The four-
parameter
kappa
distribution

by J. R. M. Hosking

Many common probability distributions,
including some that have attracted recent
interest for flood-frequency analysis, may be
regarded as special cases of a four-parameter
distribution that generalizes the three-parameter
kappa distribution of P. W. Mielke. This four-
parameter kappa distribution can be fitted to
experimental data or used as a source of
artificial data in simulation studies. This paper
describes some of the properties of the four-
parameter kappa distribution, and gives an
example in which it is applied to modeling the
distribution of annual maximum precipitation
data.

Introduction
The transformation

ifk =0,

ifk =0,

&+ a(l — e ™™k,
= 0y

£+ ay,

where X and Y are real-valued random variables and

¢, a, and k are real-valued parameters, underlies several
distributions recently used in flood-frequency analysis.
If Y has an exponential distribution, with cumulative
distribution function

Fy)=1-¢e7, y=z0, (2)

then X has a three-parameter generalized Pareto
distribution, used in [1]. A two-parameter form of the
distribution, lacking the location parameter £, has also
been used in [2] and [3]. If Y has a Gumbel (extreme-value
type I) distribution, with cumulative distribution function

F(y) = exp(-e™), €)

then X has a generalized extreme-value (GEV) distribution,
used in [4-6]. If Y has a logistic distribution, with
cumulative distribution function

F(y) = @

1+e”’
then X has what, following [7], we call a generalized
logistic distribution. It is a convenient reparameterization
of the log-logistic distribution used in [8].

The functions (2)-(4) may be regarded as special cases
fork =1,h =0, and h = —1, respectively, of the

cumulative distribution function
A - he)", ifh =0,

ifh =0.

fory = log h,

F(y) = ©)

exp(-e”),
Thus, we can define a four-parameter distribution that
includes the generalized Pareto, GEV, and generalized
logistic distributions as special cases. It is the distribution
of a random variable X that is obtained by applying the
transformation (1) to a random variable Y distributed as in
(5). We call this the four-parameter kappa distribution,
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because, as explained below, it can be regarded as a
generalization of the three-parameter kappa distribution
used in [9]. The cumulative distribution function of the
four-parameter kappa distribution is

{1 - A1 - k(x — &/a]®¥*  ifk=0,h=0,

exp{~[1 — k(x — &)lal™}, ifk =0,k =0,
F(x) = vk .
{1 -hexp[-(x - &al}”, {k=0,h=0,
exp{—exp[—(x — &)/al}, ifk=0,h=0.
(6)

The four-parameter kappa distribution has several useful
features. As a generalization of the generalized logistic,
generalized extreme-value, and generalized Pareto
distributions, it is a candidate for being fitted to data when
these three-parameter distributions give an inadequate fit,
or when the experimenter does not want to be committed
to the use of a particular three-parameter distribution. It
can also be used in robustness studies, to check the extent
to which a statistical procedure remains valid when its
distributional assumptions are not valid. In this spirit,
Hosking and Wallis [10] used the four-parameter kappa
distribution to generate artificial data for assessing the
goodness of fit of different distributions.

In a particular application, the s parameter of the four-
parameter kappa distribution can be given a physical
interpretation, as follows. Suppose that environmental
events (e.g., storms and floods) with magnitudes
Z,Z, -, Z, occur in a year, with the number of events
N itself being a random variable. This is a common model
specification in ‘‘peak-over-threshold”” or ““partial-duration
series” modeling of environmental events [11, 12].
Suppose that each event magnitude Z; has a generalized
Pareto distribution, with cumulative distribution
function

P{Z,<z]=Fz) =1 -[1 - Kz - £)a*]'™

(We use £* and a* here to differentiate these parameters
from the ¢ and « of the four-parameter kappa distribution.)
Suppose also that the magnitudes of different events are
statistically independent and that N, the number of events
in a year, has a binomial distribution, with parameters n
and p, defined by

n .
P[N=]] = (})pl(l _P)n_J,j = 0: 1’ e, n,

0<p<l.

Then, the year’s largest event has a distribution with
cumulative distribution function given by
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Plmax(Z,:+-,Z)<z]=P[Z <z,i=1,,N]

=2P[N=j]P[ZiSz,i=1’...,j]

j=0

=2 ( j )p’(l - p)" [F2))

j=0
={1 - pll - F,(a)]"

={1 ~ p[1 - k(z — )/a*1"}".

This can be written as the cumulative distribution function
of a four-parameter kappa distribution with # = 1/n and

a k parameter equal to that of the generalized Pareto
distribution of the Z;. Thus 1/ can be interpreted as the
maximum potential number of events in a year. In the
limiting case of n —  while np remains constant, the
binomial distribution becomes a Poisson distribution, and
the distribution of the annual maximum is a four-parameter
kappa distribution with # = 0, i.e., a generalized extreme-
value distribution, as noted in [3].

Special cases
Several established distributions are special cases of the
four-parameter kappa distribution. As noted above, 2 = 1
yields a generalized Pareto distribution, £ = 0 a GEV
distribution, and 2 = —1 a generalized logistic
distribution. An exponential distribution arises when 2 = 1
and k = 0, a Gumbel distribution when 2 = 0 and k = 0,
a logistic distribution when# = ~1 andk = 0, and a
uniform distribution when 2 = 1 and k = 1. Whenh = 0
and k = 1, the four-parameter kappa distribution is a
reverse exponential distribution; i.e., 1 — F(—x) is the
cumulative distribution function of an exponential
distribution.

Mielke [9] defined the three-parameter kappa distribution
by its cumulative distribution function

F(x) = (x/b)’[a + (x0)”1™™, x=20, a,b,6>0. (7)

This is equivalent to (6) when ¢ = b, @ = b/a#,
k = —1/a@, and h = —a. The cumulative distribution
function (7) includes those cases of (6) in which & < 0,
k < 0, and £ is chosen so that the lower bound of the
distribution is zero. Thus, the four-parameter kappa
distribution may be regarded as a reparameterization of the
three-parameter kappa distribution with an additional
location parameter. v

The four-parameter kappa distribution is also related to
two of the families of distributions defined by Burr {13}.
When 2 < 0 and & < 0, (6) is a Burr type III distribution;
when 2 < 0 and & > 0, (6) is a reverse Burr type XII
distribution. These distributions have several applications:
as failure-time distributions in reliability studies [14, 15], as
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distributions of actuarial data [16], and as approximations
to distributions of test statistics [17]. A general discussion
of Burr distributions is given in [18].

Properties of the four-parameter kappa
distribution

It is convenient to write the cumulative distribution
function of the four-parameter kappa distribution simply .as

F(xy={l — A1 = k(x - §)/a]1/k}1/h, @

fx)

which is to be understood as including the cases & = 0
and k = 0, since the other forms of F(x) in (6) are the
limiting forms of (8) as k = 0 or £ — 0. With the same
understanding, the distribution has probability density
function

f&x) =a'[1 - kix — &)/a]™™ " [F(x)]'™"

and quantile function (inverse cumulative distribution
function)

« 1 - Fh\*
x(F)=§+;1—-( ) .

fx

h

Of the four parameters, ¢ is a location parameter, « is a
scale parameter, and k and 4 are shape parameters. Apart
from the restriction « > 0, all parameter values yield valid
distribution functions. Noting that (1 — F”)/A has limits 0
asF /1, +was F N\ Owithh < 0,andh " as F \\ 0
with 2 > 0, we can calculate the bounds of the
distribution. They are as follows:

fx)

E+a(l —hMk<sx<é+ak ifh>0,k>0;
E+aloghsx<w ifth>0,k=0;
t+al-hMksx<w ifth>0,k<0;
~w<x < ¢+ ak ifh=0,k>0;

—o<x < ® ifh<0,k=0;
E+ak<sx<w» ifh<0,k<0.

The probability density function has at most one
extremum. More precisely: f(x) has a single maximum
fh<Oandl/h<k<1l,orif0 =sh<landk < 1;
f(x) has a single minimum if # > 1 and £ > 1; otherwise
£ (x) has no extremum. Thus the graph of f(x) has
essentially four possible shapes; these are illustrated in
Figure 1. x

fx

Moments
The rth noncentral moment of a probability distribution is

E(X) = j '[P dF.

0

Examples of probability density functions of four-parameter kappa
distributions. Dotted lines indicate bounds of the distribution at
which the density becomes infinite.

The rth moment (r is a positive integer) of the four-
parameter kappa distribution exists (i.e., this integral is

0
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finite) under the following circumstances: for all r, if h = 0
andk = 0; forr < —1/hk, ifh < Oand k = 0;

forr < =1/k, ifk < 0. When 1 = 0 and £ # ¢, moments
of integral order may be obtained from the following
expression:

1
E[l — k(X - &)a] = I [h7'(1 — FY* dF. 9)

0

When & > 0, we substitute u = F h, and the integral
becomes
TQ + k)T (1/h)

1
h—(1+rk) 1 _ rk (1)1 d = h—(1+rk)
. (1 =) du TA + & + 1)

([19], Equation 3.191.3), where ['(x) = f; t*'e ™ dt
is the gamma function. When i < 0, we substitute
u = F™ - 1, and the integral becomes

(_h)—(1+rk) I” urk(l + u)(l/h)—l du
0
T'(Ad + rk)[(—rk — 1/h)

— () ~(1+7R)
=h T(1 - 1h)

([19], Equation 3.194.3). Thus,
E{l - kX - §)a]
I + rk)['(1/h)
T(1 + rk + 1/h)’
I'a + rOl'(—rk — 1/h)

(14
(=h) Ta < 1h) , h<o.

—(1+rk)

h>0,

Even when the first four moments of the distribution are
known, it is not always possible to determine uniquely
the parameters of the distribution. In general, the four-
parameter kappa distribution can have the same set of first
four moments for two different sets of parameters. This is
because some skewness-kurtosis combinations correspond
to two distinct (, k) pairs. The form of the cumulative
distribution function (6) gives no indication why this
should be the case, but that it is so may be seen from the
moment-ratio diagrams of Burr distributions given in [18].
The same phenomenon occurs with the L-moments of the
four-parameter kappa distribution, discussed in the
following section.

Probability-weighted moments and L-moments
Probability-weighted moments (PWMSs) of a random
variable X with cumulative distribution function F are
defined [20] to be the quantities

M, . = EXXP[FXT1 - FX)]°}

P

Particularly useful special cases are the PWMs
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B =M, ,=EX[FX)]} r=01,---. (10)

1,0

L-moments, defined in [7, 21], are linear combinations of
probability-weighted moments:

A =By

N =28, ~ By

A, = 6B, ~ 68, + B,

A, =208, — 308, + 128, - B, (11)

In general,

Mo = 2 P8y r=01,
j=0

where
Ar\[r +}\ (=D + )
* r—j —
Py =GN ) s T —
JIN UnAr =N
“‘L-moment ratios” 7, where r = 3, 4, -+ -, are defined
by 7. = A/A,.

L-moments and L-moment ratios are more convenient
than probability-weighted moments, because they are more
easily interpretable as measures of distributional shape.

In particular, A is the mean of the distribution, a measure
of location; A, is a measure of scale; and 7, and 7, are
measures of skewness and kurtosis, respectively.

The foregoing quantities are defined for a probability
distribution, but in practice they must often be estimated
from a finite sample. Letx, < x, < :-* < x_ be the
ordered sample. Let

== G-P)
|
b=n g(n—l)(n_z)..,(n_r)xi,

r=0,1,---,n—-1,

and

€.=>p b, r=01,,n-1

j=0

Then b, and €, are unbiased estimators of 8, and A,
respectively. The estimator ¢, = € /€, of 7_is consistent
but not unbiased. The quantities €, €,, ¢;, and ¢, are
useful summary statistics of a sample of data. They can

be used to identify the distribution from which a sample
was drawn ([21], Section 3.5). They can also be used to
estimate parameters when fitting a distribution to a sample,
by equating the sample and population L-moments ([21],
Section 4.1). L-moments are in several respects superior
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L-moment ratios 7, and 7, for the four-parameter kappa distribution. The graph shows 7, as a function of 7, as k varies, for fixed k. Solid
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4, 5; the heavy dashed line is the lower bound of 7, for all distributions, and is attained by the four-parameter kappa distribution in the limit
h — . The individual points marked E, G, L, and U represent the exponential, Gumbel, logistic, and uniform distributions, respectively.
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to the ordinary moments: they are less biased and less ( 11 + (s
affected by unusually extreme data values [21-24]. £+ al, _r A+ krein)
The PWMs of a distribution B, exist if the mean of the k R™TQA + k + k)
distribution exists: i.e., for the four-parameter kappa fh>0.k>~1
distribution, if » = 0 and k > —1, orif h < 0 and ’ ?
—1 < k < —1/h. The B, are most conveniently evaluated a "
by writing (10) as =Tk (1= 77T + k)] (12a)
. ifh=0k> -1,
1
B, = J x(F)F" dF P M1 + k)[(=k — rih)
’ £+ 1- 1+k
k (=h) " T(1 - r/h)
a a
RN (R B J [0 - FY'F dF. L ith<0,-1<k<-lh
0
This integral can be evaluated similarly to the way in
which (9) was. We find that if k = 0, the B, are given by Similarly, if £ = 0 we have 255
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four-parameter kappa distribution that ensures the existence of the
first four L-moments and the uniqueness of the parameters given
the first four L-moments. The letters (a), (b), (c), (d) mark lines
and curves that correspond to the conditions in Equation (13).

%’ A parameter space (dotted area) for the 4 and k parameters of the

£+ ofy + logh + (1 + r/h)] ifh >0,
rB,, =€+ aly +logr) ifth=0,
£+ o[y +log(—h) + ¢(-rh)] ifth <O,

(12b)

where y = 0.5772 - - - is Euler’s constant, and ¢ is the
digamma function, ¥(x) = d [log I'(x)]/dx.

L-moments of the four-parameter kappa distribution can
be obtained from (11) and (12). The L-moment ratios
and 7, are functions only of the shape parameters & and k.
Loci of (r,, 7,) as k varies are plotted for several values of
A in Figure 2, an “L-moment-ratio diagram.’’ It is clear
that not all of the possible (,, 7,) values (i.e., points lying
above the heavy dashed line in Figure 2) are generated
by the four-parameter kappa distribution and that some
(7, 7,) points correspond to more than one (k, k) pair.

When inference for the four-parameter kappa
distribution is based on L-moments, it seems useful to
restrict the parameter space so that # > —1. Kappa
distributions so restricted can assume all (7, 7,) values
between the ‘‘generalized-logistic line”” (A = —1 in
Figure 2) and the lower bound for all distributions. This
should be sufficient for most practical purposes. On the
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Table 1 Maximum attainable value of 7, for specified
values of r, for the four-parameter kappa distribution, and the
values of & and k for which this maximum is attained.

T, A h k
0.0 0.1696 -1.35 —0.041
0.1 0.1762 -1.22 -0.120
0.2 0.2002 -1.09 -0.206
0.3 0.2417 -0.96 -0.298
0.4 0.3006 -0.83 -0.394
0.5 0.3766 ~0.69 —0.494
0.6 0.4695 -0.56 -0.596
0.7 0.5788 -0.41 —0.699
0.8 0.7041 -0.28 -0.802
0.9 0.8447 -0.14 -0.902

L-moment-ratio diagram, the ““generalized-logistic line”
is the line 7, = (5»r32 + 1)/6, and the lower bound on 7, is
the line 7, = (57, — 1)/4 [7, 21].

To enable the four parameters of the distribution to be
estimated from the first four L-moments, the parameter
space must be further restricted, so that only one set of
parameters corresponds to a given set of the first four
L-moments. Table 1 gives the maximum attainable values
of 7, for several values of 7,, and the corresponding values
of h and k. When & > —1, these h and k values are
approximately related by k + 0.725h = —1. Thus, we are
led to impose the following conditions on the parameters:

@) k> -1

(b) ifh <0, then hk > —1;

© h>-1

(d) k+0.725% > —1. (13)

Conditions (a) and (b) ensure the existence of the
L-moments; (c) and (d) ensure the uniqueness of the
parameters, given the first four L-moments. The parameter
space is illustrated in Figure 3.

Estimation of the parameters of the four-parameter
kappa distribution using L-moments requires the solution
of Equations (12) for the parameters, given 8,, 8,, f,, and
B,. No explicit solution is possible, but the equations can
be solved by Newton-Raphson iteration. An algorithm for
this purpose has been programmed in FORTRAN and is
included in [25].

Example

Jointly with M. G. Schaefer (Washington State Department
of Ecology, Dam Safety Section), we analyzed data on
annual maximum precipitation for sites in Washington
State. Schaefer had previously analyzed [26] an earlier
version of the data set. Data are available for 326 gauging
sites for several durations. For example, annual maximum
rainfall for a duration of two hours consists of yearly
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Table 2 Description of regions used in rainfall analysis.
(There were more gauging sites for the 24-hour data than for
the two-hour and six-hour data.)

Duration Smallest region Largest region
of
rainfall Number Number Number Number

measurements of of data of of data
(hr) sites values sites values

2 13 392 5 176

6 13 392 5 176

24 41 1698 8 297

values of the greatest rainfall occurring in any two-hour
interval in the year. (For example, in Spokane, the
maximum rainfall for any two-hour period in 1985 was
0.31 inches.) Several distributions were fitted to annual
maximum precipitations for durations of two, six, and
twenty-four hours, and estimates of the quantiles of these
distributions were calculated. “Regional analysis™ [27, 28]
was used; that is, fitting a distribution of annual maximum
precipitation at one gauging site uses data not only from
that site but from a “‘region’” comprising several sites.
This provides more accurate quantile estimates than
would be achieved by fitting distributions to the data for
each site separately. There were 13 regions, each region
representing a different range of mean annual precipitation,
and the sites were assigned to the appropriate regions.
Table 2 gives some information about the regions. The
regional data analysis used an index-flood method based on
L-moments, similar to those described in [27] and [28]. The
method involves rescaling the data so that the data for
each site have mean 1, using the rescaled data to calculate
L-moment ratios averaged over all of the sites in a region,
and fitting distributions based on the at-site mean and the
regional average L-moment ratios.

The regional averages of L-skewness and L-kurtosis
for the 13 regions (for each of the three durations) are
shown in Figure 4. Figure 4 aiso shows the L-skewness—
L-kurtosis relations for the four-parameter kappa
distribution with 2 = —1, 0, or +1. Many of the regional
average points lie close to the line & = 0, suggesting that a
generalized extreme-value distribution may give a good fit
to the data. This distribution was used in Schaefer’s
original analysis. A majority of the points for all durations
lie above the & = 0 line, however, suggesting that a
distribution intermediate between generalized extreme-
value and generalized logistic may be more appropriate.
The four-parameter kappa distribution is such a
distribution, and it was fitted to the regional data using the
algorithm given in [25]. Figure 5 gives a typical example
of the results, for two-hour-duration data for the region
with sites having mean annual precipitation greater than
104 inches. The regional average L-moment ratios
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Regional average L-skewness and L-kurtosis of Washington State
annual maximum precipitation data. Solid lines are the L-skew-
ness—L-kurtosis relations for a four-parameter kappa distribution
withh = ~1,0, or +1.
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Distributions fitted to Washington State two-hour-duration annual
maximum precipitation data for sites with mean annual precipita-
tion greater than 104 inches: generalized extreme-value (dotted
line) and four-parameter kappa distribution (solid line).
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(€, =1, € = 0.1426, ¢, = 0.1981, and ¢, = 0.1758)
yield estimated four-parameter kappa distribution
parameters ¢ = 0.8987, @ = 0.1764, k = —0.0917, and
h = —0.2068. The fitted GEV and four-parameter kappa
distributions are shown in Figure 5. The graph is scaled
according to extreme-value plotting paper, so that a
Gumbel distribution would plot as a straight line. The
return-period axis aids in the calibration of extreme events:
an event with a return period of T years has a magnitude
x(F), with F = 1 — 1/T. The two distributions are very
similar, except for high-return periods, for which the four-
parameter kappa distribution with negative 4 has larger
quantiles. Use of the four-parameter kappa distribution
here, rather than the GEV, provides greater assurance
that the frequency of extreme precipitations is not
systematically underestimated. This is important when
specifying requirements for dam safety, one of the
intended applications of this study.
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