56

Measures of
ideal execution
architectures

by Michael J. Flynn
Lee W. Hoevel

This paper is a study in ideal computer
architectures or program representations. We
define measures of “ideal” architectures that
are related to the higher-level representation
used to describe a program at the source
language level. Traditional machine
architectures name operations and objects
which are presumed to be present in the host
machine: a memory space of certain size, ALU
operations, etc. An ideal language-based
architecture is based on a specific higher-level
(source) language, and uses the operations in
that language to describe transformations over
objects in that language. The notion of ideal is
necessarily constrained. The object program
representation must be easily decompilable (i.e.,
the source is readily reconstructable). It is
assumed that the source itself is a good
representation for the original problem; thus any
nonassignment operation present in the source
program statement appears as a single
instruction (operation) in the ideal
representation. All named objects are defined
with respect to the scope of definition of the
source program. For simplicity of discussion,
statistical behavior of the program and language
is assumed to be unknown; Huffman codes are
not used. From the above, canonic interpretive
(Cl) measures are developed. Cl measures

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

MICHAEL J. FLYNN AND LEE W. HOEVEL

apply to both the space needed to represent a
program and the time needed to interpret it.
Example-based Cl measures are evaluated for a
variety of contemporary architectures, both host-
and language-oriented, as well as a Cl-derived
language-oriented architecture.

Introduction and some definitions

Inadequacies of many familiar machine architectures, both
in program size and execution time, pose the problem of
executable program representation [1-3]. Secondary effects
of these architectures lead to complicated system structures
and implementations, e.g., compilers and linkage editors, as
well as difficulties in recognition and exploitation of
parallelism [4]. A traditional architectural premise is that
execution architectures must be fixed, and hence universal,
languages.

In such architectures the relationships, actions, and objects
required by a program are translated into descriptions of
objects presumed to be present in the machine: registers,
adders, etc. These architectures are universal in the sense
that they do not change for the various higher-level
languages (HLLs) that may be used. Architectures that
correspond to a particular HLL are called Direct
Correspondence Architectures (DCAs). Since a DCA
architecture is oriented to a particular HLL, it allows more
information to be preserved concerning language and user
environment, while still realizing more concise
representation and expeditious interpretation than host-
oriented architectures. Thus, in this paper, we assume an a
priori knowledge of the HLL to be used.

In earlier work [5] on this subject, we have referred to
these language-oriented architectures as DELs—Directly
Executed Languages. This term proved to cause confusion in
apparently restricting attention to efforts that interpreted—

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

without compilation—HLL source text. As this was not our
intention, we have chosen the DCA acronym as a more
accurate description of various forms of language-oriented
architecture.

Before proceeding, it is useful to introduce some terms
which we use throughout this paper. An instruction is a
function which determines the next state given a current
state. The machine is a set of instructions, storage, and an
interpretive mechanism that implement the state transitions
determined by the stored instructions. Now the interpretive
mechanism itself may be a machine—that is, with its own
set of instructions, storage, and interpretive mechanism—in
this case, the original machine is called the image machine
and its interpretive mechanism is called the host machine.
The program which controls a host machine acting as an
interpretive mechanism is called the emulator program. The
emulator is naturally also an interpreter, and we use these
terms interchangeably. The set of all image instructions
represents the execution architecture of the machine.

By convention, image machine instructions are called
simply instructions, while host machine instructions are
called microinstructions or host instructions. The instruction
itself is a vector of bits partitioned into fields called syllables.
The syllables identify properties of the instruction which
include

format,

. object identifiers,

. operation identifiers,
. sequence control.

W N -

The format syllable of an instruction specifies the number
and type of the remaining syllables in the instruction, the
location and use of implied objects, and the type of
transformation rule to be associated with the operation (i.e.,
which objects are operation sources, and their precedence,
and which object is the operation result). The object
identifier is an explicit pointer to a variable, while the
operation identifier specifies the functional transformation to
be applied to the source operands. Frequently the format
and operation identifier are encoded together. Sequence
control selects the next instruction to be interpreted.

In this paper we further assume that programs are initially
expressed in a fixed high-level language (HLL) which has
been carefully selected by the user to suit the problem
environment, and that it is a familiar procedure-oriented
language. Within this framework, we will explore measures
of ideal execution architectures for a variety of host
organizations.

o Identifiers, objects, and name spaces

Programs use identifiers as surrogates for objects. Objects—
arguments or results—are only associated with values during
execution, as defined by the states of a computation. In this

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Objects, names, and identifiers.

sense, an identifier is only a specific instance of the abstract
name for an object; the name exists independently of a
language, while the identifier is closely tied to a particular
syntax and semantics (Figure 1).

Typically, source-level identifiers are mnemonically
selected alphanumeric strings. Image identifiers are usually
one-, two-, or three-dimensional binary codes (e.g., base,
segment, offset). At the host level, identifiers are simply
physical addresses. Typical source-level objects are integer
variables, program labels, and boolean flags; typical image-
level objects are words, bytes, and bits; and typical host-level
objects are registers, buses, and execution units. Potentially,
image instructions may access or modify any object in the
image storage. Fields within image instructions, called
identifiers, are used to locate specific objects in the image
store. The set of all locatable objects in the image store is
called the name space of the execution architecture.

o Scopes and working sets

The scope of an identifier is the largest program fragment
over which it has a consistent interpretation. For most
programming languages, the term scope of definition is used
to refer to a given lexical block (procedure, subroutine,
function, or begin-end segment) associated with a given level
of declarations.

At the machine level, however, the natural interpretation
of a scope is as a range of instructions over which indexing
registers remain effectively unmodified, so that a given
operand identifier always refers to the same program object

MICHAEL J. FLYNN AND LEE W. HOEVEL

357

358

Referencing environments: (a) Language-oriented instructions; (b)
Host-oriented instructions.

within a given scope. The term is often used imprecisely,
however. The “scope of a procedure” may refer either to the
set of statements outside the definition of a procedure in
which its own name is a valid identifier, or to the set of
statements immediately inside a procedure definition in
which identifiers local to that procedure have consistent
interpretations.

The basic model

The basic model [6] used in this investigation is illustrated in
Figure 2. Its most obvious characteristic is that program
evaluation is assumed to take place in two distinct phases.
First, a source program is converted into an equivalent form
during an initial compilation phase. Users retain this form,
which becomes a surrogate for the original source version. In
the second phase the surrogate undergoes a number of
subsequent interpretations.

Two-phased evaluation may be used as the basis for a
design model. The principal components of a system in this
model include a source language—selected for its
representational capabilities; a host machine—selected for its
execution capabilities; a translator that takes a source
program as input and produces a logically equivalent
executable program; and finally an interpreter that enables
the host machine to implement the state transitions specified
by the output of the translator.

MICHAEL J. FLYNN AND LEE W. HOEVEL

An ideal execution architecture is a representation defined
with respect to the given source language and environment.
The term “ideal” is used here to mean

1. Transparent—i.c., translation is a simple process which
preserves equivalent source-state information, thus
allowing a ready reconstruction of source constructs.

2. Optimal representation—i.e., space and time to compile
and execute are minimized.

o Translation

Translation is the process of converting a program in one
language into an equivalent program in another language.
Equivalence refers to similarity of transformation in the eyes
of a user—a program p in language P is equivalent to a
program ¢ in language Q if and only if users cannot
distinguish between an execution of p according to the
semantics of P, and an execution of ¢ according to the
semantics of Q.

The virtue of compilers is that they translate a source
language program into a form that can be interpreted more
efficiently. This means that some sort of reduction in
computational complexity takes place. In general,
compilation can be viewed as a (partial) binding of operands
to storage cells and operators to computational structures.

The special case of direct interpretation of HLL source
also fits this model since a translation of a statement is
required, although this translation is internal to the
interpreter. One may view this as a compilation-
interpretation on a statement-by-statement basis in which
the intermediate execution architecture is not visible to the
user.

For our purposes, compilation involves two quite distinct
processes: optimization and translation. We view
optimization as occurring on a source-to-source basis. The
optimizer rearranges the source program into its “best
possible form” within the source language (or an extended
version of the source language). The translator then takes
this form of the source and creates a surrogate form within
the syntax and semantics of the execution architecture. The
remainder of this paper assumes that the given HLL
program is already in its “best possible form™—i.e., that it
has been optimized.

o [nterpretation
The interpreter [Figure 3(a)] may be visualized as consisting
of a primary control loop, a set of interface routines, and a
set of semantic routines. The primary control loop maintains
the DEL instruction stream, and extracts at least an initial
format syllable that defines the layout for the rest of the
instruction. It then transfers control to the appropriate
interface routine, which actually parses any operand
references within the instruction.

Interface routines are responsible for creating a standard
interface that defines the location (and possibly the vatue) of

IBM J. RES. DEVELQP. VOL. 28 NO. 4 JULY 1984

each operand in an instruction. The interface routine then
returns to a known point in the primary control loop, which
transfers control to the semantic routine that actually
implements the action rule defined by the instruction
[Figure 3(b)]. It does this by transforming the values
previously loaded into standard interface. Upon completion
of all semantic pracessing, control returns to the top of the
primary control loop, and another cycle of interpretation
begins. Results may be stored by the semantic routine itself,
or within the primary control loop.

Within the contral loop, interface, or semantic processing,
the state of the data store and program state vector is
temporarily undefined. Definition occurs at the boundaries;
the overall process will be correct if the data store and
program status vector agree with defined constructs
whenever the last instruction in the expansion for a source
statement has been executed.

o Level mappings and transparency
Users relate the observable (but low-level) effects of
executing a program to source-level semantics through an
association established between the source-level name space
and the host name space. In general, there is a map from
any higher-level L to the next-lower-level L — 1 that defines
the way in which level L is realized at level L — 1. There is
also a dual map from level L — 1 to level L that defines how
an execution of a level L — 1 program is to be visualized in
terms of level-L semantics (Figure 4).

More formally, transparency is a property of an interlevel
mapping, ffrom L to L — 1, such that

i. State transitions in both L and L — 1 occur in the same
order.

ii. States are preserved at the end of a state transition in L;
states in L — 1 correspond directly to states in L, and no
new states may be introduced.

The consequences of transparency are significant:

1. There is no hidden data state to save across transitions in
L. This implies that there is no need to save data states
(i.e., host registers) at an interrupt if interrupts are
permitted to occur only at the end of a state transition in
L. For example, a program is interruptable upon
completion of the STORE corresponding to an HLL
assignment, but not within the evaluation of an HLL
expression.

2. Synchronization of concurrent processes, if valid at level
L, is valid at level L — 1 since there is an exact
correspondence of states and order of interpretation
between these two levels. Further, verification of
computations is valid at level L — 1 whenever it is valid
at level L.

3. Optimizing compilers are clearly not transparent since
they affect the number, type, and order of state

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Fetch next instruction

Instruction being:
" interpreted

lnté}p;egex e

7 Twhich selects’
~ |-dentifier

' Of senigntic
Toutine”

which-establishies -
next-field to.be:
interpreted:

| (a) Interpretation process; (b) Syllable interpretation.

transitions. Thus, further checking of optimized programs
may be required in order to ensure correctness of
operation.

Types of interpretive mechanisms: image-host
correspondence

An image instruction is partitioned into syllables which must
be interpreted by the host machine. Each of these syllables
must be individually decoded by the interpretive mechanism

MICHAEL J. FLYNN AND LEE W. HOEVEL

359

360

and executed according to the semantics of the instruction.
Interpretive mechanisms or host machines vary considerably
in their ability to perform the decoding and execution of
syllables concurrently. Below is a classification of interpretive
mechanisms by the amount of hardware the host provides
for the detection and current execution of image syllables
and instructions.

1. Partially mapped host-image correspondence—In the
usual form of this type of correspondence (Figure 5), the
host has no a priori support for the interpretation of a
particular image syllable. Thus each syllable of the image
instruction is separately fetched (from the image storage),
decoded, and executed. While Fig. 5 shows a single state
transition for each of these actions, muitiple transitions
may be required—especially if the object size of the
image machine is not supported by the basic data paths
in the host machine.

. The well-mapped machine—In this case the host is
presumed to have hardware support for the syllable
partitioning of image instructions. Thus, once an image
instruction has been fetched, its various syllables can be
decoded concurrently.

The overlapped machine—This class of machine has still
additional resources to permit concurrent execution of
syllables in the image instruction sequence to as great a
degree as is permitted by the image semantics (i.e.,
dependencies that actually occur during execution must
be observed). However, the final state transition in the
execution of each instruction occurs in the order of the
original sequence; that is, all updates of the image store
are performed in logically correct order.

4. The confluent machine—If we remove the constraints of
order preservation during instruction interpretation,
transparency of execution is lost. The semantics of the
instruction stream are preserved only on a process-by-
process basis. This type of machine represents an
unlimited collection of host resources dedicated to image
program execution: unlimited cache, transformational
resources, etc. Blocks of instructions are decoded

=
Asyll. A A Bsyll. B B Csyli
(a) Partially mapped host (universal host)

F D F F E $

Inst. OP A B op C
(b) Well-mapped host machine

1 i | Ll |
rlnstrlI OP, ! A l B l o;arrv(jj simpltanepusly, a'nd only the depen(%encies determined
: RIS s S during this decoding process constrain concurrency of
F D i e . image instruction execution. Thus, this ultimate machine
—t—t---- s = . is limited by semantic dependencies which could not be
Instr, OP, = . " anticipated. Its execution time is limited by inherent
F D , dependencies within the image code, and by the initial
—t—---- occurrence of various image program artifacts. For
Instr, OP, example, even if a machine is equipped with a cache of

(c} Overlapped host infinite size, it still may have a nonzero cache miss rate

because of the misses caused by initial reference to
various program and data blocks. Similarly, branch target
buffers can be used for concurrent target instruction

Three host timings. . e
I ree nos £ retrieval only after they have been initialized by a
previous encounter during program execution.

MICHAEL J. FLYNN AND LEE W. HOEVEL IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Different artifacts of program behavior affect each of the
above host machine types in significantly different ways. The
total number of environments entered may be of little or no
importance to the execution time of a partially mapped
machine since it is dominated by the interpretation time of
syllables within environments; on the other hand, a
confluent machine faces precisely the reverse situation. Thus
any attempt to develop measures of ideal execution must
take all categories of host machines into account.

ideal execution architectures

An ideal program representation and corresponding machine
uses minimum storage space and requires minimum
compilation and interpretation time. This does not imply a
linear tradeoff between space and time; relative weights can
only be determined within a given user and host context.

The notion of environment, however, is fundamental to
the discussion of space/time optimality. Like many concepts
dealing with computer systems, environment may be viewed
as a hierarchical concept. The chosen higher-level language
itself represents the highest level, while a specific program
would represent a lower level, and individual statements
within a program would represent a still lower level.
Environment includes all information needed to interpret
objects: i.¢., all information available to an interpreter, as
distinct from information supplied directly by the specific
coding of a statement or instruction. Thus, the environment
of a traditional machine language would include a program
counter, address registers, interrupt status, etc. Within an
environment, we can measure the activity required of an
interpreter for a given HLL; the number of syllables,
instructions, and nonlinear sequence control actions all
affect image interpretation time in varying proportion
depending on the host.

Associated with each environmental level is the property
of stability. Intuitively, stability is probably best described as
the number of statements or objects that are interpreted
before the environment is changed. A change of
environment is caused by anything that disturbs the
interpreter by delaying it from completing the ordinary
execution sequence of a program, statement, or operator.
Instabilities arise from one of two basic causes. First,
exogenous events outside the current environment—a time-
sharing system, for example—may time slice over short
intervals, and each program switch would necessitate a
change in environment. Second, internal events associated
with the nature of a program itself may cause a change in
environment; for example, a single user program may
involve several languages, or may defer binding between
names and values until very late (as in the binding of actual
to formal parameters upon entry to a subroutine). In this
case, the act of binding the interpreter to a given language,
or of binding a name to a given value, also causes a change
of environment.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Some programs may repeatedly enter a certain set of
environments during execution. The host and its interpreter
may be able to take advantage of the limited number of
unique environments encountered. This number is an
important characteristic of program behavior, which we call
distance. An associated measure is distance ratio, which is
defined as the number of unique environments entered as a
fraction of the total number of environments entered. The
maximum distance ratio for any program is one, and a
program attaining this limit would never enter the same
environment twice. In many ways, distance is an ultimate
limit on the speed of interpretation of a program, since it
sets a limit on the possibility of retaining previously
interpreted data.

Aspects of execution architectures

In this section we examine some significant aspects of an
execution architecture and how they relate to a variety of
program and host environments. For each combination, a
measure can be found which describes the activity of an
ideal architecture during execution of a given program.
Many measures, however, are of limited interest; our
purpose here is to select some of those combinations which
provide a general insight into the relationship between an
architecture and the HLL. We identify five criteria for
measuring architectures:

1. Correspondence—that the representation correspond to
the source representation.

2. Size—that the representation be concise, i.e., a minimal
encoding.

3. Reference activity—that the representation minimize the
total number of objects to be interpreted.

4. Stability—that the representation minimize the total
number of environment transitions.

5. Distance—that the representation minimize the number
of unique objects and environments to be interpreted.

o Correspondence
Correspondence measures the ability of the architecture to
represent (i.e., stand as a surrogate for) HLL objects.
Correspondence is not itself a direct measure of space or
time; it is rather a quantification of the notion of
transparency introduced above.

An “operation” in an execution architecture may
correspond to

1. a program,

2. asubroutine,
3. astatement,
4. an operation.

For execution architectures meeting the statement
transparency requirement, HLL operations are the most
useful level of correspondence. Note that traditional

MICHAEL J. FLYNN AND LEE W. HOEVEL

361

362

machine architectures usually employ host (ALU)
operations, while special-purpose machines may select
certain subroutines or even a program for their operation set.
Thus, if

-

A.

i

is the number of static occurrences of HLL operations in a
program, we would expect an ideal architecture to have fii
instructions in its representation of the same program.
Similarly, if

A.

1

is the number of dynamic HLL operations required to
execute a source language program, we would expect 4,
instructions to be executed during the interpretation of any
ideal architectural representation of the same program.

Ideally, identifiers in the execution architecture should
also correspond to the objects named by the higher-level
language. In this case, however, the statement is the most
natural environment level. If 4, and A, are the number of
unique static and dynamic variables in a given HLL
program, we might expect an ideal architecture to contain /id
and A, static and dynamic operands. The counting rules are
somewhat complicated, however, since (ideally) only unigue
identifiers need be distinguished. For example, while there
are three identifiers in the HLL statement

“Xi=X4+ X"

we would count

Ay

as one (the only unique identifier is “X™), and
Ad

as two (one to fetch the only unique argument value, and
one to store the updated value in the only unique result).
The variable “X™ is counted twice in the dynamic statistic
since it occurs in both the range and domain of the
statement. Also, an ideal architecture should not introduce
artificial operands (i.e., “temporaries”); thus, the HLL
statement

“B:=A*B+B”

would result in

Ay=2
and
A, =3.

Summarizing the above, the correspondence measure for a
given source program is

(A, 4, Ay Ay)

and the relative correspondence for any execution architec-

MICHAEL J. FLYNN AND LEE W. HOEVEL

ture g is measured by the quadruple

4 4 4 4
Ay 5 A 9 b
A7 47 47 4,
‘where

A, A, Ay, and A,
are as above, and
a, a, a,, and a,

are the respective counts for the actual execution architec-
ture.

o Size

An ideal representation must be concise in its coding of
identifiers, yet not so concise that it exacerbates
interpretation. Total program size is simply the product of
the static count and size of the two basic identifier types
noted above. Since the number of identifiers depends on the
correspondence environment level (program, subroutine,
etc.), however, program size also depends on environment
level.

The basic question in measuring size, then, is the
determination of a suitable environment and identifier
encoding. Identifier size is determined by the number of
objects that must be distinguished by a particular identifier,
if identifier encoding is independent of frequency of
occurrence. Thus, if there are F distinct operators used in an
environment, each can be represented by llog, (F)] bits.
Similarly, if there are V" unique variables in an environment,
each operand can be represented by llog, ()1 bits. Identifier
encoding may vary in several ways:

1. fixed across environments,
2. variable by environment,
3. variable by frequency of occurrence.

In this work we do not consider frequency-encoded
identifiers; given full frequency distribution statistics, the
techniques for taking a nonfrequency-encoded scheme and
transforming it into a minimal encoding is straightforward
and treated elsewhere [7, 8]. Further, minimal encoding by
frequency requires serial inspection of the bits within a field,
thus increasing the complexity of interpretation as well as
interpretation time.

The distinction between the fixed and variable approaches
is merely a distinction between fixed and variable
environments, and hence is included in environmental
considerations. Environment may be determined by either
the program, the HLL, or the host. In traditional execution
architectures, the environment is determined by the host
specification rather than host configuration. Since this
environment does not change, identifier containers are
usually fixed, and information capacity is wasted in small-
capacity configurations.

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

For source-oriented execution architectures, any of the
following may be used to define the number of entities
which determine the identifier size (for each class of object—
operator, operand, and label):

1. Language restriction—the number of operands and labels
are usually not bounded by language syntax in a
meaningful way. However, the number of operations are
usually a priori limited and the number of operations
allowed by the HLL definition is a possible bound on
operation size.

2. HLL objects used in a program—i.e., the total number of
distinct operations, operand names, or labels used in a
program could form the domain of an identifier
definition. This might be a natural approach for DCAs
whose HLL does not have developed notions of
subroutines and linkage (e.g., COBOL).

3. HLL objects used in a subroutine—In those HLLs with a
well-defined notion of scope, each subroutine has its own
scope of definition. This is an interesting environmental
unit for operand and label identifiers.

4. The HLL statement—The even-lower-level concept of a
statement for an environment might also form the basis
of a size environment. However, since entry into and exit
from an environment requires interpretation time, the
statement may be at too low a level to provide an
optimum space/time tradeoff. That is, at the level of the
statement the setup time required may not offer a
worthwhile space/time tradeoff, since the size of the
identifiers increases as a log function while the
interpretation time is linear in the number of statements
to be interpreted.

At the subroutine level, setup time can be regarded as
being relatively small compared to the interpretation time
for the overall subroutine, while at the statement level this
may not be true. However, for interpretive languages (APL,
BASIC, etc.) where a line-by-line execution is performed, the
HLL statement is a natural environmental unit.

From the above, an ideal architecture has a size
environment whose domain is determined by the number of
HLL objects used in either the representation, the program,
the subroutine, or the statement. For familiar procedural
languages (Pascal, FORTRAN, etc.), the statement level does
not seem to be a good choice because of implied interpretive
overhead, while an environmental unit consisting of the
entire language or program seems equally inefficient in its
lack of conciseness. For such languages, it appears that the
subroutine level is a natural space/time optimum.

e Dynamic activity

Measuring the dynamic activity of an architecture is
significantly more difficult than measuring program size.
Interpretation time depends not only on a simple count of

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY }984

object references, but also on the kind of object being
interpreted and underlying hardware support for special
cases. To characterize this activity, we need multiple
measures, each of which reflects a different level of program
execution. We see the primitive dimensions of this measure
in terms of the following concepts:

1. Referencing: execution is limited by the dynamic count of
objects requiring interpretation in simple hosts—
instruction and operand interpretation.

2. Stability: slightly more elaborate hosts can predict, and
hence overlap (or hide), most object references; their
execution time is dominated by the occurrence of
unpredictable events (e.g., conditional branches).

3. Distance: the ultimate host has unlimited hardware
resources, and can overcome most of the disruption
caused by lack of stability through extensive use of
information retention. For example, conditional branches
can be anticipated by recalling previously encountered
interpretations. Here, the “first encounter”—what we cail
distance—is the limiting factor.

& Referencing activity
Referencing activity is composed of instruction fetches and
data accesses (both fetch and store activity).

Instructions Source-oriented execution architectures
introduce the following straightforward considerations with
respect to the instruction-fetch mechanism. For partially
mapped hosts, the number of instruction syllables that must
be interpreted is the primary measure of instruction activity.
A basic measure of the number of HLL inferred syllables is
simply 4, + A,. This is an overstatement since A; includes a
double count for syllables used as both a range and domain
element. Actually, the dynamic count of syllable 4, is

A, =4+ 3 A,

where the second term is the static number of data syllables
contained in an instruction summed over the dynamic
instruction stream. If the average number of syllables per
instruction is M, then by definition M X 4, is the dynamic
syllable count. For well-mapped hosts, the number of
operations to be interpreted (4,) is the primary measure of
instruction activity.

Data Source-oriented execution architectures introduce
the following considerations with respect to data access
mechanisms: for a partially mapped host, reference activity
is determined by the relative data path width,

_ (average operand size
host data path size |’

and 4. The dynamic reference count for operands is N X
A,. For a well-mapped machine, there should be one

MICHAEL J. FLYNN AND LEE W. HOEVEL

363

364

reference per identifier, and the operand reference count is
simply A,.

Notice that N is not a property of the program
representation but rather a property of the host. Thus, it is
irrelevant to discussions of ideal architecture but quite
important in comparisons with hosts of varying data path
widths and their ability to execute various program
representations.

While a simple dynamic count of data references is a
useful measure, the locality of such a reference does not
necessarily correspond to reference counts, complicating
performance models. Locality is not a direct property of a
source program, but source aspects—notably stability,
discussed below—have a direct influence on locality.

o Stability

Stability measures the number of changes to the way objects
are interpreted. The effect of stability is more pronounced
given a host that takes advantage of consistency in
environments and predictability of the occurrence of objects
and events.

a. Let S, be the total number of environments encountered
in the dynamic HLL program execution. Ideally, the
number of calls/returns (or equivalent architectural
artifacts like “perform” in COBOL) in the executable
reépresentation should correspond to the dynamic count
of S,.

b. Let S, be the number of data items encountered whose
location is not immediately determinable from the
identifier; i.e., whose location must in some way be
interpreted or computed (e.g., an array element or
complex data structure). Ideally, there should be no more
than S, such items encountered in the execution of a
program. Herein lies somewhat of a dilemma, since there
is frequently a confusion between the representation of an
item (its simple identification) and the implicit
computation of its /ocation in the data store. For
example, the first occurrence of an array element A(J, j) is
an instruction to the interpreter to compute the location
of this data object. However, subsequent use of 4(i, j),
presuming that / and j have not been changed, may be
interpreted as a simple surrogate identifier for the already
computed storage location. Insofar as these items can be
detected during the translation process, such overly
complex surrogate identifiers may be removed from the
image program; however, there may still remain data-
dependent branches, etc., that cause this sort of situation
to arise dynamically. Thus, the determination of a
minimum S, requires careful analysis of the HLL
program representation.

¢. Let S, be the number of control actions dynamically
interpreted in the HLL. HLL sequencing verbs each
correspond to a single control action, regardless of

MICHAEL J. FLYNN AND LEE W. HOEVEL

whether the predicate of the control action is satisfied or
not. Naturally, the frequency of occurrence of control
actions is of importance given an overlapped host
machine. Ideally, the number of control-type instructions
in the image architecture should be equal to S, as
determined from the HLL (special cases of individual
HLL verbs might be allowed due to known skews in the
distribution of potential operands, such as the default
increment of one in FORTRAN and PL/I looping
structures).

Stability measures are an extension of activity in that they
measure more global types of activity: the number of
environments encountered, number of computed locations,
and number of potential disruptions to serial instruction
sequencing.

o Distance

Regardiess of the amount of resources available to the
interpretive mechanism, execution time must be limited by
the initialization required. Even though the host may have
an infinitely large cache, the first occurrence of a block of
image program or data is a cache miss. Thus, even a
confluent machine with infinite resources is limited by first
encounters, which we refer to as the distance measure. Three
components of distance are identified in this paper:

a. Let D, be the number of unique environments entered.

b. Let D, be the number of unigue objects requiring
interpretive definition (computed addresses).

c. Let D, be the number of unigue branch targets.

As the environment is first entered it becomes captured by
a host with infinite resources; even with finite resources the
principle of locality ensures a reasonable capture rate. As
artifacts of an environment are subsequently encountered
during the execution of an image program, they become
immediately available to the interpretive mechanism. Thus,
distance is indeed an ultimate lower bound on execution
time.

A set of canonic interpretive measures
Summarizing the above discussion, a given program
representation can be measured for execution parameters
independent of actual hardware. We propose the following
measures of execution architectures:

Correspondence
The quadruple 4, 4,, 4,, 4, .

Size

Each operator is of size [log, (F)1.
Each operand is of size llog, (V).

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Referencing

Syllable references are measured by A4_.

Instruction references are measured by the pair (M, 4,).
Data references are measured by A,

Stability
The CI measure of stability is the triple (S,, S,, S,).

Distance
The CI measure of distance is the triple (D,, D_, D,).

The measures, while interesting in themselves, are of
considerably more value when compared to actual
architectures. We call these comparative ratios the relative
Canonic measures.

Ideal execution space
Space is measured by the number of bits needed to represent
the static definition of a program.

ideal size = ¥ [log, (F)1 X A, + Mog, (V)1 X A, ,

where the summation is over all environments, «, by the
HLL program semantics.

Ideal execution time

CI dynamic measures are closely related to the interpretive
mechanism of an image machine. For the partially mapped
host, interpretation time is almost completely dominated by
the program activity. If the host data paths do not at least
match the image data widths, the host memory will saturate
and limit execution performance. Naturally, given a
universal host, where each image instruction is decoded
syllable by syllable, stability and distance are poor estimates
of actual interpretation time. Conversely, stability and
distance are highly relevant given overlapped or confluent
hosts, and size measures are of diminished importance.

In the following, we estimate the ideal execution time for
various host organizations in terms of execution cycles. The
number of cycles needed to interpret an image program is
calculated as a weighted sum of the various measures defined
above.

Partially mapped hosts We estimate the execution time for
image machines with partially mapped interpretive
mechanisms as

ideal cycles iy mappea = (@ X (M X 4)] + [b X (N X Ay},

where a, b are relative weights for instruction interpretation
and data accessing, respectively. M is the number of syllables
per instruction multiplied by the number of cycles needed to
decode a syllable and access the object it identifies. N is the
relative data path size (i.e., the number of memory accesses
required to retrieve or store a data item).

1BM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Well-mapped hosts Given a well-mapped host, execution
time 1s best estimated by a straightforward linear sum of
activity and environmental stability. We approximate this
execution time as

ideal cycles maxXA+bXxXA;+cexS,.

well-mapped
Again, a, b, and ¢ are arbitrary relative weights for
transformational activity, data accessing, and environment
change; in this case M and N are equal to 1. The additional
term S, is introduced to recognize that, for many programs,
this may be an important factor—especially when the host is
equipped with a cache. The effect of cache is to lower the &
weighting factor by perhaps as much as a factor of 10, and
indeed (for large caches) ¢ x S, may dominate b X A,. If the
interpretive mechanism is a partially mapped machine,
where M is on the order of 5-10, the relatively slow
interpretation of image instructions ensures that the
environment change time will be far less significant, hence
our assignment of a zero weight to this factor in the previous
equation.

Overlapped host As we move toward increasingly high-
performance hosts, overlap of image instruction
interpretation time increases, and activity (@ X 4, + b X 4,)
is decreased in relative importance. However, for simple
overlapped hosts, the branching stability is quite
significant—perhaps even dominating transformational
activity. Thus an execution time approximation for a simple
overlapped host would be

ideal cycles g poppea = @) X (4; = S,)

+a, XS, +ex S, +dxS,.
where a, and q, are appropriate weights for nonbranching
and branching instructions, respectively, and ¢ and d are
weights for name and environment stability. For such simple
overlapped machines, the occurrence of a branch delays the
interpretive mechanism until all preliminary operations
(such as fetching and decoding) for the target are completed.
Indeed, it would not be unusual for 4, to be only one-tenth
the magnitude of a,—i.e., for it to take ten times longer to
execute a branching instruction than to execute a
nonbranching instruction, because data and instruction
fetching activity can be overlapped while nonbranching
instructions are being interpreted but not during or in the
immediate vicinity of a branching instruction. The effect of
name stability (S,) may be significant in this case, although it
can be ignored for simpler host organizations where each
data item is serially interpreted and computed names
probably represent a small increase in the overall execution
time. On more powerful hosts, however, this factor can
become significant—especially if there are no associative
lookasides that can be exploited during address computation.

Confluent host The ultimate in high-performance hosts is a
machine that has an interpretive mechanism that includes an

MICHAEL J. FLYNN AND LEE W. HOEVEL

365

366

Table 1 Comparison for the example listing.

370 370 CIM
optimized nonoptimized
No. of instructions 15 19 6
Program size 368 bits 604 bits 30 bits
Data references 20 36 13
Instruction environments 1 1 1
Data environments 1 1 1+1

the excerpt, and whose final values must be stored in
memory for later use.

o Canonic measure of the FORTRAN fragment

Instruction count

Statement 1
Statement 2
Statement 3

1 instruction
2 instructions
3 instructions

(1 operator)
(2 operators)
(3 operators)

unbounded amount of interpretive support hardware. As
mentioned earlier, such a host is still bounded in execution
performance by distance parameters (the time required for
first interpretations of various objects). Thus, it would have
an execution time of

ideal cycles = max (ideal cycles,, s,ppess K- D).

confluent

That is, its execution time is bounded by the maximum of
either program activity and stability, or program distance
where the constant K is a timing weight for the distance
measures. The bound for the confluent processor is
especially important since it forms an ultimate limit to
program execution. Its dependence upon distance is
particularly interesting, as the distance measure then limits
execution performance for most familiar initial program
representations. Of course, since significant variations in the
distance measure of comparative architectures arise only in
large program environments, it is a somewhat more difficult
concept to evaluate.

Applying the measures: two examples

The following two examples illustrate the use of the CI
measures, both as absolute measures and as comparative
measures of traditional architectures. The first example is a
very simple FORTRAN three-line program which illustrates
the use of some of the simpler aspects of the measures. A
detailed comparison with System 370 is also shown.

The second example, while still necessarily limited, is a
more comprehensive use of the program. Comparisons are
made for a number of traditional and language-oriented
architectures.

o Example 1: CI measures for a simple FORTRAN program
The following three-line excerpt from a FORTRAN
subroutine, taken from [9], illustrates the simpier CI
measures:

1L I=1+1.
2.J=(J-1)+1
3.K=(J—~ 1)+ (K-

Assume that I, J, and K are fullword (32-bit) integers
whose initial values are stored in memory prior to entering

MICHAEL J. FLYNN AND LEE W. HOEVEL

Total 6 instructions (6 operators)

Identifier count
Statement 1
Statement 2
Statement 3

3 identifiers
5 identifiers
7 identifiers

(2 operand, 1 operator)
(3 operand, 2 operator)
(4 operand, 3 operator)

Total 15 identifiers (9 operand, 6 operator)

Identifier size

Operation identifier size = llog, 41 = 2 bits.
(operations are +, —, *, =)

Operand identifier size = llog, 41 = 2 bits.
(operands are 1, /, J, K)

Program size

6 operator identifiers X 2 bits = 12 bits
9 operand identifiers X 2 bits = 18 bits
Total 30 bits
References

Instruction references—o6 references
Data references— 13 references

Stability
Instructions —1 environment
Data —1 environment load and environment store

—{0 computed names
The following listing was produced on an IBM System 370
using an optimizing compiler (FORTRAN IV Level H, OPT
=2, run in a 500K partition on a Model 168, June 1977):

I.L 10,112(0,13)
L 11,80(0,13)
LR 3,11
A 3,00,10)
ST 3,0(10)

2. L 7,40,10)
SR 7,11
MR 6,3
ST 7,4(0,10)

3. LR 4,7
SR 4,3
LCR3,3
A 3,8(0,10)
MR 2,4
ST 3,8(0,10)

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

A total of 368 bits are required to contain this program

ouputy,
body (we exclude some 2000 bits of prologue/epilogue code S s lg* hafd way}
required by the 370 Operating System and FORTRAN : }[{c’ndttxtypc']-of integer;
i vector;

linkage conventions)—over 12 times the space indicated by
the canonic measure. Computing reference activity in the
same way as before, we find that 20 accesses to the process
name space are required to evaluate the 370
representation—allowing one access for each 32-bit word in
the instruction stream.

The increase in program size, number of instructions, and
number of memory references is a direct result of the
partitioned name space, indirect operand identification, and
restricted instruction formats of the 370 architecture.

Table 1 illustrates the use of ratios for the foregoing

example. :
vec(identity, sum, i);

o Example 2: CI measures for a more complex Pascal
program

Consider the Pascal example shown in Figure 6;
hardshuffle—a program for shuffling array elements the hard
way—which consists of shuffle procedure swapvec and the
main program. Swapvec interchanges the elements of two
arrays from the first element up to the parameter limit. Hardshuffle program.

Hardshuffle—the main program—creates two arrays:

identity, consisting of the integers, and sum, which consists
of the sum of the integers. For a variable /imit ranging from
1 1o 10, swapvec is called to interchange some of the
elements of the two arrays. Finally, the values of the arrays
are written out.

Figure 7 is an evaluation for the example hardshuffle for
the CI measures on a variety of architectural approaches. A
fair comparison for a variety of architectures is a more
formidable task than might first appear. The measures are
significantly influenced by compiler strategies and run time
environments as well as the basic architecture itself. Thus,
the data in Fig. 7 require some explanation.

The first comparison is with an execution architecture
called Adept [10], developed at Stanford and derived from
principles of minimizing CI measures while maintaining
transparency for Pascal programs. By using an additional
format syllable in each instruction it matches most static and
dynamic CI instruction count measures. It also matches the
CI measures for memory activity. Additional syllables per
instruction add about § bits to each instruction and hence
account for about 110 additional bits in static program size.

An additional 800 bits of Adept are used to hold constant

values, array bases, and other environmental data. An Adept

. | o Comparison for various architectures with CIM.
variable reference consists of the addition of an
environmental pointer to a variable index whose container

matches the log, CI requirement. Each environment then

has its own environmental pointer and container width.

Some vanables such as array elements have an address the base of the array must be stored as well as the retrieved
computation before the element can be retrieved from main array element. The additional Adept space includes these
storage, which contains the image array. Thus the address of address constants and other values containing information

L o Systern 370] System 370
o aseal Ypascal | PLIT

S PDP P | with] w.o. | with] w.o,
oM]MQP‘* 11 |Code [Inkge{Inkge lnkgé]lnkge

| 277 1184 |2800{ 4960| 3056 4288 | 3668 | 4952

2r | 2|05 [1ss | 90 | 99130 | 168

3{2404 | 1481 1536 | 23222522

12797| 443 | 486 | 14501626

479 | 2179| 402 | 402 | 457 | 503

11519976 | 7393 | 7668111318113198

1202 | 219:4 261 188 | 201

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984 MICHAEL J. FLYNN AND LEE W. HOEVEL

367

368

for the routine to execute properly. The object code for
Adept is based upon a | + 1 pass compiler [10]).

The pdp-11 (a trademark of the Digital Equipment
Corporation) figures are based upon the Pascal compiler
developed at Vrije University (the Netherlands), Pascal-VU.
It produces an intermediate program representation, EM-1,
developed by A. Tannenbaum [11], which is further
translated into pdp-11! code. The static program size is the
size of the instruction stream; however, in the pdp-11
architecture rﬁany of the data parameters are represented as
immediate data in the instruction stream.

The P-code machine is actually a surrogate for the Pascal
language. It is a stack-oriented machine and is meant to be a
transportable medium for Pascal programs. Any host
machine can compile into P-code from a Pascal source and
(in theory at least) another machine equipped with a P-code
interpreter can execute this compiled code. The emphasis for
most P-code compilers is rapid compilation; thus the P-code
statistics are derived from a nonoptimized compiler—much
the same in philosophy as Adept.

The large number of dynamic instruction occurrences for
P-code when compared to Adept—over 5 to 1—is largely
accounted for by the push and pop instructions inherent in a
stack machine. Notice that the dynamic number of P-code
branches, for example, is less than a factor of two to one
over the CI measure.

In comparing the System 370 to any of the other
environments one is faced with immense problems. So far
we have been discussing machines and measures in very
limited run-time environments with relatively minimal
generality in support for nonPascal system facilities, the
antithesis of the generalized support provided by the 370
Operating System. While the 370 program size itself is 3056
bits, this excludes prologue, epilogue, and data space which
alone—through a standard interface—is reserved at 16 000
bits. This overwhelms our comparison and since it contains
or allows for a great deal more information handling and
communications than required either in this program or by
any of the other architectures, we eliminate (insofar as
possible) instructions or data areas which are not specifically
associated with the program hardshuffle. The column labeled
“without linkage” represents the additional number of
instructions in the minimum linkage path between the two
routines. Excluded from this are the instructions executed as
part of the linkage which are calls to common run time
facilities, space allocation, etc. These are again excluded in
our comparison since it seemed to us that the inclusion of
such data is more a measure of run-time philosophy and its
generality than a measure of architecture itself. Calls to such
facilities during routine entry are not counted in the
environment counts either. To fully include all instructions
executed in a typical System/370 program plus all data areas
and prologue and epilogue areas would increase the cited
numbers by several times. Thus, the 370 numbers can be

MICHAEL J. FLYNN AND LEE W. HOEVEL

interpreted as minimum numbers in comparing with the
other architectural figures. The 370 numbers reflect an
estimate of the measures of the architecture in a very simple
dedicated run-time environment which simply is not
available to us to measure. As a further experiment on 370
the hardshuffle source program was recoded in PL/I and
recompiled using an optimizing PL/I compiler. The
increased generality of PL/I plays a role in limiting the
compiler’s ability to optimize the program.

It is interesting to note that, at least for this example, the
more dramatic variations in architectural measures occur in
measures—such as space, dynamic instruction count, and
syllables interpreted—that affect simpler hosts, particularly
partially mapped and well-mapped machines. In fact,
compilers seem to play a more significant role than the
architectural arrangements themselves. This supports the
observation that is more or less a truism that compiler
technology is even more important than the architecture as
the interpreter and executor technology is enhanced, while
for simpler interpreters (hosts) the architecture seems to play
a dominant role in determining execution performance.

Conclusions
Traditional computer architectures (i.e., program
representations) are created about objects, actions, and/or
capabilities presumed to be present in a physical host
computer—thus simplifying the interpretation process. This
is done, however, at the expense of compilation, storage
space requirement, and number of items to be interpreted.
An alternative is presented, created about the notion of an
architecture in close correspondence to the high-level
language that was used to originally represent the program.
Various possibilities can be considered as candidates for the
“ideal” architectural form characterized by the canonic
interpretive measures, depending on host resources.
Traditional architectures are significantly inferior to CI
measures (by a factor of 3 to 10), while architectures
specifically designed to attain these measures are able to
come rather close (within 1.3) to them in a number of
examples studied.

Acknowiedgment

The research described herein was supported in part by the
U. S. Army Research Office-Durham under Contract
DAAG29-82-K-0109, using emulation facilities supported by
NASA under Contract NAGW 419,

References

1. Yaohan Chu, Ed., High Level Language Computer Architecture,
Academic Press, Inc., New York, 1975.

2. Michael J. Flynn, “Trends and Problems in Computer
Organizations,” Proceedings of the IFIPS Congress, Stockholm,
Sweden, August 1974, North-Holland Publishing Company,
New Amsterdam, 1975, pp. 2-10.

3. W. M. McKeeman, “Language Directed Computer Design,”
Proc. Fall Joint Computer Conf. 31, 413-417 (Fall 1967).

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

4. Ravi Sethi and Jeffery D. Ullman, “The Generation of Optimal
Code for Arithmetic Expressions,” J. ACM 17, No. 4, 715-728
(October 1970).

5. Michael J. Flynn, “The Interpretive Interface: Resources and
Program Representation in Computer Organization,”
Proceedings of the Symposium on High Speed Computers and
Algorithm Organization, University of Illinois, Champaign, IL
(Pub. Academic Press Inc., New York), April 1977.

6. Lee W. Hoevel and Michael J. Flynn, “The Structure of Directly
Executed Languages: A New Theory of Interpretive System
Support,” Technical Report No. 130, Computer Systems
Laboratory, Stanford University, Stanford, CA, March 1977.

7. Eric C. R. Hehner, “Information Content of Programs and
Operation Encoding,” J. ACM 24, No. 2, 290-297 (April 1977).

8. D. A. Huffman, “A Method for the Construction of Minimum
Redundancy Codes” Trans. IRE 40, No. 9, 1098-1101
(September 1952).

9. M.J. Flynn and L. W. Hoevel, “Execution Architecture: The
DELtran Experiment,” IEEE Trans. Computers C-32, No. 2,
76-174 (February 1983).

10. Scott P. Wakefield, “Studies in Execution Architecture,” Ph.D.
Thesis, Stanford University, Stanford, CA, 1982.

11. Andrew S. Tannenbaum, “Implications of Structured
Programming for Machine Architecture,” Commun. ACM 21,
No. 3, 237-246 (March 1978).

Received July 28, 1983, revised March 3, 1984

IBM J. RES. DEVELOP. VOL. 28 NO. 4 JULY 1984

Michael J. Flynn Stanford University, Computer Systems
Laboratory, Electrical Engineering Department, Stanford, California
94305. Professor Flynn received his B.S. in electrical engineering
from Manhattan College in 1955, his M.S. from Syracuse University
in 1960, and his Ph.D. from Purdue University in 1961. He joined
IBM in 1955 and worked for ten years in the areas of computer
organization and design. He was design manager of prototype
versions of the IBM 7090 and 7094/11, and later was design
manager for the System/360 Model 91 central processing unit.
Professor Flynn was a faculty member of Northwestern University
from 1966 to 1970 and of the Johns Hopkins University from 1970
to 1974. In 1973-74 he was on leave from Johns Hopkins to serve as
Vice President of Palyn Associates, Ino.—a computer design firm in
San Jose, California, where he is now a senior consultant. Since 1975
he has been Professor of Electrical Engineering at Stanford
University, and was Director of the Computer Systems Laboratory
from 1977 to 1983. Dr. Flynn has served on the IEEE Computer
Society’s Board of Governors and as Associate Editor of the JEEE
Transactions on Computers. He was founding chairman of both the
ACM Special Interest Group on Computer Architecture and the
IEEE Computer Society’s Technical Committee on Computer
Architecture.

Lee W. Hoevel IBM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Dr. Hoevel joined IBM in 1978 as a
Research staff member at the Thomas J. Watson Research Center.
He is currently a member of the experimental systems structure
group and is involved in the analysis of cache performance and the
design of system extension mechanisms. Dr. Hoevel completed his
undergraduate work at Rice University, Houston, Texas, in 1968,
and later received a Ph.D. in electrical engineering from the Johns
Hopkins University, Baltimore, Maryland, while a Research
Associate at Stanford University. Dr. Hoevel is a member of the
Association for Computing Machinery, the Institute of Electrical and
Electronics Engineers, and Sigma Xi.

MICHAEL J. FLYNN AND LEE W. HOEVEL

369

