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Many  common  probability  distributions, 
including  some  that  have  attracted  recent 
interest  for  flood-frequency  analysis,  may  be 
regarded  as  special  cases of a  four-parameter 
distribution  that  generalizes  the  three-parameter 
kappa  distribution  of P. W. Mielke.  This  four- 
parameter  kappa  distribution  can  be  fitted  to 
experimental  data  or  used  as a source of 
artificial  data  in  simulation  studies.  This  paper 
describes  some  of  the  properties of the  four- 
parameter  kappa  distribution,  and  gives  an 
example in whlch it is applied  to  modeling  the 
distribution  of  annual  maximum  precipitation 
data. 

Introduction 
The transformation 

6 + a(1 - LkY)/k ,  if k f 0, 

5 + ay, if k = 0, 
x =  ( (1) 

where X and Y are real-valued random variables and 
6, a, and k are real-valued parameters, underlies several 
distributions recently used in flood-frequency analysis. 
If Y has an exponential distribution, with cumulative 
distribution function 

F(y) = 1 - e-y ,  y 2 0, (2) 

then X has a three-parameter generalized Pareto 
distribution, used in [l]. A two-parameter form of the 
distribution, lacking the location parameter 5, has also 
been used in [2] and [3]. If Y has a Gumbel (extreme-value 
type I) distribution, with cumulative distribution function 

then X has a generalized extreme-value (GEV) distribution, 
used in [4-61. If Y has a logistic distribution, with 
cumulative distribution function 

then X has what, following [7], we call a generalized 
logistic distribution. It is a convenient reparameterization 
of the log-logistic distribution used  in [8]. 

The functions (2)-(4) may be regarded as special cases 
for h = 1, h = 0, and h = -1, respectively, of the 
cumulative distribution function 

Thus, we can define a four-parameter distribution that 
includes the generalized Pareto, GEV, and generalized 
logistic distributions as special cases. It is the distribution 
of a random variable X that is obtained by applying  the 
transformation (1) to a random variable Y distributed as in 
(5). We call this the four-parameter kappa distribution, 
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because, as explained  below, it can be regarded as a 
generalization of the three-parameter kappa distribution 
used in [9]. The cumulative distribution function of the 
four-parameter kappa distribution is 

F(x) = 

(1 - h[l - k(x - 5 ) / ( ~ ] ~ ’ ~ } ’ ~ ~ ,  if k f 0, h f 0, 

exp{-[1 - k(x - 5)/a]1ik}, if k f 0, h = 0, 

11 - h exp[-(x - 5)/a]}1ih, if k = 0, h z 0, 

exP{-exP[-(x - 5Y.I 1, if k = 0, h = 0. 

(6) 

The four-parameter kappa distribution has several useful 
features. As a generalization of the generalized logistic, 
generalized extreme-value, and generalized Pareto 
distributions, it is a candidate for being fitted to data when 
these three-parameter distributions give  an inadequate fit, 
or when the experimenter does not want to be committed 
to the use of a particular three-parameter distribution. It 
can also be used in robustness studies, to check the extent 
to which a statistical procedure remains valid when its 
distributional assumptions are not valid. In this spirit, 
Hosking and  Wallis [lo] used the four-parameter kappa 
distribution to generate artificial data for assessing the 
goodness of fit of different distributions. 

parameter kappa distribution can  be  given a physical 
interpretation, as follows. Suppose that environmental 
events (e.g., storms and  floods)  with magnitudes 
Z,, Z,, - , Z, occur in a year, with the number of events 
N itself  being a random variable. This  is a common  model 
specification  in “peak-over-threshold” or “partial-duration 
series” modeling of environmental events [ l l ,  121. 
Suppose that each event magnitude Zi has a generalized 
Pareto distribution, with cumulative distribution 
function 

In a particular application, the h parameter of the four- 

P[Zi  < Z] = F,(z) = 1 - [l - k(z - 5*)/a*]’”. 

(We  use 5* and a* here to differentiate these parameters 
from the 6 and a of the four-parameter kappa distribution.) 
Suppose also that the magnitudes of different events are 
statistically independent and that N ,  the number of events 
in a year, has a binomial distribution, with parameters n 
andp, defined by 

O < p < l .  

Then, the year’s largest event has a distribution with 
cumulative distribution function given by 

This can be written as the cumulative distribution function 
of a four-parameter kappa distribution with h = l / n  and 
a k parameter equal to that of the generalized Pareto 
distribution of the Zi. Thus l/h can  be interpreted as the 
maximum potential number of events in a year. In the 
limiting case of n + QJ while np remains constant, the 
binomial distribution becomes a Poisson distribution, and 
the distribution of the annual maximum  is a four-parameter 
kappa distribution with h = 0, i.e., a generalized extreme- 
value distribution, as noted in  [3]. 

Special  cases 
Several established distributions are special cases of the 
four-parameter kappa distribution. As noted above, h = 1 
yields a generalized Pareto distribution, h = 0 a GEV 
distribution, and h = - 1 a generalized logistic 
distribution. An exponential distribution arises when h = 1 
and k = 0, a Gumbel distribution when h = 0 and k = 0, 
a logistic distribution when h = -1 and k = 0, and a 
uniform distribution when h = 1 and k = 1. When h = 0 
and k = 1, the four-parameter kappa distribution is a 
reverse exponential distribution; i.e., 1 - F( -x )  is the 
cumulative distribution function of an exponential 
distribution. 

Mielke [9]  defined the three-parameter kappa distribution 
by its cumulative distribution function 

F(x) = (x/b)’[a + (x/b)“]””, x 2 0, a,  b, 0 > 0. (7) 

This is equivalent to (6) when 5 = b ,  a = b/aB, 
k = -l/a0, and h = - a .  The cumulative distribution 
function (7) includes those cases of (6) in which h < 0, 
k < 0, and 5 is chosen so that the lower bound of the 
distribution is zero. Thus, the four-parameter kappa 
distribution may be regarded as a reparameterization of the 
three-parameter kappa distribution with  an  additional 
location parameter. 

The four-parameter kappa distribution is also related to 
two of the families of distributions defined  by Burr [13]. 
When h < 0 and k < 0, (6) is a Burr type 111 distribution; 
when h < 0 and k > 0, (6) is a reverse Burr type XI1 
distribution. These distributions have several applications: 
as failure-time distributions in reliability studies [14, 151, as 
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distributions of actuarial data [16], and as approximations 
to distributions of test statistics [17]. A general discussion 
of Burr distributions is given  in [MI. 

Properties of the  four-parameter  kappa 
distribution 
It is convenient to write the cumulative distribution 
function of the four-parameter kappa distribution simply as 

F(x)  = (1 - h[l - k(x - .9/a]1’k}1’h, (8) 

which  is to be understood as including the cases h = 0 
and k = 0, since the other forms of F ( x )  in (6) are the 
limiting  forms of (8) as k + 0 or h + 0. With the same 
understanding, the distribution has probability density 
function 

f(x) = a-l [l - k(x - 5)/a]‘”k”’ [ F ( x ) ] ” ~  

and quantile function (inverse cumulative distribution 
function) 

x(F) = 6 + E k [ 1 - (y)k]. 
Of the four parameters, 5 is a location parameter, a is a 

scale parameter, and k and h are shape parameters. Apart 
from the restriction a > 0, all parameter values yield  valid 
distribution functions. Noting that (1 - F h ) / h  has limits 0 
as F 7 1, + m  as F I 0 with h < 0, and h” as F I 0 
with h > 0, we  can calculate the bounds of the 
distribution. They are as follows: 

5 + cr(1 - K k ) / k  I x 5 5 + a/k  if h > 0, k > 0; 

( + a l o g h ~ x < m  if h > 0, k = 0; 

5 + a(1 - h-k)/k s x  < m if h > 0, k < 0; 

-m < x  s 5 + a / k  ifh 5 0 ,k  > 0; 

-m < x  < m if h I 0, k = 0; 

t + a / k I x < m  if h I 0, k < 0. 

The probability density function has at most one 
extremum. More  precisely: f(x) has a single  maximum 
i f h < O a n d l / h < k < l , o r i f O 5 h < l a n d k < l ;  
f(x) has a single  minimum if h > 1 and k > 1; otherwise 
f(x) has no extremum. Thus the graph off(x) has 
essentially four possible shapes; these are illustrated in 
Figure 1. 

Moments 
The rth noncentral moment of a probability distribution is 

E ( X )  = [x(F)]‘dF.  ld 
The rth moment (r is a positive integer) of the four- 
parameter kappa distribution exists (i.e., this integral  is 

X 

X 

X 

h = 3.0 
k = 3.0 

- 
2 

X 
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finite) under the following circumstances: for all r ,  if h 5 0 P, = Ml,r,o = E{X[F(X)]' ) ,  r = 0, 1 ,  . 
andk 2 0; for r  < - l /hk ,  i fh  < Oandk 2 0; 
for < -1/k,  if k < 0. When h and o, moments L-moments, defined in [7, 211, are linear combinations of 
of integral order may  be obtained from the following  probability-weighted  moments: 
expression: 

E[1 - k(X - [ ) /a] '  = [' [h"(1 - Fh)]"  dF.  (9) A, = 2P1 - Po 9 

(10) 

A, = PO? 

J o  
A, = 6P, - 6P, + P o ,  

When h > 0, we substitute u = F h ,  and the integral 
becomes A, = 20P3 - 30P2 + 12P1 - P o .  

( [ 1 9 ] ,  Equation 3.191.3), where T(x) = som t"-'e-'  dt 
is the gamma function. When h < 0, we substitute 
u = F-h  - 1 ,  and the integral becomes where 

hr+, = 2 P ~ : ~ P ~ ,  r = 0, 1, , 
j = O  

Even when the first four moments of the distribution are 
known, it is not always possible to determine uniquely 
the parameters of the distribution. In general, the four- 
parameter kappa distribution can have the same set of first 
four moments for two different sets of parameters. This  is 
because some skewness-kurtosis combinations correspond 
to two distinct (h ,  k )  pairs. The form of the cumulative 
distribution function (6) gives no indication why this 
should be the case, but that it  is so may be seen from the 
moment-ratio diagrams of Burr distributions given in [GI.  
The same phenomenon occurs with the L-moments of the 
four-parameter kappa distribution, discussed in the 
following section. 

Probability-weighted  moments  and  L-moments 
Probability-weighted moments (PWMs) of a random 
variable X with cumulative distribution function F are 
defined [20] to be the quantities 

Mp,r,3 = E { ~ [ F ( X ) I ' [ 1  - F(x)I". 

254 Particularly useful special cases are the PWMs 

p * .  = ( - l ) r - J ( ; ) (  ) = 
r + j (-l)r-j(r + j ) !  

(j!)Z(r - j ) !  * 
'.I 

"L-moment ratios" T,, where r = 3, 4, , are defined 
by T, = A r / A , .  

L-moments and L-moment ratios are more convenient 
than probability-weighted moments, because they are more 
easily interpretable as measures of distributional shape. 
In particular, A, is the mean of the distribution, a measure 
of location; h, is a measure of scale; and r3 and T, are 
measures of skewness and kurtosis, respectively. 

The  foregoing quantities are defined for a probability 
distribution, but in practice they must often be estimated 
from a finite sample. Let x1 I xz I . * I x, be the 
ordered sample. Let 

(i - l ) ( i  - 2 )  - - (i - r)  
b, = n-' 2 

(n - l ) (n - 2 )  * (n - r) xi , 
i= l  

and 

r 

e,+, = p: jb j ,  r = 0, 1 ,  . , n - 1 .  
i=O 

Then br and er are unbiased estimators of pr and Ar,  
respectively. The estimator t ,  = [)e2 of T, is consistent 
but not unbiased. The quantities e,, e2, t3 ,  and t ,  are 
useful summary statistics of a sample of data. They can 
be used to identify the distribution from  which a sample 
was drawn ( [21] ,  Section 3.5). They can also be used to 
estimate parameters when fitting a distribution to a sample, 
by equating the sample and  population L-moments ( [21] ,  
Section 4.1). L-moments are in several respects superior 
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L-skewness, r, 

L-moment ratios T~ and T~ for the four-parameter kappa distribution. The graph shows r4 as a function of T~ as k varies, for fixed h. Solid 
1 lines indicate the values h = 1 ,  h = 0, and h = - 1. Dotted lines indicate h = -2, - 3 ,  -4, -5. Light dashed lines indicate h = 2, 3,  
I! 4, 5 ;  the heavy dashed  line is the lower bound of T~ for all distributions, and is attained by the four-parameter kappa distribution in  the limit I h -+ m. The individual points marked E, G, L, and U represent the exponential,  Gumbel, logistic, and uniform distributions, respectively. 

to the ordinary moments: they are less biased and less 
affected by unusually extreme data values [21-241. 

distribution exists: i.e., for the four-parameter kappa 
distribution, if h 2 0 and k > -1, or if h < 0 and 
- 1 < k < - l /h.  The pr are most conveniently evaluated 
by writing (10) as 

The PWMs  of a distribution p, exist if the mean of the 

I 

p r  = I,' x(F)F' dF 

= (r + 1)"( 6 + t) - j: [h"(1 - Fh)IkFr  dF. 

This integral can be evaluated similarly to the way in 
which (9) was. We  find that if k f 0, the pr are given by 

I IBM J. RES. DEVELOP. VOL. 38 NO. 3 MAY 1994 

rT(1 + k)T(r/h) 

hltkT(l + k + r/h) 

if h > 0, k > -1, 

6 + - [I - r + r ( l  + k) ]  
ff 

k 
if h = 0, k > -1, 

rT( 1 + k)T( -k - r/h) 

(-h)ltkr(i - r/h) I 
ifh < 0, -1 < k < -1 

Similarly, if k = 0 we have 

/h . 
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values of h” and k for  which  this m a x i k m  is  attained. 
~ ~~~ 

71 74 h k 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1696 
0.1762 
0.2002 
0.2417 
0.3006 
0.3766 
0.4695 
0.5788 
0.7041 
0.8447 

-1.35 
-1.22 
-1.09 
-0.96 
-0.83 
-0.69 
-0.56 
-0.41 
-0.28 
-0.14 

-0.041 
-0.120 
-0.206 
-0.298 
-0.394 
-0.494 
-0.596 
-0.699 
-0.802 
-0.902 

L-moment-ratio diagram, the “generalized-logistic line” 
is the line T~ = (5.: + 1)/6, and the lower bound on T~ is 
the line T~ = ( 5 s  - 1)/4 [7, 211. 

To enable the four parameters of the distribution to be 
estimated from the first four L-moments, the parameter 
space must  be further restricted, so that only one set of 
parameters corresponds to a given set of the first four 
L-moments. Table 1 gives the maximum attainable values 

the first four L-moments. The letters (a),  (b), (4, (d) marklines approximately related by k + 0.725h = -1. Thus, we are 
and curves that correspond to the conditions in Equation (13). led to impose the following conditions on the parameters: 

~ (a) k > -1; 

~ 

(b) if h < 0, then hk > -1; 

where y = 0.5772 * - is Euler’s constant, and $ is the 
digamma function, $(x)  = d [log I ‘ ( x ) ] / h .  

L-moments of the four-parameter kappa distribution can 
be obtained from (11) and  (12). The L-moment ratios T~ 
and T~ are functions only of the shape parameters h and k .  
Loci of (T~, T ~ )  as k varies are plotted for several values of 
h in Figure 2, an “L-moment-ratio diagram.” It is clear 
that not all of the possible (T~, T ~ )  values (i.e., points lying 
above the heavy dashed line in Figure 2) are generated 
by the four-parameter kappa distribution and that some 
( T ~ ,   T ~ )  points correspond to more than one (h ,  k )  pair. 

distribution is based on L-moments, it seems useful to 
restrict the parameter space so that h > - 1. Kappa 
distributions so restricted can assume all (T~, T ~ )  values 
between the “generalized-logistic line” (h = - 1 in 
Figure 2)  and the lower bound for all distributions. This 

256 should be sufficient for most practical purposes. On the 

When inference for the four-parameter kappa 

(c) h > -1; 

(d) k + 0.72% > -1. (13) 

Conditions (a) and (b) ensure the existence of the 
L-moments; (c) and (d) ensure the uniqueness of the 
parameters, given the first four L-moments. The parameter 
space is illustrated in Figure 3. 

Estimation of the parameters of the four-parameter 
kappa distribution using L-moments requires the solution 
of Equations (12)  for the parameters, given Po, P,, Pz, and 
P3. No explicit solution is possible, but the equations can 
be solved by Newton-Raphson iteration. An algorithm for 
this purpose has been programmed  in  FORTRAN  and  is 
included in [25]. 

Example 
Jointly with M. G. Schaefer (Washington State Department 
of Ecology, Dam Safety Section), we analyzed data on 
annual maximum precipitation for sites in Washington 
State. Schaefer had previously analyzed [26]  an earlier 
version of the data set. Data are available for 326  gauging 
sites for several durations. For example, annual maximum 
rainfall for a duration of two hours consists of yearly 

J. R. M. HOSKlNG IBM J. RES. DEVELOP.  VOL. 38 NO. 3 MAY 1994 



Table 2 Description  of  regions  used  in  rainfall  analysis. 
(There were more  gauging sites for  the  24-hour  data  than  for 
the  two-hour  and  six-hour  data.) 

Duration Smallest region Largest region 
of 

(hr) sites values sites values 

rainfall Number Number Number Number 
measurements of of data of of data 

2 13 392 5 176 
6 13 392 5 176 

24 41 1698 8 297 

values of the greatest rainfall occurring in any two-hour 
interval in the year. (For example, in Spokane, the 
maximum  rainfall for any two-hour period  in 1985 was 
0.31 inches.) Several distributions were fitted to annual 
maximum precipitations for durations of two, six, and 
twenty-four hours, and estimates of the quantiles of these 
distributions were calculated. “Regional analysis” [27, 281 
was used; that is, fitting a distribution of annual maximum 
precipitation at one gauging site uses data not only  from 
that site but  from a “region” comprising several sites. 
This provides more accurate quantile estimates than 
would be achieved by fitting distributions to the data for 
each site separately. There were 13 regions, each region 
representing a different  range of mean annual precipitation, 
and the sites were assigned to the appropriate regions. 
Table 2 gives some information about the regions. The 
regional data analysis used an index-flood method based on 
L-moments, similar to those described in [27] and [28]. The 
method involves rescaling the data so that the data for 
each site have  mean 1, using the rescaled data to calculate 
L-moment ratios averaged over,all of the sites in a region, 
and  fitting distributions based on the at-site mean and the 
regional average L-moment ratios. 

The regional averages of L-skewness and L-kurtosis 
for the 13 regions  (for each of the three durations) are 
shown in Figure 4. Figure 4 also shows the L-skewness- 
L-kurtosis relations for the four-parameter kappa 
distribution with h = - 1, 0, or + 1. Many of the regional 
average points lie close to the line h = 0, suggesting that a 
generalized extreme-value distribution may  give a good fit 
to the data. This distribution was used in Schaefer’s 
original analysis. A majority of the points for all durations 
lie above the h = 0 line, however, suggesting that a 
distribution intermediate between generalized extreme- 
value and generalized logistic  may be more appropriate. 
The four-parameter kappa distribution is such a 
distribution, and it was fitted to the regional data using the 
algorithm  given  in [25]. Figure 5 gives a typical example 
of the results, for two-hour-duration data for the region 
with sites having  mean annual precipitation greater than 
104 inches. The regional average L-moment ratios 
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(e, = 1, e, = 0.1426, t, = 0.1981, and t4 = 0.1758) 
yield estimated  four-parameter  kappa distribution 
parameters .$ = 0.8987, a = 0.1764, k = -0.0917, and 
h = -0.2068.  The fitted GEV  and  four-parameter  kappa 
distributions  are  shown  in Figure 5. The  graph  is  scaled 
according  to  extreme-value plotting paper, so that a 
Gumbel  distribution  would  plot as a  straight line. The 
return-period axis aids in the calibration of extreme events: 
an event  with a return period of T years  has a  magnitude 
x(F),  with F = 1 - 1/T. The two distributions  are very 
similar, except  for high-return  periods, for  which  the four- 
parameter  kappa  distribution  with negative h has larger 
quantiles. Use of the  four-parameter  kappa distribution 
here, rather  than  the  GEV,  provides  greater  assurance 
that  the  frequency of extreme precipitations is not 
systematically  underestimated.  This is important  when 
specifying requirements  for  dam  safety,  one of the 
intended  applications of this  study. 
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