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Graph partitioning is a fundamental problem in
several scientific and engineering applications.
In this paper, we describe heuristics that
improve the state-of-the-art practical
algorithms used in graph-partitioning software
in terms of both partitioning speed and quality.
An important use of graph partitioning is in
ordering sparse matrices for obtaining direct
solutions to sparse systems of linear equations
arising in engineering and optimization
applications. The experiments reported in this
paper show that the use of these heuristics
results in a considerable improvement in the
quality of sparse-matrix orderings over
conventional ordering methods, especially for
sparse matrices arising in linear programming
problems. In addition, our graph-partitioning-
based ordering algorithm is more parallelizable
than minimum-degree-based ordering
algorithms, and it renders the ordered matrix
more amenable to parallel factorization.

1. Introduction

Graph partitioning is an important problem with extensive
application in scientific computing, optimization, VLSI
design, and task partitioning for parallel processing. The
graph-partitioning problem, in its most general form,
requires dividing the set of nodes of a weighted graph into
k disjoint subsets or partitions such that the sum of
weights of nodes in each subset is nearly the same (within
a user-supplied tolerance) and the total weight of all of
the edges connecting nodes in different partitions is
minimized. In this paper, we describe heuristics that
significantly improve the practical state-of-the-art graph-
partitioning algorithms in partitioning speed and, for a
small number of parts, also in partitioning quality.

An important application of graph partitioning is in
computing fill-reducing orderings of sparse matrices for
solving large sparse systems of linear equations. Finding
an optimal ordering is an NP-complete problem [1], and
heuristics must be used to obtain an acceptable non-
optimal solution. Improving the run time and quality of
ordering heuristics has been a subject of research for
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almost three decades. Two main classes of successful
heuristics have evolved over the years: (1) minimum-
degree (MD)-based heuristics, and (2) graph-partitioning
(GP)-based heuristics. MD-based heuristics are local
greedy heuristics that reorder the columns of a symmetric
sparse matrix such that the column with the fewest
nonzeros at a given stage of factorization is the next one
to be eliminated at that stage. GP-based heuristics regard
the symmetric sparse matrix as the adjacency matrix of a
graph and follow a divide-and-conquer strategy to label
the nodes of the graph by partitioning it into smaller
subgraphs.

The initial success of MD-based heuristics prompted
intense research [2] to improve their run time and quality,
and they have been the methods of choice among
practitioners. The multiple minimum-degree (MMD)
algorithm by George and Liu [2, 3] and the approximate
minimum-degree (AMD) algorithm by Davis, Amestoy,
and Duff [4] represent the state of the art in MD-based
heuristics. Recent work by the author [5, 6], Hendrickson
and Rothberg [7], Ashcraft and Liu [8], and Karypis and
Kumar [9, 10] suggests that GP-based heuristics are
capable of producing better-quality orderings than MD-
based heuristics for finite-element problems, while staying
within a small constant factor of the run time of MD-
based heuristics.

An important area where sparse-matrix orderings are
used is that of linear programming. Until now, with the
exception of Rothberg and Hendrickson [11], most
researchers have focused on ordering sparse matrices
arising in finite-element applications, and these
applications have guided the development of the ordering
heuristics. The use of the interior-point method for solving
LP problems is relatively recent. As a result, the LP
community has been using these well-established heuristics
that were not originally developed for their applications.
Our GP-based sparse-matrix-ordering algorithm is capable
of generating robust orderings of sparse matrices arising
in LP problems, in addition to finite-clement and finite-
difference matrices. Our experimental results show that
the benefits of our ordering over MD-based heuristics are
even more pronounced for LP matrices than for FE
matrices. Our ordering often turned out to be several
hundred times faster than AMD and MMD on our set of
LP test matrices, while producing better-quality orderings
on average.

We have developed a graph-partitioning and sparse-
matrix-ordering package (WGPP) [5]' based on the
heuristics described in this paper. We present
experimental results of WGPP for graph partitioning and
for ordering sparse matrices arising in two very different
types of applications: finite-element (FE) analysis and

1 The package is available to users in the form of a linkable module.
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linear programming (LP). The remainder of the paper

is organized as follows. Section 2 briefly discusses the
relevance of this paper to parallel solution of large sparse
systems of linear equations. Section 3 describes the
heuristics used for multilevel graph partitioning. Section 4
describes how graph bisection (partitioning into two parts)
is used to obtain fill-reducing orderings of sparse matrices.
In Section 5, we compare the quality and run time of
WGPP with those of a state-of-the-art graph-partitioning
package. Section 5 also presents experimental results
comparing sparse-matrix orderings produced by WGPP
with those of other softwares for a variety of matrices
arising in different applications.

2. Application in parallel solution of linear
equations

Both graph partitioning and GP-based sparse-matrix
ordering have applications in the parallel solution of large
sparse systems of linear equations. Partitioning the graph
of a sparse matrix to minimize the edge cut and
distributing different partitions to different processors
minimizes the communication overhead in parallel sparse-
matrix vector multiplication [12]. Sparse-matrix vector
multiplication is an integral part of all iterative schemes
for solving sparse linear systems.

GP-based ordering methods are more suitable for
solving sparse systems using direct methods on distributed-
memory parallel computers than MD-based methods, in two
respects. First, there is strong theoretical and experimental
evidence that the process of graph partitioning and sparse-
matrix ordering based on it can be parallelized effectively
[13]. On the other hand, the only attempt to perform a
minimum-degree ordering in parallel that we are aware of
[14] was not successful in reducing the ordering time over a
serial implementation. Second, in addition to being
parallelizable itself, a GP-based ordering also aids the
parallelization of the factorization and triangular solution
phases of a direct solver. Gupta, Karypis, and Kumar [15, 16]
have proposed a highly scalable parallel formulation of
sparse Cholesky factorization. This algorithm derives a
significant part of its parallelism from the underlying
partitioning of the graph of the sparse matrix. In [17], Gupta
and Kumar present efficient parallel algorithms for solving
lower- and upper-triangular systems resulting from sparse
factorization. In both parallel factorization and triangular
solutions, a part of the parallelism would be lost if an MD-
based heuristic were used to preorder the sparse matrix.

3. Multilevel graph partitioning

Recent research [10, 18, 19] has shown multilevel
algorithms to be fast and effective in computing graph
partitions. A typical multilevel graph-partitioning
algorithm has four components: coarsening, initial
partitioning, uncoarsening, and refining. In the following

IBM J. RES. DEVELOP. VOL. 41 NO. 1/2 JANUARY/MARCH 1997




subsections, we briefly discuss these components of graph
partitioning, describing in detail only the new heuristics
and improvements over the current techniques.

3.1 Coarsening

The goal of the coarsening phase is to reduce the size of a
graph while preserving those of its properties that are
essential to finding a good partition. The original graph is
regarded as a weighted graph, with a unit weight assigned
to each edge and each node. In a coarsening step, a
maximal set of edges of the graph is identified such that
no two edges have a vertex in common. This set of edges
is known as a matching. The edges in this set are removed,
and the two nodes connected by an edge in the matching
are collapsed into a single node whose weight is the sum
of the weights of the component nodes. Figure 1
illustrates the coarsening steps. Note that coarsening also
results in some edges being collapsed into one, in which
case the collapsed edge is assigned a weight equal to the
sum of weights of the component edges.

Given a weighted graph after any stage of coarsening,
there are several choices of matchings for the next
coarsening step. A simple matching scheme [19] known as
random matching (RM) randomly chooses pairs of
connected unmatched nodes to include in the matching. In
[10], Karypis and Kumar describe a heuristic known as
heavy-edge matching (HEM) to aid in the selection of a
matching that not only reduces the run time of the
refinement component of graph partitioning, but also
tends to generate partitions with small separators. The
strategy is to randomly pick an unmatched node, select the
edge with the highest weight among the edges incident on
this vertex that connect it to other unmatched vertices,
and mark both vertices connected by this edge as matched.
Note that the weight of an edge connecting two nodes in a
coarsened version of the graph is the number of edges in
the original graph that connect the two sets of original
nodes collapsed into the two coarse nodes. HEM, by
absorbing the heavier edges, generates coarse graphs
whose nodes are loosely connected (by the lighter
remaining edges), thus ensuring that a partition of the
coarse graph corresponds to a good partition of the
original graph.

HEM can miss some heavy edges in the graph because
the nodes are visited randomly for matching. For example,
consider a node i, the heaviest edge incident on which
connects it to a node j. If i is visited before j and both i
and j are unmatched, the edge (i, j) will be included in
the matching. If there exists an edge (J, k), such that i
and k are not connected, it will be excluded from the
matching even if it is much heavier than (i, j) because j
is no longer available for matching. To overcome this
problem, after the first few coarsening steps, we switch to
what we call the heaviest-edge matching. We sort the edges
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Illustration of graph coarsening: (a) Original graph and a matching;
(b) graph after one step of coarsening; (c) matching of the coarse
graph; (d) graph after two steps of coarsening.

by their weights and visit them in decreasing order of
weight to inspect them for possible inclusion in the
matching. Ties are broken randomly. The benefit of
heaviest-edge matching over heavy-edge matching is more
pronounced in the later stages of coarsening, where
sorting is not too expensive because the graph has shrunk
considerably from its original size. :
HEM and its variants reduce the number of nodes in a
graph by roughly a factor of 2 at each stage of coarsening.
Therefore, the number of coarsening, uncoarsening, and
refining steps required to partition an n-node graph into k
parts is log,(n/k). If r (instead of 2) nodes of the graph
are coalesced into one at each coarsening step, the total
number of steps can be reduced to about log,(n/k). Fewer
steps are likely to reduce to overall run time. However, as
r is increased, the task of refining after each uncoarsening
step (see Section 3.3 for the description of uncoarsening
and refinement) becomes harder. This affects both the run
time and the quality of refinement. In our experiments, we
observed that increasing r from 2 to 3 results in about
20% time savings with only a minor compromise in
partitioning quality. In WGPP, we use a combination of
heavy-edge matching, heaviest-edge matching, and keavy-
triangle matching (HTM). HTM coalesces three nodes at a
time by picking an unmatched node at random and
matching it with two of its neighbors such that the sum of
the weights of the three edges connecting the three nodes
is maximized over all pairs of neighbors of the selected
node. A nonexistent edge between the two neighbors is
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Overview of our uncoarsening and refining scheme for finding a k-
way partition; f; is a weighted average of the edge-separator size
and the inverse of weight imbalance between the parts in the ith
partition.

regarded as an edge of weight zero. Table 4 (shown later)
compares the run time and the quality of 24-way partitions
using HEM and HTM.

3.2 Initial partitioning

All multilevel graph-partitioning schemes described in the
literature stop the coarsening phase when the graph has
been reduced to a few hundred to a few thousand nodes
and use some heuristic to compute an initial partition of
the coarse graph at a substantial run-time cost. In WGPP,
we have completely eliminated the initial partitioning
phase, thereby simplifying and speeding up the overall
partitioning process.

One of the effective heuristics for initial partitioning is
graph growing [10]. Graph growing computes an initial
partition by recursively bisecting the graph into two
subgraphs of appropriate weight. For example, a three-way
initial partition is produced by bisecting the coarse graph
into two parts with a weight ratio of 2:1; the larger
subgraph is further bisected into two equal parts. In order
to bisect a graph, the graph-growing heuristic would pick
up a node at random, tag it, and keep tagging its
neighbors and neighbors’ neighbors in a breadth-first
manner until the ratio between the cumulative weight of
the tagged nodes and that of the untagged nodes reaches
the desirable value. The sets of tagged and untagged
nodes now form the two partitions of the graph.

The basic function of graph growing is to form a cluster
of highly connected nodes. Note that coarsening with
HEM or HTM also strives to achieve the same goal.

In fact, graph growing is the bottom-up equivalent of
coarsening. Therefore, for a k-way partition of an n-node
graph, WGPP continues to coarsen the graph until it
contains exactly £ nodes. This coarse k-node graph serves
as a good initial partitioning, provided that the coarsening
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algorithm does not allow a node to participate in matching
if its weight substantially exceeds n/k.

3.3 Uncoarsening and refinement

The uncoarsening and refining components of graph
partitioning work together. Initially, the £ nodes of the
coarsest graph are assigned different tags indicating that
they belong to different initial partitions. They are then
split into the nodes that were collapsed to form them
during the coarsening phase. This reversal of coarsening is
carried out one step at a time. The nodes of the uncoarsened
graph inherit their tags from their parent nodes in the coarser
graph. At any stage of uncoarsening, the edges connecting a
pair of nodes belonging to different partitions constitute an
edge-separator of the graph. Removing the edge-separator
from the graph breaks it into k£ disconnected subgraphs.
After each step of uncoarsening, the separator is refined.
While refining an edge-separator, an attempt is made to
minimize its total weight by switching the partitions of some
nodes if this switching reduces the separator size and does
not make the weights of the parts too imbalanced.

Figure 2 gives an overview of our uncoarsening and
refinement scheme for partitioning into k parts. After
coarsening the original n-node graph to k nodes, we
uncoarsen it to ¢ nodes, where k < g < n, while refining
the edge-separator after each step of uncoarsening. At this
stage we save the partition, coarsen the g-node graph back
to k nodes, and repeat the uncoarsening and refining
process. This process is repeated a few times, and of all
the partitions of the g-node graph generated, we choose
the best for further uncoarsening to obtain a partition of
the original n-node graph. The best partition is selected
on the basis of a weighted average of the size of the edge-
separator and the inverse of the weight imbalance between
the parts. The randomization in the coarsening process
ensures that the different trials result in sufficiently
different partitions. Most of the partition cost is incurred
in the first few coarsening steps of the original graph and
the last few uncoarsening and refining steps when the size
of the graph is large. Therefore, multiple cycles of
coarsening and uncoarsening on the smaller, coarser
q-node graph have little impact on the overall run time
of the entire algorithm.

Depending on the number of partitions &, we either use
a variation of the popular Kernighan-Lin heuristic [19-22]
or a greedy refinement scheme [10, 23] for refining the
edge-separators. The linear-time Fiduccia—Mattheyses
variation [21] of the Kernighan-Lin heuristic is used for a
small number of partitions, and the greedy algorithm is
used if the number of partitions required is large. The
Kernighan-Lin and Fiduccia-Mattheyses heuristics were
originally developed to refine two partitions, but can be
adapted for refining multiple partitions [19, 22] by using
multiple-priority queues.
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4. Ordering sparse matrices using multiple
multilevel recursive bisections

In this section, we describe how graph bisection (partition
into two parts) by the process described in Section 3 is
used to compute a fill-reducing ordering of a symmetric
sparse matrix. The overall ordering algorithm involves
several stages, a preprocessing step, and a postprocessing
step. In Sections 4.1 and 4.2, we describe the core
algorithm and its various stages. Section 4.3 describes
some preprocessing steps that have a significant impact on
the quality and the run time of ordering. Section 4.4
describes the postprocessing step that may further improve
the ordering quality.

Any GP-based ordering algorithm regards the matrix as
the adjacency matrix of a graph and assigns labels to the
nodes of the graph. These labels specify the sequence in
which the matrix columns corresponding to the nodes are
eliminated during numerical factorization. The overall
approach of our ordering algorithm follows the
fundamental technique of generalized nested dissection
[24]. The graph is bisected by finding and removing a
node-separator, labeling the nodes of the two resulting
subgraphs by applying the same technique recursively, and
labeling the nodes of the separator after the nodes of the
subgraphs have been labeled (i.e., the separator nodes
receive a higher label than any of the nodes of the
subgraph). The recursion terminates when the subgraphs
become too small, at which stage they are labeled using a
minimum-degree heuristic.

The reason why this technique works is that, upon
elimination, a column corresponding to any of the nodes
in the two subgraphs can create a fill only in the columns
corresponding to the separator nodes and not any node of
the other subgraph. Intuitively, smaller node-separators
mean less fill and work during factorization. For finite-
element graphs with certain tractable properties, it can be
proved that this technique yields orderings within a
constant factor of the optimal [3, 24-26]. Such bounds
cannot be proved for arbitrary matrices without a well-
defined structure, such as the sparse matrices arising in LP
computations. However, as we show in [27] and Section 5,
with suitable modifications, the strategy works quite well
in practice even for matrices with arbitrary sparsity
patterns. In addition, graph bisection yields two
submatrices of the original matrix that can be factored
independently in parallel. This is the basis of many
efficient parallel algorithms for sparse-matrix factorization
[15, 16, 28].

4.1 Graph bisection

A key step in our ordering algorithm is finding a small
node bisector of a graph. This can be accomplished by the
heuristics described in Section 3 with some modifications
to the coarsening and refinement strategies.
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Coarse graphs produced by RM/HEM and the WGPP matching
algorithms when a graph with a star-shaped structure is coarsened
to a two-node graph.

The heavy- and heaviest-edge coarsening strategies
discussed in Section 3.1 may occasionally fail to
satisfactorily coarsen the graph of an LP matrix. An
example of such a graph is one that has a star-like
structure (Figure 3). Since RM and HEM disregard the
possibility of matching disconnected nodes, they fail to
preserve the properties of such a graph upon coarsening
and may result in a very unbalanced coarse graph.
Moreover, RM and HEM reduce the size of a star-shaped
graph by only one node in one coarsening step. In order
to overcome these problems, conceptually, WGPP regards
every graph as a completely connected graph with weight
zero assigned to every edge (i, j) that does not really exist
in the physical graph. It then attempts to maximize a
modified weight function of any two unmatched nodes i
and j when considering them to include in the matching as
a pair. The modified edge weight ew'(i, j) between two
nodes ¢ and j with node weights nw(i) and nw(j),
respectively, and connected by an edge of (possibly zero)
weight ew(i, j) is given by

ew'(i,J)) = a Xew(i,]) + o) + ()
Here a and B are constants defined at the beginning of
the given level of coarsening. WGPP uses ew'(i, j) instead
of the real edge weight ew(i, j) within the HEM
framework. The modified edge weight criterion yields a
balanced coarsening in fewer steps while preserving the
benefits of HEM. To save coarsening time in the actual
implementation, WGPP switches to using the modified
edge weights only if heavy- and heaviest-edge matchings
fail to reduce the size of the graph sufficiently.
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Drawbacks of choosing a small node-separator for refining in a
coarse graph.

The second modification required to adapt the graph-
partitioning algorithm to bisection for ordering is in the
refinement phase. A typical graph-partitioning application
requires the total weight of the edge-separator to be
minimized. However, while computing a fill-reducing
ordering of a sparse matrix, it is the size of the node-
separator that must be minimized. Current graph-
partitioning-based ordering algorithms follow two different
approaches to finding a small node-separator. Karypis and
Kumar [9] refine the edge-separator between the two
subgraphs after each step of uncoarsening so that few
edges connect nodes of different subgraphs in the final
partitioning of the original graph. Then they use an
algorithm for finding a minimum cover [29, 30] to
compute a node-separator from the edge-separator. This
approach relies heavily on the assumption that the size of
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a node-separator is proportional to the size of the edge-
separator containing it. This assumption is often incorrect,
especially for the highly unstructured LP matrices. For
example, consider the graph in Figure 4. Minimizing the
edge-separator will partition the graph between nodes

¢, d, e, f and nodes g, A, i, j. The smallest possible node-
separator that can be extracted from the edge-separator
(c, 9), (d, h), (e, i), (f, ) contains at least four nodes.
On the other hand, node-separators of size two (i.e., a, b
or k, I) are available with almost the same degree of
imbalance between the two partitions.

Ashcraft and Liu [8] find a node-separator within the
coarse graph and refine it into a node-separator of the
original graph in order to overcome the drawback of the
edge-separator approach. In Figure 5, we show that a
heavier node-separator in the coarse graph can result in
a smaller node-separator in the original graph after
uncoarsening (and vice versa). The weight of a node in the
coarse graph is the number of nodes of the original graph
that are collapsed during the coarsening steps to form the
coarse node. Not all of the component nodes of a coarse
separator node may have edges crossing partition
boundaries. As the graph is uncoarsened, such nodes are
eliminated from the node-separator by the refining
process. How many such nodes are eliminated from a
node-separator depends on the connectivity of these nodes
to the nodes outside the separator. For example, in Figure
5, the smaller coarse node-separator consisting of nodes b
and ¢ has a total weight of 6. This coarse separator results
in a final node-separator of size 6. This is because all six
nodes have interpartition connections, and none of them
can be removed from the node-separator by refining. On
the other hand, the coarse separator of weight 8 consisting
of nodes e and ¢ results in a final separator containing
only four nodes. This is because two of the four
component nodes of both coarse nodes ¢ and g have no
interpartition edges and are eliminated from the
separator by refinement. In this example, choosing the
smaller of the two edge-separators in the coarse graph
yields the smaller node-separator in the original graph.

In contrast to the original graph, the size of the edge-
separator is not completely irrelevant in coarse versions
of the graph. In fact, the coarser the graph, the more
relevant the edge-separator size is in predicting the size
of the node-separator in the original graph.

With these motivations, we slightly modify the graph-
partitioning strategy illustrated in Figure 2 to compute
bisections for sparse-matrix ordering. We coarsen the
original n-node graph to two nodes. We then repeatedly
uncoarsen it to g nodes, where 2 < g < n, and recoarsen
it to two nodes to select an initial partition. The
uncoarsening from 2 to ¢ is accompanied by refining the
edge-separator. We select the best bisection of the g-node
graph on the basis of a weighted average of the size of the
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edge-separator, the size of the node-separator, and the
inverse of the imbalance between the two parts. The
selected partition of the g-node graph is uncoarsened to
the original n-node graph one step at a time. After each
uncoarsening step, we refine the node-separator; i.e., in
the final steps of uncoarsening, the subject of refinement
is changed from the edge-separator to a node-separator.
For refining the node-separator, we use Ashcraft and Liu’s
modification [31] of the Fiduccia—Mattheyses algorithm [21}.

4.2 Recursive bisection and ordering

Once a node-separator of the original graph is found, it is
removed, and the entire procedure is repeated recursively
on the two disconnected subgraphs. The recursion
terminates if a subgraph is too small, in which case it is
not partitioned any further but ordered using a minimum-
degree heuristic. In our implementation, the size of the
terminal subgraphs ranges from a hundred nodes to a few
hundred nodes depending on the size of the original
graph. We use the AMD variation (due to Davis,
Amestoy, and Duff [4]) of the minimum-degree heuristic
for ordering these small subgraphs.

After the nodes of the two subgraphs at any level of
recursion have been labeled, the nodes of the separator at
that level are labeled and the algorithm returns to the
previous level, if any. This procedure ensures that the
labels assigned to the nodes of any separator are higher
than any label in the two disconnected subgraphs
separated by the separator. Therefore, during numerical
factorization, the columns corresponding to the separator
nodes are eliminated after all columns corresponding to
the nodes of the two subgraphs have been eliminated.

4.3 Preprocessing

Sections 4.1 and 4.2 describe the process of labeling the
nodes of the graph corresponding to a sparse matrix. In
this section, we describe two simple preprocessing steps
that, if performed before subjecting the graph to the
labeling process described previously, may significantly
improve the run time and the quality of the ordering
heuristic. The appropriate preprocessing step is applied in
WGPP to a matrix depending on its origin, which is
specified by the user. In the default case, both
optimizations are attempted.

The first preprocessing step is applicable only to
matrices arising from LP problems. Most matrices of the
form AD’A” that have to be factored while solving an LP
problem using a barrier method have the property that a
few (typically about 2%) of the columns are much denser
than the remaining columns. The number of nonzeros in
these few columns is typically several times greater than
the average number of nonzeros per column of the sparse
matrix. The preprocessing step, illustrated in Figure 6,
simply removes the nodes with excessively high degrees
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ordering an LP matrix: (a) Original graph; (b) graph after removal

g Ilustration of the preprocessing step performed in WGPP before
§ of the three high-degree nodes.

from the graph. The remainder of the graph is labeled
using the heuristics described in Sections 4.1 and 4.2, and
then the previously removed high-degree nodes are
assigned the highest labels. Typically, the removal of these
nodes either breaks the graph up into several disconnected
components, or renders it much more loosely connected
than the original graph. This aids the partitioning
algorithm in quickly finding node-separators of a small

(or zero) size.

The second preprocessing technique applies to a class of
finite-element matrices. Certain finite-element meshes
have many points with more than one degree of freedom.
The sparse matrices resulting from such finite-element
problems have many small groups of nodes that share the
same adjacency structure. In [32], Ashcraft describes a
technique to compress such graphs into smaller graphs by
coalescing the nodes with identical adjacency structures.
As a result of compression, the ordering algorithm must
process a much smaller graph; this, depending on the
degree of compression achieved, can reduce the ordering
time. WGPP ordering has the option of compressing the
graph as a preprocessing step and then working with the
compressed graph.

4.4 Postprocessing

As the factorization of a sparse symmetric matrix proceeds
from top left to bottom right, the columns that are
eliminated create nonzero entries, or fill-in, in the
remainder of the matrix. Toward the end of the
factorization process, the lower right corner of the matrix
often becomes fairly dense. Many implementations of
sparse factorization switch to dense-matrix factorization

at this stage because the cost of additional arithmetic
operations is more than compensated for by the
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Overview of the ordering algorithm used in WGPP.

advantages of dense factorization, such as the absence of
indirect addressing and better utilization of memory
hierarchy.
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With a GP-based ordering, the matrix columns
corresponding to the nodes of a separator usually tend to
become denser during factorization than the columns
corresponding to the nodes of the subgraphs that the
separator separates. This is because the separator columns
receive fill-in from the columns of both of the subgraphs
that they separate. On the other hand, the columns of
each subgraph receive fill-in from the nodes of only that
subgraph. In addition, separators typically have fewer
nodes than the separated subgraphs. A large number of
columns contributing fill-in to a small number of separator
columns results in the separator columns becoming
relatively dense during factorization.

An implementation of sparse-matrix factorization that
switches to dense factorization would benefit from a larger
and denser bottom right leftover portion of the matrix
during factorization. In order to aid such implementations,
we collect all separators larger than a certain size and
relabel their nodes so that they receive the highest labels.
In other words, we regard the top m levels of recursive
bisection as a single partition into 2” parts and all of the
2™ — 1 bisectors (a separator that bisects) as a single
composite separator whose removal results in 2"
disconnected subgraphs. The nodes of these 2” subgraphs
are labeled before the nodes of the composite separator.
While labeling the nodes of the composite separator, we
make sure that the nodes are labeled according to the
depth of the level of recursion in which they were
included in the separator. For example, the nodes of the
first bisector of the original graph receive higher labels
than the nodes of the two bisectors of the two resulting
subgraphs.

This relabeling of separator nodes does not affect the
total amount of fill-in during factorization or its operation
count. It affects only the location of fill-in and attempts to
direct most of the fill-in toward the high-index columns of
the matrix. However, for most finite-element and finite-
difference matrices, it is possible to relabel these
separator nodes to reduce the fill-in and the operation
count. This technique, which has been used in {7, 8],
involves creating an elimination graph consisting of the
separator nodes and using a minimum-degree heuristic to
order this graph. The elimination graph is the graph of
the partially factored sparse matrix in which all columns
except those corresponding to the separator nodes have
been eliminated.

Figure 7 illustrates the overall ordering procedure by
means of a flowchart.

5. Experimental results

In this section, we present experimental results on the run
time and quality of graph partitions and sparse-matrix
orderings generated by WGPP. To the best of our
knowledge, the METIS [9] software package represents
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Table 1 Description of the sparse matrices (and graphs) used in the experiments.

Matrix/Graph Number of Number of Density Source
columns or nodes nonzeros (nonzeros per column)
1. ALLGRADE 21601 2829003 131.0 Linear programming
2. BCSSTK-13 2003 83883 41.9 Fluid flow
3. BCSSTK-15 3948 117816 29.8 Structural engineering
4. BCSSTK-25 15439 252241 16.3 Structural engineering
5. BCSSTK-29 13992 619488 44.3 Structural engineering
6. BCSSTK-30 28924 2043492 70.7 Structural engineering
7. BCSSTK-31 35588 1181416 33.2 Structural engineering
8. BCSSTK-32 44609 2014701 45.2 Structural engineering
9. COMP-1 16783 9323427 555.5 Linear programming
10. COPTER-2 55476 759952 13.7 3D finite element mesh
11. CUBE-35 42875 292775 6.8 3D finite difference grid
12. CRONE 21901 152073 6.9 2D finite element mesh
13. DWT0512 512 3502 6.8 Submarine model
14. FLEET-12 20922 379234 18.1 Linear programming
15. GISMONDI 17447 475835 27.3 Linear programming
16. GRID-127 16129 143641 8.9 2D finite difference grid
17. HSCT16K-A 16152 769017 47.6 Structural analysis
18. HSCT16K-B 16146 1015156 62.9 Structural analysis
19. HSCT22K 21954 2119062 96.5 Structural analysis
20. HSCT44K 44396 3990735 90.0 Structural analysis
21. HSCT88K 88404 3544842 40.1 Structural analysis
22. K-8 21059 425533 20.2 Linear programming
23. KEN-18 39919 385235 9.7 Linear programming
24. KK-6 62064 4248286 68.5 Linear programming
25. PDS-20 28062 285966 10.2 Linear programming
26. PILOT 1441 120465 83.6 Linear programming
27. USAIR 13564 181634 134 Linear programming

the state of the art in graph partitioning—both in terms of
partitioning time and quality. In Section 5.1, we compare
WGPP with METIS. Currently the best minimum-degree-
based code available for computing fill-reducing ordering
for sparse matrices is that of approximate minimum
degree (AMD) [4]. METIS is one of the well-known
graph-partitioning-based sparse-matrix-ordering software
packages. Recent work by Ashcraft and Liu [8] and by
Hendrickson and Rothberg [7] reports graph-partitioning-
based ordering heuristics that are better than METIS, but
the corresponding software is not available for direct
comparison with WGPP. Therefore, in Section 5.2, we
compare WGPP’s sparse-matrix orderings with those of
AMD and METIS. Results for the traditional multiple
minimum-degree (MMD) algorithm are also included for
reference. In Table 1, we introduce the graphs and sparse
matrices for which the experimental data are presented in
Sections 5.1 and 5.2. All of the codes being compared
were compiled with the -O3 option using XLF 3.2 and run
on an IBM RS/6000™ Model 590 workstation.

5.1 Graph partitioning

The quality of a partition of an unweighted graph is
measured in terms of the edge-cut, or the total number of
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edges between nodes belonging to different partitions, and
the balance in the number of nodes assigned to each part.
In this section, we compare the edge-cuts of the partitions
produced by WGPP and METIS. In METIS, the upper
bound on the imbalance between the weights of the
partitions is 3%; i.e., the number of nodes in any partition
does not exceed 1.03 X n/k, where n is the total number
of nodes in the graph and k is the number of parts. In
WGPP, the user has the option of specifying the maximum
tolerable imbalance. The experiments in this section were
conducted with this option set at 3%. Although well below
3%, the actual imbalance was observed to be somewhat
higher for WGPP than for METIS. The comparisons in
this section are made for 2, 24, and 160 parts, and the
respective comparisons are representative of partitioning
graphs into small, medium, and large numbers of parts.
Both METIS and WGPP offer a few different choices of
coarsening and refinement aigorithms. For 2 and 160
parts, the best choices of METIS are compared with the
default choices of WGPP. For the 24-way partition,

since there is no obvious best choice, the three

most appropriate combinations of coarsening and
refinement methods are compared for both METIS and
WGPP.
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Table 2 Run time and edge-cut comparison between WGPP and METIS for graph bisection.

Graph PMETIS WGPP Tymis \ECyers

EM + BKL EM + P I

i ) (HEM + BKL) Tycre EClygrr

T (s) |EC]| T (s) IEC]

1. BCSSTK-15 0.452 1558 0.139 1528 3.25 1.02
2. COPTER-2 2.394 2252 1.012 2068 2.37 1.09
3. CRONE 0.487 183 0.304 164 1.60 112
4. CUBE-35 1.267 1387 0.766 1295 1.65 1.07
5. GRID-127 0.467 395 0.285 379 1.64 1.04
6. HSCT16K-B 2.763 6508 0.817 6488 3.38 1.00
7. HSCT88K 9.621 10933 2.659 8327 3.62 131
8. PILOT 0.464 3408 0.130 3379 3.57 1.01
Total 17.92 26624 6.20 23628 2.93 1.13
Average 2.64 1.08

Table 3 Run times and edge-cuts for partitioning graphs into 24 parts using three different variations of METIS.

Graph PMETIS (HEM + BKL) KMETIS (HEM + BKL) KMETIS (HEM + BGR)
T (s) |EC| T (s) IEC| T (s) |EC|

1. BCSSTK-15 1.286 12684 1.146 12904 0.977 12886
2. COPTER-2 7.034 26539 3.948 25257 3.434 25801
3. CRONE 1.558 1831 0.780 1819 0.747 1838
4. CUBE-35 4.050 8576 2.215 9161 1.806 9527
5. GRID-127 1.456 3153 0.824 3112 0.758 3167
6. HSCT16K-B 7.135 53814 4.115 53719 3.762 53541
7. HSCT88K 23.264 91056 11.333 88802 10.948 90182
8. PILOT 1.225 39901 1.224 39534 1.222 39534
Total 47.00 237554 25.59 234308 23.65 236476

Table 4 Run times and edge-cuts for partitioning graphs into 24 parts using three different variations of WGPP.

Graph WGPP (HTM + BKL) WGPP (HEM + BKL) WGPP (HEM + BGR)
T (s) |EC| T (s) \EC| T (s) |EC}
1. BCSSTK-15 0.650 12563 0.960 12244 0.152 12759
2. COPTER-2 3.047 25566 3.218 32303 1.361 27269
3. CRONE 0.894 1811 0.980 1894 0.427 2053
4. CUBE-35 2.960 8917 3.300 9032 1.060 9923
5. GRID-127 1.050 2922 1.043 3039 0.363 3158
6. HSCT16K-B 1.299 68356 3.068 56441 0.873 57207
7. HSCT88K 5.558 88482 6.801 88993 3.141 96065
8. PILOT 0.384 42027 0.580 41362 0.286 42185
Total 15.46 250644 19.95 245308 7.66 250619
Tables 2 through 5 give the various results. In these refers to boundary greedy refinement. PMETIS is a
tables, HEM refers to heavy-edge matching in the context  variation of METIS that uses recursive bisection for
of METIS and heaviest-edge matching in the context of partitioning, and KMETIS is a variation that uses a single
WGPP, HTM refers to heavy-triangle matching, BKL coarsening and refining cycle to generate the entire
180 refers to boundary Kernighan-Lin refinement, and BGR partition.
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Table 5 Run time and edge-cut comparison between WGPP and METIS for partitioning graphs into 160 parts.

Graph KMETIS (HEM + BGR) WGPP (HEM + BGR) Tyenis EClygris

T (s) \ EC| T (s) | EC| TWGPP IEClWGPP
1. BCSSTK-15 1.624 32197 0.348 31797 4.67 1.01
2. COPTER-2 5271 61802 2.118 62302 2.49 0.99
3. CRONE 1.459 6120 0.543 6894 2.69 0.89
4. CUBE-35 3.241 20213 1.590 20962 2.04 0.96
5. GRID-127 1.421 8885 0.487 9126 2.92 0.97
6. HSCT16K-B 6.231 178985 1.688 180410 3.69 0.99
7. HSCT88K 13.560 250598 3.993 271210 3.40 0.92
8. PILOT 2.075 54872 0.321 54777 6.39 1.00
Total 34.88 613672 11.09 637478 3.15 0.96
Average 3.54 0.97

Table 6 Run time and factorization operation count (in millions) comparison among MMD, AMD, METIS, and WGPP.
The best time and operation count appear in parentheses for each matrix. A dash implies that the ordering failed to complete.

Matrix MMD AMD METIS WGPP
T (s) oPC T (s) OPC T (s) OPC T (s) OPC
1. ALLGRADE 20.7 1438 (8.1) 1334 249 2042 16.3 (1226)
2. BCSSTK-13 02 57 (0.1) 54 0.6 64 0.6 (53)
3. BCSSTK-15 0.3 173 (0.1) 169 1.1 101 1.1 (89)
4. BCSSTK-25 1.0 325 (0.5) 354 35 458 3.3 (284)
5. BCSSTK-29 0.9 516 (0.3) 457 5.7 492 47 (435)
6. BCSSTK-30 1.4 1060 (0.7)  (945) 19.4 1502 42 1132
7. BCSSTK-31 2.1 2651 (0.9) 2579 13.8 1615 55 (1410)
8. BCSSTK-32 2.1 1262 (0.8)  (953) 222 1995 45 1630
9. COMP-1 662.9 2676 3375 2753 — — (16.6) (2181)
10. COPTER-2 3.6 11741 @7 12225 13.5 6812 12.5 (5584)
11. CUBE-35 25 14251 (1.7) 14198 7.4 9692 6.8 (8788)
12. CRONE (0.4) 26 0.5 24 2.8 27 2.6 (23)

13. DWT0512 0.01 0.05 (0.01) (0.05) 0.03 0.06 0.03 0.06
14. FLEET-12 90.0 6294 36.8 4926 — — (3.0) (3307)
15. GISMONDI 115 303770 (2.7) 304937 43 133882 5.6 (128431)
16. GRID-127 (0.2) 48 0.3 (46) 2.5 49 2.1 52
17. HSCT16K-A 1.0 772 (03) (720 73 830 4.0 792
18. HSCT16K-B 15 1093 (0.4) 1131 9.2 952 7.1 (609)
19. HSCT22K 42 1358 (0.9)  (1244) 19.4 2456 72 1872
20. HSCT44K 55 (2257) (1.1) 2276 39.8 5046 46 3576
21. HSCT88K 8.8 12975 (14) 10872 41.8 12637 6.7 (9871)
22. K-8 14.7 2153 154 2460 8.8 1335 (3.1) (492)
23. KEN-18 38.6 (186) 14.1 204 — — (6.2) 204
24. KK-6 6601.2  (1872) 23715 2054 — — (6.4) 1881
25. PDS-20 393.4 7069 (5.9) 7907 6.9 5683 7.1 (2130)
26. PILOT 0.9 47 (0.2) 50 0.8 50 0.7 (39)
27. USAIR 24.3 15486 Q7 15225 32 17073 3.7 (6091)

Table 2 compares two-way partitions using METIS and the run times and edge-cuts for three different variations
WGPP. WGPP produced a smaller edge-cut for each of WGPP. The (HTM + BKL) variation of WGPP
graph and was much faster than METIS—about 2.64 times  compares quite favorably with all three variations of
on average. Table 3 gives the run times and edge-cuts for METIS. It is much faster and generates partitions with a
three different variations of METIS, and Table 4 gives smaller edge-cut for most graphs. However, it is 181
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significantly worse on one graph, HSCT16K-B; as a result,
the total edge-cut of all eight graphs (250644) is about 7%
worse than that of the best total of METIS (234308).
Table 5 compares METIS and WGPP for 160-way
partitions. WGPP turns out to be more than three times
as fast as METIS on average for 160-way partitions, while
producing edge-cuts that are a few percent higher.

5.2 Sparse-matrix ordering

Table 6 compares MMD, AMD, METIS, and WGPP for
the ordering time and the number of floating-point
operations (in millions) on 27 sparse matrices from
various sources. The best time and ordering for each
matrix are enclosed in parentheses. AMD is the fastest of
all orderings for a majority of the problems, but its run
time is very inconsistent for the linear programming
matrices. In the worst case, it is 370 times slower than
WGPP. In this suite of test problems, WGPP produces the
best ordering for two thirds of the matrices. It produces
less than half the operation count of its nearest rival
(AMD) in 5 of the 27 problems, but generates only 1.7
times the operation count of AMD in the worst case. On
the whole, WGPP is quite competitive with the other
three ordering codes, markedly so for the linear
programming problems.

6. Concluding remarks

This paper presents heuristics that improve the run time
and the quality of the state-of-the-art practical methods
for graph-partitioning and sparse-matrix ordering. We
have developed a graph-partitioning and sparse-matrix-
ordering package (WGPP) [5] based on the heuristics
described in this paper. For graph partitioning, WGPP is
considerably faster than the well-known package METIS,
while generating partitions of almost comparable quality.
A comparison of WGPP with three other widely used
sparse-matrix-ordering codes shows it to be the best in
quality and consistent in run time on a suite of 27
randomly selected sparse matrices.

RS/6000 is a trademark of International Business Machines
Corporation.
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