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An Arabic name can be written in English with
many different spellings. For example, the
name Sulayman is written only one way in
Arabic. In English, this name is written in

as many as forty different ways, such as
Salayman, Seleiman, Solomon, Suleiman, and
Sylayman. Currently, Arabic linguists manually
transliterate these names—a slow, laborious,
error-prone, and time-consuming process. We
present a hybrid algorithm which automates
this process in real time using neural networks
and a knowledge-based system to vowelize
Arabic. A supervised neural network filters out
unreliable names, passing the reliable names
on to the knowledge-based system for
romanization. This approach, developed at the
IBM Federal Systems Company, is applicable
to a wide variety of purposes, including visa
processing and document processing by
border patrols.

Introduction

Transliteration is the process of formulating a
representation of words in one language using the alphabet
of another language. For example, words written in
Arabic, Cyrillic, or Chinese can be rewritten using the
Roman alphabet (a transliteration process known as
romanization). The transliteration process depends on the
target language (e.g., English, French, Spanish) and on the
education and experience of the actual transliterator.
Thus, a single foreign word can have many different
transliterations.

Further variations may occur in the transliteration of
proper names, since the owners of those names may take
certain liberties with both the pronunciation and spelling
of their names, for either aesthetic or devious reasons.
The transliteration of personal names therefore poses an
interesting challenge. Automated solutions to such a
problem could be useful in several areas, including tourism
and security (e.g., border control).

We focus on the process of transliterating Arabic
personal names to the Roman alphabet, though the
techniques described here should be applicable to other
languages (both input and output). Aside from the
problems cited above that are inherent in transliteration,
the transliteration of Arabic (and other, primarily Semitic,
languages) poses an additional challenge: Words are
written without ““short” vowels. As a result, the
transliteration process includes a step called
““vowelization,” in which the appropriate short vowels
are inserted into the ““unvowelized™ input name.

The process of Arabic name transliteration is illustrated
in Figure 1. The first step is to enter the names into a
database. Currently, we obtain these names from the
telephone book of a major Middle Eastern city (Damascus,
Syria). We then vowelize these names (the primary focus
of this paper), since by convention names are published
in the telephone book without short vowels, as is most
Arabic text. Once the names are vowelized, they are
converted into a phonetic representation. This
representation is used to produce the equivalent muitiple
Roman spellings.

Various techniques have been used to automate different
parts of the transliteration process, including the use of
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optical character recognition (OCR) for data entry (there is
an Arabic OCR package available from IBM’s Cairo
Scientific Center), and the use of other tools for the
generation of phonemes and alternative Roman spellings,
as indicated in the figure. While vowelization is probably
the most complicated part of the process, little has been
done to automate it.

The complexity of the vowelization process is
undoubtedly a major factor contributing to the lack of
research in this area. It is also, however, a compelling
motivation for finding an automated solution. The
existing method of vowelization is costly and error-prone.
A single Arabic name may be vowelized in several ways
linguistically, but not every vowelization is necessarily
used in the Arabic language. To select the correct
vowelizations for a set of Arabic names is therefore a
tedious job; the task can be further complicated by data
entry errors made when the names are originally keyed
into the computer. Thus, high error rates are inherent in
the transliteration process when it is performed by
humans. Detecting and correcting such errors is also
labor-intensive.

Another problem with manual vowelization arises from
the inconsistent application of heuristics by the Arabic
linguist (Arabist). The Arabist who is charged with the task
of vowelizing names may not follow a consistent set of
rules, and may instead rely on intuition, past experience,
and other less scientific knowledge sources. Furthermore,
the results of vowelization may vary from one Arabist to
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another. Because the solution to the vowelization problem
is not easily specified, the problem does not lend itself well
to traditional methods of computer automation.

The specific problem addressed by this research is the
automatic vowelization of Arabic names in ways that are
consistent with Arabic morpho-phonology and actual
usage.

Some existing commercial packages perform exhaustive
vowelization (e.g., [1]). Reference [2] describes a system
that performs rule-based vowelization of Arabic natural
language words based on a database of Arabic lexemes
(a ““computational Arabic lexicon”). Our broad approach
to vowelization is another form of exhaustive, rule-based
vowelization, but it vowelizes a wide variety of names
rather than words. In addition, we do not depend on a
large database, thus reducing the storage requirements.
Unfortunately, many Arabic names are not Modern
Standard Arabic—they may be neologisms, corrupted
Arabic or foreign. Our narrow approach uses a
combination of expert systems and neural networks to
achieve a good combination of coverage and accuracy,
vowelizing only those names which can reliably be
vowelized. The expert system uses a rule-based
methodology for generating the vowelizations, while the
neural network filters out those words which the expert
system should not vowelize according to the rules of
Modern Standard Arabic.

Computer-automated transliteration

The generation of Roman transliteration of Arabic names
is accomplished in several stages. The names must first
be entered into a database (in Arabic), then vowelized,
since Roman text requires vowels. After vowelization,
each name must then be given a phonetic, Roman
representation as a base from which the multiple Roman
spellings are produced. A detailed discussion of the
process can be found in [3].

® Creation of Arabic name database (Arabic OCR)

The first step in Arabic-Roman transliteration is to enter
the names into a database. This can be done manually

by keypunch operators; however, it would be far more
efficient in terms of time and physical resources for an
optical character reader (OCR) to read in the names.
Currently, we take these names from the telephone book
of a large Middle Eastern city (e.g., Damascus, Syria), a
method which is extremely conducive to OCR exploitation.
However, reading Arabic characters is analogous to
reading cursive Roman text, a difficult problem for OCR
[4]. Some Arabic OCR programs (e.g., the IBM Cairo
Scientific Center’s) exist, and we expect to use them in the
future. There is also ongoing research in this field [S]. The
Arabic names we are now using are entered by human
keypunch operators.
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o Vowelization of Arabic

Arabic can be a difficult language to process for various
reasons, one of which is that it is normally written without
short vowels. This may seem an odd convention to an
American or European audience, but is is very common

in Semitic languages. When the target languages of the
transliteration are European in origin (Germanic or
Romance), and thus require short vowels, we must
reintroduce short vowels into these Arabic names. In
Arabic, the short vowels are ““a,”” ““i,”” and ““u.”” Long
vowels (‘““aah,” “‘ee,” “00”’) are always written in Arabic,
so they need not be added during vowelization.

o Transliteration and Roman name generation
Once we have the vowelizations in Modern Standard
Arabic, the vowelized names can easily be converted
into a standard, phonetic Roman representation. This
can be done with a simple parser or table. This Roman
representation is broken down into a group of syllables.
The syllabified phonetic representations are then used,
through tables and syllable variation, to produce various
spellings in English, French, Spanish, and other languages
which use Roman alphabets. For example, “‘Sharif”” in
English might be ‘“Cherife” in French.

Technical approach

Our approach is to use a hybrid application comprising

a knowledge-based system (KBS) and artificial neural
networks. The KBS approach is a good candidate for

this problem because it allows the linguistic rules of
vowelization to be codified simply in declarative form.
Artificial neural networks (ANNs) provide the capability to
develop and use statistical heuristics which are not known
and/or cannot be represented as declarative rules. All of
the neural networks we discuss are artificial. Both KBS
and ANN methods are described further in the sections on
knowledge-based systems and artificial neural networks.

The KBS is constructed of linguistic vowelization rules
which can be applied to a large class of unvowelized
Arabic names. This class of ‘“‘conforming” names follows
strict rules of vowelization which are based on the number
and structure of the root radicals and their relative
positions with respect to other consonants and long
vowels.

An artificial neural network is used to filter from the
input those names which otherwise would be vowelized
inappropriately by the KBS (examples are discussed later).
Such names are defined as “‘unreliable” because, while
they appear to be ““conforming,”” they do not typically
result in valid Arabic words (i.e., words which are actually
in use) when they are vowelized.

Figure 2 depicts vowelization using our hybrid
knowledge-based and artificial neural network system.
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¢ Knowledge-based systems

Knowledge-based systems (KBSs) are an alternative means
for designing and implementing software applications.
While conventional programs are specified as procedures
containing sequences of instructions which operate on
data, KBS applications are declarative in nature; that is, a
KBS is specified in terms of what data transformations
must take place rather than how (step-by-step) to
transform data. In addition, a KBS separates the

domain knowledge from the general knowledge.

The most common KBS representation scheme is the
IF-THEN rule; programs which consist of data and rules
for operating on the data are typically described as rule-
based programs. Often, the rules in a particular KBS are
modeled after the heuristics used by experts who perform
the task for which the KBS is built; for this reason,
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knowledge-based systems are also often called “expert
systems.”

The emphasis of a KBS is on encoding the “knowledge”
required to solve a specific problem, whether the
knowledge be expert or not. This encoding typically takes
the form of a rule-based program, but implementation is
not restricted to rule-based languages—many KBS
applications have been developed with third-generation
languages such as PASCAL and C.

Regardless of the implementation language, the KBS
methodology allows the programmer to specify a solution
at a very high level of abstraction. This is possible because
the knowledge for solving the problem (usually specified as
rules) is separated from the control logic which carries out
low-level processing that is not specific to the problem.
The domain knowledge is often called the ‘‘knowledge
base” (KB), while the component which performs the low-
level processing and thus contains general problem-solving
knowledge is the ““inference engine”” [6].

The inference engine is a generic component which
controls sequencing and looping and provides a variety of
other built-in functions such as pattern matching (i.e., the
matching of program variables to actual data items). The
inference engine is usually obtained as part of a KBS
building tool such as CLIPS, and the rules are specified by
the user, in a language appropriate to the tool (most tools
have their own languages).

Some of the most common applications of knowledge-
based systems are in the areas of diagnosis, planning,
monitoring, and control.

® Artificial neural networks

While knowledge-based systems provide a mechanism

for representing declarative knowledge, artificial neural
networks provide a mechanism for representing empirical
knowledge. Although statistical models provide the same
basic functionality as artificial neural networks (encoding
empirical knowledge), artificial neural networks provide
the additional ability to learn or be trained. In this context,
learning is the process by which patterns (or relationships)
are discovered. This discovery process produces an
approximation of a function that maps the network input to
output. When use is made of a trained network, the same
or similar input data will evoke the same outputs, so

the network becomes a deterministic collection of
mathematical formulas.

An artificial neural network is implemented as a network
of interconnected nodes. This architecture is patterned
after the brain, and each node represents a single neuron;
this is the basis of the designation ‘‘artificial neural
network.”” Nodes are organized into two or more layers,
with an input layer at the bottom and an output layer at
the top. Weighted connections provide the means of
communication between nodes; when one node ““fires”
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(has an input signal at or above a certain threshold), it can
activate other nodes to which it is connected. The actual
topology of the network (number of nodes, number of
layers, weights of connections) is determined by the
problem being addressed.

Artificial neural network applications are data-driven and
are best used to solve problems which are not easily
specified algorithmically or declaratively. Popular uses for
artificial neural networks in applications include pattern
recognition (e.g., in image analysis or credit-card fraud
detection) and classification.

® Hybrids
Expert systems and neural networks integrate in varying
degrees [7, 8]

e Transformational A neural network discovers a set
of functions, features, or general rules which are then
recoded into facts and rules in a knowledge base.

e Loosely coupled Examples of such systems are
the following:

« A system in which a neural network provides inputs
to an expert system.

. A system in which an expert system preprocesses
data for use by a neural network.

« A blackboard system in which neural nets and
expert systems are among the knowledge sources.

« A system in which neural nets and expert systems
pass data back and forth to one another,
cooperatively solving a problem.

o Tightly integrated Examples of such a system
include a neural network embedded within the
inference engine or other key routine within the rule-
based system, or expert systems used as activation
functions or filters within a neural network.

Our solution to the vowelization problem contains a
neural net which accepts data from a KBS and then passes
analysis back to the KBS. Such a system would be
described as “loosely coupled’” on the basis of our
described taxonomy.

® CLIPS

An efficient way to implement an expert system is with the
use of a “shell.” An expert system shell provides a means
by which rules can be specified, an inference engine to
interpret (or “‘execute”) the rules, and various control
mechanisms and utility functions. We chose to use the
off-the-shelf expert system shell CLIPS (C Language
Integrated Production System). The system was developed
by the Software Technology Branch, NASA/Lyndon B.
Johnson Space Center, and is available from COSMIC [9].
It is designed to facilitate the development of software to
model human knowledge or expertise. CLIPS provides
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three knowledge representations: rules, functions, and
objects. It has also been designed for full integration with
other languages such as C and Ada.

CLIPS knowledge bases can be run in either interpretive
mode or compiled mode. The CLIPS interpreter can be
used as a stand-alone application (i.e., invoked by the user
from the command line), or it can be embedded in another
application. The CLIPS code generator makes it possible
to run knowledge bases in compiled mode by compiling the
CLIPS knowledge representation language into C code
which can then be compiled and linked with a driver
program for stand-alone operation, or with another
application for embedded operation.

o System description

The system can be divided into four parts: main program,
knowledge base (KB) interpreter, knowledge base, and a

set of utility routines (which includes the artificial neural

network).

The main program and utility functions are written in C
language, and are compiled and then linked with CLIPS
interpreter object files to form one embedded CLIPS
application.

The knowledge base is written in CLIPS and consists of
two files loaded at run time by the main program and later
jointly interpreted by CLIPS as one knowledge base.

The main program performs the following initializations
for the utility functions:

o Initialize the composite name lookup table.
o Initialize the saturated name detector.

o Initialize the suffix lookup table.
 Initialize the artificial neural network.

(The saturated name detector and the artificial neural
network are described in detail in the sections which
follow.)

The main program then calls the following CLIPS
application programming interfaces (APIs) to execute the
embedded CLIPS expert system:

o Initialize CLIPS.

¢ Load knowledge base files.

¢ Reset CLIPS to prepare for running.

o Run CLIPS (the inference engine executes the
knowledge base rules).

The CLIPS product comes with the source code used to
build the product. Availability of the source code makes
the product portable, embeddable, and customizable. To
embed the CLIPS interpreter into an application, it is only
necessary to compile the CLIPS source code (except for
the “main” routine) and link the resulting object code
with the application. CLIPS provides several APIs for
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communication outside the CLIPS interpreter; thus,
another program is able to start (load), run, and share
information with, CLIPS knowledge bases.

® Knowledge base

The knowledge base (KB) is implemented in the CLIPS
knowledge representation language. CLIPS itself supplies
the inference engine. The KB consists of rules and data
(““facts”); rules typically consist of two parts: a left-hand
side (LHS) and a right-hand side (RHS). The LHS is the
condition of the rule (the ““if”” part), and the RHS is the
action of the rule (the “then” part). The LHS can contain
multiple conditions combined into a single condition by the
logical operators ““and,” “‘or,”” and ““not”’; conditions are
specified as patterns to which facts must be matched.
When facts are matched to the LHS of a rule, they are
said to be ““bound” to the LHS of the rule.

Each rule in the knowledge base has a priority (or
““salience”). Priorities are discriminators (not necessarily
unique) that determine which rule to execute (““fire’’) when
the condition (LHS) of more than one rule is satisfied
(i-e., true). Thus, priority gives us a means of enforcing
the order of event occurrences under the nonsequential
paradigm of computation that is inherent in rule-based
systems.

All of the vowelization rules (rules which actually
generate vowelized names) have the default priority of 0.
Control rules generally have priorities either higher or
lower than the default. Rules with priorities lower than 0
tend to act more like default or postprocessing rules.
Those with higher priorities usually play the role of
preprocessors; i.€., they are responsible for the things
that must be done before the actual vowelization.

Functional description of KBS
The KB system (KBS) interactively accepts an
unvowelized name as input and generates all possible
vowelizations for that name if it is a conforming Arabic
name. The vowelizations are represented in ASCII
according to our own character transcription scheme,
in which each Arabic letter is paired with one ASCII
character.

The KBS carries out several operations on the input
name before the actual vowelization takes place:

¢ First, the KBS examines the composite name table,
which contains religious names that contain the prefixed
article ““al”” and are commonly used by Arabs. If the
input name matches any of the names therein, the
vowelized strings pre-stored with the name in the table
are output, and the KBS proceeds to the next input.

¢ Next, the KBS makes sure that the input string is not
corrupt, as in the case of corrupted data. For example,
the letter ““taa’ marbuuTa’> (denoted by “@’” in our
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scheme) should never occur in a non-final position in a
word. When the KBS finds a ““taa” marbuuTa” in a non-
final position in the input name, it rejects the name as
inappropriate data and proceeds to the next input.

o Finally, the KBS checks whether there is any possible
suffix in the input name. If there is, the KBS creates, for
every possible suffix, a separate object to represent this
fact, i.e., that the name is possibly composed of a
particular stem and a particular suffix. Thus, when the
KBS gets to the actual vowelization, the vowelization
process is performed for all of the possible stem/suffix
combinations enumerated.

After the KBS has performed these three steps (table
lookup, data filtering, and suffix enumeration), it is ready
to insert short vowels for those stems and suffixes with its
vowelization rules. Each vowelization rule produces a
vowelized name as output by adding one or more short
vowels to the unvowelized name (stem and suffix),
according to linguistic rules. There is one rule which is an
exception to this paradigm, however; this rule outputs the
name without adding any short vowels if the name is
“‘saturated.”

A name is saturated if short vowels are not required for
it to be pronounced correctly as an Arabic name, where
correctness is defined in terms of the preservation of
Arabic syllable structures. Such a name does not require
vowelization, and so is output ““as is,”” but it is also
further processed by other vowelization rules because,
although it is not necessary to vowelize such a name, it is
possible to do so. A saturated name is stiil open for
vowelization for several reasons: 1) the Arabic syllable
structures allow for a certain degree of ambiguity; 2) two
of the three long vowels can also be consonants or semi-
vowels (‘““‘waaw’” and ‘‘yaa’ ’*); and 3) the other long
vowel (““ ’alif”’) sometimes really stands for a consonant
(““ ’alif hamza™’).

Broad versus narrow

The KB described above works well if our objective is to
produce as many transliterations as possible for a given
unvowelized name written in Arabic script. We place as
many morphologically sound configurations as possible
into the LHSs of the vowelization rules of that KB and
generate for a particular configuration all the possible
vowelizations that are morphologically sound. We
designate this approach as the broad approach, the
described KB as the broad KB, and the associated KBS
as the broad KBS.

The broad approach serves well the exhaustive nature
of the described objective; however, it presents some
problems. First, there are still names which are Arabic
but cannot be vowelized by the broad KBS. These
nonconforming names cannot be treated with a rule-based
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approach, but other techniques for solving this problem are
discussed in the section on future directions.

Another problem results from the existence of foreign
(i.e., non-Arabic) names which are erroneously treated by
the broad KBS as Arabic (because they appear to be
conforming) and thus are vowelized incorrectly. This
problem is also addressed in the section on future
directions.

Finally, even among all the morphologically sound
vowelizations that are generated by the broad KBS for a
genuinely conforming Arabic name, some may not actually
exist in the language. In other words, not all the nouns
that are morphologically sound and possible are in
actual use. This could be a significant problem in the
transliteration of a large file of Arabic names and the
associated storage of the romanizations in a database.
Obviously, the broad approach would require a relatively
large amount of storage space and hence a long search
time for database retrievals.

Thus, we see that the broad KBS achieves the goal
of completeness as well as possible, but at the cost of
validity. The solution to this problem is therefore to
restrict the KB so that the system generates fewer
vowelizations for fewer names but yields a higher rate
of accuracy.

The first restriction to impose is on the rules in the KB.
By removing those rules with such LHS configurations
that are known to produce many unused vowelizations,
and removing from other rules RHS actions which
generate vowelizations that are rarely actual words, we
can achieve—on average-——more valid output. The KB is
now “‘narrower’’ than before.

Even with the described restriction, however, the KB is
still not narrow enough. There are still some names which
appear to be conforming (that is, they match the LHS
of one or more of the vowelization rules) but which
actually yield a significant number of invalid names when
vowelized by the rules. Such names generally fall into two
categories: those that are ““foreign’” to Arabic and those
that are not vowelized according to the same linguistic
rules as are represented by the KB rules. We describe
these names as ““unreliable.”” These names match the LHS
name configurations, but a majority of the vowelizations
produced by the rules are not in actual use.

Since we cannot find any heuristics for determining
which unvowelized Arabic names are unreliable, we
cannot use the knowledge-based approach to solve this
problem. The answer to providing a more optimal overall
solution therefore lies in supplementing the rules with
an empirical approach. In other words, instead of
algorithmically determining which names are unreliable,
we might attempt to identify unreliable names on the
basis of experience.
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We could simulate the experience of recognizing an
unreliable name by using the KBS described thus far to
vowelize a large set of Arabic names, and then allowing an
Arabist to classify the output from the KBS as “‘valid”’
(known to be in use) or ““invalid.”” Extensive analysis of
those unvowelized names which result in mostly invalid
vowelizations might reveal subtle patterns which could
subsequently be used by the system to avoid similar
invalid output.

In practice, however, analysis of this sort is beyond
human capability; furthermore, even if patterns could be
identified, they would probably be very complex and
difficult to represent using a knowledge-based approach.
This kind of data-driven solution is an ideal application for
the use of an artificial neural network. Accordingly, we
add an artificial neural network to the described KBS to
identify and filter out those unvowelized Arabic names
which are unreliable. We designate the resulting KBS, with
its own additional restrictions and its use of the artificial
neural network, the narrow KBS.

Figure 3 shows how the narrow and broad methods
interrelate, and their coverage of names.

& Artificial neural network

As previously discussed, we use an artificial neural
network in the narrow approach to eliminate those names
which cannot be properly vowelized using the expert
system. The network was trained using the cascade-
correlation method [10], a supervised, feedforward [11]
neural processing algorithm.

The artificial neural network accepts names with up to
seven letters. Each letter of the name is represented by 35
input nodes corresponding to the 35 different letters of the
Arabic alphabet which are supported by the network.
Thus, there are 245 inputs (35 X 7) to the network, and
only one output (see Figure 4).

The output of the network is binary; if the output node
fires (with a threshold of 0.5), the name is declared reliable
and the expert system vowelizes it. Otherwise, the name is
regarded as unreliable and is set aside to be vowelized in
some other way (either manually or, in the future, by
means of some other type of automation).

The artificial neural network protects against the
inaccurate vowelization of some names by the expert
system, but a few still slip through. Also, the network
occasionally filters out names that could be reliably
vowelized by the expert system. On the other hand, the
network accurately classifies the vast majority of names
(see Table 1).

The artificial neural network was trained on roughly
2800 Arabic names and tested on another 1350. The names
were a representative sample from the telephone book for
Damascus, Syria, that also conformed to the narrow KBS.
The cascade-correlation network that performed best
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Architecture of the artificial neural network used in this work.

had only 491 connections, so the network was not
““memorizing” the training set but actually created its own
heuristic for predicting the right classes. This heuristic is
primarily statistical, weighting the connections primarily on
the basis of the frequency with which a particular letter
in a particular position in the network is a member of a
reliable name in the training set. Given the excellent
generalization of the network, this heuristic appeared to be
an effective one.

In the broad approach, 5069 (79%) of the 6415 sample
Arabic names conformed to the Arabic name structure and
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were therefore vowelized; the rest were nonconforming.
Table 1 indicates that the narrow approach, in which
45.6% of the names were deemed reliable and thus
vowelized, generates fewer inappropriate or extraneous
vowelizations. It also shows that the neural net does an
excellent job of filtering those names which the narrow KB
should not vowelize.

By comparison, human experts had error rates of about
10% on similar samples before a laborious editing process
reduced the errors to approximately 3-5%.

Discussion
The narrow approach vowelizes over 45% of the names
presented to it, with a very low rate of generating
inappropriate vowelizations. The broad approach covers
closer to 80% of the names, but generates a much higher
percentage of extrancous vowelizations. In both cases,
we dramatically reduce the labor and time expenditure
for vowelization and provide consistent patterns of
transliteration (as opposed to the inherent inconsistency
of human control). In addition, we greatly reduce the pre-
edited error rate, particularly with the narrow approach.
The strength of the narrow approach is in its low rate of
erroneous vowelizations. We have found that it performs
exceptionally well at reducing the dictionary size
(providing potential vast improvement in search
performance), and produces fewer errors than human
experts. However, many names cannot be vowelized using
this approach. The broad approach vowelizes a much
higher percentage of the names, but tends to generate
many vowelizations that are not in use. On the other hand,
both systems are orders of magnitude faster than human
experts, who can only vowelize a handful of names in the
time it takes for the computer-automated transliterator to
generate thousands of vowelized, transliterated names.
For the narrow approach, the artificial neural network
plays a crucial role in filtering unreliable names from the
expert system. Figure 5 shows how the network filters the
foreign (probably Farsi, or Persian) name “‘Afghany.”
Note how the hidden node is the key to driving the output
to 0. When the hidden node fires, it produces a strong,
negative influence on the output node (weight of —6.0).
The weights to the output are a strong negative one
from the first character (alif), and weak positive weights
from the other inputs, which would normally produce a
borderline result. However, the hidden node is driven hard
by the presence of a faa’ and ghayn in the second and
third positions. The neural net has apparently determined
that Arabic names do not normally contain this sequence
of letters. In a standard feedforward neural network [11],
the output of a hidden node is equal to the sum of its
inputs (x;) plus a trained bias (equivalent to a threshold).

Table 1 Narrow approach: accuracy and vowelization rates.

Vowelized Filtered
Correct Incorrect Total Correct Incorrect Total
Number 2836 90 2926 3432 57 3489
Percent 96.9 31 45.6 98.4 1.6 54.4
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From this, we obtain the following formula, which shows
the output of the hidden node (bias B = 1.4):

245

B+ X x=14-86+096+10.2

i=1
- 43 -44+04=43.

Thus, the output of the hidden node O, = 1/(1 + e *?) =
0.98. This name has only six letters, so none of the 35 bits
for the seventh input is on. For each of the six letters that
do exist, one of the 35 bits in the network is on and the
other 34 are off.

The output node has a bias of 0.6; the summed weights
add to 2.1. However, the weight from the hidden node is
—6.0, so the input from that node is —5.9; when this is
added to the other input weights and bias for the output
node, the activation is actually —3.8. The output of the
network is 1/(1 + e**) = 0.022, much lower than the
threshold of 0.5 necessary to accept the name.

Figure 6 shows a name that is accepted, ‘‘Qaddafi.”
Note that the final (fifth) letter is a long vowel. The hidden
node activation is —34.1, so the output, 1/(1 + **"), is
virtually zero. Thus, the activation of the output node is
just the sum of the weights from the input node plus the
bias; the activation is thus 3.2 and the output 0.96, well
above our threshold for vowelization of the name. Note
that the presence of qaaf and daal in the first two positions
strongly suppresses the hidden node, while the presence of
’alif and faa” and yaa’ combines with the bias to override
the qaaf and daal at the output layer.

The network performs a balancing act among the letters
(and their positions), especially those most likely to
indicate whether the name in question is reliable. We see
in the above examples how certain inputs can strongly
inhibit the hidden node from activating (or strongly
activate the node). An area for additional investigation is
in determining some of the overall statistical probabilities
of combinations of Arabic letters (see [12] for some early
work in this area).

We believe that the data set used to train the network
is large enough and reasonably representative of a typical
collection of Arabic names; hence, we feel confident that
it will provide similar results on other test data sets in
addition to the one we used.

While it is certainly no surprise that an expert system
can be applied in mimicking the standard morphology of
Arabic, the success of the hybrid system at modeling some
of the humanly generated irregularities of Arabic is an
intriguing aspect of the modeling.

Future directions
An artificial neural network could also be used to ““trim
back” results of the broad approach, decreasing the
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dictionary size somewhat and eliminating many unreliable
names from being inaccurately vowelized. In this instance,
the network might be used after the expert system
generates vowelized names and would weed out those
names which are incorrect or otherwise unused. Another
important task would be to automate the vowelization of
those names which even the broad approach is unable to
vowelize. An artificial neural network, possibly in
combination with genetic algorithms and fuzzy sets, may
prove highly effective on this relatively small (<20%)
subset of names.

Furthermore, the present work should be extendable to
other dialects of Arabic or even to languages which use
the Arabic alphabet but are fundamentally a different
language:
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& Persian The official language of Iran, a country with
a population of 60 million. This language is also spoken
in Tadzhikistan (of the Commonwealth of Independent
States) and by approximately half the population of Iraq.

& Pashto The official language of Afghanistan, which is
also spoken by millions of people in Pakistan.

& Kurdish A language spoken by several million
individuals in parts of Eastern Turkey, Northern Iraq,
and Western Iran.

& Urdu A language which is very similar to Hindi in
ordinary conversational use. Urdu is written in a
modified form of the Arabic alphabet. Some 200 million
individuals in India speak a variety of Hindi and Urdu.

The extension of the cutrent work to these other languages
would similarly involve the combined use of knowledge-
based systems and neural networks to capture the rules of
vowelization and exceptions to rules.

It would also be possible to apply the work to matching
the names generated by this method to the list of names on
a ““stop list.”” Given an Arabic name written in Arabic, our
method would automatically vowelize it and generate all of
its romanized versions. Most official documents in Arabic
(such as passports) contain the name of the individual in
Arabic. This name could be scanned by OCR and read into
the transliteration package. The matching process could be
carried out by any of the primary current methods:
Soundex* digraphs and ““fuzzy’” search.

The important feature of this approach would be the
dropping of the requirement for a pre-existing database.
The romanized variations of the Arabic name would be
generated on line and matched against the ““stop list> on a
real-time basis. To implement the approach, the romanized
names would have to be extended to include English,
French, Italian, Spanish, and German variations. Non-
standard Arabic names (Islamic names, foreign Arabic
names, and corrupted Arabic names) could also be
included.

Another approach to solving these problems could be
the use of the fuzzy match method. This method is not
what is commonly known as ‘‘fuzzy search”-—an
imprecise use of the term ““fuzzy.” As used in ““fuzzy
sets,” the term normally refers to the mathematical
procedure described in [13]. We believe the fuzzy set
method applies to this problem. Following is the germ of
an idea which may prove useful in making better matches:

1. Develop a membership function for each letter of the
alphabet; a matrix showing how each letter is similar to
another letter could be developed.

*Soundex, developed by R. C. Russel in 1918, uses phonetic equivalence to
establish name similarity (only surnames are used). Only consonants are used
(excluding H, W, and Y), and each name is encoded with just four characters
(a letter and three numeric characters).
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2. Develop membership functions for adjacent letters (two
at a time)—a matrix showing how letters are similar to
one another or to each other.

3. Evaluate the match by computing the combined
membership function value.

4. The match with the highest value is the best match to
the stop list. If this value is less than a threshold value,
no match is made.

A fuzzy measure of the similarity between the two
names ‘““Abdel”” and ‘“‘Abdul,” computed by summing
the similarities of corresponding letters, results in a
membership of 0.84 [(1.0 + 1.0 + 1.0 + 0.2 + 1.0)/5].
This membership value represents similarities between
letters. For example, ““E”” and ““O”’ have a degtree of
similarity of 0.2.

The membership function can be developed by phonetic
similarities between various letters. Hence, the letter “A”
has a membership value of 1.0 in the membership function
for “A’’; but the letter “‘E’* has, perhaps, a 0.5 value in
the membership function for the letter ““A.” These
functions could also be developed by similarities between
sound wave profiles. Neural networks can play a role in
the evaluation of similarities between the two names.

Concluding remarks

The automated approach to name transliteration has
rapidly become viable; it can perform much of the task
with high accuracy and speed, outperforming its manual
counterpart. However, some names still cannot be
transliterated without manual intervention. Further study
would be required to reduce the size of this set without
producing too many extraneous vowelizations.
Nevertheless, the study described here shows that
automated transliteration is real and effective, given the
appropriate tools and models.
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