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Philip Heidelberger

Variance Reduction Techniques for the Simulation of
Markov Processes, |I: Multiple Estimates

A method for reducing the variance of simulation-generated estimates is proposed and discussed. The method may be
applied to the estimation of steady state parameters of discrete and continuous time Markov chains, semi-Markov pro-
cesses, and regenerative discrete time Markov processes on a general state space (such as the waiting time process in a
multiple-server queue). The method is similar to the technique of control variables, but differs in that the means of the

controls need not be explicitly known. Numerical results for a variety of simple queueing models are presented.

1. Introduction and summary

In recent years computer simulation has become a very
important tool for analyzing the behavior of stochastic
processes. As the structures of widely used processes be-
come increasingly complex, analytic results become more
difficult to obtain. Frequently simulation is the only com-
putationally feasible method to study a process.

Unfortunately simulation can be a very expensive tool
to use. It is therefore desirable to develop methods that
can reduce the run lengths (and hence cost) of simulation
without a decrease in the accuracy of estimates. Such
methods are called variance reduction techniques. This
paper will propose and test a new variance reduction
technique for the special case when the stochastic pro-
cess being simulated is a Markov process. A subsequent
paper will describe several other related techniques appli-
cable when the Markov process has a finite state space.

As an example of how expensive simulations can be,
consider estimating via simulation E[W], the expected
stationary waiting time in an M/M/1 queue. The M/M/1
queue is not something that one would ordinarily simulate
since analytic results for it are readily available. How-
ever, despite its simplicity the waiting time process for
this queue can be a very expensive process to simulate. It
is therefore a good candidate for testing simulation meth-
odologies. Let p be the usual traffic intensity of the queue
and let WN be the average of the first N waiting times. It is

known that if p < 1 (see Crane and Iglehart [1] or Iglehart
[2]), then WN has an asymptotically normal distribution
with mean E[W] and variance o*/N for some constant ¢
(0 < o* < ®), The variance term o /N includes the effect
of correlation between the waiting times. From this cen-
tral limit theorem confidence intervals for E[W] may be
formed.

A major problem faced by simulators is how long to run
a simulation. One possible stopping criterion is to run the
simulation until the half length of a confidence interval is
some prespecified fraction of the quantity to be esti-
mated. Table 1 provides an indication of the run lengths
needed for the M/M/1 queue when such a stopping rule is
used. It is seen that as p increases (beyond p = 0.3), the
required run lengths increase rapidly until for large values
of p one must simulate such an enormous number of cus-
tomers to obtain **decent’’ estimates that simulation is no
longer a feasible alternative. It is run lengths such as
these that variance reduction techniques are designed to
shorten.

One of the most effective variance reduction tech-
niques is that of control variables. A good introduction to
this technique is given in Gaver and Thompson [3]. Re-
cent studies involving control variables may be found in
Carson [4], Gaver and Shedler [5], Iglehart and Lewis [6],
Lavenberg [7], Lavenberg, Moeller, and Sauer [8], Lav-
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enberg, Moeller, and Welch [9, 10], Lavenberg and Shed-
ler [11], and Lavenberg and Welch [12]. Since the tech-
nique about to be proposed is closely related to this
method, we now present a brief outline of control vari-
ables before proceeding. Let {X,, n = 0} be a sequence of
independent and identically distributed (i.i.d.) random
variables with unknown mean r = E[X,]. We shall be in-
terested in estimating r via simulation. Let {C,, n = 0} be
another sequence of i.i.d. random variables with known
mean r, and assume that X, and C, are correlated (usually
achieved by simulating X, and C, with the same random
number streams). Let 8 be some constant and set Z,(8) =
X, +B8(C,—r,). Then{Z (8), n = 0} are i.i.d. with mean r
and variance which will be denoted by ¢*(8). Defining

Z.® =Y Z(B)/N,

by the strong law of large numbers

imZ(B) =r

| almost surely (a.s.),
N—x

and by the central limit theorem

VNZB) - 1)
o(B)

Here = denotes weak convergence or convergence in
distribution (see Billingsley {13]) and N(0, 1) is a normally
distributed random variable with mean 0 and variance 1.
The choice 8 = 0 corresponds to straightforward simula-
tion and ¢*(0) = var (X,). We now pick 8 = 8" to mini-
mize the variance term o°(B). It is easy to show that

as N — o,

> N(©, 1)

B* = —cov (X", C")/var (Cn)’

o*(B") = [1 - p*(X,, C,)]var (X,),

where p(X,, C)) is the coefficient of correlation between
X,and C,. Since 0 = pz(Xn, C,) = 1, a reduction in vari-
ance has been obtained and we are thus able to form
shorter confidence intervals for r. C, is called a control
variable for X,. The method can be extended to allow
multiple controls (see [8)).

The key things to observe about this method are that r,
= E[C,]must be known and that X and C, must be highly
correlated to get large variance reductions. It is often
very difficult to devise good controls, particularly if the
stochastic process being simulated is quite complicated.
The method to be proposed in this paper circumvents this
difficulty by devising controls which will usually be highly
correlated with the process of interest and for which the
means of the controls need not be explicitly known. The
reason for this is that the controls are chosen in such a
way that their means actually equal the parameter of in-
terest.
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Table 1 Sample sizes for the M/M/1 queue.

p E[W] a N
0.10 0.111 0.375 8,200
0.20 0.250 1.39 6,020
0.30 0.429 3.96 5,830
0.40 0.667 10.6 6,430
0.50 1.00 290 7,850
0.60 1.50 88.5 10,600
0.70 2.33 335 16,700
0.80 4.00 1,976 33,400
0.90 9.00 35,901 119,000
0.95 19.0 607,600 455,000
0.99 99.0 3.95 x 10° 1.09 x 107

N = Number of customers that must be si d for a 90% fid interval for
E[W] to have a half length of 0.10E[ W] = (1.6450/0.10E[W])'?; i = service rate = 1;
A = arrival rate; p = A/ p; E[W] = M p(pe — A).

We shall restrict ourselves to studying controls for
functionals of the stationary distribution of irreducible,
aperiodic, positive recurrent Markov chains. The method
may be extended to continuous time Markov chains,
semi-Markov processes, and regenerative discrete time
Markov processes on a general state space such as the
waiting time process in multiple server queues in light
traffic. In Section 2 we introduce notation and state pre-
liminary results for Markov chains upon which the tech-
nique is based. Section 3 contains a description and dis-
cussion of the variance reduction technique. Numerical
examples taken from queueing theory which demonstrate
the use of the method are presented in Section 4.

2. Markov chains

Let X = {X,, n = 0} be an irreducible, aperiodic, positive
recurrent Markov chain with state space £ = {0, 1, 2,
- - -}, transition matrix P = {p,, : i, j € E} and initial distri-
bution u = {u, : | € E} (see Chung [14] for the definitions
of these terms and a more detailed analysis of Markov
chains). It is well known that there then exists a probabil-
ity distribution = = {m, : i € E} on E and a random vari-
able X, having distribution 7, such that X, = X for any
initial distribution u. If P" = {p}’ : i, j € E} is the matrix of
n-step transition probabilities, then

}Ll_[}}o Py =,

foralliandjin E. The stationary distribution of X is 7 and
it satisfies the stationary equations = = 7P, which may be
written componentwise as

m= > mp, foralljeE. m
1EE
Let f be a real-valued function on E and set

r = E[f(X)] = wf => 7 f(i). )

i€E
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We shall be interested in finding  for the given function f.
To do so we could solve the stationary equations (1) and
then apply (2), but if the state space is very large (and in
many interesting cases it is infinite) these equations may
be quite difficult to solve numerically. In this case it be-
comes necessary to estimate r via simulation. It is the effi-
cient estimation of such quantities that is our concern.

The regenerative structure of Markov chains will be ex-
ploited by the variance reduction technique. This struc-
ture is now outlined (see Crane and Iglehart [15] or [16]
for a more complete discussion). Since the method re-
quires the use of a multidimensional central limit theo-
rem, results will be stated for the multidimensional case.

For some (typically small) integer kletf,,» =0,- - -, k
be real-valued functions on E and let r, = mf,. Pick some
state in E, say 0, called the return state. Set X, = O and T
= 0. Define
T,=inf{n>T,  :X =0} m=1,
andletr, =T, — T, . Because X is positive recurrent,
X, = 0 infinitely often, E[r,] < «, T, < o, and T, in-
creases to © as m — «. Notice that T, is the mth time the
process enters state 0. The process is said to be in the mth
cycle between times T,,_, and T, — 1 and the length of the
mth cycle is 7. The process “‘regenerates’” itself at each
time 7,; i.e., {X,, n = T,} has the same distribution as
{X,, n = 0} and furthermore is independent of {X , n < T }.
A consequence of this is that the behavior of X during a
cycle has the same distribution and is independent of the
behavior of X during any other cycle. The importance of
this in a simulation context is that for such a process a
single simulation run can be broken up into randomly
spaced i.i.d. blocks, or cycles. This allows the use of clas-
sical statistical techniques in analyzing the output of the
simulation. Define

Tm—1

v, = > fX)

n=Tp_,

Then, by the regenerative property, {(r,, Y, (0), - - -,
Y (k)), m = 1} is a sequence of i.i.d. random vectors. De-
fine

=z

PM)= > Y0/ > 7.

The following proposition, the proof of which may be
found in [16], shows how point estimates for r, may be
found.
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® Proposition 1

Ifalf|= > m|f)| <=, then

i€k
r, = E[Y,(]/E[7,],

lim % (N) =r, a.s.,

N—w

lim 7 (M) =r, a.s. 3)

Mo

Notice that % (N) estimates r, based on a simulation run
of N transitions, whereas 7 (M) estimates r, based on M
cycles.

We now turn to the formation of confidence intervals
for r,. Let

Z W)=Y @ -rr, m=1,

By (3), E[Z,(»)] = 0. Let
o,=EZ,()Z,()] 0=i, j=<k,

3, ={o,;:0=ij=k}land 0-21. = o,,. We will assume that

, Ty—1 2
E [( > 15| } <, )
E[)] < , and )
3, is positive definite. (6)

The elements of X, exist and are finite by (4) and (5). In
general X, will be positive semidefinite; we assume (6)
because the variance reduction technique requires the ex-
istence of . In most simulations these assumptions will
not be a restriction.

Let N(0, A) denote a random vector having the multi-
variate normal distribution with means 0 and covariance
matrix A = {a,}. Let A’ denote the transpose of A and for
any a # 0 let A/a be the matrix with elements a,.j/a. Let
x(N), (M) and r be (kK + 1)-dimensional column vectors
with vth entries £,(N), 7,(M), and r,, respectively. The
following multidimensional central limit theorems are a
direct consequence of the i.i.d. structure of cycles.

® Proposition 2
K #lf| <ewforv=0,--- kand if (4), (5) and (6) hold,
then

V/N&(N) - r) = N, £,/E[r,])
VMEM) - r) > N@, 3,/E[7 )

Proof Apply the Cramér-Wold device described on
page 48 of [13] to the one-dimensional central limit theo-
rem given in [16] to yield the multidimensional central
limit theorem. O

as N - o,

as M — oo, @)
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Now let 8 be a (k + 1)-dimensional row vector. The
following proposition is a corollary to Proposition 2.

® Proposition 3
kK

Let oi(B) = B2,8' = > Z B(i) a,B(j).

i=0
Under the hypotheses of Proposition 2,
VN(BX(N) ~ Br)

N@©, 1 N — oo,
o_k(B)/E[TI]I/Z $ ( ) as
VM(BiM) — Br)
N, 1 M — o, 8
o @ER] D ®
Note that, for example,
k
Br = z Bwr,.

In a simulation the covariance matrix %, is usually un-
known and must be estimated. In addition 8 may be un-
known (as is usually the case in control variable
schemes). However, the central limit theorems in (8) re-
main valid if E[7 ], X, and B are replaced by any strongly
consistent estimates (see Heidelberger [17]). By setting
B(v) = 0 for v # i and B(i) = 1, central limit theorems for
individual r;’s are obtained from (8). Confidence intervals
for r, can then be formed based on this central limit theo-
rem. While the regenerative method was described here
for discrete time Markov chains, analogous results hold
true for continuous time Markov chains, semi-Markov
processes, and regenerative discrete time Markov pro-
cesses on a general state space.

3. Variance reduction techniques

In this section we apply the results of Section 2 and take
further advantage of the structure of Markov chains to
obtain variance reductions. Let f now be a fixed real-val-
ued function on E and as before let r = 7f. Our goal is to
obtain both point estimates and ‘‘short’’ confidence inter-
vals for r. This will be achieved by forming several esti-
mates for r and then taking the (asymptotic) minimum
variance linear combination of these estimates which is
strongly consistent. In order to form these multiple esti-
mates some additional calculations must be done both be-
fore and during the simulation, but hopefully their cost
will not be so great as to prohibit the use of this method.

The multiple estimates for r are formed by defining new
functions f, on E so that =f, = r for each value of v. The
values of v for which this is done will typically be small
and labeled by {0, 1, - - -, k&}. Once the f,’s have been com-
puted the process is simulated for, say, M cycles. Define
Y, (), 7,, and 7 (M) as in Section 2. Since, assuming
alf)| < =, (M) — E[Y,»)/El[r,] = ©f, = r, each ? (M)
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is a strongly consistent estimator for r so that any one of
them could be used to estimate r. Actually we can do sig-
nificantly better than that by using {#,(M), - - -, (M)} si-
multaneously to estimate r. If {8(») : v = 0, - -+, k} are
any constants so that

k
> B =1 )
v=0
and f‘p(M) is defined by
k
FM) = S BO (M), (10)

then ?,,(M) — r a.s. as M — o, The values of B(v) are
then chosen to minimize the asymptotic variance of
fB(M). Details of the choice of the B(v)’s will be presented
later.

We now turn to the selection of the functions f,. In this
paper we will concentrate on only one (actually the sim-
plest) way to choose the f,’s. In a subsequent paper we
will study alternate methods of choosing the f’s in the
case when the state space is finite.

As our current choice of f,, let f, = P’f, forv =0, - - -,
k, so that
£ =2 pifi). (11)
i€k
Recall that P” is the v-step transition matrix of the pro-
cess. If, as before, r, = «rf,, then we must show thatr, = r
for each value of v. Under the assumption that w|f] < =
(see [17]), we have

r, = wf, = 7w(P’f)

= 7P(P"'f (assumption allows interchange)
=7(P"'f) (since 7P = m)
= 17 =r

v—1 =1’

so all the r’s are equal. Noting that f, = P’f = f, then =f,
=mf=r,and so r, = rfor all ».

We now return to the minimization of the asymptotic
variance of the estimator fﬂ(M) defined in Eq. (10). By
Proposition 3 the following central limit theorem holds:

VM S (B M) - B(v)r))

=0

o (B)/E[r,]

where o,(B) is defined in Proposition 3. Since the B8(»)’s
sum to one [Eq. (9)], this may be rewritten as

VM(psM) = 1)
o (B)/E[r,]

so that confidence intervals for  can be formed based on

> N, 1)as M — oo,

> N(O, 1),
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fB(M). Since we are free to pick B8 in any way we please
[subject to (9)], we select 8 = B* where 8* minimizes the
variance term o-fc( B). This will produce the smallest pos-
sible confidence intervals for r. Note that there is no rea-
son to restrict 8 to be nonnegative;i.e., ?B(M) need not be
a convex combination of the r(M)’s. To minimize the
variance the following nonlinear programming problem
must be solved:

minimize 8%, B8’
subject to e’ = 1, (12)

where e denotes a (k + 1)-dimensional row vector each of
whose components is one. It is straightforward (using La-
grange multipliers) to show that

B* =ex'/ex e, (13)

ou(B*) = 1/eZ)e’. (14)

The general idea of combining multiple estimates for
the same quantity in this particular manner is outlined on
page 19 of Hammersley and Handscomb [18]. This basic
technique has been successfully applied to estimate work
rates and waiting times in closed queueing networks (see
[4, 7, 11]). The contribution of this paper is to describe
how this general technique may be applied to an entire
class of simulations. This general technique may also be
reformulated as a standard control variable application
with & — 1 controls with mean zero, the jth control being
F(M) — #,(M) (see, e.g., [12]). The relationship between
control variables and linear regression is explored in [10].

We have dealt here with the formation of short con-
fidence intervals based on a run length of M cycles. The
same technique applies to a run of N transitions. In this
case the nonlinear program (12) must still be solved be-
cause the variance terms in the central limit theorems (8)
differ only by a constant multiple. Equations (13) and (14)
are therefore still valid in this case.

Since the covariance matrix is in general unknown it
becomes necessary to estimate %,. If ﬁk(M) is any esti-
mate such that ﬁk(M) — 3, a.s. as M — », then E,C(M)_1
— X" Letting

B*(M) = e3, (M) /e3 (M) "¢,

it is clear that (M) — B™ a.s. as M — . Thus by the
results of Section 2 the asymptotic normality can be main-
tained even when X, and B* must be estimated. For the
simulations reported in Section 4, X, and B* were esti-
mated from data collected over the entire run. It has been
suggested (in [8]) that in control variable schemes the
multipliers should be estimated from only a fraction of the
cycles simulated. While this will generally result in less
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variance reduction, the confidence intervals will tend to
cover r a greater (truer) percentage of the time. This ef-
fect has been quantified for nonregenerative simulations
in [101.

In order to apply this method, the functions f, must be
computed (usually before the start of the simulation). For
computational efficiency f, can be defined recursively by
fy=fand f, = Pf_, for v = 1. This avoids having to
compute the v-step transition function P”, a potentially
great computational savings. If the state space is finite
and the transition matrix is sparse, the work involved in
calculating f, for a few values of » may not be too great. If
the f,’s are computed before the start of the simulation
they must be stored; this may be a considerable problem
if the state space is very large.

We note that to form the estimates % (N) [or 7 (M)],
f,(X,) must be evaluated for each value of v and each tran-
sition #. This will tend to increase the amount of time
needed for each transition simulated. However, if the var-
iance reduction obtained is sufficiently large, the potential
savings in the number of transitions that need to be simu-
lated will more than offset the extra work per transition.
This will be discussed in greater detail in Section 4. We
also note that additional work must be done at the end of
each cycle to update the estimates of the covariance ma-
trix %, (using no variance-reducing technique only the es-
timate for crz need be updated). However, this computa-
tion will usually be insignificant compared to that of the
simulation.

It should be mentioned that if one has a choice of more
than one return state, the variance reductions that are ob-
tained using this method are (in theory) independent of
the return state. The reader should consult page 99 of [14]
for this point. For practical reasons it is recommended
that, if possible, the return state be chosen so that cycles
are not excessively long.

This method can be extended to certain types of contin-
uous time processes such as continuous time Markov
chains and semi-Markov processes. This may be accom-
plished either by transforming the continuous time pro-
cess into an appropriate discrete time Markov chain (see
Hordijk, Iglehart, and Schassberger [19] for a description
of this transformation) or by working with the continuous
time process directly. The interested reader should con-
sult [17] for details of this extension. The method may
also be applied to discrete time regenerative Markov pro-
cesses on a general state space. In this case integrals re-
place the summations in Egs. (1), (2), (3), and (11). Again
f, = P’f, but now
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P’(x, dy) f(y) forall x € E,

E

fx) =

where P'(x, A) = P{X,,, € A|X, = x} for measurable
sets A. Section 4 reports numerical results for two such
processes, the waiting time processes in the M/M/1 and
M/M/2 queues.

We now examine the selection of the parameter k. As
the value of k increases, o;(8*) decreases. This is be-
cause the kth minimization problem is the same as the
(k + 1)st problem which has the additional constraint that
B(k + 1) = 0. This means that as we do more computation
we can get increasingly accurate estimates of r.

If the state space is finite, then

L@ =2 pofp— 2 mflp=r

JEE j€E

as k — oo,

so that for large values of &, the value of £, (/) will be close
to r for each state i. The point estimate %,(/V) is then the
average of N + 1 terms each of which is close to # so that,
for large &, X,(N) will have a smaller variance than £(N).
In fact it can be shown that o, — 0 as k — ®. By placing
all weight on %,(N), i.e., by setting (k) = 1 and B(r) = 0
for v # k, then o (B*) = (0, 0, - - -, 1) = 0> — 0. (Thus
if an infinite amount of work is performed in advance,
there is no need to simulate at all.)

For many types of Markov chains substantial variance
reductions can be expected even when & is relatively
small (say 2 or 3). If the Markov chain makes transitions
only to ‘‘neighboring”’ states and if f() is close to f(i) for
J “‘mear” to i, then for small &, f,(i) and f,({) should be
nearly the same. This means that £,(N) and £,(N) will be
highly correlated, a condition that generally results in
good variance reduction. Many Markovian queueing net-
works exhibit this special type of structure.

Ideally one would like to select the optimal value of & in
the sense that for a given computer budget the value of &
which yields the smallest confidence intervals for r is
picked (part of the budget must be allocated to the com-
putation of f,, - - -, f,). This is an open and seemingly dif-
ficult problem. It is felt that the inability to predict the
variance reductions in advance is the major drawback of
the method (this is also a drawback in other more stan-
dard control variable techniques). The simulator must be
very careful to apply the method only in those situations
when it is computationally efficient to do so. Generally
speaking the success of this technique depends on one’s
ability to efficiently compute and store the functions f,.
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4. Examples

To gain insight into the use of the method, four test prob-
lems were chosen for numerical studies. These problems
all come from the area of queueing theory. They are the
queue length process in the finite-capacity M/M/1 queue,
the queue length process in the repairman problem with
spares, and the waiting time processes in both the M/M/1
and M/M/2 queues. These processes were chosen be-
cause analytic results are readily available, thereby mak-
ing a comparison between analytic and simulation results
possible. Despite their simplicity they are by no means
‘‘easy’’ processes to simulate, particularly the heavily
loaded queues which require very long run lengths (see
Table 1) to get good simulation estimates. For all four
processes substantial variance reductions have been real-
ized (although in the M/M/2 queue with p = 0.9 the re-
duction in variance is not enough to justify the use of the
method). While it is difficult to predict the variance reduc-
tions that will be obtained for a particular stochastic pro-
cess, it is felt that this method shows a great deal of prom-
ise and deserves serious consideration when a simulation
experiment is being planned. The remainder of this sec-
tion will be devoted to a more detailed description of the
examples and a presentation of their numerical results.

& Birth and death processes

The first two examples, the queue length processes in the
finite-capacity M/M/1 queue and the repairman problem
with spares, are both birth and death processes. The
M/M/1 queue has birth and death parameters

A O0<is=C-1,
0 i=C,

M = M l=i=C,

where 0 < A, u < o and C is the (finite) capacity of the
system. For this example we were interested in estimat-
ing E[X], the expected stationary number of customers in
the queue, so the appropriate function fis f(i) = i. Let p
= N\ .

The repairman problem has parameters

n\ 0=i=m,
A=

(n+m-—10DA m<isn+m,

iw l=i=y,
] ,

N s<i=m+ n,

where # is the number of operating units, / is the number
of spare units, s is the number of repairmen, and A and
are the failure and repair rates, respectively, of the units.
For this process we chose f (i) = i* so that r = E[X]. Both 575
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Table 2 Calculated variance reductions for finite-capacity M/M/1 queue: C = 14, r = E[X].

P E[X] % R] R, R;
Rl R2 R3
0.10 0.1111 0.0244 0.0454 0.0045 0.0005
0.2136 0.0674 0.0213
0.20 0.2500 0.2812 0.0926 0.0185 0.0037
0.3043 0.1361 0.0609
0.30 0.4286 1.469 0.1413 0.0424 0.0127
0.3759 0.2058 0.1126
0.40 0.6667 5.888 0.1905 0.0756 0.0297
0.4364 0.2749 0.1725
0.50 0.9995 21.59 0.2341 0.1121 0.0524
0.4838 0.3347 0.2288
0.60 1.493 76.57 0.2601 0.1352 0.0681
0.5100 0.3677 0.2610
0.70 2.262 250.9 0.2884 0.1395 0.0683
0.5370 . 0.3734 0.2613
0.80 3.453 670.2 0.4094 0.1623 0.0692
0.6399 0.4028 0.2631
0.90 5.111 1262 0.6050 0.2659 0.1148
0.7778 0.5156 0.3388
0.95 6.052 1476 0.6880 0.3425 0.1607
0.8294 0.5852 0.4009
0.99 6.813 1548 0.7404 0.4056 0.2047
0.8605 0.6369 0.4525

R, = percent reduction in confidence interval width given equal run length; Ri= percent reduction in run length given equal confidence interval width.
k k

of these continuous time processes were transformed into
discrete time using the methods of [19] and systems of lin-
ear equations were solved to find r, X,, 8*, and o3( 8%).
Thus Tables 2 and 3 report theoretically calculated vari-
ance reductions, not simulation results.

For the numerical results that follow, the definition of
o2(B*) has been slightly modified to make it the asymp-
totic variance term in the central limit theorem for

fpN) = Y BXOIS,IN).

It therefore takes into account all constant multiples such
as E[7]'". Let R} = o%(8*)/0. To obtain confidence in-
tervals of equal length, if we use the estimator %, we
need only simulate R,ZC times as many transitions as would
be needed using no variance reduction technique (that is,
if we used just the regular point estimate £,). For a fixed
(large) number of simulated transitions N, the length of
the confidence interval for r using XB*(N) divided by the
length of the confidence interval for r using £(N) is
R, = 0,(8")/o,. The quantities R; and R, are the usual
efficiency measures of a variance reduction technique.

Tables 2 and 3 list r, o-ﬁ, R:, and R, for k =1, 2, 3. For
each k, R, is listed directly below R;. As an example, in
Table 2, for p = 0.5 we see that to obtain confidence inter-
vals for E[X] = 0.9995 of equal length, we need only sim-
ulate 5.24% as many transitions using Xg+ (With k=23
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rather than using just %,. For the same number of transi-
tions simulated the ratio of the lengths of confidence in-
tervals is 0.2288. Notice that in Table 2 the value of p
influences the variance reductions. As the traffic intensity
p increases, the variance reduction obtained decreases.
For the repairman problem the variance reductions are
more or less constant over the entire range of parameters
tested. Variance reductions for different functions f are
reported in [17]. They follow a pattern similar to those in
Tables 2 and 3.

& Waiting time process in an MIM/l queue

We now turn to an example of a regenerative Markov pro-
cess with an uncountable state space E = [0, «). Let W,
and S, be the waiting and service times, respectively, of
the nth customer in a GIG/1 queue and let {4, n = 0} be
the sequence of i.i.d. interarrival times. Set X, = §,_| —
A,. Assuming the queue is initially empty, the waiting
time process {W,, n = 0} is defined by

0 n=0,
W, +X)" n=z=1,

W =

n

where for any real number @, a* denotes the maximum of
0 and a.

It is known that if the traffic intensity p < 1, there exists -
an infinite number of indices » such that W, = 0 and the
expected time between any two such consecutive indices
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Table 3 Calculated variance reductions for repairman problem: n = 10, m = 4, A = 1, r = E[X"].

(s, ) E[X*] o R R} R;
Rl R2 R3
1,12 13.46 9,610 0.0836 0.0156 0.0067
0.2892 0.1251 0.0819
2,6 15.06 9,377 0.0674 0.0172 0.0083
0.2595 0.1313 0.0911
3,4 17.28 9,009 0.0532 0.0177 0.0104
0.2306 0.1329 0.1018
4,3 20.01 8,568 0.0445 0.0217 0.0108
0.2109 0.1473 0.1039
1,9 31.66 28,346 0.1659 0.0351 0.0134
0.4073 0.1874 0.1157
2,4.5 32.85 26,287 0.1420 0.0290 0.0117
0.3768 0.1702 0.1083
3,3 34.51 . 23,787 0.1160 0.0231 0.0108
0.3406 0.1521 0.1041
4,2.25 36.59 21,153 0.0928 0.0199 0.0113
0.3046 0.1411 0.1061
1,6 69.25 33,944 0.1897 0.0629 0.0248
0.4356 0.2509 0.1573
2,3 69.43 33,120 0.1804 0.0563 0.0208
0.4247 0.2373 0.1443
3,2 69.74 31,904 0.1676 0.0481 . 0.0165
0.4094 0.2193 0.1285
4,1.5 70.21 30,281 0.1523 0.0397 0.0129
0.3902 0.1992 0.1134
R, = percent reduction in confidence interval width given equal run length; R; = percent reduction in run length given equal confidence interval width.
is finite. Thus 0 is chosen to be the return state and regen- time. Thus g(y) = (d/dy) P{X, < y} exists for all y and we
erations occur whenever a customer arrives at an empty write P{X, € dy} = g(y)dy where
queue. Therefore, for p < 1 there exists a random vari-
able W such that W, = W. For more details on this queue g (y) = n e y <0,
see for example [2]. 2(y) = \
g.) = -y =0,

We shall be interested in estimating E[W], which is
finite if E[Si] < ». The appropriate function f is then
f(x) = x. To calculate f, = P’f we need to find the transi-
tion function of the process. We illustrate this for the
M/M/1 queue. For M/M/1 the calculations are straight-
forward. The approach generalizes easily to the GI/G/1
queue, although one’s ability to carry out the computa-
tions in practice depends on the distributions of the serv-

A+ u

Now to evaluate f,(x),

[0,)

£ = j P(x, dy) £ ()

yP{(W, + Xn+1)+ € dy|W, = x}

I
.
g
g

ice and interarrival times. Numerical integration tech-

. = + X dy} = — x)d
niques may be of use here although, in theory, one must [O . YPix wir € A} L_m Y8y — xdy
calculate P'f(x) for all values of x = 0. > w

= [ yg_(y — x)dy + [ yg. y — x)dy.
For the M/M/1 queue it is easy to show that u=0 y=r
Evaluation of these integrals is straightforward and we
Ko for y < 0, find that
P, =y={ " ¥ \ -
n=Y A fix) =x + Ll L e M, (15)
1—)\+ e™  fory=0, A AN+ o)
i3
The calculation of f,(x) is similar; however, care must be
where X is the arrival rate and u™' is the mean service taken to include the atom at 0. It is found that 577
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Table 4 Calculated variance reductions for the waiting time process in an M/M/1 queue: r = E[W], u = 1, A = p, E[W] = M /u(pe — \).

p E[W] R R,
Rl R2
0.10 g.1111 0.375 0.0070 0.0001
0.0838 0.0008
0.20 0.250 1.39 0.0265 0.0009
0.1628 0.0306
0.30 0.429 3.96 0.0568 0.0045
0.2383 0.0672
0.40 0.667 10.6 0.0968 0.0137
0.3111 0.1173
0.50 1.00 29.0 0.1457 0.0327
0.3817 0.1808
0.60 1.50 88.5 0.2029 0.0664
0.4505 0.2577
0.70 2.33 336 0.2678 0.1214
0.5175 0.3485
0.80 4.00 1,976 0.3397 0.2055
0.5828 ' 0.4533
0.90 9.00 35,901 0.4175 0.3280
0.6461 0.5727
0.95 19.00 607,601 0.4582 0.4072
0.6769 0.6381
0.99 99.00 3.96 x 10° 0.4904 0.4686
0.7003 0.6845

R, = percent reduction in confidence interval width given equal run length; R: = percent reduction in run length given equal confidence interval widtn.

A—p

L) = f(0) +

+ (‘A Z H) e M (l + ! + x). (16)

In this case it is possible to calculate exactly the covari-
ance matrix X, so that exact results for the variance re-
ductions can be obtained (see [17]). Table 4 lists the cal-
culated variance reductions for this queue. Again sub-
stantial variance reductions are realized although the
method is less effective for high values of p.

These theoretical computations were then compared
with results obtained in actual simulations. For p = 0.5
the queue was simulated for a total of 200,000 cycles (the
expected number of customers simulated for this run is
400,000). The random number generator described in
Learmonth and Lewis [20] was used. These 200,000 cy-
cles were then broken up into R independent replications
of C cycles per replication for several combinations of R
and C(RC = 200,000). At the end of each replication,
point estimates for the various parameters of interest
were formed. The figures reported in Table 5 are then the
sample averages of the point estimates taken over the R
independent replications. Approximate 95% confidence
intervals for each parameter (formed in the usual manner
using the R i.i.d. replications) are given directly below the
point estimates. As an example for R = 200 and C = 1000
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a 95% confidence interval for r = E[W] = 1.000 based on
the estimate £, is (1.015 — 0.016, 1.015 + 0.016),

At the end of each replication 95% confidence intervals
for r were formed based on each point estimate for » using
the central limit theorem of Proposition 3. The fraction of
these confidence intervals that actually contained r is
given in Table 6. If valid conference intervals are being
formed, this fraction (called a coverage) should be ap-
proximately 0.95. Directly below each coverage is a 95%
confidence interval for the coverage based on the normal
approximation to the binomial distribution (see Appendix
3 of Lavenberg and Sauer [21]). Generally speaking, the
coverage increases with the run length C. Because of this
behavior care must be taken that the run length is not too
short; otherwise unjustified confidence may be placed in
the estimates. This suggests that the method may be bet-
ter used to produce very tight confidence intervals from
moderately long run lengths rather than to reduce the run
length by a significant factor. The sequential techniques
developed in [21] for determining run lengths are appli-
cable and may be of practical value in this area.

In order to use this method the functions (W), f,(W,),
and f,(W,) must be evaluated for each customer n. To get
a measure of the computational savings (if any) of the
method it is important to determine how much additional
work is required for each customer. From (15) and (16) it
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Table 5 Simulation results for waiting time process in M/M/1 queue with p = 0.5, point estimates and 95% confidence intervals.

Parameter True R =200 R =100 R =50 R=1
value C = 1000 C = 2000 C = 4000 C = 200,000

A 1.000 1.015 1.016 1.018 1.018
0.016 0.017 0.015

3 1.000 1.013 1.014 1.015 1.015
0.013 0.014 0.012

7, 1.000 1.011 1.011 1.012 1.013
0.011 0.011 0.010

Pk = 1) 1.000 0.999 1.000 1.003 1.003
0.006 0.007 . 0.006

ok = 2) 1.000 0.996 0.998 0.999 1.001
0.003 0.003 0.003

R 0.146 0.106 0.116 0.125 0.135
0.005 0.007 0.007

R: 0.033 0.015 0.018 0.022 0.026
0.001 0.002 0.003

o) 29.0 30.23 30.56 30.83 30.98
2.53 2.67 2.34

oy 23.67 24.67 24.95 25.18 25.31
2.21 2.34 2.05

T 19.48 20.30 20.53 20.73 20.83
1.93 2.04 1.80

ot 19.48 20.30 20.53 20.73 20.84
1.94 2.05 1.81

oL, 16.14 16.79 16.99 17.16 17.25
1.69 1.79 1.59

75 13.44 13.95 14.12 14.27 14.34
1.48 1.56 1.39

ai(B") 423 3.46 3.74 3.98 4.18
0.40 0.46 0.46

38" 0.948 0.505 0.603 0.699 0.792
0.079 0.104 0.119

is seen that to evaluate f, and f, one exponential and sev-
eral multiplications and additions must be computed for
each customer. From CPU times we estimated that on the

Table 6 Point estimates and 95% confidence intervals for 95%
confidence interval coverages for E[W] in an M/M/1 queue with
p =105,

average each customer using multiple estimates requires Estimator R =200 R=100 R=50
5/3 as much CPU time as a customer on a run using no C = 1000 C = 2000 C=4000
variance reduction technique. Since, for p = 0.5, we need ; 0.95 0.96 0.98
only simulate 0.03 times as many customers to get con- 0. (0‘91" 0.97) (0'90" 0.98) (0.90" 1.00)
fidence intervals of equal length (see Table 4), our compu- 3 0.95 0.94 0.96
tational savings, which is defined as the ratio of CPU ; (0-9(}’9 3-97) (0.8(!)3,9(‘)‘.97) (0'83’9%99)
times needed to obtain equally accurate estimates, is 0.05 2 (0'90', 0.97) (0.88', 0.97) (0,87', 0.99)
(= 0.03 x 5/3). For p = 0.9 we estimate the computa- Tk = 1) 0.87 0.88 0.94
tional savings to be 0.55 (= 5/3 x 0.33). On the other ek = 2) (0~8§973-91) (0-83’7%93) (0-8(‘)"9%98)
hand, if the CPU time is fixed to be the same for each 8" (0.68., 0.80) (0_70', 0.86) (0‘79', 0.96)
method, what is the statistical savings (defined to be the

ratio of confidence interval lengths for equal CPU times)?

Suppose for a specified CPU time we can simulate N, cus-

tomers using no variance reduction technique (method 1) o /N o

and N, customers using multiple estimates (method 2). R = o X (5/3)"2,

Since each method 2 customer requires 5/3 as much CPU 7o (B*)/N, ,(B*)

time as a method 1 customer, we must have N, = 3/5 N,. This ratio is 0.23 and 0.74 for p = 0.5 and 0.9, respec-
The ratio of the lengths of the confidence intervals is then tively. 579
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e Waiting time process in an M/M/2 queue

The structure of this queue, which is described in Kiefer
and Wolfowitz [22] and [23], is quite a bit more com-
plicated than that for GI/G/1. Nevertheless, it is possible
(though tedious) to perform the necessary calculations to
apply the method, particularly if £ is small. For a two-
server queue the state space E={w = (W, w,): 0=w, <
w,}, and in the M/M/2 case

1 1
fl(W) =w, + (—)\‘ - —,t:)
@ e—)\wz 1
e~)\w, + en(wl—wz) *)
AN+ ) AN+ oup

The M/M/2 queue was simulated for p = 0.5 and 0.90.
On the basis of these runs we estimated R? to be 0.32 and
0.58 for p = 0.5 and 0.9, respectively (complete simula-
tion results are given in [17]).

Notice that to evaluate the function f, three ex-
ponentials must be computed. Since this must be done for
each customer, the CPU time required for the simulation
is substantially increased. In fact we estimate that each
customer requires 2.25 times as much CPU time as in
straightforward simulation. Since, for p = 0.9, R? is
greater than 0.5 it must be concluded that in this case the
method is not computationally efficient. By this we mean
that for a fixed amount of CPU time more accurate esti-
mates can be obtained by not using the variance reduction
technique. For this reason the method is not recom-
mended for the heavily loaded GI/G/c queue (¢ > 1) un-
less the value of k£ can be increased and the functions
S+ - f, can be evaluated cheaply.

5. Conclusions

In this paper a variance reduction technique for a wide
class of stochastic processes has been proposed. The
method differs from most other control variable methods
in that the means of the control variables do not need to
be known explicitly. The method is capable of producing
substantial variance reductions. Because the method re-
quires additional computations to be done both before
and during the simulation, care must be taken so that the
method is used only when it is computationally advanta-
geous to do so; that is, it should only be used when for a
fixed amount of computer time more accurate estimates
can be obtained by using the method than by not using it.
In the case of Markov chains it is likely that the méthod
will be most effective when the transition matrix of the
process is sparse, and specially structured, in which case
the preliminary calculations can be carried out with rela-
tive ease. For example, a direct numerical analysis of
closed Markovian queueing networks which do not sat-
isfy the conditions necessary for a product form station-
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ary distribution is often infeasible since the number of
states may be enormous. Thus simulation (or sometimes
approximation) is the only feasible alternative. However,
for these queueing systems the elements of the transition
matrix are often very simple functions of only a few pa-
rameters. Thus the transition matrix need never be stored
and the functions f,(i) may be easily evaluated v/henever
the simulation enters state i{. In such a case the method
could reasonably be expected to work well.
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