positive  semidefinite; we  assume (6) 
because  the variance reduction technique  requires  the ex- 
istence of X i 1 .  In  most simulations these  assumptions will 
not  be  a  restriction. 

Let N(0, A) denote a  random vector having the multi- 
variate  normal  distribution with means 0 and  covariance 
matrix A = {aiJ. Let A’ denote  the  transpose of A and for 
any a # 0 let Ala be the matrix  with elements a,/a. Let 
i(N), i(M) and r be (k  + 1)-dimensional  column vectors 
with uth entries i V ( N ) ,  ?”(AI), and rv, respectively.  The 
following multidimensional central limit theorems  are a 
direct consequence of the i.i.d. structure of cycles. 

0 Proposition 2 
If rlf,l < m for v = 0 ,  . . ., k and if (4), (5) and (6) hold, 
then 

v‘WS(~V) - r) 3 N(O, X ~ / E [ T ~ I )  as N -+ m, 

fi(i(M) - r) 3 N(0, Z , / E [ T ~ ] * )  as M -+ m. (7) 

proof Apply the CramCr-Wold device described  on 
page 48 of [I31 to the one-dimensional central limit theo- 
rem given in [I61 to yield the multidimensional central 
limit theorem. 0 
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Now let /3 be a ( k  + 1)-dimensional row vector.  The 
following proposition is a corollary to Proposition 2. 

Proposition 3 
k k  

Let a:(~) = PZ,P’ = 1 2 P(i)  w,P(~) .  
i=o j-0 

Under  the hypotheses of Proposition 2 ,  

Note  that,  for  example, 
k 

Pr = 1 P(4r ” .  
“ = O  

In a simulation the  covariance matrix 2, is usually un- 
known  and  must be  estimated.  In addition P may be un- 
known (as is usually  the case in control variable 
schemes).  However,  the  central limit theorems in (8) re- 
main valid if E[T,], x,, and p are replaced by any  strongly 
consistent estimates  (see Heidelberger [17]). By setting 
P(v)  = 0 for v # i and P( i )  = 1, central limit theorems  for 
individual r;s are  obtained from (8). Confidence  intervals 
for ri can then  be formed based on  this  central limit theo- 
rem. While the  regenerative method was described  here 
for discrete  time Markov  chains, analogous results hold 
true  for  continuous  time Markov chains, semi-Markov 
processes, and  regenerative discrete time  Markov pro- 
cesses  on a general  state  space. 

3. Variance  reduction  techniques 
In this  section we apply  the  results of Section 2 and take 
further  advantage of the  structure of Markov  chains to 
obtain  variance reductions.  Let f now  be a fixed real-val- 
ued  function on E and  as before  let r = n-f. Our goal is to 
obtain both point estimates and “short” confidence  inter- 
vals for r. This will be  achieved by forming several esti- 
mates for r and then taking the  (asymptotic) minimum 
variance linear combination of these  estimates which is 
strongly consistent. In order  to  form  these multiple esti- 
mates  some  additional  calculations  must be done both be- 
fore  and during the simulation, but hopefully their  cost 
will not  be so great  as  to prohibit the  use of this  method. 

The multiple estimates  for rare formed by defining new 
functions f, on E so that n-f” = r for  each value of v. The 
values of v for which this is done will typically be small 
and labeled by {0, 1 ,  . . ., k } .  Once the&,’s have been  com- 
puted the  process is simulated for,  say, M cycles. Define 
Ym(v), T ~ ,  and tv(M) as in Section 2. Since, assuming 
Tlf,l < ~, Py(M) ”+ E[Ym(v)I/E[~,1 = rfv = r ,  each F y ( M )  

IBM J.  RES. DEVELOP. VOL. 24 NO. 5 SEPTEMBER 1980 

is a strongly consistent  estimator  for r so that  any  one of 
them  could  be  used to estimate r. Actually we  can  do sig- 
nificantly better  than  that by using { F 0 ( M ) ,  . . ., ik(M)j si- 
multaneously to  estimate r.  If {P(v)  : v = 0 ,  . . ., k} are 
any constants so that 

then FJM) + r a s .  as M ”-3 00. The values of P(v) are 
then  chosen  to minimize the asymptotic  variance of 
i s (M) .  Details of the  choice of the P(v)’s  will be presented 
later. 

We now turn  to  the selection of the  functions f,. In this 
paper we will concentrate  on only one (actually the sim- 
plest) way to  choose  the f,’s. In a subsequent  paper we 
will study alternate  methods of choosing the f,’s in the 
case when the  state  space is finite. 

As our  current  choice of fv, let f, = P“f, for v = 0, . . ., 
k ,  so that 

Recall that P” is the v-step  transition  matrix of the  pro- 
cess. If, as  before, r,, = n-fv, then we must show  that  ry = r 
for  each value of v. Under  the  assumption  that n - 1  f I < 00 

(see [17]), we have 

rv = n-f” = n-(P”f) 

= n-P(P””J) (assumption  allows  interchange) 

= T ( P ” - ~ )  (since TP = n-) 

- Tf”_, = Tu-,’ 
- 

so all the Tu’s are  equal. Noting that& = Pof = f, then n-& 
= rf = r ,  and so rv = r for all v. 

We now return  to  the minimization of the asymptotic 
variance of the  estimator t&M) defined in Eq. (IO). By 
Proposition 3 the following central limit theorem holds: 

where u,,(P) is defined in Proposition 3.  Since  the P(v)’s 
sum to  one  [Eq. (9)], this may be rewritten  as 

so that confidence intervals  for r can be formed based on 573 
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?&M). Since we are  free  to pick p in any way we please 
[subject to (9)], we  select p = p* where p* minimizes the 
variance term u:(p). This will produce  the smallest  pos- 
sible confidence intervals for r. Note  that  there is no rea- 
son  to  restrict p to be  nonnegative; i.e., ?#I) need  not  be 
a convex  combination of the ry(M)'s.  To minimize the 
variance the following nonlinear  programming  problem 
must be solved: 

minimize pZ,p' 

subject to ep' = 1, (12) 

where e denotes a (k  + 1)-dimensional row vector  each of 
whose components is one.  It is straightforward (using La- 
grange multipliers) to  show  that 

p* = eX,'/eZ,'e', (13) 

ui(p*) = I/eX,'e'. ( 14) 

The general idea of combining  multiple estimates  for 
the same quantity in this particular manner is outlined on 
page 19 of Hammersley and Handscomb [18]. This  basic 
technique has been  successfully  applied to  estimate work 
rates and waiting times in closed  queueing networks  (see 
[4, 7 ,  113). The  contribution of this paper is to describe 
how this general  technique may be  applied to  an  entire 
class of simulations. This general technique may also  be 
reformulated as a standard  control variable  application 
with k - 1 controls with  mean zero,  thejth control being 
Fj(M) - ?&M) (see, e.g., [12]). The relationship  between 
control  variables and linear  regression is explored in [ 101. 

We have dealt  here  with the  formation of short  con- 
fidence intervals  based  on a run length of M cycles.  The 
same  technique applies  to a run of N transitions.  In this 
case  the nonlinear  program (12) must still be  solved be- 
cause  the  variance  terms in the  central limit theorems (8) 
differ only by a constant multiple. Equations (13) and (14) 
are  therefore still valid in this  case. 

Since the  covariance matrix is in general unknown it 
becomes necessary  to  estimate X,. If %,(M) is any  esti- 
mate  such that %,(M) -+ Z, a.s.  as M -+ m, then %,(M)" 
+ X;'. Letting 

f i * (M) = ez,(M)"/eX,(M)"et, 

it is clear that b*(M) + p* a.s.  as M -+ 00. Thus by the 
results of Section 2 the  asymptotic normality can be main- 
tained even when X, and p* must  be estimated. For the 
simulations reported in Section 4, Z, and p* were  esti- 
mated  from data  collected  over  the  entire  run.  It  has been 
suggested (in [8]) that in control  variable schemes  the 
multipliers should  be estimated  from only a fraction of the 

574 cycles  simulated. While this will generally  result in less 

variance reduction,  the confidence intervals will tend to 
cover r a greater  (truer) percentage of the time.  This ef- 
fect  has been  quantified for. nonregenerative  simulations 
in [IO]. 

In  order  to  apply  this  method,  the  functions f, must be 
computed  (usually before  the start of the simulation). For 
computational efficiency f, can be defined recursively by 
f ,  = f and f, = PfV-' for v 2 1.  This  avoids having to 
compute  the v-step transition  function P", a potentially 
great computational savings. If the  state  space is finite 
and  the transition matrix is sparse,  the work  involved in 
calculatingf" for a few  values of v may not  be  too great. If 
the f,'s are  computed before the  start of the simulation 
they  must  be stored;  this may be a considerable  problem 
if the  state  space is very large. 

We note that  to  form  the  estimates A$V) [or ?"(M)], 
f,(X,) must  be evaluated  for  each  value of v and each tran- 
sition n .  This will tend  to  increase  the  amount of time 
needed for  each  transition simulated. However, if the var- 
iance  reduction obtained is sufficiently large, the potential 
savings in the  number of transitions  that need to be simu- 
lated will more than offset the  extra  work  per transition. 
This will be  discussed in greater detail in Section 4. We 
also note  that  additional work must  be done  at  the end of 
each cycle to  update  the  estimates of the  covariance ma- 
trix Z, (using no variance-reducing technique only the  es- 
timate  for  need be updated).  However, this computa- 
tion will usually be insignificant compared  to  that of the 
simulation. 

It should be mentioned  that if one  has a  choice of more 
than  one  return  state,  the variance reductions  that  are ob- 
tained using this method  are (in theory) independent of 
the  return  state.  The  reader should consult page 99 of [ 141 
for this  point. For practical reasons it is recommended 
that,  $possible,  the  return  state be chosen so that cycles 
are not  excessively  long. 

This  method can be extended  to  certain  types of contin- 
uous  time processes  such  as  continuous time  Markov 
chains and  semi-Markov processes.  This may be  accom- 
plished either by transforming the  continuous time  pro- 
cess into an  appropriate  discrete time  Markov chain (see 
Hordijk,  Iglehart, and  Schassberger [19] for a  description 
of this transformation) or by working  with the  continuous 
time process  directly.  The  interested  reader should  con- 
sult [17] for  details of this extension.  The method may 
also  be applied to  discrete time regenerative Markov pro- 
cesses  on a general  state  space.  In this case integrals  re- 
place  the summations in Eqs.  (l), (2 ) ,  (3), and ( 1  1). Again 
f ,  = P"f, but now 
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where P”(x, A )  = P{X,+, E AIXn = x}  for measurable 
sets A .  Section 4 reports numerical results  for  two such 
processes,  the waiting  time processes in the “11 and 
WW2 queues. 

We now examine  the selection of the  parameter k. As 
the value of k increases, uE(p*) decreases.  This is be- 
cause the  kth  minimization  problem is the  same  as  the 
(k + 1)st  problem  which has  the additional constraint  that 
P(k + 1 )  = 0. This  means  that  as we do more  computation 
we can get increasingly accurate  estimates of r. 

If the  state  space is finite, then 

f,(i) = 1 p t f ( j )  + 2 r j f ( j )  = r as k + to, 
JEE j € E  

so that  for large values of k, the  value off,(i) will be  close 
to r for  each  state i. The point estimate i , ( N )  is then the 
average of N + 1 terms  each of which is close  to r so that, 
for large k, i , (N)  will have a  smaller  variance  than i&N. 
In fact it can be shown  that u: + 0 as k + a. By placing 
all weight on A,(N), i.e., by setting P(k) = 1 and P ( v )  = 0 
for v # k ,  then vi@*) I ui(0, 0,  . . ., 1) = ui+ 0. (Thus 
if an infinite amount of work is performed in advance, 
there is no need to simulate at all.) 

For many types of Markov chains  substantial variance 
reductions can be expected  even when k is relatively 
small (say 2 or 3). If the Markov chain makes  transitions 
only to “neighboring” states  and if f ( j )  is close to f ( i )  for 
j “near”  to  i,  then  for small k, f,(i) and f,(i) should be 
nearly the  same.  This means that i , (N) and iE , (N)  will be 
highly correlated, a  condition that generally results in 
good variance reduction. Many Markovian  queueing net- 
works  exhibit  this  special  type of structure. 

Ideally one would like to select the optimal  value of k in 
the sense that  for a  given computer budget the value of k 
which yields the smallest  confidence  intervals for r is 
picked (part of the budget must be  allocated to  the com- 
putation offo, . . . , f,). This is an  open  and seemingly dif- 
ficult problem.  It is felt that the inability to predict the 
variance reductions in advance is the major drawback of 
the method (this is also a drawback in other more stan- 
dard control  variable  techniques). The simulator  must  be 
very  careful to apply the method only in those situations 
when it  is computationally efficient to  do so. Generally 
speaking the  success of this technique  depends  on one’s 
ability to efficiently compute and store  the functions f,. 

4. Examples 
To gain insight into  the use of the  method,  four  test prob- 
lems were chosen  for numerical studies.  These problems 
all come from the  area of queueing theory.  They  are  the 
queue length process in the finite-capacity MIMI1 queue, 
the  queue length process in the  repairman problem with 
spares, and the waiting  time processes in both  the MIMI1 
and MIMI2 queues.  These  processes  were  chosen be- 
cause analytic results  are readily available, thereby mak- 
ing a comparison  between analytic and simulation results 
possible.  Despite their simplicity they are by no means 
“easy”  processes  to simulate,  particularly the heavily 
loaded queues which  require  very  long  run  lengths  (see 
Table 1) to  get  good simulation estimates.  For all four 
processes  substantial variance reductions  have been real- 
ized (although in the MIMI2 queue with p = 0.9 the re- 
duction in variance is not enough  to justify the use of the 
method). While it  is difficult to predict the variance  reduc- 
tions that will be obtained  for a particular stochastic pro- 
cess, it  is felt that this  method shows a great deal of prom- 
ise  and deserves  serious consideration when a simulation 
experiment is being  planned. The remainder of this  sec- 
tion will be devoted  to a  more  detailed  description of the 
examples and a  pcesentation of their numerical results. 

Birth and  death  processes 
The first two  examples,  the  queue length processes in the 
finite-capacity WM/1 queue and the  repairman problem 
with spares,  are  both birth  and death  processes.  The 
M/W1 queue  has  birth  and  death  parameters 

i A O s i s C - 1 ,  

0 i z C ,  
X i  = 

p i = p  1 1 i < C ,  

where 0 < X, p < and C is the (finite) capacity of the 
system. For this example we were interested in estimat- 
ing E[X], the  expected stationary  number of customers in 
the  queue, so the  appropriate  functionfisf(i) = i. Let p 
= Alp. 

The repairman  problem has  parameters 

I nX O s i s m ,  
X i  = 

/ ( n + m - i ) X   m < i % n + m ,  

p. = 
s < i < m + n ,  

where n is the  number of operating units, m is the number 
of spare  units, s is the number of repairmen,  and X and p 
are  the failure and  repair  rates,  respectively, of the units. 
For this process we chosef(i) = i2 so that r = E[X2]. Both 575 
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Table 2 Calculated variance reductions for finite-capacity M / M / I  queue: C = 14, r = E[X].  

P E[XI WO R: R: R: 
R ,  R* R3 

2 

0.10 0.1111 0.0244 0.0454 0.0045 0.0005 
0.2136 

0.20 0.2500 
0.0674 0.0213 

0.2812 0.0926 0.0185 0.0037 
0.3043 

0.30 0.4286 
0.1361 0.0609 

1.469 0.1413 0.0424 0.0127 

0.40 
0.3759 

0.6667 
0.2058 0.1126 

5.888 0.1905 0.0756 0.0297 
0.4364 

0.50 0.9995 
0.2749 0.1725 

21.59 0.2341 0.1121 0.0524 

0.60 
0.4838 0.3347 

1.493 
0.2288 

76.57 0.2601 0.1352 0.0681 

0.70 
0.5100 

2.262 
0.3677 

250.9 
0.2610 

0.2884 0.1395 0.0683 
0.5370 

0.80 3.453 
0.3734 0.2613 

670.2 0.4094 0.1623 0.0692 

0.90 
0.6399 0.4028 

5 .111  
0.2631 

1262 0.6050 0.2659 0.1148 
0.7778 

0.95 
0.5156 

6.052 1476 0.6880 0.3425 0.1607 
0.3388 

0.8294 0.5852 0.4009 

0.8605 0.6369 0.4525 
0.99 6.813 0.7404 0.4056 0.2047 1548 

R, = percent reduction in confidence interval width given equal run length; R: = percent reduction in run length given equal confidence interval width. 

of these  continuous time  processes were transformed  into 
discrete time using the  methods of [I91 and  systems of lin- 
ear  equations were  solved to find r ,  X,, p*, and ui(p*). 
Thus  Tables 2 and 3 report theoretically  calculated vari- 
ance  reductions, not  simulation results. 

For the  numerical results  that follow, the definition of 
u:(p*) has  been slightly modified to  make it the asymp- 
totic  variance term in the  central limit theorem for 

k 

iB*(N) = 1 P * ( 4 . q N .  
U=O 

It  therefore takes  into  account all constant multiples such 
as E[T,]”*. Let R i  = ui(j3*)/ui. To  obtain confidence in- 
tervals of equal  length, if we use the  estimator iB* we 
need only simulate R i  times as many transitions  as would 
be needed using no variance  reduction technique  (that  is, 
if we used just  the regular  point estimate i d .  For a fixed 
(large) number of simulated transitions N ,  the length of 
the confidence interval for r using iB*(N) divided by the 
length of the confidence  interval for r using A,(N) is 
R,  = uk(P*)/uO. The quantities Ri and R,  are  the usual 
efficiency measures of a variance  reduction  technique. 

Tables 2 and 3 list r ,  ui, R i ,  and R ,  for k = 1, 2, 3. For 
each k ,  R ,  is listed  directly  below R i .  As an  example, in 
Table 2, for p = 0.5 we  see  that  to  obtain confidence  inter- 
vals for E[Xj = 0.9995 of equal  length, we need  only sim- 

576 date  5.24% as many  transitions using iB* (with k = 3) 

rather than using just io. For the  same number of transi- 
tions  simulated the ratio of the lengths of confidence in- 
tervals is 0.2288. Notice  that in Table 2 the value of p 
influences the  variance reductions. As the traffic intensity 
p increases,  the  variance reduction obtained  decreases. 
For the  repairman problem the  variance reductions are 
more or less constant  over  the  entire range of parameters 
tested. Variance reductions for  different  functions f are 
reported in [ 171. They follow a pattern similar to  those in 
Tables 2 and 3. 

Waiting time  process in an MIMI1 queue 
We now turn  to  an  example of a regenerative Markov  pro- 
cess with an  uncountable  state  space E = [0,  m). Let w,, 
and S,, be the waiting and service times, respectively, of 
the nth customer in a GI/G/l queue  and let {An, n 2 0) be 
the  sequence of i.i.d.  interarrival times.  Set X ,  = Sn-l - 
A,,. Assuming the  queue is initially empty,  the waiting 
time process {W,,, n 2 0)  is defined by 

0 n = 0, 

(W,,-, + xn)+ n 2 1 ,  
wn = 1 
where for any real  number a, a+ denotes  the maximum of 
0 and a. 

It is known that if the  trafic intensity p < 1 ,  there  exists 
an infinite number of indices n such  that W,, = 0 and the 
expected time between  any  two  such  consecutive indices 
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Table 3 Calculated  variance  reductions  for  repairman  problem: n = 10, rn = 4, A = 1, r = E[X2]. 

.-: 
1,12 13.46  9,610  0.0836 0.0156  0.0067 

0.2892 0.1251  0.0819 
2,6 15.06  9,377  0.0674 0.0172  0.0083 

0.2595 0.1313 0.091 1 
374  17.28 9,009 0.0532 0.0177  0.0104 

0.2306 0.1329  0.1018 
493  20.01  8,568  0.0445 0.0217  0.0108 

0.2109 0.1473  0.1039 
1,9 3  1.66  28,346  0.1659 0.0351  0.0134 

0.4073 0.1874  0.1157 
2,4.5 32.85  26,287  0.1420 0.0290 0.01 17 

0.3768 0.1702  0.1083 
3,3 34.51  23,787  0.1160 0.0231  0.0108 

0.3406 0.1521  0.1041 
4,2.25 36.59  21,153  0.0928 0.0199 0.01 13 

0.3046 0.1411  0.1061 
1,6 69.25  33,944  0.1897 0.0629  0.0248 

0.4356 0.2509  0.1573 
273  69.43  33,120  0.1804 0.0563  0.0208 

0.4247 0.2373  0.1443 

0.4094 0.2193  0.1285 
4, 1.5 70.21  30,281  0.1523 0.0397  0.0129 

0.3902 0.1992  0.1134 

3,2 69.74  31,904  0.1676  0.0481 . 0.0165 

R ,  = percent reduction in confidence interval width given equal run length; R: = percent reduction in run length given equal confidence interval width. 

is finite. Thus 0 is chosen  to be the  return  state  and regen- 
erations occur whenever a customer  arrives  at  an empty 
queue.  Therefore,  for p < 1 there  exists a  random vari- 
able W such  that W,, j W .  For more  details  on this queue 
see  for example [2]. 

We shall be interested in estimating E[W, which is 
finite if  E[SE] < 00. The  appropriate function f is then 
f ( x )  = x. To  calculate f ,  = P”f we need to find the transi- 
tion function of the  process. We illustrate  this for  the 
MIMI1 queue. For M/M/l the calculations are straight- 
forward.  The  approach generalizes  easily to the  GI/G/l 
queue, although one’s ability to  carry  out  the computa- 
tions in practice depends  on  the distributions of the serv- 
ice  and  interarrival  times.  Numerical  integration  tech- 
niques may be of use  here although, in theory,  one must 
calculate P”f(x) for all values of x 2 0. 

For the M/WI queue it is easy  to  show  that 

where A is the arrival rate  and p-’ is the mean service 

time. Thus g ( y )  = ( d / d y )  P{Xn 5 y }  exists  for all y and we 
write PIX, E dy}  = g(y)dy where 

f J x )  = x + - A - P +  p -AS 

pA A(A + p) e ’ 

The calculation off,(x) is similar; however,  care must be 
taken  to include the  atom  at 0. It is found  that 577 
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Table 4 Calculated variance reductions for the waiting time process in an “/I queue: r = E[W, p = 1 ,  A = p,  E[WI = A / p ( p  - A). 

P 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0.95 

0.99 

E[ wl 

0.1111 

0.250 

0.429 

0.667 

1 .OO 

1 S O  

2.33 

4.00 

9.00 

19.00 

99.00 

2 
e 0  

0.375 

1.39 

3.96 

10.6 

29.0 

88.5 

336 

1,976 

35,901 

607,60 1 

3.96 X IO8 

R: 
R ,  

0.0070 
0.0838 
0.0265 
0.1628 
0.0568 
0.2383 
0.0968 
0.31 11  
0.1457 
0.3817 
0.2029 
0.4505 
0.2678 
0.5175 
0.3397 
0.5828 
0.4175 
0.6461 
0.4582 
0.6769 
0.4904 
0.7003 

R; 
R2 

0.0001 
0.0008 
O.OOO9 
0.0306 
0.0045 
0.0672 
0.0137 
0.1173 
0.0327 
0.1808 
0.0664 
0.2577 
0.1214 
0.3485 
0.2055 
0.4533 
0.3280 
0.5727 
0.4072 
0.6381 
0.4686 
0.6845 

R,  = percent reduction in confidence interval  width given equal run length; R: = percent reduction in run length given equal confidence Interval widtn. 

In this case it is possible to calculate exactly  the covari- 
ance matrix Z, so that  exact results for  the variance  re- 
ductions  can  be obtained  (see [17]). Table 4 lists the cal- 
culated  variance reductions  for this queue. Again sub- 
stantial  variance reductions  are realized  although the 
method is less effective for high values of p. 

These  theoretical  computations  were  then  compared 
with  results obtained in actual simulations. For p = 0.5 
the  queue  was simulated for a total of 200,000 cycles (the 
expected number of customers simulated for this  run is 
400,000). The  random number generator described in 
Learmonth  and Lewis [20] was used. These 200,000 cy- 
cles were then  broken  up into R independent replications 
of C cycles per replication for  several combinations of R 
and C(RC = 200,000). At the  end of each replication, 
point estimates  for  the various parameters of interest 
were  formed. The figures reported in Table 5 are  then  the 
sample  averages of the point estimates  taken  over  the R 
independent  replications.  Approximate 95% confidence 
intervals  for each  parameter (formed in the usual  manner 
using the R i.i.d.  replications)  are  given  directly below the 

578 point estimates. As an example for R = 200 and C = 1000 

a 95% confidence  interval for r = E[ w] = 1 .OOO based on 
the  estimate io is (1.015 - 0.016, 1.015 + 0.016). 

At the end of each replication 95% confidence  intervals 
for r were  formed based  on  each point estimate  for r using 
the central limit theorem of Proposition 3. The fraction of 
these confidence intervals  that actually  contained r is 
given in Table 6. If valid conference  intervals  are being 
formed, this fraction (called a coverage) should  be  ap- 
proximately 0.95. Directly below each  coverage is a 95% 
confidence  interval for  the  coverage  based  on  the normal 
approximation to  the binomial distribution (see Appendix 
3 of Lavenberg  and  Sauer [21]). Generally  speaking, the 
coverage  increases with the  run length C. Because of this 
behavior care must  be taken  that  the run  length is not too 
short;  otherwise unjustified confidence may be placed in 
the  estimates.  This suggests that  the method may be bet- 
ter used to  produce  very tight confidence intervals from 
moderately long run lengths rather  than  to  reduce  the run 
length by a significant factor.  The sequential techniques 
developed in [21] for determining  run  lengths are appli- 
cable  and may be of practical  value in this area. 

In  order  to  use  this method the functionsf,(W,),f,(W,), 
and&(W,) must be  evaluated  for  each  customer n. To  get 
a measure of the  computational savings (if any) of the 
method it is important  to  determine how much additional 
work is required for  each  customer.  From (15) and (16) it 
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Table 5 Simulation results for waiting time process in “/I queue with p = 0.5, point estimates and 95% confidence intervals. 

Parameter True R =200 R = 100 R =50 R = I  
value c = 1000 C=2Q00 C = 4000 c = 200,000 

PO 1 .Ooo 1.015  1.016  1.018 1.018 

?I 1 .Ooo 1.013  1.014 1.015 1.015 

p2 1 .Ooo 1.01 1 1.011  1.012  1.013 

P*(k  = 1) 

0.016  0.017  0.015 

0.013  0.014  0.012 

0.01 1  0.01 1 0.010 

0.006 0.007 0.006 

0.003  0.003  0.003 

0.005 0.007  0.007 

0.001  0.002  0.003 

2.53  2.67  2.34 

2.21 2.34  2.05 

1.93  2.04  1.80 

1.94  2.05  1.81 

1.69  1.79 1.59 

1.48  1.56  1.39 

0.40 0.46 0.46 

0.079 0.104 0.119 

B 1 .Ooo 0.999 1 .Ooo 1.003  1.003 

%*(k = 2) 1 .Ooo 0.9% 0.998  0.999  1.001 

R: 0.146 0.106 0.116  0.125  0.135 

, RI 0.033 0.015 0.018  0.022  0.026 

-: 29.0 30.23  30.56 30.83  30.98 

-0 1 23.67 24.67  24.95 25.18  25.31 

-02 19.48 20.30  20.53 20.73  20.83 

0: 19.48 20.30  20.53 20.73  20.84 

-12 16.14 16.79  16.99 17.16  17.25 

7 2  13.44 13.95 14.12 14.27  14.34 

-:(P*, 4.23 3.46  3.74 3.98 4.18 

-:(P*, 0.948 0.505 0.603 0.699  0.792 

2 

is seen that  to  evaluate f, and f, one  exponential and sev- 
eral multiplications and additions  must  be computed for 
each  customer.  From  CPU times we estimated  that  on  the 
average each  customer using multiple estimates requires 
5/3 as much CPU  time  as a customer  on a  run using no 
variance reduction  technique.  Since,  for p = 0.5, we need 
only  simulate 0.03 times as many customers  to  get con- 
fidence  intervals of equal length (see  Table 4), our compu- 
tational  savings,  which is defined as  the ratio of CPU 
times  needed to  obtain equally accurate  estimates, is 0.05 
(= 0.03 x 5/3).  For p = 0.9 we estimate  the computa- 
tional savings to  be 0.55 (= 5/3 X 0.33). On  the  other 
hand, if the  CPU  time is fixed to be the  same for each 
method,  what is the statistical  savings (defined to be the 
ratio of confidence  interval  lengths for  equal  CPU times)? 
Suppose for a specified CPU time we can simulate N ,  cus- 
tomers using no variance reduction technique (method 1) 
and N ,  customers using multiple estimates (method 2). 
Since each method 2 customer  requires 5/3 as much CPU 
time as a method 1 customer, we must have Ri, = 3/5 N , .  
The ratio of the lengths of the confidence  intervals is then 

Table 6 Point estimates and 95% confidence intervals for 95% 
confidence interval coverages for E[W in an “/I queue with 
p = 0.5. 

~ 

Estimator R = 200 
c = 1000 

~~ 

f o  0.95 
(0.91,0.97) 

i l  0.95 
(0.91,0.97) 

p2 0.94 
(0.90,0.97) 

P*(k = 1) 0.87 
(0.82,0.91) 

P ( k  = 2) 0.74 
(0.68,0.80) 

B 

B* 

R = 100 
c = Zoo0 

0.96 
(0.90,0.98) 

0.94 
(0.88,0.97) 

0.94 
(0.88,0.97) 

0.88 
(0.80,0.93) 

0.79 
(0.70,0.86) 

R =50 
c =4000 

0.98 
(0.90, 1.00) 

0.96 
(0.87,0.99) 

O.% 
(0.87,0.99) 

0.94 
(0.84,0.98) 

0.90 
(0.79,0.96) 

‘ T ~ / N : ’ ~  =A U 
x (5/3)”2. 

‘TZ(P*)/N:’2 ‘T,(P*) 
This ratio is 0.23 and 0.74 for p = 0.5 and 0.9, respec- 
tively. 579 
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0 Waiting  time process in an MIMI2 queue 
The  structure of this  queue, which is described in Kiefer 
and Wolfowitz [22] and [23], is  quite a bit more com- 
plicated  than that  for GYG11. Nevertheless, it is possible 
(though  tedious) to perform the  necessary calculations to 
apply the  method, particularly if k is small. For a  two- 
server  queue  the  state  space E = {w = (wl, w z )  : 0 5 wi 5 
w,}, and in the MIMI2 case 

The MIMI2 queue  was simulated for p = 0.5 and 0.90. 
On the basis of these  runs we estimated R ;  to be 0.32 and 
0.58 for p = 0.5 and 0.9, respectively (complete simula- 
tion  results are given in [17]). 

Notice  that  to  evaluate  the function f, three  ex- 
ponentials  must be  computed.  Since  this must be  done  for 
each  customer,  the  CPU time required  for  the simulation 
is substantially increased. In fact we estimate  that  each 
customer  requires 2.25 times as much CPU time as in 
straightforward  simulation. Since,  for p = 0.9, Rt is 
greater than 0.5 it must  be  concluded that in this case  the 
method is not  computationally efficient. By this we mean 
that for a fixed amount of CPU time  more accurate esti- 
mates can  be obtained  by not using the  variance reduction 
technique. For this reason  the  method is not  recom- 
mended for the heavily  loaded GYG/c queue (c > 1) un- 
less  the value of k can be  increased and  the functions 
fl, . . ., f, can be evaluated  cheaply. 

5. Conclusions 
In this paper a variance reduction technique  for a wide 
class of stochastic  processes  has  been  proposed.  The 
method differs from most other  control variable  methods 
in that  the means of the  control variables do not  need to 
be known  explicitly. The method is capable of producing 
substantial variance  reductions.  Because  the method re- 
quires  additional computations  to be done both  before 
and during the simulation, care must  be taken so that  the 
method is used  only  when it is computationally advanta- 
geous to  do so; that  is, it should  only be used  when for a 
fixed amount of computer time  more accurate  estimates 
can be  obtained by using the method than by not  using  it. 
In  the  case of Markov chains it is likely that  the method 
will be most  effective  when the  transition matrix of the 
process is sparse,  and specially structured, in which case 
the preliminary calculations  can be carried  out with rela- 
tive ease. For example, a direct numerical  analysis of 
closed  Markovian  queueing networks which do not sat- 
isfy the conditions necessary  for a product form  station- 580 
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ary distribution is often infeasible since  the  number of 
states may be enormous.  Thus simulation (or sometimes 
approximation) is  the only  feasible alternative.  However, 
for  these queueing systems  the  elements of the transition 
matrix are  often  very simple functions of only  a few pa- 
rameters.  Thus  the  transition matrix  need never be stored 
and  the functions f , ( i )  may be easily evaluated  whenever 
the simulation enters  state i .  In  such a case  the method 
could reasonably  be  expected  to  work well. 
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