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A view
of Approximation
Theory

by T. J. Riviin

This is a selective survey of Approximation
Theory which touches on the concepts of
best approximation, good approximation,
approximation of classes of functions,
approximation of functionals, and optimal
estimation.

Introduction

I present a view of the subject called Approximation Theory
which makes no pretense at being complete or objective. It
focuses much of its attention on aspects of the subject which
have particularly interested me and, especially, in which I
and my friends have worked. In taking this approach I am
following in the footsteps of—among many others—one of
the founding fathers of the subject, A. A. Markov (1856—
1922), who, apparently in reply to the question “What is
mathematics?”, said: “Mathematics is that which Gauss,
Chebyshev, Lyapunov, Steklov and I study” (as quoted in
(1.

Early work

The broad river of contemporary Approximation Theory
derives from the confluence of two prominent 19th-century
tributaries.

e Best approximation
The idea of best approximation according to
P. L. Chebyshev (1821-1894) is best exemplified in the
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following prototypical setting. Let / = [—1, 1] and P, denote
the polynomials of degree <n. For f'€ C(JI) we put

WSl = max [S(X)].

p* € p_is called a best approximation to fon [ out of p, if
| f=p*| = |f—pl. forall p € p. Such a p* always exists,
and is, indeed, unique. We also put E (f) = || f — p*{. We
can now state the famous Alternation Theorem (Chebyshev-
Borel, cf. [2]).

p* € p, is a best approximation to f € C(J) if, and only if,
there exist n + 2 distinct pointsof /, ~1 = x, < --- <x,,, <
1, for which

fix) = p(x) = e(=1)' | f = p*I,
i=1,---,n+2,e==%1.

The main themes of the Chebyshevian approach are
existence, uniqueness, and characterization of best
approximations. The setting we have just presented has been
generalized in subsequent work in every conceivable way:
with respect to the function being approximated, the
approximating class, and the measure of error. The problem
of best approximation is a typical extremal problem, and as
is generally the case with such problems, exact solutions are
hard to come by. However, in one interesting case
Chebyshev [3] obtained a best approximation in closed form,
namely, approximation of x” out of p,_, on 1. He proceeded
as follows. Suppose p* € p,_, is a best approximation to x”
on I. Then e(x) = x" — p*(x) € p,. By the Alternation
Theorem there exist # + | points satisfying -1 = x, < -.. <
X, < 1 such that

n+l —

leCe)l = lell = M,

~

L, -, n+ 1.

But then x, = —1 and x,_, = 1, for otherwise e’(x) = 0 at n

interior points of 7. Now M 2 - ez(x) =20, x €, and so
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M -ée P, has x,, - - -, x, as zeros of order 2 and +1 as
simple zeros, thus accounting for all 27 of its zeros. But
(1- xz)[e"(x)]2 has exactly the same zeros and hence

(1 = X' = n'(M* = €*(x). (1)
Thus, if x = cos 4,
e(x) = M cos nf = MT(x) = 2'7"T (x)
= T (),
the monic Chebyshev polynomial of degree . Finally then,
) =x" = T,(x)
and
E,_(x"y=2""

The Chebyshev polynomial which makes its appearance as a
solution of (1) has played an important role in
Approximation Theory (cf. [2]).

e Good approximation

The second approach originates with Weierstrass and his
famous Approximation Theorem: Given f€ C(I) and ¢ > 0,
then there exist n and p € P, such that || f— p|| <e. In other
words, continuous functions can be (well) approximated by
polynomials. Weierstrass’ proof (1885) involved convolution
of fwith an appropriate kernel. In 1898 Lebesgue [4]
demonstrated that it sufficed to show that the function | x|
could be approximated by polynomials in order to prove the
same for all continuous functions. This approach led to
interest in the quantitative aspects of approximating | x|. For
instance, S. N. Bernstein (1880-1968) showed, in his prize-
winning memoir [5], that

and later showed [6] that

1
27 2n — 1

= E(lx]) = 2

lim 2n E>(]x|) = 0.282 .-+ = .

In connection with this last result he remarked: “It would be
very interesting to determine if x is a new transcendental or
if it can be expressed in terms of known transcendentals. I
note, as a curious coincidence, that ! /(2\/;) =0.282....”
[However, Varga and Carpenter [7] showed in 1983, using
careful numerical computation, that u # 1/(2vr).]

Speaking of approximation of | x|, let us jump ahead to
D. J. Newman’s [8] striking result of 1964 about
approximation of | x| on I by rational functions of degree n
(i.e., rational functions whose numerator and denominator
are both in p). Newman showed that, if we denote the
(uniform) error of the best rational approximation of degree
nto | x| onlbyE, (|x]|), we have
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1 n —vn
3 e =E(x)=<3e , A3)
a result which compares most favorably to (2).

We conclude our brief excursion into the realm of
approximation of | x| with a recent result of Blatt, Iserles,
and Saff. They show [9] that the rational function of degree
n of best uniform approximation to | x| on I has all its zeros
and poles on the imaginary axis. Moreover, if r¥(x) is this
best approximation, then

. fz Rez>0
* — b b
lim (=12, Rez<o.

Note that the Blatt, Iserles, and Saff result is in the
Chebyshevian stream, while Newman’s result is in the
Weierstrassian line.

Weierstrass’ method of constructing good polynomial
approximations to a function by convolving it with an
appropriate kernel was pursued by Landau, and, most
successfully, by the latter’s student, Dunham Jackson. In his
prize-winning Goéttingen doctoral dissertation (1911) Jackson
gave the definitive quantitative result on the error of best
approximation of continuous functions by polynomials of
given degree (cf. [10]). He proved that if /'€ C(J), then there
exists a constant C (<6) such that

E(f) = cw,<’11>. )

Here w,(6) is the modulus of continuity of fon I, i.e., for
6>0,

w (8) =supl| () = f(W|:x, yEL |x—y| =4},

a notion introduced by Jackson in his dissertation. Observe
that if f(x) = | x|, so that w, () = §, (2) shows that Jackson’s
Theorem is sharp in relating E,( /) to n.

This seems to be the appropriate point to interject
Bourbaki’s view of the place of Approximation Theory in
the world of mathematics. What follows is the only direct
reference by that author to this area that I can find. “On the
other hand, Weierstrass himself discovered the possibility of
uniform approximation of a continuous real-valued function
in one or more variables on a bounded set by polynomials.
This result immediately aroused lively interest and led to
many ‘quantitative’ studies (*). Footnote. See e.g. C. De La
Vallée Poussin, Legons sur [’approximation des fonctions
d’une variable réele, Paris (Gauthier-Villars), 1919”

(see [11]). We turn next to more recent developments and
generalizations.

Later developments

o Approximation of classes of functions
We have seen that for functions belonging to a given class of
functions, upper bounds for E,( /) can be obtained. These

bounds involve constants which depend on the particular f 163
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being approximated, and best constants for a given fcan
rarely be determined. It seems plausible, then, to try to find
the best constant that will work for all functions in the class.
We formulate this problem in great generality, but will
investigate only a special case.

Let X be a Banach space, K a given subset of X, and V, an
n-dimensional subspace of X. Then we consider

E(K, V) = sup inf || f— v, (%)
fek vev,

that is, we seek the worst function in K with respect to
approximation out of V,. For example, suppose X = C*, the
2r-periodic continuous functions on R, and K =

fecx f k= absolutely continuous, | f ‘k)(x)l =<1,ae,
k= 1}. Then if 7, is the set of trigonometric polynomials of
degree n, we can state the theorem of Favard (cf. [12] for
details),

M,
E(K,ﬂ_,)=n—:, n=1,2---,
where
4 2 1
- 2 A ikt Dd k Odd,
Ti=0(2j+ 1)
M, =
- —,(-Lkﬁ, k even.
7 j=0 (2j + 1)

Moreover, there exists a worst function for each &k, n =
1,2,---,and M, s M, ==n/2fork=1,2,---.

In the setting of (5) we may, following Kolmogorov, seek
the best n-dimensional subspace of X for approximating
elements of K, thus being led to

d(K) = inf E(K, V),
Vll

the n-width of K in X. The subject of n-widths now has a
large literature for which the reader should consuit [13]. In
the examples we discussed above, Tihomirov (cf. [12])
showed that

M,
“k

dZn—l(K) = n

and J,_, is the best approximating subspace.

o Approximation of functionals

Chebyshev’s setting for polynomial approximation of
continuous functions may be mimicked to approximate a
linear functional by linear combinations of given linear
functionals. More precisely, suppose L, L,, - - -, L, are linear
functionals on K C C(J). Consider the problem of finding

infsup |Lf = ¥ aLf| = &L, L, ---, L), 6)
a fek i=1

where a := (a,, - - -, a,). As a typical example define L, L,
i=1, ...’n,by
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i
Lr= f fo, Lf=fx), i=1, e, @

where w is a (non-negative) “weight function” on 7 and

x" = (x,, - - -, x,) is a given set of distinct points of I. The
problem is now the old and important one of numerical
integration (or quadrature), and we shall restrict our
attention to this example, retaining the notation given by (7)
and writing the quadrature formula and its error as,

respectively,

0,(a, x")f = 2 af(x)

and
™, wy=&(L, Ly, -+, L).

A striking 19th-century result, associated with the names
of Gauss and Jacobi, is that if p,, p,, ---, p,, - - - are
polynomials (of degree equal to their index) orthogonal with
respect to a given w and x® = £ is the set of zeros of D
then there are numbers @ = M¢™) such that Lf = Q,(\, £”)f
forall f€ p,,_,,n=1,2, ---. This result may be expressed
in our setting, fixing #» and w and putting K = p,,_,, as

0= £, w) = inf £, w),

the infimum in (£, w) being attained for @ = \.
Let us also remark that given w, ¢ > 0 and putting

K = C(I) there exist n and Q,(a, X) such that

sup |Lf — Q(a, X")f| <.
feK

Indeed, we may choose x7 = E(") and a = X as above (cf.

[14]), thus obtaining an analog of the Weierstrass theorem.
An interesting quadrature illustration of (6) is due to

A. Sard [15]. Given x he chooses

K= {fe c* "y f“" absolutely cont.,

=1 ®
where 0 < k < n. If we put Rf = Lf~ Q,(a, x"™f; Sard’s
problem is
inf sup |Rf). 9
a JeEK
RPjey=0

Note that he, reasonably, restricts the admissible a by
requiring that the quadrature formula be exact for
polynomials of degree at most k — 1. I say “reasonably,”
because if p € p,_, and Rp # 0, then since cp € X for any
constant ¢ and R is linear,

sup |Rf | = .
fex

Sard’s solution, in modern terminology, uses the unique
natural spline of order 2k [i.e., piecewise polynomial of
degree 2k — 1 in each (x,, x,,,),i=1, ---,n— 1 and of
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degree k — 1 outside (x,, x,) which is in C D), S5
satisfying

i=1 -, n

s/(xi) = f(xi),

Then

n

Ls,=: ¥ af f(x)

=1

defines the optimal choice of a. In other words, the optimal
quadrature formula Q (a*, x™) is obtained by integrating the
interpolating natural spline at the nodes. In particular when
k = n we recover the classical Newton-Cotes quadrature
formula, since the interpolating spline becomes a polynomial
of degree at most n — 1.

Since we have mentioned splines let us say a few more
words about this class of functions which have become so
popular as approximators in recent years (cf. [16]). Splines
are simply piecewise functions, the pieces generally being
polynomials of some fixed degree. A familiar example of a
spline is a continuous piecewise linear function. Piecewise
functions were widely used before the word spline was
brought into mathematics by Schoenberg. A spline is,
originally, a thin strip which is grooved and pinned at points
by a set of heavy weights (called “ducks”) with arms fitting
in the groove. It is used to draw a smooth curve through the
points. Schoenberg observed that natural “splines” of order 4
with knots (= points at which pieces are joined) at the
abscissas of the points, which interpolated the given values at
the knots, were a reasonable mathematical model of the
material spline. Mathematical splines came into heavy use
after 1960 in conjunction with the explosive growth of
computers. By now the theory and practice of
approximation by univariate splines has reached a high level
of development (cf. [17]) and the notion of multivariate
splines is at the frontier of research in Approximation
Theory (cf. [18)).

Optimal recovery

A comparison of (5) and (6) is quite instructive. In (5) there
is the tacit assumption that each fis known and its best
approximation is sought. But in (6) all we know is that fis
an element of K and the limited information about it
provided by L,, - - -, L . It is this latter point of view,
estimation from incomplete information, that we wish to
pursue. Such problems had already received attention (cf.
[19] and [20]) by the mid-70s, at which time Micchelli and
Rivlin [21] gave a precise formulation of the notion of
optimal estimation which they called “optimal recovery.” By
this they meant estimating (= recovering) some required
feature of a function from limited, and possibly error-
contaminated, information about it as effectively as possible.
From another point of view, what they presented was a
quantification of the concept of “complexity” as applied to
many areas of numerical approximation. This approach has
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Schematic of optimal recovery.

a large Soviet literature. It is also the subject of the books
[22, 23] and the lecture notes [24] and [25].

Our formulation of the optimal recovery problem is the
following. Let X be a linear space, Y and Z normed linear
spaces. K is a subset of X, U a linear operator from X into Z,
and I a linear operator (the information operator) from X
into Y. We wish to recover Ux from information close to /x,
that is, for each x € K we know a y € Y satisfying || Ix — y||
< ¢, for some fixed ¢ = 0. We call any function o: IK + &S —
Z(S={ye& Y:|yll = 1}) an algorithm. Each algorithm, «,
produces an error

EK ey= sup |Ux-— ayl,
xeK
N Ix—yl=e
and
E(K, ¢) = inf E (K, ¢) (10)

is the intrinsic error in the recovery problem. If E (K, ¢) =
E(K, &), we say that o* is an optimal algorithm and effects
the optimal recovery of Ux. Figure 1 gives a brief outline of
the setting.

Each problem requires specification of X, Y, Z, K, I, U,
and ¢. For instance, if we choose X to be the space of
functions having k — 1 (k = 1) continuous derivatives on
[—1, 1] and a kth derivative in L’[—1, 1]; K as defined in (8),
Y=R" Z =R, I defined by If = (f(x,), - - -, f(x,)) for some
given xX’(n=k), U= [ ! fw, and ¢ = 0, then we have the
problem of Sard again. But note that the admissible
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algorithms need not be linear, a priori, and the second
restriction in (9) is not present. It can be shown [21] that in
this more general setting Sard’s solution remains optimal.
The determination of the intrinsic error is a difficult problem
(see [25] for more information).

One general approach to an optimal recovery problem is
to obtain first the intrinsic error, or at least a lower bound
for the intrinsic error. If X is a balanced (i.e., contains —x if
it contains x) convex set, then it is easy to see (cf. [21]) that

E(K, &) = Xselip I Uxll =: e(X, ¢). (11)

Hix|se

Moreover, in the important case that U is a linear
functional, not only does (11) become an equality [thus
providing us with a “dual” extremal problem to (10)] but we
are assured, under minor additional assumptions about X,
that there exists a /inear optimal algorithm (details are given
in [21]). Observe that the extremal problem on the right-
hand side of the inequality (11) is of a more familiar kind
than (10). The second step in this strategy is to find an
algorithm, o, that satisfies E (K, ¢) < e(K, ¢), thus obtaining
an optimal algorithm and the intrinsic error. In general, of
course, “finding” the a is the nub of the problem and is an
art. There are, however, settings, for example when X is a
Hilbert space, K its unit ball, the kernel of I is closed, and
¢ =0, in which the optimal algorithms can be obtained in a
straightforward fashion. Details are given in [21] and [25].
We turn now to some problems in which X = H*, the
functions analytic and bounded in D: |z| < 1. H* isa
normed linear space, the norm being given by

I/l = sup | f(2)].
ZED

Suppose z,, - -+, z, € D are given. Let

={feH |/l =1

and If = (f(z)), - - -, f(z,)) (with the convention that if some
of the points coincide the corresponding function values are
replaced by consecutive derivatives in the obvious way, so
that Y = ¢"). Suppose ¢ € D is given, Uf = f({), Z = €, and
e =0. We are thus considering the problem of optimal
interpolation in H=,

Put
"oz -z

B(z)=1I

j=1 P - EiZ.

Since B,(z)=0,i=1, ---, n,(11) yields

E(K, 0) = sup
fek

fizp=0,i=1,---,n

IADI = | B (12)

Indeed, in view of the remark following (11), equality holds
in (12), but this fact is not needed in what follows.
Next define a (), j=1, - -+, nby

T. J. RIVLIN

19 - £ a(0)f6z)

1 BO1-1¢ 1

" i B 1=Fz =g/ (1Y

using the calculus of residues. The absolute value of the
right-hand side of (13) is bounded by

27
I
— S d
f B0l _S_w”eW_nqs

; fzr_—l - 151’
= _ d
1B 5~ b 1 = ¢ b
= |B,9I.

The last integral on the right-hand side, being the integral of
the Poisson kernel, is 1. Thus, for any f € K we have

1/ - 2 a(Df(z)| = | B
If we define the algorithm o* by

@ (), s fa) = T afE)

then E (K, 0) < | B,(§) ], and in view of (13), «* is an
optimal algorithm for interpolation. Note that it is a linear
optimal algorithm, whose existence the general theory had
affirmed. We add the remark that the case ¢ > 0 has been
studied by Osipenko [26] and Dita [27]. The choice of (13)
may seem to be akin to pulling a rabbit out of the air.
However, the left-hand side is a linear functional on H* and
the theory of extremal problems for such linear functionals
represented by rational kernels is well-known (cf. [28]) and
leads to (13).

As a final example we turn to the problem of optimal
numerical integration in H*. All specifications in the
optimal recovery problem are the same as in the
interpolation problem except that

1
ur= f oo

where w(?) is a given weight-function. We have equality in
(11) and obtain for the intrinsic error
EK, 0, w) =

o [
(e oim....
j:: fBw|.

In our notation for the intrinsic error we have now added its
dependence on w. In the context of the numerical
integration problem it is natural to seek the choice of the
nodes z,, - - -, z, which minimizes the intrinsic error, i.e.,
what might be called optimal sampling. It is known that the
minimal intrinsic error satisfies

= sup
feK

(14)
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~byvn . —epin
be < inf E(K 0, 1)=sce |,
Gz
by, by, ¢, ¢, > 0. For details and generalizations see [29-31].
Assume that the weight function satisfies

I—u

M) < wieX] — 1) < Mu), =1 <1< 1, u>—1

for m, M > 0. Then we can present some interesting error
estimates for the intrinsic error, E(K, 0, w, z‘"’), where the
dependence of E on the nodes z™ := (z,, - - -, z,) is now
made explicit in the notation. In particular, we put 2=
E"” when z;= =1 + (2j)/(n+ 1),j =1, - - -, n (equally
spaced points), and z” = z"(A) when the z, are the zeros of
P™, the ultraspherical orthogonal polynomials with respect
to the weight function (I — x°)™"%, A = 0, e.g., Legendre
zeros (A = 1/2), Chebyshev zeros (A = 0, 1).

In view of (14) we have

1

f Bityw(t)ydr < E(K, 0, w, 27) = f | B,(1) | w(r)dt

for any choice of real nodes. It was shown in [32] that there
are positive constants A(x), B(u), C(u, A), and D(u, X) such
that

1+u

Aw) < E(K, 0, w, E™Yn log n) © < B(u) (15)
and
Clu, N) = E(K, 0, w, z2"(\))n'™ = D(g, N). (16)

The proofs rely on appropriate pointwise bounds on B, (¢)
from above and below. We remark that while (15) and (16)
give the correct order of dependence of the intrinsic error on
n, our invocation of the duality (14) has wiped out the role
of the quadrature formula and we have no information
about an optimal algorithm.
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