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The  use  of  modern  hardware-description 
languages in the  chip  design  process has 
allowed  designs to be  modeled  at  higher 
abstraction  levels.  More  powerful  modeling 
styles,  such  as  register-transfer  and  behavioral 
level  specifications,  have  spurred  the 
development  of  high-level  synthesis 
techniques in both industry and  academia. 
However,  despite  the  many  research efforts, 
the  technology is not  yet in widespread  use 
in industry.  This  paper  presents  the IBM 
High-Level  Synthesis  System  (HIS), which is 
the first such  system to be  used in production 
in IBM. HIS synthesizes  gate-level  networks 
from VHDL models  at  various  levels  of 
abstraction.  The  main  algorithms,  modeling 
capabilities,  and  methodology  considerations 
in the HIS  system  are  presented.  Results 
show  that HIS is capable  of producing 
implementations  comparable to or  better  than 
those of the  existing  methodology,  while 
shortening  the  design  time  significantly. The 
HIS system is currently in production  use  and 
evaluation in several IBM sites for processors 
and  peripheral chip designs,  as well as  being 
an  external  commercial  product. 

1. Introduction 
Computer-aided design  (CAD) tools are in use today in 
almost  all aspects of digital system design.  Among the 
most  common are tools for physical  design,  simulation, 
and synthesis. While tools for physical  design  and 
simulation  have been in use  in industry for a long  time, 
synthesis tools have not, except for a few proprietary 
systems. 

modeling tools in terms of abstraction level. The first 
hardware description languages  used in industry were 
basically transistor-level and gate-level netlists. These were 
followed by languages capable of modeling designs at the 
logic  level, register-transfer (RT)  level,  and behavioral 
level. As expected, the evolution in simulation tools 
followed a similar path. Circuit-level simulation was 
followed by logic simulation, and  more recently by 
functional simulation. As the hardware description 
languages evolved, simulators were developed 
for them. 

Clearly, this evolution was not  isolated  from other 
design aspects, in particular, silicon technology. As 
fabrication technology matured, it became feasible to 
design  and characterize larger  and  larger blocks. The 
development of gate arrays and standard cells contributed 
significantly to this evolution. 

Synthesis tools have usually  followed  simulation  and 
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Increasing levels of integration created a design 
problem. The complexity of the logic in a chip quickly 
made  design intractable at the transistor level or even at 
the gate level.  Design teams had to become larger to 
maintain productivity, with the result that each designer 
was able to understand only a very small part of the 
overall system. This caused a productivity bottleneck 
and created performance and  verification problems. 

A paradigm shift was needed; larger integration scales 
could  not  be  modeled by low levels of abstraction. Higher 
levels of abstraction were needed to increase designers' 
productivity and to describe the design concisely, allowing 
fewer designers to understand the whole system and the 
implications of design changes in its performance and 
functionality. 

complex designs to be modeled, which required more 
powerful synthesis systems. Synthesis tools evolved 
according to the existing  modeling capabilities. Tools for 
minimizing  two-level  Boolean expressions were among the 
first to be developed. These were followed by tools for 
synthesis of combinational networks and PIAS. Current 
tools can synthesize complex RT-level networks 
automatically from  language descriptions. 

Despite many years of research in academia  and 
industry on  all aspects of synthesis, only in recent years 
has the technology reached the marketplace. The first 
company to recognize the importance of and make use of 
logic synthesis in large-scale designs was IBM,  in the early 
'80s. Systems such as ALERT [l], MINI [2], Espresso [3], 
YLE [4], and LSS [5] demonstrated the capabilities of 
logic synthesis and paved the way for the tools available 
on the market today. As early as 1984, the LSS system 
was used to design 90 percent of the chips in a large- 
processor mainframe. Systems for logic  and  RT-level 
synthesis of application-specific ICs (ASICs) are currently 
available from  CAD vendor companies as well as from 
internal industry groups. 

reaching the marketplace was the lack of an integrated 
methodology  involving  modeling,  simulation, synthesis, 
and verification, which  allowed the designer to speed up 
the design process, maintain a certain level of control over 
the final implementation, and verify that the final circuit 
correctly implemented the simulated functionality. Modern 
logic synthesis systems achieve many of these goals by 
combining  efficient  algorithms, control mechanisms for 
the designer to influence the synthesis outcome, and 
verification mechanisms (using formal methods and/or 
simulation techniques) to check the correctness of the 
synthesis process. 

The trend in  modeling, simulation, and synthesis is 
to push the abstraction level even further toward the 
behavioral and system level. Behavioral modeling  is 

More  powerful  languages  and simulators allowed  more 

One of the reasons for the delay in logic synthesis tools 
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becoming  more acceptable to designers as they are faced 
with increasingly complex circuits. The acceptance of 
high-level  modeling and functional simulation has spurred 
the development of high-level synthesis in industrial 
environments. 

Despite the many research efforts,  high-level synthesis 
systems have so far failed to make a successful transition 
to the marketplace, except for systems for special 
applications, such as digital-signal processing (e.g., [6]) .  
The main reason has been the lack of an integrated high- 
level  design  methodology, added to the fact that designs 
produced by most  high-level synthesis systems are not yet 
competitive. 

Many  high-level synthesis systems have been developed 
in universities. Most notably, research at CMU [7], 
Stanford [8], USC [9], and Irvine [lo], among others, has 
helped to create an  algorithmic basis for others to build 
upon.  Among the efforts in industrial environments, work 
at IMEC [6], BNR [ll], IBM [12], AT&T [13], and GM 
[14] has contributed significantly to bringing  high-level 
synthesis closer to production use. The work being done 
at GM [14, 151 corroborates the point that a high-level 
synthesis tool must be smoothly integrated with the rest 
of the design  methodology. 

This paper presents the HIS system, which is the first 
high-level  design system to be used  in  IBM and among the 
first  in industry. HIS was developed at IBM Research and 
EDA-IBM Microelectronics; it  is currently in production 
use and evaluation at several sites. The main algorithms, 
modeling capabilities, and  methodology considerations in 
the HIS system are presented. 

The  main  goal throughout this project was to make 
high-level synthesis sufficiently practical and efficient for 
a production environment. Early experiences in using HIS 
pointed out various bottlenecks ranging  from  methodology 
to algorithmic  problems. These experiences led to the 
development of a design  methodology and algorithms for 
high-level synthesis which are proving to be efficient for 
production use. 

This paper is structured as follows. Section 2 presents 
an overview of the high-level  design  methodology  and 
discusses the specification  and  modeling aspects in the HIS 
system. Section 3 explains the main synthesis algorithms 
in HIS, including the data model,  data-flow  analysis, 
scheduling, allocation, and optimizations. Section 4 gives 
details on the current production use of HIS  as well as 
future applications. Section 5 presents the conclusions. 

2. A methodology for high-level  synthesis 

Overview 
The high-level synthesis process encompasses various 
design aspects ranging  from  modeling and simulation to 
logic synthesis, layout, and test. As a result, in order 
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for  high-level synthesis to produce good results and be 
adopted by designers, it must be tightly integrated with 
other aspects in the methodology. 

In the previous production methodology, designs were 
first  specified  using hardware description languages, at the 
RT or gate level; then submitted to logic synthesis (e.g., 
BooleDozer"') for logic  minimization  and technology 
mapping,  and  finally to physical  design tools for 
layout. HIS is  being introduced on top of this existing 
methodology. The input description allows behavioral 
specifications in addition to all lower levels. The output 
of high-level synthesis is a gate-level description which 
can be processed by the existing tools. The  goal was to 
provide designers with  higher-level  modeling  and synthesis 
capabilities, integrated smoothly with the rest of the design 
process, to deliver results of comparable or better quality, 
and to shorten the whole  design cycle. 

Figure 1 shows an overview of the high-level synthesis 
methodology.  The  design process starts with a language 
specification written by the user, which is the input to 
simulation. The  goal of simulation depends on the level 
of the description. If the description is fully behavioral, 
the goal  is to check functionality, not necessarily with a 
defined cycle-by-cycle behavior. If the description is at RT 
or gate level,  simulation  is used for checking functionality 
as well as cycle behavior. 

HIS accepts descriptions written in VHDL or Verilog 
HDL. The examples and the discussion in this paper use 
VHDL, but all  of the techniques described are equally 
applicable to Verilog. 

The specification  is then input to high-level synthesis, 
which maps  it to a technology-independent gate-level 
netlist. At this point the designer can, within the high-level 
synthesis tool, estimate the delay and area of the design 
using a target technology. If the estimations represent an 
unacceptable design  point, the designer can backtrack 
and explore the design space either by changing the 
input description or by running  high-level synthesis 
with  different constraints. Once a satisfactory design 
point is found (that is, the estimations are close to the 
requirements), the design  flow can proceed, and the netlist 
can be submitted to logic synthesis for optimization and 
technology mapping. 

Although the high-level synthesis process works on 
technology-independent representations, it can query 
information  from a technology library in order to make 
better design decisions. For example, to determine 
whether two operators should be shared with  multiplexed 
inputs, it is important to compute the area savings 
resulting from one less operator and possibly two extra 
multiplexors. The area for various hardware primitives 
can be obtained from the technology library. 

The capability of having area and delay estimations 
inside HIS is important for reducing total design  time. In 

(simulation)- 

* High-level  synthesis 

Technology-independent 
RT/gate-level  network 

logic synthesis 

netlist 

Overview of high-level synthesis methodology. 

traditional methodologies (based only on  logic synthesis), 
the design  loop  is  closed after logic synthesis (or even after 
layout and back-annotation). At that point, the designer 
checks whether the requirements are being  satisfied. If not, 
the alternatives are either to rerun logic synthesis with 
different constraints or to change the input description and 
rerun synthesis. The drawback with this methodology  is 
that potential design problems are discovered only after 
a significant amount of time has been invested in  logic 
synthesis, which can be very time-consuming for large 
designs. 

delay estimations much earlier in the design process, and 
can explore the design space by either rerunning HIS 
with  different constraints or modifying the VHDL input. 
Refining the design at the high level speeds up the design 
cycle considerably, as the execution time  for HIS is in 
general one to two orders of magnitude faster than logic 
synthesis techniques. 

Using the HIS system, the designer can obtain area and 

Specification and modeling 
The  specification  and  modeling of a design  play a central 
role in the efficient  use of high-level synthesis. On 
one hand, designers want to have some control over 
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the implementation to guarantee a certain level of 
performance, but at the same time they want to use more 
sequential and behavioral modeling in order to benefit  from 
lower complexity and faster simulation. These somewhat 
opposing requirements must be reconciled by the high- 
level synthesis system. 

HIS is able to satisfy these requirements by supporting 
VHDL descriptions in behavioral, sequential, concurrent, 
and structural levels, and by providing the user with a rich 
set of controls over various implementation characteristics. 

An important feature of VHDL is the ability to describe 
designs at different levels of abstraction. VHDL constructs 
such as processes, blocks, concurrent statements, and 
component instantiations can be used for modeling designs 
at the behavioral, sequential, concurrent, and structural 
levels.  The  designer can combine different abstraction 
levels in the same design.  Algorithmic parts are more 
easily described at the behavioral or sequential level,  while 
random  logic  and gate-level networks can be directly 
described at the RT or concurrent level. 

The types of design styles supported by HIS range  from 
fully behavioral descriptions to finite-state machines to 
combinational logic. HIS automatically detects the level 
of the description and applies the appropriate synthesis 
algorithms. Figure 2 shows the basic synthesis algorithms 
applicable to each abstraction level. 

In HIS, the user can  influence synthesis and control 
several implementation details by using special-purpose 
VHDL attributes. Attributes are the mechanism in VHDL 
for attaching extra information to any VHDL element. For 
example, attributes can be attached to a VHDL design 
unit, function, or component, or even a simple statement. 
These special-purpose attributes allow the user to specify, 

134 among other things, 

The  number  and type of functional units that each 

Directives for resource sharing. 
Directives for input/output (ports) mapping  and  timing. 
The technology cell to which a certain VHDL 

The technology cell to which a given VHDL expression 

Whether or not scan latches should be used and a scan 

VHDL process can use. 

component should be  mapped. 

should be mapped. 

chain generated. 
Timing constraints to be passed to logic synthesis. 
Any other information that should be passed to back-end 
layout tools. 

Special-purpose synthesis attributes allow the user to 
exert control over the implementation while  taking 
advantage of the high-level synthesis capabilities. 

3. Synthesis  algorithms in HIS 
The synthesis task performed by HIS consists of 
generating a network representation which implements 
the functionality specified in the input description. This 
network is  fully  defined  in terms of registers, logic 
gates, arithmetic operators, multiplexors, buses, etc. 

levels. According to the level of the description, certain 
algorithms are applied. Behavioral or sequential 
descriptions require scheduling and allocation. Concurrent 
or structural descriptions require only allocation. The 
exact definition of these tasks is given  in the following 
sections. Figure 3 shows the main synthesis steps in HIS. 

HIS accepts VHDL descriptions at various abstraction 

Data model 
The data model used in HIS consists of  five graphs which 
represent the design at various stages during synthesis: 
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HIS main synthesis steps. 

Control-flow graph (CFG). 
Data-flow graph (DFG). 
Control-automaton graph. 
Data-path graph. 
Network graph. 

These graphs are connected by links which keep the 
correspondence between nodes in the graphs, lines in the 
VHDL description, and the final network, as shown in 
Figure 4. 

The input description goes through a compilation step 
which performs syntactical and semantical checks, 
followed  by a translation step which generates the control 
and  data-flow graphs. High-level synthesis creates the 
control-automaton graph and the data-path graph, which 
represent the finite-state machine  and the data path of the 
implementation, respectively. The last synthesis step is 
the generation of the network graph, which represents 
the final  implementation  and is also the input to logic 
synthesis. 

to those presented in [16] for sequential VHDL, plus 
extensions for handling concurrent and structural VHDL 
as well as other languages such as Verilog HDL. 

specifies  the sequence of operations in the input 
description. It is defined as CFG = (0, P), where 0 is 
the set of nodes (representing the operations), and P is 
the set of edges. An edgep = (ol, 02,  c) implies that 
operation o2 is executed after operation ol, if condition c 
is true. Conditional operations, such as IF, CASE, etc., 
are modeled as conditional edges. The conditions are 
represented as binary-decision diagrams (BDDs). Two 
nonconditional operations in series are connected by an 
edge  with condition c = true. 

The control and  data-flow graphs used  in HIS are similar 

The control-flow  graph is a directed graph which 
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The data-flow graph is a directed graph which specifies 
the data dependencies among operations and operands in 
the input description. It is  defined as DFG = (0 U V, D), 
where 0 is the set of operation nodes, I/ is the set of 
operand nodes (variables, signals, inputs, outputs, 
constants), and D is the set of edges. Data-flow edges 
d = (ol, v l )  or d = ( v l ,  ol) imply that operation o1 
assigns a value to operand v l ,  or that operand vul  is an 
input to operation ol, respectively. 

throughout the paper; Figure 6 gives the corresponding 
CFG and  DFG. 

Figure 5 shows a VHDL example which is used 

Data-@ow analysis 
Data-flow analysis is a technique commonly used in 
programming  language compilers for determining the 
lifetimes of values [17]. High-level synthesis systems use 
data-flow analysis for two purposes: 1) to unfold variables 
in the data-flow graph [7, 181; and 2) to derive the lifetimes 
of registers during resource sharing [19]. Most systems 
(e.g., [7]) apply  data-flow analysis on basic blocks only. 
HIS applies data-flow analysis globally, through the whole 
graph,  taking  into  account  conditional  operations  and  loops. 

Lifetime analysis computes the definition-use chain 
for all variable assignments in the CFG and DFG. The 
definition-use chain of a given  assignment to a variable 
tells exactly when the value (being assigned) is created 
and the last time it is used, thus defining its lifetime. 

HIS uses data-flow analysis extensively in  all synthesis 
steps. Data-flow analysis is  performed  on the CFG and 
DFG. The lifetimes of values are computed and attached 
to each node in the CFG, for future use during scheduling 
and allocation. The data structure for storing this 
information  is a vector of bits (called a lifetime vector), 
where each bit  position can assume the value 0 or 1. Each 
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-- VHDL description 

Entity Chipl is 
port (""" 

"""); 

End Chipl; 

Architecture behavior of Chipl is 

Signal SI, s 2  ----; 

Begin 

Rocess 

Variable VI ,  v2, v3: ----; 

Begin 

Wait until not clock ' stable and clock= 1 ' ; 
If (reset) then 

end if; 
"" 

"" 

End process; 

End  behavior; 

Data model 

Control-automaton 

4 

assignment to a variable (assignment  edge)  is  given  a 
position number  in this vector. Therefore, if n is the total 
number of assignment edges to variables in the DFG, the 
lifetime vectors will contain n bits. 

The information in the lifetime vectors can be 
summarized as follows: 

Given  a  control-flow node oi with a  lifetime vector 
lifevec(o,), and given  an assignment edge in the DFG, 
d,, with positionp,, then 

1. If lifmec(oi)[pj] = 1, the value being  assigned 

2. If lifmec(oi)[pj] = 0, the value being  assigned 
through  edge d, is alive at node oi. 

through  edge d, is not alive at node oi. 

Hence, by following the value of a  given position 
(for a  given assignment edge) in the lifetime vectors of 
successive operations in the CFG, one can determine 
exactly which operation created the value and which 

136 operation is the last one to use it. 

In order to illustrate the use of global  data-flow analysis, 
consider Figure 6. The lifetime vectors are displayed 
beside each node in the CFG. For example, to determine 
the values of variable B which can be used as an input to 
operation/node 6, in Figure 6, one must  follow these steps: 

1. Get the lifetime vector from node 6, in the CFG: 

2. Get the positions of all assignment  edges to B from the DFG 

3. Check entries in the lifetime vector in positions 1 ,  2, 4, 6: 

lifevec(6) = [01101011]. 

positiOns(d1, d2,  d4, d6) = 1, 2, 4, 6. 

lifevec(6)[ 11 = 0; lifevec(6)[2] = 1 ;  
lifevec(6)[4] = 0; lifevec(6)[6] = 0. 

Only edge d ,  has a 1 entry in the lifetime vector; hence, 
the only value of B valid (or alive) at operation 6 is the 
value being produced by operation 4 (the predecessor of 
edge d2) .  Similarly, there  are four values of B alive at 
operation 19, produced by operations 2, 4, 7, and 9. This 
type of analysis is used during synthesis in order to 
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ENTITY  Example IS 
PORT ( 

CLOCK : IN BIT; 
MODE1 : IN BIT-VECTOR(0  TO  1); 
MODE2 : IN BOOLEAN; 
IN1,  IN2 : IN BIT-VECTOR(0  TO 1); 
OUT1,  OUT2,  OUT3,  OUT4: OUT BIT-VECTOR(0 TO 1)); 

END  Example; 

ARCHITECTURE  Behavior OF Example IS 
BEGIN 
P1 : PROCESS 

VARIABLE  A, B : BIT-VECTOR(0  TO 1); 

BEGIN 
WAIT UNTIL (not CLOCK'stable) and (CLOCK= '1'); 

B := b"OO"; 

CASE (model) IS 
WHEN b"OO" 3 B := IN1 + IN2; 

WAIT UNTIL (not CLOCK'stable) and (CLOCK= ' 1 I); 
A := A + B; 

WHEN  b"01" j B := "11"; 
WHEN  b"10" 3 A := IN& 
WHEN  b"l1" B := b"01"; 

END  CASE; 

OUT1 e A, 

IF (mode2)  Then 

ELSE 
A := IN1; 

A := b''OO"; 

OUT2 -+ B; 
WAIT UNTIL (not CLOCK' stable) and (CLOCK= 1 I ) ;  

OUT3 -+ A + IN1: 
END IF; 

OUT4 -+ A + B; 
END process; 

END behavior; 

VHDL example. 

determine, among other things, necessary interconnections 
and which values must be  stored in registers. 

Scheduling 
The scheduling task is responsible for mapping operations 
in the input description to control steps in the finite-state 
machine [20]. It creates  the control-automaton graph in the 
HIS data model. 

In general, a description may have to be scheduled in 
multiple control steps in order to 

Implement fully behavioral constructs. 
If the description contains behavioral constructs such as 
unbounded loops (fodwhile), scheduling is required in 
order to control the loop iteration. 

In HIS the user may specify the number and type of 
available functional units (FUs). If a description contains 
operations which exceed the user constraint on the 
number of FUs, it  will be partitioned into control steps, 
so that in each  control step only the maximum allowed 137 

Satis& user constraints. 
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[00101011] := B := b"00" 0, 
3 1 \  CASE 

2o d [001010111 

(a) 

in2 00 in1 (&(jl) 8 10 

d3 
A 

d6 

B 

out1 out3 Out4 out2 

. .  

(a) Control and (b) data-flow graphs for VHDL example in Figure 5. 

number of FUs are used. In the allocation step,  the FUs 
can be merged so that the overall number of FUs does 
not exceed the constraints. 

9 Implement  explicit  scheduling operations. 
Each language contains specific ways of specifying 
an  explicit schedule. In VHDL, the statement 
Wait Until Not Clock 'Stable and Clock = ' 1 ' ; 
can be used to force operations in different control steps. 
For conciseness, this statement is referred to simply as 
Wait Until  Clock in the remainder of this paper. In 
Verilog HDL, the Event control (@) statement is used to 
specify clock transitions. If such operations are present 
in the description, scheduling is required in order to 
implement the correct semantics. 

The scheduling algorithms in HIS are able to handle the 
cases above in a general way, including  multiple user 
constraints and  multiple Wait statements. If the description 
contains unbounded loops or user constraints are given, a 

path-based scheduling algorithm is applied. Alternatively, 
if the description has no unbounded loops and no 
constraints are given, a faster, register-transfer-level 
scheduling  algorithm is applied. If the description 
contains no user constraints, no Wait statements, and no 
unbounded loops, it is implemented in a single control step 
(by either algorithm). In this case, no finite-state machine 
is required and the implementation consists only of 
combinational logic plus data registers. The decision as to 
which scheduling algorithm to use is  made automatically, 
depending on the constructs used in the description and  on 
the user-defined constraints. The use of both algorithms 
makes HIS capable of synthesizing large control- and/or 
data-dominated designs. Currently, there is no provision 
in HIS for the automatic synthesis of pipelines. 

Path-based scheduling 
Many algorithms in HIS are based on the concept of 
path-based synthesis. Path-based synthesis comprises 
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techniques for scheduling and allocation based on the 
execution paths in the input  specification.  A  path 
represents a sequence of operations in the control-flow 
graph  which is  executed  under certain input conditions. 
Different execution  paths result  from the  presence of 
conditional operations  and loops. 

HIS uses a  path-based scheduler called the As-Fast-As- 
Possible (AFAP) algorithm, first presented in [21, 221 and 
further  extended in [23]. One  important difference between 
the AFAP algorithm and  most  other scheduling  algorithms 
is the  treatment of conditional operations  and loops. The 
AFAP algorithm handles  conditional operations  and loops 
in a transparent  way  because it works  directly on the 
different execution  paths  caused  by conditionals and 
loops.  Most other scheduling  algorithms (e.g., force- 
directed scheduling [ll], Maha [9], Bud [24], Elf [25]) 
are  based on the parallelization of data-flow operations, 
without considering different control  paths.  The result  is 
that data-flow schedulers  are able to optimize the  number 
of control  steps on only  the critical path, while the AFAP 
algorithm can optimize the  number of control  steps on all 
execution paths. 

The designer can specify constraints  on  the final 
implementation  which are used to guide the  AFAP 
scheduler.  They typically define bounds in the 
implementation, such  as  the maximum number of 
functional  units  available or  the maximum clock cycle. 
Constraints  are applied to  each  execution  path  as intervals. 
A constraint  interval delimits  a sequence of operations 
which cannot  be  executed in the  same  control  step. 
Therefore, in order  for  the  constraint  to  be satisfied, the 
sequence of operations  must  be  scheduled in two  or  more 
control  steps. 

flow graph  independently,  taking into  account  the  order 
of operations in the input description  and  the  set of 
constraints applicable to  each  path.  The minimum number 
of control  steps  is obtained  for all paths (not just  the 
critical path) using exact clique-covering  techniques. 

Figure 6. The first step  is  the derivation of all execution 
paths in the  CFG. Any sequence of operations  starting 
at a  given first operation and ending  at  a path-breaking 
operation defines  a  path. The first operation in a  path can 
be 1) the  entry  operation in the  CFG; 2) the first operation 
in a  loop; or 3) the  operation representing  a state-transition 
operation (such as  the Wait Until Clock in VHDL). A 
path-breaking operation  can  be 1) an operation  with no 
successors; 2)  an operation  succeeded  only  by  feedback 
edges; or 3) an operation representing  a state transition. 
This  CFG  contains ten  paths, as  shown in Figure 7. 

The  second  step is the mapping of all user  constraints 
onto  the paths. As an  example, assume  that a constraint 
of one  adder is  used,  which  implies that  the final 

The  AFAP algorithm schedules  each  path in the control- 

To illustrate the  AFAP algorithm, consider  the  CFG in 
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T T T T T T T - r T T  

0 1 1 1 1 1 1 1 5 5 1 6  
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Execution paths in CFG in Figure 6 .  
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to minimize the total number of states in the final finite- 
state machine. 

In Figure 7, the  constraints  are cut between  nodes 14 
and 18, and  between  nodes  17 and 18, so that  both  are 
satisfied and  the  control  steps  starting at node 18 can  be 
overlapped on both paths. Once  the  control  steps  are 
defined, the  scheduler  generates  the required  finite-state 
machine. The final schedule for the description in Figure 
under  the  constraint of one  adder is given in Figure 8(a). 

6 

The conditions  controlling the execution of each  operation 
in a state  are given in Figure 8(b). 

Note  that  each  execution path is scheduled in the 
minimum number of control  steps satisfying the 
constraints.  This  may  require  some  operations  to  be 

implementation  should not  contain  more  than  one  adder. 
This  results in the  creation of two constraint intervals, 
attached  to  paths 8 and 10 in Figure 7. These  constraints 
imply that  the  operations contained  in each interval should 
not  be  executed in the  same  control  step.  For example, in 
order  to  satisfy  the  constraint on path 10, the  scheduler 
must  place operations 17 and 19 (the  addition operations) 
in different control  steps. In this  way,  the  adders used in 
different states  can  be  shared,  and only one is needed 
overall. 

Given paths  and  constraints,  the  scheduler must cut the 
constrained  paths  into  as  many  control  steps  as necessary. 
If multiple constraints  are  present on the  same  path, 
clique-covering techniques  are used to find the minimum 
number of cuts which satisfy all constraints.  This  results in 
the minimum number of control steps per  path. In Figure 7, 
all paths  except  paths 8 and 10 are unconstrained and  can 
therefore  be scheduled in one  control  step.  Paths 8 
and 10 have  one  constraint  each; hence, they need to  be 
scheduled  into  two  control  steps  each.  In addition, the 
scheduler  overlaps  the  control  steps for all paths in order 
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(a) Final FSM for description in Figure 6 under the constraint of one adder; (h) table of operation nodes and conditions in each state. 
~ . .  

scheduled in multiple states, which  is usually not  allowed 
in  data-flow-based schedulers (e.g., FDS [ll], Maha [9], 
Bud [24], Elf [25]). 

The output of the scheduler is the control-automaton 
graph, representing the required finite-state machine, plus 
the equations describing the state transitions and the 
conditions controlling the execution of each operation 
in a state. 

The complexity of path-based scheduling is proportional 
to the number of paths, which  may  grow exponentially 
with the number of conditional operations. Paths represent 
the different functions being  performed by the design, 
which tends to be a bounded  number  for  most data-path- 
intensive applications but can grow very large  for control- 
intensive designs. Examples with over twenty thousand 
paths have been successfully synthesized using this 
algorithm.  In the case of an exponential explosion in the 
number of paths, special techniques can be applied in 
order to trade off optimality for execution time.  One of 
these techniques is based on partitioning of the control- 
flow graph, which inserts path-breaking operations in order 
to reduce the number of paths. As a result, the scheduling 
may not find the optimum  number of cycles for  all paths, 
but it can then handle designs with  millions of paths. 

Register-transfer-level scheduling 
In the absence of unbounded loops and user constraints, 
HIS uses a fast scheduling algorithm  called RTL 
scheduling. The  name indicates that scheduling is based 
only on the explicit scheduling constructs present in the 140 
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description, such as the Wait Until  Clock statements in 
VHDL. 

The scheduling task in this case is simpler than in the 
general case because the state transition points can  be 
extracted solely from the input description. However, the 
RTL scheduling algorithm  must  still derive the states and 
the state transition equations required in the finite-state 
machine. These steps can be very complex in the general 
case, when multiple  explicit scheduling constructs are 
present in the same description. In fact, many VHDL 
synthesis systems from vendor companies as well as 
academic ones are not able to process multiple Wait 
Until Clock statements in a general way. HIS can  handle 
descriptions containing any number of Wait Until  Clock 
statements, even if placed within conditional statements, 
etc. 

The RTL scheduling algorithm is performed in the 
following steps: 

1. Traverse the CFG and identify the state transition 
points based on the explicit scheduling constructs. The 
operations following state transition points represent the 
first operations in the states. 

2. Perform a breadth-first traversal of the CFG. As a node 
is visited, place  it in the current state. The current state 
represents the state beginning at the "last visited" state 
transition point. 

3. As a node is visited, compute and store its activating 
condition. This condition is  given by a set {current 
state,  path condition}, where the path condition is  given 
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(a) FSM produced by the RTL scheduling  algorithm  for  the  description in  Figure 6; (b) table of operation  nodes  and  conditions  in each state. 

by the conditions along the paths from the previous 
state transition point to the node. If a node must  be 
scheduled in multiple states, the activating condition 
will be given by the OR of all sets {current state,  path 
condition} applicable to the node. 

starting point to each transition point. These conditions 
represent the state transition equations. 

4. Compute the conditions along the paths from the 

Applying the RTL scheduling algorithm to the 
description in Figure 6 produces the finite-state machine 
shown in Figure 9(a). The conditions controlling the 
execution of each operation in a state are given in 
Figure 9(b). Note that some operations are scheduled in 
two states, which is necessary in order to implement 
correctly the semantics of the description. 

The complexity of the RTL scheduling  algorithm  is 
proportional to the number of operations in the CFG, 
which in most cases is proportional to the number of lines 
in the input description. If the description contains a large 
number of conditional operations (therefore a large  number 
of paths), this algorithm is considerably faster than the 
AFAP path-based algorithm. 

Allocation 
The allocation task consists of the generation of the data- 
path elements required in the implementation. It creates 
the data-path graph in the HIS data model. 

The data path is formed by functional units, storage 
elements, and interconnection elements. In HIS, allocation 

is  performed in two steps: generation of  an initial 
data path, and data-path optimization (or resource 
sharing). 

The main problems in the generation of the initial 
data path lie  in the derivation of the necessary storage 
elements, interconnections, and control signals, for which 
the techniques of data-flow analysis and path analysis [26] 
play a central role. 

The  initial data path is generated in the following steps: 

1. Functional  unit allocation 
Functional units are created in a one-to-one manner. 
For each operation in the data-flow graph, there is a 
corresponding element created in the data-path graph. 
An operation scheduled in multiple states is mapped 
onto the same functional unit. Functional units created 
in this step exhibit the necessary concurrency to allow 
resource sharing as defined by user constraints. 

Registers must  be created to store values that are 
generated in one control step and  used  in another. 
These values are derived from the scheduled control- 
flow graph  and the lifetime vectors produced by data- 
flow analysis. All assignments alive at the first operation 
in each state correspond to values produced in a 
previous state and therefore need to be stored. Multiple 
assignments to the same variable, if they must be 
stored, are stored in the same register (instead of 
unfolding the registers). Registers may also be created 
to implement correctly the semantics of the language 

2. Register allocation 
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description. In VHDL, for example, all  signals  assigned 
in processes containing Wait Until  Clock statements are 
stored. 

3. Allocation of multiplexors  and  interconnections 
Interconnections are created to connect functional 
units, registers, and ports, as specified in the input 
description. Multiplexors are used to converge the 
outputs of multiple sources to one destination. Path 
analysis and data-flow analysis are again used to 
determine the correct sources for any destination. 

Control signals are required to activate the data-path 
elements. They include load-enable signals for registers, 
select signals  for multiplexors, and select signals  for 
multifunction functional units. Control signals are 
represented as BDDs,  which are computed on-the-fly 
during scheduling and allocation. The ordering of the 
input variables in the BDDs  is derived from the 
ordering of the conditional operations in the CFG [26] .  
BDDs are used for representing the control logic only; 
for  example,  in the statement $A < B then s < = vall;, 
the comparator is actually implemented in the data 
path, and its output is a control variable which becomes 
part of the BDDs.  The  BDDs are implemented as a two- 
level network if its size is  manageable. If the two-level 
representation becomes too large, the system 
implements the BDDs as a multilevel network (whose 
unoptimized size is proportional to the number of  BDD 
nodes). 

4. Generation of control signals 

As an example of initial allocation, consider again the 
description in Figure 6, scheduled as shown in Figure 9 .  
The initial data path is given  in Figure 10. 

Four adders are created in the initial data path, based 
on the four add operations in the data-flow graph. 

Variables A and B must  be stored in registers. Note that 
the value assigned to B by operation 4 (Addl )  in state SO 
must be stored because it is  used by operation 6 in state 
S1. Certain assignments to variables may or may not have 
to be stored, depending  on the outcome of the conditional 
operations (that is, depending on  which path is executed). 
For example, the assignment to B by operation 2 only has 
to be stored if path 5 (see Figure 7) is executed. Under all 
other paths, this assignment is overwritten by another 
assignment  and therefore is not used. 

Interconnections are also derived on the basis of the 
paths being executed. For example, the inputs to adder 
Add4 implementing operation 19 come  from various 
sources. There are two possible values representing 
variable A-one  coming  from register A itself (if the FSM 
is in state S2 and  path 10 is executed), and the other 
coming  from the input IN1 (through the assignment in 
operation 14). Both sources converge to multiplexor 

142 Mux3, whose output is connected to one input of Add4. 

The other input to operation 19 comes from variable B ,  
which can have four different values, depending  on  which 
path is executed. One  of these values comes from the 
output of register B (if the FSM is in states S1 or S2),  and 
the others come from the assignments at operations 2, 7, 
and 9 (in state SO). These four values reach the second 
input of Add4 via multiplexor Mux4. The select signals  for 
all multiplexors and load-enable signals for registers A and 
B are given  in Figure 10. 

Data-path and control optimizations 
Optimizations based on resource sharing are performed on 
the data path. Registers, functional units, and  multiplexors 
are merged  using  global  algorithms based on  coloring [27, 
281 and clique-covering techniques [29].  

which hardware blocks can be shared. This is derived by 
building the conflict graph for the blocks.  The  conflict 
graph  is  defined by CG = {H,   E} ,  where H is the set of 
data-path elements and E is the set of conflict edges. An 
edge e = {hi,  hi} implies that elements hi and hi are in 
conflict and therefore cannot be shared. In general, two 
registers can be shared if their lifetimes do not overlap. 
Two functional units can be shared if they are always used 
under mutually exclusive conditions. 

Two  merging  algorithms have been  implemented in HIS. 
The first one minimizes the final  number of functional units 
and registers by coloring the conflict graph in the minimum 
number of colors. All elements with the same color can be 
combined into the same data-path element. The second 
algorithm  merges data-path elements based on a cost 
function, taking into account the area of the blocks being 
merged, the final area after merging,  and the required 
multiplexors. 

The novelty in the resource sharing in HIS lies in the 
generation of the conflict graph. It is important that the 
conflict graph represent exactly the maximum sharing 
possibilities. A conflict graph with unnecessary edges may 
restrict the sharing possibilities, resulting in suboptimal 
results. 

Given a scheduled CFG and the lifetime vectors from 
data-flow analysis, register lifetimes  and  conflict edges are 
determined in the following  way: 

The  first step in resource sharing is the determination of 

The  lifetimes of assignment edges computed during 
data-flow analysis are projected onto the states of 
the FSM. A register, storing a variable, is alive in a 
state if any assignment to that variable is alive  at the 
first operation in the state. Therefore, in order to 
determine all registers alive in a state, one must check 
all assignments alive at the first operation in the state. 
Two registers alive in the same state have overlapping 
lifetimes  and cannot be shared; therefore, a conflict 
edge should be created between them. 
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. 

Consider, for example, the FSM in Figure 9. In order to 
determine which registers have overlapping lifetimes on 
state S1, one must  first retrieve the lifetime vector from 
the first operation in state S1. The lifetime vector of 
operation 6 (see Figure 6) shows that there are live 
assignments at positions (2, 3, 5 ,  7, 8}, which correspond 
to assignments to variables A and B .  This implies that both 
variables are stored and that their lifetimes overlap on 
state S1. Hence, a conflict  edge  is created between 

registers A and B .  By repeating this procedure for all 
states, the complete conflict  graph is generated. This 
algorithm, because it uses global  data-flow analysis, is able 
to take into account conditional operations and loops, 
and  finds the exact conflict  graph for register sharing. 

registers, but in a more  limited way because it  only looks 
at single if-then-else blocks. As a result, sharing may be 
more restrictive. 

The REAL [19] algorithm also computes the lifetimes of 
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Conflict graph for addition operations in description in Figure 6 ,  
scheduled according to Figure 9. 

The conflict graph for functional units is generated on 
the basis of the mutual exclusiveness of the operations 
implemented in the FUs. Mutual exclusiveness of 
operations is determined as follows: 

Two operations are NOT mutually exclusive if 
the conditions controlling their execution are not 
orthogonal. Let C(op,) and C(opj) be the conditions 
controlling operations opi and opj. Operations opi and 
opj are not  mutually  exclusive if C(opi) A C(opj) # 0. 
Given any two operations scheduled in the same state, 
if the AND of their conditions is  not  null, they are not 
mutually exclusive, and a  conflict  edge  is created 
between the corresponding functional units. This 
procedure is repeated for all pairs of operations in  all 
states. The conditions controlling the execution of 
operations are computed during scheduling and 
allocation (see Figure 9). 

This algorithm  is able to derive general conflict 
information on all functional units present in the design, 
including those scheduled in different states  as well as in 
different branches of conditional operations. 

Consider again Figure 9. The conflict graph for the 
adders in this design is shown in Figure 11. Operations 
4 and 19 are both scheduled in state SO; however, they 
are indeed mutually exclusive, because the conditions 
controlling both operations are orthogonal. Note that 
although these operations are not in different branches of 
the same if-then-eke, HIS  was still able to determine that 
they are never executed at the same time,  and therefore 

144 can be shared. 

R. A. BERGAMASCHI ET AL. 

Other resource-sharing algorithms,  including those 
from vendors and universities (e.g., [ll, 29,  301) are more 
limited because they consider only operations in  different 
states and operations in different branches of a conditional 
operation. Those algorithms  may not be able to determine 
that operations 4 and 19 can be shared. 

The  final data path for the FSM in Figure 9, after 
resource sharing, is given  in Figure 12. 

The techniques used  in HIS for control optimization are 
based on two-level minimization, behavioral don’t-cares, 
state minimization, and state encoding. The control signals 
can  be based on binary as well as multivalued variables. 
Behavioral don’t-cares are extracted during synthesis and 
used in the minimization of the control signals. Details 
concerning the control optimization algorithms in HIS can 
be found in [31]. 

4. Production use of HIS 
The HIS system is currently in production use by several 
groups at different  IBM sites. The previous synthesis 
methodology used by these groups consisted of automatic 
logic synthesis starting from gate-level descriptions. 
Among the key characteristics in HIS which were required 
by these groups to switch to a  high-level  design 
methodology were the following: 

The ability to synthesize designs as efficiently or better 
than in the previous methodology. 
The ability to synthesize different levels of abstraction, 
including sequential VHDL, and automatic inference of 
registers. 
The close integration of HIS with the BooleDozer logic 
synthesis system, used for gate-level optimization and 
technology mapping. 
The means to control the synthesis process if necessary. 
A significant  level of control was possible by making 
HIS accept the same synthesis directives accepted by 
the previous methodology,  which were already familiar 
to the designers. In addition, special-purpose attributes 
for controlling the high-level synthesis steps and the 
interaction with BooleDozer logic synthesis proved 
very useful. 

The use of higher-level descriptions significantly 
increased design productivity by speeding up the VHDL 
coding and simulation turnaround. The use of high-level 
synthesis and  logic synthesis combined gave the designers 
the ability to process higher-level descriptions and obtain 
results comparable to  or better than in the previous 
methodology. 

specification,  simulation, synthesis, and layout, depend 
upon the previous methodology  used. For example,  in 
[14], significant  savings were achieved in  going  from  a 

The savings in total design  time, considering 
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schematics-based methodology to a high-level synthesis 
methodology. This is clearly to be expected, since neither 
the previous nor the new  methodology  included  logic 
synthesis (which  is the most  time-consuming step). 

In  IBM, the previous methodology was already a 
language-based and logic-synthesis-based methodology, 
although dominated by concurrent and structural styles. In 
this case, savings in synthesis time (considering high-level 
and logic synthesis) were not expected in a single synthesis 
pass, since most of the synthesis time was dominated by 
logic synthesis. However, considering that most designs 
need several synthesis runs, it was always faster to refine 
the design at a high level (running high-level synthesis 
only),  and then proceed to logic synthesis. Most of the 
design  time savings came from four sources: 1) the ability 
to use sequential descriptions and have all the control and 
data-path Logic and registers automatically generated; 
2) designer control over implementation directly in the 
description; 3) the ability to refine the design at a high 
level (before logic synthesis); and 4) faster simulations 
due to sequential descriptions. 

Table 1 Characteristics of four designs  produced by HIS. 

Design VHDL lines Entities Gates Cycle time 
(thousands)  (ns) 

Chip1 13500 9 70 30 
Chip2 8100 9 40  30 
Chip3 5900 1 20 15 
Chip4 6300 8 5 30 

In  addition to its common  use as apushbutton synthesis 
system, HIS is  being used in different ways, as highlighted 
below. 

Automatic synthesis from W D L  
HIS is  being used as an automatic synthesis tool, 
integrated with the BooleDozer logic synthesis system. 
Among the chips fabricated to date are ASIC peripheral 
chips and controllers in  CMOS technology. Table 1 
shows the numbers for four designs, in terms of VHDL 145 
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lines, number of VHDL entities in which the design was 
partitioned, number of  final gates after logic synthesis, 
and clock frequency. The execution time  for HIS is 
usually one to two orders of magnitude faster than the 
execution time for the other design stages (e.g.,  logic 
synthesis, layout, simulation). 

HIS and BooleDozer are also being  used as a fast 
synthesis path for mapping VHDL into a gate-level 
netlist for emulation purposes. Since the purpose is 
to produce a functional netlist, without being overly 
concerned for the final area or delay, fast algorithms can 
be used both in HIS and in BooleDozer, resulting in fast 
turnaround time. This methodology  is  being used in 
the design of a CMOS microprocessor. Under this 
methodology, HIS and BooleDozer have been  used to 
synthesize over 175 thousand lines of VHDL, producing 
netlists with approximately 1.75 million gates. 

Similarly to the previous case, HIS and BooleDozer are 
being used as a fast synthesis path for  formal  verification 
purposes. This methodology combines custom CMOS 
design  with VHDL design, synthesis, simulation,  and 
verification.  In the design of a high-performance 
microprocessor, a number of chip partitions are custom- 
designed at the transistor level. These partitions are also 
coded in VHDL and simulated. HIS and BooleDozer are 
used to synthesize the VHDL descriptions to a gate-level 
netlist. Then a formal verification tool, VERITY [32], is 
used to verify that the gate-level  netlist synthesized from 
the VHDL is functionally equivalent to the transistor- 
level netlist for the same partition. In this way, the 
functional simulation can be confined to the VHDL 
level, and  need  not be repeated at the transistor level. 
Under this methodology, HIS and BooleDozer have been 
used to synthesize approximately 40 thousand lines of 
VHDL representing over 400 custom partitions. 

The ability of HIS to provide a fast synthesis path 
from VHDL to a gate-level netlist makes possible its 
integration with other tools which typically require 
inputs strictly at the gate level. One such application is 
cycle simulation. Most VHDL simulators are event- 
driven simulators, which  is a direct consequence of the 
semantics of the language. However, event-driven 
simulators are, in general, slower than gate-level cycle 
simulators. As a result, most VHDL simulators are still 
slower than existing gate-level cycle simulators. For this 
reason, it would  be  efficient if one could simulate VHDL 
using a cycle simulator. One possible way to achieve 
this goal  is to use HIS  as a VHDL front end to a cycle 
simulator. HIS can be used to generate a gate-level 
netlist from VHDL, which can then be submitted to the 

9 Fast synthesis for emulation 

Fast synthesis for verijication 

9 Fast mapping for cycle simulation 
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9 Early estimation and analysis tool 
The HIS system is  being integrated with  timing analysis 
and  floorplanning tools with the goal  of providing an 
estimation and analysis tool to be used early in the 
design process. Under this tool, the design  is  initially 
synthesized by HIS to produce a technology-independent 
network consisting of random  logic  and data-path 
elements. Given a technology library, HIS then estimates 
the area and delay of the elements of the network. 
Different  algorithms are used for estimating the 
random  logic and data-path elements. Timing analysis 
is then performed using these estimations in order to 
provide timing  information on the whole  design. The 
floorplanning  tool  is used for placing the blocks and 
deriving  more accurate wire capacitance information, 
which can be used  to obtain a more precise timing 
analysis and can be fed forward to logic synthesis. This 
forward design  methodology  allows layout considerations 
to be taken into account much earlier in the design 
process, reducing the expensive steps of post-logic- 
synthesis layout, back-annotation, and resynthesis. 

5. Conclusions 
This paper has presented the main  algorithms,  modeling 
capabilities, and  methodology considerations in the HIS 
system. 

abstraction levels, ranging  from behavioral to structural. 
HIS contains general  algorithms for scheduling and 
allocation  which can handle behavioral, sequential, 
concurrent, and structural constructs, and  user-defined 
constraints. Different algorithms, specially tuned to the 
abstraction level of the description, are used in order to 
synthesize designs efficiently  for execution time  and 
memory  usage. 

The scheduling and allocation algorithms in HIS are 
based on  global techniques such as global  data-flow 
analysis and  path analysis. The scheduler is able to find 
the exact minimum  number of control steps required by 
a design under user constraints. The resource-sharing 
algorithms are more general than previous algorithms in 
determining the set of elements that can be shared. Global 
data-flow analysis, path analysis, and  BDDs are used 
to derive the exact maximum set of sharable data-path 
elements. 

use of HIS were 1) efficient  high-level synthesis 
algorithms, 2) a rich set of directives for controlling the 
synthesis process, and 3) integration with the BooleDozer 
logic synthesis system. 

The capabilities of the system have  proved to be 
powerful  enough for it to be used in production as part 
of the synthesis methodology, and in domains  for  which 
it was not  originally intended, such as a front end for 

HIS is able to synthesize VHDL descriptions in different 

Among the main characteristics required for production 
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verification and  cycle  simulation. Several CMOS chips, 
ranging from small to large, have been  produced 
using HIS. 
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