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A view by T. J. Rivlin 

of Approximation 
Theory 

This  is  a selective survey of Approximation 
Theory  which  touches  on  the  concepts of 
best approximation,  good  approximation, 
approximation of classes of functions, 
approximation of functionals, and optimal 
estimation. 

Introduction 
I present  a view of the subject called Approximation Theory 
which makes no pretense at being complete or objective. It 
focuses much of its attention  on aspects of the subject which 
have particularly  interested me  and, especially, in which I 
and my friends  have  worked. In taking  this approach I am 
following in the footsteps of-among many others-one of 
the founding  fathers of the subject, A. A. Markov (1 856- 
1922),  who, apparently in reply to  the question “What is 
mathematics?”, said: “Mathematics is that which Gauss, 
Chebyshev, Lyapunov, Steklov and I study”  (as quoted in 
[ 1 I). 

Early work 
The broad river of contemporary  Approximation  Theory 
derives from  the confluence of two prominent 19th-century 
tributaries. 

Best approximation 
The idea of best approximation according to 
P. L. Chebyshev ( 182 1 - 1894) is best exemplified in the 
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following prototypical  setting. Let I = [ - I ,  11 and pn denote 
the polynomials of degree I n .  ForfE C(I)  we put 

l l f l l  = max I f W I .  
>El 

p* E p,, is called a best approximation to f on I out of pn if 
11 f - p* 11 5 11 f- p 11, for all p E pn. Such  a p* always exists, 
and is, indeed,  unique. We also put E,( f )  = I( f - p* 11. We 
can now state the  famous Alternation Theorem (Chebyshev- 
Borel, cf. [2]). 

p* E /3, is a best approximation  to J E  C(I) if, and only if, 
there exist n + 2  distinct points of I ,  -1 I xI < . . . < x,,+* I 
1. for which 

The  main  themes of the Chebyshevian approach  are 
existence, uniqueness, and characterization  of best 
approximations. The setting we have just presented  has been 
generalized in subsequent work in every conceivable way: 
with respect to  the  function being approximated,  the 
approximating class, and  the measure  of  error. The problem 
of best approximation is a typical extrema1 problem, and as 
is generally the case with such  problems, exact solutions are 
hard to come by. However,  in one interesting case 
Chebyshev [3]  obtained  a best approximation in closed form, 
namely, approximation of xn out of pn-l on I. He proceeded 
as follows. Suppose p* E pn-l is a best approximation  to X” 

on I .  Then e(x)  = x“ - p*(x) E p,,. By the Alternation 
Theorem  there exist n + 1 points satisfying -1 I x, < . . . < 
x,,, I 1 such that 

le(x,)l = IIelI = : M ,  i =  1, . . . ,  n +  1. 

But then xI = - I  and x,,,, = 1, for otherwise e‘@) = 0 at n 
interior points of I .  Now M 2  - e*@) 2 0, x E I ,  and so 
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M 2  - e2 E p," has  x,, . . . , x,  as zeros of order 2 and f 1 as 
simple zeros, thus  accounting for all 2n of  its zeros. But 
( I  - x2)[e'(x)l2  has exactly the  same zeros and hence 

( I  - x2)[e'(x)l2 = n2(M2 - e2(x)). (1) 

Thus, if x = cos 8, 

e(x) = M cos no = MT,(X) = ~""T,(x) 

=: T"(X),  

the  monic Chebyshev  polynomial of degree n. Finally then, 

p*(x) = xn - Q X )  

and 

E,-,(x") = 2"". 

The Chebyshev polynomial which makes  its appearance  as a 
solution of ( I )  has played an  important role in 
Approximation Theory (cf. [2]). 

Good approximation 
The second approach originates with Weierstrass and his 
famous Approximation Theorem: Given f E C(I) and c > 0, 
then  there exist n and p E p,, such that (1 f - p 11 < C. In other 
words, continuous  functions  can be (well) approximated by 
polynomials. Weierstrass' proof (1  885)  involved convolution 
off with an  appropriate kernel. In 1898 Lebesgue [4] 
demonstrated  that it sufficed to show that  the  function I x I 
could be approximated by polynomials in  order  to prove the 
same for all continuous functions. This  approach led to 
interest  in the  quantitative aspects  of approximating 1 x I. For 
instance, S. N. Bernstein ( I  880-1 968)  showed,  in his prize- 
winning memoir [5], that 

and later showed [6] that 

lim 2n E*,,( I X I )  = 0.282 . . . =: p. 

In  connection with this last result he remarked: "It would be 
very interesting to  determine if p is a new transcendental or 
if it can be expressed in  terms of known transcendentals. I 
note, as a curious coincidence, that 1/(2&) = 0.282 . . . ." 
[However, Varga and  Carpenter [7] showed in 1983, using 
careful numerical computation,  that p # 1/(2&).] 

Speaking of approximation of 1 x 1 ,  let us jump  ahead  to 
D. J. Newman's [8]  striking  result  of 1964 about 
approximation of 1 x I on I by rational functions of degree n 
(i.e., rational functions whose numerator  and  denominator 
are both  in p,,). Newman showed that, if  we denote  the 
(uniform)  error of the best rational approximation of degree 
n to I x I on Z by I x I), we have 

n- 
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- e  I E,,JIxl)  I 3e , 2 

a result which compares most favorably to (29. 

approximation of I x 1 with a recent  result  of Blatt, Iserles, 
and Saff. They  show  [9] that  the rational function of degree 
n of best uniform  approximation  to I x I on I has all its zeros 
and poles on  the imaginary axis. Moreover, if ri (x)  is  this 
best approximation,  then 

We conclude our brief excursion into  the realm of 

lim r i ( z )  = l z ,  R e z  > 0, 
1-z, Re z < 0. 

Note  that  the Blatt, Iserles, and Saff result is in  the 
Chebyshevian stream, while Newman's result is in  the 
Weierstrassian line. 

Weierstrass' method of  constructing  good  polynomial 
approximations  to a function by convolving it with an 
appropriate kernel was pursued by Landau,  and, most 
successfully, by the latter's student,  Dunham Jackson. In his 
prize-winning Gottingen  doctoral dissertation (19 1 I )  Jackson 
gave the definitive quantitative result on  the  error of best 
approximation of continuous  functions by polynomials  of 
given degree (cf. [ 101). He proved that  iff E C(Z), then  there 
exists a constant C (16) such that 

Here q ( 6 )  is the modulus of continuity off  on Z, i.e., for 
6 > 0, 

q ( 6 )  = SUP( I f ( x )  - f ( Y )  I : x> Y E 1, I x - Y I 5 61, 

a notion introduced by Jackson in his dissertation.  Observe 
that if f ( x )  = I x ( ,  so that ~ ~ ( 6 )  = 6, (2) shows that Jackson's 
Theorem is sharp  in relating E,( f )  to n. 

Bourbaki's view of the place of Approximation  Theory  in 
the world of  mathematics. What follows is the  only direct 
reference by that  author  to  this  area  that I can find. "On the 
other  hand, Weierstrass himself discovered the possibility of 
uniform approximation of a continuous real-valued function 
in one  or  more variables on a bounded set by polynomials. 
This result immediately  aroused lively interest and led to 
many 'quantitative'  studies (*). Footnote. See e.g. C. De La 
VaEe Poussin, Legons sur I'approximation des fonctions 
d 'une variable rgele, Paris  (Gauthier-Villars), 19 19" 
(see [ 1 I]). We turn next to  more recent  developments and 
generalizations. 

This seems to be the  appropriate  point  to interject 

Later  developments 

Approximation of classes of functions 
We have seen that for functions belonging to a given class of 
functions, upper  bounds  for E,,( f )  can be obtained.  These 
bounds involve constants which depend  on  the  particularf 
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being approximated,  and best constants  for a given f can 
rarely be determined. It seems plausible, then,  to try to find 
the best constant  that will work  for all functions  in  the class. 
We formulate  this problem  in  great generality, but will 
investigate only a special case. 

n-dimensional  subspace of X .  Then we consider 
Let X be a Banach  space, K a given subset  of X ,  and Vn an 

that is, we seek the worst function  in K with respect to 
approximation  out of V,. For example,  suppose X = C*, the 
2~-periodic  continuous  functions  on R, and K = 

{ f E C*: f absolutely continuous, I f k ’ ( x )  I 5 1, a.e., 
k z 1 ). Then if 7, is the set of trigonometric  polynomials  of 
degree n, we can state the  theorem of  Favard (cf. [ 121 for 
details), 

where 

1 

T ,=o (25 + l)k+l’ 
k odd, 

Mk = I! ?T j=o 5 (25 (-1)’ + l)k+l’ 
k even. 

Moreover, there exists a worst function  for each k, n = 
l , 2 ,  ..., a n d M k 5 M 1 = a / 2 f o r k =  1 , 2 , . . .  . 

the best n-dimensional  subspace of X for approximating 
elements of K, thus being led to 

d,(K) = inf E(K, V J ,  
V“ 

the +width of K in X .  The subject of n-widths now has a 
large literature for which the reader  should consult [ 131. In 
the examples we discussed above, Tihomirov (Cf. [ 121) 
showed that 

In the setting  of (5) we may, following Kolmogorov, seek 

and 7,,-, is the best approximating subspace. 

Approximation of functionals 
Chebyshev’s setting  for  polynomial approximation of 
continuous  functions may be mimicked to  approximate a 
linear  functional by linear combinations of given linear 
functionals. More precisely, suppose L, L,, . . ., L, are linear 
functionals on K C  C(Z). Consider the problem of finding 

inf  sup ILf-  aiLi-fI =: &(L,  L,, . . ., L,,), (6) 
n 

0 JEK i= I 

where a := (al, . . ., a“). As a typical  example  define L, L ,  
i =  1, . . ., n, by 
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where w is a (non-negative) “weight function”  on Z and 

problem  is  now the old and  important  one of numerical 
integration (or  quadrature),  and we shall restrict our 
attention  to  this example,  retaining the  notation given by (7) 
and writing the  quadrature formula and its error as, 
respectively, 

x(n’ .- .- (xl, . . . , x,) is a given set of distinct points of I .  The 

I =  1 

and 

&(x(n’, w) = C(L, L , ,  . . .) LJ.  

A striking  19th-century  result,  associated  with the  names 
of Gauss  and Jacobi, is that if po,  p,, . . . , p,,, . . . are 
polynomials (of degree equal to their  index)  orthogonal with 
respect to a given w and = $n’ is the set of zeros of p,,, 
then  there  are  numbers a = X([‘”’) such that Lf= Q,,(h, p’)f 
for a l ly€ p2,-I, n = 1 ,  2, . . . . This result may  be expressed 
in our setting, fixing n and w and  putting K = p2,,-l, as 

o = c({(~’, w) = inf &(x(”’, w), 

the  infimum  in C([‘”’, w) being attained for a = X. 

K = C(Z) there exist n and Q,,(a,  x(”’) such that 

sup I Lf - Q,(a, x(”’)fI < E. 
/EK 

Indeed, we may choose x(”’ = and a = X as  above (cf. 
[ 14]), thus  obtaining  an  analog of the Weierstrass theorem. 

An interesting quadrature illustration  of (6) is due  to 
A. Sard [ 151. Given x(”’ he chooses 

K = { f E C(k-l’(Z) : f‘””’ absolutely  cont., 

,(d 

Let us also remark  that given w, E > 0 and  putting 

IIf‘k’112 5 1 I ,  (8) 

where 0 < k 5 n.  If  we put Rf = Lf - Q,,(a, ~ ( ~ ’ l f ;  Sard’s 
problem is 

Note  that he,  reasonably, restricts the admissible a by 
requiring that  the  quadrature  formula  be exact  for 
polynomials  of degree at  most k - 1 .  I say “reasonably,” 
because if p E pk-l and R p  # 0, then since cp E K for any 
constant c and R is linear, 

Sard‘s solution, in  modern terminology, uses the  unique 
natural spline  of order 2k [i.e., piecewise polynomial  of 
degree 2k - 1 in each (xi, x,+l), i = 1, . . ., n - 1 and of 
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degree k - 1 outside (x l ,  x,) which  is in C‘2k-2’(Z)], sf, 
satisfying 

s,(xi) =f (x i ) ,  i = 1, . . . 9 n. 

Then 

Lsf=: af f (x , )  
n 

i= I 

defines the optimal choice  of a. In other words, the optimal 
quadrature formula Qn(a*, xcn)) is obtained by integrating the 
interpolating natural spline at the nodes.  In particular when 
k = n we  recover the classical  Newton-Cotes quadrature 
formula, since the interpolating spline becomes a polynomial 
of degree at most n - 1. 

Since we  have mentioned splines  let us say a few more 
words about this class  of functions which  have  become so 
popular as approximators in recent  years  (cf. [ 161). Splines 
are simply piecewise functions, the pieces  generally  being 
polynomials of some fixed  degree. A familiar  example of a 
spline is a continuous piecewise linear function. Piecewise 
functions were  widely  used before the word  spline  was 
brought into mathematics by Schoenberg. A spline  is, 
originally, a thin strip which  is  grooved and pinned at points 
by a set  of  heavy  weights  (called “ducks”) with arms fitting 
in the groove. It is  used to draw a smooth curve through the 
points.  Schoenberg  observed that natural “splines” of order 4 
with knots (= points at which  pieces are joined) at the 
abscissas  of the points, which interpolated the given  values at 
the knots, were a reasonable mathematical model of the 
material spline. Mathematical splines came into heavy use 
after 1960 in conjunction with the explosive  growth  of 
computers. By now the theory and practice of 
approximation by univariate splines  has  reached a high  level 
of development (cf. [ 171) and the notion of multivariate 
splines is at the frontier of research in Approximation 
Theory (cf. [ 181). 

Optimal recovery 
A comparison of (5) and (6)  is quite instructive. In (5) there 
is the tacit assumption that eachfis known and its best 
approximation is  sought.  But in (6) all we know  is that f i s  
an element of K and the limited information about it 
provided by L, ,  . . ., L,. It is this latter point of view, 
estimation from incomplete information, that we  wish to 
pursue.  Such problems had  already  received attention (cf. 
[ 191 and [20]) by the mid-70s, at which time Micchelli and 
Rivlin [2 I] gave a precise formulation of the notion of 
optimal estimation which  they  called “optimal recovery.” By 
this they meant estimating (= recovering) some required 
feature of a function from limited, and possibly error- 
contaminated, information about it as effectively as possible. 
From another point of view,  what they  presented was a 
quantification of the concept of “complexity” as applied to 
many areas of numerical approximation. This approach has 
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Schematic of optimal recovery. 

a large  Soviet literature. It  is  also the subject  of the books 
[22, 231 and the lecture notes [24] and [25]. 

Our formulation of the optimal recovery  problem  is the 
following.  Let X be a linear space, Y and Z normed linear 
spaces. K is a subset  of X ,  U a linear operator from X into Z ,  
and Z a linear operator (the information operator) from X 
into Y. We  wish to recover Ux from information close to Zx, 
that is,  for  each x E K we know a y E Y satisfying 11 Zx - y 11 
5 E, for some fixed E 2 0. We  call any function a: IK + ES + 
Z ( S  = { y E Y: 11 y 11 5 11) an algorithm. Each algorithm, a, 
produces an error 

E(K, E )  = izf Ea(K, E )  (10) 

is the intrinsic  error in the recovery problem. If Ea.(K, E )  = 
E(K, E ) ,  we say that a* is an optimal algorithm and effects 
the optimal recovery of Ux. Figure 1 gives a brief outline of 
the setting. 

Each problem requires specification of X ,  Y, Z, K, I, U, 
and E .  For instance, if  we choose X to be the space of 
functions having k - 1 (k z 1) continuous derivatives on 
[-I, I] and a kth derivative in L2[-I, 11; Kas defined in (8), 
Y = R”, Z = R, Z defined by If= ( f (x l ) ,  . . . , f(x,)) for some 
given x‘”’(n 2 k), U = J’, f w ,  and E = 0, then we have the 
problem  of  Sard  again.  But note that the admissible 165 
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algorithms  need not be linear, a priori, and  the second 
restriction in (9) is not present. It  can be shown [21] that  in 
this more general setting  Sard's  solution remains optimal. 
The  determination of the intrinsic error is a difficult problem 
(see [25] for more information). 

One general approach  to  an  optimal recovery problem is 
to  obtain first the intrinsic error, or at least a lower bound 
for the intrinsic error. If K is  a  balanced (i.e., contains -x if 
it contains x) convex set, then it is easy to see (cf. [2  I ] )  that 

Moreover,  in the  important case that U is a  linear 
functional, not only does ( I  1) become an equality [thus 
providing us with  a "dual" extremal  problem to  (lo)]  but we 
are assured, under  minor  additional  assumptions  about K, 
that  there exists a linear optimal algorithm  (details are given 
in [21]).  Observe that  the extremal  problem on  the right- 
hand side of the inequality ( 1  1)  is  of  a more familiar  kind 
than (IO). The second  step in  this strategy is to find an 
algorithm, a, that satisfies Em(K, E )  5 e(K, E ) ,  thus  obtaining 
an  optimal algorithm and  the  intrinsic  error.  In general, of 
course, "finding" the a is the  nub of the problem and is an 
art.  There  are, however, settings, for  example when X is a 
Hilbert space, Kits  unit ball, the kernel of I is closed, and 
E = 0, in which the  optimal algorithms can be obtained in  a 
straightforward fashion. Details are given in [21] and [25].  

We turn now to  some  problems in which X = Ha,  the 
functions analytic and  bounded  in D: I z 1 < 1. H a  is a 
normed linear space, the  norm being given by 

suppose z,, . . . , z ,  E D are given. Let 

K = { f €  Ha:  l l f l l  5 11 

and If= ( f ( z , ) ,  . . ., f(z,)) (with the  convention  that if some 
of the points  coincide the corresponding function values are 
replaced by consecutive  derivatives in  the obvious way, so 
that Y = E"). Suppose { E D is given, Uf = f ( { ) ,  Z = E, and 
E = 0. We  are  thus considering the problem  of optimal 
interpolation  in H a .  

Put 

Since B,(z,) = 0, i = 1, . . ., n, ( 1  1) yields 

Indeed,  in view of the remark following ( 1  I ) ,  equality  holds 
in ( 12), but this fact is not needed in what follows. 

Next define a/( {), j = 1, . . . , n by 

T. J.  RIVLIN 

using the calculus of residues. The absolute value of the 
right-hand side of ( 13) is bounded by 

= I B"(0 I. 
The last integral on  the right-hand side, being the integral of 
the Poisson kernel, is 1. Thus, for any f E K we have 

n 

IfCS) - c Q j ( 0 f ( Z J )  I 5 I B,(O I .  
J= I 

If  we define the algorithm LY* by 
" 

a*: (f(ZI), . . ., f(ZJ + c UJ(!9f(ZJ)> 
J= I 

then  EJK, 0) I I B,({) 1, and  in view of ( 1  3), a* is an 
optimal  algorithm  for  interpolation. Note  that it is a linear 
optimal algorithm, whose existence the general theory had 
affirmed. We  add  the  remark  that  the case E > 0 has  been 
studied by Osipenko [26]  and  Dita [27].  The choice  of  (13) 
may seem to be akin  to pulling a rabbit out of the air. 
However, the left-hand side is a  linear  functional on H a  and 
the theory of extremal  problems  for  such  linear  functionals 
represented by rational  kernels  is well-known (cf. [28])  and 
leads to ( 13). 

As a final example we turn  to  the problem of optimal 
numerical  integration  in Ha.  All specifications in the 
optimal recovery problem are  the  same as in  the 
interpolation  problem  except that 

Uf = j-: f ( t )w(t)dt ,  

where w(t) is  a given weight-function. We have  equality in 
( 1  1) and  obtain for the intrinsic error 

, In our notation for the intrinsic error we have  now added its 
dependence on w. In  the  context of the numerical 
integration  problem  it is natural  to seek the choice  of the 
nodes z,, . . . , z ,  which minimizes the intrinsic  error, i.e., 
what might be called optimal sampling. It is known that  the 
minimal intrinsic error satisfies 
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-tZ J” 
ble I inf E(K, 0, 1 )  I c,e , 

-e* Jn 

(21.- 2“) 

b,, b,, c I ,  c, > 0. For details and generalizations see [29-311. 
Assume that  the weight function satisfies 

m(p) 5 w(t)(l - t’) ’ I ~ ( p ) ,  - I  < t < I ,  F > - I  

for m, M > 0. Then we can present some interesting error 
estimates  for the intrinsic error, E(K, 0,  w, z@)), where the 
dependence of E on  the nodes 2‘”) := (zl, . . ., zn) is now 
made explicit in the  notation. In particular, we put z‘”) = 
E‘”’ when zl = - 1  + (2j) / (n  + I ) ,  j = 1, . . . , n (equally 
spaced points), and z ( ~ )  = z‘”’(X) when the zl are  the zeros of 
P:’, the ultraspherical  orthogonal  polynomials with respect 
to  the weight function (1  - x~)’-~’*, X 2 0, e.g., Legendre 
zeros (X  = 1 /2), Chebyshev zeros (X  = 0, 1 ). 

In view of (14) we have 

J B:(t)w(t)dt I E(K, 0, w, zcn’) 5 I B,(t) 1 w(t)dt 
- I  J-, 

for any choice of real nodes. It was shown in [32] that  there 
are positive constants A ( p ) ,  B(p) ,  C(p, X), and D(p,  X) such 
that 

I +# 

A ( p )  5 E(K, 0, W, E‘“’)(n log n) ’ I B ( p )  
- 

(15) 

and 

C(p,  X) 5 E(K, 0, W ,  Z(~)(X))~’+’ ’  5 D ( p ,  X). (16) 

The proofs rely on  appropriate pointwise bounds  on B,(t) 
from  above and below. We remark that while ( 15) and ( 16) 
give the correct order of dependence of the intrinsic error  on 
n, our invocation of the duality (14) has wiped out  the role 
of the  quadrature  formula  and we have no  information 
about  an  optimal algorithm. 
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