524

An interactive
system for VLSI
chip physical
design

by W. H. Elder
P. P. Zenewicz
R. R. Alvarodiaz

The Federal Systems Division has developed

a structured design methodology and a
companion chip physical design system that has
been used to build seven large VLS chips
(ranging in size from 7K to 36K logic primitives).
Using the MVISA system, a logic designer has
complete control and responsibility for the total
chip design. Our experience has been that when
this highly interactive software and methodology
is used, chip physical design requires less than
two weeks. This is a significant savings in
design time; but more importantly the designer
can allocate more schedule for logic design and
simulation. This paper describes how FSD’s
unique interactive physical design system has
improved productivity of VLSI design.

Introduction

An important advancement in design automation software
has been the development of automatic wiring programs. To
increase the percentage of automatically completed wires, a
good placement of the circuits being connected became
necessary. Therefore, automatic placement programs were
created. These first programs were very expensive to run
because they used large amounts of CPU time. In 1970,
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typical CPU times for placement and wiring ranged from
one to two hours on an IBM System/370 Model 168-3 class
system [1].

The cost/performance ratio of computing was also very
different during the early 1970s. This favored using large
batch programs designed to complete as much work as
possible in one costly job. At the same time, interactive
processing was becoming popular for the productivity gains
it gave to many applications, despite terminal and
computing costs. However, Design Automation (DA)
applications were not appropriate interactive applications.

A concurrent development (or perhaps an effect) was the
use of design services. These services were provided by
groups of data processing people trained to run DA
programs, especially the physical design programs. As a
result, part of the design schedule and budget was allocated
for this expense.

Initially, the design services group took design engineer
inputs and interfaced these data to the DA programs. This
group’s main purpose was to convert logic to a physical
design. Solutions were evaluated for performance by the
design engineer, who made any logic changes required, and
then the process started over. This interaction between
different organizations required duplicate design training,
often created interface problems, and sometimes caused
schedule delays. The required knowledge and the cost and
complexities of running most DA programs (especially the
physical design programs) prohibited their use by many
people. There was considerable effort in manual placement
of wires required to complete the physical design. This group
was also trained in this aspect.

During the mid-1970s, hardware computing costs
decreased, performance increased, and interactive DA
applications became feasible. Logic capture, also called logic
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entry, was one of the first phases of design implemented as
an interactive application. In this application, the logic
designer interfaced directly with a DA program. Before this
the logic designer transferred source data (e.g., a logic
diagram) to a design services group to translate to machine-
readable format. Now the designer entered the logic diagram
data directly.

IBM’s Federal Systems Division developed an interactive
logic entry program which became widely used throughout
IBM. The program’s acceptance by the engineering
community and the productivity gains set the stage for other
interactive DA applications. From the concepts developed in
this original program, a complete interactive DA system for
wiring cards and boards was developed. This base was
extended to a chip design system capable of placing and
wiring over 37 000 gates of logic. The goals of the DA
system were as follows:

e Maximum usefulness to an engineering community with
minimal data processing skills and start-up training.

¢ Complete control by the logic designer over all aspects of
chip design.

¢ 99 percent automatic physical design; 100 percent checked
and guaranteed error-free.

¢ Total elapsed time less than one hour for placement,
wiring, and performance analysis.

e Audit trail of all actions executed.

Algorithm selection was key in meeting many of these
goals. Typical algorithms for automatic placement, wiring,
and performance analysis are CPU-intensive. It is difficult to
provide effective interactive applications for CPU-intensive
functions. The system structure, algorithms, and data
structures were selected and implemented with interactive
response time in mind. This paper discusses the features and
key algorithms of an interactive DA system that achieved
this and the other stated goals.

Design automation system overview

Since 1981, FSD has used a design system known as
Manassas VLSI Interactive System for Automation,
abbreviated herein as MVISA, for physical design for most
of its chips. MVISA is a graphically aided interactive design
automation system. Its operational functions and features
reduce the development schedule and improve engineering
productivity. This is accomplished because the logic designer
controls the physical design and makes any trade-offs and
logic design adjustments required by the physical layout.
This approach also eliminates the schedule and cost impacts
of involving a group of physical design specialists.

MVISA provides a set of subsystems for logic entry,
predesign checks, placement, wiring, logical/physical
checking, mask data generation, performance analysis, and
audit. The system operates under an MVS/TSO or VM/CMS
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I Organization of system functions in MVISA.

operating system with a minimum region of six million
bytes. The subsystems are integrated via a system monitor
with their respective design data and technology rules. The
monitor provides facilities for selecting and managing design
and technology rules data located in external files. It also
controls the interactive execution of the MVISA subsystems.
Figure 1 illustrates the organization of the MVISA system.

Any IBM 3270-type display terminal can be used to
operate and control the system. Full-screen menus describe
available options and minimize data entry. Program
function keys and optional lightpen input functions further
enhance the ease of operation. This approach allows even
infrequent users to use MVISA with minimum training (one
week or less). On-line HELP functions are also available.
The IBM 3277 graphic attachment (RPQ 7H0284) provides
an interactive vector-graphic display capability.

Within the MVISA system is an integrated data structure
that combines logical and physical data with technology
rules data. For execution efficiency, these data, common to
all subsystems, reside in main memory and are key to
providing satisfactory interactive response time to the user.
However, to prevent excessive memory requirements,
dynamic memory space allocation and management
techniques are also employed.

MVISA uses a linked list data structure for the logical and
physical design data. Important factors in the design of the
data structure were compactness of data, access speed to
commonly used data through linked lists, hierarchical
structure for quick access, flexibility to add new data fields
without changing the base structure, and completeness of
data content to accommodate all design system functions.
Many of these factors influence interactive response time or
the suitability for foreground execution.

The MVISA design system applies to masterslice (gate
array) and Master Image design methodologies. An
introduction to FSD’s Master Image chip approach and an
overview of the physical design methodology are given
before the detailed discussion of the DA system.
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| Master Image physical design methodology.

Master Image chip approach

FSD’s need to design low-volume complex chips on tight
schedules led to the Master Image chip design approach.
This approach was chosen over a custom design alternative
(which would have given greater chip performance) because
design and schedule costs could not be justified for low
volumes. Gate array and masterslice approaches were
discarded because of lower achievable function at nearly the
same development cost. The FSD Master Image is similar to
the PHILO [2] approach developed at IBM laboratories in
Rochester, Minnesota and Burlington, Vermont. This
approach uses a predesigned image with a fixed power bus
distribution and preallocated areas for circuits and wiring.
Combined with the image is a circuit and macro library
which includes a full range of macro function and
complexity. Higher-function macros achieve the high gates
per mm’ associated with custom design and corresponding
improved performance. Table 1 lists the circuits and macros
available in the 2.0-um Master Image library. These library
macros were chosen to meet the signal processing types of
applications most common in FSD systems.
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Table 1

Circuit and macro functions in 2.0-um Master Image

library.

Function Cells
1-4-W NOR 1
5-9-W NOR 2
Tri-state OCD 1
Receiver 1
Transceiver 1
2-1 Mux 1
4-1 Mux 2
Exclusive-OR 2
LSSD SRL 2
SRL clock driver 5
Clock driver 3
4-bit ALU 32
Carry save adder 6
9-bit Parity 10
4-bit Up/down counter 10
4-bit Mag. comparator 10
16 X 16 Multiplier 630
16 X 54 RAM 228
32 x 32 RAM 228
64 x 32 RAM 304
64 X 18 RAM 192
256 x 16 ROS 200
128 x 16 ROS 120

Image description

The Master Image chip image, shown in Figure 2, is 7.4 X
7.4 mm in size and has a total of 168 C4 pads, 116 of which
can be used for signal I/Os. Voltage and ground power buses
are supplied on second-level metal to the I/O circuits which
reside under the C4 pads around the chip periphery. Power
supplied to the internal cells is isolated from the I/O circuit’s
power on the chip to decouple noise through the bus
distribution system. Power to the internal cell structure is
supplied through three second-level vertical buses at the
center and sides of the cell array. Voltage and ground first-
level metal fingers run horizontally through each row of
cells. The power busing was designed to handle a maximum
of 2 mW per cell location, considering both current densities
and voltage drop effects on circuit design. Each circuit and
macro adheres to this power budget and can be placed
anywhere on the image.

The 7.4-mm chip contains a total of 2432 cells arranged
in 15 double rows and two single rows of 76 cells. A cell is
an area that has five logic service terminals (LSTs). Between
each LST is a free wiring track. The basic cell can contain up
to a four-input NOR. Table ! lists the cell counts for the
available functions in the Master Image 2.0-um nMOS
technology. An 8.0-mm chip size with 2952 cells and 178
signal I/Os is also available. For the 1.25-um nMOS
technology, an 8.0-mm chip size with 8468 cells and 179
signal I/Os is available.

Global wiring for the chip is performed using first- and
second-level metal. First-level metal is used for circuit
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I Chip image for 7.4-mm chip for 2.0-pm nMOS master image.

implementation, thereby blocking the cell rows. Therefore,
first-level global wiring runs horizontally in the wiring bays
between the cell rows. Second-level metal is used for vertical
wiring in the areas not blocked.

Master Image physical design methodology
This section briefly describes the general flow using MVISA
to design a Master Image chip as illustrated in Figure 3. A
more detailed discussion of the complete methodology can
be found in [3].

Using the LOGIC ENTRY subsystem, the user begins the
MYVISA design by entering the logic description into the
design database. The LOGIC ENTRY subsystem allows the
interactive creation and editing of logic diagrams. Once the
logic has been entered, checks are made to verify correct
usage of blocks on the logic diagrams. Missing or incorrectly
named pins are detected. This check is run after any logic
change. The next step is the predesign [PRE-PD] checks.
Entry into PRE-PD checks causes the internal database to be
initialized with the physical design description and checks
design integrity.

In addition, net capacitance estimates for each net are
obtained to identify loading conditions. This estimate adds
driven circuit pin capacitance to an estimated wiring
capacitance to produce a result that is a function of fan-out.
Thus, “critical” net loading conditions can be flagged and
corrected early in the design cycle.
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50% of total horizontal tracks available
Total number of horizontal tracks available

Number of tracks needed to wire

Wirability histogram showing demand vs. availability after place-
ment.

Failure at any point in the verification process requires the
user to re-enter the LOGIC ENTRY subsystem, correct the
logic, and rerun the checks.

An Early Timing Estimator (ETE) is available in the
ANALYSIS subsystem. Estimated capacitances are used to
calculate individual block delays. Worst-case path delays are
accumulated from primary inputs to registers, from registers
to registers, and from registers to primary outputs. The user
can then anticipate the “critical” paths before starting the
chip physical design. However, since physical design can be
accomplished in less than one hour and provides accurate
capacitance data, this option is not always used.

Both automatic and manual options aid in chip circuit
placement. Large macros (those occupying more than 32
cells) must be preplaced manually on the image. During
manual placement, using the Tektronics 618 display and
joystick, the user evaluates the wiring flow and places the
macros in “natural” positions. The remaining circuits are
placed automatically by the program.

Wirability analysis checks the placement quality and
displays the results on a Tektronics 618 display. This
analysis gives a histogram of wiring demand versus wiring
channel availability and is used to identify chip areas with
potential wiring problems. Figure 4 is an example of the
wiring demand histogram.

After placement, The Early Timing Estimator (ETE) in
the ANALYSIS subsystem can again be used to calculate
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Steps in automatic placement process.
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delays using the placement locations and estimated wire
lengths. If there are no placement changes required,
automatic wiring is performed.

The WIRE subsystem has three available modes:
automatic channel packer, automatic line probe, and
manual. The bulk of the wiring is done using the channel-
packing algorithm. This algorithm normally results in a
completion rate above 99 percent for a 2.0-um chip. The
line probe algorithm completes any remaining connections.
Manual wiring using the Tektronics 618 display and joystick
is used primarily for rerouting wiring required by logic
changes.

After wiring, ETE is always used to evaluate performance
using actual wiring lengths to get actual wiring capacitance
and delay calculations.

The completed design is checked for wiring correctness
and ground rule violations, Additional checks, using the
CHECK subsystem, are power and capacitance limits. Total
chip power dissipation and net capacitances are checked
against specified maximums.

The final physical design step is generation of mask
graphics data. These data are in an IBM standard format,
Graphics Language/One (GL/I).

The AUDIT subsystem generates a complete audit trail of
all executed options and the results of all checks made. This
report is reviewed by manufacturing prior to fabricating the
design.

MVISA design system
This section provides additional details on the techniques
used for automatic placement, wiring, and timing analysis.

Automatic placement

Figure 5 depicts an overview of the placement process,
which includes clustering, zoning, initial placement, and
improvement.

o Clustering phase
During clustering, individual circuits are grouped to form
new placement entities. In the first clustering pass, the
clusters are individual circuits. As repetitive passes are
performed, the clusters may become groups of circuits. The
grouping algorithm uses the pairwise attraction force
between current clusters, the external pulls on the clusters,
and their relative sizes. The strength of the attractive forces is
a function of the number of nets connecting the clusters
being considered. Multiple passes are performed, possibly
producing new clusters and new strengths. The number of
passes is a user-controlled parameter. Limits are placed on
the resulting cluster size. The clustering phase ends when no
more clusters are formed or the preset number of passes is
reached. This process is similar to that of Feuer et al. [4] and
Lallier and Jackson {5].

The clusters formed are used as objects for the zoning
phase of placement. Clustering tends to alleviate the local
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optimum problem, since closely coupled circuits are moved
together. This approach uses much less computer time
because the number of objects is drastically reduced. This
reduction is essential to maintain a reasonable interactive
response time.

e Zoning phase

The zoning step establishes cut lines, imaginary lines
dividing the chip into sections called zones. The first cut line
is vertical and divides the chip into two equal zones. The
second is horizontal and divides these two zones into four,
and so on. As each cut line is introduced, zones become
smaller. The first two cut lines are illustrated in Figure 6. V1
is the first vertical cut line, a chip bisector; H1 is the first
horizontal cut line, a chip quadrasector.

Clusters move across cut lines attempting to minimize the
number of nets crossing the line. Minimizing wiring
congestion across a cut line also minimizes total wire length
for the design. A cluster assigned to a particular zone must
remain in that zone or a zone derived from its original zone.

The zoning process repeats until the designer-specified
number of cut lines is made. Each cluster is assigned to a
chip area. The size of this area varies according to the cluster
size and number of cut lines. For example, when two cut
lines are used [quadrasection], the area of each of the four
zones would equal one-quarter of the total chip area. The
zoning process is similar to that of Corrigan [6] and Breuer
[7]; the major difference is that clusters are used, rather than
individual circuits. Lallier and Jackson [5] used clusters, but
with a different interchange technique.

o Initial placement phase

After zoning, clusters are dissolved into individual circuits
and placed into their assigned zones. Cluster placement uses
a form of constructive initial placement similar to that of
Hanan and Kurtzberg {8]. This algorithm uses the half
perimeter length of the net’s enclosing rectangles as a
minimization parameter. Figure 7 shows an example of the
half perimeter for a three-terminal net. The half perimeter is
equal to L1 + L2. Both the placed and unplaced circuits are
used in the calculations as all circuit zone areas are known.
The result of using all circuits is better than the classic
constructive initial placement technique described in [8].

o Improvement phase

After the clusters are broken and placed, an improvement
phase is performed. Circuits or groups of circuits are moved
to improve wirability by reducing local wiring congestion.
The net half perimeters of the moved circuits are
recalculated; only good moves are kept. Because it is
assumed that the previous steps have derived a somewhat
“good” placement, the circuit movement is restricted to cells
within the zone assigned during the zoning process. The
improvement step repeats until either no improvement is
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by the line packer. This combination has proven to be very
effective for FSD’s Master Image chips. A 7.4-mm chip with
a 80-90 percent cell utilization can be wired in 2-3 minutes
of IBM 3033 CPU time. This helps meet both response time
and schedule goals. Manual wiring, also available, is used for
wiring changes or to prewire nets before automatic wiring.
Additional performance statistics are discussed in a later
section.

o Chip image modeling

Both wiring algorithms require a description of the chip’s
physical layout to place connections without violating any
technology ground rules. The method of describing the chip
image to the design automation programs is influenced by
chip size and the allowed wire periodicities. For processing
efficiency, it is desirable to have an in-storage image
representation which contains data describing blockages,
vias, LSTs, wires, etc. A typical method is an array with data
entries for each possible chip grid location. This method
usually requires at least one byte of storage for each location.
For the 7.4-mm 2.0-um Master Image chip, this translates to
an 881 x 1183-element array requiring 1.04 million bytes of
storage for each wiring plane. The increasing storage
requirements of larger chip sizes and more advanced
technologies make this technique impractical. Keeping the
execution storage requirements consistent with interactive
execution necessitates an alternate approach for an image
data structure.

Because much of the data stored on adjacent grid
locations is the same, e.g., blockage-covered areas, wires
spanning multiple grids, and much unused area, only the
actual features are needed in the data structure. These
features are stored using a threaded list technique; each
feature requires ten bytes of storage. These features are
stored in a common pool. The data for each entry include a
pointer to the next entry, the feature type, starting
coordinate, ending coordinate, and an optional pointer into
the design system data structure. Figure 8 shows how data
are accessed by an array for each axis of the chip. The entry
in the Y array for a given Y coordinate points to the head of
the list for all plane 1 data at that ¥ coordinate. For
processing efficiency, entries are sorted according to their
starting coordinates.

Two sets of lists are kept for each plane. The primary list
contains blockages, vias, LSTs, and wires in the primary
direction. The secondary list contains wires in the wrong-
way direction. This technique, effective in reducing storage
requirements, provides a 10:1 reduction compared with the
byte/grid method. This storage reduction is necessary to
contain the 1.25-um chip image and still provide interactive
execution of the wiring algorithms.

e Line-pack algorithm
This algorithm is similar to many channel routing programs
[9-11], since a global phase preprocesses the connections.
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| Global cut lines create global rectangles for global routing.

The global phase determines a coarse route for each two-
point wiring connection. The chip image is subdivided into
global rectangles using vertical cut lines approximately 20
wiring channels apart and horizontal cut lines through the
middle of each wiring bay and the center of each double row
of circuits. This is shown in Figure 9. This operation creates
large rectangles on the chip image with sides of
approximately 20 wiring channels each.

The giobal phase attempts to find a path through the
rectangles for each wiring connection. The image description
is first examined along each cut line for blockages, resulting
in the number of wiring channels available on each global
rectangle’s edge. A “directed maze-runner technique” is used
to seek a path between connections. A cost measure
algorithm calculates the least costly direction for leaving any
rectangle. Cost measures include remaining wire channels
available, direction change, and X/Y weighting. The cost
goal is to minimize congestion, thereby increasing the
probability that all wire connections will be made during the
detailed wiring phase.

Ordering effects known to influence the global wiring
phase [11] are reduced by routing the wire connection list
four times. During each routing, the connections are made
using the least costly path. On the first pass, wires compete
only against the connections made during this pass. On each
succeeding pass, each wire’s previous route is first subtracted
out of the total routing; then a new least costly route for the
connection is determined. This connection is thus routed in
the presence of the total chip wiring, which is continuously
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Figure 10

I Creation of vertical segments to be wired from global paths.

Figure 11

| Possible final vertical wiring for previous example.

changing. This iterative process redistributes the wire routing
to minimize congestion. Additional controls are available to
limit the maximum number of wires that can cross any
global rectangle’s edge. Experimental results on actual chips,
varying the wiring order and the number of global passes,
have shown only minor variations in total wire length.

The line-pack algorithm uses the global paths as a
roadmap for creating the detailed placement of each wire
segment. The algorithm begins by creating all inter-bay
vertical wiring. This transforms all vertical communication
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to the boundaries of each wiring bay so that the wiring
problem is reduced to the classical one of routing a channel
with LSTs on each edge. Each wiring bay is then wired,
making horizontal track assignments and creating additional
vertical segments to connect the LSTs. The wiring is
completed by routing the connections in the two vertical
wiring bays that exist on the left and right sides of the chip
that are used for the I/O wiring. The same algorithm is used
for these bays.

The vertical inter-bay wiring is processed in sections, one
at a time. These sections are defined by the vertical cut lines
used during the global wiring phase. From the global paths, a
list of vertical line segments that cross circuit rows is created.
These segments are sorted by location of their X global
rectangles. A simple example is shown in Figure 10. The
exact Y coordinates of the segment ends can be assigned at
this time. First, the longest segments are assigned, attempting
to make a direct connection to an LST at either end. If a
direct connection cannot be made, an assignment in the
adjacent channel, either left or right, is attempted. If this is
unsuccessful, a search is made across the full width of the
global rectangle to find a location for the wire segment. Each
segment is processed only once. Figure 11 illustrates a
possible vertical wiring for the example used in Fig. 10.

After the inter-bay wiring is completed, each wiring bay
has its original LSTs and the points created by the vertical
wiring step, called pseudo-LSTs, on its edges. Net
identification data is tied to each of these LSTs and pseudo-
LSTs. There are many restrictions and technology conditions
to be accounted for in the wiring of the bay. For example,
technology ground rules often put restrictions on the
placement of vias relative to each other or to LSTs, e.g., do
not allow vertically adjacent vias. These conditions are
controlled through a set of external rules datasets for each
technology.

The first step in the bay wiring determines the set of
horizontal wire segments required. The algorithm treats each
two-point connection in the bay separately, as in Deutsch’s
dogleg channel router [12]. The bay is scanned from left to
right, matching net numbers. Each potential horizontal
segment found in this process is matched against the global
routings to verify its inclusion in the bay.

Once the set of horizontal segments is identified, a search
is made to discover cyclic constraints or “constraint loops.”
Attempts are made to break these loops by examining the
channels to either side of each segment’s end points. An
open channel in any one of these spots allows a one-grid-
length wire to be placed at the LST, thus moving the LST
location for the bay wiring operation and breaking the loop.
Before the move is made, the potential location is checked to
verify that a new loop is not being created. A simple
example is given in Figure 12.

Each horizontal segment in the bay is assigned a type code
depending on the connection to be made on each end.
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Figure 13 shows all possible connection types. This scheme
allows all segments to be grouped by type and reduces the
number of segments that have to be tested when choosing a
segment for a potential track assignment. An array can be set
up for the top and bottom bay edges which contains at most
two entries per X coordinate for testing whether a constraint
has been satisfied to allow assignment of a segment.

The actual wire segment assignment proceeds from the left

edge of the bay [10]. Segments are sorted by their lower X
coordinate. The first segment which satisfies all constraints
and technology conditions is chosen for placement in the
first track at the top of the bay. The search continues for the
next lowest X-coordinate segment that can fit in the partially
filled track and so on until the track is filled or no more
candidates are available. Track filling alternates between the
top and bottom of the bay. The vertical wire segments
created during the bay wiring are merged with the segments
formed during the vertical wiring step, reducing the total
number of segments required.

Timing verification

Timing verification is a critical analysis task in the design of
any chip. In particular for the nMOS process, circuit delays
are highly dependent on circuit power and chip wiring
capacitances. Since the chip wiring loading is not known
until chip physical design is complete, it is very important to
be able to couple a timing analysis/verification tool tightly
into the physical design loop. Previous methods of
performance analysis [13, 14], although very effective, were
noninteractive and costly in computer resources, and
required a long learning curve.

The Master Image design approach uses complex macros
and the timing analysis program, the Early Timing
Estimator (ETE), to take full advantage of this macro
concept. Each macro is characterized as an entity in a
technology rules dataset so expansion or decomposition into
primitives is not required. Checking, such as data setup time
at a latch, is easily done by testing signal arrival relationships
at the boundary of a storage element.

The ETE attempts to provide the designer with quick,
inexpensive timing information throughout the design
process. It allows the designer to change the logic design
and/or physical design, completing the design cycle in a
shorter time and with a higher degree of confidence in the
chip’s performance.

The ETE is a subfunction of the ANALYSIS subsystem,
and like all MVISA functions, operates interactively via
menus. The ETE uses the MVISA data structure for the
logic description and for the physical design data required
for wiring capacitance calculations. Since Master Image
designs use a library of macros (varying from simple NOR
circuits to large 3000-gate multipliers), the rules dataset gives
the delay from the input to an output pin. Analyzing the
macros without expansion increases the computer processing
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Figure 12

Breaking a constraint loop through the use of an open channel next
to LST.

Figure 13

Possible configuration types for two-point connections used by line-
pack algorithm in wiring bay.

efficiency and the understandability of the analysis reports.
Both of these improve the usability of the ETE in the
interactive environment.

Sequential and register-transfer logic designs operate under
clock cycle constraints. Correct operation requires that all
logic paths must meet some timing constraint: that is, data
signals must arrive at storage elements according to some
specification. The ETE determines the worst-case delay from
any primary input (PI) or storage element to any succeeding
primary output (PO} or storage element. Once the delays are
known for all data and clock signals arriving at a storage
element, tests can be carried out to verify that the proper
relation exists between data and clock signals.

Figure 14 shows the general situation in register transfer
logic. Here we have two Shift Register Latches (SRLs) and
some connecting combinatorial logic. The output of SRL1 is
triggered by the occurrence of CLKB’ and propagates

through some combinatorial logic until it reaches the data 533
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Figure 14

| General register-transfer logic configuration.

input of SRL2. This data signal then is clocked into SRL2
by CLKC’. The clock signals CLKC’ and CLKB’ are
derived from the clock signals CLKC and CLKB supplied at
the chip 1/Os.

The clock signals reaaching the SRLs are modified by the
combinatorial logic used in the clock distribution network.
This distribution logic can generally change the clock pulses
depending on the number and types of circuits used.
Different loading conditions in the distribution logic cause a
timing skew in the cloeks reaching each SRL. These
distribution effects in the clock networking must be
accounted for in determining the proper operation of each
SRL.

To guarantee the reliable operation of SRL2, the data
signal, whether it is a logic “0” or “1,” must be available and
stable for an amount of time before CLKC’. This time, the
data setup time, is determined by the SRL circuit designer
and is included in the ETE rules dataset. Additional data
coded into the rule specify the minimum clock pulse width
and clock separation required for the SRL operation. For
this discussion we have only mentioned SRLs; the same type
of data and tests are required for any macro containing
clocked storage elements.

o Logic leveling

Our purpose so far is to determine and test the relation of
the data to the clock signal at storage element inputs. To
ensure the test, the worst-case arrival times for both logic
polarities are needed. These worst-case arrival times are
computed by ETE in a single pass through the logic blocks
or circuits in the design. To bring about this single pass
analysis requires a preprocessing step called “leveling” which
sets up the order of computation for the logic circuits. To
provide maximum processing efficiency, each block delay is
computed only once, and at the same time, the cumulative
path delay at its output is determined. This means that all
inputs required for each block’s computation must be
available. These inputs are calculated assuming that all chip
inputs are at level 0. The level of any block is taken to be
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one more than the highest level source of any of its inputs.
Thus, the delay computations can proceed by processing all
level 1 blocks, level 2 blocks, etc.

The ETE does this preprocessing leveling step starting
with primary inputs to the logic being analyzed. The levels
increase until a storage element or primary output is
reached. The algorithm used for leveling assumes that the
logic does not contain any functional feedback loops.
However, detection of a feedback loop forces the program to
end with an error message.

Results

To date, there have been seven 2.0-um chips and one 1.25-
um chip designed using the MVISA design system. After a
single design pass, all manufactured chips were functionally
correct. The typical design cycle, from logic entry to release
of manufacturing mask data, is four to six months. The
schedule is highly dependent on chip complexity and the
designer’s experience, with most of this time spent for logic
simulation. Each chip’s physical design was completed in less
than two weeks.

Typical CPU times and design complexities for some of
these chips are shown in Table 2. In Table 2 a gate is defined
as a three-input NOR or equivalent logic.

The first designs limited cell utilization to 80 percent. This
was very pessimistic. Table 2 shows that Part Number A at
88 percent utilization met the goal of over 99 percent
automatic wiring with the channel-routing algorithm. This
table also shows that the most challenging designs were the
1.25-um design (Part Number E) and the 8-mm 2-um design
(Part Number D).

The 1.25-um design uses very large custom macros (some
over 600 cells) which block second-level metal. Table 2
reflects this in the custom macros percent value of 55.
Because of this second-level blockage, all vertical wiring is
routed around these macros. However, the width of these
custom macros leaves few cells between the macro and the
power buses to route vertical wiring. But, since the macros
contain a large amount of prewired logic, the number of nets
(1991 in Table 2) and therefore the number of connections
required during chip design (about 5000), is low when
compared to the number of logic gates on the chip (over
36 000). The channel-routing algorithm achieves about 98
percent automatic wiring on this design.

The 8-mm chip uses the same 2-um circuit library as the
7.4-mm chip. Since many of the macros span cells and
wiring bays, the number of wiring channels between the cell
rows is the same for both images. The number of channels
chosen for the 7.4-mm image was 27. This bay size was set
using the models of Heller et al. [15] for predicting wiring
space requirements and realizing that the use of macros
reduces the LST density per gate on the chip. This compares
with 26 wiring channels used in the PHILO master
image chip design system [2], which is a 6.2-mm

IBM J. RES. DEVELOP. VOL. 28 NO. 5 SEPTEMBER 1984




Table 2 MVISA performance and chip statistics.

Part number A B

nMOS tech (um) 2.0 2.0
Chip size (mm) 74%x174 74x174
Cells on chip 2432 2432
Cells used (%) 88 68
Custom macros (%) 17 14
Number gates 8276 7638
Gates/mm’ 197 182
Global nets 1016 997
Auto wired' (%) 99.8 99.7
CPU placement’ 6.5 6.0
CPU wiring’ 1.25 1.15

C D E
2.0 20 1.25
74 %74 8.0x 8.0 8.0 x 8.0
2432 2952 8468
80 93 79
17 0 55
8928 11772 36272
214 233 735
1176 2271 1991
99.9 98.5 98.4
6.5 9.0 10.0
1.32 30 35

! Channel-pack algorithm.
2IBM 3033 min.

chip image. Using the same size wiring bay for the larger
chip increases the contention for the wiring
bay area.

The wiring also becomes more difficult when a design uses
no custom macros (circuits greater than 32 cells). This is true
of Part Number D, which is also an 8-mm chip and uses
over 93 percent of the cells. This chip contains more nets
(2271) and therefore requires more connections (5287) to be
made during chip wiring than previous 2-um designs. The
channel router is successful on 98.5 percent of the
connections, slightly lower than the 99 percent goal.

The current challenge is an 8-mm design which occupies
99 percent of the cell area. The chip was successfully wired
(only one unrouted connection) using a combination of the
algorithms described and placement algorithms under
development. These new algorithms have not been
regression-tested on other chip designs to verify their overall
effectiveness.

Summary

The proven ease of using the design system and the success
of the chip designs have overcome any initial resistance in
the design community and have brought acceptance of the
design philosophy. A large measure of this success is due to
the economical CPU time usage achieved by the physical
design algorithms described. These algorithms have allowed
for interactive design of VLSI complexity chips. This real-
time design environment is achieved using an integrated
database, an innovative image-handling technique, macros,
and a pragmatic approach to physical design.

The database is available to all subsystems without data
transformations, and parameter-related items are easily
retrieved through a linked list structure. The image data
storage mechanism effectively partitions information for the
wiring algorithms, since only a very small subset of the total
data is required for each operation. Also, the use of macros
not only increases circuit density per unit area, but further
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simplifies the placement problem by reducing the number of
objects to be placed on an image. In addition, because there
are fewer external LSTs in a macro-oriented design, there are
fewer connections required during global chip wiring.
Another factor that adds to the effectiveness of the design
system is that since the designer can interact easily with the
system, the placement and wiring algorithms’ solution need
not be “perfect”; an unplaced circuit or unrouted connection
can quickly be added by a designer using the graphic aid.
Also, multiple wiring algorithms are provided to take
advantage of their individual strengths. The philosophy has
been to provide a strong, flexibie set of tools to support the
designer’s intelligence in the design process.

Future plans

Department of Defense application requirements and the
semiconductor industry are rapidly moving into CMOS and
submicron technologies. Lithography advances are allowing
chip sizes to increase up to 14 mm. The MVISA design
system must be adapted to meet these new advances. CMOS
and submicron applications may require more wiring levels
and thus new wiring algorithms. The increased data volumes
that are presented by larger chip sizes and submicron
technologies will require new techniques in image modeling
and physical design processing. The incorporation of more
hierarchical processing in the design methodology will also
be required as gate counts approach or exceed 100K per
chip.
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