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Graph partitioning is a  fundamental  problem in 
several scientific and  engineering  applications. 
In  this paper,  we  describe  heuristics that 
improve the state-of-the-art practical 
algorithms  used in graph-partitioning  software 
in terms  of both partitioning speed  and  quality. 
An important use  of  graph partitioning is  in 
ordering  sparse  matrices for obtaining direct 
solutions to sparse  systems  of  linear  equations 
arising in engineering  and  optimization 
applications.  The  experiments reported in this 
paper  show that the  use  of  these  heuristics 
results in a  considerable  improvement in the 
quality of sparse-matrix  orderings  over 
conventional  ordering  methods,  especially for 
sparse  matrices  arising in linear  programming 
problems. In addition,  our graph-partitioning- 
based  ordering  algorithm is more  parallelizable 
than  minimum-degree-based  ordering 
algorithms,  and it renders the ordered  matrix 
more  amenable to parallel  factorization. 

1. Introduction 
Graph  partitioning is an  important  problem with extensive 
application in  scientific computing,  optimization, VLSI 
design, and  task  partitioning  for  parallel processing. The 
graph-partitioning  problem, in its  most  general  form, 
requires dividing the  set of nodes of a weighted  graph  into 
k disjoint subsets  or  partitions such that  the  sum of 
weights of nodes in each  subset is nearly  the  same (within 
a user-supplied  tolerance) and the  total weight of all of 
the  edges  connecting  nodes in different  partitions is 
minimized. In  this  paper, we describe  heuristics  that 
significantly improve  the  practical  state-of-the-art  graph- 
partitioning  algorithms in partitioning  speed  and,  for a 
small number of parts,  also in partitioning quality. 

An  important  application of graph  partitioning is in 
computing fill-reducing orderings of sparse  matrices  for 
solving large  sparse systems of linear  equations.  Finding 
an  optimal  ordering is an  NP-complete  problem [l], and 
heuristics must be  used  to  obtain  an  acceptable non- 
optimal  solution.  Improving  the  run  time  and quality of 
ordering  heuristics  has  been a  subject of research  for 
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almost  three  decades. Two main  classes of successful 
heuristics have  evolved  over the years: (1) minimum- 
degree  (MD)-based heuristics, and (2) graph-partitioning 
(GP)-based  heuristics.  MD-based heuristics are local 
greedy heuristics that  reorder  the  columns of a  symmetric 
sparse matrix such  that  the  column with the fewest 
nonzeros  at a given stage of factorization is the next one 
to  be  eliminated  at  that  stage.  GP-based  heuristics  regard 
the symmetric sparse matrix  as the adjacency  matrix of a 
graph  and follow  a divide-and-conquer  strategy  to  label 
the  nodes of the  graph by partitioning it into  smaller 
subgraphs. 

The initial  success of MD-based  heuristics  prompted 
intense  research [2] to  improve  their  run  time  and quality, 
and  they have been  the  methods of choice  among 
practitioners.  The  multiple  minimum-degree  (MMD) 
algorithm by George  and Liu [2 ,  31 and  the  approximate 
minimum-degree  (AMD)  algorithm by Davis, Amestoy, 
and Duff [4] represent  the  state of the  art in MD-based 
heuristics.  Recent  work by the  author [5 ,  61, Hendrickson 
and  Rothberg [7], Ashcraft  and Liu [ 8 ] ,  and Karypis and 
Kumar [9, 101 suggests that  GP-based  heuristics  are 
capable of producing  better-quality  orderings  than  MD- 
based heuristics for  finite-element  problems, while  staying 
within  a  small constant  factor of the  run  time of MD- 
based heuristics. 

An  important  area  where  sparse-matrix  orderings  are 
used is that of linear  programming.  Until now, with  the 
exception of Rothberg  and  Hendrickson [ll], most 
researchers have focused on ordering  sparse  matrices 
arising  in finite-element  applications,  and  these 
applications have guided  the  development of the  ordering 
heuristics. The  use of the  interior-point  method  for solving 
LP  problems is  relatively recent.  As a result,  the  LP 
community  has  been using these well-established heuristics 
that  were  not originally developed  for  their  applications. 
Our GP-based  sparse-matrix-ordering  algorithm is capable 
of generating  robust  orderings of sparse  matrices arising 
in LP  problems, in addition  to  finite-element  and finite- 
difference  matrices.  Our  experimental  results show that 
the benefits of our  ordering over MD-based heuristics are 
even  more  pronounced  for  LP  matrices  than  for FE 
matrices.  Our  ordering  often  turned  out  to  be several 
hundred  times  faster  than  AMD  and  MMD on our set of 
LP test  matrices, while producing  better-quality  orderings 
on average. 

We have developed a graph-partitioning  and  sparse- 
matrix-ordering package (WGPP) [5]' based on the 
heuristics  described in  this paper.  We  present 
experimental  results of WGPP  for  graph  partitioning  and 
for  ordering  sparse  matrices arising  in two very different 
types of applications:  finite-element (FE) analysis and 

The package is available to users in the form of a linkable module 

linear  programming  (LP).  The  remainder of the  paper 
is organized as follows. Section 2 briefly discusses the 
relevance of this  paper  to  parallel  solution of large  sparse 
systems of linear  equations.  Section 3 describes  the 
heuristics used  for multilevel graph  partitioning.  Section 4 
describes how graph bisection (partitioning  into two parts) 
is used to  obtain fill-reducing orderings of sparse matrices. 
In  Section 5 ,  we compare  the quality and  run  time of 
WGPP with those of a state-of-the-art  graph-partitioning 
package.  Section 5 also presents  experimental  results 
comparing  sparse-matrix  orderings  produced by WGPP 
with those of other  softwares  for a  variety of matrices 
arising  in different  applications. 

2. Application  in  parallel  solution of linear 
equations 
Both  graph  partitioning  and  GP-based  sparse-matrix 
ordering have applications in the  parallel  solution of large 
sparse systems of linear  equations.  Partitioning  the  graph 
of a sparse  matrix  to minimize the  edge  cut  and 
distributing  different  partitions  to  different  processors 
minimizes the  communication  overhead in parallel  sparse- 
matrix vector  multiplication [12]. Sparse-matrix  vector 
multiplication is an  integral  part of all  iterative  schemes 
for solving sparse  linear systems. 

GP-based  ordering  methods  are  more  suitable  for 
solving sparse systems  using direct  methods  on  distributed- 
memory parallel  computers than MD-based  methods,  in two 
respects.  First,  there is strong  theoretical  and  experimental 
evidence that  the  process of graph  partitioning  and  sparse- 
matrix ordering  based on it  can  be  parallelized effectively 
[13]. On  the  other  hand,  the only attempt  to  perform a 
minimum-degree  ordering in parallel  that we are  aware of 
[14] was not successful in reducing the ordering time over a 
serial implementation. Second, in addition to being 
parallelizable itself, a  GP-based  ordering also aids the 
parallelization of the factorization and triangular  solution 
phases of a  direct solver. Gupta, Karypis, and Kumar [15, 161 
have proposed  a highly scalable parallel  formulation of 
sparse Cholesky factorization. This algorithm derives a 
significant part of its parallelism from  the underlying 
partitioning of the graph of the sparse matrix. In [17], Gupta 
and Kumar  present efficient parallel  algorithms  for solving 
lower- and upper-triangular systems resulting from sparse 
factorization. In  both parallel  factorization and triangular 
solutions, a part of the parallelism would be lost if an MD- 
based  heuristic  were  used to  preorder  the sparse matrix. 

3. Multilevel  graph  partitioning 
Recent  research [lo,  18, 191 has shown multilevel 
algorithms to  be  fast  and effective  in computing  graph 
partitions. A typical multilevel graph-partitioning 
algorithm  has  four  components: coarsening,  initial 
partitioning, uncoarsening, and refining. In  the following 



subsections, we briefly discuss these  components of graph 
partitioning, describing in detail only the new heuristics 
and  improvements over the  current  techniques. 

3.1 Coarsening 
The goal of the  coarsening  phase is to  reduce  the size of a 
graph while preserving  those of its properties  that  are 
essential  to finding  a good  partition.  The  original  graph is 
regarded as  a  weighted graph, with  a unit weight  assigned 
to  each  edge  and  each  node.  In a coarsening  step, a 
maximal set of edges of the  graph is identified  such that 
no two edges have  a vertex in common.  This  set of edges 
is known  as  a matching. The  edges in this  set  are  removed, 
and  the two nodes  connected by an  edge in the  matching 
are  collapsed  into a  single node  whose weight is the sum 
of the weights of the  component  nodes. Figure 1 
illustrates  the  coarsening  steps.  Note  that  coarsening also 
results in some  edges  being  collapsed  into  one, in which 
case  the collapsed edge is assigned  a  weight equal  to  the 
sum of weights of the  component edges. 

Given  a weighted  graph  after any stage of coarsening, 
there  are several choices of matchings for  the next 
coarsening  step. A simple matching  scheme [19] known as 
random  matching (RM) randomly chooses  pairs of 
connected  unmatched  nodes  to  include in the matching. In 
[lo], Karypis and  Kumar  describe a heuristic known  as 
heavy-edge matching (HEM)  to  aid in the  selection of a 
matching  that  not only reduces  the  run  time of the 
refinement  component of graph  partitioning,  but also 
tends  to  generate  partitions with  small separators.  The 
strategy is to  randomly pick an  unmatched  node,  select  the 
edge with the highest weight among  the  edges  incident on 
this vertex  that  connect it to  other  unmatched vertices, 
and  mark  both  vertices  connected by this edge as matched. 
Note  that  the weight of an edge  connecting two nodes in  a 
coarsened version of the  graph is the  number of edges in 
the original graph  that  connect  the two sets of original 
nodes collapsed into  the two coarse  nodes.  HEM, by 
absorbing  the  heavier edges, generates  coarse  graphs 
whose nodes  are loosely connected (by the  lighter 
remaining  edges),  thus  ensuring  that a partition of the 
coarse  graph  corresponds  to a good  partition of the 
original graph. 

HEM can miss some heavy edges in the  graph  because 
the  nodes  are visited  randomly for  matching. For example, 
consider a node i, the heaviest edge  incident on which 
connects it to a node j .  If i is visited before j and  both i 
and j are  unmatched,  the  edge ( i ,  j )  will be included  in 
the matching. If there exists an  edge ( j ,  k ) ,  such that i 
and k are  not  connected, it will be excluded from  the 
matching even if it is much  heavier than (i, j )  because j 
is no  longer available for matching. To  overcome  this 
problem,  after  the first few coarsening  steps, we switch to 
what we call the heaviest-edge matching. We  sort  the  edges 

Illustration of graph coarsening: (a) Original graph and a matching; 
(b) graph after one step of coarsening; (c) matching of the coarse 
graph; (d) graph after two steps of coarsening. 

by their weights and visit them in decreasing  order of 
weight to  inspect  them  for possible  inclusion  in the 
matching.  Ties  are  broken randomly. The  benefit of 
heaviest-edge  matching  over heavy-edge matching is more 
pronounced in the  later  stages of coarsening,  where 
sorting is not  too expensive because  the  graph  has  shrunk 
considerably from its  original size. 

HEM  and  its  variants  reduce  the  number of nodes in  a 
graph by roughly  a factor of 2 at  each  stage of coarsening. 
Therefore,  the  number of coarsening,  uncoarsening,  and 
refining steps  required  to  partition  an  n-node  graph  into k 
parts is log,(n/k). If r (instead of 2 )  nodes of the  graph 
are coalesced into  one  at  each  coarsening  step,  the  total 
number of steps  can  be  reduced  to  about  logr(n/k).  Fewer 
steps  are likely to  reduce  to overall run  time. However,  as 
r is increased,  the task of refining after  each  uncoarsening 
step  (see  Section 3.3 for  the  description of uncoarsening 
and  refinement)  becomes  harder.  This affects both  the  run 
time  and  the quality of refinement.  In  our  experiments, we 
observed  that increasing r from 2 to 3 results in about 
20% time savings  with only a minor  compromise in 
partitioning quality. In  WGPP, we use a combination of 
heavy-edge matching, heaviest-edge matching,  and heavy- 
triangle matching (HTM). HTM coalesces three  nodes  at a 
time by picking an  unmatched  node  at  random  and 
matching it  with two of its neighbors  such  that  the sum of 
the weights of the  three  edges  connecting  the  three  nodes 
is maximized  over  all pairs of neighbors of the  selected 
node. A nonexistent  edge  between  the two neighbors is 173 
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algorithm  does  not allow  a node  to  participate in matching 
if its weight  substantially  exceeds nlk. 

174 

Overview of our  uncoarsening  and  refining  scheme  for  finding  a k- 
way  partition; is a  weighted  average of the  edge-separator size 
and  the inverse of weight  imbalance  between  the  parts  in  the  ith 
partition. 

regarded as an  edge of weight zero.  Table 4 (shown later) 
compares  the  run  time  and  the  quality of 24-way partitions 
using HEM  and  HTM. 

3.2 Initial partitioning 
All  multilevel graph-partitioning  schemes  described in the 
literature  stop  the  coarsening  phase  when  the  graph  has 
been  reduced  to a few hundred  to a few thousand  nodes 
and  use  some  heuristic  to  compute  an  initial  partition of 
the  coarse  graph  at a substantial  run-time cost. In WGPP, 
we have completely  eliminated  the  initial  partitioning 
phase,  thereby simplifying and  speeding  up  the  overall 
partitioning process. 

graph growing [lo].  Graph growing computes  an  initial 
partition by recursively  bisecting the  graph  into two 
subgraphs of appropriate weight. For  example, a  three-way 
initial  partition is produced by bisecting the  coarse  graph 
into two parts  with a  weight ratio of 2:l;  the  larger 
subgraph is further  bisected  into two equal  parts.  In  order 
to bisect  a graph,  the graph-growing heuristic would  pick 
up a node  at  random,  tag  it,  and  keep tagging its 
neighbors  and neighbors’ neighbors in a breadth-first 
manner  until  the  ratio  between  the  cumulative weight of 
the  tagged  nodes  and  that of the  untagged  nodes  reaches 
the  desirable value. The  sets of tagged  and  untagged 
nodes now form  the two partitions of the  graph. 

of highly connected  nodes.  Note  that  coarsening with 
HEM  or  HTM  also strives to achieve the  same goal. 
In  fact,  graph growing is the  bottom-up  equivalent of 
coarsening.  Therefore,  for a k-way partition of an  n-node 
graph,  WGPP  continues  to  coarsen  the  graph  until it 
contains exactly k nodes.  This  coarse  k-node  graph  serves 
as a good  initial  partitioning,  provided  that  the  coarsening 

One of the effective heuristics  for  initial  partitioning is 

The basic function of graph growing is to  form a cluster 

3.3 Uncoarsening and refinement 
The  uncoarsening  and refining components of graph 
partitioning work together. Initially, the k nodes of the 
coarsest  graph  are assigned different  tags  indicating  that 
they  belong  to  different  initial  partitions.  They  are  then 
split into  the  nodes  that  were  collapsed  to  form  them 
during  the  coarsening  phase.  This  reversal of coarsening is 
carried out  one  step  at a time. The  nodes of the uncoarsened 
graph inherit their tags from their parent nodes in the coarser 
graph. At any stage of uncoarsening, the edges connecting a 
pair of nodes belonging to different partitions constitute an 
edge-separator of the  graph.  Removing  the  edge-separator 
from  the  graph  breaks  it  into k disconnected  subgraphs. 
After  each  step of uncoarsening,  the  separator is  refined. 
While refining an  edge-separator,  an  attempt is made  to 
minimize its total weight by switching the partitions of some 
nodes if this switching reduces  the  separator size and  does 
not  make  the weights of the  parts  too  imbalanced. 

Figure 2 gives an overview of our  uncoarsening  and 
refinement  scheme  for  partitioning  into k parts.  After 
coarsening  the  original  n-node  graph  to k nodes, we 
uncoarsen  it  to q nodes,  where k < q < n, while  refining 
the  edge-separator  after  each  step of uncoarsening.  At  this 
stage we save the  partition,  coarsen  the  q-node  graph  back 
to k nodes,  and  repeat  the  uncoarsening  and refining 
process.  This  process is repeated a few times, and of all 
the  partitions of the  q-node  graph  generated, we choose 
the  best  for  further  uncoarsening  to  obtain a partition of 
the  original  n-node  graph.  The  best  partition is selected 
on the basis of a weighted  average of the size of the  edge- 
separator  and  the  inverse of the weight imbalance  between 
the  parts.  The  randomization in the  coarsening  process 
ensures  that  the  different  trials  result in sufficiently 
different  partitions.  Most of the  partition cost is incurred 
in the first few coarsening  steps of the  original  graph  and 
the  last few uncoarsening  and refining steps when the size 
of the  graph is large. Therefore,  multiple cycles of 
coarsening  and  uncoarsening  on  the  smaller,  coarser 
q-node  graph have little  impact on the  overall  run  time 
of the  entire  algorithm. 

Depending on the  number of partitions  k, we either  use 
a variation of the  popular Kernighan-Lin heuristic [19-221 
or a greedy  refinement  scheme  [lo, 231 for refining the 
edge-separators.  The  linear-time Fiduccia-Mattheyses 
variation [21] of the Kernighan-Lin heuristic is used  for a 
small number of partitions,  and  the  greedy  algorithm is 
used if the  number of partitions  required is large. The 
Kernighan-Lin and Fiduccia-Mattheyses  heuristics were 
originally developed  to refine  two partitions,  but  can  be 
adapted  for refining multiple  partitions [19, 221  by using 
multiple-priority  queues. 
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4. Ordering  sparse  matrices using multiple 
multilevel  recursive  bisections 
In  this  section,  we  describe how graph bisection (partition 
into two parts) by the  process  described in Section 3 is 
used  to  compute a  fill-reducing ordering of a  symmetric 
sparse matrix. The overall ordering  algorithm involves 
several stages,  a preprocessing  step,  and a postprocessing 
step.  In  Sections 4.1 and 4.2, we describe  the  core 
algorithm  and  its  various  stages.  Section 4.3 describes 
some  preprocessing  steps  that have  a  significant impact  on 
the quality and  the  run  time of ordering.  Section 4.4 
describes  the  postprocessing  step  that may further improve 
the  ordering quality. 

Any GP-based  ordering  algorithm  regards  the matrix as 
the adjacency matrix of a graph  and assigns  labels to  the 
nodes of the  graph.  These  labels specify the  sequence in 
which the matrix columns  corresponding  to  the  nodes  are 
eliminated  during  numerical  factorization.  The overall 
approach of our  ordering  algorithm follows the 
fundamental  technique of generalized  nested dissection 
[24]. The  graph is bisected by finding and removing  a 
node-separator, labeling the  nodes of the two resulting 
subgraphs by applying the  same  technique recursively, and 
labeling  the  nodes of the  separator  after  the  nodes of the 
subgraphs have been  labeled (Le., the  separator  nodes 
receive  a higher  label  than any of the  nodes of the 
subgraph).  The  recursion  terminates  when  the  subgraphs 
become  too small, at which stage  they  are  labeled using  a 
minimum-degree heuristic. 

elimination, a column  corresponding  to any of the  nodes 
in the two subgraphs can create a fill only  in the columns 
corresponding  to  the  separator  nodes  and  not any node of 
the  other  subgraph. Intuitively, smaller  node-separators 
mean less fill and  work  during  factorization.  For finite- 
element  graphs with certain  tractable  properties, it can  be 
proved  that  this  technique yields orderings within  a 
constant  factor of the  optimal [3,  24-26]. Such  bounds 
cannot  be  proved  for  arbitrary  matrices  without a well- 
defined structure, such as the  sparse  matrices arising  in LP 
computations.  However, as we show  in [27] and  Section 5, 
with suitable modifications, the  strategy works quite well 
in practice  even  for  matrices with arbitrary sparsity 
patterns.  In  addition,  graph bisection  yields two 
submatrices of the original  matrix that  can  be  factored 
independently in parallel. This is the basis of many 
efficient parallel  algorithms  for  sparse-matrix  factorization 
[15, 16, 281. 

4.1 Graph bisection 
A key step in our  ordering  algorithm is finding  a  small 
node  bisector of a graph.  This  can  be  accomplished by the 
heuristics  described in Section 3  with some modifications 
to  the  coarsening  and  refinement  strategies. 

The  reason why this  technique works is that,  upon 
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Coarse  graphs  produced by W M  and the WGPP matching 
algorithms  when  a  graph  with  a  star-shaped  structure is coarsened 
to a  two-node  graph. 

The heavy- and  heaviest-edge  coarsening  strategies 
discussed  in Section 3.1 may occasionally fail  to 
satisfactorily coarsen  the  graph of an LP matrix. An 
example of such a graph is one  that  has a star-like 
structure (Figure 3). Since RM  and  HEM  disregard  the 
possibility of matching  disconnected  nodes,  they fail to 
preserve  the  properties of such  a graph  upon  coarsening 
and may result in  a very unbalanced  coarse  graph. 
Moreover,  RM  and  HEM  reduce  the size of a star-shaped 
graph by only one  node in one  coarsening  step. In order 
to  overcome  these  problems, conceptually, WGPP  regards 
every graph  as a  completely connected  graph with  weight 
zero assigned to every edge ( i ,  j )  that  does  not really exist 
in the physical graph.  It  then  attempts  to maximize  a 
modified  weight function of any two unmatched  nodes i 
and j when  considering  them  to  include in the  matching  as 
a pair.  The modified edge weight ew'(i, j )  between two 
nodes i and j with node weights nw(i )  and nw(j ) ,  
respectively, and  connected by an  edge of (possibly zero) 
weight ew(i, j )  is given by 

P 
nw(i)  + n w ( j )  ' 

ew'( i ,  j )  = 01 X ew(i, j )  + 

Here 01 and P are  constants defined at  the beginning  of 
the given level of coarsening.  WGPP uses ew'( i ,  j )  instead 
of the  real  edge weight ew(i, j )  within the  HEM 
framework.  The modified edge weight criterion yields  a 
balanced  coarsening in fewer  steps while  preserving the 
benefits of HEM. To save coarsening  time in the  actual 
implementation,  WGPP switches to using the modified 
edge weights only if heavy- and  heaviest-edge matchings 
fail  to  reduce  the size of the  graph sufficiently. 
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Drawbacks of choosing a node-separator from the minimum edge- 
separator. 

Drawbacks of choosing a small node-separator for refining in a 
coarse graph. 

176 

The  second modification required  to  adapt  the  graph- 
partitioning  algorithm  to bisection for  ordering is in the 
refinement  phase. A  typical graph-partitioning  application 
requires  the  total weight of the  edge-separator  to  be 
minimized. However, while computing a  fill-reducing 
ordering of a sparse matrix,  it is the size of the  node- 
separator  that must be minimized. Current  graph- 
partitioning-based  ordering  algorithms follow two different 
approaches  to finding  a  small node-separator. Karypis and 
Kumar 191 refine the  edge-separator  between  the two 
subgraphs  after  each  step of uncoarsening so that few 
edges  connect  nodes of different  subgraphs in the final 
partitioning of the  original  graph.  Then  they  use  an 
algorithm  for finding  a  minimum  cover [29, 301 to 
compute a node-separator  from  the  edge-separator.  This 
approach  relies heavily on  the  assumption  that  the size of 
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a node-separator is proportional  to  the size of the  edge- 
separator  containing  it.  This  assumption is often  incorrect, 
especially for  the highly unstructured LP matrices.  For 
example,  consider  the  graph in Figure 4. Minimizing the 
edge-separator will partition  the  graph  between  nodes 
c ,  d,  e, f and  nodes g, h, i ,  j. The  smallest possible node- 
separator  that  can  be  extracted  from  the  edge-separator 
( c ,  g), (d ,  h ) ,  (e, i), (f, j) contains  at  least  four  nodes. 
On  the  other  hand,  node-separators of size two (i.e., a ,  b 
or k ,  1 )  are available  with almost  the  same  degree of 
imbalance  between  the two partitions. 

Ashcraft  and Liu [SI find a node-separator within the 
coarse  graph  and refine  it into a node-separator of the 
original graph in order  to  overcome  the drawback of the 
edge-separator  approach. In Figure 5, we show that a 
heavier node-separator in the  coarse  graph  can  result in 
a smaller  node-separator in the original graph  after 
uncoarsening  (and vice versa).  The weight of a node in the 
coarse  graph is the  number of nodes of the original graph 
that  are  collapsed  during  the  coarsening  steps  to  form  the 
coarse  node.  Not all of the  component  nodes of a coarse 
separator  node may have edges crossing partition 
boundaries.  As  the  graph is uncoarsened,  such  nodes  are 
eliminated  from  the  node-separator by the refining 
process.  How  many  such nodes  are  eliminated  from a 
node-separator  depends  on  the connectivity of these  nodes 
to  the  nodes  outside  the  separator.  For example,  in Figure 
5, the  smaller  coarse  node-separator consisting of nodes b 
and c has a total weight of 6. This  coarse  separator  results 
in  a  final node-separator of size 6. This is because all six 
nodes have interpartition  connections,  and  none of them 
can  be  removed  from  the  node-separator by refining. On 
the  other  hand,  the  coarse  separator of weight 8 consisting 
of nodes e and g results in  a  final separator  containing 
only four  nodes.  This is because two of the  four 
component  nodes of both  coarse  nodes c and g have no 
interpartition  edges  and  are  eliminated  from  the 
separator by refinement. In this example, choosing  the 
smaller of the two edge-separators  in  the  coarse  graph 
yields the  smaller  node-separator in the original graph. 
In contrast  to  the original graph,  the size of the  edge- 
separator is not  completely  irrelevant in coarse versions 
of the  graph. In fact,  the  coarser  the  graph,  the  more 
relevant  the  edge-separator size is in predicting  the size 
of the  node-separator in the  original  graph. 

With  these motivations, we slightly modify the  graph- 
partitioning  strategy  illustrated in Figure 2 to  compute 
bisections for  sparse-matrix  ordering.  We  coarsen  the 
original n-node  graph  to two nodes.  We  then  repeatedly 
uncoarsen it to q nodes,  where 2 < q < n, and  recoarsen 
it to two nodes  to  select  an initial partition.  The 
uncoarsening  from 2 to q is accompanied by refining the 
edge-separator.  We  select  the best  bisection of the  q-node 
graph on the basis of a weighted  average of the size of the 
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edge-separator,  the size of the  node-separator,  and  the 
inverse of the  imbalance  between  the two parts.  The 
selected  partition of the  q-node  graph is uncoarsened  to 
the original n-node  graph  one  step  at a time.  After  each 
uncoarsening  step, we refine the  node-separator; i.e., in 
the final steps of uncoarsening,  the subject of refinement 
is changed  from  the  edge-separator  to a node-separator. 
For refining the  node-separator, we use  Ashcraft  and Lids  
modification [31] of the Fiduccia-Mattheyses algorithm [21]. 

4.2 Recursive bisection and ordering 
Once a node-separator of the original graph is found, it is 
removed,  and  the  entire  procedure is repeated recursively 
on  the two disconnected  subgraphs.  The  recursion 
terminates if a subgraph is too small,  in which case it is 
not  partitioned any further  but  ordered using a minimum- 
degree heuristic. In  our  implementation,  the size of the 
terminal  subgraphs  ranges  from a hundred  nodes  to a few 
hundred  nodes  depending  on  the size of the original 
graph.  We  use  the  AMD  variation  (due  to Davis, 
Amestoy, and Duff [4]) of the  minimum-degree  heuristic 
for  ordering  these small subgraphs. 

After  the  nodes of the two subgraphs  at any  level of 
recursion have been  labeled,  the  nodes of the  separator  at 
that level are  labeled  and  the  algorithm  returns  to  the 
previous level, if any. This  procedure  ensures  that  the 
labels assigned to  the  nodes of any separator  are  higher 
than any label in the two disconnected  subgraphs 
separated by the  separator.  Therefore,  during  numerical 
factorization,  the  columns  corresponding to the  separator 
nodes  are  eliminated  after all columns  corresponding  to 
the  nodes of the two subgraphs have been  eliminated. 

4.3 Preprocessing 
Sections 4.1 and 4.2 describe  the  process of labeling  the 
nodes of the  graph  corresponding  to a sparse matrix. In 
this section, we describe two simple preprocessing  steps 
that, if performed  before  subjecting  the  graph  to  the 
labeling  process  described previously, may significantly 
improve  the  run  time  and  the quality of the  ordering 
heuristic. The  appropriate  preprocessing  step is applied in 
WGPP  to a  matrix depending  on  its origin, which is 
specified by the  user.  In  the  default case, both 
optimizations  are  attempted. 

matrices arising from  LP  problems. Most matrices of the 
form ADZAT that  have to be  factored while  solving an  LP 
problem using  a barrier  method have the  property  that a 
few (typically about 2%) of the  columns  are  much  denser 
than  the  remaining  columns.  The  number of nonzeros  in 
these few columns is typically several  times  greater  than 
the  average  number of nonzeros  per  column of the  sparse 
matrix. The  preprocessing  step,  illustrated in Figure 6, 
simply removes  the  nodes with excessively high degrees 

The first preprocessing  step is applicable only to 
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Illustration of the  preprocessing  step  performed in WGPP before 
ordering  an LP matrix:  (a)  Original  graph; (b) graph  after  removal 
of the  three high-degree nodes. 

from  the  graph.  The  remainder of the  graph is labeled 
using the heuristics described  in  Sections 4.1 and 4.2, and 
then  the previously removed  high-degree  nodes  are 
assigned the highest  labels. Typically, the  removal of these 
nodes  either  breaks  the  graph  up  into  several  disconnected 
components,  or  renders it  much more loosely connected 
than  the  original  graph.  This  aids  the  partitioning 
algorithm in quickly finding node-separators of a  small 
(or  zero) size. 

finite-element  matrices.  Certain  finite-element  meshes 
have  many points with more  than  one  degree of freedom. 
The  sparse  matrices  resulting  from such finite-element 
problems have  many  small groups of nodes  that  share  the 
same adjacency structure.  In [32], Ashcraft  describes a 
technique  to  compress  such  graphs  into  smaller  graphs by 
coalescing the  nodes with identical adjacency structures. 
As a result of compression,  the  ordering  algorithm  must 
process a  much smaller  graph;  this,  depending  on  the 
degree of compression achieved, can  reduce  the  ordering 
time.  WGPP  ordering  has  the  option of compressing  the 
graph  as a preprocessing  step  and  then working  with the 
compressed  graph. 

The  second  preprocessing  technique  applies  to a  class of 

4.4 Postprocessing 
As  the  factorization of a sparse symmetric matrix  proceeds 
from  top  left  to  bottom  right,  the  columns  that  are 
eliminated  create  nonzero  entries,  or fill-in, in  the 
remainder of the matrix. Toward  the  end of the 
factorization process, the lower  right corner of the matrix 
often  becomes fairly dense. Many implementations of 
sparse  factorization switch to dense-matrix  factorization 
at  this  stage  because  the  cost of additional  arithmetic 
operations is more  than  compensated  for by the 177 
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Overview of the  ordering algorithm used in WGPP. 

advantages of dense  factorization, such as  the  absence of 
indirect  addressing  and  better  utilization of memory 

178 hierarchy. 

With a GP-based  ordering,  the matrix columns 
corresponding  to  the  nodes of a separator usually tend  to 
become  denser  during  factorization  than  the  columns 
corresponding  to  the  nodes of the  subgraphs  that  the 
separator  separates.  This is because  the  separator  columns 
receive fill-in from  the  columns of both of the  subgraphs 
that  they  separate.  On  the  other  hand,  the  columns of 
each  subgraph receive fill-in from  the  nodes of only that 
subgraph.  In  addition,  separators typically have  fewer 
nodes  than  the  separated  subgraphs. A large  number of 
columns  contributing fill-in to a  small number of separator 
columns  results in the  separator  columns becoming 
relatively dense  during  factorization. 

An  implementation of sparse-matrix  factorization  that 
switches to  dense  factorization would benefit  from a larger 
and  denser  bottom right leftover  portion of the  matrix 
during  factorization.  In  order  to  aid  such  implementations, 
we collect all separators  larger  than a certain size and 
relabel  their  nodes so that  they receive the highest  labels. 
In  other  words, we regard  the  top m levels of recursive 
bisection as a  single partition  into 2" parts  and all of the 
2" - 1 bisectors  (a  separator  that bisects) as a  single 
composite  separator whose  removal results in 2" 
disconnected  subgraphs.  The  nodes of these 2" subgraphs 
are  labeled  before  the  nodes of the  composite  separator. 
While  labeling the  nodes of the  composite  separator, we 
make  sure  that  the  nodes  are  labeled  according  to  the 
depth of the level of recursion in  which they  were 
included  in  the  separator.  For  example,  the  nodes of the 
first bisector of the original graph receive higher  labels 
than  the  nodes of the two bisectors of the two resulting 
subgraphs. 

This  relabeling of separator  nodes  does  not affect the 
total  amount of fill-in during  factorization  or its operation 
count.  It affects  only the  location of fill-in and  attempts  to 
direct  most of the fill-in toward  the high-index columns of 
the matrix. However,  for most finite-element  and finite- 
difference  matrices, it  is  possible to  relabel  these 
separator  nodes  to  reduce  the fill-in and  the  operation 
count.  This  technique, which has  been  used  in [7, 81, 
involves creating  an elimination graph consisting of the 
separator  nodes  and using  a minimum-degree  heuristic  to 
order  this  graph.  The  elimination  graph is the  graph of 
the partially factored  sparse  matrix in which all columns 
except those  corresponding  to  the  separator  nodes have 
been  eliminated. 

Figure 7 illustrates  the overall ordering  procedure by 
means of a  flowchart. 

5. Experimental  results 
In  this  section, we present  experimental  results on the  run 
time  and quality of graph  partitions  and  sparse-matrix 
orderings  generated by WGPP.  To  the  best of our 
knowledge, the  METIS [9] software  package  represents 
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Table 1 Description of the sparse matrices (and graphs) used in the experiments. 

MatrixlGraph Number of Number of Density Source 
columns or nodes nonzeros (nonzeros per column) 

1. ALLGRADE 21601 2829003 131.0 Linear programming 
2. BCSSTK-13 2003 83883 41.9 Fluid flow 
3. BCSSTK-15 3948 117816 29.8 Structural engineering 
4. BCSSTK-25 15439 252241 16.3 Structural engineering 
5. BCSSTK-29 13992 619488 44.3 Structural engineering 
6. BCSSTK-30 28924 2043492 70.7 Structural engineering 
7. BCSSTK-31 35588 1181416 33.2 Structural engineering 
8. BCSSTK-32 44609 2014701 45.2 Structural engineering 
9. COMP-1 16783 9323427 555.5 Linear programming 

10. COPTER-2 55476 759952 13.7 3D finite element mesh 
11. CUBE-35 42875 292775 6.8 3D finite difference grid 
12. CRONE 21901 152073 6.9 2D finite element mesh 
13. DWT0512 512 3502 6.8 Submarine model 

15. GISMONDI 17447 415835 27.3 Linear programming 
14. FLEET-12 20922 379234 18.1 Linear programming 

16. GRID-I27 16129 143641 8.9 2D finite difference grid 
17. HSCT16K-A 16152 769017 47.6 Structural analysis 
18. HSCT16K-B 16146 1015156 62.9 Structural analysis 
19. HSCT22K 21954 2119062 96.5 Structural analysis 
20. HSCT44K 44396 3990735 90.0 Structural analysis 
21. HSCT88K 88404 3544842 40.1 Structural analysis 
22. K-8 21059 425533 20.2 Linear programming 
23. KEN-18 39919 385235 9.7 Linear programming 
24. KK-6 62064 4248286 68.5 Linear programming 
25. PDS-20 28062 285966 10.2 Linear programming 
26. PILOT 1441 120465 83.6 Linear programming 
27. USAIR 13564 181634 13.4 Linear programming 

the  state of the  art in graph partitioning-both  in terms of 
partitioning  time  and quality. In  Section 5.1, we compare 
WGPP with METIS.  Currently  the best minimum-degree- 
based  code available for  computing fill-reducing ordering 
for  sparse  matrices is that of approximate  minimum 
degree  (AMD) [4]. METIS is one of the well-known 
graph-partitioning-based  sparse-matrix-ordering  software 
packages. Recent  work by Ashcraft  and Liu [SI and by 
Hendrickson  and  Rothberg [7] reports  graph-partitioning- 
based  ordering heuristics that  are  better  than  METIS,  but 
the  corresponding  software is not available for  direct 
comparison with WGPP.  Therefore, in Section 5.2, we 
compare  WGPP’s  sparsematrix  orderings with those of 
AMD  and  METIS.  Results  for  the  traditional multiple 
minimum-degree  (MMD)  algorithm  are  also  included for 
reference.  In Table 1, we introduce  the  graphs  and  sparse 
matrices  for which the  experimental  data  are  presented in 
Sections 5.1 and 5.2 .  All of the  codes  being  compared 
were  compiled with the   -03  option using XLF 3.2 and  run 
on  an  IBM RS/6000TM Model 590 workstation. 

5.1 Graph partitioning 
The quality of a partition of an unweighted graph is 
measured in terms of the  edge-cut, or the  total  number of 

edges between nodes belonging to  different  partitions,  and 
the  balance in the  number of nodes assigned to  each  part. 
In  this  section, we compare  the edge-cuts of the  partitions 
produced by WGPP  and  METIS.  In  METIS,  the  upper 
bound on the  imbalance  between  the weights of the 
partitions is 3%; i.e., the  number of nodes in  any partition 
does  not exceed 1.03 X nlk, where n is the  total  number 
of nodes in the  graph  and k is the  number of parts.  In 
WGPP,  the  user  has  the  option of specifying the maximum 
tolerable  imbalance.  The  experiments in this section  were 
conducted with  this option  set  at  3%.  Although well below 
3%, the  actual  imbalance was observed  to  be somewhat 
higher  for  WGPP  than  for  METIS.  The  comparisons in 
this  section are  made  for 2, 24, and 160 parts,  and  the 
respective comparisons  are  representative of partitioning 
graphs  into small, medium,  and  large  numbers of parts. 
Both  METIS  and  WGPP  offer a few different choices of 
coarsening  and  refinement algorithms. For 2 and 160 
parts,  the  best choices of METIS  are  compared with the 
default choices of WGPP.  For  the 24-way partition, 
since there is no obvious best  choice,  the  three 
most appropriate  combinations of coarsening  and 
refinement  methods  are  compared  for  both  METIS  and 
WGPP. 179 
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Table 2 Run time and edge-cut comparison between WGPP and METIS for graph bisection. 

I 80 

1. BCSSTK-15 
2. COPTER-2 
3. CRONE 
4. CUBE-35 
5. GRID-127 
6. HSCT16K-B 
7. HSCT88K 
8. PILOT 

Total 

Average 

0.452 
2.394 
0.487 
1.267 
0.467 
2.763 
9.621 
0.464 

17.92 

1558 
2252 

183 
1387 
395 

6508 
10933 
3408 

26624 

0.139 
1.012 
0.304 
0.766 
0.285 
0.817 
2.659 
0.130 

6.20 

1528 
2068 

164 
1295 
379 

6488 
8327 
3379 

23628 

~~ 

3.25 
2.37 
1.60 
1.65 
1.64 
3.38 
3.62 
3.57 

2.93 

2.64 

~ 

1.02 
1.09 
1.12 
1.07 
1.04 
1.00 
1.31 
1.01 

1.13 

1.08 
~ ~~~ 

Table 3 Run times and edge-cuts for partitioning graphs  into 24 parts using three different variations of METIS. 

1. BCSSTK-15 
2. COPTER-2 
3. CRONE 
4. CUBE-35 
5. GRID-127 
6. HSCT16K-B 
7. HSCT88K 
8. PILOT 

Total 

1.286 
7.034 
1.558 
4.050 
1.456 
7.135 

23.264 
1.225 

47.00 

12684 
26539 

1831 
8576 
3153 

53814 
91056 
39901 

237554 

1.146 
3.948 
0.780 
2.215 
0.824 
4.115 

11.333 
1.224 

25.59 

12904 
25257 

1819 
9161 
3112 

53719 
88802 
39534 

234308 

0.977 
3.434 
0.747 
1.806 
0.758 
3.762 

10.948 
1.222 

23.65 

12886 
25801 

1838 
9527 
3167 

53541 
90182 
39534 

236476 

Table 4 Run times and edge-cuts for partitioning graphs into 24 parts using three different variations of WGPP. 

1. BCSSTK-15 
2. COPTER-2 
3. CRONE 
4. CUBE-35 
5. GRID-127 
6. HSCT16K-B 
7. HSCT88K 
8. PILOT 

Total 

0.650 
3.047 
0.894 
2.960 
1.050 
1.299 
5.558 
0.384 

15.46 

12563 
25566 

1811 
8917 
2922 

68356 
88482 
42027 

250644 

0.960 
3.218 
0.980 
3.300 
1.043 
3.068 
6.801 
0.580 

19.95 

12244 
32303 

1894 
9032 
3039 

56441 
88993 
41362 

245308 

0.152 
1.361 
0.427 
1.060 
0.363 
0.873 
3.141 
0.286 

7.66 

12759 
27269 
2053 
9923 
3158 

57207 
96065 
42185 

250619 

Tables 2 through 5 give the  various results. In  these refers  to  boundary  greedy  refinement.  PMETIS is  a 
tables, HEM  refers  to heavy-edge matching in the  context variation of METIS  that  uses recursive  bisection for 
of METIS  and  heaviest-edge  matching  in  the  context of partitioning,  and KMETIS is  a variation  that uses  a  single 
WGPP,  HTM  refers  to heavy-triangle matching, BKL coarsening  and refining cycle to  generate  the  entire 
refers  to  boundary Kernighan-Lin refinement,  and BGR partition. 
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Table 5 Run time and edge-cut comparison between WGPP and METIS for partitioning graphs into 160 parts. 

1. BCSSTK-15 
2. COPTER-2 
3. CRONE 
4. CUBE-35 
5. GRID-127 
6. HSCT16K-B 
7. HSCT88K 
8. PILOT 

Total 

Average 

1.624 
5.271 
1.459 
3.241 
1.421 
6.231 

13.560 
2.075 

34.88 

32197 
61802 
6120 

20213 
8885 

178985 
250598 
54872 

613672 

0.348 
2.118 
0.543 
1.590 
0.487 
1.688 
3.993 
0.321 

11.09 

31797 
62302 
6894 

20962 
9126 

180410 
271210 
54777 

637478 

4.67 
2.49 
2.69 
2.04 
2.92 
3.69 
3.40 
6.39 

3.15 

3.54 

1.01 
0.99 
0.89 
0.96 
0.97 
0.99 
0.92 
1.00 

0.96 

0.97 

Table 6 Run time and factorization operation count (in millions) comparison among MMD, AMD, METIS, and WGPP. 
The best time and operation count appear in parentheses for each matrix. A dash implies that the ordering failed to complete. 

1. ALLGRADE 
2.  BCSSTK-13 
3. BCSSTK-15 
4. BCSSTK-25 
5. BCSSTK-29 
6.  BCSSTK-30 
7. BCSSTK-31 
8. BCSSTK-32 
9. COMP-1 

10. COPTER-2 
11. CUBE-35 
12. CRONE 
13. DWT0512 
14. FLEET-12 
15. GISMONDI 
16. GRID-127 
17. HSCT16K-A 
18. HSCT16K-B 
19. HSCT22K 
20. HSCT44K 
21. HSCT88K 
22.  K-8 
23. KEN-18 
24.  KK-6 
25. PDS-20 
26. PILOT 
27. USAIR 

20.7 1438 
0.2 57 
0.3 173 
1 .o 325 
0.9 516 
1.4 1060 
2.1 265 1 
2.1 1262 

662.9 2676 
3.6 11741 
2.5 14251 

0.01 0.05 
(0.4) 26 

90.0 6294 
11.5 303770 
(0.2) 48 
1.0  772 
1.5 1093 
4.2 1358 
5.5 (2257) 
8.8  12975 

14.7 2153 
38.6 (186) 

6601.2 (1872) 
393.4 7069 

0.9 47 
24.3 15486 

(8.1)  1334 
(0.1) 54 
(0.1) 169 
(0.5) 354 
(0.3) 457 
(0.7) (945) 
(0.9) 2579 
(0.8) (953) 

337.5 2753 
(2.7) 12225 
(1.7) 14198 
0.5 24 

36.8 4926 
(2.7) 304937 
0.3 (46) 

(0.3) (720) 
(0.4) 1131 
(0.9) (1244) 
(1.1) 2276 
(1.4) 10872 
15.4 2460 
14.1 204 

2371.5 2054 
(5.9) 7907 

(2.7) 15225 

(0.01) (0.05) 

(0.2) 50 

24.9 2042 
0.6 64 
1.1 101 
3.5 45 8 
5.7 492 

19.4 1502 
13.8 1615 
22.2 1995 

13.5  6812 
7.4  9692 
2.8  27 
0.03 0.06 

- - 

- - 

4.3 133882 
2.5 49 
7.3 830 
9.2 952 

19.4 2456 
39.8 5046 
41.8 12637 
8.8 1335 
- - 

6.9 5683 
0.8 50 
3.2  17073 

- - 

16.3 
0.6 
1.1 
3.3 
4.7 
4.2 
5.5 
4.5 

(16.6) 
12.5 
6.8 
2.6 
0.03 

5.6 
2.1 
4.0 
7.1 
7.2 
4.6 
6.7 

(3.0) 

(3.1) 
(6.2) 
(6.4) 
7.1 
0.7 
3.7 

(1 226) 
(53) 
(89) 

(284) 
(435) 
1132 

(1410) 
1630 

(2181) 
(5584) 
(8788) 

(23) 
0.06 

(3307) 
(128431) 

52 
792 

1872 
3576 

(9871) 

204 
1881 

(2130) 

(6091) 

(609) 

(492) 

(39) 

Table 2 compares two-way partitions using METIS and  the  run  times  and  edge-cuts  for  three  different  variations 
WGPP.  WGPP  produced a smaller  edge-cut  for  each of WGPP.  The  (HTM + BKL) variation of WGPP 
graph  and was much  faster  than METIS-about 2.64 times compares  quite favorably  with  all three  variations of 
on average. Table 3 gives the  run  times  and  edge-cuts  for METIS. It is much faster  and  generates  partitions with  a 
three  different  variations of METIS,  and Table 4 gives smaller  edge-cut  for  most  graphs.  However, it is 181 

IBM J. RES. DEVELOP. VOL. 41 NO. 112 JANUARYIMARCH 1997 A. GUPTA 



182 

significantly worse on one graph, HSCT16K-B; as a result, 
the  total  edge-cut of all eight graphs  (250644) is about  7% 
worse  than  that of the  best  total of METIS (234308). 
Table 5 compares  METIS  and  WGPP  for 160-way 
partitions. WGPP turns  out  to  be  more  than  three  times 
as  fast as METIS on average  for 160-way partitions, while 
producing  edge-cuts  that  are a few percent  higher. 

5.2 Sparse-matrix ordering 
Table 6 compares MMD, AMD,  METIS,  and  WGPP  for 
the  ordering  time  and  the  number of floating-point 
operations (in  millions) on 27 sparse  matrices from 
various  sources. The best  time  and  ordering  for  each 
matrix  are  enclosed in parentheses. AMD is the  fastest of 
all orderings  for a majority of the  problems,  but its run 
time is very inconsistent  for the linear  programming 
matrices. In the worst case, it is 370 times slower than 
WGPP. In this suite of test problems, WGPP produces the 
best  ordering  for two thirds of the  matrices.  It  produces 
less than half the  operation  count of its nearest rival 
(AMD) in 5 of the 27 problems,  but  generates only 1.7 
times  the  operation  count of AMD in the worst case.  On 
the whole, WGPP is quite  competitive  with  the  other 
three  ordering  codes,  markedly so for  the  linear 
programming  problems. 

6. Concluding  remarks 
This paper presents  heuristics  that improve the  run  time 
and the quality of the  state-of-the-art  practical  methods 
for graph-partitioning  and  sparse-matrix  ordering.  We 
have  developed a graph-partitioning  and  sparse-matrix- 
ordering  package  (WGPP) [5] based  on  the  heuristics 
described in this  paper. For graph  partitioning,  WGPP is 
considerably faster  than  the well-known package  METIS, 
while generating  partitions of almost  comparable quality. 
A comparison of WGPP with three  other widely used 
sparse-matrix-ordering  codes shows it  to  be  the  best in 
quality  and  consistent in run  time  on a suite of 27 
randomly  selected sparse matrices. 

RSl6000  is a  trademark of International Business Machines 
Corporation. 
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