High-level
synthesis

in an industrial
environment

by R. A. Bergamaschi
R. A. O'Connor

L. Stok

M. Z. Moricz

S. Prakash

A. Kuehimann

D. S. Rao

The use of modern hardware-description
languages in the chip design process has
allowed designs to be modeled at higher
abstraction levels. More powerful modeling
styles, such as register-transfer and behavioral
level specifications, have spurred the
development of high-level synthesis
techniques in both industry and academia.
However, despite the many research efforts,
the technology is not yet in widespread use
in industry. This paper presents the IBM
High-Level Synthesis System (HIS), which is
the first such system to be used in production
in IBM. HIS synthesizes gate-level networks
from VHDL models at various levels of
abstraction. The main algorithms, modeling
capabilities, and methodology considerations
in the HIS system are presented. Resuits
show that HIS is capable of producing
implementations comparable to or better than
those of the existing methodology, while
shortening the design time significantly. The
HIS system is currently in production use and
evaluation in several IBM sites for processors
and peripheral chip designs, as well as being
an external commercial product.

1. Introduction

Computer-aided design (CAD) tools are in use today in
almost all aspects of digital system design. Among the
most common are tools for physical design, simulation,
and synthesis. While tools for physical design and
simulation have been in use in industry for a long time,
synthesis tools have not, except for a few proprietary
systems.

Synthesis tools have usually followed simulation and
modeling tools in terms of abstraction level. The first
hardware description languages used in industry were
basically transistor-level and gate-level netlists. These were
followed by languages capable of modeling designs at the
logic level, register-transfer (RT) level, and behavioral
level. As expected, the evolution in simulation tools
followed a similar path. Circuit-level simulation was
followed by logic simulation, and more recently by
functional simulation. As the hardware description
languages evolved, simulators were developed
for them.

Clearly, this evolution was not isolated from other
design aspects, in particular, silicon technology. As
fabrication technology matured, it became feasible to
design and characterize larger and larger blocks. The
development of gate arrays and standard cells contributed
significantly to this evolution.

©Copyright 1995 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 131

0018-8646/95/$3.00 © 1995 IBM

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

R. A. BERGAMASCHI ET AL.

132

Increasing levels of integration created a design
problem. The complexity of the logic in a chip quickly
made design intractable at the transistor level or even at
the gate level. Design teams had to become larger to
maintain productivity, with the result that each designer
was able to understand only a very small part of the
overall system. This caused a productivity bottleneck
and created performance and verification problems.

A paradigm shift was needed; larger integration scales
could not be modeled by low levels of abstraction. Higher
levels of abstraction were needed to increase designers’
productivity and to describe the design concisely, allowing
fewer designers to understand the whole system and the
implications of design changes in its performance and
functionality.

More powerful languages and simulators allowed more
complex designs to be modeled, which required more
powerful synthesis systems. Synthesis tools evolved
according to the existing modeling capabilities. Tools for
minimizing two-level Boolean expressions were among the
first to be developed. These were followed by tools for
synthesis of combinational networks and PLAs. Current
tools can synthesize complex RT-level networks
automatically from language descriptions.

Despite many years of research in academia and
industry on all aspects of synthesis, only in recent years
has the technology reached the marketplace. The first
company to recognize the importance of and make use of
logic synthesis in large-scale designs was IBM, in the early
’80s. Systems such as ALERT [1], MINI [2], Espresso [3],
YLE [4], and LSS [5] demonstrated the capabilities of
logic synthesis and paved the way for the tools available
on the market today. As early as 1984, the LSS system
was used to design 90 percent of the chips in a large-
processor mainframe. Systems for logic and RT-level
synthesis of application-specific ICs (ASICs) are currently
available from CAD vendor companies as well as from
internal industry groups.

One of the reasons for the delay in logic synthesis tools
reaching the marketplace was the lack of an integrated
methodology involving modeling, simulation, synthesis,
and verification, which allowed the designer to speed up
the design process, maintain a certain level of control over
the final implementation, and verify that the final circuit
correctly implemented the simulated functionality. Modern
logic synthesis systems achieve many of these goals by
combining efficient algorithms, control mechanisms for
the designer to influence the synthesis outcome, and
verification mechanisms (using formal methods and/or
simulation techniques) to check the correctness of the
synthesis process.

The trend in modeling, simulation, and synthesis is
to push the abstraction level even further toward the
behavioral and system level. Behavioral modeling is

R. A. BERGAMASCHI ET AL.

becoming more acceptable to designers as they are faced
with increasingly complex circuits. The acceptance of
high-level modeling and functional simulation has spurred
the development of high-level synthesis in industrial
environments.

Despite the many research efforts, high-level synthesis
systems have so far failed to make a successful transition
to the marketplace, except for systems for special
applications, such as digital-signal processing (e.g., [6]). _
The main reason has been the lack of an integrated high-
level design methodology, added to the fact that designs
produced by most high-level synthesis systems are not yet
competitive.

Many high-level synthesis systems have been developed
in universities. Most notably, research at CMU [7],
Stanford [8], USC [9], and Irvine [10], among others, has
helped to create an algorithmic basis for others to build
upon. Among the efforts in industrial environments, work
at IMEC [6], BNR [11], IBM [12], AT&T [13], and GM
[14] has contributed significantly to bringing high-level
synthesis closer to production use. The work being done
at GM [14, 15] corroborates the point that a high-level
synthesis tool must be smoothly integrated with the rest
of the design methodology.

This paper presents the HIS system, which is the first
high-level design system to be used in IBM and among the
first in industry. HIS was developed at IBM Research and
EDA-IBM Microelectronics; it is currently in production
use and evaluation at several sites. The main algorithms,
modeling capabilities, and methodology considerations in
the HIS system are presented.

The main goal throughout this project was to make
high-level synthesis sufficiently practical and efficient for
a production environment. Early experiences in using HIS
pointed out various bottlenecks ranging from methodology
to algorithmic problems. These experiences led to the
development of a design methodology and algorithms for
high-level synthesis which are proving to be efficient for
production use.

This paper is structured as follows. Section 2 presents
an overview of the high-level design methodology and
discusses the specification and modeling aspects in the HIS
system. Section 3 explains the main synthesis algorithms
in HIS, including the data model, data-flow analysis,
scheduling, allocation, and optimizations. Section 4 gives
details on the current production use of HIS as well as
future applications. Section 5 presents the conclusions.

2. A methodology for high-level synthesis

® Overview

The high-level synthesis process encompasses various
design aspects ranging from modeling and simulation to
logic synthesis, layout, and test. As a result, in order

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

for high-level synthesis to produce good results and be
adopted by designers, it must be tightly integrated with
other aspects in the methodology.

In the previous production methodology, designs were
first specified using hardware description languages, at the
RT or gate level; then submitted to logic synthesis (e.g.,
BooleDozer™) for logic minimization and technology
mapping, and finally to physical design tools for
layout. HIS is being introduced on top of this existing
methodology. The input description allows behavioral
specifications in addition to all lower levels. The output
of high-level synthesis is a gate-level description which
can be processed by the existing tools. The goal was to
provide designers with higher-level modeling and synthesis
capabilities, integrated smoothly with the rest of the design
process, to deliver results of comparable or better quality,
and to shorten the whole design cycle.

Figure 1 shows an overview of the high-level synthesis
methodology. The design process starts with a language
specification written by the user, which is the input to
simulation. The goal of simulation depends on the level
of the description. If the description is fully behavioral,
the goal is to check functionality, not necessarily with a
defined cycle-by-cycle behavior. If the description is at RT
or gate level, simulation is used for checking functionality
as well as cycle behavior.

HIS accepts descriptions written in VHDL or Verilog
HDL. The examples and the discussion in this paper use
VHDL, but all of the techniques described are equally
applicable to Verilog.

The specification is then input to high-level synthesis,
which maps it to a technology-independent gate-level
netlist. At this point the designer can, within the high-level
synthesis tool, estimate the delay and area of the design
using a target technology. If the estimations represent an
unacceptable design point, the designer can backtrack
and explore the design space either by changing the
input description or by running high-level synthesis
with different constraints. Once a satisfactory design
point is found (that is, the estimations are close to the
requirements), the design flow can proceed, and the netlist
can be submitted to logic synthesis for optimization and
technology mapping.

Although the high-level synthesis process works on
technology-independent representations, it can query
information from a technology library in order to make
better design decisions. For example, to determine
whether two operators should be shared with multiplexed
inputs, it is important to compute the area savings
resulting from one less operator and possibly two extra
multiplexors. The area for various hardware primitives
can be obtained from the technology library.

The capability of having area and delay estimations
inside HIS is important for reducing total design time. In

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Behavioral, sequential
Concurrent, structural

N »} VHDL

1

» High-level synthesis

HIS

RT/gate-level
network

{

Analysis
(Area/Timing)

Technology No ~ Requi
library Yes

nts satisfied?)

Technology-independent
’ RT/gate-Jevel network

BooleDozer
logic synthesis

N Technology-dependent
netlist

Overview of high-level synthesis methodology.

traditional methodologies (based only on logic synthesis),
the design loop is closed after logic synthesis (or even after
layout and back-annotation). At that point, the designer
checks whether the requirements are being satisfied. If not,
the alternatives are either to rerun logic synthesis with
different constraints or to change the input description and
rerun synthesis. The drawback with this methodology is
that potential design problems are discovered only after

a significant amount of time has been invested in logic
synthesis, which can be very time-consuming for large
designs.

Using the HIS system, the designer can obtain area and
delay estimations much earlier in the design process, and
can explore the design space by either rerunning HIS
with different constraints or modifying the VHDL input.
Refining the design at the high level speeds up the design
cycle considerably, as the execution time for HIS is in
general one to two orders of magnitude faster than logic
synthesis techniques.

& Specification and modeling

The specification and modeling of a design play a central
role in the efficient use of high-level synthesis. On

one hand, designers want to have some control over

R. A. BERGAMASCHI ET AL.

134

HIS
Scheduling, allocation,

Behavioral resource sharing
Sequentiat FSM optimization
e
Concurrent Allocation, resource sharing
Combinational -
——
‘Allocation
Structural

Abstraction levels and synthesis algorithms in HIS.

the implementation to guarantee a certain level of
performance, but at the same time they want to use more
sequential and behavioral modeling in order to benefit from
lower complexity and faster simulation. These somewhat
opposing requirements must be reconciled by the high-
level synthesis system.

HIS is able to satisfy these requirements by supporting
VHDL descriptions in behavioral, sequential, concurrent,
and structural levels, and by providing the user with a rich
set of controls over various implementation characteristics.

An important feature of VHDL is the ability to describe
designs at different levels of abstraction. VHDL constructs
such as processes, blocks, concurrent statements, and
component instantiations can be used for modeling designs
at the behavioral, sequential, concurrent, and structural
levels. The designer can combine different abstraction
levels in the same design. Algorithmic parts are more
easily described at the behavioral or sequential level, while
random logic and gate-level networks can be directly
described at the RT or concurrent level.

The types of design styles supported by HIS range from
fully behavioral descriptions to finite-state machines to
combinational logic. HIS automatically detects the level
of the description and applies the appropriate synthesis
algorithms. Figure 2 shows the basic synthesis algorithms
applicable to each abstraction level.

In HIS, the user can influence synthesis and control
several implementation details by using special-purpose
VHDL attributes. Attributes are the mechanism in VHDL
for attaching extra information to any VHDL element. For
example, attributes can be attached to a VHDL design
unit, function, or component, or even a simple statement.
These special-purpose attributes allow the user to specify,
among other things,

R. A. BERGAMASCHI ET AL.

Logic synthesis
Gate-level
optirization Technology-
RT/gate-level deperident
network Technology level
mapping

» The number and type of functional units that each
VHDL process can use.

» Directives for resource sharing.

» Directives for input/output (ports) mapping and timing.

& The technology cell to which a certain VHDL
component should be mapped.

» The technology cell to which a given VHDL expression
should be mapped.

& Whether or not scan latches should be used and a scan
chain generated.

« Timing constraints to be passed to logic synthesis.

~ Any other information that should be passed to back-end
layout tools.

Special-purpose synthesis attributes allow the user to
exert control over the implementation while taking
advantage of the high-level synthesis capabilities.

3. Synthesis algorithms in HIS

The synthesis task performed by HIS consists of
generating a network representation which implements
the functionality specified in the input description. This
network is fully defined in terms of registers, logic
gates, arithmetic operators, multiplexors, buses, etc.

HIS accepts VHDL descriptions at various abstraction
levels. According to the level of the description, certain
algorithms are applied. Behavioral or sequential
descriptions require scheduling and allocation. Concurrent
or structural descriptions require only allocation. The
exact definition of these tasks is given in the following
sections. Figure 3 shows the main synthesis steps in HIS.

& Data model
The data model used in HIS consists of five graphs which
represent the design at various stages during synthesis:

IBM I. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

VHDL 1 Data model
compiler 1 generation

scheduling | | Data-pain
and optimizations

Control
optimizations

allocation

HIS main synthesis steps.

o Control-flow graph (CFG).
¢ Data-flow graph (DFG).

¢ Control-automaton graph.
e Data-path graph.

¢ Network graph.

These graphs are connected by links which keep the
correspondence between nodes in the graphs, lines in the
VHDL description, and the final network, as shown in
Figure 4.

The input description goes through a compilation step
which performs syntactical and semantical checks,
followed by a translation step which generates the control
and data-flow graphs. High-level synthesis creates the
control-automaton graph and the data-path graph, which
represent the finite-state machine and the data path of the
implementation, respectively. The last synthesis step is
the generation of the network graph, which represents
the final implementation and is also the input to logic
synthesis.

The control and data-flow graphs used in HIS are similar
to those presented in [16] for sequential VHDL, plus
extensions for handling concurrent and structural VHDL
as well as other languages such as Verilog HDL.

The control-flow graph is a directed graph which
specifies the sequence of operations in the input
description. It is defined as CFG = (O, P), where O is
the set of nodes (representing the operations), and P is
the set of edges. An edge p = (0,, 0,, c) implies that
operation o, is executed after operation o, if condition ¢
is true. Conditional operations, such as IF, CASE, etc.,
are modeled as conditional edges. The conditions are
represented as binary-decision diagrams (BDDs). Two
nonconditional operations in series are connected by an
edge with condition ¢ = true.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Data-fl L Ared + chay
:f:na.lys(i):v constraint frommmcmafies-
generation
FiM Output RT/gate-level
data path generation network

The data-flow graph is a directed graph which specifies
the data dependencies among operations and operands in
the input description. It is defined as DFG = (O U V, D),
where O is the set of operation nodes, V is the set of
operand nodes (variables, signals, inputs, outputs,
constants), and D is the set of edges. Data-flow edges

d = (0,, v,) ord = (v;, 0,) imply that operation o,
assigns a value to operand v, or that operand v, is an
input to operation o, respectively.

Figure 5 shows a VHDL example which is used
throughout the paper; Figure 6 gives the corresponding
CFG and DFG.

® Data-flow analysis

Data-flow analysis is a technique commonly used in
programming language compilers for determining the
lifetimes of values [17]. High-level synthesis systems use
data-flow analysis for two purposes: 1) to unfold variables
in the data-flow graph [7, 18]; and 2) to derive the lifetimes
of registers during resource sharing [19]. Most systems
(e.g., [7]) apply data-flow analysis on basic blocks only.
HIS applies data-flow analysis globally, through the whole
graph, taking into account conditional operations and loops.

Lifetime analysis computes the definition-use chain
for all variable assignments in the CFG and DFG. The
definition-use chain of a given assignment to a variable
tells exactly when the value (being assigned) is created
and the last time it is used, thus defining its lifetime.

HIS uses data-flow analysis extensively in all synthesis
steps. Data-flow analysis is performed on the CFG and
DFG. The lifetimes of values are computed and attached
to each node in the CFG, for future use during scheduling
and allocation. The data structure for storing this
information is a vector of bits (called a lifetime vector),
where each bit position can assume the value 0 or 1. Each

R. A, BERGAMASCHI ET AL.

135

136

-- VHDL description
Entity Chipl is

)
End Chipl;
Architecture behavior of Chipt is
Signal 51, §2: —v-me;
Begin
Process
Variable v1, v2, v3: «—;
Begin
Wait until not clock ' stable and clock ="'1";
If (reset) then

end if;

]

End process;
End behavior;

_ Figured
| HIS data model.

assignment to a variable (assignment edge) is given a
position number in this vector. Therefore, if n is the total
number of assignment edges to variables in the DFG, the
lifetime vectors will contain # bits.

The information in the lifetime vectors can be
summarized as follows:

Given a control-flow node o, with a lifetime vector
lifevec(o,), and given an assignment edge in the DFG,
d /= with position P then

1. If lifevec(o,)[p;] = 1, the value being assigned
through edge d, is alive at node o,.

2. If lifevec(o,)[p;] = 0, the value being assigned
through edge d, is not alive at node o,.

Hence, by following the value of a given position
(for a given assignment edge) in the lifetime vectors of
successive operations in the CFG, one can determine
exactly which operation created the value and which
operation is the last one to use it.

R. A. BERGAMASCHI ET AL.

—

Data model

graph
CAG

Control—automﬁton<J

In order to illustrate the use of global data-flow analysis,
consider Figure 6. The lifetime vectors are displayed
beside each node in the CFG. For example, to determine
the values of variable B which can be used as an input to
operation/node 6, in Figure 6, one must follow these steps:

1. Get the lifetime vector from node 6, in the CFG:
lifevec(6) = [01101011].

2. Get the positions of all assignment edges to B from the DFG:
positions(dl, d2, d4, d6) = 1, 2, 4, 6.

3. Check entries in the lifetime vector in positions 1, 2, 4, 6:
lifevec(6)[1] = 0; lifevec(6)[2] = 1;
lifevec(6)[4] = 0; lifevec(6)[6] = 0.

Only edge d, has a 1 entry in the lifetime vector; hence,
the only value of B valid (or alive) at operation 6 is the
value being produced by operation 4 (the predecessor of
edge d,). Similarly, there are four values of B alive at
operation 19, produced by operations 2, 4, 7, and 9. This
type of analysis is used during synthesis in order to

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

ENTITY Example IS
PORT (
CLOCK : IN BIT;
MODE1 : IN BIT_VECTOR(0 TO 1);
MODE2 : IN BOOLEAN;
IN1, IN2 : IN BIT_VECTOR(0 TO 1);

OUT1, OUT2, OUT3, OUT4: OUT BIT_VECTOR(0 TO 1));

END Example;

ARCHITECTURE Behavior OF Example IS

BEGIN
P1 : PROCESS
VARIABLE A, B : BIT_VECTOR(0 TO 1);
BEGIN'
WAIT UNTIL (not CLOCK 'stable) and (CLOCK="'1"'); — (1]
B := b"00"; —[2]
CASE (model) IS — 3]
WHEN b"00" = B := IN1 + IN2; — [4]
WAIT UNTIL (not CLOCK 'stable) and (CLOCK="1"); — [5]
A:= A + B; — [6]
WHEN b"01" = B := "11%; —
WHEN b"10" = A := IN2; — 18]
WHEN b"11" = B := b"01"; —
A = bllOOll; _ 10]
END CASE; — [11]
OUT1 & A; — [12]
IF (mode2) Then — [13]
A := IN1; — [14]
ELSE
OUT2 < B; — [15]
WAIT UNTIL (not CLOCK 'stable) and (CLOCK="'1'); — [16]
OUT3 < A + INI; — [17}
END IF; — 18]
OUT4 <« A + B; — [19]
END process; — [20]

END behavior;

VHDL exampie.

determine, among other things, necessary interconnections
and which values must be stored in registers.

¢ Scheduling
The scheduling task is responsible for mapping operations
in the input description to control steps in the finite-state
machine [20]. It creates the control-automaton graph in the
HIS data model.

In general, a description may have to be scheduled in
multiple control steps in order to

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

o Implement fully behavioral constructs.
If the description contains behavioral constructs such as
unbounded loops (for/while), scheduling is required in
order to control the loop iteration.

o Satisfy user constraints.
In HIS the user may specify the number and type of
available functional units (FUs). If a description contains
operations which exceed the user constraint on the
number of FUs, it will be partitioned into control steps,
so that in each control step only the maximum allowed

R. A. BERGAMASCHI ET AL.

137

138

B:= IN1+IN2

[00101011]
=R
5 [00101011)
01101011 A= IN2
ey 7 [10000000]

0
[111111]
ouT2<=B

16

{1111111]
OUT3 <=A+IN1

19 [11111111]
OUT4 <=A+B

20 {00101011]

(@)

®

(a) Control and (b) data-flow graphs for VHDL example in Figure 5.

number of FUs are used. In the allocation step, the FUs
can be merged so that the overall number of FUs does
not exceed the constraints.

o Implement explicit scheduling operations.
Each language contains specific ways of specifying
an explicit schedule. In VHDL, the statement
Wait Until Not Clock 'Stable and Clock = '1';
can be used to force operations in different control steps.
For conciseness, this statement is referred to simply as
Wait Until Clock in the remainder of this paper. In
Verilog HDL, the Event control (@) statement is used to
specify clock transitions. If such operations are present
in the description, scheduling is required in order to
implement the correct semantics.

The scheduling algorithms in HIS are able to handle the
cases above in a general way, including multiple user
constraints and multiple Wait statements. If the description
contains unbounded loops or user constraints are given, a

R. A. BERGAMASCHI ET AL.

path-based scheduling algorithm is applied. Alternatively,
if the description has no unbounded loops and no
constraints are given, a faster, register-transfer-level
scheduling algorithm is applied. If the description

contains no user constraints, no Wait statements, and no
unbounded loops, it is implemented in a single control step
(by either algorithm). In this case, no finite-state machine
is required and the implementation consists only of
combinational logic plus data registers. The decision as to
which scheduling algorithm to use is made automatically,
depending on the constructs used in the description and on
the user-defined constraints. The use of both algorithms
makes HIS capable of synthesizing large control- and/or
data-dominated designs. Currently, there is no provision

in HIS for the automatic synthesis of pipelines.

Path-based scheduling
Many algorithms in HIS are based on the concept of
path-based synthesis. Path-based synthesis comprises

IBM J. RES. DEVELOP. VOL. 33 NO. 122 JANUARY/MARCH 1995

techniques for scheduling and allocation based on the
execution paths in the input specification. A path
represents a sequence of operations in the control-flow
graph which is executed under certain input conditions.
Different execution paths result from the presence of
conditional operations and loops.

HIS uses a path-based scheduler called the As-Fast-As-
Possible (AFAP) algorithm, first presented in [21, 22] and
further extended in [23]. One important difference between
the AFAP algorithm and most other scheduling algorithms
is the treatment of conditional operations and loops. The
AFAP algorithm handles conditional operations and loops
in a transparent way because it works directly on the
different execution paths caused by conditionals and
loops. Most other scheduling algorithms (e.g., force-
directed scheduling [11}, Maha [9], Bud [24], EIf [25])
are based on the parallelization of data-flow operations,
without considering different control paths. The result is
that data-flow schedulers are able to optimize the number
of control steps on only the critical path, while the AFAP
algorithm can optimize the number of control steps on all
execution paths.

The designer can specify constraints on the final
implementation which are used to guide the AFAP
scheduler. They typically define bounds in the
implementation, such as the maximum number of
functional units available or the maximum clock cycle.
Constraints are applied to each execution path as intervals.
A constraint interval delimits a sequence of operations
which cannot be executed in the same control step.
Therefore, in order for the constraint to be satisfied, the
sequence of operations must be scheduled in two or more
control steps.

The AFAP algorithm schedules each path in the control-
flow graph independently, taking into account the order
of operations in the input description and the set of
constraints applicable to each path. The minimum number
of control steps is obtained for all paths (not just the
critical path) using exact clique-covering techniques.

To illustrate the AFAP algorithm, consider the CFG in
Figure 6. The first step is the derivation of all execution
paths in the CFG. Any sequence of operations starting
at a given first operation and ending at a path-breaking
operation defines a path. The first operation in a path can
be 1) the entry operation in the CFG; 2) the first operation
in a loop; or 3) the operation representing a state-transition
operation (such as the Wait Until Clock in VHDL). A
path-breaking operation can be 1) an operation with no
successors; 2) an operation succeeded only by feedback
edges; or 3) an operation representing a state transition.
This CFG contains ten paths, as shown in Figure 7.

The second step is the mapping of all user constraints
onto the paths. As an example, assume that a constraint
of one adder is used, which implies that the final

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Paths 1 2 3 4 5 6 7 8 9 10

I I A A E H A R A R O
[0} 1 1 1 1 1 1 1 5 5 16
P 2 2 2 2 2 2 2 [6+ 17
e 3 3 3 3 3 3 3 111 18
T 4+ 7 7 8 8 9 9 12112 19
a 11 11 11 10 10 13/(13 20
t 12 12 12 12 11 11 14] 15
i 13 13 13 13 12 12 18
o 4 15 14 15 13 13 19
n 8 18 4 15 20
5 19+ 19+ 18

20 20 19+
20

% Execution paths in CFG in Figure 6.

implementation should not contain more than one adder.
This results in the creation of two constraint intervals,
attached to paths 8 and 10 in Figure 7. These constraints
imply that the operations contained in each interval should
not be executed in the same control step. For example, in
order to satisfy the constraint on path 10, the scheduler
must place operations 17 and 19 (the addition operations)
in different control steps. In this way, the adders used in
different states can be shared, and only one is needed
overall.

Given paths and constraints, the scheduler must cuz the
constrained paths into as many control steps as necessary.
If multiple constraints are present on the same path,
clique-covering techniques are used to find the minimum
number of cuts which satisfy all constraints. This resuits in
the minimum number of control steps per path. In Figure 7,
all paths except paths 8 and 10 are unconstrained and can
therefore be scheduled in one control step. Paths 8
and 10 have one constraint each; hence, they need to be
scheduled into two control steps each. In addition, the
scheduler overlaps the control steps for all paths in order
to minimize the total number of states in the final finite-
state machine.

In Figure 7, the constraints are cut between nodes 14
and 18, and between nodes 17 and 18, so that both are
satisfied and the control steps starting at node 18 can be
overlapped on both paths. Once the control steps are
defined, the scheduler generates the required finite-state
machine. The final schedule for the description in Figure 6
under the constraint of one adder is given in Figure 8(a).
The conditions controlling the execution of each operation
in a state are given in Figure 8(b).

Note that each execution path is scheduled in the
minimum number of control steps satisfying the
constraints. This may require some operations to be

R. A. BERGAMASCHI ET AL.

139

140

((mode1 =[01,10,117) & (mode2)

State | Operation node Condition
S0 1,23 o o
4 model =00
7 model =01
8 model =10
9,10 model =11

11,12,13 model =[01,10,11]

14,18,19,20 (model=[01,10,ll])& mode?
15 (model =[01,10;11]) & (modeZ)
St} 56111213, {*1"
14 mode2
15 mode2
$2 18,19,20 e
s3 16,17 !
®

scheduled in multiple states, which is usually not allowed
in data-flow-based schedulers (e.g., FDS [11], Maha [9],
Bud [24], EIf [25]).

The output of the scheduler is the control-automaton
graph, representing the required finite-state machine, plus
the equations describing the state transitions and the
conditions controlling the execution of each operation
in a state.

The complexity of path-based scheduling is proportional
to the number of paths, which may grow exponentially
with the number of conditional operations. Paths represent
the different functions being performed by the design,
which tends to be a bounded number for most data-path-
intensive applications but can grow very large for control-
intensive designs. Examples with over twenty thousand
paths have been successfully synthesized using this
algorithm. In the case of an exponential explosion in the
number of paths, special techniques can be applied in
order to trade off optimality for execution time. One of
these techniques is based on partitioning of the control-
flow graph, which inserts path-breaking operations in order
to reduce the number of paths. As a result, the scheduling
may not find the optimum number of cycles for all paths,
but it can then handle designs with millions of paths.

Register-transfer-level scheduling

In the absence of unbounded loops and user constraints,
HIS uses a fast scheduling algorithm called RTL
scheduling. The name indicates that scheduling is based
only on the explicit scheduling constructs present in the

R. A. BERGAMASCHI ET AL.

(a) Final FSM for description in Figure 6 under the constraint of one adder; (b) table of operation nodes and conditions in each state.

description, such as the Wait Until Clock statements in
VHDL.

The scheduling task in this case is simpler than in the
general case because the state transition points can be
extracted solely from the input description. However, the
RTL scheduling algorithm must still derive the states and
the state transition equations required in the finite-state
machine. These steps can be very complex in the general
case, when multiple explicit scheduling constructs are
present in the same description. In fact, many VHDL
synthesis systems from vendor companies as well as
academic ones are not able to process multiple Wait
Until Clock statements in a general way. HIS can handle
descriptions containing any number of Wait Until Clock
statements, even if placed within conditional statements,
etc.

The RTL scheduling algorithm is performed in the
following steps:

1. Traverse the CFG and identify the state transition
points based on the explicit scheduling constructs. The
operations following state transition points represent the
first operations in the states.

2. Perform a breadth-first traversal of the CFG. As a node
is visited, place it in the current state. The current state
represents the state beginning at the *“last visited”” state
transition point.

3. As a node is visited, compute and store its activating
condition. This condition is given by a set {current
state, path condition}, where the path condition is given

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

((model =[01,10,11]) & (mode2)

State | Operation node Condition
S0 123 "
4 model =00
7 model =01
8 model = 10
9,10 model =11

11, 12,13 model =[01,10,11]
14,18,19,20 | (model =[01,10,11]) & (mode2)
15 (model = {01,10,11]) & (mode?)

S1 | 5,6,11,12,13, ["1"
14,18,19,20 | mode2
15 mode 2

S2 | 16,17,18,19,20 | "1"

(a) ()

(a) FSM produced by the RTL scheduling algorithm for the description in Figure 6; (b) table of operation nodes and conditions in each state.

by the conditions along the paths from the previous is performed in two steps: generation of an initial
state transition point to the node. If a node must be data path, and data-path optimization (or resource
scheduled in multiple states, the activating condition sharing).
will be given by the OR of all sets {current state, path The main problems in the generation of the initial
condition} applicable to the node. data path lie in the derivation of the necessary storage

4. Compute the conditions along the paths from the elements, interconnections, and control signals, for which
starting point to each transition point. These conditions the techniques of data-flow analysis and path analysis [26]
represent the state transition equations. play a central role.

The initial data path is generated in the following steps:
Applying the RTL scheduling algorithm to the

description in Figure 6 produces the finite-state machine 1. Functional unit allocation
shown in Figure 9(a). The conditions controlling the Functional units are created in a one-to-one manner.
execution of each operation in a state are given in For each operation in the data-flow graph, there is a
Figure 9(b). Note that some operations are scheduled in corresponding element created in the data-path graph.
two states, which is necessary in order to implement An operation scheduled in multiple states is mapped
correctly the semantics of the description. onto the same functional unit. Functional units created
The complexity of the RTL scheduling algorithm is in this step exhibit the necessary concurrency to allow
proportional to the number of operations in the CFG, resource sharing as defined by user constraints.
which in most cases is proportional to the number of lines 2. Register allocation
in the input description. If the description contains a large Registers must be created to store values that are
number of conditional operations (therefore a large number generated in one control step and used in another.
of paths), this algorithm is considerably faster than the These values are derived from the scheduled control-
AFAP path-based algorithm. flow graph and the lifetime vectors produced by data-
flow analysis. All assignments alive at the first operation
® Allocation in each state correspond to values produced in a
The allocation task consists of the generation of the data- previous state and therefore need to be stored. Multiple
path elements required in the implementation. It creates assignments to the same variable, if they must be
the data-path graph in the HIS data model. stored, are stored in the same register (instead of
The data path is formed by functional units, storage unfolding the registers). Registers may also be created
elements, and interconnection elements. In HIS, allocation to implement correctly the semantics of the language 141

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995 R. A. BERGAMASCHI ET AL.

142

description. In VHDL, for example, all signals assigned
in processes containing Wait Until Clock statements are
stored.

3. Allocation of multiplexors and interconnections
Interconnections are created to connect functional
units, registers, and ports, as specified in the input
description. Multiplexors are used to converge the
outputs of multiple sources to one destination. Path
analysis and data-flow analysis are again used to
determine the correct sources for any destination.

4. Generation of control signals
Control signals are required to activate the data-path
elements. They include load-enable signals for registers,
select signals for multiplexors, and select signals for
multifunction functional units. Control signals are
represented as BDDs, which are computed on-the-fly
during scheduling and allocation. The ordering of the
input variables in the BDDs is derived from the
ordering of the conditional operations in the CFG [26].
BDDs are used for representing the control logic only;
for example, in the statement if A < B then s <= vall;,
the comparator is actually implemented in the data
path, and its output is a control variable which becomes
part of the BDDs. The BDDs are implemented as a two-
level network if its size is manageable. If the two-level
representation becomes too large, the system
implements the BDDs as a multilevel network (whose
unoptimized size is proportional to the number of BDD
nodes).

As an example of initial allocation, consider again the
description in Figure 6, scheduled as shown in Figure 9.
The initial data path is given in Figure 10.

Four adders are created in the initial data path, based
on the four add operations in the data-flow graph.

Variables A and B must be stored in registers. Note that
the value assigned to B by operation 4 (Add1) in state SO
must be stored because it is used by operation 6 in state
S1. Certain assignments to variables may or may not have
to be stored, depending on the outcome of the conditional
operations (that is, depending on which path is executed).
For example, the assignment to B by operation 2 only has
to be stored if path 5 (see Figure 7) is executed. Under all
other paths, this assignment is overwritten by another
assignment and therefore is not used.

Interconnections are also derived on the basis of the
paths being executed. For example, the inputs to adder
Add4 implementing operation 19 come from various
sources. There are two possible values representing
variable A—one coming from register A4 itself (if the FSM
is in state S2 and path 10 is executed), and the other
coming from the input IN1 (through the assignment in
operation 14). Both sources converge to multiplexor
Mux3, whose output is connected to one input of Add4.

R. A. BERGAMASCHI ET AL.

The other input to operation 19 comes from variable B,
which can have four different values, depending on which
path is executed. One of these values comes from the
output of register B (if the FSM is in states S1 or §2), and
the others come from the assignments at operations 2, 7,
and 9 (in state S0). These four values reach the second
input of Add4 via multiplexor Mux4. The select signals for
all multiplexors and load-enable signals for registers A and
B are given in Figure 10.

S Data-path and control optimizations

Optimizations based on resource sharing are performed on
the data path. Registers, functional units, and multiplexors
are merged using global algorithms based on coloring [27,
28] and clique-covering techniques [29].

The first step in resource sharing is the determination of
which hardware blocks can be shared. This is derived by
building the conflict graph for the blocks. The conflict
graph is defined by CG = {H, E}, where H is the set of
data-path elements and E is the set of conflict edges. An
edge e = {h;, b} implies that elements 4, and h; are in
conflict and therefore cannot be shared. In general, two
registers can be shared if their lifetimes do not overlap.
Two functional units can be shared if they are always used
under mutually exclusive conditions.

Two merging algorithms have been implemented in HIS.
The first one minimizes the final number of functional units
and registers by coloring the conflict graph in the minimum
number of colors. All elements with the same color can be
combined into the same data-path element. The second
algorithm merges data-path elements based on a cost
function, taking into account the area of the blocks being
merged, the final area after merging, and the required
multiplexors.

The novelty in the resource sharing in HIS lies in the
generation of the conflict graph. It is important that the
conflict graph represent exactly the maximum sharing
possibilities. A conflict graph with unnecessary edges may
restrict the sharing possibilities, resulting in suboptimal
results.

Given a scheduled CFG and the lifetime vectors from
data-flow analysis, register lifetimes and conflict edges are
determined in the following way:

The lifetimes of assignment edges computed during
data-flow analysis are projected onto the states of

the FSM. A register, storing a variable, is alive in a
state if any assignment to that variable is alive at the
first operation in the state. Therefore, in order to
determine all registers alive in a state, one must check
all assignments alive at the first operation in the state.
Two registers alive in the same state have overlapping
lifetimes and cannot be shared; therefore, a conflict
edge should be created between them.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Mux5

Inl +

Add3

>
Mux2 out3

+ In2=——2 >
I— — Add2 00" 3 Outl

In] —— +

In2 Addl

Muxl [- e une 1] :
llw Il_ 1
" 01 L p— 2
" 11 " — 3
Mux4

m "
Inl +
Add4
Mux3

Outd

Control signals (unoptimized, unencoded)

MUX1: SEL_0 = 80.(model =00)
SEL_1 = S0.(model = 10).mode2
SEL_2 = S0.(model = 11).mode2
SEL_3 = S0.(model =01).mode2

0 e

\

1

n 01 " 2
y

n 1 L

Out2

MUX2: SEL_0 = 80.(model =01)
SEL_1 = 81
SEL._2 = S0.(model = 10)
SEL_3 = §0.(model = 11)

MUX3: SEL 0= S2

SEL_1 = S0.(model =[01,10,11]).mode2 | S1.mode2

MUX4: SEL_0 = Sl.mode2 | S2
SEL._1 = §0.(model = 10).mode2
SEL_2 = §0.(model = 11).mode2
SEL_3 = §0.(model =01).mode2

MUX5: SEL_O0 = S0.(model =[01,10,11]).mode2 | S1.mode2 MUX6: SEL_0 = S1.mode2

SEL_1 = S0.(model = 10).mode2
SEL_2 = S0.(model = 11).mode2
SEL_3 = Sl.mode2

SEL_1 = S0.(model = 10).mode2
SEL_2 = $0.(model = 11).mode2
SEL_3 = S0.(model =01).mode2

REG A: Load_A = S0.(model = 01).mode2 | $O.(model ={10,11]) | S1
REGB: Load_B = $0.(model =00)) SO.mode2

Consider, for example, the FSM in Figure 9. In order to
determine which registers have overlapping lifetimes on
state S1, one must first retrieve the lifetime vector from
the first operation in state S1. The lifetime vector of
operation 6 (see Figure 6) shows that there are live
assignments at positions {2, 3, 5, 7, 8}, which correspond
to assignments to variables A and B. This implies that both
variables are stored and that their lifetimes overlap on
state S1. Hence, a conflict edge is created between

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

Initial data path for description in Figure 6, scheduled according to Figure 9.

registers A and B. By repeating this procedure for all
states, the complete conflict graph is generated. This
algorithm, because it uses global data-flow analysis, is able
to take into account conditional operations and loops,

and finds the exact conflict graph for register sharing.

The REAL [19] algorithm also computes the lifetimes of
registers, but in a more limited way because it only looks
at single if-then-else blocks. As a result, sharing may be
more restrictive.

R. A. BERGAMASCHI ET AL.

143

144

Merging: ADD1 is merged with ADD4;
ADD?2 is merged with ADD3.

Conflict graph for addition operations in description in Figure 6,
scheduled according to Figure 9.

The conflict graph for functional units is generated on
the basis of the mutual exclusiveness of the operations
implemented in the FUs. Mutual exclusiveness of
operations is determined as follows:

Two operations are NOT mutually exclusive if

the conditions controlling their execution are not
orthogonal. Let C(op;) and C(op,) be the conditions
controlling operations op, and op;. Operations op,; and
op; are not mutually exclusive if C(op,) A Clop;) # 0.
Given any two operations scheduled in the same state,
if the AND of their conditions is not null, they are not
mutually exclusive, and a conflict edge is created
between the corresponding functional units. This
procedure is repeated for all pairs of operations in all
states. The conditions controlling the execution of
operations are computed during scheduling and
allocation (see Figure 9).

This algorithm is able to derive general conflict
information on all functional units present in the design,
including those scheduled in different states as well as in
different branches of conditional operations.

Consider again Figure 9. The conflict graph for the
adders in this design is shown in Figure 11. Operations
4 and 19 are both scheduled in state S0; however, they
are indeed mutually exclusive, because the conditions
controlling both operations are orthogonal. Note that
although these operations are not in different branches of
the same if-then-else, HIS was still able to determine that
they are never executed at the same time, and therefore
can be shared.

R. A. BERGAMASCHI ET AL.

Other resource-sharing algorithms, including those
from vendors and universities (e.g., [11, 29, 30]) are more
limited because they consider only operations in different
states and operations in different branches of a conditional
operation. Those algorithms may not be able to determine
that operations 4 and 19 can be shared.

The final data path for the FSM in Figure 9, after
resource sharing, is given in Figure 12.

The techniques used in HIS for control optimization are
based on two-level minimization, behavioral don’t-cares,
state minimization, and state encoding. The control signals
can be based on binary as well as multivalued variables.
Behavioral don’t-cares are extracted during synthesis and
used in the minimization of the control signals. Details
concerning the control optimization algorithms in HIS can
be found in [31].

4. Production use of HIS

The HIS system is currently in production use by several
groups at different IBM sites. The previous synthesis
methodology used by these groups consisted of automatic
logic synthesis starting from gate-level descriptions.
Among the key characteristics in HIS which were required
by these groups to switch to a high-level design
methodology were the following:

» The ability to synthesize designs as efficiently or better
than in the previous methodology.

& The ability to synthesize different levels of abstraction,
including sequential VHDL, and automatic inference of
registers.

& The close integration of HIS with the BooleDozer logic
synthesis system, used for gate-level optimization and
technology mapping.

o The means to control the synthesis process if necessary.
A significant level of control was possible by making
HIS accept the same synthesis directives accepted by
the previous methodology, which were already familiar
to the designers. In addition, special-purpose attributes
for controlling the high-level synthesis steps and the
interaction with BooleDozer logic synthesis proved
very useful.

The use of higher-level descriptions significantly
increased design productivity by speeding up the VHDL
coding and simulation turnaround. The use of high-level
synthesis and logic synthesis combined gave the designers
the ability to process higher-level descriptions and obtain
results comparable to or better than in the previous
methodology.

The savings in total design time, considering
specification, simulation, synthesis, and layout, depend
upon the previous methodology used. For example, in
[14], significant savings were achieved in going from a

IBM J. RES. DEVELOP. VOL. 39 NO. 172 JANUARY/MARCH 1995

Our3
Add_2&3 Mux2
NOOII— 3
> A + 12 wed 2
1
0 Outl
Inl 0
Int 1 Mux3
Mux10
N Add_1&4
" 00"__ 1
b n01 -} +
> B ML e 3 Out4
T2 y Mux8
0
“00"-- 1
" 01 |l_ 2 >
] Y
11"t 3 Mux6 Out2

schematics-based methodology to a high-level synthesis
methodology. This is clearly to be expected, since neither
the previous nor the new methodology included logic
synthesis (which is the most time-consuming step).

In IBM, the previous methodology was already a

language-based and logic-synthesis-based methodology,
although dominated by concurrent and structural styles. In
this case, savings in synthesis time (considering high-level
and logic synthesis) were not expected in a single synthesis
pass, since most of the synthesis time was dominated by
logic synthesis. However, considering that most designs
need several synthesis runs, it was always faster to refine
the design at a high level (running high-level synthesis
only), and then proceed to logic synthesis. Most of the
design time savings came from four sources: 1) the ability
to use sequential descriptions and have all the control and
data-path logic and registers automatically generated;
2) designer control over implementation directly in the
description; 3) the ability to refine the design at a high
level (before logic synthesis); and 4) faster simulations
due to sequential descriptions.

IBM J. RES. DEVELOP. VOL. 39 NO. 12 JANUARY/MARCH 1995

Final data path for description in Figure 6, scheduled according to Figure 9, after sharing of adders.

Table 1 Characteristics of four designs produced by HIS.
Design VHDL lines Entities Gates Cycle time
(thousands) (ns)
Chipl 13500 9 70 30
Chip2 8100 9 40 30
Chip3 5900 1 20 15
Chip4 6300 8 5 30

In addition to its common use as a pushbutton synthesis
system, HIS is being used in different ways, as highlighted
below.

¢ Automatic synthesis from VHDL
HIS is being used as an automatic synthesis tool,
integrated with the BooleDozer logic synthesis system.
Among the chips fabricated to date are ASIC peripheral
chips and controllers in CMOS technology. Table 1
shows the numbers for four designs, in terms of VHDL

R. A. BERGAMASCHI ET AL.

145

146

lines, number of VHDL entities in which the design was
partitioned, number of final gates after logic synthesis,
and clock frequency. The execution time for HIS is
usually one to two orders of magnitude faster than the
execution time for the other design stages (e.g., logic
synthesis, layout, simulation).

o Fast synthesis for emulation
HIS and BooleDozer are also being used as a fast
synthesis path for mapping VHDL into a gate-level
netlist for emulation purposes. Since the purpose is
to produce a functional netlist, without being overly
concerned for the final area or delay, fast algorithms can
be used both in HIS and in BooleDozer, resulting in fast
turnaround time. This methodology is being used in
the design of a CMOS microprocessor. Under this
methodology, HIS and BooleDozer have been used to
synthesize over 175 thousand lines of VHDL, producing
netlists with approximately 1.75 million gates.

o Fast synthesis for verification
Similarly to the previous case, HIS and BooleDozer are
being used as a fast synthesis path for formal verification
purposes. This methodology combines custom CMOS
design with VHDL design, synthesis, simulation, and
verification. In the design of a high-performance
microprocessor, a number of chip partitions are custom-
designed at the transistor level. These partitions are also
coded in VHDL and simulated. HIS and BooleDozer are
used to synthesize the VHDL descriptions to a gate-level
netlist. Then a formal verification tool, VERITY [32], is
used to verify that the gate-level netlist synthesized from
the VHDL is functionally equivalent to the transistor-
level netlist for the same partition. In this way, the
functional simulation can be confined to the VHDL
level, and need not be repeated at the transistor level.
Under this methodology, HIS and BooleDozer have been
used to synthesize approximately 40 thousand lines of
VHDL representing over 400 custom partitions.

¢ Fast mapping for cycle simulation
The ability of HIS to provide a fast synthesis path
from VHDL to a gate-level netlist makes possible its
integration with other tools which typically require
inputs strictly at the gate level. One such application is
cycle simulation. Most VHDL. simulators are event-
driven simulators, which is a direct consequence of the
semantics of the language. However, event-driven
simulators are, in general, slower than gate-level cycle
simulators. As a result, most VHDL simulators are still
slower than existing gate-level cycle simulators. For this
reason, it would be efficient if one could simulate VHDL
using a cycle simulator. One possible way to achieve
this goal is to use HIS as a VHDL front end to a cycle
simulator. HIS can be used to generate a gate-level
netlist from VHDL, which can then be submitted to the
cycle simulator.

R. A. BERGAMASCHI ET AL.

o Early estimation and analysis tool
The HIS system is being integrated with timing analysis
and floorplanning tools with the goal of providing an
estimation and analysis tool to be used early in the
design process. Under this tool, the design is initially
synthesized by HIS to produce a technology-independent
network consisting of random logic and data-path
elements. Given a technology library, HIS then estimates
the area and delay of the elements of the network.
Different algorithms are used for estimating the
random logic and data-path elements. Timing analysis
is then performed using these estimations in order to
provide timing information on the whole design. The
floorplanning tool is used for placing the blocks and
deriving more accurate wire capacitance information,
which can be used to obtain a more precise timing
analysis and can be fed forward to logic synthesis. This
forward design methodology allows layout considerations
to be taken into account much earlier in the design
process, reducing the expensive steps of post-logic-
synthesis layout, back-annotation, and resynthesis.

5. Conclusions

This paper has presented the main algorithms, modeling
capabilities, and methodology considerations in the HIS
system.

HIS is able to synthesize VHDL descriptions in different
abstraction levels, ranging from behavioral to structural.
HIS contains general algorithms for scheduling and
allocation which can handle behavioral, sequential,
concurrent, and structural constructs, and user-defined
constraints. Different algorithms, specially tuned to the
abstraction level of the description, are used in order to
synthesize designs efficiently for execution time and
memory usage.

The scheduling and allocation algorithms in HIS are
based on global techniques such as global data-flow
analysis and path analysis. The scheduler is able to find
the exact minimum number of control steps required by
a design under user constraints. The resource-sharing
algorithms are more general than previous algorithms in
determining the set of elements that can be shared. Global
data-flow analysis, path analysis, and BDDs are used
to derive the exact maximum set of sharable data-path
elements.

Among the main characteristics required for production
use of HIS were 1) efficient high-level synthesis
algorithms, 2) a rich set of directives for controlling the
synthesis process, and 3) integration with the BooleDozer
logic synthesis system.

The capabilities of the system have proved to be
powerful enough for it to be used in production as part
of the synthesis methodology, and in domains for which
it was not originally intended, such as a front end for

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

verification and cycle simulation. Several CMOS chips,
ranging from small to large, have been produced
using HIS.

Acknowledgments

The authors thank Kurt Carpenter, Pete Osler, and Coby
Sella for being patient early users of the system and for
many helpful suggestions for improving its practicality.

BooleDozer is a trademark of International Business Machines
Corporation.

References

1. T. D. Friedman and S. C. Yang, ‘“Methods Used in an
Automatic Logic Design Generator (ALERT),”” IEEE
Trans. Computers C-18, 593-614 (1969).

2. S. J. Hong, R. G. Cain, and D. L. Ostapko, ““MINI: A
Heuristic Approach for Logic Minimization,”” IBM J. Res.
Develop. 18, 443-458 (September 1974).

3. R. Brayton, G. Hachtel, C. McMullen, and A.
Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1985.

4. R. Brayton and C. McMullen, ““Synthesis and
Optimization of Multistage Logic,” Proceedings of the
International Conference on Computer Design, IEEE,
October 1984, pp. 23-28.

5. John A. Darringer, Daniel Brand, John V. Gerbi, William
H. Joyner, Jr., and Louise Trevillyan, “LSS: A System
for Production Logic Synthesis,’” IBM J. Res. Develop.
28, 537-545 (September 1984).

6. J. Vanhoof, K. Van Rompaey, 1. Bolsens, G. Goossens,
and H. De Man, High-Level Synthesis for Real-Time
Digital Signal Processing, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1993.

7. D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A.
Nestor, J. V. Rajan, and R. L. Blackburn, Algorithmic
and Register-Transfer Level Synthesis: The System
Architect’s Workbench, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1990.

8. D. C. Ku and G. De Micheli, ‘“Relative Scheduling Under
Timing Constraints: Algorithms for High-Level Synthesis
of Digital Circuits,”” IEEE Trans. Computer-Aided Design
CAD-11, 696-718 (June 1991).

9. A. C. Parker, J. T. Pizarro, and M. Mlinar, “MAHA: A
Program for Datapath Synthesis,”” Proceedings of the 23rd
ACM/IEEE Design Automation Conference, June 1986,
pp- 461-466.

10. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level
Synthesis, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1992.

11. P. G. Paulin and J. P. Knight, “‘Force-Directed Scheduling
for the Behavioral Synthesis of ASIC’s,”” IEEE Trans.
Computer-Aided Design CAD-8, 661-679 (June 1989).

12. R. Camposano, R. A. Bergamaschi, C. Haynes, M. Payer,
and S. M. Wu, “The IBM High-Level Synthesis System,”
High-Level VLSI Synthesis, R. Camposano and W. Wolf,
Eds., Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1991, pp. 79-104.

13. C.-J. Tseng, R.-S. Wei, S. G. Rothweiler, M. M. Tong,
and A. K. Bose, ““Bridge: A Versatile Behavioral
Synthesis System,”” Proceedings of the 25th ACM/IEEE
Design Automation Conference, Anaheim, CA, July 1988,
pp. 415-420.

14. R. W. Hunter, T. Fuhrman, and D. E. Thomas, ““Working
Chips from High-Level Synthesis: A Case Study from
Industry,”” Proceedings of the IEEE Custom Integrated

IBM J. RES. DEVELOP. VOL. 39 NO. 172 JANUARY/MARCH 1995

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31,

32.

Circuits Conference, San Diego, May 1994, pp. 144-147.
T. Fuhrman, “Industrial Extensions to University High
Level Synthesis Tools: Making It Work in the Real
World,” Proceedings of the 28th ACM/IEEE Design
Automation Conference, San Francisco, June 1991, pp.
520-525.

R. Camposano and R. M. Tabet, ““Design Representation
for the Synthesis of Behavioral VHDL Models,””
Proceedings of the 9th International Symposium on
Computer Hardware Description Languages and Their
Applications, Elsevier Science Publishers B.V.,
Washington, DC, June 1989, pp. 49-58.

A. Aho, R. Sethi, and J. Ullman, Compilers, Principles,
Techniques and Tools, Addison-Wesley Publishing Co.,
Reading, MA, 1986.

R. Camposano and W. Rosenstiel, ‘‘Synthesizing Circuits
from Behavioral Descriptions,”” IEEE Trans. Computer-
Aided Design CAD-8, 171-180 (February 1989).

F. J. Kurdahi and A. C. Parker, “REAL: A Program for
Register Allocation,”” Proceedings of the 24th ACM/IEEFE
Design Automation Conference, June 1987, pp. 210-215.
M. C. McFarland, A. C. Parker, and R. Camposano, ““The
High-Level Synthesis of Digital Systems,”” Proc. IEEE 78,
No. 2, 301-318 (February 1990).

R. Camposano and R. A. Bergamaschi, “Synthesis Using
Path-Based Scheduling: Algorithms and Exercises,”
Proceedings of the 27th ACM/IEEE Design Automation
Conference, June 1990, pp. 450-455.

R. Camposano, ‘‘Path-Based Scheduling for Synthesis,””
IEEE Trans. Computer-Aided Design CAD-10, 85-93
(January 1991).

R. A. Bergamaschi, R. Camposano, and M. Payer,
““Scheduling Under Resource Constraints and Module
Assignment,”” INTEGRATION, the VLSI Journal 12, 1-19
(December 1991).

M. C. McFarland and T. J. Kowalski, ‘““Incorporating
Bottom-Up Design into Hardware Synthesis,”” IEEE Trans.
Computer-Aided Design CAD-9, 938-950 (September 1990).
E. F. Girczyc, R. J. A. Buhr, and J. P. Knight,
““Applicability of a Subset of ADA as an Algorithmic
Hardware Description Language for Graph-Based
Hardware Compilation,”” IEEE Trans. Computer-Aided
Design CAD-4, 134-142 (April 1985).

R. A. Bergamaschi, R. Camposano, and M. Payer,
““Allocation Algorithms Based on Path Analysis,”
INTEGRATION, the VLSI Journal 13, 283-299
(September 1992).

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein, ‘““‘Register
Allocation Via Coloring,”” Computer Science Technical
Report RC-8395 (#36543), IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, April 1980.

T. K. Philips, “New Algorithms to Color Graphs and Find
Maximum Cliques,” Computer Science Technical Report
RC-16326 (#72348), IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1990.

C. J. Tseng and D. P. Siewiorek, ‘“Automated Synthesis
of Data Paths in Digital Systems,”” IEEE Trans. Computer-
Aided Design CAD-5, 379-395 (July 1986).

B. Gregory, D. MacMillen, and D. Fogg, ““ISIS: A System
for Performance Driven Resource Sharing,”” Proceedings
of the 29th ACM/IEEE Design Automation Conference,
June 1992, pp. 285-290.

R. A. Bergamaschi, D. Lobo, and A. Kuehlmann,
“‘Control Optimization in High-Level Synthesis Using
Behavioral Don’t Cares,”” Proceedings of the 29th
ACM/IEEE Design Automation Conference, Anaheim,
CA, June 1992, pp. 657-661.

A. Kuehlmann, A. Srinivasan, and D. P. LaPotin, ‘“Verity—
A Formal Verification Program for Custom CMOS Circuits,”

IBM J. Res. Develop. 39, 149-165 (1995, this issue). 147

R. A. BERGAMASCHI ET AL.

148

Received May 27, 1994; accepted for publication
September 26, 1994

Reinaldo A. Bergamaschi IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (rab@watson.ibm.com). In 1982,
Dr. Bergamaschi graduated in electronics engineering (with
honors) from the Aeronautics Institute of Technology, Sao
Jose dos Campos, Brazil, and in 1984 he received the M.E.E.
degree (with distinction) from the Philips International
Institute, Eindhoven, The Netherlands. In 1989 he received
the Ph.D. degree in electronics and computer science from
the University of Southampton, England, and joined the IBM
Thomas J. Watson Research Center, where he currently leads
the high-level synthesis project. His main interests are in the
areas of computer-aided design, high-level synthesis, logic
synthesis, and computer design.

Richard A. O’Connor IBM Microelectronics Division,
EDA Laboratory, 522 South Road, Poughkeepsie, New York
12601 (oconnorr@vnet.ibm.com). Mr. O’Connor received his
undergraduate degree in electrical engineering from Rensselaer
Polytechnic Institute in 1990. Currently, he is a member of
the synthesis development team at the IBM Corporation in
Poughkeepsie, New York, and on a part-time basis is pursuing
his master’s degree in computer science. Prior to working for
IBM, he spent time working for Hewlett-Packard in Andover,
Massachusetts, and Asea Brown-Boveri in Windsor,
Connecticut.

Leon Stok IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (stoki@watson.ibm.com). Dr. Stok studied electrical
engineering at the Eindhoven University of Technology, The
Netherlands, from which he graduated with honors in 1986.

In 1991 he received the Ph.D. degree from the Eindhoven
University. He is currently working in the System, Technology
and Science Department on BooleDozer, the IBM synthesis
tool. Prior to this assignment, Dr. Stok worked in the
“Unternehmensbereich Kommunikations-und Datentechnik™
of Siemens AG in Munich in 1985, and in the Mathematical
Sciences Department of the IBM Thomas J. Watson Research
Center during the second half of 1989 and the first half of 1990.
Dr. Stok has published several papers on various aspects of
high-level and architectural synthesis and on automatic
placement and routing for schematic diagrams. In 1993,

he received an IBM Research Division Award for his
contributions to the BooleDozer Synthesis system. His
research interests include high-level and logic synthesis,
layout synthesis, and system synthesis and verification. He

is a member of the Institute of Electrical and Electronics
Engineers.

Michael Z. Moricz IBM Microelectronics Division, EDA
Laboratory, 522 South Road, Poughkeepsie, New York 12601
(moricz@vnet.ibm.com). Dr. Moricz received his master’s
and Ph.D. degrees in computer engineering from Syracuse
University, Syracuse, New York, in 1989 and 1992,
respectively. Currently he is a staff engineer at IBM in
Poughkeepsie, New York. His research interests include logic
synthesis, behavioral synthesis, and parallel processing. He
has been a member of the IEEE Circuits and Systems Society
since 1988.

R. A. BERGAMASCHI ET AL.

Shiv Prakash IBM Microelectronics Division, EDA
Laboratory, 522 South Road, Poughkeepsie, New York 12601
(sprakash@vnet.ibm.com). Dr. Prakash received his bachelor’s
degree (B.Tech.) in electrical engineering from the Indian
Institute of Technology, Kanpur, India, in 1982, his master’s
degree in computing science from Simon Fraser University in
Canada in 1987, and his Ph.D. degree in electrical engineering
from the University of Southern California, Los Angeles,

in 1993. Currently, he is a staff member in the IBM
Microelectronics Division in Poughkeepsie, New York. His
areas of interest include high-level synthesis, system-level
synthesis, and multiprocessor systems. He is a member of the
IEEE Computer Society and the IEEE Circuits and Systems
Society.

Andreas Kuehlmann IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (kuehl@watson.ibm.com). Dr. Kuehlmann
received the Dipl.-Ing. degree and the Dr. sc. techn. degree in
electrical engineering from the Technical University Ilmenau,
Germany, in 1986 and 1990, respectively. From 1990 to 1991
he worked at the Fraunhofer Institute of Microelectronic
Circuits and Systems, Duisburg, Germany, where he was
engaged in the development of a design system for embedded
microcontrollers. In 1991 Dr. Kuehlmann joined the IBM
Thomas J. Watson Research Center in Yorktown Heights,
New York. After working on various problems in high-level
and logic synthesis, he concentrated primarily on verification
techniques for large custom CMOS designs. Dr. Kuehlmann’s
primary research interests are in the design and verification of
digital VLSI circuits, particularly in system design, high-level
and logic synthesis, design verification, and layout generation.

D. Sreenivasa Rao /BM Microelectronics Division, EDA
Laboratory, 522 South Road, Poughkeepsie, New York 12601
(dsr@vnet.ibm.com). Dr. Rao received his Ph.D. in computer
engineering from the University of California in 1993; he has
been with IBM’s EDA Laboratory in Poughkeepsie, New
York, since then. His area of expertise is high-level synthesis,
but his research interests extend to other areas of CAD such
as system design, routing and layout, and combinatorial
optimization.

IBM J. RES. DEVELOP. VOL. 39 NO. 1/2 JANUARY/MARCH 1995

