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An  Arabic  name  can  be  written in English  with 
many  different  spellings.  For  example,  the 
name  Sulayman is  written  only  one  way in 
Arabic. In English,  this  name  is  written in 
as many  as forty different  ways,  such  as 
Salayman,  Seleiman,  Solomon,  Suleiman,  and 
Sylayman.  Currently,  Arabic  linguists  manually 
transliterate  these names-a  slow, laborious, 
error-prone,  and  time-consuming  process.  We 
present  a  hybrid  algorithm  which  automates 
this  process in real  time  using  neural  networks 
and a knowledge-based  system  to  vowelize 
Arabic.  A  supervised  neural  network  filters  out 
unreliable  names,  passing  the  reliable  names 
on  to  the  knowledge-based  system  for 
romanization.  This  approach,  developed  at  the 
IBM Federal  Systems  Company,  is  applicable 
to a  wide  variety of purposes,  including  visa 
processing  and  document  processing  by 
border  patrols. 

Introduction 
Transliteration is the process of formulating a 
representation of words in one language  using the alphabet 
of another language. For example, words written in 
Arabic, Cyrillic, or Chinese can be rewritten using the 
Roman alphabet (a transliteration process known as 
romanization). The transliteration process depends on the 
target language  (e.g., English, French, Spanish) and  on the 
education and experience of the actual transliterator. 
Thus, a single  foreign word can have many  different 
transliterations. 

Further variations may occur in the transliteration of 
proper names, since the owners of those names may take 
certain liberties with both the pronunciation and  spelling 
of their names, for either aesthetic or devious reasons. 
The transliteration of personal names therefore poses an 
interesting challenge. Automated solutions to such a 
problem  could be useful in several areas, including tourism 
and security (e.g., border control). 

We focus on the process of transliterating Arabic 
personal names to the Roman alphabet, though the 
techniques described here should be applicable to other 
languages (both input and output). Aside  from the 
problems cited above that are inherent in transliteration, 
the transliteration of Arabic (and other, primarily Semitic, 
languages) poses an additional challenge: Words are 
written without “short” vowels. As a result, the 
transliteration process includes a step called 
“vowelization,” in which the appropriate short vowels 
are inserted into the “unvowelized” input  name. 

in Figure 1. The first step is to enter the names into a 
database. Currently, we obtain these names from the 
telephone book of a major  Middle Eastern city (Damascus, 
Syria). We then vowelize these names (the primary focus 
of this paper), since by convention names are published 
in the telephone book without short vowels, as is  most 
Arabic text. Once the names are vowelized, they are 
converted into a phonetic representation. This 
representation is used to produce the equivalent multiple 
Roman  spellings. 

parts of the transliteration process, including the use of 

The process of Arabic name transliteration is illustrated 

Various techniques have been used to automate different 
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Automated  generation 
of phonetic  representation of phonetic  representation 

mutiple Roman spellings 

Existing process of Arabic  name  transliteration. 

optical character recognition (OCR)  for data entry (there is 
an Arabic OCR package available from  IBM’s Cairo 
Scientific Center), and the use  of other tools for the 
generation of phonemes and alternative Roman spellings, 
as indicated in the figure.  While vowelization is probably 
the most complicated part of the process, little has been 
done to automate it. 

The complexity of the vowelization process is 
undoubtedly a major factor contributing to the lack of 
research in this area. It is also, however, a compelling 
motivation for finding  an automated solution. The 
existing method of vowelization is costly and error-prone. 
A single Arabic name  may  be vowelized in several ways 
linguistically,  but  not every vowelization is necessarily 
used in the Arabic language. To select the correct 
vowelizations for a set of Arabic names  is therefore a 
tedious job; the task can be further complicated by data 
entry errors made  when the names are originally  keyed 
into the computer. Thus, high error rates are inherent in 
the transliteration process when it is performed by 
humans. Detecting and correcting such errors is also 
labor-intensive. 

Another problem  with  manual vowelization arises from 
the inconsistent application of heuristics by the Arabic 
linguist (Arabist). The Arabist who is charged with the task 
of vowelizing  names  may  not  follow a consistent set of 
rules, and  may instead rely on intuition, past experience, 
and other less scientific  knowledge sources. Furthermore, 

184 the results of vowelization may vary from one Arabist to 

another. Because the solution to the vowelization problem 
is not easily specified, the problem does not  lend  itself  well 
to traditional methods of computer automation. 

The specific  problem addressed by this research is the 
automatic vowelization of Arabic names in ways that are 
consistent with Arabic morpho-phonology and actual 
usage. 

vowelization (e.g., [l]). Reference [2] describes a system 
that performs rule-based vowelization of Arabic natural 
language words based on a database of Arabic lexemes 
(a “computational Arabic lexicon”). Our broad approach 
to vowelization is another form of exhaustive, rule-based 
vowelization, but  it vowelizes a wide variety of names 
rather than words. In addition, we do not  depend on a 
large database, thus reducing the storage requirements. 
Unfortunately, many Arabic names are not  Modern 
Standard Arabic-they  may be neologisms, corrupted 
Arabic or foreign.  Our narrow approach uses a 
combination of expert systems and neural networks to 
achieve a good combination of coverage and accuracy, 
vowelizing  only those names  which can reliably  be 
vowelized. The expert system uses a rule-based 
methodology  for generating the vowelizations, while the 
neural network filters out those words which the expert 
system should not  vowelize according to the rules of 
Modern Standard Arabic. 

Some existing commercial packages perform exhaustive 

Computer-automated  transliteration 
The generation of  Roman transliteration of Arabic names 
is  accomplished in several stages. The names  must  first 
be entered into a database (in Arabic), then vowelized, 
since Roman text requires vowels. After vowelization, 
each  name  must then be given a phonetic, Roman 
representation as a base from  which the multiple  Roman 
spellings are produced. A detailed discussion of the 
process can  be  found in [3]. 

Creation of Arabic name database (Arabic OCR) 
The  first step in  Arabic-Roman transliteration is to enter 
the names into a database. This can be done manually 
by keypunch operators; however, it would  be  far  more 
efficient  in terms of time and physical resources for an 
optical character reader (OCR) to read in the names. 
Currently, we take these names from the telephone book 
of a large  Middle Eastern city (e.g., Damascus, Syria), a 
method  which  is extremely conducive to OCR exploitation. 
However, reading Arabic characters is  analogous to 
reading cursive Roman text, a difficult  problem for OCR 
[4]. Some Arabic OCR programs (e.g., the IBM Cairo 
Scientific Center’s) exist, and we expect to use them in the 
future. There is also ongoing research in this field [5]. The 
Arabic names  we are now  using are entered by human 
keypunch operators. 
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Vowelization of Arabic 
Arabic can be a difficult  language to process for various 
reasons, one of which is that it  is normally written without 
short vowels. This may seem an odd convention to an 
American or European audience, but is is very common 
in Semitic languages.  When the target languages of the 
transliteration are European in origin (Germanic or 
Romance), and thus require short vowels, we  must 
reintroduce short vowels into these Arabic names. In 
Arabic, the short vowels are “a,” “i,” and “u.” Long 
vowels (“aah,”  “ee,” “00”) are always written in Arabic, 
so they need  not be added during vowelization. 

Transliteration and Roman name generation 
Once we  have the vowelizations in Modern Standard 
Arabic, the vowelized names can easily be converted 
into a standard, phonetic Roman representation. This 
can be done with a simple parser or table. This Roman 
representation is broken down into a group of syllables. 

The  syllabified phonetic representations are then used, 
through tables and syllable variation, to produce various 
spellings  in  English, French, Spanish, and other languages 
which use Roman alphabets. For example, “Sharif” in 
English  might  be “Cherife” in French. 

Technical  approach 
Our approach is to use a hybrid application comprising 
a knowledge-based system (KBS) and  artificial  neural 
networks. The KBS approach is a good candidate for 
this problem because it  allows the linguistic rules of 
vowelization to be codified  simply in declarative form. 
Artificial  neural networks (ANNs) provide the capability to 
develop and use statistical heuristics which are not  known 
and/or cannot be represented as declarative rules. All of 
the neural networks we discuss are artificial.  Both KBS 
and ANN methods are described further in the sections on 
knowledge-based systems and  artificial neural networks. 

The KBS is constructed of linguistic vowelization rules 
which can be applied to a large class of unvowelized 
Arabic names.  This class of “conforming” names follows 
strict rules of vowelization which are based on the number 
and structure of the root radicals and  their relative 
positions with respect to other consonants and  long 
vowels. 

An artificial neural network is  used to filter  from the 
input those names which otherwise would be vowelized 
inappropriately by the KBS (examples are discussed later). 
Such names are defined as “unreliable” because, while 
they appear to be “conforming,” they do not typically 
result in valid Arabic words (i.e., words which are actually 
in use) when they are vowelized. 

knowledge-based and  artificial  neural network system. 
Figure 2 depicts vowelization using our hybrid 

0 Vowelized 
Arabic names 

1 

r-l ANN filter 

Internal flow of system for vowelizing Arabic names 

Knowledge-based systems 
Knowledge-based systems (KBSs) are an alternative means 
for  designing  and  implementing software applications. 
While conventional programs are specified as procedures 
containing sequences of instructions which operate on 
data, KBS applications are declarative in nature; that is, a 
KBS is  specified in terms of what data transformations 
must take place rather than how (step-by-step) to 
transform data. In addition, a KBS separates the 
domain  knowledge  from the general knowledge. 

The most  common KBS representation scheme is the 
IF-THEN rule;  programs which consist of data and rules 
for operating on the data are typically described as rule- 
based programs. Often, the rules in a particular KBS are 
modeled after the heuristics used by experts who perform 
the task for which the KBS is built; for this reason, 
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knowledge-based systems are also often called “expert 
systems.” 

required to solve a specific  problem, whether the 
knowledge be expert or not. This encoding typically takes 
the form of a rule-based program, but implementation is 
not restricted to rule-based languages-many KBS 
applications have been developed with third-generation 
languages such as PASCAL  and C. 

Regardless of the implementation language, the KBS 
methodology allows the programmer to specify a solution 
at a very high level of abstraction. This is possible because 
the knowledge for solving the problem (usually specified as 
rules) is separated from the control logic which carries out 
low-level processing that is  not  specific to the problem. 
The  domain  knowledge  is often called the “knowledge 
base” (KB), while the component which performs the low- 
level processing and thus contains general problem-solving 
knowledge is the “inference engine” [6]. 

The inference engine  is a generic component which 
controls sequencing and looping  and provides a variety of 
other built-in functions such as pattern matching  (i.e., the 
matching of program variables to actual data items). The 
inference engine is usually obtained as part of a KBS 
building tool such as CLIPS, and the rules are specified by 
the user, in a language appropriate to the tool (most tools 
have their  own  languages). 

Some of the most  common applications of knowledge- 
based systems are in the areas of diagnosis, planning, 
monitoring,  and control. 

Arti$cial  neural  networks 
While  knowledge-based systems provide a mechanism 
for representing declarative knowledge,  artificial neural 
networks provide a mechanism for representing empirical 
knowledge.  Although statistical models provide the same 
basic functionality as artificial  neural networks (encoding 
empirical knowledge),  artificial neural networks provide 
the additional ability to learn or be trained. In this context, 
learning is the process by which patterns (or relationships) 
are discovered. This discovery process produces an 
approximation of a function that maps the network input to 
output. When  use  is  made of a trained network, the same 
or similar input data will evoke the same outputs, so 
the network becomes a deterministic collection of 
mathematical formulas. 

The emphasis of a Kl3S is on encoding the “knowledge” 

An artificial  neural network is implemented as a network 
of interconnected nodes.  This architecture is patterned 
after the brain, and each node represents a single neuron; 
this is the basis of the designation “artificial neural 
network.” Nodes are organized into two or  more layers, 
with  an  input layer at the bottom and an output layer at 
the top.  Weighted connections provide the means of 

186 communication between nodes; when one node “fires” 

(has an input signal at or above a certain threshold), it can 
activate other nodes to which it is connected. The actual 
topology of the network (number of nodes, number of 
layers, weights of connections) is determined by the 
problem  being addressed. 

are best used to solve problems which are not easily 
specified  algorithmically or declaratively. Popular uses for 
artificial  neural networks in applications include pattern 
recognition  (e.g.,  in  image analysis or credit-card fraud 
detection) and  classification. 

Hybrids 
Expert systems and neural networks integrate in varying 
degrees [7, 81: 

Transfonnational A neural network  discovers a set 
of functions,  features, or general  rules  which are then 
recoded  into  facts  and  rules in a knowledge  base. 
Loosely coupled Examples of such  systems  are 
the following: 

A system in which a neural network provides inputs 
to  an  expert system. . A system in which an  expert  system  preprocesses 
data  for use by a neural  network. 
A blackboard system in which  neural nets and 
expert  systems  are among the knowledge sources. 
A system in  which  neural nets  and  expert  systems 
pass data  back  and forth  to  one  another, 
cooperatively  solving a problem. 

Tightly integrated Examples of such a system 
include a neural network embedded  within the 
inference  engine or  other  key  routine within the rule- 
based  system,  or  expert  systems  used as activation 
functions or filters within a neural  network. 

Artificial  neural network applications are data-driven and 

Our solution to the vowelization problem contains a 
neural  net  which accepts data from a KBS and then passes 
analysis back to the KBS. Such a system would be 
described as “loosely coupled” on the basis of our 
described taxonomy. 

CLIPS 
An efficient way to implement an expert system is with the 
use of a “shell.” An expert system shell provides a means 
by which rules can be specified,  an inference engine to 
interpret (or “execute”) the rules, and various control 
mechanisms and  utility functions. We chose to use the 
off-the-shelf expert system shell CLIPS (C Language 
Integrated Production System). The system was developed 
by the Software Technology Branch, NASNLyndon B. 
Johnson Space Center, and is available from  COSMIC 191. 
It is designed to facilitate the development of software to 
model  human  knowledge or expertise. CLIPS provides 
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other languages such as C and  Ada. 
CLIPS knowledge bases can be run  in either interpretive 

mode or compiled  mode.  The CLIPS interpreter can be 
used as a stand-alone application (i.e., invoked by the user 
from the command line), or it can be embedded in another 
application. The CLIPS code generator makes it possible 
to run  knowledge bases in  compiled  mode by compiling the 
CLIPS knowledge representation language into C code 
which can then be compiled  and  linked  with a driver 
program for stand-alone operation, or with another 
application for embedded operation. 

System description 
The system can be  divided into four parts: main  program, 
knowledge base (KB) interpreter, knowledge base, and a 
set of utility routines (which includes the artificial neural 
network). 

language,  and are compiled  and then linked  with CLIPS 
interpreter object files to form one embedded CLIPS 
application. 

The  knowledge base is written in CLIPS and consists of 
two files loaded at run  time by the main  program  and later 
jointly interpreted by CLIPS as one knowledge base. 

The main program performs the following initializations 
for the utility functions: 

Initialize the composite name lookup table. 
Initialize the saturated name detector. 
Initialize the suffix lookup table. 
Initialize the artificial  neural network. 

The main  program and utility functions are written in C 

(The saturated name detector and the artificial neural 
network are described in detail in the sections which 
follow.) 

The main  program then calls the following CLIPS 
application programming interfaces (APIs) to execute the 
embedded CLIPS expert system: 

Initialize CLIPS. 
Load knowledge base files. 
Reset CLIPS to prepare for  running. 
Run CLIPS (the inference engine executes the 
knowledge base rules). 

The CLIPS product comes with the source code used to 
build the product. Availability of the source code makes 
the product portable, embeddable, and customizable. To 
embed the CLIPS interpreter into an application, it  is  only 
necessary to compile the CLIPS source code (except for 
the “main” routine) and link the resulting object code 
with the application. CLIPS provides several APIs for 

information with, CLIPS knowledge bases. 

Knowledge base 
The knowledge base (KB) is  implemented in the CLIPS 
knowledge representation language. CLIPS itself supplies 
the inference engine. The KB consists of rules and data 
(“facts”); rules typically consist of two parts: a left-hand 
side (LHS) and a right-hand side (RHS). The LHS is the 
condition of the rule (the “if” part), and the RHS  is the 
action of the rule (the “then” part). The LHS can contain 
multiple conditions combined into a single condition by the 
logical operators “and,”  “or,” and “not”; conditions are 
specified as patterns to which facts must be matched. 
When facts are matched to the LHS of a rule, they are 
said to be “bound” to the LHS of the rule. 

Each rule in the knowledge base has a priority (or 
“salience”). Priorities are discriminators (not necessarily 
unique) that determine which  rule to execute (“fire”) when 
the condition (LHS) of more  than one rule is satisfied 
(i.e., true). Thus, priority gives us a means of enforcing 
the order of event occurrences under the nonsequential 
paradigm of computation that is inherent in rule-based 
systems. 

All of the vowelization rules (rules which actually 
generate vowelized names) have the default priority of 0. 
Control rules generally have priorities either higher or 
lower than the default. Rules with priorities lower than 0 
tend to act more  like  default or postprocessing rules. 
Those with  higher priorities usually play the role of 
preprocessors; i.e., they are responsible for the things 
that must  be done before the actual vowelization. 

Functional description of KBS 
The KB system (KBS) interactively accepts an 
unvowelized  name as input and generates all possible 
vowelizations for that name if  it is a conforming Arabic 
name.  The vowelizations are represented in ASCII 
according to our own character transcription scheme, 
in which each Arabic letter is paired  with one ASCII 
character. 

The KBS carries out several operations on the input 
name before the actual vowelization takes place: 

First, the KBS examines the composite name table, 
which contains religious names that contain the prefixed 
article “al” and are commonly used by Arabs. If the 
input  name matches any of the names therein, the 
vowelized strings pre-stored with the name in the table 
are output, and the KBS proceeds to the next  input. 
Next, the KBS makes sure that the input string is not 
corrupt, as in the case of corrupted data. For example, 
the letter “taa’ marbuuTa” (denoted by “@” in our .I 87 
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scheme) should never occur in a non-final  position in a 
word. When the KBS finds a “taa’ marbuuTa” in a non- 
final  position  in the input  name,  it rejects the name as 
inappropriate data and proceeds to the next  input. 
Finally, the KBS checks whether there is any possible 
suffix in the input  name. If there is, the KBS creates, for 
every possible suffix, a separate object to represent this 
fact, i.e., that the name is possibly composed of a 
particular stem and a particular suffix. Thus, when the 
KBS gets to the actual vowelization, the vowelization 
process is performed for all of the possible  stem/suEix 
combinations enumerated. 

After the KBS has performed these three steps (table 
lookup, data filtering,  and suffix enumeration), it is ready 
to insert short vowels for those stems and  suffixes with its 
vowelization rules. Each vowelization rule produces a 
vowelized name as output by adding one or more short 
vowels to the unvowelized  name (stem and suffix), 
according to linguistic rules. There is one rule  which  is  an 
exception to this paradigm, however; this rule outputs the 
name without adding any short vowels if the name is 
“saturated.” 

A name is saturated if short vowels are not required for 
it to be pronounced correctly as an Arabic name, where 
correctness is  defined  in terms of the preservation of 
Arabic syllable structures. Such a name does not require 
vowelization, and so is output “as is,” but it is  also 
further processed by other vowelization rules because, 
although it  is not necessary to vowelize such a name, it is 
possible to do so. A saturated name is still open for 
vowelization for several reasons: 1) the Arabic syllable 
structures allow for a certain degree of ambiguity; 2) two 
of the three long vowels can also be consonants or semi- 
vowels (“waaw” and “yaa’ ”); and 3) the other long 
vowel (“ ’alif”) sometimes really stands for a consonant 
(“ ’alif hamza”). 

Broad versus narrow 
The KB described above works well  if our objective is to 
produce as many transliterations as possible for a given 
unvowelized  name written in Arabic script. We place as 
many morphologically sound configurations as possible 
into the LHSs of the vowelization rules of that KB and 
generate for a particular configuration all the possible 
vowelizations that are morphologically sound. We 
designate this approach as the broad approach, the 
described KB as the broad KB, and the associated KBS 
as the broad KBS. 

The broad approach serves well the exhaustive nature 
of the described objective; however, it presents some 
problems. First, there are still  names which are Arabic 
but cannot be vowelized by the broad KBS. These 

188 nonconforming  names cannot be treated with a rule-based 

approach, but other techniques for solving this problem are 
discussed in the section on future directions. 

Another problem results from the existence of foreign 
(i.e., non-Arabic) names  which are erroneously treated by 
the broad KBS as Arabic (because they appear to be 
conforming)  and thus are vowelized incorrectly. This 
problem is also addressed in the section on future 
directions. 

Finally, even among all the morphologically sound 
vowelizations that are generated by the broad KBS for a 
genuinely  conforming Arabic name, some may  not actually 
exist  in the language. In other words, not all the nouns 
that are morphologically sound and possible are in 
actual use. This could be a significant  problem in the 
transliteration of a large  file of Arabic names  and the 
associated storage of the romanizations in a database. 
Obviously, the broad approach would require a relatively 
large amount of storage space and hence a long search 
time  for database retrievals. 

Thus, we see that the broad KBS achieves the goal 
of completeness as well as possible, but at the cost of 
validity. The solution to this problem  is therefore to 
restrict the KB so that the system generates fewer 
vowelizations for fewer names but yields a higher rate 
of accuracy. 

By  removing those rules with such LHS configurations 
that are known to produce many  unused vowelizations, 
and  removing  from other rules RHS actions which 
generate vowelizations that are rarely actual words, we 
can  achieve-on  average-more  valid output. The KB is 
now “narrower” than before. 

The first restriction to impose is on the rules in the KB. 

Even with the described restriction, however, the KB is 
still  not narrow enough. There are still some names which 
appear to be  conforming (that is, they match the LHS 
of one or more of the vowelization rules) but which 
actually yield a significant  number of invalid  names when 
vowelized by the rules. Such names generally fall into two 
categories: those that are “foreign” to Arabic and those 
that are not vowelized according to the same linguistic 
rules as are represented by the KB rules. We describe 
these names as “unreliable.” These names match the LHS 
name configurations, but a majority of the vowelizations 
produced by the rules are not in actual use. 

Since we cannot find any heuristics for determining 
which  unvowelized Arabic names are unreliable,  we 
cannot use the knowledge-based approach to solve this 
problem.  The answer to providing a more optimal overall 
solution therefore lies in supplementing the rules  with 
an empirical approach. In other words, instead of 
algorithmically determining which names are unreliable, 
we  might attempt to identify unreliable names on the 
basis of experience. 
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We could simulate the experience of recognizing an 
unreliable name by using the KBS described thus far to 
vowelize a large set of Arabic names, and then allowing an 
Arabist to classify the output from the KBS as “valid” 
(known to be in use) or “invalid.” Extensive analysis of 
those unvowelized names which result in mostly invalid 
vowelizations might reveal subtle patterns which  could 
subsequently be  used by the system to avoid  similar 
invalid output. 

In practice, however, analysis of this sort is beyond 
human capability; furthermore, even if patterns could be 
identified, they would probably be very complex and 
difficult to represent using a knowledge-based approach. 
This kind  of data-driven solution is an ideal application for 
the use of an  artificial  neural network. Accordingly, we 
add an artificial neural network to the described KBS to 
identify and  filter out those unvowelized Arabic names 
which are unreliable. We designate the resulting KBS, with 
its own additional restrictions and its use of the artificial 
neural network, the narrow KBS. 

Figure 3 shows how the narrow and broad methods 
interrelate, and their coverage of names. 

Artijicial neural  network 
As previously discussed, we use an artificial neural 
network in the narrow approach to eliminate those names 
which cannot be properly vowelized  using the expert 
system. The network was trained using the cascade- 
correlation method [lo], a supervised, feedfonvard [ l l ]  
neural processing algorithm. 

The artificial neural network accepts names with  up to 
seven letters. Each letter of the name is represented by 35 
input nodes corresponding to the 35 different letters of the 
Arabic alphabet which are supported by the network. 
Thus, there are 245 inputs (35 X 7) to the network, and 
only one output (see Figure 4). 

The output of the network is binary; if the output node 
fires (with a threshold of  0.5), the name  is declared reliable 
and the expert system vowelizes it. Otherwise, the name  is 
regarded as unreliable and is set aside to be vowelized in 
some other way (either manually or, in the future, by 
means of some other type of automation). 

The artificial neural network protects against the 
inaccurate vowelization of some names by the expert 
system, but a few  still  slip through. Also, the network 
occasionally filters out names that could  be reliably 
vowelized by the expert system. On the other hand, the 
network accurately classifies the vast majority of names 
(see Table 1). 

The artificial neural network was trained on  roughly 
2800 Arabic names  and tested on another 1350. The  names 
were a representative sample from the telephone book for 
Damascus, Syria, that also conformed to the narrow KBS. 
The cascade-correlation network that performed best 
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Architecture of the artificial neural network used in this work. 

had only 491 connections, so the network was not 
“memorizing” the training set but actually created its own 
heuristic for predicting the right classes. This heuristic is 
primarily statistical, weighting the connections primarily on 
the basis of the frequency with which a particular letter 
in a particular position in the network is a member of a 
reliable  name in the training set. Given the excellent 
generalization of the network, this heuristic appeared to be 
an effective one. 

In the broad approach, 5069 (79%) of the 6415 sample 
Arabic names  conformed to the Arabic name structure and 1 89 
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Filtering of the foreign name "Afghany" by the artificial neural 
network. 

were therefore vowelized; the rest were nonconforming. 
Table 1 indicates that the narrow approach, in which 
45.6% of the names were deemed  reliable  and thus 
vowelized, generates fewer inappropriate or extraneous 
vowelizations. It also shows that the neural net does an 
excellent job of filtering those names  which the narrow KB 
should not vowelize. 

Table 1 Narrow  approach:  accuracy and vowelization  rates. 

By comparison, human experts had error rates of about 
10% on  similar samples before a laborious editing process 
reduced the errors to approximately 3-5%. 

Discussion 
The narrow approach vowelizes over 45% of the names 
presented to it, with a very low rate of generating 
inappropriate vowelizations. The broad approach covers 
closer to 80% of the names, but generates a much  higher 
percentage of extraneous vowelizations. In both cases, 
we dramatically reduce the labor and time expenditure 
for vowelization and provide consistent patterns of 
transliteration (as opposed to the inherent inconsistency 
of human control). In addition, we greatly reduce the pre- 
edited error rate, particularly with the narrow approach. 

The strength of the narrow approach is in its low rate of 
erroneous vowelizations. We have found that it performs 
exceptionally well at reducing the dictionary size 
(providing potential vast improvement in search 
performance), and produces fewer errors than human 
experts. However, many  names cannot be vowelized using 
this approach. The broad approach vowelizes a much 
higher percentage of the names, but tends to generate 
many vowelizations that are not  in use. On the other hand, 
both systems are orders of magnitude faster than human 
experts, who can only vowelize a handful of names in the 
time it takes for the computer-automated transliterator to 
generate thousands of vowelized, transliterated names. 

For the narrow approach, the artificial neural network 
plays a crucial role in filtering  unreliable  names  from the 
expert system. Figure 5 shows how the network filters the 
foreign (probably Farsi, or Persian) name  "Afghany." 
Note how the hidden node is the key to driving the output 
to 0. When the hidden node fires,  it produces a strong, 
negative influence  on the output node (weight of -6.0). 
The weights to the output are a strong negative one 
from the first character ('alif),  and weak positive weights 
from the other inputs, which  would  normally produce a 
borderline result. However, the hidden node is driven hard 
by the presence of a faa' and  ghayn in the second and 
third positions. The neural net has apparently determined 
that Arabic names do not  normally contain this sequence 
of letters. In a standard feedforward neural network [ll], 
the output of a hidden  node is equal to the sum of its 
inputs (x , )  plus a trained bias (equivalent to a threshold). 

Vowelized Filtered 

Correct Incorrect  Total Correct Incorrect  Total 

57 3489 
3.1 45.6 98.4 1.6 54.4 

Number 2836  90  2926 3432 
Percent 96.9 
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From this, we  obtain  the following formula,  which shows 
the  output of the hidden node (bias B = 1.4): 

245 

B + 2 X, = 1.4 - 8.6 + 9.6 + 10.2 
i = l  

- 4.3 - 4.4 + 0.4 = 4.3. 

Thus,  the  output of the hidden node 0, = 1/(1 + e-4.3) = 
0.98. This  name  has  only six letters, so none of the 35 bits 
for  the  seventh  input  is  on.  For  each of the six letters  that 
do exist,  one of the 35 bits in the  network  is  on  and  the 
other 34 are off. 

The  output  node  has a bias of 0.6; the  summed weights 
add  to 2.1. However,  the weight from  the hidden node  is 
-6.0, so the  input  from  that  node  is -5.9; when this  is 
added  to  the  other  input weights and  bias  for  the  output 
node, the activation is actually -3.8. The  output of the 
network is 1/(1 + e3.') = 0.022, much lower  than  the 
threshold of 0.5 necessary  to  accept  the name. 

Figure 6 shows a name  that is accepted, "Qaddafi." 
Note  that  the final (fifth) letter is  a  long  vowel. The hidden 
node activation is -34.1, so the  output, 1/(1 + e34.'), is 
virtually zero. Thus,  the activation of the  output  node is 
just  the  sum of the  weights from the input node plus the 
bias; the activation is  thus 3.2 and the  output 0.96, well 
above  our threshold for vowelization of the name. Note 
that  the  presence of qaaf and  daal in the first two positions 
strongly suppresses  the hidden node, while the  presence of 
'alif and faa' and  yaa'  combines  with  the  bias  to  override 
the qaaf and daal at  the  output layer. 

(and their positions),  especially those most  likely to 
indicate whether  the  name in question is reliable. We  see 
in the  above  examples  how  certain  inputs  can strongly 
inhibit the hidden node from  activating (or strongly 
activate  the node). An  area  for additional  investigation is 
in determining some of the overall statistical probabilities 
of combinations of Arabic  letters (see [12] for  some  early 
work in this area). 

We believe that  the  data  set used to train the  network 
is large enough and  reasonably  representative of a  typical 
collection of Arabic names; hence,  we feel  confident that 
it will provide  similar results  on  other  test  data  sets in 
addition to  the  one  we used. 

While it is  certainly  no  surprise  that an expert  system 
can  be applied in mimicking the  standard morphology of 
Arabic, the  success of the hybrid system  at modeling some 
of the humanly generated irregularities of Arabic is  an 
intriguing aspect of the modeling. 

The  network  performs a  balancing act among the  letters 

Future  directions 
An artificial neural  network could also  be  used  to "trim 
back" results of the  broad  approach, decreasing the 
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dictionary  size  somewhat  and eliminating many unreliable 
names  from being inaccurately vowelized. In  this instance, 
the  network might be  used after the  expert  system 
generates vowelized names and  would weed  out those 
names which are  incorrect  or  otherwise unused. Another 
important  task  would  be  to  automate  the vowelization of 
those  names  which  even  the  broad  approach is  unable to 
vowelize. An artificial neural network, possibly in 
combination with  genetic algorithms  and fuzzy  sets,  may 
prove highly effective  on this  relatively  small (<20%) 
subset of names. 

other dialects of Arabic  or  even  to languages  which use 
the  Arabic alphabet but  are fundamentally  a  different 
language: 

Furthermore,  the  present  work should be  extendable  to 
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Persian The official language of Iran, a country  with 
a population of 60 million. This language  is also  spoken 
in Tadzhikistan (of the Commonwealth of Independent 
States)  and  by  approximately half the population of Iraq. 
Pushto The official language of Afghanistan,  which is 
also  spoken  by millions of people in  Pakistan. 
Kurdish A language spoken  by  several million 
individuals in parts of Eastern  Turkey,  Northern  Iraq, 
and  Western  Iran. 
Urdu A language which is very similar to Hindi  in 
ordinary  conversational use. Urdu is written in a 
modified form of the  Arabic alphabet. Some 200 million 
individuals  in India  speak a variety of Hindi and  Urdu. 

The  extension of the  current  work  to  these  other languages 
would similarly  involve the combined use of knowledge- 
based  systems  and  neural  networks  to  capture  the  rules of 
vowelization and  exceptions  to rules. 

It  would  also  be possible to  apply  the  work  to matching 
the  names  generated  by this  method to  the list of names  on 
a “stop list.” Given an  Arabic  name  written in  Arabic, our 
method  would automatically  vowelize  it and  generate all of 
its romanized versions. Most official documents in Arabic 
(such as  passports)  contain  the name of the individual in 

2. Develop membership functions  for adjacent letters  (two 
at a time)-a matrix showing how  letters  are similar to 
one  another  or  to  each  other. 

3. Evaluate  the  match  by computing the combined 

4. The match with  the highest value  is  the  best  match  to 
membership function value. 

the  stop list. If this value is less  than a threshold  value, 
no match is made. 

A fuzzy  measure of the similarity between  the two 
names  “Abdel”  and “Abdul,” computed  by summing 
the similarities of corresponding  letters,  results in a 
membership of 0.84 [(1.0 + 1.0 + 1.0 + 0.2 + 1.0)/5]. 
This membership value  represents similarities between 
letters. For example, “E” and “0” have a degree of 
similarity of 0.2. 

The membership  function can  be  developed  by  phonetic 
similarities between  various  letters.  Hence,  the  letter  “A” 
has a membership value of 1.0 in the membership  function 
for  “A”; but  the  letter “E” has, perhaps, a 0.5 value in 
the membership  function for  the  letter “A.” These 
functions could also  be  developed  by similarities between 
sound  wave profiles. Neural  networks  can play a role in 
the evaluation of similarities between  the two names. 

Arabic. This name  could be  scanned  by OCR and read into 
the transliteration  package. The matching process could be 
carried  out  by  any of the  primary  current methods: 
Soundex*  digraphs  and  “fuzzy”  search. 

The  important  feature of this  approach would be  the 
dropping of the  requirement  for a pre-existing database. 
The romanized variations of the  Arabic name  would be 
generated  on line and  matched against the  “stop list” on a 
real-time  basis. To implement the  approach,  the romanized 
names would have  to  be  extended  to include  English, 
French, Italian, Spanish,  and  German variations. Non- 
standard  Arabic  names (Islamic names, foreign Arabic 
names, and  corrupted  Arabic  names) could also  be 
included. 

Another  approach  to solving these  problems could be 
the  use of the  fuzzy  match method. This  method is not 
what is commonly known as  “fuzzy search”-an 
imprecise use of the  term “fuzzy.” As used in “fuzzy 
sets,”  the  term normally  refers to  the mathematical 
procedure  described in [13]. We believe the  fuzzy  set 
method applies to  this problem.  Following is the germ of 
an idea  which may  prove useful in making better matches: 

1. Develop a membership function for  each  letter of the 
alphabet; a matrix showing  how each  letter  is similar to 
another  letter could be developed. 

*Soundex, developed by R. C. Russel in 1918, uses phonetic equivalence to 
establish name similarity (only surnames are used). Only consonants are used 
(excluding H, W, and Y), and each name is encoded with just four characters 

192 (a letter and three numeric characters). 

Concluding  remarks 
The  automated  approach  to  name transliteration has 
rapidly become viable;  it can perform  much of the  task 
with high accuracy  and  speed, outperforming its manual 
counterpart.  However,  some  names still cannot  be 
transliterated without manual  intervention. Further  study 
would be required to  reduce  the  size of this  set  without 
producing too  many  extraneous vowelizations. 
Nevertheless,  the  study  described  here  shows  that 
automated transliteration  is  real and effective, given the 
appropriate  tools  and models. 
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