C. Barrera
A. V. Strietzel

Electrophotographic Printer Control as Embodied in the IBM
3800 Printing Subsystem Models 3 and 8

Control of the IBM 3800 Models 3 and 8 electrophotographic printers is achieved by use of a fundamentally different control system
than was used in their predecessors, the Models 1 and 2. As a result, printing of composed pages or electronic overlays can include
text of many different font sizes and styles printed in multiple orientations, as well as raster images up to a full page in size. The
printers manage stored resources, including fonts, segments of pages, and electronic overlays. Pages are composed inside the
printers in a logical sequence, instead of by the more traditional line-by-line sequence. This, as well as the capability to position
text and images at any addressable point, enhances usability. A high-speed, table-driven character generator, a new command set,

and a microcoded control unit make all of this possible.

Introduction

The IBM 3800 Printing Subsystem Model 3, as indicated in
the introductory paper [1] for this series of papers on the
3800, is an extension of the Model 1; it provides expanded
and fundamentally different methods of composing pages. All-
point addressability removes most restrictions on the place-
ment of characters and other figures, while the elimination of
any requirement to order print data in the conventional top-
to-bottom sequence . simplifies the task of page-formatting
software. The Mode! 8 has the added capability to print using
very large character sets such as those required for kanji or
Chinese alphabets.

Features include the storing and merging of electronic
forms, printing of raster images, and use of a large number of
fonts. Powerful text-formatting commands simplify printing
and allow the composition of complex pages that could not
be printed by a line printer. Most of the new functions are
implemented in microcode, which controls the entire machine
and creates the printer’s visible host-processor relationship. In
addition to the microcode, the 240-pel- (picture element) per-
inch density and the positioning of print objects with one-pel
resolution required the design of faster, more complex hard-
ware to retain the high speed of the 3800 Models 1 and 2
(except when indicated, hereafter designated as Model 1).

The paper path, most servo systems, and the fusing system
of the Models 3 and 8 (hereafter designated as Model 3 except

when indicated) are essentially identical to those of the Model
1. These were described in previous papers [2-6].

All-points-addressable printing

o Primary printing functions

The 3800 Model 3 operates in two modes: advanced function
mode (page mode) and compatibility mode. In compatibility
mode, commands are processed as if the printer were a Model
1; in page mode, the Model 3 accepts a powerful command
set that supports fully composed pages. The command set is
fundamentally different from that used to drive line printers.
Compatibility mode functions are essentially identical to those
of the Model 1 and have been described in an earlier paper

[2].

The printer handles pages in two stages: The page descrip-
tion is received from the host-processor interface (System/370
channel) as a series of commands. These commands are
processed to create control tables that will drive a high-speed
character generator (see the later section “Processing func-
tions”). This “page build” process is synchronized with the
host processor; each command is completely processed before
another is accepted. Once the tables are built, the page is
buffered; that is, it is enqueued and waits for the second stage,
which is the printing process in which printed pages are
produced. Printing must be synchronized with the physical

©Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the
first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor. 263

C. BARRERA AND A. V. STRIETZEL

IBM J. RES. DEVELOP. @ VOL. 28 « NO. 3 « MAY 1984

264

Channel
to host
system
Channel
adapter Diskette
Raster Compressed
Microprocessor |— | 4 pattern pattern
I storage storage
| \ i
[Character
generator
Control
storage l
2] {
=| 2
Q2 E= .
; E g;rf'g . Accumulator
S| §
&) @] l
Photoconductor
drum
Modulated Serializer

laser

Figure 1 Major components of the 3800 Models 3 and 8.

positions of the photoconductor drum and the paper line. It
is asynchronous with host-processor command processing.
Buffering of pages allows considerable process overlap; the
varying processing time for pages of differing complexity need
not affect the constant print rate.

Fonts

A font in the Model 3 context is a set of characters of a given
style and size. A font includes descriptive attributes, as well as
the raster patterns that define the character shapes. Individual
characters of a font are selected for printing by specifying a
one- or two-byte character code. A one-byte code set, such as
ASCII or EBCDIC, specifies up to 256 such codes (usually a
number of codes are reserved for control functions). An
ideographic alphabet, such as kanji, may require over 7000
characters for useful printing. For this type of alphabet, a two-
byte code is used to specify each character to be printed.

The Model 3 accepts only one-byte fonts while the Model
8 accepts both one-byte and two-byte fonts. The designation
is based on the length of the code used to specify characters.
The Models 3 and 8 can store up to 64 complete fonts; the

C. BARRERA AND A. V. STRIETZEL

actual number stored is usually less because of space limita-
tions. In the case of two-byte fonts such as kanji, each font
may consist of up to 63 sections, each of which can contain
as many as 190 characters. The character patterns for one-
byte fonts are stored in a semiconductor storage, designated
as the raster pattern storage, or, alternatively, on a floppy
diskette (see Figure 1). Two-byte character patterns are kept
in compressed pattern storage, a designation which reflects
the usual practice of compressing these character patterns.
The host processor loads fonts or font sections by name. The
printer microcode allocates and deallocates space as required
and performs “housecleaning” functions, if needed, to recover
fragmented storage space. An attempt to load more font data
than will fit in the available storage causes the printer to notify
the host processor of an exception condition.

Although the Model 3 can store and manage tens of fonts—
enough to print most pages—it will normally print many
kinds of documents requiring hundreds of different fonts. The
printer’s capability to store fonts by name and delete them
singly or in groups supports the host processor’s overall font-
management requirements.

Page composition

One of the primary functions of the printer microcode is to
prepare a complete page, by converting it to internal control
table format, before printing is started. Such pages are stored
until printed, after which the control tables for the page are
discarded. The commands that describe a page need not be
ordered relative to the position of data on the page; that is,
lines of text need not be received in top-to-bottom sequence.
Indeed, data need not be received as text lines at all. This
allows text to be oriented vertically on the page as well as
horizontally, and facilitates printing text in columns. The
printer microcode reorders individual print objects (characters
and image rectangles) top to bottom, as required by the
character generator, by constructing ordered lists.

It was decided that the page-composition functions of the
Model 3 should be general and simple. For example, there is
no command that directly produces underscored characters.
Instead, a general capability for drawing horizontal or vertical
lines at positions specified in an orthogonal coordinate system
allows characters or words to be underscored. This kind of
generality requires a certain amount of extra processing by
the host-processor software, but it greatly simplifies the printer
commands. These commands are therefore easier to under-
stand, more versatile, and less subject to change than they
would be if they provided a large number of specialized
functions.

Raster images

A raster image is a collection of pels, each described by a
single bit, that appears on the page as a rectangular array of
dots. Images accepted by the Model 3 can be thought of as a

IBM J. RES. DEVELOP. ¢, VOL. 28 ¢,NO. 3 ¢,MAY 1984

series of scan lines one dot wide and long enough to fill the
image rectangle. Raster images are intended to be used for
objects that are not easily described otherwise. Company logos,
signatures, and drawings are examples. Although a resuitant
picture or drawing may be arbitrarily complex, the picture
elements or dots of which it is made can always be described
by a rectangular array of bits. Nevertheless, careful design is
required to minimize the processing and movement of raster-
image data because there is usually a large quantity of such
data. For example, an image to fill a standard page might be
19.05 X 25.4 cm (7.5 X 10 in.) in size, a rectangle that requires
540 000 bytes of image data. When received, the data are
moved to raster pattern storage. From there, the character
generator retrieves them in approximately the same way it
retrieves character patterns. Images larger than about 464 cm’
(72 in.%) do not fit in the raster pattern storage. A special
process called accumulation is used to handle such images.
This process is described later under “Processing functions.”

The large quantity of data usually associated with raster
images would require very fast or highly parallel processing
for simple modifications such as orthogonal rotation. Trans-
formations such as nonorthogonal rotations or nonintegral
size changes require complex algorithms to effectively process
the quantized data. Inclusion of such a capability would have
meant a substantial cost increase while significantly enhancing
the processing of only a fraction of the pages expected to be
printed. As a result, image data modifications in the Model 3
are limited to a single two-to-one size transformation and cell
replication. Repetitive pel patterns are sometimes useful; an
example is a shading pattern that might be used on a form.
The Model 3 provides an efficient way to handle repetitive
patterns through cell replication. The printer can receive an
image cell, described as the source image, and expand it by
replication to fill a target rectangle, which is the pattern that
appears on the printed page.

Page segments

One class of object stored by the Model 3 is called a page
segment. This is a collection of text or image data that can be
added to a subsequent page. Many different documents can
be created merely by including page segments in different
combinations. The result is decreased host-processor time and
less data transmitted over the host-processor interface. Page
segments assume the environment (such as font equivalence
and page boundaries) of the underlying page. Thus, a page
might be printing using Font A; a segment included on that
page would also print using Font A. Exactly the same segment
would print in Font B if it were included on a page at a point
where Font B is active. The capability of a segment to take on
the characteristics of the page it appears on enhances its
usefulness. However, because the segment shares the under-
lying page environment, any changes it makes to the environ-
ment potentially affect the rest of the page.

IBM J. RES. DEVELOP. ¢ VOL. 28 ¢« NO. 3 ¢« MAY 1984

Electronic forms

Much computer output is produced on preprinted forms. If a
printer could reproduce forms on blank paper, the costs
associated with preprinting, stocking multiple forms, and re-
quiring an operator to load different forms in the printer could
be eliminated. The Model 3 provides such a facility through
the use of overlays.

An overlay is a stored object containing text or image data.
The host processor can transmit an overlay to the printer,
giving it a name. Subsequently, the variable data to be in-
cluded on the form can be transmitted along with a command
specifying the inclusion of the stored overlay. When including
overlays, the microcode takes advantage of its capability for
handling print data in any sequence. Thus, the variable part
of the page is built first, then the overlay data are processed.
With the printer locating both the overlay and variable data,
alignment between them is perfect; it does not depend on
machine tolerances, precision preprinting, or careful adjust-
ment by an operator.

Overlays are stored by name, simplifying host-processor
resource management. They are stored in coded form, that is,
exactly as they are received from the host processor. As a
result, the coded data are processed once each time the overlay
is included on a page. Although this seems inefficient, it
requires no more capability than the printer already uses to
produce a complex page without an overlay, and this usually
can be done with no speed degradation. Thus, it was decided
to conserve space by storing the coded form of overlays, and
to exploit the printer’s speed to preserve performance. When
an overlay is stored, the existing environment is stored with
it. This permits independent specification of variable data and

- overlay characteristics, simplifying host processing. If the host

processor specifies a “raster overlay,” the printer processes the
data upon receipt and stores them in a full-page buffer called
an “accumulator” (see the later section, “Processing func-
tions”). The raster overlay can then be merged with any page
as the page is printed. Because all processing occurs at loading
time, the overlay can be arbitrarily complex while affecting
performance only at loading time, with no effect on subse-
quent pages.

Preprinted forms can also be used. This can provide very-
high-quality backgrounds or logos not possible with the 240
pels/in. density of the printer, and the preprinting can be in
color. Simple operator adjustments are available for aligning
variable data with the preprinted data.

Page copy modifications

One or more copies of a page can be modified in several ways
by the Model 3. On a single copy, up to eight overlays can be
added, up to eight suppressible text areas can be added, the
forms flash can be applied, and edge marks used to identify

265

C. BARRERA AND A. V. STRIETZEL

266

Overlay Page Segment
image image image
state state state
T §] f
End WIC End Wic Eild WIC
Overlay Page Segment
state state state
| ¥ I T T ¥
EP BO E*P BP EP BPS
Home (
- state
End LI;C
Font] Index
state <—End state

Figure 2 Operational states of the printer in page mode.

job boundaries can be added. These functions are independent
of the basic page definition, so the exact number of copies
desired can be produced without modification to the page-
generation software.

Objects stored by the printer, such as overlays, segments,
fonts, and copy control information, may remain stored while
many pages are being printed. Thus, the printer maintains a
long-term environment. While this provides powerful and
efficient printing functions, it also causes certain new recovery
difficulties that were not encountered in earlier printers. Re-
covery from a situation where a stored object is needed but
not available is complicated by the time lag between the
loading of objects and their subsequent use. Instead of the
host processor simply restarting at the beginning of a page, it
may be necessary to back up many pages or even several
documents to find the point at which objects were loaded. To
minimize such effects, the printer validates objects as they are
received to reduce the probability of their causing an error
later. Validation generally ensures that command formats and
command parameters are within specified limits.

A decision was made to optimize the amount of checking
used. Too little checking permits errors whose symptoms are
hard to associate with their cause due to the time lag; too
much checking adversely affects printer performance. To fur-
ther ensure that objects are available when needed, the printer
detects changes in the environment. In the rare instance of
power loss or a transient microprocessor error, the printer
notifies the host processor that objects must be reloaded.

The environment can also be altered by correct but unusual
conditions. A complex page that requires very large amounts

C. BARRERA AND A. V. STRIETZEL

of storage might be printable only if it is internally merged
with an overlay, thus making the overlay unusable for subse-
quent pages. Rather than rejecting the page, the printer prints
it and requires that the host processor reload the overlay.
Where there was a design choice between altering the environ-
ment and slower-than-normal processing, the latter was se-
lected. As a result, the Model 3 can priflt almost any page at
some speed, and the need for host-processor recovery is min-
imized.

Typical command sequences and functions

o Machine states

When operating in advanced function mode, the Model 3
maintains internal machine states that define the effects of
host-processor commands (see Figure 2 and Table 1). For
example, page defaults cannot be set in page state, i.e., after a
page has been started. The machine state thus not only defines
command effects, but is the basis for command-sequence
checking. By defining the various states, the commands that
are valid in each state, and the exact ways in which commands
cause state changes, the state diagram becomes an effective
way to describe the machine.

o Command design

Command parameters were made general wherever possible
to support future expansion or even future printers. For
example, a two-bit parameter would have been sufficient to
specify the three allowed text orientations. Instead, the ori-
entation is specified as two two-byte fields, each of which
specifies an angle in degrees and fractions. The first parameter
determines the direction in which to move when characters
are added to a text line, the second, the direction in which to
move when text lines are added. Such generality costs very
little and allows great flexibility for the future.

The cost is not always negligible, however. Processing of
very general commands takes time and may affect perform-
ance. If instead of a few parameters the data processed turn
out to be extensive, the difference between generality and
device dependency can be critical. Such was the case with
character patterns. A general, easily transformed format would
have saved space and been versatile. But speed requirements
resulted in a format that could be loaded and used without
modification; the format reflects a number of internal char-
acteristics of the character generator.

o Font handling

Character patterns of a font stored on the floppy diskette
cannot be accessed fast enough to support the character gen-
erator. Such a font is called “stageable” because it is loaded in
stages, first to the diskette, then to the raster pattern storage.
While the control tables for a page are being generated, a font
needed by a page is automatically transferred from the diskette

IBM J. RES. DEVELOP. e VOL. 28 ¢« NO. 3 ¢« MAY 1984

Table 1 Relationship between commands and internal states.

Commands causing state changes:

Write Image Control (WIC)
Load Font Control (LFC)
Begin Page (BP)

Begin Overlay (BO)

Begin Page Segment (BPS)
End Page (EP)

End

Other commands (valid states are indicated):

Home Page Overlay

Segment Page Overlay Segment Index Font
image image image

Load Page Description
Load Page Position

Load Copy Control
Execute Order Home State
Delete Overlay

Delete Page Segment

Load Font Equivalence
Delete Font

Load Font Index

Load Font

Write Text

Write Factored Text Control
Include Page Segment
Write Image

P K K M KK

bRl
bl

bl

to the raster pattern storage. This scheme allows a large
number of fonts to be stored in the printer while conserving
monolithic storage space. The host processor does not need
to, and indeed cannot, manage the staging process.

In order to load fonts from the host processor, two kinds of
control information are transmitted, followed by the character
raster patterns. The Load Font Control command transmits
attributes common to all characters of the font, such as the
font identifier and the maximum or uniform character-box
dimensions.

The Load Font Index command transmits attributes that
differ for each character. More fields are significant for pro-
portionally spaced characters than for fixed-spaced characters.
Two indexes can be transmitted if a set of characters is to be
printed in two orientations.

The Load Font command transmits character raster pat-
terns. The design of the character generator hardware (see
“Processing functions”) places several restrictions on the for-
mat of the raster patterns. First, the set of raster patterns for
a font can occupy up to 510K bytes, while a two-byte number,
chosen to minimize control-table size, addresses the patterns.
Hence, each character pattern was constrained to start on an
eight-byte boundary.

IBM J. RES. DEVELOP. & VOL. 28 & NO. 3 &« MAY 1984

The raster patterns are kept in the raster pattern storage,
which is dynamically allocated in blocks of 2048 bytes. To
simplify storage management and avoid periodic clean-up of
fragmented storage, no requirement was made that all the
characters of a font should reside in contiguous raster pattern
storage blocks. As a result, the raster pattern of a character
must not span a 2048-byte boundary; otherwise, the pattern
would sometimes be loaded into two noncontiguous blocks,
and the hardware that accesses it would have to be inordinately
complex. Another consequence of the 2048-byte blocking is
the limitation of character-box size to 128 by 128 pels, or bits.
The largest character occupies exactly 2048 bytes. Assuming
noncontiguous blocks, processing larger characters would have
required either larger blocks or complex addressing schemes
and expanded tables. Neither alternative was believed to be
justified.

Controls embedded in text data select the font to be used
for subsequent characters. Selection is done by font number,
which is distinct from the font ID, which identifies each font
stored in the printer. A table loaded by the Load Font Equiv-
alence command equates font numbers with font IDs. This
permits any of the stored fonts to be called by an arbitrary
font number. The font in which text prints can thus be
changed by altering the font-equivalence table; the text data,
which are frequently extensive, need not be reprocessed. Soft-

267

C. BARRERA AND A. V. STRIETZEL

268

ware that generates print data can be independent of font-
naming conventions, and can instead select fonts simply as 1,
2, 3, -+ +; external font management then associates actual
fonts with these font numbers. The result is the capability of
the printer to handle unaltered print data from different
sources, simplified page development, and independence of
text-generating software.

The Delete Font command allows the host processor to
manage fonts loaded into the printer. Because the number of
fonts available at an installation is usually far greater than the
number that can be stored in the printer, such management
should be facilitated by printer design. With the Delete Font
command, the host processor can select a single font, all
nonstageable fonts (those that the printer is not allowed to
remove from the raster pattern storage), or all fonts except the
few that permanently reside on the printer diskette. In the
case of two-byte fonts, the deletion may be specified for certain
sections. Fonts required by a stored object (overlay or page
segment) are locked; that is, they cannot be deleted until the
associated overlay or segment is deleted. This ensures that the
stored object can be processed at the time it is called.

e Page definition

A page is delimited by the pair of commands Begin Page and
End Page. Between these two commands, any number of
page-composition commands define the print data. Before the
print data can be processed, page boundaries, various defaults,
and the number of copies, possibly modified, must be estab-
lished. This is done with the Load Page Description, Load
Page Position, and Load Copy Control commands, which
must precede the Begin Page command for the applicable
page. (These commands are described more fully later under
“Processing functions.”) The most obvious page-composition
command is Write Text, which transmits both text data to be
printed and embedded controls. The text data can be coded
as EBCDIC, ASCII, two-byte kanji, or any other code.

Embedded controls, identified by an escape code, perform
formatting functions. General controls move the current print
position by specifying absolute or relative x, y values. These
can be used to indent a paragraph, position subscripts or
superscripts, and in general to position print data on the page.
One control selects the font to be used for the following text;
another selects the orientation of lines of text. Some text
controls perform more specialized functions. The left margin
and line spacing can be set; then a next-line control moves
the print position down one line and to the left margin. A
parameter called character increment inserts spaces between
the characters of a word, facilitating line justification. Other
controls draw vertical or horizontal lines of specified thickness.
The embedded controls are more efficient than separate
printer commands would be because they avoid overhead in
the host processor, the host channel, and the microcode.

C. BARRERA AND A. V. STRIETZEL

The Include Page Segment command specifies a previously
stored segment to be included on the page at the current print
position. Raster images are placed on a page by a sequence of
image commands (see “Raster images”). These commands
can be interleaved with Write Text commands to produce a
page in the desired format.

o Raster images

An image is loaded in the printer by a sequence of image
commands. The Write Image Control command specifies the
dimensions of the source and target rectangles, the location of
the image relative to the current print position or other
coordinate systems, and selection of double-dot processing.
One or more Write Image commands must follow the Write
Image Control command. These transmit the raster data as a
series of uncompressed scan lines. The End command delimits
the end of the raster data. As with the font-load sequence, the
End command facilitates checking and consistency but is not
otherwise necessary.

e Page segments and overlays

Page segments and overlays are similar objects stored by the
printer. Each is delimited by begin and end commands (Begin
Page Segment in one case, Begin Overlay in the other). Except
for the begin command, the command sequence for defining
a segment or overlay is the same as that for defining an
ordinary page. (The Include Page Segment command is not
allowed inside a page segment.) The Begin Page Segment and
Begin Overlay commands specify the name that may be used
later to identify the segment or overlay to be included.

Object definitions are terminated by specific End or End
Page commands instead of by any of the set of commands
which by inference must signal the beginning of a different
object. Thus page build is terminated and the page printed
immediately by the End Page command, rather than by
waiting for the beginning of a subsequent page or other object.
Hence, the question of what to do with the last page of the
day never arises, and errors are easier to associate with the
correct object.

o Page buffering

If the host processor transmits data faster than pages can be
printed, printer resources eventually become saturated, and
no more pages can be stored. Limiting resources are the
microprocessor storage, which contains font-control tables,
stored objects such as page segments and overlays, and the
tables belonging to buffered pages; raster pattern storage,
which contains one-byte font patterns and raster image data;
and compressed pattern storage. If one or more pages are
buffered in the printer, resources are freed as control tables,
fonts, or images are discarded following printing of the pages.
Hence, if needed resources are unavailable, the microcode
suspends processing of the current command until the re-

IBM J. RES. DEVELOP. ¢ VOL. 28 » NO. 3 ¢ MAY 1984

quired resources have been deallocated. It may take many
seconds or even minutes to free sufficient resources; the device-
end signal to the host-processor channel can be delayed by
that amount of time.

Processing functions

o Page-build environment

A resource environment is created inside the printer before a
logical page for printing is defined. The channel commands
discussed above are used individually or in sequences to
establish a resource pool of overlays, page segments, and fonts.

A sequence of commands starting with a Begin Overlay
(BO) command defines a stored electronic form or page over-
lay, as shown in Fig. 2. The BO command sends a one-byte
overlay identifier, which is entered into the overlay name
table. Storage space is reserved for the overlay and pointed to
by the entry in the name table. At this point, the page-build
environment is collected and saved in the overlay storage area.
The font-equivalence table and the page position and page
description parameters, which together comprise the page
description block (PDB), are saved for later use during overlay
inclusion.

Following the BO command is a sequence of commands
defining the text and image data that make up the overlay. As
text commands are received, they are added to the overlay
storage area, preceded by a header with the command code
and data length. The text data, which contain embedded
control information, are stored without modification and later
retrieved for processing at overlay-inclusion time. In general,
conversion of text-command data to character table represents
an expansion in data size by as much as 8:1. It is, therefore,
more storage-efficient to store the text as received rather than
to convert it to character table.

When image data are sent as part of an overlay, it is
impractical to store the raster patterns in control storage until
overlay-inclusion time, because of the typically large size of
images. The raster data instead are moved directly to RPS,
and an intermediate RPS block representation of the image is
created and stored in the overlay storage area. This RPS block
form defines the shape of the image and contains pointers to
it in RPS. This form is far smaller than the raster pattern, and
for most images smaller than the character table representa-
tion required for the character generator hardware at page
print time. At overlay-inclusion time, the RPS block form is
translated into character table form, which contains the infor-
mation for the placement of the image on the physical page.

The Begin Page Segment (BPS) command, which initiates
segment loading, sends a one-byte identifier which is entered
into the segment name table in printer control storage. A page

IBM J. RES. DEVELOP. ¢ VOL. 28 @ NO. 3 « MAY 1984

segment is similar to an overlay and is stored in much the
same format. For a page segment, however, the page-compo-
sition information and font equivalence table (FET) will be
those of the page on which the segment is included. Therefore,
the FET and the PDB are not stored with the command data
for page segments. As for overlays, text data are stored as
received, and image data are moved to RPS and represented
in segment storage in the RPS block form.

Text suppressions are sections of the text data on a logical
page that may be omitted or suppressed from one copy of the
page to the next. Suppressible data are flagged with an embed-
ded control inside the base-page text data. When a suppression
is recognized, an entry is made in the suppression name table,
and space is reserved in a suppression storage buffer in printer
control storage. Because it is easier to add the suppressible
data to a page that wants them than to delete them from a
page that does not, the suppression is stored in the same
format as a page segment. At the time an overlay is included
on each copy of the page to be printed, those suppressions not
called out are restored to the page, following the same rules
as page segments. Since suppressions are actually sections of
a page being built, when the internal table representation of
the page is complete the suppression storage is freed and the
suppression name table is erased. This is performed at the end
of the End Page command. Segments and overlays are re-
sources loaded in the host processor that endure from page to
page until explicitly deleted by the host processor.

e Base-page build

It is often desired to produce several copies of a page that
differ from one another. This copy-modification function is
achieved with the Load Copy Control (LCC) command, which
causes the copy control block (CCB) to be built in control
storage. A page is defined for printing by a sequence of
commands starting with a Begin Page command and finishing
with an End Page command. These commands define the
base page. The CCB specifies the modifications to be made to
the base page, overlays to be included, and suppressions to
exclude. The CCB may specify up to 127 different copy groups,
each with its own copy count and list of overlays and sup-
pressions.

Figure 3 shows how overlays can be used to generate the
page headings and various column headings for a hypothetical
packing slip and bill of material. On the packing slip, the
prices, which were loaded as suppressible text, have been
suppressed. Thus, multiple overlays perform the functions of
a multiple-part form, and suppression capability functions as
spot carbons. When a Begin Page (BP) command is received
to start a base-page definition, the binding of the logical page
to the physical page is performed, resulting in the definition
of the printable area. The length and width of the logical page
are specified by the Load Page Description (LPD) command,

269

C. BARRERA AND A. V. STRIETZEL

270

AC ACME Co.
ITEM No. PRICE AN
wmyen
V- : my
VW
| ommean
TOTALS S
ACME Co.
Overlay 1 Overlay 2 Base page data
Suppression 1
AC ACME Co. AC ACME Co.
H}/I;/I/\//[I}o. ITEM No. PRICE
ml v mwr
/4 w4 m
mr v m o /A
mwy v m N
TOTALS $ W/
ACME Co. ACME Co.
Packing slip: Bill:
overlay 1, suppression 1, overlay 1, overlay 2
2 copies include 1, 3 copies

Figure 3 Examples of overlay and suppressed text usage. Overlays,
suppressions, and copy counts are specified by the Load Copy Control
command.

Format code Sub-| 2-byte
00000010[(000000|scan} header
- 2 bytes -
Format R) .
chdeo Starting pel | 0010 Starting pel Series of
Sub- [Character Character 00 Character Character 6|;b¥ tel
cangheight (scans){ width (pels) height (scans)| width (pels) fat;‘lg‘c er
RPS pointer RPS pointer entries
Pointer to next C.T. entry
00010000 600G00000
4-byte
terminat
Pointer to next C.T. entry erminator

(@) (b)

Format code

00000100

Sub-
00 000 0fscan

4-byte header

Character

00 height(scans

Character width
(pels)

0010 Starting pel

4-byte character
table entry

RPS pointer

00010000 00000000
4-byte terminator

Pointer to next C.T. entry

(c)

Figure 4 Internal character table formats: (a) 8-byte, most general
character table entry; (b) 6-byte character table format—all characters
on same scan line; (c) 4-byte character table format—all characters
same size and on same scan line.

C. BARRERA AND A. V. STRIETZEL

and its placement on the physical page is specified by the Load
Page Position {LPP) command. At Begin Page time, now that
the size of the physical page is known (it is the size of the
paper loaded in the printer), the intersection of the logical and
physical pages is determined: this is the printable area. The
printable-area dimensions are recorded in the page description
block (PDB) and used during page build to ensure that text
and image data remain inside the printable boundary. Recep-
tion of the BP command places the printer in page state. The
ensuing Write Text, Write Image, and Include Page Segment
commands cause the internal table representation of the base
page to be built. Inside the printer a page is represented by a
page control block (PCB), which contains pointers to two
tables, the scan table and the character table.

The character table contains an entry for every character or
section of image on the page. It is arranged as a linked list of
entries, representing characters starting on the same group of
four contiguous scan lines. There are actually ten different
formats of character table entries, all containing similar infor-
mation. One format [Figure 4(a)] represents the most general
placement of characters on the page and requires eight bytes
of character table for each entry. For one text orientation, that
for which the direction of successive characters is along a scan
line, it is possible to separate some of this information into a
table header and terminator. Because these characters are
received in order and all start on the same scan, they can be
represented by a two-byte header, a series of six-byte entries,
and a four-byte terminator [Figure 4(b)]. When characters are
all of the same size, the size information can be moved to the
header, providing a further reduction in character table size
[Figure 4(c)]. While it is possible to have fonts with characters
up to 64 scans high, the character generator cannot process
characters over 64 scans in height. When a taller character is
encountered, a second character table entry is created and
linked into the list for the appropriate scan line. Character
table size is important, because it determines the number of
pages that can be buffered awaiting print, which determines
printer throughput.

The scan table comprises 1024 two-byte entries, each rep-
resenting a group of four scan lines on the printed page. The
scan table is actually a sorted list of character table list pointers.
If a character table list represents characters starting on scan
line 242, scan table entry 60 points to that list. The fact that
the characters start on scan 242 and not 240 is coded in the
subscan field in the character table entries (Figure S).

The character table lists are not sorted by the x-position of
the characters. To do this would require a microcode search
of the linked list to find the correct placement of an entry,
greatly slowing down the table build process. Instead, the
character generator is designed to place characters anywhere
across the page, once the correct starting scan position has

IBM J. RES. DEVELOP. ¢, VOL. 28 & NO. 3 ¢ MAY 1984

been reached. Controls inside the Write Text command select
fonts, establish print orientation, and move the placement
cursor on the page. When a character is specified, the EBCDIC
code is used as an offset into the font index table (FIT) of the
currently selected font. The character size information and
pointer to the character in RPS are extracted from the FIT
and placed in the character table.

Text data are usually specified in strings of characters that
print in the same orientation, using the same font. The micro-
code has been structured to take advantage of this, and is
arranged as a series of character table build loops, nine in all.
The overhead involved in obtaining table space, selecting a
font, and determining the starting scan is invested, and the
loop is entered to build a string of character table entries of a
common format. The optimal performance of these loops was
a crucial design objective, as they basically determine the
performance of the printer. Every effort was made to move
overhead out of the innermost loops and to enter the loops as
quickly as possible. One technique employed is to start proc-
essing the Write Text command data before they are all
received. Upon receipt of the command byte, the Write Text
command handler is called without waiting for transmission
of the command data. As data are needed, the Write Text
command handler queries the channel data transfer count.
With this design, a minimum delay waiting for data transfer
is incurred.

o Modified page build and end page time

The reception of an End Page command signals the end of a
base page definition. At this point the page is represented by
a PCB, character and scan tables, and perhaps a group of
stored suppression data. The next step is to build the modified
copy groups, using the CCB. For each copy group specified in
the CCB, the microcode builds a page of modifications. First,
a PCB is allocated to represent the copy group; a new scan
table is allocated and the base page scan table is copied into
it. In this way, the copy group page shares the base page
character table without having control of it. (see Figure 6).
For each overlay specified in the CCB entry for this copy
group, the stored page-build environment is retrieved. The
text data are then passed to the Write Text command handler
to process as if they had been just received from the channel.
The suppressions are treated like negative overlays; any sup-
pressions not mentioned in the CCB entry are restored to the
modified page. At this point, the modified page owns the
character table that represents only the additions to the base
page; there is no duplication of the base-page character table.

The options for this copy group are extracted from the CCB
and placed in the PCB. These options include the number of
copies to print, whether to flash this copy group with the forms
overlay flash, and whether to include the raster overlay. Fi-
nally, the PCB is placed on a queue of PCBs awaiting print.

IBM J. RES. DEVELOP. & VOL. 28 4 NO. 3 & MAY 984

—
ot
m

|

|

|

|

I
.

‘O OIO

Character
table
(control storage)

cC OO0 0O 0000 O

000 00 O,

Physical page Scan
table
(WCS)

RST

Font in
raster pattern
storage

Figure 5 Scan table and character table representation of a page.
The scan table points to the character table; the character table points
to raster pattern storage.

]
7 \ —4.\‘~> N S N =
o ° N o
Base page [E N 2 T 2
PCB — 74 T : °
/ o o
] Base page Physical
Base page character table base page
scan table
L A o A A o
Ol N N o)
Copy Lo N 2 T ?
Group 1 o o
PCB Copy Group 1 o o
character table
Physical page
for
Copy Group | Copy Group |
scan table

Figure 6 Table representation of multiple copy groups. The copy
groups share the base-page character table; the new character table is
generated only for modifications.

This process is repeated until the last CCB is reached. The last
copy group uses the base page PCB and therefore owns the
base page resources. As it is the last to print, the base page
tables will be deallocated once the last copy group is printed.

o Page processing

Inside the structure of the Model 3 microcode, page table
building and page printing are disjoint and asynchronous
processes. These two processes communicate by means of the
PCB queues (see Figure 7). The page-scheduling-and-printing
process is awakened periodically by timers to service process-

271

C. BARRERA AND A. V. STRIETZEL

272

Drum

Fuser
station

I()itacker O
O Transfer

station

Paper line

Logical Logical
pages pages
awaiting awaiting
deallocation - print

Figure 7 Queuing of pages awaiting printing and deallocation.

|__» ABCD
- [IS DE—
r_.
Scan Character
table table

IEU control storage Raster pattern storage

CGEN scan counter Serializer scan count

Serial
128 data
scans to

laser

Strip buffer

Figure 8 Page tables control. During printing, CGEN scan counter
and serializer scan counter cycle through the strip buffer. Raster
patterns are transferred to the strip buffer and are serialized to the
laser.

control hardware and to interrogate the PCB queues. When a
PCB is found awaiting print, space is reserved for the page on
the drum. As the drum rotates, the reserved space reaches the
forms flash station, at which time the forms overlay is flashed
if required for this page. As the reserved space approaches the
laser station, the character generator control microcode is
awakened, and processing of the page tables is begun. The
character generator hardware uses the information from the
character table to transfer raster patterns from RPS to the
strip buffer. The strip buffer is a raster-pattern buffer repre-
senting 128 scan lines of maximum page width. There are two
hardware address pointers into the strip buffer: the CGEN
scan count (store pointer), which determines the placement
of patterns transferred from RPS, and the serializer scan count
(fetch pointer), which points to the scan line from which strip-
buffer data are fetched to be serialized and used to modulate
the laser during page exposure. These two pointers cycle
through the strip buffer as the drum rotates and scan lines
progress down the page (see Figure 8).

C. BARRERA AND A. V. STRIETZEL

It is crucial that the serializer scan count not overrun the
CGEN scan count during page table processing. If this should
occur, the page image on the photoconductor is invalid and
must be erased and retried. The cause of this condition may
be a higher concentration of characters in a certain scan-line
band than can be processed by the character generator at
serializer speeds. In this situation, retrying of the page does
not result in successful page exposure. If the printer is
equipped with an accumulator, the page may be stored in the
accumulator and then printed as discussed below. If there is
no accumulator, the page is unprintable, and an exception
condition is created and returned to the host processor.

During page printing, the microcode tracks the progress of
the serializer down the page. It searches down the scan table
to find a nonzero entry. If the scan number of the entry plus
the scan height of the first character on the list is greater than
the serializer scan count plus 128, the serializer has not yet
progressed far enough down the page to begin moving this
character to the strip buffer. The microcode calculates how
much farther the serializer must progress and sets this value
into a scan count interrupt timer. An interruption is generated
when the serializer has progressed far enough to permit further
character generator activity.

When a nonzero scan table entry is found and the serializer
scan count is at a proper value to allow it, the processing of
the character table list is begun. The microcode reads the
header or format of the character table entry and primes the
character generator processing-mode registers. The microcode
then establishes a cycle-steal pointer to the character table and
initiates a cycle-steal operation. In this mode, the character
generator reads a character table entry from control storage
into its own working registers and then uses the starting pel,
character size, and RPS address information to transfer the
raster pattern from RPS to the strip buffer. These transfers to
the strip buffer cause the character to be ORed onto whatever
data were in the strip buffer at that location, thereby achieving
an overstrike capability.

Upon completing one character, the character generator
performs another cycle-steal operation for the next character
table entry until a list terminator is encountered. In this way,
long strings of characters can be processed with minimal
microcode intervention. Since the character generator can
address the entire width of the strip buffer, it is not necessary
to sort the character table lists by starting pel, further unload-
ing the microcode during page building. When the character
generator encounters a terminator, the microcode is inter-
rupted. If the cycle-steal pointer is set to a new header, that
header is processed and the character generator is restarted. If
the cycle-steal operation has reached the end of a list, the
microcode resumes its search down the scan table for a new
linked list.

IBM J. RES. DEVELOP. & VOL. 28 « NO. 3 « MAY 1984

Upon reaching the end of the page, status registers in the
character generator and serializer are interrogated for latched
check conditions. If any were found during page exposure, the
image on the photoconductor is invalid and must be erased.
The photoconductor is cleaned and the page rescheduled for
a retry operation.

o Accumulator

The accumulator is a full-page raster buffer which may be
loaded with a page overlay image by a host-processor com-
mand. This is accomplished by specifying the overlay identifier
254 in the Begin Overlay command. The data for overlay 254
are not stored with other overlays, as previously mentioned;
it is processed as a base page, building scan and character
tables. There are no page modifications at End Overlay time.
The PCB for overlay 254 is scheduled for printing, but a flag
is set indicating that the destination of the data from the strip
buffer is to be the accumulator. As the character generator
processes the character table, the raster patterns are stored in
accumulator storage.

Once loaded, the raster overlay may be included on any
subsequent page by specifying overlay 254 in the CCB. Unlike
the other overlays, inclusion of that overlay involves minimal
microcode overhead for each inclusion. As the character and
scan table space is recovered once the raster overlay is loaded,
there is no storage penalty incurred by using overlay 254.

As discussed above, some pages may have more characters
in a band of scan lines than can be processed by the character
generator before being overrun by the serializer. The overrun
occurs when the character generator cannot provide data fast
enough to keep up with the moving drum. This can occur
when a very large number of overstrike characters appear on
the same line. The accumulator has no such time constraints
and can be used to print this otherwise unprintable page. After
cleansing the photoconductor of the invalid page image, the
page is rescheduled, using the accumulator as the destination
of strip buffer data. If the raster overlay was to have been
included on this page, the raster overlay may be read, merged
with page data, and rewritten to the accumulator. The final
page image, now of any complexity, is read from the accu-
mulator through the strip buffer to the serializer for printing.
It is possible to overwrite the raster overlay stored in the
accumulator. In this event, a data check condition is returned
to the host processor at the next selection, and recovery
information specifying the reloading of the raster overlay is
returned with the sense bytes.

Reliability, availability, and serviceability
e Error handling

Because of the more complex channel command set and the
interaction between different commands, a more extensive set

IBM J. RES. DEVELOP. ¢ VOL. 28 ¢ NO. 3 « MAY 1984

of diagnostic sense information is provided than has been
customary for line printers. Error handling is divided between
the reporting of errors in page definition and reporting of
machine electrical or mechanical failures.

o Synchronous error handling

Errors committed by page designers require help in diagnosis.
There are three types of checks associated with errors in
channel command data. First, a command code may have no
meaning for the Model 3, or may not follow in correct
sequence with preceding commands. An exception condition
is presented to the host processor, and a command reject
check is indicated in the sense bytes. As commands are
received, the data fields are verified to be within limits set by
the command architecture. Errors or inconsistencies in these
fields result in specification check conditions. More than 300
of these checks are detected by the printer. Errors, such as
exceeding the logical page boundary or printing a character
code not defined in the selected font, are posted as data checks.
When the printer operates in advanced function mode, these
check categories are posted with 24 bytes of sense information
in a common format. These sense bytes contain information
required by the system programmer or page designer to deter-
mine the cause of the problem. Errors of this type are called
synchronous errors, because their detection and posting are
synchronized with channel activity. These checks are reported
at device-end time for the command on which the check was
detected.

o Asynchronous error handling

The other check conditions are detected asynchronously to
channel activity. These include normal machine conditions
that require operator intervention, such as lack of paper or
toner, as well as abnormal equipment check conditions. These
may include conditions that were retried unsuccessfully up to
a maximum retry count. Errors of this type present 24 bytes
of sense, which may be in one of nine different formats.
Failures in different areas of the machine are provided with
specialized sets of sense information for problem diagnosis.

e Action codes

A significant feature of the sense information presented to the
host processor after any check condition is the recovery action
code in sense byte 2. After a check condition is discovered,
this byte informs the host-processor software what action must
be taken to correctly recover and proceed without duplicating
or omitting pages. Twenty different action codes are presented
by the printer. For synchronous errors, the action code may
inform the system that the present data set is unprintable
because of user error. In the case discussed above, an action
code specifies that the raster overlay must be reloaded before
printing can resume. The action code is intended to free the
system software from machine-dependent characteristics. Ad-
ditional error conditions can easily be added without impact

273

C. BARRERA AND A. V. STRIETZEL

274

to system device support. As the action code descriptions are
quite general, future printers can use this approach regardless
of implementation.

Host processor resources loaded in the printer control and
raster pattern storage can be lost if the operator powers off the
printer or if certain hardware failures occur. In either situation,
an initial microprogram load (IML) operation is performed
and an action code is presented to the host processor’s software
to indicate that the printer’s resource environment must be
reestablished. The IML operation executes resident control
unit diagnostics to ensure hardware integrity. Following a
successful IML completion, the printer signals the condition
to the host processor, including the action code that requires
resource reloading. This provides agreement between the re-
source set the host perceives and the set actually stored in the
printer, and ensures correct printing of user data.

o Serviceability hooks

Diskette error logging

In addition to the sense information formatted and presented
to the host processor, the printer maintains an internal error
log on the diskette. When a check condition caused by a
machine failure is detected, an error-gathering window is
begun. From this time until the exception condition is pre-
sented to the host processor, up to four errors are gathered in
an internal buffer. Inside this buffer, 32 bytes of sense infor-
mation are saved for each error. At sense byte presentation
time, the error with the most severe action code is presented
to the host processor. Once the printer has been stopped, the
sense information associated with the failure is formatted
internally and written together with some time stamp infor-
mation on the diskette error log. Errors that are successfully
retried are also recorded, along with sense information. The
information in this log may subsequently be recovered by a
service representative and used for more extensive machine-
failure analysis.

Arc counts in sense information

Some of the specialized information stored on the diskette
error log includes the counts of corona arcs. The preclean,
charge, transfer, and burster-trimmer-stacker coronas are
equipped with arc-detection circuits, which latch sense bits for
the microcode to read. These counts are recorded with error
data on the diskette log and can be used to determine an
electrical noise environment inside the machine [7].

Summary and concluding remarks

The IBM 3800 Printing Subsystem Models 3 and 8 provide
all-point addressability in high-speed, on-line system printing.
A new channel command set has been introduced to provide
an efficient and versatile target for system programs that will
use these printers for output from text processors and docu-
ment composers. This command set includes several user-

C. BARRERA AND A. V. STRIETZEL

defined resources which are stored in the printer and used
during page composition.

The microcode of the printer receives these stored overlays,
segments, fonts, and page data, and uses them to build an
internal page table representation. The design of these tables
was driven by two performance criteria: the efficient conver-
sion of channel data to the internal buffered page table repre-
sentation, and the ability to convert these tables to raster
patterns at the process speed of the printer.

The additional complexity of the printer function required
that an extensive set of checks and messages be added to detect
and diagnose logical errors in page composition. The resulting
printer accepts the new set of channel commands, converts
them to the required internal representation, and produces
raster pattern output with good integrity of the user’s data.

Acknowledgments

The idea for an all-points-addressable printer began as a
research effort in the IBM laboratory at Los Gatos, California.
This control unit architecture was brought to the IBM San
Jose development laboratory, where the design for a 3800
printing in all-points-addressable mode was developed. This
design was brought to IBM Tucson and perfected to become
the IBM 3800 Models 3 and 8. The authors wish to thank all
those involved in the design at those three sites, and the many
support groups necessary to deliver such a complex product
to the marketplace.

References

1. R.C. Miller, Jr., “Introduction to the IBM 3800 Printing Subsystem
Models 3 and 8,” IBM J. Res. Develop. 28, 252-256 (1984, this
issue).

2. G. L Findley, D. P. Leabo, and A. C. Slutman, “Control of the
IBM 3800 Printing Subsystem,” IBM J. Res. Develop. 22, 2-12
(1978).

3. R. G. Svendsen, “Paper Path of an On-Line Computer-Output
Printer,” IBM J. Res. Develop. 22, 13-18 (1978).

4. T.J. Cameron and M. H. Dost, “Paper Servo Design for a High
Speed Printer Using Simulation,” IBM J. Res. Develop. 22, 19-25
(1978).

5. K. D. Brooms, “Design of the Fusing System for an Electrophoto-
graphic Laser Printer,” IBM J. Res. Develop. 22, 26-33 (1978).

6. U. Vahtra and R. F. Wolter, “Electrophotographic Process in a
High Speed Printer,” /BM J. Res. Develop. 22, 34-39 (1978).

7. V. F. Wong, “Overview of Reliability, Availability, and Servicea-
bility,” All-Points-Addressable Printing Technology, to be pub-
lished; Order No. GH35-0090, available through IBM branch
offices after publication.

Received October 12, 1983; revised December 9, 1983

Clodoaldo Barrera Wl /BM General Products Division, Tucson, Ari-
zona 85744. Mr. Barrera is a development engineer, managing a
microcode development department in future printer development.
He joined IBM in San Jose, California, in 1975, to work on the
development of a prototype non-impact printer control unit, which
became the basis for the IBM 3800 Models 3 and 8. He received a
B.S. in mathematics in 1974 and an M.S. in electrical engineering,
both from Stanford University, California. Mr. Barrera is a member
of the Association for Computing Machinery.

IBM J. RES. DEVELOP. o VOL. 28 » NO. 3 ¢ MAY 1984

Aden V. Strietzel [BM General Products Division, Tucson, Arizona
85744. Mr. Strietzel is an advisory engineer in future printer devel-
opment. He joined IBM in San Jose, California, in 1968. He has
worked on computer control of manufacturing processes, high-reso-

IBM J. RES. DEVELOP. & VOL. 28 § NO. 3 & MAY 1984

lution graphics terminal design, and printer systems modeling. He
helped develop the microcode that controls the IBM 3800 Models 3
and 8 printing subsystem. He holds a B.S. in electronics engineering
from California State Polytechnic College, San Luis Obispo.

275

C. BARRERA AND A. V. STRIETZEL

