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This  paper is a  study in ideal computer 
architectures  or  program  representations. We 
define  measures  of  “ideal”  architectures  that 
are related to the  higher-level  representation 
used to  describe  a  program  at  the  source 
language  level.  Traditional  machine 
architectures name operations  and  objects 
which  are  presumed to be present in the  host 
machine: a  memory  space of certain  size, ALU 
operations,  etc. An ideal language-based 
architecture is based  on  a  specific  higher-level 
(source)  language,  and  uses  the  operations in 
that  language to describe  transformations  over 
objects in that language.  The  notion of ideal is 
necessarily  constrained.  The object program 
representation  must be easily  decompilable (i.e., 
the  source is readily  reconstructable). It is 
assumed that the  source itself is a  good 
representation  for  the original problem;  thus  any 
nonassignment  operation  present in the  source 
program  statement  appears  as a single 
instruction  (operation) in the ideal 
representation. All named  objects  are  defined 
with  respect to the scope of definition of the 
source  program.  For  simplicity  of  discussion, 
statistical behavior  of  the  program  and  language 
is assumed to be  unknown;  Huffman  codes  are 
not used.  From the above,  canonic  interpretive 
(CI) measures  are  developed. CI measures 
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apply to both  the  space  needed to represent  a 
program  and  the  time  needed to interpret it. 
Example-based CI measures  are  evaluated  for  a 
variety  of  contemporary  architectures,  both  host- 
and  language-oriented, as well  as  a  CI-derived 
language-oriented  architecture. 

Introduction  and  some definitions 
Inadequacies of many familiar machine architectures, both 
in program  size and execution time, pose the problem of 
executable program representation [ 1-31. Secondary effects 
of  these architectures lead to complicated system structures 
and implementations, e.g., compilers and linkage editors, as 
well as difficulties in recognition and exploitation of 
parallelism [4]. A traditional architectural premise is that 
execution architectures must be fixed, and hence  universal, 
languages. 

required by a  program are translated into descriptions of 
objects  presumed to be present in  the  machine: registers, 
adders, etc.  These architectures are universal in the sense 
that they do not change for the various higher-level 
languages (HLLs) that may be used. Architectures that 
correspond to a particular HLL are called Direct 
Correspondence Architectures (DCAs). Since  a DCA 
architecture is oriented to a particular HLL, it  allows more 
information to be preserved concerning language and user 
environment, while  still  realizing more concise 
representation and expeditious interpretation than host- 
oriented architectures. Thus, in this paper, we assume an a 
priori knowledge of the HLL to be  used. 

In earlier work [5] on this subject, we have  referred to 
these  language-oriented architectures as DELs-Directly 
Executed  Languages.  This term proved to cause confusion in 
apparently restricting attention to efforts that interpreted- 

In such architectures the relationships, actions, and objects 
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without  compilation-HLL  source  text. As this was not  our 
intention, we have chosen the DCA acronym as a more 
accurate description of various  forms of language-oriented 
architecture. 

Before proceeding,  it is useful to  introduce  some  terms 
which we use throughout this  paper. An instruction is a 
function which determines  the next state given a current 
state. The machine is a set of  instructions, storage, and  an 
interpretive mechanism  that  implement  the state  transitions 
determined by the stored  instructions. Now the interpretive 
mechanism itself may be a machine-that is, with its own 
set of  instructions, storage, and interpretive mechanism-in 
this case, the original machine is called the image machine 
and  its interpretive  mechanism is called the host machine. 
The program which controls a host machine acting  as an 
interpretive  mechanism is called the emulator program. The 
emulator is naturally also an  interpreter,  and we use these 
terms interchangeably. The set of all image instructions 
represents the execution architecture of the machine. 

By convention, image machine  instructions  are called 
simply instructions, while host machine  instructions are 
called microinstructions or host instructions. The instruction 
itself is a vector of bits partitioned into fields called syllables. 
The syllables identify  properties  of the  instruction which 
include 

I .  format, 
2.  object identifiers, 
3. operation identifiers, 
4. sequence control. 

The  format syllable of an  instruction specifies the  number 
and type of the  remaining syllables in  the instruction, the 
location and use  of  implied objects, and  the type of 
transformation rule to be associated with the  operation (i.e., 
which objects are operation sources, and their precedence, 
and which object is the operation result). The object 
identifier is an explicit pointer to a variable, while the 
operation identifier specifies the functional transformation  to 
be applied to  the  source operands. Frequently  the  format 
and  operation identifier are encoded  together.  Sequence 
control selects the next instruction  to be interpreted. 

expressed in a fixed high-level language (HLL) which has 
been carefully selected by the user to suit the problem 
environment,  and  that it is a familiar  procedure-oriented 
language. Within  this framework, we  will explore  measures 
of ideal execution  architectures  for a variety of host 
organizations. 

In  this  paper we further  assume  that programs are initially 

Identgers, objects, and name spaces 
Programs  use  identifiers  as  surrogates for objects. Objects- 
arguments or results-are only associated with values during 
execution, as defined by the states of a computation.  In  this 

~ 

I Objects, names, and identifiers. 

sense, an identifier  is  only a specific instance of the abstract 
name for an object; the  name exists independently of a 
language, while the identifier is closely tied to a particular 
syntax and semantics (Figure 1). 

Typically, source-level identifiers are mnemonically 
selected alphanumeric strings. Image identifiers are usually 
one-, two-, or three-dimensional  binary  codes (e.g., base, 
segment, offset). At the host level, identifiers are simply 
physical addresses. Typical source-level objects are integer 
variables, program labels, and boolean flags; typical image- 
level objects are words, bytes, and bits; and typical host-level 
objects are registers, buses, and execution  units.  Potentially, 
image instructions  may access or modify any object  in the 
image storage. Fields within  image  instructions, called 
identifiers, are used to locate specific objects in  the image 
store. The set of all locatable  objects in  the image  store  is 
called the name space of the execution  architecture. 

Scopes and working sets 
The scope  of an identifier  is the largest program  fragment 
over which it  has a consistent interpretation.  For most 
programming languages, the  term scope  of  definition is used 
to refer to a given lexical block  (procedure, subroutine, 
function, or begin-end segment) associated with a given level 
of declarations. 

At the  machine level, however, the  natural  interpretation 
of a scope is as a range  of instructions over  which  indexing 
registers remain effectively unmodified, so that a given 
operand identifier always refers to  the  same program  object 357 
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An ideal execution architecture is a representation defined 
with  respect to the given  source  language and environment. 
The term “ideal” is  used  here to mean 

I Referencing environments: (a) Language-oriented instructions; (b) 
Host-oriented instructions. 

within a given  scope. The term is often  used  imprecisely, 
however. The “scope  of a procedure” may  refer either to the 
set of statements outside the definition of a procedure in 
which its own name is a valid  identifier, or to the set of 
statements immediately inside a procedure definition in 
which  identifiers  local to that procedure have consistent 
interpretations. 

The basic model 
The basic  model [6 ]  used in this investigation  is illustrated in 
Figure 2. Its most obvious characteristic is that program 
evaluation is assumed to take place in two distinct phases. 
First, a source program  is converted into an equivalent form 
during an initial compilation phase. Users retain this form, 
which  becomes a surrogate for the original  source  version.  In 
the second  phase the surrogate undergoes a number of 
subsequent interpretations. 

Two-phased evaluation may be used as the basis  for a 
design  model. The principal components of a system in this 
model include a source language-selected for its 
representational capabilities; a host  machine-selected for its 
execution capabilities; a translator that takes a source 
program as input  and produces a logically equivalent 
executable program; and finally an interpreter that enables 
the host machine to implement the state transitions specified 

358 by the output of the translator. 

1. Transparent-Le., translation is a simple process  which 
preserves equivalent source-state information, thus 
allowing a ready reconstruction of source constructs. 

2.  Optimal representation-i.e.,  space and time to compile 
and execute are minimized. 

Translation 
Translation is the process of converting a program in one 
language into an equivalent program in another language. 
Equivalence  refers to similarity of transformation in  the eyes 
of a user-a program p in language P is equivalent to a 
program q in language Q if and only if users cannot 
distinguish  between an execution of p according to the 
semantics of P, and an execution of q according to the 
semantics of Q. 

The virtue of compilers is that they translate a source 
language  program into a form that can be interpreted more 
efficiently. This means that some sort of reduction in 
computational complexity takes place.  In  general, 
compilation can be  viewed as a (partial) binding of operands 
to storage  cells and operators to computational structures. 

The special  case  of direct interpretation of HLL source 
also  fits this model  since a translation of a statement is 
required, although this translation is internal to the 
interpreter. One may  view this as a compilation- 
interpretation on a statement-by-statement basis in which 
the intermediate execution architecture is not visible to the 
user. 

For our purposes, compilation involves  two quite distinct 
processes: optimization and translation. We  view 
optimization as occumng on a source-to-source  basis. The 
optimizer rearranges the source program into its “best 
possible form” within the source language (or an extended 
version  of the source  language). The translator then takes 
this form of the source and creates a surrogate form within 
the syntax and semantics of the execution architecture. The 
remainder of this paper assumes that the given  HLL 
program is  already in its “best possible  form”-i.e., that it 
has  been optimized. 

Interpretation 
The interpreter [Figure 3(a)] may  be  visualized as consisting 
of a primary control loop, a set  of interface routines, and a 
set of semantic routines. The primary control loop maintains 
the DEL instruction stream, and extracts at least an initial 
format syllable that defines the layout for the rest of the 
instruction. It then transfers control to the appropriate 
interface routine, which actually parses any operand 
references within the instruction. 

Interface routines are responsible  for creating a standard 
interface that defines the location (and possibly the value)  of 
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each operand in an instruction. The interface routine then 
returns to a known point in the primary control loop, which 
transfers control to the semantic routine that actually 
implements the action rule defined by the instruction 
[Figure 3(b)]. It does this by transforming the values 
previously loaded into standard interface. Upon completion 
of all semantic processing, control returns to the top of the 
primary control loop, and another cycle  of interpretation 
begins. Results may be stored by the semantic routine itself, 
or within the primary control loop. 

Within the contra1 loop, interface, or semantic processing, 
the state of the  data store and program state vector  is 
temporarily undefined. Definition occurs at the boundaries; 
the overall  process will be correct if the  data store and 
program status vector agree  with  defined constructs 
whenever the last instruction in the expansion for a source 
statement has  been executed. 

Level mappings and transparency 
Users  relate the observable (but low-level)  effects  of 
executing a program to source-level semantics through an 
association established between the source-level name space 
and the host name space. In general, there is a map from 
any higher-level L to the next-lower-level L - 1 that defines 
the way in which  level L is  realized at level L - 1. There is 
also a dual map from level L - 1 to level L that defines how 
an execution of a level L - 1 program is to be visualized in 
terms of  level-L semantics (Figure 4). 

More formally, transparency is a property of an interlevel 
mappingffrom L to L - 1, such that 

1. 

11. 

I .  

2. 

1 

State transitions in both L and L - 1 occur in the same 
order. 
States are preserved at the end of a state transition in L; 
states in L - 1 correspond directly to states in L, and no 
new states may  be introduced. 

The consequences of transparency are significant: 

There is no hidden data state to save across transitions in 
L. This implies that there is no need to save data states 
(i.e., host  registers) at an interrupt if interrupts are 
permitted to occur only at the end of a state transition in 
L. For example, a program is interruptable upon 
completion of the STORE corresponding to  an HLL 
assignment, but not within the evaluation of an HLL 
expression. 
Synchronization of concurrent processes, if valid at level 
L, is valid at level L - 1 since there is an exact 
correspondence of states and order of interpretation 
between these two levels. Further, verification  of 
computations is valid at level L - 1 whenever  it is valid 
at level L. 

J. Optimizing compilers are clearly nut transparent since 
they affect the number, type, and order of state 

I (a) Interpretation  process; (b) Syllable interpretation 

transitions. Thus, further checking of optimized programs 
may  be required in order to ensure correctness of 
operation. 

Types of interpretive  mechanisms:  image-host 
correspondence 
An image instruction is partitioned into syllables  which must 
be interpreted by the host machine. Each  of  these  syllables 
must be individually decoded by the interpretive mechanism 359 
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and executed according to the semantics of the instruction. 
Interpretive mechanisms or host machines vary considerably 
in their ability to perform the decoding and execution of 
syllables concurrently. Below  is a classification of interpretive 
mechanisms by the amount of hardware the host  provides 
for the detection and current execution of image syllables 
and instructions. 

1. Partially mapped host-image correspondence-In the 
usual form of this type of correspondence (Figure 5),  the 
host has no a priori support for the interpretation of a 
particular image syllable. Thus each syllable  of the image 
instruction is separately fetched (from the image storage), 
decoded, and executed. While Fig. 5 shows a single state 
transition for  each  of these actions, multiple transitions 
may be required-especially  if the object  size  of the 
image machine is not supported by the basic data paths 
in the host machine. 

2.  The well-mapped  machine-In this case the host is 
" 

presumed to have hardware support for the syllable 
partitioning of  image instructions. Thus, once an image 
instruction has been fetched, its various syllables can be 
decoded concurrently. 

Transparency  between  a  level  representation  and  a level L - I .  

3. The overlapped machine-This  class of machine has  still 
additional resources to permit concurrent execution of 
syllables in the image instruction sequence to as great a 
degree  as  is permitted by the image semantics (i.e., 
dependencies that actually occur during execution must 
be observed). However, the final state transition in the 
execution of each instruction occurs in the order of the 
original sequence; that is,  all updates of the image store 
are performed in logically correct order. 

4. The confluent machine-If  we remove the constraints of 
order preservation during instruction interpretation, 
transparency of execution is  lost. The semantics of the 
instruction stream are preserved only on a process-by- 
process  basis. This type of machine represents an 
unlimited collection of host resources dedicated to image 
program execution: unlimited cache, transformational 
resources, etc. Blocks  of instructions are decoded 
simultaneously, and only the dependencies determined 
during this decoding process constrain concurrency of 
image instruction execution. Thus, this ultimate machine 
is limited by semantic dependencies which could not be 
anticipated. Its execution time is limited by inherent 
dependencies within the image code, and by the initial 
occurrence of various image program artifacts. For 
example, even if a machine is equipped with a cache  of 
infinite size, it still may have a nonzero cache  miss rate 
because  of the misses  caused by initial reference to 
various program and data blocks. Similarly, branch target 
buffers can be used for concurrent target instruction 
retrieval only after they have  been initialized by a Three host timings. 

360 previous encounter during program execution. 
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Different artifacts of program behavior affect  each  of the 
above host machine types in significantly  different ways. The 
total number of environments entered may  be  of little or no 
importance to the execution time of a partially mapped 
machine since it is dominated by the interpretation time of 
syllables  within environments; on the other hand, a 
confluent machine faces  precisely the reverse situation. Thus 
any attempt to develop  measures of ideal execution must 
take all  categories of host machines into account. 

Ideal execution  architectures 
An ideal  program representation and corresponding machine 
uies minimum storage space and requires minimum 
compilation and interpretation time. This does not imply a 
linear tradeoff  between  space and time; relative  weights can 
only  be determined within a given  user and host context. 

The notion of environment, however, is fundamental to 
the discussion of space/time optimality. Like many concepts 
dealing  with computer systems, environment may  be  viewed 
as a hierarchical concept. The chosen  higher-level  language 
itself represents the highest  level,  while a specific  program 
would represent a lower  level, and individual statements 
within a program  would  represent a still  lower  level. 
Environment includes all information needed to interpret 
objects:  i.e.,  all information available to an interpreter, as 
distinct from information supplied  directly by the specific 
coding of a statement or instruction. Thus, the environment 
of a traditional machine language  would include a program 
counter, address  registers, interrupt status, etc. Within an 
environment, we can measure the activity required of an 
interpreter for a given  HLL; the number of syllables, 
instructions, and nonlinear sequence control actions all 
affect  image interpretation time in varying proportion 
depending on the host. 

Associated  with  each environmental level  is the property 
of stability. Intuitively, stability is probably  best  described as 
the number of statements or objects that are interpreted 
before the environment is changed. A change of 
environment is  caused by anything that disturbs the 
interpreter by delaying it from completing the ordinary 
execution sequence of a program, statement, or operator. 
Instabilities arise from one of two  basic  causes.  First, 
exogenous events outside the current environment-a  time- 
sharing system, for example-may time slice  over short 
intervals, and each  program  switch  would  necessitate a 
change in environment. Second, internal events associated 
with the nature of a program  itself  may  cause a change in 
environment; for example, a single  user  program  may 
involve  several  languages, or may  defer binding between 
names and values until very late (as in the binding of actual 
to formal parameters upon entry to a subroutine). In this 
case, the act of binding the interpreter to a given  language, 
or of binding a name to a given  value,  also  causes a change 
of environment. 

Some programs may repeatedly enter a certain set  of 
environments during execution. The host and its interpreter 
may  be able to take advantage of the limited number of 
unique environments encountered. This number is  an 
important characteristic of  program  behavior,  which we  call 
distance. An associated measure is distance ratio, which  is 
defined  as the number of unique environments entered as a 
fraction of the total number of environments entered. The 
maximum distance ratio for any program  is one, and a 
program attaining this limit would  never enter the same 
environment twice.  In many ways, distance is an ultimate 
limit on the speed of interpretation of a program, since it 
sets a limit on the possibility of retaining previously 
interpreted data. 

Aspects of execution  architectures 
In this section we examine some significant  aspects of an 
execution architecture and how they  relate to a variety  of 
program and host environments. For each combination, a 
measure can  be found which  describes the activity of an 
ideal architecture during execution of a given  program. 
Many measures,  however, are of limited interest; our 
purpose here  is to select some of those combinations which 
provide a general  insight into the relationship between an 
architecture and the HLL. We identify five criteria for 
measuring architectures: 

I .  Correspondence-that  the representation correspond to 

2.  Size-that the representation be concise,  i.e., a minimal 

3. Reference  activity-that the representation minimize the 

4. Stability-that the representation minimize the total 

5. Distance-that the representation minimize the number 
of unique objects and environments to be interpreted. 

the source representation. 

encoding. 

total number of  objects to be interpreted. 

number of environment transitions. 

Correspondence 
Correspondence measures the ability of the architecture to 
represent  (i.e., stand as a surrogate for) HLL objects. 
Correspondence is not  itself a direct measure of space or 
time; it  is rather a quantification of the notion of 
transparency introduced above. 

correspond to 
An “operation” in an execution architecture may 

1. a program, 
2. a subroutine, 
3. a statement, 
4. an operation. 

For execution architectures meeting the statement 
transparency requirement, HLL operations are the most 
useful  level  of correspondence. Note that traditional 36 1 
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machine architectures usually  employ  host (ALU) 
operations, while  special-purpose machines may  select 
certain subroutines or even a program  for their operation set. 
Thus, if 

ai 
is the number of static occurrences of HLL operations in a 
program, we would  expect an ideal architecture to have ki 
instructions in its representation of the same program. 
Similarly, if 

is the number of dynamic HLL operations required to 
execute a source  language program, we  would expect Ai 
instructions to be  executed during the interpretation of any 
ideal architectural representation of the same program. 

Ideally,  identifiers in the execution architecture should 
also correspond to the objects named by the higher-level 
language.  In this case,  however, the statement is the most 
natural environment level.  If k, and A, are the number of 
unique static and dynamic variables in a given HLL 
program, we might  expect an ideal architecture to contain k ,  
and A,  static and dynamic operands. The counting rules are 
somewhat complicated, however,  since  (ideally)  only unique 
identifiers  need  be  distinguished. For example, while there 
are three identifiers in the HLL statement 

“X := x + X,” 
we  would count 

’d 

as one (the only unique identifier  is “X”), and 

Ad 

as two (one to fetch the only unique argument value, and 
one to store the updated value in the only unique result). 
The variable “X” is counted twice in the dynamic statistic 
since  it occurs in both the range and domain of the 
statement. Also, an ideal architecture should not introduce 
artificial operands (i.e., “temporaries”); thus, the HLL 
statement 

“ B  := A * B + B” 

would result in 

A, = 2 

and 

A,  = 3. 

Summarizing the above, the correspondence measure for a 
given  source  program  is 

362 and the relative correspondence for any execution architec- 

ture a is  measured by the quadruple 

-” 

ci a, 2, 
ai ’ Ai ’ 2, ’ A, ’ 

.where 

ki, Ai, k,, and A, 

are as above, and 

hi, a ,  id, and a, 

are the respective counts for the actual execution architec- 
ture. 

Size 
An ideal representation must be  concise in its coding  of 
identifiers, yet not so concise that it exacerbates 
interpretation. Total program  size is simply the product of 
the static count and size  of the two  basic  identifier  types 
noted above.  Since the number of identifiers depends on the 
correspondence environment level (program, subroutine, 
etc.),  however,  program  size  also depends on environment 
level. 

The basic question in measuring  size, then, is the 
determination of a suitable environment and identifier 
encoding.  Identifier  size is determined by the number of 
objects that must be distinguished by a particular identifier, 
if  identifier encoding is independent of frequency of 
occurrence. Thus, if there are F distinct operators used in  an 
environment, each  can  be  represented by  Hog, (F)1 bits. 
Similarly, if there are V unique variables in an environment, 
each operand can be represented by  flog, (V)l bits.  Identifier 
encoding may  vary in several ways: 

1.  fixed across environments, 
2. variable by environment, 
3. variable by frequency of occurrence. 

In this work  we do not consider frequency-encoded 
identifiers;  given  full  frequency distribution statistics, the 
techniques for taking a nonfrequency-encoded  scheme and 
transforming it into a minimal encoding is  straightforward 
and treated elsewhere [7, 81. Further, minimal encoding by 
frequency requires serial inspection of the bits within a field, 
thus increasing the complexity of interpretation as well as 
interpretation time. 

is  merely a distinction between  fixed and variable 
environments, and hence  is included in environmental 
considerations. Environment may  be determined by either 
the program, the HLL, or the host.  In traditional execution 
architectures, the environment is determined by the host 
specification rather than host configuration. Since this 
environment does not change,  identifier containers are 
usually  fixed, and information capacity  is  wasted in small- 
capacity configurations. 

The distinction between the fixed and variable approaches 
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For source-oriented  execution  architectures, any of the 
following may be used to define the  number of entities 
which determine  the identifier size (for  each class of object- 
operator,  operand,  and label): 

Language restriction-the number of operands  and labels 
are usually not  bounded by language  syntax in a 
meaningful way. However, the  number of operations  are 
usually a priori limited and  the  number of operations 
allowed by the  HLL definition  is a possible bound  on 
operation size. 
HLL objects used in  a program-i.e., the total number of 
distinct  operations, operand  names, or labels used in  a 
program  could form  the  domain of an identifier 
definition. This might be a natural  approach for DCAs 
whose HLL  does  not have developed notions of 
subroutines  and linkage (e.g., COBOL). 
HLL objects used in  a subroutine-In those HLLs with a 
well-defined notion of scope, each subroutine has  its  own 
scope of definition. This is an interesting environmental 
unit for operand  and label identifiers. 
The  HLL statement-The even-lower-level concept of a 
statement for an  environment might also form  the basis 
of  a size environment. However,  since entry  into  and exit 
from  an  environment requires interpretation time, the 
statement  may be at  too low a level to provide an 
optimum  space/time tradeoff. That is, at  the level of  the 
statement  the  setup  time required may  not offer a 
worthwhile space/time tradeoff, since the size of the 
identifiers increases as a log function while the 
interpretation  time is linear  in the  number of statements 
to be interpreted. 

At the  subroutine level, setup  time  can  be regarded as 
being relatively small compared  to  the  interpretation  time 
for the overall subroutine, while at  the  statement level this 
may not be true. However, for  interpretive languages (APL, 
BASIC, etc.) where a line-by-line execution is performed, the 
HLL  statement is  a natural  environmental unit. 

From  the above, an ideal architecture has  a size 
environment whose domain is determined by the  number of 
HLL objects used in either the representation, the program, 
the  subroutine,  or  the  statement.  For familiar  procedural 
languages (Pascal, FORTRAN, etc.), the  statement level does 
not seem to be a  good  choice because of  implied  interpretive 
overhead, while an  environmental  unit consisting of the 
entire language or program  seems  equally inefficient in its 
lack of conciseness. For such languages, it appears  that  the 
subroutine level is a natural  space/time  optimum. 

Dynamic activity 
Measuring the  dynamic activity of an  architecture is 
significantly more difficult than measuring  program size. 
Interpretation  time  depends  not only on a  simple count of 

object references, but also on  the kind of object being 
interpreted  and underlying  hardware support  for special 
cases. To characterize  this  activity, we need  multiple 
measures,  each  of which reflects a different level of program 
execution. We see the primitive dimensions of this measure 
in  terms of the following concepts: 

Referencing: execution  is  limited by the  dynamic  count of 
objects  requiring interpretation in  simple hosts- 
instruction  and  operand  interpretation. 
Stability: slightly more elaborate  hosts can predict, and 
hence overlap (or hide), most object references; their 
execution time is dominated by the  occurrence of 
unpredictable  events (e.g., conditional branches). 
Distance: the  ultimate host has  unlimited hardware 
resources, and  can  overcome most of the  disruption 
caused by lack of stability through extensive use of 
information retention. For example, conditional branches 
can be anticipated by recalling previously encountered 
interpretations.  Here, the “first encounter”-what we call 
distance-is the limiting  factor. 

Referencing activity 
Referencing  activity is composed of instruction fetches and 
data accesses (both fetch and  store activity). 

Instructions Source-oriented  execution  architectures 
introduce  the following straightforward  considerations with 
respect to  the instruction-fetch  mechanism. For partially 
mapped hosts, the  number of instruction syllables that  must 
be  interpreted is the primary  measure  of instruction activity. 
A basic measure  of the  number of HLL inferred syllables is 
simply A, + A,. This is an  overstatement since A,  includes  a 
double  count for syllables used as both  a range and  domain 
element. Actually, the  dynamic  count of syllable A, is 

A,  = Ai + C 3 

i 

where the second term is the static number of data syllables 
contained in an  instruction  summed over the  dynamic 
instruction stream. If the average number of syllables per 
instruction is M, then by definition M X Ai is the  dynamic 
syllable count.  For well-mapped hosts, the  number of 
operations  to be interpreted (Ai) is the primary  measure of 
instruction activity. 

Data Source-oriented  execution  architectures introduce 
the following considerations with respect to  data access 
mechanisms:  for  a  partially mapped host, reference activity 
is determined by the relative data path width, 

N = (  average operand size 
host data path  size 

and .A,. The  dynamic reference count for operands is N X 

A,. For a  well-mapped  machine,  there  should be one 383 
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reference per identifier, and  the  operand reference count is 
simply A,. 

representation but  rather a  property of the host. Thus,  it is 
irrelevant to discussions  of  ideal  architecture but  quite 
important  in  comparisons with hosts of varying data  path 
widths  and  their ability to execute  various program 
representations. 

While  a  simple dynamic  count of data references is  a 
useful measure, the locality of  such  a reference does  not 
necessarily correspond to reference counts, complicating 
performance models.  Locality  is not a  direct  property  of  a 
source  program, but source aspects-notably stability, 
discussed below-have a direct  influence on locality. 

Notice that N is not a property of the program 

Stability 
Stability  measures the  number of  changes to  the way objects 
are interpreted. The effect of stability is more  pronounced 
given a host that  takes advantage of consistency in 
environments  and predictability  of the occurrence  of  objects 
and events. 

a. Let Se be the  total  number of environments  encountered 
in the  dynamic  HLL program  execution. Ideally, the 
number of calls/returns (or equivalent  architectural 
artifacts like “perform”  in COBOL) in  the executable 
representation  should  correspond to  the  dynamic  count 

b. Let S, be the  number of data  items  encountered whose 
location is not immediately determinable  from  the 
identifier; i.e., whose location must in some way be 
interpreted or computed (e.g., an  array  element or 
complex data structure). Ideally, there should be no  more 
than S, such items  encountered  in  the execution  of a 
program.  Herein lies somewhat  of  a dilemma, since there 
is frequently  a  confusion between the representation of an 
item (its simple  identification) and  the implicit 
computation of  its location in  the  data store. For 
example, the first occurrence  of an  array  element A(i ,  j )  is 
an  instruction  to  the  interpreter  to  compute  the location 
of this  data object. However,  subsequent use of A(i ,  j ) ,  
presuming that i and j have not been changed, may be 
interpreted as a simple  surrogate  identifier  for the already 
computed storage  location.  Insofar as these items  can be 
detected during  the  translation process, such overly 
complex  surrogate identifiers may be removed from  the 
image  program: however, there  may still remain  data- 
dependent branches, etc., that cause this  sort of situation 
to arise  dynamically. Thus,  the  determination of  a 
minimum S, requires  careful  analysis of the  HLL 
program  representation. 

c. Let S, be the  number of control  actions dynamically 
interpreted in the  HLL.  HLL sequencing verbs each 
correspond to a single control  action, regardless of 

of s,. 

whether the predicate  of the  control  action is satisfied or 
not.  Naturally, the frequency  of  occurrence  of control 
actions is of importance given an overlapped  host 
machine. Ideally, the  number of control-type instructions 
in  the image architecture should be equal  to S, as 
determined from the  HLL (special cases of  individual 
HLL verbs  might be allowed due  to  known skews in the 
distribution of potential  operands,  such  as  the default 
increment of one  in  FORTRAN  and  PL/I looping 
structures). 

Stability  measures are an extension  of  activity in  that they 
measure more global types  of activity: the  number of 
environments  encountered,  number of computed locations, 
and  number of potential disruptions  to serial instruction 
sequencing. 

Distance 
Regardless of the  amount of resources  available to  the 
interpretive mechanism, execution time  must be limited by 
the initialization  required. Even though  the host may have 
an infinitely large cache, the first occurrence of a block of 
image  program or data is a  cache miss. Thus, even a 
confluent machine with infinite  resources is limited by first 
encounters, which we refer to  as  the distance measure. Three 
components of distance are identified in  this paper: 

a. Let De be the  number of unique environments entered. 
b. Let 0, be the  number of unique objects  requiring 

interpretive  definition (computed addresses). 
c. Let D, be the  number of unique branch targets. 

As the  environment is first entered  it  becomes captured by 
a  host with infinite resources; even with finite resources the 
principle  of locality ensures  a  reasonable capture rate. As 
artifacts  of an  environment  are subsequently encountered 
during  the execution  of an image  program,  they  become 
immediately  available to the interpretive mechanism.  Thus, 
distance  is indeed  an  ultimate lower bound  on execution 
time. 

A set of canonic  interpretive  measures 
Summarizing  the  above discussion,  a given program 
representation can be measured  for  execution parameters 
independent of  actual  hardware. We propose the following 
measures  of  execution  architectures: 

Correspondence 
The  quadruple ai, Ai, d,, A , .  

Size 
Each operator is of size [log, (F)1. 
Each operand is of size [log, (Vl. 
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Referencing 
Syllable  references are measured by A,. 
lnstruction references are measured by the pair ( M ,  Ai) .  
Data references are measured by A,. 

Stability 
The CI measure of stability is the triple (S,,  S,, SJ. 

Distance 
The CI measure of distance is the triple (De, D,, Dh). 

The measures,  while interesting in themselves, are of 
considerably more value when compared to actual 
architectures. We  call these comparative ratios the relative 
canonic measures. 

Ideal execution  space 
Space is measured by the number of bits needed to represent 
the static definition of a program. 

where the summation is over  all environments, CY, by the 
HLL program semantics. 

Ideal execution  time 
Cl dynamic measures are closely related to the interpretive 
mechanism of an image machine. For  the partially mapped 
host, interpretation time is almost completely dominated by 
the program activity. If the host data paths do not at least 
match the image data widths, the host memory will saturate 
and limit execution performance. Naturally, given a 
universal host, where each image instruction is decoded 
syllable by syllable, stability and distance are poor estimates 
of actual interpretation time. Conversely, stability and 
distance are highly relevant given overlapped or confluent 
hosts, and size measures are of diminished importance. 

In  the following, we estimate the ideal execution time for 
various host organizations in terms of execution cycles. The 
number of  cycles needed to interpret an image program is 
calculated as a weighted sum of the various measures defined 
above. 

Partially mapped hosts We estimate the execution time for 
image machines with partially mapped interpretive 
mechanisms as 

ideal cyclespartidlymapped = [a x (A4 x Ai)]  + [b x (N x Ad)], 

where a, b are relative weights  for instruction interpretation 
and data accessing,  respectively. M is the number of syllables 
per instruction multiplied by the number of cycles  needed to 
decode a syllable and access the object  it  identifies. N is the 
relative data path size  (i.e., the number of memory accesses 
required to retrieve or store a data item). 

Well-mapped hosts Given a well-mapped host, execution 
time is best estimated by a straightforward linear sum of 
activity and environmental stability. We approximate this 
execution time as 
ideal ~ y ~ l e ~ ~ ~ , ~ - ~ ~ ~ ~  = ( I  x Ai + b x A, + c x Se . 
Again, a, b, and c are arbitrary relative  weights for 
transformational activity, data accessing, and environment 
change; in this case M and N are equal to 1. The additional 
term S, is introduced to recognize that, for many programs, 
this may  be an  important factor-especially  when the host  is 
equipped with a cache. The effect of cache is to lower the b 
weighting factor by perhaps as much as a factor of  10, and 
indeed (for large caches) c X S, may dominate b X A,. If the 
interpretive mechanism is a partially mapped machine, 
where M is on  the order of 5-10, the relatively  slow 
interpretation of image instructions ensures that the 
environment change time will be far less  significant, hence 
our assignment of a zero weight to this factor in the previous 
equation. 

Overlapped host As we move toward increasingly  high- 
performance hosts, overlap of image instruction 
interpretation time increases, and activity (a X Ai + b X Ad) 
is  decreased in relative importance. However, for simple 
overlapped hosts, the branching stability is quite 
significant-perhaps  even dominating transformational 
activity. Thus  an execution time approximation for a simple 
overlapped host  would  be 

ideal cyclesoverlapped = a, x (Ai - sh) 

+ a 2 ~ S h + c ~ S c + d ~ S e .  

where a, and a2 are appropriate weights  for nonbranching 
and branching instructions, respectively, and c and d are 
weights  for name and environment stability. For such simple 
overlapped machines, the occurrence of a branch delays the 
interpretive mechanism until all preliminary operations 
(such as fetching and decoding) for the target are completed. 
Indeed, it would not be unusual for a,  to be only one-tenth 
the magnitude of  a2-i.e., for it to take ten times longer to 
execute a branching instruction than to execute a 
nonbranching instruction, because data  and instruction 
fetching activity can be overlapped while nonbranching 
instructions are being interpreted but not during or in the 
immediate vicinity  of a branching instruction. The effect  of 
name stability (S,) may  be  significant in this case, although it 
can be ignored for simpler host organizations where  each 
data item is  serially interpreted and computed names 
probably represent a small increase in the overall execution 
time. On more powerful hosts, however, this factor can 
become significant-especially  if there are no associative 
lookasides that can be exploited during address computation. 

Confluent host The ultimate in high-performance hosts is a 
machine that has an interpretive mechanism that includes an 365 
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Table 1 Comparison for the example listing. 
~ ~~ 

3 70 3 70 CIM 
optimized  nonoptimized 

No. of instructions 15 19 6 
Program  size / 368 bits 604 bits 30 bits 
Data  references 20 36 13 
Instruction  environments 1 1 1 
Data  environments 1 1 1 + 1  

unbounded amount of interpretive support hardware. As 
mentioned earlier, such a host  is  still bounded in execution 
performance by distance parameters (the time required  for 
first interpretations of various objects). Thus, it would  have 
an execution time of 

ideal cycles,,,,,,, = max (ideal cycles,,,,-, K .  D).  

That is, its execution time is bounded by the maximum of 
either program  activity and stability, or program distance 
where the constant K is a timing weight  for the distance 
measures. The bound for the confluent processor  is 
especially important since it forms an ultimate limit to 
program execution. Its dependence upon distance is 
particularly interesting, as the distance measure then limits 
execution performance for most familiar initial program 
representations. Of  course,  since  significant variations in the 
distance measure of comparative architectures arise only in 
large  program environments, it  is a somewhat more difficult 
concept to evaluate. 

Applying the  measures: two examples 
The following  two examples illustrate the use of the CI 
measures, both as absolute measures and as comparative 
measures of traditional architectures. The first  example  is a 
very simple FORTRAN three-line program  which illustrates 
the use  of some of the simpler aspects of the measures. A 
detailed comparison with  System 370 is also shown. 

The second example, while  still  necessarily limited, is a 
more comprehensive use  of the program. Comparisons are 
made for a number of traditional and language-oriented 
architectures. 

Example I :  CI  measures for a simple FORTRANprogram 
The following three-line excerpt  from a FORTRAN 
subroutine, taken from 191, illustrates the simpler CI 
measures: 

1 .  I = I +  1 .  
2. J =  ( J -  I )  * I .  
3. K = ( J -  1 )  * ( K -  I ) .  

Assume that I, J ,  and K are fullword (32-bit) integers 
366 whose initial values are stored in memory prior to entering 

the excerpt, and whose  final  values must be stored  in 
memory  for later use. 

Canonic  measure of the FORTRANfragment 

Instruction count 
Statement 1 1 instruction ( 1  operator) 
Statement 2 2 instructions ( 2  operators) 
Statement 3 3 instructions (3 operators) 
Total 6 instructions (6 operators) 

Identifrer count 
Statement 1 3 identifiers (2 operand, 1 operator) 
Statement 2 5 identifiers (3 operand, 2 operator) 
Statement 3 7 identifiers (4 operand, 3 operator) 

Total 15 identifiers (9 operand, 6 operator) 

Identifier size 
Operation identifier  size = rlog, 41 = 2 bits. 
(operations are +, -, *, =) 
Operand identifier  size = Hog, 41 = 2 bits. 
(operands are 1,  I ,  J, K )  

Program size 
6 operator identifiers X 2 bits = 12 bits 
9 operand identifiers X 2 bits = 18 bits 

Total 30 bits 

References 
Instruction references-6 references 
Data references- 13 references 

Stability 
Instructions - 1 environment 
Data - 1 environment load and environment store 

-0 computed names 
The following  listing  was produced on an IBM  System 370 

using an optimizing compiler (FORTRAN IV Level H, OPT 
= 2, run in a 500K partition on a Model  168, June 1977): 

1. L 10,112(0,13) 
L 1 1,80(0,13) 
LR 3 , l l  
A 3,0(0,10) 
ST 3,0( 10) 

2. L 7,4(0,10) 
SR 7,11 
MR 6,3 
ST 7,4(0,10) 

3. LR 4,7 
SR 4,3 
LCR3,3 
A 3,8(0,10) 
MR 2,4 
ST 3,8(0,10) 
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A total of  368 bits are required to contain this program 
body (we exclude some 2000 bits of prologue/epilogue  code 
required by the 370 Operating System and FORTRAN 
linkage  conventions)-over  12 times the space indicated by 
the canonic measure. Computing reference  activity in the 
same way as before, we  find that 20 accesses to the process 
name space are required to evaluate the 370 
representation-allowing one access  for  each  32-bit  word  in 
the instruction stream. 

The increase in program  size, number of instructions, and 
number of memory  references  is a direct  result of the 
partitioned name space, indirect operand identification, and 
restricted instruction formats of the 370 architecture. 

Table 1 illustrates the use of ratios for the foregoing 
example. 

Example 2: CI measures for a more  complex Pascal 
program 
Consider the Pascal  example  shown in Figure 6; 
hardshuffle-a  program  for  shuffling array elements the hard 
way-which consists of  shuffle procedure swapvec and the 
main program. Swapvec interchanges the elements of  two 
arrays from the first element up to the parameter limit. 
Hardshuffle-the main program-creates two arrays: 
identity,  consisting of the integers, and sum, which  consists 
of the sum of the integers. For a variable limit ranging  from 
1 to 10, swapvec  is  called to interchange some of the 
elements of the two  arrays.  Finally, the values of the arrays 
are written out. 

Figure 7 is an evaluation for the example  hardshuffle  for 
the CI measures on a variety of architectural approaches. A 
fair comparison for a variety of architectures is a more 
formidable task than might  first appear. The measures are 
significantly  influenced by compiler strategies and run time 
environments as well as the basic architecture itself. Thus, 
the data in Fig. 7 require some explanation. 

The first comparison is  with an execution architecture 
called  Adept [lo], developed at Stanford and derived  from 
principles of minimizing CI  measures  while maintaining 
transparency for  Pascal  programs. By using an additional 
format syllable in each instruction it matches most static and 
dynamic CI instruction count measures. It also matches the 
CI measures  for memory activity.  Additional  syllables per 
instruction add about 5 bits to each instruction and hence 
account for about 110 additional bits  in static program  size. 
An additional 800  bits of Adept are used to hold constant 
values,  array  bases, and other environmental data. An  Adept 
variable  reference  consists of the addition of an 
environmental pointer to a variable  index  whose container 
matches the log,  CI requirement. Each environment then 
has its own environmental pointer and container width. 
Some variables  such as array elements have an address 
computation before the element can be retrieved  from main 
storage,  which contains the image array. Thus the address of 

I Hardshuffle  program 

-~ 

I Comparison for various  architectures  with CIM. 

the base  of the array must be stored as well as the retrieved 
array element. The additional Adept  space includes these 
address constants and other values containing information 367 

IBM I. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 MICHAEL J. FLYNN AND LEE W. HOEVEL 



for the routine to execute properly. The object code for 
Adept is  based upon a 1 + 1 pass compiler [IO]. 

The pdp-1 1 (a trademark of the Digital Equipment 
Corporation) figures are based upon the Pascal compiler 
developed at Vrije University (the Netherlands), Pascal-VU. 
It produces an intermediate program representation, EM- I ,  
developed by  A. Tannenbaum [ 1 1 1, which  is further 
translated into pdp- 1 I code. The static program size  is the 
size of the instruction stream; however, in the pdp 1 1 
architecture many of the  data parameters are represented as 
immediate data in the instruction stream. 

The P-code machine is actually a surrogate for the Pascal 
language.  It is a stack-oriented machine and is meant to be a 
transportable medium for  Pascal programs. Any host 
machine can compile into P-code from a Pascal source and 
(in theory at least) another machine equipped with a P-code 
interpreter can execute this compiled code. The emphasis for 
most P-code compilers is rapid compilation; thus  the P-code 
statistics are derived  from a nonoptimized compiler-much 
the same in’ philosophy as Adept. 

The large number of dynamic instruction occurrences for 
P-code  when compared to Adept-over 5 to 1-is  largely 
accounted for by the push and pop instructions inherent in a 
stack machine. Notice that the dynamic number of  P-code 
branches, for example, is  less than a factor of two to one 
over the CI measure. 

In comparing the System  370 to any of the other 
environments one is faced  with immense problems. So far 
we have  been  discussing machines and measures in very 
limited run-time environments with  relatively minimal 
generality in support for nonPascal system  facilities, the 
antithesis of the generalized support provided by the 370 
Operating System.  While the 370 program size  itself is 3056 
bits, this excludes prologue, epilogue, and  data space which 
alone-through a standard interface-is  reserved at 16 000 
bits. This overwhelms our comparison and since it contains 
or allows  for a great deal more information handling and 
communications than required either in this program or by 
any of the other architectures, we eliminate (insofar as 
possible) instructions or data areas which are not specifically 
associated  with the program hardshufle. The column labeled 
“without linkage” represents the additional number of 
instructions in the  minimum linkage path between the two 
routines. Excluded from this are  the instructions executed as 
part of the linkage  which are calls to  common run time 
facilities, space allocation, etc. These are again excluded in 
our comparison since it  seemed to us that  the inclusion of 
such data is more a measure of run-time philosophy and its 
generality than a measure of architecture itself.  Calls to such 
facilities during routine entry are not counted in the 
environment counts either. To fully include all instructions 
executed in a typical System/370 program plus  all data areas 
and prologue and epilogue areas would increase the cited 

368 numbers by several times. Thus, the 370 numbers can be 

interpreted as minimum numbers in comparing with the 
other architectural figures. The 370 numbers reflect an 
estimate of the measures of the architecture in a very simple 
dedicated run-time environment which simply is not 
available to us to measure. As a further experiment on 370 
the hardshuffle source program was recoded in PL/I and 
recompiled using an optimizing PL/I compiler. The 
increased generality  of PL/I plays a role in limiting the 
compiler’s ability to optimize the program. 

It is interesting to note  that, at least  for this example, the 
more dramatic variations in architectural measures occur in 
measures-such as space, dynamic instruction count, and 
syllables  interpreted-that  affect simpler hosts, particularly 
partially mapped and well-mapped machines. In fact, 
compilers seem to play a more significant  role than  the 
architectural arrangements themselves. This supports the 
observation that is more or less a truism that compiler 
technology  is  even more important  than  the architecture as 
the interpreter and executor technology is enhanced, while 
for simpler interpreters (hosts) the architecture seems to play 
a dominant role in determining execution performance. 

Conclusions 
Traditional computer architectures (i.e., program 
representations) are created about objects, actions, and/or 
capabilities presumed to be present in a physical  host 
computer-thus simplifying the interpretation process. This 
is done, however, at the expense of compilation, storage 
space requirement, and number of items to be interpreted. 

architecture in close correspondence to  the high-level 
language that was  used to originally represent the program. 
Various possibilities can be considered as candidates for the 
“ideal” architectural form characterized by the canonic 
interpretive measures, depending on host  resources. 

measures (by a factor of 3 to lo), while architectures 
specifically  designed to attain these measures are able to 
come rather close (within 1.3) to them in a number of 
examples studied. 

An alternative is presented, created about  the notion of an 

Traditional architectures are significantly inferior to CI 
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