A software
architecture for a
mature design
automation
system

by Richard L. Taylor

Design automation systems are groups of
programs used to aid the design of the
electronic portions of computers. IBM has used
such systems for over twenty-five years, and
has a large number of experienced users who
place severe requirements upon their design
automation system. The essential requirement is
that design programs must be easy to use in the
way that a particular development location
wishes to use them. Design programs which
cannot be changed to meet local requirements
are not acceptable. The software structure
portion of an architecture for a design
automation system which meets these
requirements is described; interactive and
foreground design applications are stressed.
The structure involves a uniform set of services,
such as command languages and terminal
access methods, needed to support the design
application, and a formal, two-part partitioning of
the design application itself. Modularity and
good interfaces are important parts of the
software structure which permit a development
laboratory to change the application enough for

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

it to be easily used. These changes are the rule,
not the exception. Examples of such changes
are given, based upon early user experience.
The applicability of this architecture to future
system needs such as distributed data and
distributed processing is discussed.

Mature design automation systems

The phrase design automation system, as used in this paper,
means those design application programs which are used to
design the electronic portions of computers such as chips,
cards, modules, and boards.

The IBM Corporation has used design automation
systems for many years, now having over a quarter of a
century of experience in implementing and using such
systems. A history of these systems is contained in [1-3].
The present version of the IBM design automation system,
the Engineering Design System (EDS), is almost thirteen
years old. Thus, the IBM design automation system has
longevity, but other characteristics also make it a mature
system.

It is widely used by a large number of people at IBM
locations around the world. These people are experienced
users of design automation systems and place severe
demands upon them. The initial euphoria about any
program which replaced manual design labor has long since
gone away.

The IBM design automation system contains a large
number of different design applications, capable of
supporting many different technologies, including those used
in the newest IBM processors [4, 5]. 501

RICHARD L. TAYLOR

502

IBM development laboratories are autonomous units,
each being free to employ design methodologies that best
apply to its local conditions and to the products under
development. Each laboratory is free to employ the IBM
design automation system as it sees fit, replacing that system
with locally written design applications or purchased
programs. A number of people at each development site are
engaged in the implementation and maintenance of such
local methodologies.

It was this combination of factors—many experienced
users with many different applications, and the use of diverse
local design methodologies—that led to the system
requirements.

Requirements

The requirements apply to interactive and foreground
applications only, that is, applications which are initiated
from a terminal and which execute synchronously with the
user at the terminal. While there are still many batch
applications in the EDS, they are gradually being replaced by
interactive or foreground jobs.

The evolution of the requirements for the software portion
of the system architecture occurred over a number of years,
and was slow and painful. Mistakes were made, both by the
developers and the users of the architecture. The evolution
of requirements can be divided into three phases.

First came the experimental or prototype phase. There
have been experimental efforts to perform interactive design
applications since the early 1970s with the the advent of the
Time-Sharing Option (TSO) for the MVS operating system.
A small number of interactive applications were developed,
each using its own architectural constructs. There was little
or no resemblance among these early applications, and each
one had to be addressed on a case-by-case basis in regard to
installation, usage, and potential local modification.

The second phase was dominated by the application
developers. Interest in interactive applications grew slowly
for a number of years, but then started a period of rapid
growth due to the availability of adequate computing power
and adequate numbers of terminals. The majority of these
terminals were alphanumeric, members of the 3270
Information Display System family of terminals. A limited
number of terminals were high-function vector graphic, such
as the IBM 2250 or IBM 3250.

As the number of interactive applications grew, the
outlines of a system architecture for those applications
evolved. Applications were written to a common
architecture. In many ways, this phase was a step forward,
but it was a very rigid architecture, with little or no
flexibility. There was insufficient understanding of the
requirements of the various development locations which
would use the design system. This lack of understanding is
not completely the fault of the application designers or the
system designers; the users, in general, did not understand
their requirements.

. RICHARD L. TAYLOR

The third phase of requirements evolution can be called
the mature phase. The users have now had enough
experience with interactive applications to have a good
understanding of their requirements. The system and
application designers have tried a number of alternative
designs, and have a much better idea of what will work and
what will not. Both groups are looking to a future with
distributed data and professional work stations.

The basic requirements from the users can be simply
stated:

o Deliver a system of design applications that will work as
delivered.

e Deliver interactive applications in such a system
environment so that the applications can be easily used at
a development site.

e Design the system to allow easy transition into future
computing environments, such as distributed data bases
and professional work stations, even if the exact details of
such environments are not known.

Many detailed steps are needed to implement these
requirements, but a common theme is the notion of having
modular design at all levels of the system, with well-defined,
stable interfaces between the modular parts.

The system architecture

The software portion of the system architecture is concerned
with two major interdependent parts: the application
environment and the interactive application itself,

The application environment is the computing
environment that the application sees external to itself. The
major element of this environment is the architecture of the
computing system on which the application executes. The
EDS applications assume a System/370 architecture,
although no overt recognition of that architecture is made.
Conversely, no attempt has been made to enforce a
“machine-independent” mode of coding by using only
certain constructs from high-level languages. Some thought
has been given to this approach, but it has not proved
successful.

This major portion of the applications environment is
defined by the services that an application can call upon for
its use. These services are called application support
programs.

The application must conform to certain guidelines or
standards. Use of the application support programs is one
such standard, but many other more difficult guidelines must
be followed.

e Application support programs

Application support programs provide various specific
services to the applications. The software architecture
specifies the following application support programs.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Terminal monitor program
The terminal monitor program manages the communication
protocols between the application and the terminal.

Terminal access methods

Terminal access methods are the means by which an
application program communicates with a terminal. This
communication can be as simple as “write a line” or “read a
line,” or considerably more complex, such as “write a full
screen of information at once, doing field substitutions in the
process.”

Parameter bases

Parameter bases are means of saving certain data from one

terminal session to another, and supplying that information

so that the terminal user does not have to re-enter it.
Parametric data are communicated to the application by

means of a parameter interface area (PIA).

Command languages

A command language is similar to a TSO CLIST or a VM/
CMS EXEC. The command language is used for certain
specific parts of every application. This use is explained in
the next section.

An overview of the application support programs is given
in Figure 1. Each of the application support programs is
described in detail, but there are several important
architecture goals which apply to all of them. These goals are
described as follows:

base access
:methods

1 application ;

anguage
fun%?i?m
1F30

Structured

. application .

D,n oo Ind'gcatcsk data flow

Indicates. control flow -

Application support programs.
e Adequate functionality. The support program must provide

enough function to be useful to the design application. For
example, a terminal access method for graphic terminals
must permit convenient construction of any display. This
requirement may appear to be obvious, but many of the
interactive applications are quite complex and place severe
functional demands upon the support programs.
Modularity. Modularity means that the services provided
by the support programs are grouped into packages of
related independent services. Typically, each package of
services is one program load module.

Putting related services into one package means that a
particular group of services can be used without any dead
code. The parameter base is not packaged with a terminal
access method.

Independent services means that it is generally not
necessary to load one service package as a prerequisite to
another.

Replaceability. It must be possible to replace an
application support program with another functionally
equivalent program. A necessary condition to allow
replaceability is to have well-defined interfaces for the
support programs.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

The interface definitions must include calling sequences,
data structures, and precise descriptions of the actions that
result from a call. In other words, the interface definition
must be precise enough so that a user of the system could
write a functionally equivalent program. Further, the
interfaces must remain stable long enough so that
replacement programs written by users will be useful for a
long time.

EDS guarantees that the interfaces for its application
support programs are functionally complete and will have
long-term stability, thus making it practical for other
groups to write programs which use EDS interfaces. The
locations of the major interfaces are shown in Fig. 1 as
IF10 through IF90.

The replaceability requirement also dictates that the
service packages be loaded at time of use, rather than
permanently linked into the application.

RICHARD L. TAYLOR

| Device-independent access method.

o Efficiency. There are a number of aspects to program
efficiency, but the ones of chief concern are execution time
and virtual storage occupancy.

Studies have shown a direct correlation between rapid
terminal response and productivity in interactive
applications. Many EDS interactive applications try to
respond to trivial actions in a fraction of a second. Any
application support program which is invoked in the
process of providing the response must therefore operate
in a fraction of a second.

The amount of virtual storage occupied by service
programs is of great concern in today’s LSI-VLSI design
environment. The size of parts being designed seems to
grow faster than the amount of available storage! Much
attention was paid to the size of the support programs and
to various strategies to minimize their storage occupancy.
Modularity helps greatly in management of storage. It is
necessary to load only the services that are needed by an
application. In some cases the modularity was carried to a
further level. Some support programs were partitioned into
two or more load modules, guided by an estimate of
frequency of use of particular services. In many cases, only
one module from the set is loaded into virtual storage.

RICHARD L. TAYLOR

Terminal monitor program

The terminal monitor program (TMP) controls the two-way
communication between the application program and a
terminal. Such a program is often supplied as part of an
operating system, or it may be necessary to write a special
terminal monitor program for a particular terminal. In our
case, we found the IBM-supplied terminal monitor program
adequate for the 3270 IDS family of terminals.

We found it necessary, however, to write our own
terminal monitor program for the 2250 and 3250 terminals.
Standard IBM product offerings were not adequate for our
application set. One of the great challenges in the design of
the terminal monitor program was the exact amount of
function to put in it. Since this program will always be
present when high-function graphic terminals are in use,
there was a tendency to include other functions, such as
dump management, which had nothing to do with terminal
communication. Inclusion of these other functions clearly
violates the modularity requirement. A great deal of design
effort was spent on this program, and we now have a
terminal monitor program that meets the modularity and
efficiency requirements.

Terminal access methods

Two terminal access methods are available, one for
alphanumeric terminals such as the IBM 3277 or 3278, and
one for vector-graphic terminals such as the IBM 3250. Each
terminal access method appears to the application
programmer as a number of CALL statements, each of
which performs a specific service.

Alphanumeric terminal access method The alphanumeric
access method consists of a few dozens of CALLS. Major
functions are the construction and presentation of full-screen
displays, and the return of data from such displays to the
application program. The displays may be initially stored in
a data set, or they may be constructed dynamically by the
application program. Full support of input devices such as a
keyboard, program function keys, and a selector pen is also
provided in this program package. This access method
depends upon the presence of the standard IBM terminal
monitor program, supplied as part of the operating system.

Displays constructed by using the alphanumeric terminal
access method may also be presented on a high-function
graphic terminal. In this case, the screen buffers for the
alphanumeric terminal are translated into graphic orders and
passed to the graphic terminal access method. Thus, the user
of a graphic terminal can often run an alphanumeric
application upon that terminal, avoiding the need to
LOGOFF the graphic terminal and find an alphanumeric
terminal.

Graphic terminal access method The graphic terminal
access method consists of several hundred CALLS. A

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

comprehensive group of services is provided, allowing the
rapid construction and presentation of complex vector-
graphic displays. Full support of input devices such as
keyboards, program function keys, and light pens is
provided. This access method depends upon the presence of
the EDS terminal monitor program.

Major design effort has been spent to ensure a high
measure of device independence for this access method.
That is, the graphic terminal access method is designed to
run with a number of different types of graphic terminal, not
just one. The design approach is to separate the access
method into two main parts, one of which is independent of
device characteristics, and the other of which is tailored to a
specific device. This second part is called a device driver.
When it becomes necessary to support a new graphic device,
it may only be necessary to write a new device driver. This
design is shown conceptually in Figure 2. This aspect of the
terminal access method design, and many others, is
consonant with the SIGGRAPH CORE proposal, a proposed
standard for graphic access methods [6].

This design concept has been very effective. Support for a
number of new terminals has been rapidly and economically
implemented by writing new device drivers. Additionally,
plotters can be regarded as a special type of terminal, and a
number of them have been easily supported with this design.

Parameter base
The parameter base and the parameter access services
provide a view of parameter storage to the user.

Parameters are used for two distinct functions in this
architecture.

Parameters provide user convenience, by placing values in
displays for interactive applications. These values may have
been saved from a previous terminal session, and hence the
terminal user avoids unnecessary key strokes. This is a
conventional use of a parameter base, similar to the way
parameters are used in the IBM Interactive System
Productivity Facility (ISPF).

Parameters also provide a very important control
function, by forcing certain actions or specific operand
values in certain commands. Values of these control
parameters cannot be changed by the individual terminal
user. This is a less conventional use of a parameter base.

Each parameter has four attributes: value, control
character, standard question, and syntax model:

o The value of the parameter is the character string that
appears at the terminal.

e The control character determines whether the parameter
may be changed, whether it may be displayed but not
changed, or whether it may be changed but not displayed
(as, for example, a password). The control character is
necessary to implement the control function of the
parameter base.

iBM J. RES. DEVELOP. VOL. 28 NO. 5§ SEPTEMBER 1984

o The standard question is a character string that is used
when prompting for the parameter value. Thus, every
prompt for a given parameter is made in the same words.

e The syntax model is a description of the allowable syntax
for the parameter, and is used for checking purposes when
the parameter is entered at the terminal.

Programs access parameters by means of access services
which search an in-storage data structure. This data
structure, the parameter interface area (PIA), is one of the
stable system interfaces. Since application programs access
this structure, various means could be used to physically
store parameters and place them in the parameter interface
area. In actual use, the PIA is one of the most important
interfaces.

EDS supplies a parameter base on a data set, and access
methods. At any instant in time, the parameter base appears
to be a tree structure, with parameters stored at the nodes of
the tree. (The actual structure of the parameter base is a
directed graph, as explained later.)

The user is “connected” to a leaf of the tree, and has access
to all the parameters from the leaf to the root of the tree.

The same parameter may exist at multiple nodes in the
tree structure. In this case, the value of the parameter closest
to the leaf of the tree is accessible to the program.

The tree structure makes it possible to place parameters
which all terminal users require near the root of the tree, and
to have parameters which are unique to each user at leaves
of the tree. The tree structure also supports the control
function of the parameter base. Control parameters which
pertain to many terminal users are placed near the root of
the tree. While it is technically possible to have unique
control parameters for each user, this is not typical usage.

Figure 3 shows a simple example of a parameter base
which supports site, department, project, and user
parameters.

In this example, the site parameter MSGCLASS is set to
the value A. This could be a control parameter, and
therefore all users of the parameter base use MSGCLASS A.

Each department node has specified a different value for
the ACCOUNT parameter, another control parameter which
cannot be changed by the normal user of the parameter base.
Each department node has one or more project nodes,
containing a part number parameter (PART #) and a TIME
parameter pertinent to processing that part number. Users
are connected to various projects, and hence to the
department and site nodes.

Users Bob, Mary, and Henry have defined no parameters
at their nodes. Users Mark, Bill, Iris, Rhonda, and Marina
have found it necessary to override the standard value of the
TIME parameter. User Lou has specified a value for a new
parameter, MSG.

The actual structure of the parameter base is a directed

graph, and the connection between nodes is selected (or 505

RICHARD L. TAYLOR

506

. }'SITE
1 MSGCLASS=A

'{ DEPARTMENT 33
ACCOUNT=BB33

DEPARTMENT 77
ACCOUNT=BC77

“ T'PROJIECT C PROJECT M
- ¥ PART#=779 PART# =352
1 TIME=40 TIME =65
PROJECT Q PROJECT E
PART# =643 PART# =835
TIME=40 TIME =65
PROJECT X
PART# =497
TIME =41
USER MARK USER MARY
TIME = 50
USER LOU USER HENRY
MSG=LONG
USER RHONDA USER MARINA
TIME =40 TIME=70

| Example node structure.

defaulted) when the parameter base is opened for a given
user. This more complex data structure allows a number of
different meaningful paths to be defined. Two popular
strategies are to define parameter access paths based upon
the release level of the design programs being used, or upon
a particular technology being employed. In the example
above, it allows the user nodes to be connected to different
project nodes.

In order to support its control function, each node in the
parameter base has a set of permissible operations associated
with it. These operations are the ability to define a
parameter, the ability to define connections between
parameter base nodes, the ability to define new nodes or
delete existing ones, and maintenance services, the ability to
list and change many different fields in the parameter base.
A user of the parameter base can perform those operations if
he can LOGON to a node. Typically, only a few people have
maintenance authority, and they set up the structure of the
parameter base of the control parameters for the rest of the
users.

RICHARD L. TAYLOR

The basic design of this parameter base has been quite
satisfactory. It permits a few people to define the directed
graph and the parameters at the nodes of that graph so that a
large number of people may use the parameter base with
little or no knowledge of its internals. These control
capabilities have been extensively used as the means of
enforcing local design methodologies at a number of IBM
laboratories.

Command language
The requirements state that a significant part of every
application should be written in some command language.
A description of that portion is contained in the section on
the structure of applications.

A consequence of this requirement is that the command
language must be able to

o Communicate with alphanumeric and graphic terminals.

& Access a physical parameter base, and use values found
there as command language variables. This access
capability must be general, not just to a specific parameter °
base.

o Build the parameter interface area from command
language variables (whose source may have been the
parameter base.)

o Allocate resources, primarily data sets.

& Display static menus held in data sets, and dynamic
menus constructed in a command language program.

o Conditionally execute statements by means of constructs
such as IF, CASE, or SELECT statements.

o Support command language subroutines.

o Control the scope of symbols within and among
subroutines.

& Provide powerful editing capabilities in several forms. The
command language must provide an editor so that
terminal users can edit external data in data sets. The
editor should also be capable of editing the command
language program itself at the time of execution.

o Embed TSO or CMS commands for capabilities otherwise
not supported.

It must be possible for technicians who are not trained
programmers to use the command language. The general
type of language required is similar to TSO commands as
used in CLISTS, or VM/CMS commands as used in
EXECS, but neither of these languages has adequate
functional capability [7, 8]. Almost every laboratory that
uses EDS has made extensive use of some command
language to control and sequence design applications.
Several different command languages have been used. There
has been a limited amount of use, thus far, of command
language as an integral part of the design application itself.

All evidence points to the conclusion that a command
language will be extensively used to implement and control

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

local design methodologies. Covergence upon one powerful
command language is a strong probability.

e Structure of applications

The second major element in the software architecture is the
structure of a design application. An intensive effort has
gone into examining design applications to determine what
structure they must have to meet the requirements of the
user.

It is clear that applications must use the application
support programs. There is little point in having a superb
terminal access method if it is not used. However, use of the
application support programs is the easiest of all the
questions concerning the structure of applications. More
difficult questions are the following:

1. What is an “application™?
This apparently trivial question is very difficult to answer.
It is important because there is a requirement to have
applications implemented as modular units of work, so
that various sequences of these units can easily be used in
different design methodologies.

However, there is a strong tendency upon the part of
application developers to group applications together
under the control of an executive program which controls
some common services, perhaps data access, required by
the individual applications. These groupings of
applications are generally called subsystems. Thus, one
might have a chip design subsystem or a module design
subsystem. Such subsystems may provide fast transitions
between their individual applications, thus leading to
greater user productivity.

What is wrong with the concept of subsystem? Nothing,
if every user can agree that a particular subsystem
embodies exactly the methodology that his location
requires. Since such agreement is almost impossible to
obtain, the concept of rigid subsystems is not acceptable.

Another attempt to define an “application” is based
upon the data objects that are created or destroyed. This
effort was not successful due to the application designers’
attempts to use the same data object for many
applications in order to reduce transition time from one
application to another,

The best definition we have achieved is that of a design
task, which is some unit of work with a determinate start
and a determinate stop. Note that this definition is in user
terms, not in computer science terms. The requirement,
then, is that design tasks be modular entities, capable of
being rearranged in time sequence by the using
development laboratories.

Design tasks are not incompatible with the notion of a
subsystem, but the subsystem must be carefully designed.
In general terms, each design task must determine
whether the subsystem environment has been established,

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

and if not, invoke the subsystem executive before
continuing with the design task. This approach gives the
necessary amount of modularity to design tasks which are
parts of a subsystem.

2. How is the user environment for an application
established?
The user environment for an application differs from the
system environment for an application. The system
environment is determined by the operating system and
the application support programs. The user environment
determines how the terminal user sees and interacts with
the design applications. The user environment is
determined by local machine configurations and by the
dictates of local design methodologies. Different user
environments can be supported by the same system
environment, or it may be necessary to change the system
environment to achieve the desired user environment.

A simple example of the user environment is the
allocation of data sets. Users are not free to allocate data
sets in an arbitrary fashion. Each location wishes to
control the allocation of data sets in a manner that is
consistent with site practices.

A less obvious example is the desire to control some of
the terminology in the dialogue between the application
and the user. One development laboratory may wish its
designers to think in terms of chips, cards, and boards.
Another laboratory may wish to use a part number
terminology. How can the same application conduct a
dialogue with the terminal in both terminologies?

3. How is the transition made from one application to
another?
What is the mechanism for moving from one application
to another in any sequence that is needed by a
development laboratory? Rigid sequences which cannot
be altered are not acceptable. Sequences which require
many levels of display to make the transition are not
acceptable. It must be possible to go directly from any
application to any other.

The architecture to satisfy these requirements is the
structured application.

Application program structure
Applications have been given a two-part structure. One part
of the application is written in the command language,
described previously. This part of the application establishes
the user environment for the application. The command
language portion is further divided into three logical
portions: task selection, parameter gathering, and resource
allocation and task invocation.

It is assumed that the command language portion of an

application is subject to change at every location which uses 507

RICHARD L. TAYLOR

508

Application program structure.

the application. The purpose of these changes is to satisfy
one or more of the requirements described above. This part
of the application is executed first.

The other part of the application is called the “core” of the
application. It is written in a programming language, such as
PL/1, and contains the design algorithms. This part of the
application is not subject to local changes.

These concepts are shown in Figure 4.

Task selection Task selection is the first part of the
command language portion of a structured application. Task
selection is the process by which a terminal user chooses the
design task which he wishes to perform. For a number of
practical reasons, task selection must be controllable by the
site. It may be desirable to present only a subset of all
possible design tasks, depending upon the progress of a part
through the design cycle. Thus, a particular design
methodology can be enforced by presenting only the
appropriate design task at any given time.

RICHARD L. TAYLOR

It may also be desirable to limit access to certain design
tasks to specific people. In theory, every user of the design
system could have different menus of design tasks presented.

Note that the mechanics of task selection are very closely
connected with the definitions of applications and
subsystems. The design tasks may be applications or
subsystems.

Task selection is done by means of menus, presented by
the command language. Part of the contents of the menus
may be parameter values. The using location can then
change task invocation by changing parameter values, by
changing the menu definitions, by changing the command
language programs which present the menus, or by any
combination of these factors. Great freedom exists to make
useful changes to task invocation.

Parameter gathering The next logical division of the
command language program is parameter gathering. The
parameters may control resource allocation. The principal
source of the parameters is the parameter base. Values from
there are considered the initial defaults. The terminal user is
normally given the opportunity to confirm the default values
or to change them.

A particular site can change this scenario to meet its local
requirements, by setting appropriate values for the control of
parameters. Thus, a site may lock the values of certain
parameters and perhaps not even display them to the
terminal user.

Task invocation The next function performed in the
command language program is resource allocation. Such
resources include all the data and external temporary
storage.

No data set allocation is to be done in the core of the
application, that is, in the programming language. Data set
allocation must be done in the command language portion
of the application.

There are some necessary exceptions of this “pure” view
of allocation, and they generally pertain to unpredictable
situations. Error conditions which require additional data set
allocation may arise. The terminal user may choose an
application option which requires additional allocations. It is
generally not practical to pre-allocate all the resources which
might be conditionally needed. Therefore, data sets can be
allocated from the core of an application, but only by means
of returning to the command language and performing the
allocation there. Hence, all allocations, both predictable and
nonpredictable, are treated uniformly.

This is the place in the application where many of the
terminology problems can be resolved. The command
language function can transform external data names, such
as CHIPA, into actual data set names, and perform the
necessary allocation. Catalogue searches and other forms of
name resolution can take place here. The goal is that this

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

part of the command language function should be the only
place in the application where the association between user
names for data and actual data set names is known. The
core of the application accesses the data only by means of a
fixed symbolic name. This architecture avoids many
problems inherent in the common practice of coding data
set naming conventions directly into the core of the
application.

If a site wishes to change the allocations, they can readily
be found, understood, and changed. If a site wishes to use a
particular data set naming convention, the proper code can
easily be put into the command language program.

After all resources have been allocated, the core of the
application is invoked. The core may run to completion and
then return to the task invocation program, or there may be
two-way communication between the core and the task
invocation program before the core completes execution.

Upon final return of control to the task invocation
program, resources are freed. Note that the terminal user can
be involved in this process, perhaps specifying the
disposition of one or more data sets.

The full value of application structuring cannot yet be
evaluated. All EDS interactive and foreground applications
have been converted to have a command language portion
and a programming language portion, and to access
parameters only in the command language portion.
However, only a few applications have been fully structured
in the sense that all the functions discussed in this section
are properly placed in the command language portion and
programming language portion of the application.

We have seen much user benefit from initial structuring.
This first step allows great freedom in replacing command
languages and parameter bases. However, more applications
must be fully structured before we can completely assess this
concept.

Assessment

The architecture for interactive applications described here is
not revolutionarys; it is generally an example of sound design,
with careful partition of function into modular parts. The
most novel feature is the use of a command language
portion for each application.

While our experience with this architecture is still limited,
our initial impressions have been favorable. We have been
able to use the modularity to our advantage, upgrading
certain system services with little or no impact upon the
applications.

This software structure has been available at IBM
development laboratories for a relatively short time, but a
few trends about its use can be observed.

The smaller laboratories use the system as shipped by EDS
and will continue to do so. They do not have the resource to
spend in making changes, even though the changes are now
fairly simple.

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Many laboratories have changed the menus that present
the selection of design tasks. Some EDS tasks have been
removed, and locally written design tasks added. Menu
sequences and hierarchies have been changed. This type of
local alteration will probably continue to increase as the
dependence on local tools or vendor tools increases.

A more significant change is the replacement of the
command language and the parameter base at a number of
laboratories. Modularity and good interfaces make these
replacements feasible, and a number of laboratories have
done so. In many cases, the replacement parameter base has
very little similarity to the EDS parameter base. The decision
and control aspects of the EDS parameter base, supported by
the graph structure and controlled parameters, have been
replaced by programmed logic in the command language.
This approach is fundamentally different from that planned
by EDS, but it works just as well! The applications see only
the parameter interface area (PIA) and have no dependence
upon the source of those parameters.

So far as we know, no laboratory has replaced either of the
EDS terminal access methods. Such replacement is
theoretically possible, but the labor involved would be very
great. However, other terminal access methods are used
during the same terminal session that uses EDS terminal
access methods. Such use is more practical because the EDS
terminal access methods are deleted when not in use, thus
making more storage available.

We feel this software structure provides a good
environment for interactive and foreground applications.
Initial reports from the IBM development laboratories
involved indicate that this structure is meeting their
requirements.

Future implications

There are a number of follow-on activities in progress to
complete or extend this system architecture. Several of these
activities are briefly mentioned in this section.

e Batch jobs

The focus of this paper has been upon interactive and
foreground applications, because that is the focus of much of
the new application development. However, any design
automation system still contains a number of batch
applications, which use a great deal of computer resource.
Board wiring or test generation are examples of such
applications.

A good way to apply much of this architecture to batch
jobs is to insist that every batch job be submitted from an
interactive terminal session, whose purpose is to gather
parameter values and generate the JCL needed to execute
that job at a particular location.

This architecture provides the tools needed to implement
this approach, and most of the users of EDS have already

employed them. 509

RICHARD L. TAYLOR

510

o Data management

There is one important part of the system architecture that
has not been described—data management. The lack of
uniform data management services for all applications has
been recognized, and studies of data management are an
ongoing effort which will occupy considerable time.
Convergence of many different applications to common data
management services will be a particularly difficult effort.
Standard IBM database products such as DB2 and SQL/DS
are being examined for their relevancy to the requirements
of design automation systems.

o Distributed processing

One of the goals of this system architecture is to create an
environment in which recent advances in computer science,
such as distributed databases or professional work stations,
can be easily incorporated. Let us briefly consider how this
architecture fits with several views of distributed processing.

One implementation of distributed processing is called by
some people the department computer. In this
implementation, one small computer services the terminals
of a department of people, perhaps four to ten. The
computer itself is architecturally equivalent to a much larger
processor. Examples of such small computers are the IBM
4300 series, the 4331, 4341, 4361, and 4381. These
computers offer outstanding price/performance, are
physically small in size, and can be installed in normal office
environments. These computers can run the same operating
systems as do the larger processors. Therefore, the system
architecture described in this paper applies very well to the
department computer.

More interesting questions can be asked about the
professional work station, roughly defined as a small general-
purpose computer which drives one or more terminals and
which is used by one person at a time. An example might be
an IBM Personal Computer with suitable terminals. The
professional work station is generally connected to a larger
“host” computer. Several host computers may be
interconnected. In crude terms, the computing system is a
network of professional work stations and host computers.

There is a conceptually attractive way to map the software
architecture described in this paper onto this distributed
processing system. Think of the application support
programs as a set of processes. Replace the CALL interface
to the application support programs with a more general
method of invocation, one which provides interprocess
communication. This communication must be able to link
two processes which execute in the same computer, and two
processes which execute on different computers. The
interprocess communication programs must know where the
process executes, but the design applications must be
insensitive to such considerations. The communication
programs are the key element in this design. Finally, assume
the existence of a command language program that will

RICHARD L. TAYLOR

cause processes to be started in any computer in the
network.

A software architecture of this type provides a number of
useful capabilities for distributed processing. Some
application support programs can reside at the host
computer, rather than at the professional work station. The
exact residence of the support programs can be controlled by
an IBM laboratory by editing the command language
function that starts the processes. For example, the
parameter base and the parameter base access methods could
execute upon the host computer, and the resulting parameter
interface area (PIA) be sent to the professional work station.
Thus, one parameter base can serve the whole network and
difficult problems relative to synchronization of distributed
parameter bases can be avoided. Another attractive
possibility is to regard the command language portion and
the programming language portion of a structured
application as two cooperating processes. Then the
command language portion of some design applications
could run on the professional work station and the
programming language portion, which might require a great
deal of computing power and large data resources, could run
on a host computer.

Data distribution must also be considered. The current
software architecture can accommodate many aspects of
data distribution rather easily. Data allocation is isolated
into the command language portion of the application, a
portion that is easily changed or extended. It should be easy
to have the allocation phase invoke a data server, a process
which would typically reside on a host computer and would
transmit data to other computers in the network, including
the professional work stations. There is no need to change
the core of the application, which can remain unaware of the
location of the data obtained and allocated in the command
language portion of the application. Data storage can be
centralized in a few large databases, thus avoiding problems
in synchronizing a number of distributed databases.

This brief description is incomplete and has ignored a
number of very difficult questions. Should every interface in
the software system be converted into interprocess
communication? Are there not some application support
programs, such as terminal access methods and the terminal
monitor program, that must inherently execute in the
computer that is driving the terminal? What is the efficiency
of the more complex form of interface when measured
against the simple CALL interface? Is the additional
complexity justified when both processes are in the same
computer? Regardless of a number of questions, the
distributed processing architecture described here appears to
be a good solution. The present software architecture maps
onto it easily. It seems amenable to fairly easy
implementation. Migration of existing design applications
should be relatively easy. It is an architecture advocated by a
number of different groups, because it applies to many kinds

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

of application system, not just design automation. EDS is
not currently committed to this architecture, but it is the
favorite among several contending architectures.

Acknowledgments

The work and ideas reported here are the product of many
people, both EDS users and EDS developers. Special
recognition must be given to the technical contributions of
L. P. Biskup for early design of the terminal manager
program and for further insights into application structuring,
to Harry Halliwell for innovative work on the parameter
base and the command language, and to W. M. Amaro for
much of the current implementation. We are also grateful
for the managerial encouragement of A. J. Emma and R. A.
Rasmussen.

References

1. P. W. Case, H. H. Graff, and M. Kloomok, “The Recording,
Checking and Printing of Logic Diagrams,” Proceedings of the
Eastern Joint Computer Conference, Philadelphia, PA, 1958, pp.
108-118.

2. P. W. Case, H. H. Graff, L. E. Griffith, A. R. Leclerq, W. B.
Murley, and T. M. Spence, “Solid Logic Design Automation,”
IBM J. Res. Develop. 8, 127-140 (1964).

3. P. W. Case, M. Correia, W. Gianopulos, W. R. Heller, H. Ofek,
T. C. Raymond, R. L. Simek, and C. B. Stieglitz, “Design
Automation in IBM,” IBM J. Res. Develop. 25, 631-646 (1981).

4. A.J. Blodgett and D. R. Barbour, “Thermal Conduction Module:
A High-Performance Multilayer Ceramic Package,” IBM J. Res.
Develop. 26, 30-36 (1982).

5. Donald P. Seraphim, “A New Set of Printed-Circuit Technologies
for the IBM 3081 Processor Unit,” IBM J. Res. Develop. 26, 37~
44 (1982).

6. “General Methodology and the Proposed Standard,” Computer
Graphics 11, No. 3, II-1-1I-117 (Fall 1977).

7. OS/VS TSO Command Language Reference, Order No. GC28-
0646, available through IBM branch offices.

8. IBM Virtual Machine Facility 370: CMS Command and Macro
Reference, Order No. GC20-1818, available through IBM branch
offices.

Received December 1, 1983, revised April 19, 1984

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984

Richard L. Taylor IBM General Technology Division, East
Fishkill facility, Hopewell Junction, New York 12533. Mr. Taylor is a
senior engineer working on design and implementation of system
services for design automation applications. Since joining IBM in
1957 at Poughkeepsie, New York, he has held numerous technical
and managerial assignments in design automation and machine
development. Mr. Taylor received his S. B. in 1953 and his S. M. in
1955, both in electrical engineering, from the Massachusetts Institute
of Technology, Cambridge. Mr. Taylor is a member of Eta Kappa
Nu.

RICHARD L. TAYLOR

511

