
W390 Parallel
Enterprise
Server
Generation 3:
A balanced
system and
cache structure

by G. Doettling
K. J. Getzlaff
B. Leppla
W. Lipponer
T. Pflueger
T. Schlipf
D. Schmunkamp
U. Wile

Since initiating the information technology
industry-wide transition from bipolar to CMOS
technology with the first generation of S/390@
processors in 1994, IBM reached another
major milestone with the introduction of the
third generation in September 1996. The
balanced system and cache structure and the
modularity of the components of Generation 3
support a wide performance range from a
uniprocessor to a high-performance
multiprocessing system. Because of this
modularity, Generation 4 is also based on this
structure.

Introduction
The IBM S/390* Parallel Enterprise Server Generation 3
and the IBM S/390 Muhiprise* 2000 (both called G3) and
the later G4 systems are tightly coupled Si390 symmetrical
multiprocessing systems with up to ten processors, a three-
level cache hierarchy, and up to 8 GB (for G3) of physical
memory. The modularity of the system and cache structure

supports a wide performance range based on the same
chip set. The G3 spans a range from a uniprocessor with
one memory card to a high-end system with ten processors
and four memory cards. There are either one or two
additional processors in the system structure, which serve
as system assist processors (SAPS) for I/O operations.
The balanced system and cache structure design makes it
possible to retain all elements unchanged for G4, except
for replacing the PU (processing unit, or processor) and
L2 chips. First an overview of the G3 system and cache
structure is given, followed by discussions of the
implementation and the features of the PU and L2 chip
and the common G3iG4 parts (BSN, MBA, STC/memory
card, and CGC). Special focus is given to the error-
detection and recovery capabilities of the G3 system.

G3 system structure
The 12-way four-bus system structure and components of
the chip set are shown in Figure 1. The chip set consists
of processor units (PUS), level-2 caches (L ~ s) , bus-
switching network adapters (BSNs), storage controllers
(STCs) on the memory cards, I/O adapters (MBAs), and

"Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may he copied or distributed royalty free without further permission by computer-based and other information-sewice systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

portion of this paper must he obtamed from the Editor.

0018-8646/97/$5.00 Q 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 G. DOETTLING ET AL.

ST1

I G3 system structure.

the clock chip (CGC). A level-1 cache is included on the
PU, and a level-3 cache (called L2.5) on the BSN.

All system buses are 16 bytes wide and bidirectional;
L2, BSN, and STC are implemented in pairs of identical
chips referred to as the high (H) and low (L) chip because
of constraints on chip pad area and silicon area. In the G3
system, a 1:1 ratio between the processor cycle and the
bus cycle is reached. The cycle time is 5.9 ns in the high-
end system, while the smaller one- or two-bus systems run
with a relaxed cycle time.

In the four-bus system the PU, L2, BSN, and MBA
chips are packaged on a 127-mm air-cooled multichip
module (MCM). Figure 2 shows the chip placement on the
MCM, which is optimized for minimal bus wire length.
The 127-mm MCM uses 20 pairs of wiring planes and has
a total of 1732 signal module pins. The CGC chip and the
STC chips are packaged on single-chip modules (SCMs).
Two STC chips are placed on a memory card. The MCM,
the CGC chip, and the memory cards are placed on a
planar board.

The one- and two-bus systems have a card-on-board
(COB) package with all MCMs and SCMs mounted on

406 one card. Four PU chips and two L2 chips are assembled

G. DOElTLlNG ET AL.

on a 63-mm MCM, and the BSN, MBA, and CGC chips
are packaged on SCMs. Table 1 presents an overview of
the capabilities of the chip set to support different system
configurations,

Cache structure
The memory subsystem consists of a three-level cache
hierarchy and the memory. This cache structure is
common throughout the low-end, intermediate, and high-
end systems, differing only in cache size and number of
buses. The line size for all hierarchy levels is 128 bytes.

Level-1 cache (L l)
The level-1 cache is integrated on the PU chip and is
implemented as a unified instruction and data cache. The
size is limited to 32 KB to fit on the PU chip and to
achieve a one-cycle access. To resolve L1 cache misses, a
line request is sent to the private L2 with the address of
the missing quadword (16 bytes). This quadword is
returned first to allow the PU to proceed immediately.
The remaining seven quadwords follow and may wrap
within a cache line. The L1 cache is parity-checked.
Intermittent errors (soft errors, etc.) are recovered by

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Table 1 System configurations.

View: Pins down!
System Four-bus Two-bus One-bus

Number of PU chips 2-12 2- 8 2- 4
L2 size per PU 256 KB 128 KB 64 Kl3
Number of BSN chips 8 4 2
L2.5 size 2 MB 1 MB 512KB
Number of MBA chips 2 1 1
I/O path 12 6 3
Number of memory cards 4 2 1

reloading the defective line from the L2. The L1 cache
includes the following features:

Store-through concept.
Size: 32 KB.
Eight-way set-associative.
Parity-checked with recovery.
One-cycle access.
16-byte access.

Level-2 cache (L2)
The L2 cache chip comprises four independent cache
partitions, each with a size of 64 KB. They can operate
concurrently, and each is assigned to one PU to serve as a
private L2 cache (see Figure 3). The chip is implemented
with an 8-byte dataflow and interface. A pair of L2 chips
work synchronously in the 16-byte bus structure, providing
four PU ports and two bus ports for the L2-BSN bus
connection. A PU has a 16-byte bus to each of the L2
pairs and routes the cache-line requests according to the
defined address class scheme.

The L2 is a store-in cache. It always holds the actual
copy of a line, because its L1 cache stores through. The
L2 cache performs bus snooping on all L2-BSN buses to
maintain the data coherence within the L1- and L2-cache-
level hierarchy. The L2 cache includes the following
features:

i G3 multichip module (1 27 mm). 9

Bus 0 Bus 1

A3

To BSN

Bus 0 Bus 1 ;$ Bus 2 Bus 3 79 Bus 2 Bus 3

I I 4 I 7'
Bus 011 # f r B u s 213 Private cache.

Store-in concept.
Size: 256 KB per PU.
Eight-way set-associative.
ECC-checked.
Five-cycle access.
16-byte access.

PU-L2 cluster.

Level-3 cache (L2.5)
The L2.5 cache is a shared cache [l] serving all PUS. It is
implemented on pairs of BSN chips. A pair of BSN chips
performs the required bus arbitration and bus switching,
and provides the L2.5 cache with a size of 512 KB per

bus. The L2.5 cache contains two banks, which can
operate concurrently; its features include

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULY/SEPTEMBER 1997 G. DOETTLING ET AL.

Shared cache.
Store-through concept.
512 KB per bus, 2 MB maximum.
Eight-way set-associative.
ECC-checked with deletion feature per bank.
14-cycle access.
16-byte access.
Two independent banks.

Memory
The memory is implemented with DRAMS on memory
cards, and is controlled by a pair of STC chips which are
located on the card and run synchronously. A memory
card contains two memory banks, which can operate
concurrently; one to four cards may be used depending
on the system configuration. The S/390 key storage is
implemented on the memory cards. Each card contains the
full set of key entries to avoid bus interference for
combined data and key operations. The memory card
features include

Shared-system memory.
Size: up to 2 GB per card.
One to four cards depending on the configuration.
ECC-checked, with redundancy bits.
32-cycle access.
Two independent banks.

Bus structure
The bus structure of a high-end system (Figure 1)
comprises four logical buses numbered 0 to 3. Eaih of
these buses is controlled by a pair of BSN chips [2]. A
“logical” bus can consist of up to three “physical” buses to
connect the PU-L2 clusters to a pair of BSN chips and
two additional buses to connect the MBA chips. Each of
the pairs of BSN chips controls one memory bus, with a
pair of STC chips located on the memory card. All system
buses are 16 bytes wide, parity-checked, and bidirectional,
and are connected by pairs of L2, BSN, and STC chips.
The synchronous operation of a pair is checked every
cycle. Command and address are duplicated on each half
of the bus during the command/address cycle to allow
both chips to run synchronously.

PU-L2 cluster
PU and L2 cache chips are grouped in clusters (A, B, C).
Each cluster contains one to four PUS and one or two
pairs of L2 chips (Figure 3). A PU owns a 64KB cache
partition on each of the four L2 chips, giving a total of
256 KB per PU in the four-bus system. The cluster
contains two L2 chips in the one- or two-bus system,
with a total of 64 KB or 128 KB per PU. A pair of L2
chips has four PU ports, each with a 16-byte data bus

408 and a 4-byte address bus. These are private buses with a

G. DOETTLING ET AL

simple handshaking protocol (PU-L2 bus). They are used
by the PUS

To request cache lines from the L2 with the address put
on the address bus.
To perform store-through operations with the address
put on the address bus and a 16-byte datablock on the
data bus.
To communicate with other PUS, MBAs, or memory via
the L2 cache.

Logical L2-BSN bus
A pair of L2 chips contains two bus ports, each 16 bytes
wide. These are the L2-BSN buses, which connect the
PU-L2 clusters with pairs of BSN chips. The four-bus
system contains two pairs of L2 chips within each cluster,
providing a connectivity of 4 X 16-byte buses to the
memory via the BSN chips. A simple routing scheme is
used to select the bus and bank for a memory access. Bits
22 and 23 of the line address define the bus number, and
bit 21 selects one of the two memory banks. This maps the
cache lines with the low-order line address 0 and 1 in the
first memory card, cache lines with the line address 2 and 3
in the next card, and so on. This fine granularity provides
an equally distributed load on the buses.

MBAs and are controlled by pairs of BSN chips with a
simple handshake protocol. There is no separate address
bus available; command/address and data are multiplexed
on the same bus. The BSN controls access to the bus,
granting access to one of the PUS or to the MBAs. It
redrives the commandiaddress cycle to the memory via the
STC and to the other PU-L2 clusters to allow bus
snooping.

each; it is redriven to the STC for line-store operations
and to the PU-L2 clusters for line-fetch operations. The
L2-BSN bus supports two-way interleaving by using the
latency between the command/address cycle and the first
data transfer cycle for line-fetch operations. In this gap
another commandiaddress cycle can be issued to the other
bank of this bus, utilizing the two independent banks of
the L2.5 cache and the memory. A pair of BSN chips has
four L2-BSN bus ports to support a maximum of four
PU-L2 clusters (three are used in the G3 system), two
MBA-BSN bus ports, and one BSN-STC bus port to
connect the STC chips and the memory.

The L2-BSN buses are shared between the PUS and the

A cache line is transferred in eight datashots of 16 bytes

BSN-STC bus
The BSN-STC bus is controlled by a pair of BSN chips.
The command/address format and the basic protocol are
similar to those of the L2-BSN bus, since the BSN simply
operates as a switch between them. There is an internal
latency of two cycles for the command/address cycle and

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Table 2 L2 cache bus-snooping response.

Operation Old state New state Cast-out Memory
update

M E S I M E S I

LF-DFETCH X X

X X

X X
X X X X

X

X X

X X

X X X

LF-DSTORE X

Cache-line status: M = Modified, E = Exclusive, S = Shared, I = Invalid.

for a data-transfer cycle. (This bus works in interleave
mode as well.) The bus protocol allows the cancellation
of line-fetch operations that have already been started
without knowing whether the line is in the L2.5 cache.

Bus operations

Bus commands
The bus structure connects all components of the system;
it provides communication among them and allows access
to internal objects such as the key storage on the memory
card or to I/O adapters via the MBA. The bus operations
can be broken down into eight command groups:

Line fetch.
Line store/line fetch.
Cast-out.
Line-invalidate.
Absolute fetch/store operations with 1-8 bytes.
Key-storage operations.
Sense/control operations.
Fetch/store MBA with 1-128 bytes.

There are several line-fetch commands; they specify
whether the line is requested for a fetch or store
operation (LF-DFETCH or LF-DSTORE), an instruction
fetch (LF-IFETCH), or the key from the key storage
is requested together with the data (LFK). The line-
store/line-fetch command combines an LRU cast-out with
the line fetch to free up an entry in the L2 cache. This
LRU cast-out is also a separate command, used for cache-
to-cache cast-out operations as well (cross-cache cast-out).
A line-invalidation command is signaled from one PU to
all other PUS via the L2 cache to become the single owner
(exclusive state) of a line. Absolute fetchhtore commands
allow access to the memory, bypassing the caches.
They are used for internal functions. Si390 key-storage
commands perform read/write operations to a key-storage
entry or modification to the reference and change bits.

Senseicontrol commands are used for many internal
purposes. They permit the exchange of control and status
information among the PU and L2, BSN, MBA, or the
STC and are also used for communication between PUS
via the L2 caches.

MBA fetchhtore commands provide direct memory
access for the 1/0 adapters, connected to the MBA with
self-timed interfaces (STIs). This access is monitored by
the L2 caches to maintain the data coherence within the
memory subsystem.

Bus arbitration
Centralized bus arbitration is performed by the BSN chips
for each bus and bank. It prioritizes the access of the MBA
and keeps the access to the banks in balance.

Cache coherence
Data coherence within the memory subsystem is controlled
by the L2 caches using a bus-snooping mechanism. The
snooping is limited to the line address class of one
logical bus; there is no interference with other buses.
Line address hits during bus snooping may cause the
L2 cache(s) to change the status of the line in their
directories or to cast out a modified line to the requestor
and to the memory for update. Table 2 shows the actions
of L2 caches for line fetch due to fetch (LF-DFETCH) or
due to store (LF-DSTORE), depending on the state of
the cache line. The implemented scheme follows the
MESI protocol.

The snooping function requires the command/address
information from all L2 caches of one logical bus. The
BSN receives the command/address from the requestor on
the L2-BSN bus and distributes it to all other PU-L2
clusters with one cycle of latency on each of the other
physical L2-BSN buses. Hits in a private L2 cache do not
require cross-cache communication. The advantage of this
concept is that there is no need for a central control
element or central directory copies; it therefore allows
concurrent operations on four buses. No extra bus cycles 409

G. DOETTLING ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

Line-fetch access paths with the latency in processor cycles.

Bus timing of line fetch (A) with hit in L2.5 for a shared line.

are spent in the critical access path, since the bus
snooping is done in parallel.

Line-fetch operation
The execution of a line-fetch operation depends on the
type of line-fetch command and on the state of the
line in the private L2 cache, in the other L2 caches, or in
the L2.5 cache. Figure 4 shows the different sources and

41 0 paths (1 to 4) for a requested line and the minimum

G. DOETTLING ET AL

access times in processor cycles (including the repetition
of the failing instruction). The possible paths are as
follows.

Path 1 The L2 cache has a hit and provides the line,
usually within five cycles.

Path 2 The L2.5 cache has a hit and returns the line in
14 cycles if it is “shared” or the command is a line fetch
for instructions (LF-IFETCH). Those lines are shared by
definition. Otherwise, the L2.5 cache must wait for the
result of bus snooping, because the line may be modified
in one L2 cache; eight or more waiting cycles are added in
this case. The line is also stored in the L2 cache.

Path 3 There is no hit in the L2 or L2.5 cache. The
memory returns the line in 32 cycles or more, depending
on its availability. The memory also provides the line for a
line fetch with key command (LFK), regardless of a hit in
the L2 or L2.5 cache, because the key from the key
storage must be delivered. The line is also stored in the
L2 and L2.5 caches.

Path 4 Another L2 cache has the requested line in
“modified” state and returns it in 23 cycles or more,
depending on its availability. During this cross-cache cast-
out, the line is put on the L2-BSN bus for the requestor
and on the BSN-STC bus for a memory update. This
update is not done for a line fetch that is due to store
(LF-DSTORE), because the requestor changes the line
again immediately. The line is also stored in the L2 and
L2.5 caches.

Example of bus timing
An example of bus timing for a line-fetch operation for a
shared line with an L2.5 cache hit is shown in Figure 5.
A PU from PU-L2 cluster A gets an L1 cache miss for a
fetch operation (F). The failing address is sent to the L2
cache, which performs an L2 directory search (miss) and
raises the request line to the BSN. The BSN accepts the
request and gives the bidirectional L2-BSN bus to the L2
cache (L2-BSN bus enable = L2). The requesting L2
cache puts command and address (C) on the L2-BSN
bus, and the BSN redrives command and address on the
L2-BSN buses for the PU-L2 clusters B, C. The L2
caches in clusters B, C search their directories in the
next cycle (bus snooping).

The BSN accesses the configuration table (see the
related section) and sends the command and the physical
address via the BSN-STC bus to the memory to start the
memory operation in parallel. The BSN searches the L2.5
directory in the same cycle and fetches the first quadword
from the L2.5 cache. The BSN gets the hit and the shared
state for this line from the L2.5 directory and immediately

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

puts the first a nd the following da kashots on the L2-BSN
buses (L2-BSN bus enable = BSN). The BSN also cancels
the memory operation.

Command/address (C) and the last datashot (7) on the
bus are always driven for two cycles in order to quiesce
the bus. Finally the requesting L2 drops the request with
the first data cycle and sends the data with one cycle of
latency to its PU. The PU repeats the failing instruction
(F) and continues with processing while the remaining
data blocks are transferred.

Storage access penalty
The storage access penalty is the latency between the data
request to the cache hierarchy and the first returned
16-byte data block, plus the time required to repeat the
missing instruction. The L1 cache access of one cycle is
counted as part of the instruction processing.

Table 3 shows the cache sizes, the access penalties, and
the cache hit rate for each level of the cache hierarchy for
a ten-way and a five-way system. The penalty is given in
processor cycles of 5.9 ns, the hit rate in percent per
instruction for a typical S/390 commercial workload with
heavy memory and bus load. Both systems have the same
L1 cache size with a hit rate of 89%, so 11% of the
storage references must be resolved by the following cache
hierarchy or memory; 5% of the remaining references are
covered by the L2 cache (4% in the five-way), 3% by the
L2.5 cache, and 3% by the memory (4% in the five-way).
Both systems have almost identical hit rates, providing
equally balanced bus and cache behaviors. On the basis
of the results of Table 3, three design points were
considered: a cache hierarchy 1) with L1; 2) with L1
and L2; 3) with L1, L2, and L2.5.

(see Figure 6) , with the L1 cache-only design normalized
to 1. The storage access penalty decreases rapidly from
point 1 to point 2 and moderately from point 2 to point 3.
The diagram illustrates with this sample the efficiency of
the three-level cache hierarchy and the benefit of the L2.5
cache.

An arbitrary scale is used for the storage access penalty

0 1 2 3
L1, LI, L1,
no L2, L2, L2,
no L2.5 no L2.5 L2.5

Storage access penalty improvement by the cache hierarchy levels.

Bus bandwidth
The bus bandwidth determines the dynamic part of the
storage penalty. An insufficient bandwidth of the memory
subsystem increases the latency from the processor's
viewpoint, because the queueing on the bus leads to more
waiting cycles. This bus structure minimizes the impact by
utilizing

16-byte-wide buses.
Up to four concurrently operating buses.
Two-way interleaving on each bus.
Low bus cycle time.
Bus protocol.

The bus protocol avoids unnecessary waiting cycles once a
command has been granted by the BSN arbiter and issued
by an L2. The command is routed immediately to the L2.5
cache and further to the memory. Bus snooping by the

Table 3 Typical cache hit rate in a ten-way/five-way system.

Memory subsystem Access penalty Ten-way, four buses Five-way, two buses
(PU cycles)

Cache size Hit rate Cache size Hit rate
("/.I (%)

L1 cache 1 32 KB 89 32 KB 89
L2 cache 5 256 KB/PU 5 128 KB/PU 4
L2.5 cache 14 2 MB 3 1 MB 3
Memory 32 8 GB max 3 4 GB max 4

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997 G. DOETTLING ET AL.

other L2 caches and the L2.5 directory lookup are done in
parallel and may cause a late cancellation of the memory
operation.

The peak data rate on the L2-BSN bus is reached with
permanent requests for shared lines and L2.5 cache hits;
256 bytes can be transferred in 26 bus cycles, including the
command/address cycles, the access cycles, and the eight
data cycles per cache line. This results in a data rate of
1.67 GB/s per bus, or a total of 6.68 GB/s for a four-bus
system at 5.9-11s cycle time.

A bus-timing sequence is given in Figure 13 (shown
later) with a line fetch from memory interleaved with a
line fetch from the L2.5 cache at a peak data rate of
1.4 GB/s per bus. This example shows the bus interleaving
effect. Overall, a four-bus system will provide a sustained
throughput of 5-6 GBis. Calculation of the bus utilization
for typical S/390 workloads shows a utilization of 30-40%
for the L2-BSN bus and 20-30% for the BSN-STC bus.

Bus cycle time
All system buses run at the cycle time of the processor.
This avoids additional latency in the PU or L2 chip for
cycle-time adaptation and improves the bus bandwidth.

41 2 This is achieved by the point-to-point characteristic of

G. DOETTLING ET AL.

the buses (with the exception of the MBA-BSN bus).
Optimized chip placement on the MCM provides balanced
wiring density and short bus wire length. The bus wire
length on the MCM does not exceed four chip spaces. The
module was carefully wired with min/max wiring rules for
each net in order to reach the bus cycle time.

Processing unit (PU)

Overview
The processing unit (Figure 7) supports the S/390
architecture instruction set [3]. The most frequently used
commercial instructions (108) and all floating-point
instructions (54) are hard-wired. The remaining
instructions are executed by the firmware.

The features of the PU chip include the following:

14.5-mm chip size, CMOS 5X, 7.2 million transistors.
5.9-11s cycle time.
744 chip I/Os used.
32KB unified cache (Ll).
32KB RAM and 32KB ROM for firmware.
Floating-point unit.
Data-compression unit.
S/390 timers.
Two 16-byte-wide bidirectional buses to the L2 for data

System measurement instrument (SMI) to support

Trace buffers for system debug.
Escape logic to support system debug.
Serial link to the clock chip.

Si390 implementation
Addressing and dataflow are implemented in 32-bit CISC
processors. As in RISC processors, 108 instructions are
executed by hardware, with a four-stage pipelining concept.
The pipeline stages are i-fetch, decode, execution, and
writeback. If an instruction requires more than one
execution cycle, it is not sent for writeback until decode
and execution are complete.

The i-fetch obtains data from the L1 cache if no other
cache operation takes place. The fetched instructions are
routed to two 16-byte instruction buffers. Address bit 27
of the virtual instruction address selects which buffer is
loaded. To get the instruction buffers filled, an indicator is
set if one of the two buffers is empty and a request for
reload is raised. The reload is started if the instruction in
the decode stage will not use the cache in the execution
stage. The decode stage performs the address calculation
and operand register read for the S/390 instructions. It
loads and starts the firmware program for instructions that
are not hard-wired. Firmware and hard-wired instructions
such as integer and cache operations are processed in the

transfer and 4 X 4-byte address buses.

performance verification.

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

execution stage. Additional hardware is implemented to
speed up firmware programs. The results from the
execution stage are transferred in the writeback stage
either to an architectured register or to the L1 cache.
This instruction implementation leads to an infinite-cache
cycles-per-instruction (cpi) performance of 2.4 in a typical
commercial environment.

9 L l cache
Since most of the S/390 instructions have a data storage
reference, it is important that the L1 cache can be
accessed within one cycle. Access to the translation
lookaside buffer (TLB), the L1 directory, and the L1
cache is done in parallel. The L1 is an eight-way set-
associative cache with store-through and is addressed with
the low-order real address bits. In the case of a cache miss,
the requested cache line is transferred from the L2
in eight shots of 16 bytes to the L1 fetch buffer (see
Figure 8). The instruction which caused the cache miss is
continued after the transmission of the first 16-byte shot
from the L1 fetch buffer into the L1 cache. During the
processing of the following S/390 instructions, the
remaining data from the L1 fetch buffer are copied
to the L1 cache if they are not being used by instruction
processing. Store data and L1 fetch buffer data are
merged if the quadword addresses are the same.

Systemwide data integrity is maintained by a
broadcasting mechanism between the L1 and L2 caches.
After each instruction or between the execution of units
of operations, the PU is interruptible by a broadcasting
request to update the L1 cache directory.

Virtual addresses have to be translated into absolute
addresses. Both are kept in a four-way set-associative TLB
with 64 entries in each set, together with the S/390 storage
key and protection information. In the case of a cache
miss, the TLB provides the 4KB page address to form the
complete 35-bit absolute address.

9 Firmware
The firmware is used to execute complex instructions and
the interrupt handling of the PU. It resides in RAM,
ROM, or the memory DRAM subsystem. The addressable
firmware region is 128 KB in size; 64 KB are held in the
RAM and ROM, and the remaining part is transferred on
request from the memory DRAM subsystem to a 128-byte
register inside the PU. The firmware instructions have a
vertical format; each instruction has a size of 2 bytes.
The pipe depth is the same as for the hard-wired S/390
instructions.

Floating-point
The main floating-point dataflow consists of an
addhubtract flow with 116-bit width, and a signed
multiplier of 60 X 60 bits. All floating-point operations

buffer

except for divide, square root, and extended multiply
require only one cycle in pipelined mode. Synchronization
for instructions which require more than one cycle is
done by the floating-point interface, which stalls the PU.
A zero-cycle branch is available in conjunction with the
floating-point unit, which speeds up the loop processing.

9 Data compression
Data compression is based on a Lempel-Ziv algorithm
and is fully implemented in hardware. Expansion of 1 byte
takes two cycles, and eight cycles are needed for compression.

Error detection and recovery
To maintain data integrity throughout the system, all data
paths, including external buses, are parity-checked on
byte boundaries. The multiplier in the floating-point unit
includes a residue-checking scheme. The occurrence of a
parity check or residue check within a PU will check-stop
this PU and propagate the check-stop state to the clock
chip and the correspondent L2. The defective PU is
fenced “on the fly,” and the remaining system, including
all L2 caches, continues with processing, thus enhancing
availability to the user. Soft errors in large arrays are also
detected by parity checkers. In the case of an error, the

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 G. DOETTLING ET AL.

BSN bus 0 BSNbusl
t t

U L2 cache

Mux

L2 cache

L2 cache

1 PUO PUI

1 L2 cache.

PU3
+

Line-fetch operations in parallel with bus snooping.
Pipelining of subsequent line fetches.
Caches with ECC, directories with parity and duplicated.
Fencing against defective PUS.

L2 cache access
The L2 cache chip is optimized for fast access time. To
achieve this, a separate bidirectional address bus in
addition to the bidirectional data bus between the PU
and the L2 chip is provided. The address bus carries
the absolute address for each L1 reference in order to
maintain L1/L2 cache consistency. This address is used
by the L2 to address port 1 of the directory array (also
called tag RAM). This array has a second address port to
support bus snooping via the BSN bus. Using a two-port
array avoids an arbitration cycle between the PU and BSN
bus addresses. When the cache array is not busy, directory
access and first-cache access are done in the same cycle.
Fast address-compare macros at the directory outputs
create a late column-select signal. The data of the selected
column are latched in a data-out register and sent to the
PU interface register via the error-correction logic (ECC).
This results in a three-cycle access from address-in to
data-out.

faulty part is reloaded automatically. If, after the reload,
the error comes up again, it is handled as a check-stop
condition. Problems during debug can be analyzed by
reading the 256-entry-deep trace buffer. With this
information, it is possible to track what happened within
the PU in the last 256 consecutive cycles. To circumvent
hardware problems, a programmable “escape logic” is
used to change the behavior of the hardware.

Level-2 cache (L2)

Overview
The L2 caches (Figure 9) are private caches, each
associated with a dedicated processor chip. One chip holds
four cache macros of 64 KB each. The dataflow per chip
is 8 bytes wide. As with the BSN chip, there is also a
switching function. The buses of four PUS are multiplexed
to obtain access to two BSN buses. This structure keeps
the number of chip I/Os on PU, L2, and BSN chips
babnced.

The L2 chip features are as follows:

16.4-mm chip size, CMOS 5X, 17.9 million transistors.
5.9-11s cycle time.
928 chip I/Os used.
Four 64KB private caches, eight-way set-associative.

41 4 Three cycles of access time.

G. DOETTLING ET AL.

Pipelining of data and addresses
The L2 cache performs a store-in scheme. Store-through
from the L1 cache is done in units of 16 bytes,
disregarding the fact that the PU can store only 1 . . . 8
bytes per cycle. The L1 cache merges new store data bytes
with old data bytes, thus sending 16 bytes on quadword
boundaries. This avoids a time-consuming prefetch, byte
merge, and ECC generation in the L2 cache.

Store-throughs have lower priority than line fetches in
the L2 cache. Store datashots prior to a line fetch are
buffered in an L2 store buffer (see Figure 8), which is two
entries deep. The buffer content is transferred into the
cache when a line-fetch operation results in an “L2 miss.”
Thus, all store operations are completed before an LRU
cast-out can occur.

A line fetch with an L2 hit requires eight array-read
cycles and needs the bidirectional data bus for eight
cycles, plus an extra “quiesce” cycle prior to bus direction
change. The term quiesce means that the last pattern is
repeated, so the reflections from the far end of the bus
are clamped in the driver circuit, which is still in low-
impedance state. During these nine cycles the bus is
not available for store-through operations by the PU.
Therefore, the PU has implemented one L1 store buffer
per L2 pair. These buffers are four entries deep. The
address bus is not busy during the line-fetch operation, so
subsequent fetch, store, or L1 miss addresses can be sent.
In the case of store-through operations, associated
address/column information is buffered in the L2 address

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

buffer. The interface ensures that the PU store buffer and
the L2 address buffer fill and empty in synchronism.

PU store operations a-e, where c and e encounter an L1
miss, e additionally an L2 miss. The normal pipeline of
stores a and b is interrupted when the L1 miss condition
for store c is signaled to the L2 chip. Datashots a and b
are saved in the L2 store buffer. The write cache is
suppressed, and eight cache-read cycles are performed to
provide the data for store c. The PU repeats the store c
when the first fetched quadword arrives in the L1 receive
register. Now the L1 references d and e can be processed.
The L2 address buffer holds the corresponding cache row
address and column for stores c and d, and the PU buffers
the datashots c and d. This buffer is emptied at the end of
the line-fetch operation in the PU, resulting in the L2
write cycles c and d . The pending stores a and b are
executed after the end of the L2 line fetch. Store e leads
to L1 miss and L2 miss. The L2 starts the bus operation
by raising the L2-BSN request in parallel with the current
line-fetch operation for store c.

Figure 10 shows a timing diagram for a sequence of five

LllL2 cache consistency
The data integrity across all caches in the system is
guaranteed by the MESI protocol (M = modified, E =

exclusive, S = shared, I = invalid). The M state is known
only to the L2 cache. The L1 does not need to know this
state because of the L1 store-through scheme. Data
integrity between L1 and the private L2 must also be
maintained.

L1 store-through requires that the L1 content must
always be a subset of the L2 content. Generally, this
requirement is fulfilled as long as the L2 cache
associativity is equal to or greater than the L1 cache
associativity and as long as the LRU replacement
algorithms of both caches are perfect. A difficulty arises in
systems with depopulated L2 caches (two-bus or one-bus
systems). Here, two or even four L1 rows are mapped
into one L2 row. Therefore, the L2 must enforce the
invalidation of L1 cache lines when the L2 replaces a line
with the same address. A fixed protocol is used for this
purpose. The third and fourth cycles after the missing
address e (see Figure 10) are reserved on the bidirectional
address bus for the L2. When an L2 miss occurs, the L2
sends its LRU line address, indicated as 12, to the L1
cache. The L1 performs a directory search and an
invalidation in the case of a match. Prior to the L2 LRU
address, the L1 LRU address is on the address bus. This is
used for a different purpose, the so-called “mini-broadcast.”

Mini-broadcast
The L2 cache directory maintains a copy of the L1-valid
bits, as well as the indicator bits used by the MESI
protocol. An L1-valid bit in the L2 is always set after the

PU OP2
L1 miss n
L1 store buffer t.dJ
ADDR bus c I d , e l L 1 I L 2

&

Data bus

L2 store buffer

L2 ADDR buffer
L2 cache read
L2 cache write

L2-BSN request r

missing address for a line fetch has appeared at the L2.
An L1-valid bit is reset after the L1 LRU address has
been sent over the address bus. Using the L1-valid bit
gives some performance advantages in the MP system.
Other processors may request a change of a cache-line
state via the L2 and BSN chips. The command (line fetch
due to fetch, line fetch due to store, line invalidate, 1/0
fetch or store, etc.) and the address are routed over the
L2-BSN bus, and an L2 directory access is done at the
second directory port. When an L2 hit occurs, the line
state must be changed according to Table 2. An L2-to-L1
protocol ensures that the states of the L2 and L1 cache
lines change concurrently. The PU is interrupted for
five cycles to perform the appropriate action. This
performance loss can be avoided when the L1-valid
bit is off. The L2 does the state change alone in a
“read-modify-write” action on the directory.

Error detection and recovery

PU fencing
The clock-generation chip reacts differently under PU
check-stop conditions than under L2, L2.5, or memory
check-stop conditions. The system continues its operation
even when a PU enters check-stop state. Thus, system
availability is increased significantly. Since the L2 may
contain modified memory data, it is mandatory that the
L2-BSN interface is not disturbed. The PU fencing
function is implemented simply by a negative active
“PU check-stop’’ signal which is latched in the L2 chip.
Incoming control signals are suppressed, and the address
bus-in register switches over to hold its old value. The 41 5

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYLSEPTEMBER 1997 G. DOETTLING ET AL.

Bus-switching network.

handshaking for broadcast operations between L2 and PU
due to cross-cache interrogation is emulated by the L2 chip.

The clock-generation chip forces all I/O drivers of a
defective PU to high-impedance state. The signal levels of
all receivers go to minus because of the integrated pull-
down resistors. The negative active PU check-stop signal
utilizes this effect and stays active. Systems with
depopulated or deactivated PU chips behave similarly;
the open PU port at the L2 chip is fenced.

Soft errors in large arrays
Soft errors due to alpha particles in large arrays must not
create check-stop situations. These errors are usually
single-bit errors. ECC with single-error correct, double-
error detect capability is implemented on the L2
data caches. The directories require an equivalent
correction/detection mechanism. The implementation
of ECC would have cost one extra cycle of L2 access;
instead, a duplication of arrays was chosen and the
following rules obeyed:

Parity check in one array only: Use the other one.
No parity check but array outputs unequal: Check-stop.

Synchronism check
The control parts of two L2 chips are identical and must
always be in synchronism. The error-detection capability is
improved when the state of the control logic for these two

41 6 chips is compared every cycle. The implementation is

simple. The main control signals from each of the four
caches on a chip are exclusive-ORed, driven via latches to
the second chip of a pair, and compared there with the
equivalent XOR sum. A mismatch leads to check-stop.
The XOR tree is large. For a better isolation down to the
source of a defect, it is advisable to implement indicator
latches for groups of signals. The latches can be inspected
in the scan chain after a sync check has occurred.
Mismatching latch states between the chips point to the
error.

Bus-switching network (BSN)

Overview
The BSN chip (Figure 11) is required to connect different
physical data buses to one logical data bus. To support a
high system throughput, the bus control logic, caches, and
a memory address translation are provided. The BSN chip
features include

14.5-mm chip size, CMOS 5X, 16.6 million transistors.
5.9-ns cycle time.
758 chip I/Os used.
Four 64KB shared caches (L2.5) per chip.
Configuration table (CFT) for DSR/2 support.
High-speed switch for seven electrically decoupled ports,

Support for L2 and L2.5 cache coherence.
8-byte-wide buses on BSN chips.
System measurement instrument (SMI) support.
Redrive logic for processor-to-processor communication.
Trace buffers for system debug.

four L ~ s , two MBAs, and one STC.

Switching part
The BSN is used as bus controller and bus-switching chip.
Up to four L2 cache chips can be connected to the chip
with point-to-point nets for buses and control signals. Up
to two MBAs can be connected to the BSN with three-
point nets (one MBA and two BSNs). Finally, one
memory card with its STC is connected with point-to-point
nets. This structure allows the chip as well as the buses
to operate with system cycle speed; no speed-matching
buffers are required. Additionally, the switching network
must connect various internal units to the external buses:

Four L2.5 caches that are especially designed to hold
shared data for all PUS.
Configuration table (CFT), used to implement the S/390
DSR/2 feature (dynamic storage reconfiguration).
Parts of the system measurement instrument (SMI) to
support performance measurements, especially in the
multiprocessing environment.

up/debug.
Cycle and command trace buffers for system bring-

G. DOE'ITLING ET AL. IBM J. RES, DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

To achieve good system performance, the BSN must
guarantee a high bus bandwidth combined with a low bus
latency. For the required bandwidth, two-way bus and
memory interleaving is supported. A two-cycle bus
operation (low latency) from L2 cache to L2 cache is
achieved by a special bus-switching logic on the BSN chip.
This logic is placed between master- and slave-clocked
latches (see Figure 12) and causes command and data to
be flushed through the BSN chip, disregarding the chip-to-
chip clock skew, which is about 20% of the system cycle
time. This concept allows a two-cycle operation with only
one clock skew added to the total path delay; the cycle
time of the BSN buses and control signals can therefore
keep pace with the system. The switching logic shown in
Figure 12 is also used for the chip-to-chip control signals
to implement a fast, low-latency protocol for data transfer
and bus snooping. Two round-robin arbiters for up to
twelve PUS and two MBAs reduce the number of wires in
the MP system and lead to a good bus utilization. The
BSN control logic must maintain and support data
integrity and cache coherence for all connected chips.

logic generates gaps on the bus to allow the L2s and
MBAs to put new commands on the bus [4], therefore
improving bus utilization. An example of a typical bus
sequence is shown in Figure 13. In this case two
interleaving line fetches are processed; one line fetch is
served by the DRAM and the other by the L2.5 cache on
the BSN chip.

The timing diagram shows three different ports (two
L2-BSN buses and the BSN-STC bus): F indicates a line-
fetch command which is drivenhedriven for two cycles on
the buses, and 0. . . 77 indicates the requested line-fetch
data of 128 bytes, transferred with eight datashots
(0 . . . 7), each 16 bytes wide. For electrical reasons, the
last shot of a command or data packet must always be
driven for two cycles. The . . . Sel signals validate the
command on the different ports; the XFer . . . signals
validate the line-fetch data. The second STC Sel for the
interleaving line fetch cancels the line-fetch request to the
STC and is caused by the L2.5 match.

Besides the two-way memory interleaving, the switching

L2.5 cache
The L2.5 cache reduces the latency for data not kept in
the L1 and L2 caches of the requesting processor. It
provides the data immediately if the requested cache line
is already shared by other processors. Memory access
latency is thereby avoided, saving 18 cycles in the cache-
line "fetch" operation. This increases the overall processor
performance by about 12% in the G3 systems, where this
three-level cache hierarchy scheme was first implemented
and tested.

IBM I. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

I
SI-Lt @-

I
L2-A _""

I

I 1

I I
I i L2-A
I I"""

I I Master c k Slaveclk ' I "_" J L """"""""" I L """

L2-D BSN L2-D

1 BSN switching logic for L2-BSN connections.

L2-BSN bus 9 0 1 2 3 4 5 6 7 7 0 1 2 3 4 5 6 7 1

BSN Sel

BSN-L2 bus

STC Sel

BSN-STC bus 0 1 2 3 4 5 6 1 7

XFer STC

XFer BSN

1 Bus-timing sequence with interleaving.

L2.5 cache organization
The total L2.5 cache is organized to support the cache-
line interleaving mechanism; it is therefore split into four
identical independent parts called quadrants, as shown in
Figure 11. A L2.5 cache bank comprises two quadrants.
The switch selects the banks by address bit 21 and the
quadrants by address bit 20. Each quadrant holds an
eight-way set-associative cache of 64 KB with a line size of
128 bytes. The design effort could be kept at a minimum
by using the same array macros as for the L2 chip in the
G3 system.

L2.5 cache-line-state handling
The data integrity within the three-level cache hierarchy is
controlled according to the MESI protocol. The M state is
not included in the L2.5 cache, since data integrity for

G. DOETTLING ET AL.

Table 4 L2.5 cache-line
operation.

sta Ite before and after line-fc :tch kept in

LF operation type Cache-line state New state
before line fetch

LF-DFETCH

LF-IFETCH

LF-DSTORE

EIS
S
S

S
S
S
S
E
E

modified data is maintained by L2 caches. All other MESI
states are handled by the L2.5 cache, and its behavior is
optimized to hold actual shared data. Any request for a
missing line in the processor’s L1 and L2 caches is routed
to the L2.5 cache and to the memory. If the requested
data are kept in the L2.5 cache and shared among other
processors (S state), the L2.5 cache will provide the data
immediately. If the data are available but not yet shared
(E state), the L2.5 waits to provide data until all L2
caches have searched their directories, with the result that
none of them holds the line in the M state. For an active
M state in an L2, this L2 provides the actual data, the
switch in the BSN routes the data to the requesting PU,
and the L2.5 is updated in parallel. In both cases the line
is marked as S if it is requested because of a “fetch”-type
instruction in the processor. For a “store”-type instruction,
it remains in the E state in the L2.5 cache. Data are
provided by the memory only if the requested line is not
kept in the L2.5 cache (I state). The switch provides the
data to the requesting PU, and the L2.5 cache is updated
in parallel. The same rules apply to the transfer into the
S or E state in the L2.5 cache.

Table 4 summarizes cache-line-state handling by the
L2.5 cache. It shows the state of a cache line before and
after the execution of a line-fetch operation. The L2.5
cache receives different line-fetch commands, according
to the type of instruction which caused the line-fetch
operation (LF) in the processor; these are line fetch for
data-fetch-type instructions (LF-DFETCH); line fetch for
instruction fetch (LF-IFETCH); and line fetch for data-
store-type instructions (LF-DSTORE). If a cache line is
not kept in the L2.5 cache (see the I-state column) for an
LF-DFETCH, the new state can be either E if no other
processor owns the cache line or S if another processor
has this line in the E or S state already. This is indicated
in the table by E / S .

Table 4 does not show the fact that for all line-fetch
41 8 operations in the Z or E state, the requested data could be

another L2 cache in the M sta .te. In this case,
this L2 would provide the data (cross-cache cast-out),
which would be loaded in parallel into the L2.5 cache.
The implemented scheme is optimized for processor
performance. Actual measurements show its effectiveness,
since more than 80% of the cache lines kept in the L2.5
are in the S state. This cache-line state provides the most
benefit, since processor data latency is reduced by 18
cycles compared to an access to memory.

Configuration table
The configuration table is the implementation of the
dynamic storage reconfiguration (DSR/2) facility. It is
used to map the absolute addresses coming from the PUS
or MBAs into physical memory addresses. Depending on
the memory size, up to 512 storage elements, which can
be different in size, are supported. The elements can be
reconfigured during normal system operation. The address
mapping is done within one cycle, before the address is
routed to the memory card. The PUS can write and read
the configuration table with special controls and senses. A
bypass of the table can be activated and deactivated, and
some special memory functions always bypass the table
(i.e., senses and controls to the memory card).

System configurations
Different systems (G3 and G4) with their different PU/L2
chips, memory cards with different sizes and access times,
and varying configurations (one-, two-, and four-bus
systems) require considerable programmable logic inside
the switch to achieve a good bus performance; i.e.,
different DRAMS require different access times.

Additional logic is spent for PU-to-PU communication
signals and MBA-to-PU interrupt signals. To reduce the
required I/O pin count for the high-end configuration, this
“redrive logic” is spread over multiple chips. To provide
the same functions in smaller systems, especially the one-
bus system with only two BSN chips, this logic has to be
programmable. At system start-up, the BSN chips are
“personalized” for these configurations.

Error detection and recovery
For a highly available and reliable system, error detection
and error recovery are very important in avoiding data
loss and ensuring data integrity.

Switching part
Because the BSN is stimulated by external signals, the first
step for error detection is the checking of all chip inputs.
Additionally, the internal states of the chip must be
checked. The implemented functions are as follows:

G. DOETTLING ET AL. IBM J. RES, DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

The buses and the interna - d ”taflow are parity-checkel
on byte boundaries and cause a system check-stop in the
event of an error.
The control signal inputs of the chip, which are wired
point-to-point, use the fact that two BSN chips per bus
always work in parallel. So-called sync checks observe
the correct function of these inputs, and, in the case
of a mismatch, the system is stopped. The information
concerning which other chip caused the error is stored
and can be accessed by the service element.
The powering trees for the internal multiplexors are
checked in order to avoid incorrect routing of data
through the system.
Bus protocol functions check important control signals
(check the checkers).
Addressing invalid entries in the configuration table
suppresses command forwarding to the memory card.
This is signaled to the PU or MBA.
The memory card can handle certain “accept errors”
which are routed via the BSN to the requesting PU or
MBA. Examples of accept errors are “address exceeds
maximum range,” “bad parity on data,” and “illegal
command sequence.”
Especially for problem fixes during system bring-up,
so-called “escape logic” is implemented to allow the
detection and correction of protocol errors, Le., time-
outs.

L2.5 cache
The entire dataflow of the L2.5 cache [5] includes parity,
which is checked for correctness in all operations. In
addition, parity is included in the L2.5 cache directory,
which keeps track of the lines included in the L2.5 cache
and their state. The data in the cache include a double-bit
error-detection and single-bit error-correction scheme
(ECC) [6]. Single-bit errors are corrected before
the data are transferred to the switch. A hardware
“deconfiguration” scheme is implemented for both parity
errors in the directory and double-bit errors in the data.
In these cases, the failing quadrant is “deleted”; i.e., it no
longer participates as a cache. All further accesses are
automatically routed to the memory subsystem. No data
loss occurs, since the L2.5 does not include the M state.
Because of this mechanism, the inclusion of a cache in the
BSN does not decrease system reliability and availability,
but increases overall processor performance.

Configuration table
The configuration table comprises two arrays (per chip)
which hold the same address-mapping tables. In the case
of a single-bit error, the “good” array is used. The correct
address is routed to the memory card, and the single-bit
error is latched in the BSN. The error latch can be sensed

ETR -

BSN 012 BSN 113

ST1 0 ST1 5

IBus 0 IBus 1

CHN ISC CHN ISC

Channel ISC Channel ISC

8 Memory bus adapter.

by the PU, and the configuration table can then be
rewritten.

Memory bus adapter (MBA)

Overview
The MBA (Figure 14) is a high-speed, low-latency DMA
controller that provides the connection between memory
and I/O. The key features of the MBA are the following:

Bandwidth of 2 GB/s through two BSN adapters.
High-speed self-timed interface (STI) with cable lengths

CMOS 5X technology.
15.5-mm chip size.
770 chip I/Os used.
3.6 million transistors.
5.9-11s cycle time.

between 5 cm and 20 m.

Main functional units
There are two primary types of storage operations: Fetch
operations (transfer data from memory to UO), and
store operations (transfer data from I/O to memory).
Programming of the MBA is done with sense and
control instructions issued by a PU: Control instructions
set/modify registers, and sense instructions read registers.
The main functional units on the MBA are described in
the following subsections.

IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 G. DOETTLING ET AL.

BSN adapter unit
There are two BSN adapter units on each MBA chip. The
BSN adapter connects MBA-BSN bus 0/2 (MBA-BSN bus
1/3) to the speed-matching buffers, which contain the
command and data for the storage operations. In addition,
it provides an interface to the central sense/control unit.
One BSN adapter has a bandwidth of 1 GB/s.

Speed-matching buffer (SMB)
For every BSN adapter there are three speed-matching
buffers, to hold commands, store data, and fetch data.
These buffers are necessary to adapt the word-wide ST1
macro interface to the quadword-wide BSN interface. The
command buffer has room for four fetch and four store
commands; the store and fetch data buffers each have
room for four lines.

Switch
The switch connects the ST1 path logic to the speed-
matching buffers. To realize a high bandwidth, a split
transaction protocol is implemented, allowing the
concurrent execution of two store data transfers, two
fetch data transfers, and one command transfer.

STI path logic (SPL)
This logic has three purposes:

1. It splits information packets received from the
STI-REC macro into a command part and a data part,
which are sent over the switch to the speed-matching
buffers.

2. It receives fetch data from the switch and builds an
information packet (IP) as required by the STI-SND
macro.

3. It receives from the port sense/control logic the data to
send sense/control commands down the ST1 link. Again,
it builds the IPS as required by the STI-SND macro.

Central senselcontrol (CSC)
This unit provides the PU with access to the registers in
the MBA. To balance sense/control loads on the BSN
buses, there are two CSC units on each MBA chip, and
each CSC is connected to the BSN 02 adapter and the
BSN 13 adapter. ST1 ports 0, 1, and 2 are accessed via
central sense/control BSN 02; ST1 ports 3, 4, and 5 are
accessed via central sense/control BSN 13. Central
sense/control BSN 02 connects to the ETR (external time
reference). In addition, it contains all logic for the master
TOD (time of day) and the facilities to synchronize
several local TODs to the master TOD.

Port senselcontrol (PSC)
This logic provides data and commands for sense/control
signals sent via the STI. It contains a set of registers to

manage interrupt and busy conditions on a channel basis.
Further, it permits programming the ST1 interface to run
with a byte-transfer rate of 3 ns or 4 ns.

STI macro
The ST1 link provides the connection via the fast internal
bus adapter (FIB) to the channel [7] and to the
intersystem channel (ISC) [8]. The system supports up
to 256 channels and up to 32 intersystem channels. The
macro consists of two parts, a receive and a send macro.
The ST1 [9] is a byte-wide very high-speed data interface
using differential drivers/receivers. It is a full-duplex bus
with a raw data rate of 250/333 MB/s in each direction. In
addition to the eight data bits and the parity bit, a clock
is sent in each direction. With every clock edge, data are
transmittedireceived. Information is transmitted on the
link in “information packets” (IP) consisting of header
and data blocks. The link protocol causes overhead, which
leads to an effective data rate of approximately 200 MB/s
in each direction.

There are nine different clock domains on the chip (six
ST1 receive clocks, one ST1 send clock, one system clock,
and one ETR clock). One of the goals of the design
was to minimize latency, which is caused by crossing
asynchronous clock boundaries. For example, if an IP
arrives at the ST1 receive macro, this is signaled to the
SPL. The SPL, which runs with the system clock, starts to
read out an IP buffer of the ST1 if sufficient data have
been received in the IP buffer. Since there are many
combinations of system clock speeds and ST1 clock speeds,
a set of programmable counters were implemented in
order to determine the best read-out start time.

Error detection and recovery
All registers in the data path and most state machines in
the control flow are parity-checked. If a check occurs, this
is signaled to the originator of the operation (e.g., the
channel) and the corresponding operation is retried. If the
error is of intermittent nature, the system continues to
run; if it is a permanent error, the system tries to continue
operation in a deconfigured mode. A special mechanism
was designed to check for failures in the speed-matching
buffer.

The principle is shown in Figure 15. In a horizontal
data-checking mechanism, each doubleword of data (cmd)
is protected by a corresponding parity byte. In a vertical
data-checking approach, a block of data is protected
by a longitudinal redundancy check (LRC) byte. This
protection mechanism is typical for link protocols. Both
approaches can be combined in a concurrent signature-
checking approach. Every time cmd/data are written into
the buffers, a new signature is generated from the actual
data to be written and the previous written signature. This
signature is saved as in the horizontal data-checking

G. DOETTLING ET AL. IBM .I. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

scheme. Every time cmdidata are read out of the buffers,
a new signature is generated from the actual data read
and the previous signature read. The new calculated
signature must be identical in every cycle with the
signature stored in the array. The scheme described has a
modest circuit overhead and very good error-detection
capabilities. Note that the number of array bits is the
same as in the horizontal checking approach.

VeriJication
Compared to its predecessor, the MBA G3 increased the
bandwidth by a factor of 10 (two GBis versus 200 MBis).
To achieve such a high bandwidth, a heavily queued chip
had to be built; therefore, the number of concurrent
operations increased from 3 to 30. Verification of a chip
with such huge numbers of concurrent operations was a
challenging task. Part of the switch logic was verified using
formal verification [lo].

Storage controller (STC) and memory
subsystem

Overview
The memory subsystem [l l] is designed to serve as Si390
main and expanded storage for the G3 and G4 systems.
Both levels are located on the same physical unit, a
separate memory card. To reduce the bus traffic between
PU and memory, certain memory-related operations are
implemented on the memory card, as well as the basic
store and fetch line functions. The Si390 storage key
protection also resides on the memory card, with all the
necessary logic. Special features have been implemented
which increase the memory reliability and availability.
Memory card characteristics (Figure 16) are the following:

Maximum card size 6 GB, based on 64Mb DRAM

4Mb/16Mb/64Mb Extended Data Output (EDO) DRAM

Latency 17 cycles at 5.9 ns (50 ns) or 18 cycles at 6.25 ns

Busy time 25 cycles at 5.9 ns for one line.
Card technology mixed-grid array (MGA) 12 signal,

DRAM package correction ECC; two spare DRAMS per

technology.

support (50-11s and 60-11s RAS access).

(60 ns).

10 power layers (9 x 11 in.).

card.

Figure 17 is a photograph of the card.
STC characteristics (Figure 18) are the following:

12.7-mm chip size, CMOS 5X, approximately 1.3 million

5.94s cycle time.
748 chip I/Os used for signals.

transistors.

IBM I . RES. DEVELOP. VOL. 41 NO, 415 JULYiSEPTEMBER 1997

generation/

Cmd/data Signature
buffers buffer

i Principle of concurrent signature checking: (a) Horizontal checking; 1 (b) vertical checking; (c) horizontal and vertical checking; (d)
4 concurrent signature checking.

x
I Logical data bus structuring on memory card.
i

G. DOETTLING ET AL.

G3lG4 memory card.

To1
fron
BSb
c

Bus
interface
and test
processor

;elector

Idd
venl

mtition

Aemory

ontrol
IUS

-
1

line
buffer

buffer

t
1
Fetch
line
buffel
even - 1-

I

Store
ECC

Checkbit
generation

Fetch

line

Selector
event
odd
partition

Array
bus
control

-

Array
bus 0
CL

Array
bus 1 -
Array
bus 2
t”----c

Array
bus 3 -

Fromlto key store i Fromito other STC

422

Independent line buffers for store and fetch operations.
Line interleaving on one memory card.
Expanded storage support.
Fetch before store for fast LRU cast-outs.
Wraparound feature; first quadword of line served first.
Redundancy setting per DRAM module on the fly.
Active parallel redundancy for the key store.
Trace buffers for system debug.
Programmable DRAM and SRAM self-test performed
by STC.

Memory card structure

Two independent storage banks
Because of the relatively long DRAM access time (50 ns
or 60 ns), two independent storage banks have been
implemented. This permits utilization of the BSN-STC
bus for command or data transfer of one storage bank
while the other bank is active with RAM accesses
(even/odd interleave on the BSN-STC bus). This
maximizes the BSN-STC bus utilization by filling the
“latency gap” on an individual bus. Each storage bank
utilizes independent store and fetch buffers in order to
decouple the activities on the BSN-STC bus from those
on the buses to the DRAMS.

On-card array bus structure
To meet the bandwidth requirements, every STC
physically interleaves four array buses (each array bus is
64 + 12 bits wide), and for one line transfer it selects an
individual DRAM module twice. This sequence supplies
eight doublewords per STC to complete one line. This
structure exploits the CAS cycle time of 25 ns for 60-ns
standard E D 0 RAMS (4 X 6.25 ns = 25 ns).

The electrical redrive challenge
On the 6GB card (maximum configuration), the two STCs
must drive at their DRAM interface 48 PSIMMs, 19
DRAM modules per PSIMM, four data I/Os, 12 addresses,
and three controls per DRAM. Overall, 17366 DRAM
I/Os and 600 SRAM I/Os must be attached to the support
logic. Of the 748 signal I/Os per storage controller, 520
were available for the DRAM interface; they were
arranged in the following matrix:

304 data I/Os for four data buses, 76 bits per data bus

88 address I/Os for four data buses and two storage

48 address I/Os for every SIMM for the most critical

48 CAS I/Os for every SIMM.
24 RAS I/Os for every SIMM pair.

(both storage banks share the data bus).

banks.

address.

G. DOETTLING ET AL IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

8 write-enable I/Os for four data buses and two storage
banks.

Because of the pin-count limitation, one STC supports
the SRAM addresses while the other supports data and
enabling signals, logically multiplexed over the same
physical pins. The rest of the STC 110s are used for the
BSN-STC bus, STC-to-STC communication, spare
DRAMs, clock signals, and test support. Overall, this
array wiring structure supports cycle times at the DRAM
interface down to 5.1 ns if DRAMs with 50-ns RAS access
time are used.

Memory scalability and granularity
One of the major requirements in designing the memory
subsystem was to support the modular concept, as well as
a very wide range of memory sizes for different product
offerings with just one design point (e.g., one raw card
and one storage controller part number). From the point
of view of memory card design, the overall G3lG4 system
memory size ranges from 64 MB to 24 GB (factor 384),
although not all options are actually used in the system.
This has been achieved with the following steps:

Factor 4 by number of buses in the system (one-, two-,

Factor 2 by using only one storage bank on the card

Factor 3 by populating PSIMMs for one, two, or three

Factor 16 by DRAM technology (4 Mb, 16 Mb, 64 Mb).

four-bus system).

(evenlodd interleaving disabled).

RAS banks (address depth).

Functions complying with SI390 architecture
The following SI390 architecture storage-related functions
have been implemented on the memory card.

Key store
The SI390 architecture requires a storage-protection
mechanism which ensures that only those elements of the
system which have a correct access key can obtain access
to storage locations. The access key protects storage in
increments of 4KB pages.

reference, and change information has been implemented
as a decentralized fast SRAM array (“key store”) residing
on the memory card. The STC compares the access key of
a requestor with the key stored on the card and permits or
denies the alteration of the storage location. The time
required for the key control is included in the latency
numbers, mentioned earlier. If permission is denied, the
STC communicates with the other STC to suppress the
storage of data.

The storage for this key and the related fetch,

Fast LRU cast-out
To support fast LRU cast-out, the STC contains separate
fetch and store buffers for each storage bank. The
command is sent together with the store data to the STC.
While the STC initiates the fetch access to the DRAMs,
the store data are deposited in the store buffer. After the
fetch data are delivered on the BSN-STC bus, the STC
begins a second access cycle to store the data (see
Figure 18). During this time, the other storage bank can
concurrently receive and execute other commands.

Expanded storage support
A similar mechanism, called “move page fetchhove page
store,” is used to support the exchange of lines between
the S/390 main storage and expanded storage. The lines
are fetched from the source address into the fetch buffer
and subsequently stored through the store buffer to the
destination address.

Data handling within one line
Certain operations require that individual bytes or
sequences of bytes be changed within one line. This is
also done in the storage controller. It examines the byte
address and the access key, initiates the prefetch of the
line, merges the data, and stores the changed line back to
the memory. This mechanism allows the alteration of
1 . . . 127 bytes within one 128-byte line. Examples of this
operation are partial stores from the I/O and the
conditional marking of individual lines.

Error detection and recovery
Because of the high number of RAM modules, the
memory card contains several error-detectionlcorrection
schemes to provide high reliability and availability.

DRAM ECC
A (76, 64) ECC scheme has been implemented for the
DRAMs which corrects all errors within one DRAM
module, including completely defective DRAM modules
(four out of four DRAM I/Os defective). This gives the
capability of DRAM chip-kill correction on the fly,
without impact to the running application. The ECC
scheme also detects a very high percentage of failures of
two or three DRAM modules within one ECC word. In
addition to the correction of defective data, the DRAM
address has been included in the check-bit generation in
order to detect misaddressing. Errors detected by one STC
are communicated to the other STC to ensure
synchronous data delivery.

SAP-controlled error scrubbing
In a background process, the system assist processor
periodically monitors the DRAMs by scanning the
complete address space. If a line has correctable errors,

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULY/SEPTEMBER 1997 G. DOETTLING ET AL

Block diagram of G3/G4 clock chip functional islands.

it is corrected by the STC and restored into the memory.
Depending on the nature of the defect, this eliminates or
“scrubs” soft errors in memory areas which are seldom used.

DRAM sparing on the fly
During the scrubbing process a hardware error map is
written which contains error counters, defective PSIMM
locations, defective DRAM modules on a PSIMM, and
the defective I/Os, as well as the nature of the failure
(correctable/uncorrectable). The error map is also used in
card manufacturing.

If defined thresholds are exceeded, the redundant
module is activated, replacing the most defective DRAM
on the card. This is done dynamically; Le., the data that
are still correctable are corrected and copied to the
redundant module. After the copy is complete, the
defective DRAM is shut off. The redundant module on
each half of the card can be assigned to any DRAM
location. This mechanism ensures an uninterrupted
customer operation.

Key-store redundancy
To provide high availability, the key store uses

424 redundancy; i.e., each key-store entry is stored twice in

G. DOElTLING ET AL.

two separate SRAM modules. In the case of a failure, the
entry with the correct parity is used. Either of the two key
stores can be disabled.

Integrated test support
Traditionally memory cards are tested on separate, stand-
alone card testers in manufacturing or in a laboratory
environment. With the progress of CMOS technology, it
became difficult and very expensive to provide equipment
which keeps pace with the cycle-time requirements.
Therefore, a freely programmable test processor has been
implemented in the storage controller which can generate
practically any test sequence.

Internal test mode
In this mode the test processor stimulates the BSN-STC
bus with the same commands or command sequences as
those issued by the BSN. It analyzes the response of the
memory card and monitors protocol and data correctness.
The card “tests itself.”

External test mode
In the external mode, the test processor sends the stimuli
to the memory card connector. Thus, a memory card
without DRAMS and SRAMs, with only two STCs, can
stimulate a normal memory card via the card connector.
The card “tests another card.”

As additional equipment external power supplies, a PC
and a clock generator card are sufficient. Compared to
commercially available stand-alone test equipment, this
concept results in very low cost for test equipment, in the
laboratory and in manufacturing. The test processor
program can be loaded in the G3/G4 system during
power-on from the service element. The major advantage
of the integrated test processor is that the technology of
the “tester” migrates with the technology of the device to
be tested.

Clock-generation chip (CGC)

Overview
The clock-generation chip (Figure 19) provides the
necessary clock pulses and run control signals for all
S/390-related hardware building blocks of the G3/G4
processor subsystem. The key features of the CGC are the
following:

CMOS 5X technology.
10.0-mm chip size, 0.5 million transistors.
414 chip I/Os used.
44-mm MLCI single-chip module.
5.9-ns cycle time.

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

<0.4-ns on-chip clock skew, <1.2-ns chip-to-chip clock
skew.
Two supply voltages.

2.5 V for connections to other CMOS 5X chips.
3.6 V for connections to the ETR and the service
element.

Clock and control-signal generation.
Power-on reset recognition.
Five-wire interface to service element.
Start/stop control of entire GYG4 processor subsystem

Serial link to all PU chips.
External time reference (ETR) support.
Programming of an external PLL,.
Self-test control for all connected chips.

(including check recognition and handling).

Power-on reset
After recognition of an external power-on reset signal or
an equivalent command from the service element, the
CGC controls the hardware initialization of all chips,
consisting of the following phases:

Detection of all chips connccted to the CGC.
Shift in zeros through the serial SRL network (initial
self-test data).
Test all embedded arrays via ABIST (array built-in self-
test) and subsequent initialization of embedded arrays
(storing zeros with good parity and directory array valid
bits OFF).
Self-test of the chip internal logic via LRIST (logic built-
in self-test).
Set up the Si390 processor(s) for transfer of
bootstrapping code by the service element.

Any chip that does not pass the ARIST or LRIST remains
disabled and is no longer available for system operation.
However, the system may operate in a degraded mode
until the defective component has been replaced.

Attachment to the service element
The clock chip connects to the service element subsystem
via the five-wire interface, which is the physical connection
between the service element and the CGC and consists of
the following lines:

Shift gate instructs the CGC to shift 1-bit information on
the data-iddata-out lines.
Addressidata declares the information transported on the
data lines as either address or data, depending on the
polarity.
Set pulse is used to strobe data and for commands.
Data-in is the input line for serial bit transport.
Data-out is the output line for serial bit transport.

The CGC implements an address register holding the
address shifted in by the service element and a decoder to
address an individual target based on the contents of the
address register. Each chip connected to the CGC has a
unique address, making it an individual target. Some
addresses are reserved for facilities on the CGC itself,
e.g., for the “status register,” which provides status
information about the entire system to the service
element. Another example of a CGC address is the
command to initiate an initial microprogram load (IML).

address bits and one parity bit is shifted into the address
register, which selects the target for the following set
pulse or shift gate in data mode. While the shift gate in
data mode propagates a single bit into an SRL chain, the
set pulse is used to assist the array access on the chips and
to control the CGC. The five-wire interface supports
service functions such as

During address mode, a 9-bit address consisting of eight

Serial R/W access of all SRL chains and embedded
arrays on building blocks connected.
Serial RIW access of SRL chains on the CGC itself.
Single cycle.
Start/stop of the G3/G4 processor.

In addition to the five-wire interface, the CGC has the
capability to alert the service element by raising the
interrupt line to indicate an asynchronous event (e.g., a
check condition). This mechanism eliminates the need for
polling for certain conditions and increases the overall
performance.

Clock and control-signal generation
The CGC provides the clocks and control signals as well
as the address decoding for the service element subsystem
for the following maximum configuration:

Twelve PU chips.
Twelve L2 chips.
Eight BSN chips.
Eight STC chips (four memory cards).
Two MBA chips.
One ETR chip.
Two crypto chips.

The control signals of the CGC are optimized for a high-
end system implemented entirely in chips. The clock chip
supports any combination of chips. The service element
must validate each configuration and disable particular
chips if necessary. The valid configurations for a G3 and a
G4 processor subsystem differ from one another. All chips
except the ETR chip receive clock signals that are
synchronous with the system cycle of 5.9 ns. Each clock
chip generates its 5.9-11s clock signal, locally derived from 425

JT AL. IBM J . RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 G. DOETTLING E

1 OPCG schematic.

a 23.6-ns external reference clock, via an on-chip PLL.
The ETR and those parts of the MBA chips that
communicate with the ETR chip get a separate clock with
a 27-11s cycle. The CGC has the capability to start and
stop each PU chip on an individual basis. The CGC starts
the other chips if at least one PU chip is active. All
start/stop actions execute synchronously, which means that
the clocks for all chips are enabled or disabled within the
same cycle. There is also a clock domain available that
never stops once it has been started after power-on. This
“continuous-running’’ clock domain is used on the PU and
MBA chips for the timer facilities and on the STC chips
to control the refresh of the DRAMS.

On-product clock generation (OPCG)
In order to achieve this function, the CGC distributes a
raw oscillator signal to all chips with an individual line for
each chip. Each chip including the CGC itself receives this
oscillator signal and multiplies the frequency of this signal
by four by means of an internal PLL. The output of the
PLL feeds a clock-generation network (CGN). The CGN
uses the PLL output and some control lines driven by the
CGC and generates the master, slave, shift, and array
clocks locally on each chip. The CGC drives the control
lines as multidrop nets, and each chip synchronizes them
locally and generates “Allow-x-int” signals.

Figure 20 shows the logic of the CGN implemented on
426 each chip. The CGN uses the standard book set; higher

drive capability is achieved by paralleling the standard
circuits. The numbers in the diagram show the maximum
number of parallel circuits. The output load of each
circuit is tightly controlled during the physical design
process, resulting in a clock skew of less than 0.4 ns for
any two latches on the same chip [12]. Some additional
adders contribute to the clock skew between any two
latches on different chips:

Different driver characteristics of the drivers of the
CGC.
Tolerances in card/module wiring.
On-chip PLL phase error plus jitter.

All of these contributors add up to a total clock skew of
less than 1.2 ns for any two latches on different chips. The
technique of distributing just an oscillator signal and
several control lines and using OPCG has several
advantages compared to distributing all master, slave,
shift, and array clocks from the CGC:

Only the reference clock signals must be length-adjusted

Clock-gating signals may be implemented as multidrop
on all packaging levels.

signals, reducing the pin count of the CGC.

Error detection
Each chip can signal a check condition to the clock chip
via an individual line. The action performed by the CGC
depends on the source of the check. These external checks
are grouped into two different groups: All PU chips, and
all L2, STC, BSN, MBA, and crypto chips. If the check is
raised by any PU chip, only this PU is stopped by turning
off the appropriate control signals. The CGC informs the
remaining PUS, which continue to run without interruption
of this situation, by sending a “malfunction alert” to all
other PUS via the clock-PU serial link. Any check signaled
to the clock chip by any other chip stops the entire
system. In addition, the CGC detects internal malfunctions
and alerts the service element accordingly. In all cases the
service element must perform further investigation of the
check.

Clock-PU serial link
The communication between the clock chip and the PUS is
done by means of a synchronous serial interface and is
bidirectional [13]. Several checking mechanisms have been
introduced to improve reliability. Some of the conditions
signaled via this interface are active PUS, malfunction
alert, start pulse, soft stop state, and wait state.

The clock chip is the master of all communication. A
communication package consists of a specific header, a PU
field, a command field, and a checksum sent by the clock
chip. All data besides the header are return-to-zero (RZ)

G. DOETTLING ET AL IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1991

Table 5 Complete frame.

Bits Cycles Content
~~~~~~ ~ ~ ~ ~ 

3 Header 
16 32 PU field 
16 32 Command field 
8 16 Checksum (number of ones in PU and 

command field) 
8 16 Response  bits PU0 . . . PU15 
- 99 Total cycles 

coded,  and  one  bit  takes two cycles to  transmit.  The 
header is B’110’. This is the only case in which two 
consecutive  ones  are  sent.  This  information is used to 
inform all PUS  about  the beginning of a new frame.  The 
header is the only source  for  synchronization. Two 
consecutive  ones  occurring anywhere else in the  frame 
lead  to a  check. After  sending  the  header,  the  CGC  sends 
the  16-bit  PU field. Each  bit in the  PU field selects a 
specific PU.  Depending on the  command field following, 
these bits take  on a different  meaning.  The  command 
following  specifies the  command  to  be  executed  after  the 
checksum has  been verified by the  PU.  There  are 
commands  that must be  executed by each PU  and 
commands  that  are valid for individual PUS. Finally, the 
CGC  sends  an  8-bit  checksum  to  provide  error  detection 
on  the  interface.  Each  PU  then  sends its  8-bit response  to 
the  CGC,  leading  to  the layout for a complete  frame given 
in Table 5. 

Summary 
The IBM S/390 Parallel  Enterprise  Server  Generation 3 is 
based  on a  well-balanced cache  and  modular system 
structure.  The  G3  processor  chip  set covers  a  wide 
performance  range  from a uniprocessor  to a  high- 
performance  multiprocessing system. A three-level  cache 
hierarchy  and a  high-speed processor  interconnection 
scheme  reduce  the  data latency for  the  processor 
significantly. High reliability and availability are 
guaranteed by the  error-detection  and recovery 
mechanisms  implemented  through  the  entire  chip  set.  The 
design quality of the  G3 chip  set  has  been  outstanding 
since the first  silicon was functional  to  the  extent  that all 
hardware verification programs including the  operating 
systems could  be  tested. Only one  metallization  change 
(metal  EC) was needed  for  each of the  G3  chips  to 
achieve  full  functionality. This was the key to  keeping  the 
time  from first silicon power-on  to  general availability of 
the  G3 system to only eight  months. 

and  Endicott  who  contributed  to  the success of the SI390 
Parallel  Enterprise  Server  Generation 3. 

*Trademark  or registered trademark of International Business 
Machines Corporation. 

References 
1. G. Doettling, K. J. Getzlaff, K. Jackson, K. Langston, 

B. Leppla, P. Mak, W. Shen,  H. W. Tast,  and U. Wille, 
“Shared Cache Memory Device,” European  Patent 
Application PCT/EP95/02847, July 19, 1995. 

2. K. J. Getzlaff, B. Leppla, H. W. Tast,  and  U. Wille, “Bus 
Structure for  a  Multiprocessor System,” European  Patent 
Application PCT/EP95/01140, March 27,  1995. 

3. Enterprise Systems Architecture1390 Principles of Operation, 
Order No. SA22-7201-00; available through  IBM  branch 
offices. 

4.  K. J. Getzlaff, B. Leppla, K. Muenzner, L. Reichl,  and 
U. Wille, “Method of Forced Bus Interleaving,” IBM 
Tech. Disclosure Bull. 39, No. 1, 403-404 (January 1996). 

5. G. Doettling, K. J. Getzlaff, B. Leppla,  and  U. Wille, 
“High Available Error Self-Recovering Shared Cache for 

PCTlEP95101453, April  18, 1995. 
Multiprocessor Systems,” European  Patent Application 

6. E. Fujiwara and M. Hamada, “Single b-Bit Byte Error 
Correcting  and  Double Bit Error Detecting  Codes for 
High-speed Memory Systems,” Proceedings of the 1992 
IEEE International Symposium on Information Theory, 
pp. 494 ff. 

7. IBM Enterprise Systems Architecture1390 ESCON 110 
Inteflace, Order No. SA22-7202; available through IBM 
branch offices. 

Architecture: A Quantitative Approach (fourth  printing), 
Morgan  Kaufmann  Publishers, Inc., San Mateo, CA, 1990. 

9. T. A. Gregg, “S/390 CMOS  Server 110: The Continuing 
Evolution,” IBM J. Res. Develop. 41, No. 415, xxx-xxx 
(1997, this issue). 

10. T. Schlipf, T. Buechner, R. Fritz, M. Helms,  and J.  Koehl, 
“Formal Verification Made Easy,” IBM J. Res. Develop. 
41, No. 415,  567-576 (1997, this  issue). 

System19000 Type 9121 System Controller  and Memory 
Subsystem Design,” IBM J. Res. Develop. 35, No. 3, 

12. B.  Kick, U. Baur, J. Koehl, and  T. Pflueger, “Standard- 
Cell-Based Design Methodology  for  High-Performance 
Support Chips,” IBM J. Res. Develop. 41, No. 415,  505-514 
(1997, this issue). 

D. Schmunkamp, “Processing Unit  to Clock Interface,” 
European  Patent Application PCTlEP95101451, April 18, 
1995. 

8. J. L. Hennessy and D. A. Patterson, Computer 

11. B.  W. Curran and M. H. Walz, “IBM Enterprise 

357-366 (1991). 

13. R. Braun, K. J. Getzlaff, W. Haller, T. Pflueger, and 

Received  January  13,  1997;  accepted for publication 
July 15, 1997 

Acknowledgments 
The  authors would like  to  thank all colleagues in the  IBM 
development  laboratories in Boeblingen,  Poughkeepsie, 

IBM J.  RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997 G. DOETTLING ET AL. 



Gerhard  Doettling IBM Entwicklung GmbH, 
Schoenaicherstrasse 220, 71032 Boeblingen, Germany 
(GDOETTLI at BOEVM4). Mr. Doettling  studied  electrical 
engineering at  the University  of Stuttgart  and received  his 
graduate  degree  in 1978. For the next three  years  he  worked 
for SEL in Stuttgart,  where  he was involved in the design of a 
digital telephone switching system. In 1981 he  joined  the  IBM 
Development  Laboratory in Boeblingen.  Since then  he  has 
worked on several  CMOS  processor logic design  projects, 
primarily for S/390 systems, but  also for a RISC-based  and  an 
AS/400* system. Mr.  Doettling is currently  Manager of the 
CPU  Development  Department  in Boeblingen. 

Klaus  Joerg  Getzlaff IBM Entwicklung GmbH, 
Schoenaicherstrasse 220, 71032 Boeblingen, Germany (GETZ 
at BOEVM2) Mr. Getzlaff studied  electrical  engineering  at 
the  Technical University of Bielefeld, graduating in 1964. He 
worked  for two years with the  AEG  Company on the design 
of test  equipment  for  electronics industry  devices. In 1966 
he  joined  IBM  Germany  as a product  engineer  for S/370 
intermediate systems. After  holding assignments at  the 
development  locations in Endicott  and Boeblingen for  the 
design of the S/370 Model 3145 and  the 4300 systems, Mr. 
Getzlaff moved to  the S/370 Development  Laboratory in 
Boeblingen in 1979, focusing on CMOS  processor design and 
multiprocessor  concepts of the 9221 series  and  the follow-on 
systems.  Since  1994 he  has  been  responsible  for S/390 
processor design at  the  Boeblingen  laboratory. 

Bernd  Leppla IBM Entwicklung GmbH, Schoenaicherstrasse 
220, 71032 Boeblingen, Germany (bleppla@vnet.ibm.com). Mr. 
Leppla  studied  electrical  engineering at  the  Fachhochschule 
Heilbronn,  graduating in 1990 and  joining  IBM  the  same  year. 
Since  1993 he  has  worked on the design of the  Generation 2 
and  Generation 3 BSN chips  and is now working in the  CPU 
development  group. 

Walter  Lipponer IBM Entwicklung GmbH, 
Schoenaicherstrasse 220, 71032 Boeblingen, Germany 
(lipponer@vnet.ibm.com). Mr. Lipponer  studied  electrical 
engineering  at  the  Berufsakademie  Stuttgart,  graduating 
in 1979. In 1981 he  joined  IBM  at  its  former  DRAM 
manufacturing  plant in Sindelfingen, where  he  worked  for five 
years  in  semiconductor quality and reliability  engineering. 
After an assignment at IBM Burlington, Vermont, he joined the 
Boeblingen Development  Laboratory, focusing on component 
and subsystem  qualification of CMOS  processor  memories. 
Since  1993 Mr.  Lipponer  has  been a member of the memory 
design team working on memory card  and  storage  controller 
designs. 

Thomas  Pflueger IBM Entwicklung GmbH, 
Schoenaicherstrasse 220, 71032 Boeblingen, Germany 
(PFLUEGER A T  BOEVM3). Mr. Pflueger is an Advisory 
Engineer in the SI390 processor  development  group. He 
received an  MS.  degree  in  electrical  engineering  from  the 
Technical  University  of  Munich in 1983, joining  IBM  the  same 
year.  Mr. Pflueger  works on processor logic design. 420 

G. DOETTLING ET AL 

Thomas  Schlipf ZBM Entwicklung GmbH, 
Schoenaicherstrasse 220, 71032 Boeblingen, Germany 
(SCHLIPF at  BOEVM3). Mr. Schlipf studied  electrical 
engineering  at  the University of Karlsruhe. In 1985, after 
working for a time  at  the  Robert Bosch Company,  he  joined 
the  IBM S/390 Development  Laboratory  in Boeblingen.  Since 
then  he  has  been working on the  hardware design  of I/O  chips 
and now leads  the  MBA  team.  Mr. Schlipf's interests  are  in 
the  areas of computer  architecture  and  formal verification. 
He is a member of the  IEEE. 

Dietmar  Schmunkamp IBM Entwicklung GmbH, 
Schoenaicherstrasse 220, 71032 Boeblingen, Germany 
(schmunkamp@vnet.ibm.com). Mr.  Schmunkamp  studied 
electrical  engineering at  the  Technische  Hochschule 
Darmstadt  and received  his graduate  degree  in 1984, joining 
IBM  the  same  year. Since then  he  has  been working on the 
design of CMOS microprocessors,  with  special interests in 
clocking and service interface. Mr. Schmunkamp  is a member 
of the  VDE. 

Udo Wille ZBM Entwicklung GmbH, Schoenaicherstrasse 
220, 71032 Boeblingen, Germany (uwille@vnet.ibrn.com). 
Mr. Wille studied  electrical  engineering  at  the  Ingenieurschule 
Bremen,  graduating  in 1966. For  the next four years he 
worked for  the  AEG on the  development of synchronous 
generators. In 1970 he  joined  IBM in Boeblingen to work in 
product assurance. He  has  held  assignments in both  hardware 
test  and  hardware  development,  and  has designed I/O adapter 
chips  and  CPU chips. He now specializes in the design of 
level-2  caches. 

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 


