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Since  initiating the information  technology 
industry-wide  transition from bipolar to CMOS 
technology with the first  generation of  S/390@ 
processors  in  1994, IBM reached another 
major milestone with the introduction of the 
third  generation in September 1996.  The 
balanced system  and cache structure  and the 
modularity of the components of Generation  3 
support a wide performance range from a 
uniprocessor to a  high-performance 
multiprocessing  system.  Because of this 
modularity,  Generation  4  is  also based on  this 
structure. 

Introduction 
The  IBM S/390* Parallel  Enterprise  Server  Generation 3 
and  the  IBM S/390 Muhiprise* 2000 (both called G3)  and 
the  later  G4 systems are tightly coupled Si390 symmetrical 
multiprocessing  systems with up  to  ten  processors, a three- 
level cache hierarchy, and  up  to 8 GB  (for  G3) of physical 
memory. The  modularity of the system and  cache  structure 

supports a  wide performance  range  based on the  same 
chip  set.  The  G3  spans a range  from a uniprocessor with 
one  memory  card  to a  high-end system with ten  processors 
and  four memory cards.  There  are  either  one  or two 
additional  processors in the system structure, which serve 
as system assist processors (SAPS) for I/O operations. 
The  balanced system and  cache  structure design makes  it 
possible to  retain all elements  unchanged  for  G4, except 
for replacing the  PU (processing unit,  or  processor)  and 
L2 chips. First  an overview of the  G3 system and  cache 
structure is given, followed by discussions of the 
implementation  and  the  features of the PU and L2 chip 
and  the  common  G3iG4  parts (BSN,  MBA, STC/memory 
card,  and  CGC). Special focus is given to  the  error- 
detection  and recovery capabilities of the  G3 system. 

G3  system  structure 
The 12-way four-bus system structure  and  components of 
the  chip  set  are shown  in Figure 1. The  chip  set consists 
of processor  units (PUS), level-2 caches ( L ~ s ) ,  bus- 
switching network  adapters (BSNs), storage  controllers 
(STCs) on the memory cards, I/O adapters  (MBAs),  and 
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I G3 system structure. 

the clock chip  (CGC). A level-1 cache is included  on  the 
PU,  and a  level-3 cache (called L2.5) on the BSN. 

All  system buses  are 16  bytes  wide and  bidirectional; 
L2, BSN, and  STC  are  implemented in pairs of identical 
chips referred  to as the high (H) and low (L) chip  because 
of constraints  on  chip  pad  area  and silicon area.  In  the  G3 
system,  a 1:1 ratio  between  the  processor cycle and  the 
bus cycle is reached.  The cycle time is 5.9 ns  in the high- 
end system, while the  smaller  one-  or two-bus  systems run 
with  a relaxed cycle time. 

In  the  four-bus system the  PU, L2, BSN, and  MBA 
chips are  packaged on a  127-mm air-cooled multichip 
module  (MCM). Figure 2 shows the  chip  placement  on  the 
MCM, which is optimized  for  minimal  bus wire length. 
The 127-mm MCM uses 20 pairs of wiring planes  and  has 
a total of 1732  signal module pins. The  CGC  chip  and  the 
STC  chips  are  packaged on single-chip modules (SCMs). 
Two STC  chips  are  placed  on a memory  card.  The  MCM, 
the  CGC  chip,  and  the  memory  cards  are  placed  on a 
planar  board. 

The  one-  and two-bus  systems  have  a card-on-board 
(COB)  package with all MCMs  and  SCMs  mounted  on 

406 one  card. Four PU  chips  and two L2  chips  are  assembled 
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on a  63-mm MCM,  and  the BSN, MBA,  and  CGC  chips 
are  packaged  on SCMs. Table 1 presents  an overview of 
the  capabilities of the  chip  set  to  support  different system 
configurations, 

Cache structure 
The  memory subsystem  consists of a three-level  cache 
hierarchy  and  the memory. This  cache  structure is 
common  throughout  the low-end, intermediate,  and high- 
end systems,  differing only in cache size and  number of 
buses. The  line size for all hierarchy levels is 128 bytes. 

Level-1 cache ( L l )  
The level-1 cache is integrated on the  PU  chip  and is 
implemented  as a  unified instruction  and  data  cache.  The 
size is limited to 32 KB to fit on the  PU  chip  and to 
achieve  a  one-cycle  access. To resolve L1  cache misses,  a 
line  request is sent  to  the  private L2 with the  address of 
the missing quadword (16  bytes). This  quadword is 
returned first to allow the PU to  proceed immediately. 
The  remaining seven quadwords follow and may wrap 
within  a cache line. The  L1  cache is parity-checked. 
Intermittent  errors (soft errors, etc.) are  recovered by 

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 



Table 1 System  configurations. 

View: Pins  down! 
System Four-bus Two-bus  One-bus 

Number of PU chips 2-12 2- 8 2- 4 
L2 size per PU 256 KB 128 KB 64 Kl3 
Number of BSN chips 8 4 2 
L2.5 size 2 MB 1 MB 512KB 
Number of MBA  chips 2 1 1 
I/O path 12 6 3 
Number of memory cards 4 2 1 

reloading  the defective line  from  the L2. The L1 cache 
includes  the following features: 

Store-through  concept. 
Size: 32 KB. 
Eight-way  set-associative. 
Parity-checked with recovery. 
One-cycle access. 
16-byte  access. 

Level-2 cache (L2)  
The L2 cache  chip  comprises  four  independent  cache 
partitions,  each with a  size of 64 KB. They can  operate 
concurrently,  and  each is assigned to  one  PU  to  serve as  a 
private L2 cache  (see Figure 3). The  chip is implemented 
with an 8-byte  dataflow and  interface. A pair of L2 chips 
work  synchronously  in the 16-byte bus  structure, providing 
four  PU  ports  and two bus  ports  for  the L2-BSN bus 
connection. A PU  has a  16-byte bus  to  each of the L2 
pairs  and  routes  the  cache-line  requests  according  to  the 
defined address class scheme. 

The L2 is a store-in  cache.  It always holds the  actual 
copy of a  line, because its L1 cache  stores  through.  The 
L2 cache  performs  bus  snooping  on all L2-BSN buses to 
maintain  the  data  coherence within the L1- and L2-cache- 
level hierarchy. The L2 cache  includes  the following 
features: 

i G3 multichip module (1 27 mm). 9 

Bus 0 Bus 1 

A3 

To BSN 

Bus 0 Bus 1 ;$ Bus 2 Bus 3 79 Bus 2 Bus 3 

I I 4 I 7' 
Bus 011 # f r B u s  213 Private cache. 

Store-in  concept. 
Size: 256  KB per  PU. 
Eight-way  set-associative. 
ECC-checked. 
Five-cycle access. 
16-byte access. 

PU-L2 cluster. 

Level-3  cache  (L2.5) 
The L2.5 cache is a shared  cache  [l] serving  all PUS.  It is 
implemented  on  pairs of BSN chips. A pair of BSN chips 
performs  the  required  bus  arbitration  and  bus switching, 
and  provides  the L2.5 cache with a  size of 512 KB per 

bus. The L2.5 cache  contains two banks, which can 
operate  concurrently;  its  features  include 
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Shared  cache. 
Store-through  concept. 
512  KB per bus,  2 MB maximum. 
Eight-way  set-associative. 
ECC-checked with deletion  feature  per  bank. 
14-cycle access. 
16-byte  access. 
Two independent banks. 

Memory 
The  memory is implemented with DRAMS  on  memory 
cards,  and is controlled by a pair of STC  chips which are 
located on the  card  and  run synchronously.  A memory 
card  contains two memory  banks, which can  operate 
concurrently;  one  to  four  cards may be  used  depending 
on  the system configuration.  The S/390 key storage is 
implemented  on  the  memory cards. Each  card  contains  the 
full set of key entries  to avoid bus  interference  for 
combined  data  and key operations.  The  memory  card 
features  include 

Shared-system memory. 
Size: up  to 2 GB  per  card. 
One  to  four  cards  depending on the  configuration. 
ECC-checked, with redundancy bits. 
32-cycle access. 
Two independent  banks. 

Bus structure 
The  bus  structure of a high-end system (Figure  1) 
comprises  four logical buses  numbered 0 to 3. Eaih of 
these  buses is controlled by a pair of BSN chips [2]. A 
“logical” bus  can consist of up  to  three “physical” buses  to 
connect  the PU-L2 clusters  to a pair of BSN chips  and 
two additional buses to  connect  the  MBA chips. Each of 
the  pairs of BSN chips  controls  one  memory bus,  with  a 
pair of STC  chips  located on the memory card. All system 
buses  are 16  bytes  wide, parity-checked,  and  bidirectional, 
and  are  connected by pairs of L2,  BSN, and  STC chips. 
The  synchronous  operation of a pair is checked every 
cycle. Command  and  address  are  duplicated on each half 
of the  bus  during  the  command/address cycle to allow 
both  chips  to  run synchronously. 

PU-L2 cluster 
PU  and L2 cache  chips  are  grouped in clusters  (A, B, C). 
Each  cluster  contains  one  to  four  PUS  and  one  or two 
pairs of L2  chips  (Figure 3).  A PU owns  a  64KB cache 
partition on each of the  four  L2 chips, giving a total of 
256 KB per  PU in the  four-bus system. The  cluster 
contains two L2  chips in the  one-  or two-bus  system, 
with  a total of 64 KB or 128  KB per  PU. A pair of L2 
chips  has  four  PU  ports,  each with  a  16-byte data  bus 

408 and a  4-byte address  bus.  These  are  private  buses with  a 
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simple handshaking  protocol (PU-L2 bus).  They  are used 
by the  PUS 

To  request  cache  lines  from  the  L2 with the  address  put 
on  the  address  bus. 
To  perform  store-through  operations with the  address 
put on the  address  bus  and a  16-byte datablock on the 
data bus. 
To  communicate with other  PUS, MBAs, or  memory via 
the  L2 cache. 

Logical L2-BSN bus 
A pair of L2 chips contains two bus  ports,  each 16  bytes 
wide. These  are  the L2-BSN buses, which connect  the 
PU-L2 clusters with pairs of BSN chips. The  four-bus 
system contains two pairs of L2 chips within each  cluster, 
providing  a  connectivity of 4 X 16-byte buses  to  the 
memory via the BSN chips.  A simple  routing  scheme is 
used to  select  the  bus  and  bank  for a memory access.  Bits 
22 and  23 of the  line  address define the  bus  number,  and 
bit 21  selects  one of the two memory banks. This  maps  the 
cache  lines with the  low-order  line  address 0 and 1 in the 
first memory card,  cache lines with the line address  2 and 3 
in the next card,  and so on. This fine granularity provides 
an  equally  distributed  load on the buses. 

MBAs and  are  controlled by pairs of BSN chips with  a 
simple handshake  protocol.  There is no separate  address 
bus available; command/address  and  data  are multiplexed 
on  the  same bus. The BSN controls access to  the bus, 
granting access to  one of the  PUS  or  to  the MBAs. It 
redrives  the  commandiaddress cycle to  the memory via the 
STC  and  to  the  other PU-L2 clusters  to allow bus 
snooping. 

each; it is redriven  to  the  STC  for  line-store  operations 
and  to  the PU-L2 clusters  for line-fetch operations.  The 
L2-BSN bus  supports two-way interleaving by using the 
latency between  the  command/address cycle and  the first 
data  transfer cycle for line-fetch operations.  In  this  gap 
another  commandiaddress cycle can  be issued to  the  other 
bank of this bus,  utilizing the two independent  banks of 
the L2.5 cache  and  the memory.  A pair of BSN chips  has 
four L2-BSN bus  ports  to  support a  maximum of four 
PU-L2 clusters  (three  are  used in the  G3 system), two 
MBA-BSN bus  ports,  and  one BSN-STC bus  port  to 
connect  the  STC  chips  and  the memory. 

The L2-BSN buses  are  shared  between  the  PUS  and  the 

A cache  line is transferred in eight  datashots of 16  bytes 

BSN-STC bus 
The BSN-STC bus is controlled by a pair of BSN chips. 
The  command/address  format  and  the basic protocol  are 
similar to  those of the L2-BSN bus, since  the BSN simply 
operates as  a switch between  them.  There is an  internal 
latency of two cycles for  the  command/address cycle and 
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Table 2 L2 cache bus-snooping response. 

Operation  Old  state  New state Cast-out  Memory 
update 

M E S I M E S I 

LF-DFETCH X X 

X X 

X X 
X X X X 

X 

X X 

X X 

X X X 

LF-DSTORE X 

Cache-line status: M = Modified, E = Exclusive, S = Shared, I = Invalid. 

for a data-transfer cycle. (This  bus works  in interleave 
mode as well.) The  bus  protocol allows the  cancellation 
of line-fetch operations  that have already  been  started 
without knowing whether  the  line is in the L2.5 cache. 

Bus operations 

Bus commands 
The  bus  structure  connects  all  components of the system; 
it provides  communication  among  them  and allows access 
to  internal  objects such  as the key storage on the  memory 
card or to  I/O adapters via the  MBA.  The  bus  operations 
can  be  broken down into  eight  command  groups: 

Line  fetch. 
Line  store/line  fetch. 
Cast-out. 
Line-invalidate. 
Absolute  fetch/store  operations with 1-8 bytes. 
Key-storage operations. 
Sense/control  operations. 
Fetch/store  MBA with 1-128 bytes. 

There  are several line-fetch  commands;  they specify 
whether  the  line is requested  for a fetch or store 
operation  (LF-DFETCH  or  LF-DSTORE),  an  instruction 
fetch  (LF-IFETCH), or the key from  the key storage 
is requested  together with the  data  (LFK).  The  line- 
store/line-fetch  command  combines  an  LRU  cast-out with 
the  line  fetch  to  free  up  an  entry in the L2 cache.  This 
LRU  cast-out is also a separate  command,  used  for  cache- 
to-cache  cast-out  operations as well (cross-cache  cast-out). 
A  line-invalidation command is signaled  from  one  PU  to 
all other  PUS via the  L2  cache  to  become  the single owner 
(exclusive state) of a line.  Absolute  fetchhtore  commands 
allow  access to  the  memory, bypassing the caches. 
They  are  used  for  internal functions. Si390 key-storage 
commands  perform  read/write  operations  to a key-storage 
entry  or modification to  the  reference  and  change bits. 

Senseicontrol  commands  are used for many internal 
purposes.  They  permit  the exchange of control  and  status 
information  among  the  PU  and L2, BSN, MBA,  or  the 
STC  and  are also  used for  communication  between PUS 
via the  L2 caches. 

MBA  fetchhtore  commands  provide  direct  memory 
access for  the  1/0  adapters,  connected  to  the  MBA with 
self-timed interfaces (STIs). This access is monitored by 
the  L2  caches  to  maintain  the  data  coherence within the 
memory subsystem. 

Bus arbitration 
Centralized  bus  arbitration is performed by the BSN chips 
for each bus and bank. It prioritizes the access of the MBA 
and  keeps  the access to  the  banks in balance. 

Cache  coherence 
Data  coherence within the memory  subsystem is controlled 
by the L2 caches using  a  bus-snooping  mechanism. The 
snooping is limited to  the  line  address class of one 
logical  bus; there is no interference with other buses. 
Line  address hits during  bus  snooping may cause  the 
L2  cache(s)  to  change  the  status of the  line in their 
directories  or  to  cast  out a  modified line  to  the  requestor 
and  to  the  memory  for  update. Table 2 shows the  actions 
of L2 caches  for  line  fetch  due  to  fetch  (LF-DFETCH)  or 
due  to  store  (LF-DSTORE),  depending on the  state of 
the  cache  line.  The  implemented  scheme follows the 
MESI  protocol. 

The  snooping  function  requires  the  command/address 
information  from all L2  caches of one logical bus. The 
BSN receives the  command/address  from  the  requestor  on 
the L2-BSN bus  and  distributes it to all other PU-L2 
clusters with one cycle of latency on each of the  other 
physical L2-BSN buses.  Hits in  a private L2 cache  do  not 
require cross-cache communication.  The  advantage of this 
concept is that  there is no need  for a central  control 
element  or  central  directory copies;  it therefore allows 
concurrent  operations on four buses. No  extra  bus cycles 409 
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Line-fetch access paths with the latency in processor cycles. 

Bus timing of line fetch (A) with hit in L2.5 for a shared line. 

are  spent in the critical  access path,  since  the bus 
snooping is done in parallel. 

Line-fetch operation 
The  execution of a line-fetch  operation  depends  on  the 
type of line-fetch  command  and on the  state of the 
line in the  private L2 cache, in the  other L2 caches,  or in 
the L2.5 cache. Figure 4 shows the  different  sources  and 

41 0 paths (1 to 4) for a requested  line  and  the  minimum 
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access times in processor cycles (including  the  repetition 
of the failing instruction).  The possible paths  are  as 
follows. 

Path 1 The L2 cache  has a  hit and  provides  the  line, 
usually  within five cycles. 

Path 2 The L2.5 cache  has a hit  and  returns  the  line in 
14 cycles if it is “shared”  or  the  command is a line  fetch 
for  instructions (LF-IFETCH). Those  lines  are  shared by 
definition. Otherwise,  the L2.5 cache  must wait for  the 
result of bus  snooping,  because  the  line may be modified 
in one L2 cache; eight  or  more waiting cycles are  added in 
this  case.  The  line is also  stored in the L2 cache. 

Path 3 There is no  hit in the L2 or L2.5 cache. The 
memory  returns  the  line  in 32 cycles or  more,  depending 
on its availability. The memory also provides the  line  for a 
line  fetch  with key command (LFK), regardless of a  hit  in 
the L2 or L2.5 cache,  because  the key from  the key 
storage  must  be  delivered.  The  line is also  stored  in  the 
L2 and L2.5 caches. 

Path 4 Another L2 cache  has  the  requested  line in 
“modified”  state  and  returns it  in 23 cycles or  more, 
depending  on its  availability. During  this cross-cache cast- 
out,  the  line is put  on  the L2-BSN bus  for  the  requestor 
and on the BSN-STC bus  for a  memory update.  This 
update is not  done  for a line  fetch  that is due  to  store 
(LF-DSTORE), because  the  requestor  changes  the  line 
again  immediately. The  line is also stored in the L2 and 
L2.5 caches. 

Example of  bus timing 
An  example of bus timing for a line-fetch  operation  for a 
shared  line with an L2.5 cache  hit is  shown in Figure 5. 
A PU from PU-L2 cluster A gets  an L1 cache miss for a 
fetch  operation (F). The failing address is sent  to  the L2 
cache, which performs  an L2 directory  search (miss) and 
raises the  request  line  to  the BSN. The BSN accepts  the 
request  and gives the  bidirectional L2-BSN bus  to  the L2 
cache (L2-BSN bus  enable = L2). The  requesting L2 
cache  puts  command  and  address (C) on the L2-BSN 
bus, and  the BSN redrives  command  and  address on the 
L2-BSN buses  for  the PU-L2 clusters B,  C. The L2 
caches  in  clusters B, C search  their  directories  in  the 
next cycle (bus  snooping). 

The BSN accesses the  configuration  table  (see  the 
related  section)  and  sends  the  command  and  the physical 
address via the BSN-STC bus  to  the  memory  to  start  the 
memory operation in parallel.  The BSN searches  the L2.5 
directory in the  same cycle and  fetches  the first quadword 
from  the L2.5 cache. The BSN gets  the hit and  the  shared 
state  for  this  line  from  the L2.5 directory  and  immediately 
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puts  the first a nd  the following da kashots  on  the L2-BSN 
buses (L2-BSN bus  enable = BSN). The BSN also cancels 
the  memory  operation. 

Command/address  (C)  and  the  last  datashot (7) on  the 
bus  are always driven  for two cycles in order  to  quiesce 
the bus.  Finally the  requesting L2 drops  the  request with 
the first data cycle and  sends  the  data with one cycle of 
latency  to its PU. The PU repeats  the failing instruction 
(F) and  continues with  processing while the  remaining 
data blocks are  transferred. 

Storage access penalty 
The  storage access penalty is the  latency  between  the  data 
request  to  the  cache  hierarchy  and  the first returned 
16-byte data block, plus  the  time  required  to  repeat  the 
missing instruction.  The L1 cache access of one cycle is 
counted  as  part of the  instruction processing. 

Table 3 shows the  cache sizes, the access penalties,  and 
the  cache  hit  rate  for  each level of the  cache  hierarchy  for 
a  ten-way and a five-way system. The  penalty is given in 
processor cycles of 5.9 ns, the  hit  rate in percent  per 
instruction  for a  typical S/390 commercial  workload with 
heavy memory  and  bus  load.  Both systems  have the  same 
L1 cache size  with  a hit  rate of 89%, so 11% of the 
storage  references  must  be resolved by the following cache 
hierarchy  or memory; 5% of the  remaining  references  are 
covered by the L2 cache (4% in the five-way), 3% by the 
L2.5 cache,  and 3% by the memory (4% in the five-way). 
Both systems  have almost  identical hit rates, providing 
equally balanced  bus  and  cache behaviors. On  the basis 
of the  results of Table 3, three design points  were 
considered: a cache  hierarchy 1) with L1; 2) with L1 
and L2; 3) with L1, L2, and L2.5. 

(see Figure 6) ,  with the L1 cache-only  design normalized 
to 1. The  storage access penalty  decreases rapidly from 
point 1 to  point 2 and  moderately  from  point 2 to  point 3. 
The  diagram  illustrates with this  sample  the efficiency of 
the  three-level  cache  hierarchy  and  the benefit of the L2.5 
cache. 

An  arbitrary  scale is used  for  the  storage access penalty 

0 1 2 3 
L1, LI, L1, 
no L2, L2, L2, 
no L2.5 no L2.5 L2.5 

Storage access penalty improvement by the cache hierarchy levels. 

Bus bandwidth 
The bus bandwidth  determines  the dynamic part of the 
storage penalty. An insufficient bandwidth of the  memory 
subsystem increases  the  latency  from  the processor's 
viewpoint, because  the  queueing  on  the  bus  leads  to  more 
waiting cycles. This  bus  structure minimizes the  impact by 
utilizing 

16-byte-wide  buses. 
Up  to  four  concurrently  operating buses. 
Two-way interleaving  on  each bus. 
Low bus cycle time. 
Bus protocol. 

The  bus  protocol avoids unnecessary waiting cycles once a 
command  has  been  granted by the BSN arbiter  and issued 
by an L2. The  command is routed immediately to  the L2.5 
cache  and  further  to  the  memory. Bus snooping by the 

Table 3 Typical cache hit rate in a ten-way/five-way  system. 

Memory subsystem Access  penalty  Ten-way,  four buses Five-way, two buses 
(PU cycles) 

Cache size Hit rate Cache size Hit rate 
("/.I (%) 

L1 cache 1 32 KB 89 32 KB 89 
L2 cache 5  256 KB/PU 5 128 KB/PU 4 
L2.5 cache 14 2 MB 3 1 MB 3 
Memory 32 8 GB max 3 4 GB max 4 
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other  L2  caches  and  the L2.5 directory  lookup  are  done in 
parallel  and may cause a late  cancellation of the memory 
operation. 

The  peak  data  rate  on  the L2-BSN bus is reached  with 
permanent  requests  for  shared  lines  and L2.5 cache hits; 
256 bytes can  be  transferred in 26 bus cycles, including the 
command/address cycles, the access cycles, and  the  eight 
data cycles per  cache line. This  results in  a data  rate of 
1.67 GB/s per bus, or a total of 6.68 GB/s for a four-bus 
system at 5.9-11s cycle time. 

A  bus-timing sequence is given in Figure  13 (shown 
later) with  a line  fetch  from memory interleaved with  a 
line  fetch  from  the L2.5 cache  at a peak  data  rate of 
1.4 GB/s per  bus.  This  example shows the  bus  interleaving 
effect. Overall, a four-bus system will provide a sustained 
throughput of  5-6 GBis.  Calculation of the  bus  utilization 
for typical S/390 workloads shows  a utilization of 30-40% 
for  the L2-BSN bus  and 20-30% for  the BSN-STC bus. 

Bus cycle time 
All  system buses  run  at  the cycle time of the  processor. 
This avoids additional  latency  in  the  PU  or  L2  chip  for 
cycle-time adaptation  and  improves  the  bus  bandwidth. 

41 2 This is achieved by the  point-to-point  characteristic of 
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the  buses (with the  exception of the MBA-BSN bus). 
Optimized  chip  placement  on  the  MCM provides balanced 
wiring  density and  short  bus wire length.  The  bus wire 
length  on  the  MCM  does  not  exceed  four  chip spaces. The 
module was carefully  wired with min/max wiring rules  for 
each  net in order  to  reach  the  bus cycle time. 

Processing  unit (PU) 

Overview 
The processing unit (Figure 7) supports  the S/390 
architecture  instruction  set [3]. The  most  frequently  used 
commercial  instructions (108) and all floating-point 
instructions (54) are  hard-wired.  The  remaining 
instructions  are  executed by the firmware. 

The  features of the  PU  chip  include  the following: 

14.5-mm chip size, CMOS  5X, 7.2  million transistors. 
5.9-11s cycle time. 
744 chip  I/Os  used. 
32KB  unified cache  (Ll). 
32KB RAM  and 32KB ROM  for firmware. 
Floating-point  unit. 
Data-compression  unit. 
S/390 timers. 
Two  16-byte-wide bidirectional  buses  to  the  L2  for  data 

System measurement  instrument  (SMI)  to  support 

Trace  buffers  for system debug. 
Escape logic to  support system debug. 
Serial link to  the clock  chip. 

Si390 implementation 
Addressing  and dataflow are  implemented in  32-bit CISC 
processors.  As  in  RISC  processors, 108 instructions  are 
executed by hardware, with a  four-stage pipelining concept. 
The  pipeline  stages  are i-fetch, decode, execution, and 
writeback. If an  instruction  requires  more  than  one 
execution cycle, it is not  sent  for  writeback  until  decode 
and  execution  are  complete. 

The i-fetch obtains  data  from  the  L1  cache if no  other 
cache  operation  takes place. The  fetched  instructions  are 
routed  to two 16-byte instruction  buffers.  Address  bit 27 
of the  virtual  instruction  address  selects which buffer is 
loaded.  To  get  the  instruction  buffers filled, an  indicator is 
set if one of the two buffers is empty  and a request  for 
reload is raised.  The  reload is started if the  instruction in 
the  decode  stage will not  use  the  cache in the  execution 
stage.  The  decode  stage  performs  the  address  calculation 
and  operand  register  read  for  the S/390 instructions.  It 
loads  and  starts  the firmware program  for  instructions  that 
are  not  hard-wired.  Firmware  and  hard-wired  instructions 
such  as integer  and  cache  operations  are  processed in the 

transfer  and 4 X 4-byte address buses. 

performance verification. 
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execution stage.  Additional  hardware is implemented  to 
speed  up firmware programs.  The  results  from  the 
execution  stage  are  transferred in the  writeback  stage 
either  to  an  architectured  register  or  to  the  L1  cache. 
This  instruction  implementation  leads  to  an infinite-cache 
cycles-per-instruction (cpi)  performance of  2.4 in  a typical 
commercial  environment. 

9 L l  cache 
Since  most of the S/390 instructions have  a data  storage 
reference, it is important  that  the  L1  cache  can  be 
accessed  within one cycle. Access to  the  translation 
lookaside  buffer  (TLB),  the  L1  directory,  and  the  L1 
cache is done  in  parallel.  The  L1 is an eight-way set- 
associative cache with store-through  and is addressed with 
the low-order real address bits. In  the case of a cache miss, 
the  requested  cache  line is transferred  from  the L2 
in eight  shots of 16 bytes to  the L1 fetch  buffer  (see 
Figure 8). The  instruction which caused  the  cache miss  is 
continued  after  the transmission of the first 16-byte shot 
from  the  L1  fetch  buffer  into  the  L1  cache.  During  the 
processing of the following S/390 instructions,  the 
remaining  data  from  the  L1  fetch  buffer  are  copied 
to  the  L1  cache if they are  not  being  used by instruction 
processing. Store  data  and L1 fetch  buffer  data  are 
merged if the  quadword  addresses  are  the  same. 

Systemwide data integrity is maintained by a 
broadcasting  mechanism  between  the  L1  and  L2 caches. 
After  each  instruction  or  between  the  execution of units 
of operations,  the  PU is interruptible by a broadcasting 
request  to  update  the  L1  cache  directory. 

Virtual  addresses have to be translated  into  absolute 
addresses.  Both  are  kept in  a  four-way  set-associative TLB 
with 64 entries in each  set,  together with the S/390 storage 
key and  protection  information.  In  the  case of a cache 
miss, the  TLB  provides  the 4KB page  address  to  form  the 
complete 35-bit absolute  address. 

9 Firmware 
The firmware is used  to  execute complex instructions  and 
the  interrupt  handling of the  PU.  It  resides in RAM, 
ROM,  or  the memory DRAM subsystem. The  addressable 
firmware region is 128 KB in size; 64 KB  are  held in the 
RAM  and  ROM,  and  the  remaining  part is transferred  on 
request  from  the  memory  DRAM subsystem to a  128-byte 
register  inside  the  PU.  The firmware instructions have  a 
vertical format;  each  instruction  has a  size of 2 bytes. 
The  pipe  depth is the  same as for  the  hard-wired S/390 
instructions. 

Floating-point 
The main floating-point dataflow  consists of an 
addhubtract flow with  116-bit width,  and a  signed 
multiplier of 60 X 60 bits.  All  floating-point operations 

buffer 

except for divide, square  root,  and  extended multiply 
require only one cycle in pipelined  mode.  Synchronization 
for  instructions which require  more  than  one cycle is 
done by the  floating-point  interface, which stalls the  PU. 
A zero-cycle branch is available  in conjunction with the 
floating-point  unit, which speeds  up  the  loop processing. 

9 Data compression 
Data  compression is based  on a  Lempel-Ziv algorithm 
and is fully implemented in hardware. Expansion of 1 byte 
takes two cycles, and eight cycles are  needed  for compression. 

Error detection  and recovery 
To maintain  data integrity throughout  the system,  all data 
paths, including external buses, are parity-checked on 
byte boundaries.  The  multiplier in the  floating-point  unit 
includes a residue-checking  scheme.  The  occurrence of a 
parity  check  or  residue check  within  a PU will check-stop 
this PU and  propagate  the  check-stop  state  to  the clock 
chip  and  the  correspondent L2. The defective PU is 
fenced  “on  the fly,” and  the  remaining system,  including 
all L2 caches,  continues with processing, thus  enhancing 
availability to  the user.  Soft errors in large  arrays  are also 
detected by parity checkers. In the  case of an  error,  the 
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Line-fetch  operations in parallel  with  bus  snooping. 
Pipelining of subsequent  line  fetches. 
Caches  with  ECC,  directories with parity  and  duplicated. 
Fencing  against  defective PUS. 

L2 cache access 
The  L2  cache  chip is optimized  for  fast access time.  To 
achieve this,  a separate  bidirectional  address  bus  in 
addition  to  the  bidirectional  data  bus  between  the  PU 
and  the  L2  chip is provided.  The  address  bus  carries 
the  absolute  address  for  each  L1  reference in order to 
maintain L1/L2 cache consistency. This  address is used 
by the  L2  to  address  port 1 of the  directory  array  (also 
called tag RAM). This  array  has a second  address  port to 
support  bus  snooping via the BSN  bus. Using a  two-port 
array avoids an  arbitration cycle between  the PU and BSN 
bus  addresses.  When  the  cache  array is not busy, directory 
access and first-cache  access are  done in the  same cycle. 
Fast  address-compare  macros  at  the  directory  outputs 
create a late  column-select signal. The  data of the  selected 
column  are  latched in  a data-out  register  and  sent  to  the 
PU  interface  register via the  error-correction logic (ECC). 
This  results in  a  three-cycle  access from  address-in  to 
data-out. 

faulty part is reloaded  automatically.  If,  after  the  reload, 
the  error  comes  up  again, it is handled as a check-stop 
condition.  Problems  during  debug  can  be analyzed by 
reading  the  256-entry-deep  trace  buffer.  With  this 
information, it  is  possible to  track  what  happened within 
the  PU in the  last 256  consecutive cycles. To circumvent 
hardware  problems, a programmable  “escape logic” is 
used  to  change  the  behavior of the  hardware. 

Level-2 cache (L2) 

Overview 
The  L2  caches (Figure 9) are  private  caches,  each 
associated with  a dedicated  processor chip. One  chip  holds 
four  cache  macros of 64 KB each.  The dataflow per  chip 
is 8 bytes  wide. As with the BSN chip,  there is also a 
switching function.  The  buses of four  PUS  are multiplexed 
to  obtain access to two BSN buses. This  structure  keeps 
the  number of chip I/Os on  PU, L2, and BSN chips 
babnced. 

The  L2  chip  features  are as follows: 

16.4-mm chip size, CMOS 5X, 17.9 million transistors. 
5.9-11s cycle time. 
928 chip I/Os used. 
Four 64KB private  caches, eight-way  set-associative. 

41 4 Three cycles of access time. 
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Pipelining of data and addresses 
The  L2  cache  performs a store-in  scheme.  Store-through 
from  the  L1  cache is done in units of  16 bytes, 
disregarding  the  fact  that  the  PU  can  store only 1 . . . 8  
bytes per cycle. The  L1  cache  merges new store  data bytes 
with  old  data bytes, thus  sending  16 bytes on quadword 
boundaries.  This avoids  a time-consuming  prefetch, byte 
merge,  and  ECC  generation in the  L2 cache. 

Store-throughs have  lower priority  than  line  fetches in 
the L2 cache. Store  datashots  prior to a line  fetch  are 
buffered in an  L2  store  buffer  (see  Figure 8), which is two 
entries  deep.  The  buffer  content is transferred  into  the 
cache  when a line-fetch  operation  results in an  “L2 miss.” 
Thus, all store  operations  are  completed  before  an  LRU 
cast-out  can  occur. 

A line  fetch with an  L2 hit requires  eight  array-read 
cycles and  needs  the  bidirectional  data bus for  eight 
cycles, plus  an  extra  “quiesce” cycle prior  to  bus  direction 
change.  The  term quiesce means  that  the  last  pattern is 
repeated, so the reflections from  the  far  end of the  bus 
are  clamped in the  driver circuit, which is  still in low- 
impedance  state.  During  these  nine cycles the  bus is 
not available for  store-through  operations by the  PU. 
Therefore,  the  PU  has  implemented  one  L1  store  buffer 
per L2 pair.  These  buffers  are  four  entries  deep.  The 
address  bus is not busy during  the  line-fetch  operation, so 
subsequent  fetch,  store,  or  L1 miss addresses  can  be  sent. 
In the  case of store-through  operations,  associated 
address/column  information is buffered in the  L2  address 
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buffer.  The  interface  ensures  that  the  PU  store  buffer  and 
the  L2  address  buffer fill and  empty in  synchronism. 

PU  store  operations  a-e,  where c and e encounter  an  L1 
miss, e additionally  an  L2 miss. The  normal  pipeline of 
stores a and b is interrupted when the  L1 miss condition 
for  store c is signaled to the  L2 chip. Datashots a and b 
are saved  in the  L2  store buffer. The  write  cache is 
suppressed,  and  eight  cache-read cycles are  performed  to 
provide  the  data  for  store  c.  The  PU  repeats  the  store c 
when  the first fetched  quadword arrives in the  L1 receive 
register. Now the  L1  references d and e can  be  processed. 
The  L2  address  buffer  holds  the  corresponding  cache row 
address  and  column  for  stores c and  d,  and  the  PU  buffers 
the  datashots c and  d.  This  buffer is emptied  at  the  end of 
the  line-fetch  operation in the  PU,  resulting in the  L2 
write cycles c and d .  The  pending  stores a and b are 
executed  after  the  end of the  L2  line  fetch.  Store e leads 
to  L1 miss and  L2 miss. The  L2  starts  the bus operation 
by raising the L2-BSN request in parallel with the  current 
line-fetch  operation  for  store  c. 

Figure 10 shows  a  timing diagram  for a sequence of  five 

LllL2 cache consistency 
The  data integrity across all caches in the system is 
guaranteed by the MESI protocol ( M  = modified, E = 

exclusive, S = shared, I = invalid). The M state is known 
only to  the  L2  cache.  The  L1  does  not  need  to know this 
state  because of the  L1  store-through  scheme.  Data 
integrity between  L1  and  the  private  L2 must also  be 
maintained. 

L1  store-through  requires  that  the  L1  content must 
always be a subset of the L2 content.  Generally,  this 
requirement is fulfilled as long as  the  L2  cache 
associativity is equal  to or greater  than  the  L1  cache 
associativity and as long  as  the  LRU  replacement 
algorithms of both  caches  are  perfect. A difficulty arises in 
systems with depopulated L2 caches (two-bus or one-bus 
systems). Here, two or  even  four  L1 rows are  mapped 
into  one  L2 row. Therefore,  the  L2 must enforce  the 
invalidation of L1  cache lines when  the  L2  replaces a line 
with the  same  address. A fixed protocol is used  for  this 
purpose.  The  third  and  fourth cycles after  the missing 
address e (see  Figure 10) are  reserved on the  bidirectional 
address  bus  for  the L2. When  an  L2 miss occurs, the L2 
sends its LRU  line  address,  indicated as 12, to  the  L1 
cache.  The  L1  performs a directory  search  and  an 
invalidation in the  case of a match.  Prior  to  the  L2  LRU 
address,  the  L1  LRU  address is on the  address bus. This is 
used for a  different  purpose,  the so-called “mini-broadcast.” 

Mini-broadcast 
The  L2  cache  directory  maintains a copy of the L1-valid 
bits, as well as  the  indicator  bits used by the MESI 
protocol.  An L1-valid bit in the  L2 is always set after  the 

PU OP2 
L1 miss n 
L1 store buffer t.dJ 
ADDR bus c I d , e l L 1  I L 2  

& 

Data bus 

L2 store buffer 

L2 ADDR buffer 
L2 cache read 
L2 cache write 

L2-BSN request r 

missing address  for a line  fetch  has  appeared  at  the L2. 
An L1-valid bit is reset  after  the  L1  LRU  address  has 
been  sent over the  address bus. Using  the L1-valid bit 
gives some  performance  advantages in the  MP system. 
Other  processors may request a change of a cache-line 
state via the  L2  and BSN chips. The  command  (line  fetch 
due  to  fetch,  line  fetch  due  to  store,  line  invalidate, 1/0 
fetch  or  store,  etc.)  and  the  address  are  routed over the 
L2-BSN bus, and  an  L2  directory access is done at the 
second  directory  port.  When  an  L2 hit occurs,  the  line 
state must be  changed  according  to  Table 2. An  L2-to-L1 
protocol  ensures  that  the  states of the  L2  and  L1  cache 
lines  change  concurrently.  The PU is interrupted  for 
five cycles to perform  the  appropriate  action.  This 
performance loss can  be avoided  when the L1-valid 
bit is off. The  L2  does  the  state  change  alone in a 
“read-modify-write” action on the directory. 

Error detection and recovery 

PU fencing 
The  clock-generation  chip  reacts  differently  under  PU 
check-stop  conditions  than  under L2, L2.5, or memory 
check-stop  conditions.  The system continues its operation 
even  when  a PU  enters  check-stop  state.  Thus, system 
availability is increased significantly. Since the  L2 may 
contain modified  memory data, it is mandatory  that  the 
L2-BSN interface is not  disturbed.  The  PU  fencing 
function is implemented simply by a  negative  active 
“PU check-stop’’ signal which is latched in the  L2 chip. 
Incoming  control signals are  suppressed,  and  the  address 
bus-in register switches  over to hold  its old value. The 41 5 
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Bus-switching network. 

handshaking  for  broadcast  operations  between  L2  and PU 
due  to cross-cache interrogation is emulated by the  L2 chip. 

The  clock-generation  chip  forces all I/O drivers of a 
defective PU  to  high-impedance  state.  The signal  levels of 
all  receivers go  to minus because of the  integrated pull- 
down resistors.  The negative  active PU check-stop signal 
utilizes this effect and stays  active.  Systems  with 
depopulated  or  deactivated  PU  chips  behave similarly; 
the  open  PU  port  at  the  L2  chip is fenced. 

Soft errors in large arrays 
Soft errors  due  to  alpha  particles in large  arrays  must  not 
create  check-stop  situations.  These  errors  are usually 
single-bit errors.  ECC with single-error  correct,  double- 
error  detect capability is implemented  on  the  L2 
data caches. The  directories  require  an  equivalent 
correction/detection  mechanism.  The  implementation 
of ECC would  have  cost one  extra cycle of L2 access; 
instead, a duplication of arrays was chosen  and  the 
following rules obeyed: 

Parity  check in one  array only: Use  the  other  one. 
No  parity  check  but  array  outputs  unequal:  Check-stop. 

Synchronism  check 
The  control  parts of two L2 chips  are  identical  and  must 
always be in  synchronism. The  error-detection capability is 
improved  when  the  state of the  control logic for  these two 

41 6 chips is compared every cycle. The  implementation is 

simple. The main control signals from  each of the  four 
caches  on a chip  are  exclusive-ORed,  driven via latches  to 
the  second  chip of a pair,  and  compared  there with the 
equivalent  XOR sum. A mismatch  leads  to check-stop. 
The  XOR  tree is large.  For a better isolation  down to  the 
source of a defect, it  is  advisable to  implement  indicator 
latches  for  groups of signals. The  latches  can  be  inspected 
in the scan chain  after a sync check  has  occurred. 
Mismatching  latch states  between  the  chips  point  to  the 
error. 

Bus-switching  network  (BSN) 

Overview 
The BSN chip (Figure 11) is required  to  connect  different 
physical data  buses  to  one logical data  bus. To support a 
high  system throughput,  the  bus  control logic, caches,  and 
a memory  address  translation  are  provided.  The BSN chip 
features  include 

14.5-mm chip size, CMOS 5X, 16.6 million transistors. 
5.9-ns cycle time. 
758 chip I/Os used. 
Four 64KB shared  caches (L2.5) per  chip. 
Configuration  table  (CFT)  for  DSR/2  support. 
High-speed switch for seven  electrically decoupled  ports, 

Support  for L2 and L2.5 cache  coherence. 
8-byte-wide buses  on BSN chips. 
System measurement  instrument  (SMI)  support. 
Redrive logic for  processor-to-processor  communication. 
Trace  buffers  for system debug. 

four L ~ s ,  two MBAs, and  one STC. 

Switching part 
The BSN is used  as bus  controller  and bus-switching  chip. 
Up  to  four  L2  cache  chips  can  be  connected  to  the  chip 
with point-to-point  nets  for  buses  and  control signals. Up 
to two  MBAs can  be  connected  to  the BSN with three- 
point  nets  (one  MBA  and two BSNs).  Finally, one 
memory  card with its  STC is connected with point-to-point 
nets.  This  structure allows the  chip  as well as  the  buses 
to  operate with  system cycle speed;  no  speed-matching 
buffers  are  required.  Additionally,  the switching network 
must connect  various  internal  units  to  the  external buses: 

Four L2.5 caches  that  are especially  designed to  hold 
shared  data  for all PUS. 
Configuration  table  (CFT),  used  to  implement  the S/390 
DSR/2  feature (dynamic storage  reconfiguration). 
Parts of the system measurement  instrument  (SMI)  to 
support  performance  measurements, especially  in the 
multiprocessing  environment. 

up/debug. 
Cycle and  command  trace  buffers  for system bring- 
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To achieve good system performance,  the BSN must 
guarantee a high bus  bandwidth  combined with  a low bus 
latency. For  the  required  bandwidth, two-way bus  and 
memory  interleaving is supported. A two-cycle bus 
operation (low latency)  from L2 cache  to L2 cache is 
achieved by a  special  bus-switching  logic on  the BSN chip. 
This logic is placed  between  master-  and slave-clocked 
latches  (see Figure 12) and causes command  and  data  to 
be flushed through  the BSN chip,  disregarding  the  chip-to- 
chip clock  skew, which is about 20% of the system cycle 
time.  This  concept allows a two-cycle operation with  only 
one clock skew added  to  the  total  path delay; the cycle 
time of the BSN buses  and  control signals can  therefore 
keep  pace with the system. The switching logic shown  in 
Figure 12 is  also  used for  the  chip-to-chip  control signals 
to  implement a fast, low-latency protocol  for  data  transfer 
and  bus  snooping. Two round-robin  arbiters  for  up  to 
twelve PUS and two  MBAs reduce  the  number of wires  in 
the MP system and  lead  to a good  bus  utilization.  The 
BSN control logic must maintain  and  support  data 
integrity and  cache  coherence  for all connected chips. 

logic generates  gaps on the bus to allow the L2s and 
MBAs to  put new commands on the  bus [4], therefore 
improving bus  utilization.  An  example of a typical bus 
sequence is  shown  in Figure 13. In this  case two 
interleaving  line  fetches  are  processed;  one  line  fetch is 
served by the  DRAM  and  the  other by the L2.5 cache  on 
the BSN chip. 

The timing diagram shows three  different  ports (two 
L2-BSN buses and  the BSN-STC bus): F indicates a line- 
fetch  command which is drivenhedriven  for two cycles on 
the buses, and 0. . . 77 indicates  the  requested line-fetch 
data of 128 bytes, transferred with eight  datashots 
(0 .  . . 7), each  16 bytes  wide. For  electrical  reasons,  the 
last  shot of a command  or  data  packet must always be 
driven  for two cycles. The . . . Sel signals validate  the 
command  on  the  different  ports;  the XFer . . . signals 
validate  the line-fetch data.  The  second STC Sel for  the 
interleaving  line  fetch cancels the line-fetch request  to  the 
STC  and is caused by the L2.5 match. 

Besides the two-way memory interleaving,  the switching 

L2.5 cache 
The L2.5 cache  reduces  the  latency  for  data  not  kept in 
the L1 and L2 caches of the  requesting  processor.  It 
provides  the  data immediately if the  requested  cache  line 
is already  shared by other processors. Memory access 
latency is thereby  avoided, saving 18 cycles in the cache- 
line "fetch" operation.  This  increases  the  overall  processor 
performance by about 12% in the G3 systems, where  this 
three-level  cache  hierarchy  scheme was first implemented 
and  tested. 
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L2.5 cache organization 
The  total L2.5 cache is organized  to  support  the  cache- 
line  interleaving  mechanism; it is therefore split into  four 
identical  independent  parts called quadrants, as  shown  in 
Figure 11. A L2.5 cache  bank  comprises two quadrants. 
The switch selects  the  banks by address  bit 21 and  the 
quadrants by address bit 20. Each  quadrant  holds  an 
eight-way  set-associative cache of 64 KB with a line size of 
128 bytes. The design effort could be  kept  at a minimum 
by using the  same  array  macros as for  the L2 chip in the 
G3 system. 

L2.5 cache-line-state handling 
The  data integrity  within the  three-level  cache  hierarchy is 
controlled  according  to  the  MESI  protocol.  The M state is 
not  included in the L2.5 cache,  since  data integrity for 
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Table 4 L2.5 cache-line 
operation. 

sta Ite before and after line-fc :tch kept in 

LF operation type Cache-line state New state 
before line fetch 

LF-DFETCH 

LF-IFETCH 

LF-DSTORE 

EIS 
S 
S 

S 
S 
S 
S 
E 
E 

modified data is maintained by L2 caches.  All other  MESI 
states  are  handled by the L2.5 cache,  and  its  behavior is 
optimized  to  hold  actual  shared  data. Any request  for a 
missing line in the processor’s L1  and  L2  caches is routed 
to  the L2.5 cache  and  to  the memory. If the  requested 
data  are  kept in the L2.5 cache  and  shared  among  other 
processors (S state),  the L2.5 cache will provide  the  data 
immediately. If the  data  are available but  not yet shared 
( E  state),  the L2.5 waits to  provide  data  until all L2 
caches have searched  their  directories, with the  result  that 
none of them  holds  the  line in the M state.  For  an active 
M state in an L2,  this L2 provides the  actual  data,  the 
switch in the BSN routes  the  data  to  the  requesting  PU, 
and  the L2.5 is updated in parallel.  In  both  cases  the  line 
is marked  as S if it is requested  because of a “fetch”-type 
instruction in the  processor.  For a “store”-type  instruction, 
it remains in the E state in the L2.5 cache.  Data  are 
provided by the  memory only if the  requested  line is not 
kept in the L2.5 cache ( I  state).  The switch provides the 
data  to  the  requesting  PU,  and  the L2.5 cache is updated 
in parallel.  The  same  rules apply to  the  transfer  into  the 
S or E state in the L2.5 cache. 

Table 4 summarizes  cache-line-state  handling by the 
L2.5 cache.  It shows the  state of a cache  line  before  and 
after  the  execution of a line-fetch  operation.  The L2.5 
cache receives different  line-fetch  commands,  according 
to  the  type of instruction which caused  the  line-fetch 
operation  (LF) in the  processor;  these  are  line  fetch  for 
data-fetch-type  instructions  (LF-DFETCH);  line  fetch  for 
instruction  fetch  (LF-IFETCH);  and  line  fetch  for  data- 
store-type  instructions  (LF-DSTORE). If a cache  line is 
not  kept in the L2.5 cache  (see  the  I-state  column)  for  an 
LF-DFETCH,  the new state  can  be  either E if no other 
processor owns the  cache  line  or S if another  processor 
has  this  line in the E or S state  already.  This is indicated 
in the  table by E / S .  

Table 4 does  not show the  fact  that  for all line-fetch 
41 8 operations in the Z or E state,  the  requested  data  could  be 

another  L2  cache  in  the M sta .te. In this case, 
this  L2 would provide  the  data  (cross-cache  cast-out), 
which would be  loaded in parallel  into  the L2.5 cache. 
The  implemented  scheme is optimized  for  processor 
performance.  Actual  measurements show  its  effectiveness, 
since  more  than 80% of the  cache  lines  kept in the L2.5 
are in the S state.  This  cache-line  state provides the  most 
benefit, since processor  data  latency is reduced by 18 
cycles compared  to  an access to  memory. 

Configuration table 
The configuration table is the  implementation of the 
dynamic storage  reconfiguration  (DSR/2) facility. It is 
used to  map  the  absolute  addresses coming from  the  PUS 
or MBAs into physical memory addresses.  Depending  on 
the memory  size, up  to  512  storage  elements, which can 
be  different in  size, are  supported.  The  elements  can  be 
reconfigured during  normal system operation.  The  address 
mapping is done within one cycle, before  the  address is 
routed  to  the  memory  card.  The  PUS  can write and  read 
the  configuration  table with  special controls  and senses.  A 
bypass of the  table  can  be  activated  and  deactivated,  and 
some  special memory functions always bypass the  table 
(i.e., senses  and  controls  to  the  memory  card). 

System configurations 
Different systems (G3 and G4) with their  different  PU/L2 
chips, memory  cards with different sizes and access times, 
and varying configurations  (one-, two-, and  four-bus 
systems) require  considerable  programmable logic inside 
the switch to achieve  a good  bus  performance; i.e., 
different  DRAMS  require  different access times. 

Additional logic is spent  for  PU-to-PU  communication 
signals and  MBA-to-PU  interrupt signals. To reduce  the 
required  I/O  pin  count  for  the  high-end  configuration,  this 
“redrive logic”  is spread over multiple chips. To  provide 
the  same  functions in smaller systems,  especially the  one- 
bus system with only two BSN chips,  this logic has  to  be 
programmable.  At system start-up,  the BSN chips  are 
“personalized”  for  these configurations. 

Error detection and recovery 
For a highly available and  reliable system, error  detection 
and  error recovery are very important  in avoiding data 
loss and  ensuring  data integrity. 

Switching part 
Because  the BSN is stimulated by external signals, the first 
step  for  error  detection is the checking of all chip  inputs. 
Additionally, the  internal  states of the  chip must be 
checked.  The  implemented  functions  are as follows: 
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The  buses  and  the  interna - d ”taflow are parity-checkel 
on byte boundaries  and  cause a  system check-stop in the 
event of an  error. 
The  control signal inputs of the  chip, which are wired 
point-to-point,  use  the fact that two BSN chips  per  bus 
always work in parallel. So-called  sync  checks observe 
the  correct  function of these  inputs,  and, in the  case 
of a mismatch,  the system is stopped.  The  information 
concerning which other  chip  caused  the  error is stored 
and  can  be accessed by the service element. 
The powering trees  for  the  internal  multiplexors  are 
checked in order  to avoid incorrect  routing of data 
through  the system. 
Bus protocol  functions check important  control signals 
(check  the  checkers). 
Addressing invalid entries in the  configuration  table 
suppresses  command  forwarding  to  the  memory  card. 
This is signaled to  the  PU  or MBA. 
The memory card  can  handle  certain  “accept  errors” 
which are  routed via the BSN to  the  requesting  PU  or 
MBA. Examples of accept  errors  are  “address exceeds 
maximum range,”  “bad parity on data,”  and “illegal 
command  sequence.” 
Especially for  problem fixes during system bring-up, 
so-called “escape logic” is implemented  to allow the 
detection  and  correction of protocol  errors, Le., time- 
outs. 

L2.5 cache 
The  entire dataflow of the L2.5 cache [5] includes  parity, 
which is checked  for  correctness in  all operations.  In 
addition, parity is included in the L2.5 cache  directory, 
which keeps  track of the lines included in the L2.5 cache 
and  their  state.  The  data in the  cache  include a double-bit 
error-detection  and single-bit error-correction  scheme 
(ECC) [6]. Single-bit errors  are  corrected  before 
the  data  are  transferred  to  the switch.  A hardware 
“deconfiguration”  scheme is implemented  for  both  parity 
errors in the  directory  and  double-bit  errors in the  data. 
In  these cases, the failing quadrant is “deleted”; i.e., it no 
longer  participates  as a cache. All further accesses are 
automatically  routed  to  the  memory subsystem. No data 
loss occurs, since the L2.5 does  not  include  the M state. 
Because of this mechanism,  the inclusion of a cache in the 
BSN does  not  decrease system  reliability and availability, 
but  increases  overall  processor  performance. 

Configuration table 
The configuration table  comprises two arrays  (per  chip) 
which hold the  same  address-mapping  tables.  In  the  case 
of a  single-bit error,  the  “good”  array is used. The  correct 
address is routed  to  the memory card,  and  the single-bit 
error is latched in the BSN. The  error latch can  be  sensed 

ETR - 

BSN 012 BSN 113 

ST1 0 ..... ST1 5 

IBus 0 IBus 1 

CHN ..... ISC  CHN ..... ISC 

Channel  ISC  Channel  ISC 

8 Memory bus adapter. 

by the  PU,  and  the  configuration  table  can  then  be 
rewritten. 

Memory bus adapter (MBA) 

Overview 
The  MBA (Figure 14) is a high-speed, low-latency DMA 
controller  that  provides  the  connection  between memory 
and I/O. The key features of the  MBA  are  the following: 

Bandwidth of 2 GB/s  through two BSN adapters. 
High-speed self-timed interface  (STI) with cable  lengths 

CMOS 5X technology. 
15.5-mm chip size. 
770 chip I/Os used. 
3.6 million transistors. 
5.9-11s cycle time. 

between 5 cm and 20 m. 

Main  functional  units 
There  are two primary types of storage  operations:  Fetch 
operations  (transfer  data  from memory to UO), and 
store  operations  (transfer  data  from I/O to  memory). 
Programming of the  MBA is done with sense  and 
control  instructions issued by a PU:  Control  instructions 
set/modify registers,  and  sense  instructions  read  registers. 
The main functional  units on the  MBA  are  described in 
the following subsections. 
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BSN adapter unit 
There  are two BSN adapter  units  on  each  MBA  chip.  The 
BSN adapter  connects MBA-BSN bus 0/2 (MBA-BSN bus 
1/3) to  the  speed-matching buffers,  which contain  the 
command  and  data  for  the  storage  operations.  In  addition, 
it provides  an  interface  to  the  central  sense/control  unit. 
One BSN adapter  has a bandwidth of 1 GB/s. 

Speed-matching buffer (SMB) 
For every BSN adapter  there  are  three  speed-matching 
buffers, to hold commands,  store  data,  and  fetch  data. 
These  buffers  are necessary to  adapt  the word-wide ST1 
macro  interface  to  the  quadword-wide BSN interface.  The 
command  buffer  has  room  for  four  fetch  and  four  store 
commands;  the  store  and  fetch  data  buffers  each have 
room  for  four lines. 

Switch 
The switch connects  the ST1 path logic to  the  speed- 
matching  buffers. To realize a high bandwidth, a  split 
transaction  protocol is implemented, allowing the 
concurrent  execution of two store  data  transfers, two 
fetch  data  transfers,  and  one  command  transfer. 

STI path logic (SPL) 
This logic has  three  purposes: 

1. It splits information  packets received from  the 
STI-REC  macro  into a command  part  and a data  part, 
which are  sent  over  the switch to  the  speed-matching 
buffers. 

2. It receives fetch  data  from  the switch and  builds  an 
information  packet  (IP) as required by the STI-SND 
macro. 

3. It receives from  the  port  sense/control logic the  data  to 
send  sense/control  commands down the ST1 link. Again, 
it builds the IPS as required by the STI-SND macro. 

Central senselcontrol (CSC) 
This  unit  provides  the PU with  access to  the  registers in 
the MBA. To  balance  sense/control  loads on the BSN 
buses, there  are two CSC  units on each  MBA chip, and 
each  CSC is connected  to  the BSN 02 adapter  and  the 
BSN 13  adapter. ST1 ports 0, 1, and 2 are accessed via 
central  sense/control BSN 02; ST1 ports 3, 4, and 5 are 
accessed via central  sense/control BSN 13. Central 
sense/control BSN 02 connects  to  the  ETR  (external  time 
reference).  In  addition,  it  contains all logic for  the  master 
TOD  (time of day)  and  the facilities to synchronize 
several local TODs  to  the  master  TOD. 

Port senselcontrol (PSC) 
This logic provides data  and  commands  for  sense/control 
signals sent via the  STI.  It  contains a set of registers  to 

manage  interrupt  and busy conditions  on a channel basis. 
Further, it permits  programming  the ST1 interface  to  run 
with  a byte-transfer  rate of 3 ns or 4 ns. 

STI macro 
The ST1 link provides  the  connection via the  fast  internal 
bus  adapter  (FIB)  to  the  channel [7] and  to  the 
intersystem  channel  (ISC) [8]. The system supports  up 
to 256 channels  and  up  to  32  intersystem  channels.  The 
macro consists of two parts, a  receive and a send  macro. 
The ST1 [9] is a  byte-wide very high-speed data  interface 
using differential drivers/receivers. It is a  full-duplex bus 
with  a  raw data  rate of 250/333 MB/s in each  direction.  In 
addition  to  the  eight  data bits and  the  parity  bit, a  clock 
is sent in each  direction.  With every  clock edge,  data  are 
transmittedireceived.  Information is transmitted on the 
link  in “information  packets”  (IP) consisting of header 
and  data blocks. The link protocol  causes  overhead, which 
leads  to  an effective data  rate of approximately 200 MB/s 
in each  direction. 

There  are  nine  different clock domains on the  chip (six 
ST1 receive  clocks, one ST1 send clock, one system  clock, 
and  one  ETR clock). One of the goals of the design 
was to minimize  latency, which is caused by crossing 
asynchronous clock boundaries.  For example, if an  IP 
arrives at  the ST1 receive macro,  this is signaled to  the 
SPL.  The  SPL, which runs with the system  clock, starts to 
read  out  an  IP  buffer of the ST1 if sufficient data have 
been received  in the  IP  buffer.  Since  there  are many 
combinations of system  clock speeds  and ST1 clock speeds, 
a set of programmable  counters  were  implemented in 
order  to  determine  the  best  read-out  start  time. 

Error detection and recovery 
All registers in the  data  path  and  most  state  machines in 
the  control flow are parity-checked. If a check  occurs, this 
is signaled  to  the  originator of the  operation (e.g., the 
channel)  and  the  corresponding  operation is retried. If the 
error is of intermittent  nature,  the system continues  to 
run; if it is a permanent  error,  the system tries  to  continue 
operation in a deconfigured  mode. A  special mechanism 
was designed  to check for  failures in the  speed-matching 
buffer. 

The  principle is  shown  in Figure 15. In a horizontal 
data-checking  mechanism,  each  doubleword of data  (cmd) 
is protected by a corresponding  parity byte. In a vertical 
data-checking  approach, a  block of data is protected 
by a longitudinal  redundancy  check  (LRC) byte. This 
protection  mechanism is typical for link protocols.  Both 
approaches  can  be  combined in  a concurrent  signature- 
checking approach. Every time  cmd/data  are  written  into 
the buffers,  a new signature is generated  from  the  actual 
data  to  be  written  and  the previous written  signature.  This 
signature is saved  as  in the  horizontal  data-checking 
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scheme. Every time  cmdidata  are  read  out of the buffers, 
a new signature is generated  from  the  actual  data  read 
and  the  previous  signature  read.  The new calculated 
signature must be  identical in every cycle with the 
signature  stored in the array. The  scheme  described  has a 
modest circuit overhead  and very good  error-detection 
capabilities.  Note  that  the  number of array bits is the 
same  as in the  horizontal checking approach. 

VeriJication 
Compared  to its predecessor,  the  MBA  G3  increased  the 
bandwidth by a factor of 10  (two  GBis  versus 200 MBis). 
To achieve  such  a high bandwidth, a heavily queued  chip 
had  to  be built; therefore,  the  number of concurrent 
operations  increased  from 3 to 30. Verification of a chip 
with such  huge numbers of concurrent  operations was a 
challenging task. Part of the switch logic was verified  using 
formal verification [lo]. 

Storage controller (STC) and  memory 
subsystem 

Overview 
The memory  subsystem [ l l ]  is designed  to  serve as Si390 
main and  expanded  storage  for  the  G3  and  G4 systems. 
Both levels are  located on the  same physical unit, a 
separate  memory  card. To reduce  the  bus traffic between 
PU  and  memory,  certain  memory-related  operations  are 
implemented on the memory card, as well as the basic 
store  and  fetch  line  functions.  The Si390 storage key 
protection also resides  on  the  memory  card, with  all the 
necessary logic. Special features have been  implemented 
which increase  the  memory reliability and availability. 
Memory  card  characteristics (Figure 16) are  the following: 

Maximum card size  6 GB,  based  on 64Mb DRAM 

4Mb/16Mb/64Mb Extended  Data  Output  (EDO)  DRAM 

Latency 17 cycles at 5.9 ns (50 ns) or  18 cycles at 6.25 ns 

Busy time 25 cycles at 5.9  ns for  one line. 
Card technology  mixed-grid array  (MGA)  12 signal, 

DRAM package correction  ECC; two spare  DRAMS  per 

technology. 

support (50-11s and 60-11s RAS access). 

(60 ns). 

10  power  layers (9 x 11 in.). 

card. 

Figure 17 is a photograph of the  card. 
STC  characteristics (Figure 18) are  the following: 

12.7-mm chip size, CMOS 5X, approximately  1.3 million 

5.94s cycle time. 
748 chip I/Os used for signals. 

transistors. 
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Independent  line  buffers  for  store  and  fetch  operations. 
Line  interleaving  on  one  memory  card. 
Expanded  storage  support. 
Fetch  before  store  for  fast  LRU  cast-outs. 
Wraparound  feature; first quadword of line served first. 
Redundancy  setting  per  DRAM  module on the fly. 
Active parallel  redundancy  for  the key store. 
Trace  buffers  for system debug. 
Programmable  DRAM  and  SRAM  self-test  performed 
by STC. 

Memory card structure 

Two  independent storage banks 
Because of the relatively long  DRAM access time (50 ns 
or 60 ns), two independent  storage  banks have been 
implemented.  This  permits  utilization of the BSN-STC 
bus  for  command  or  data  transfer of one  storage  bank 
while the  other  bank is active  with RAM accesses 
(even/odd  interleave  on  the BSN-STC bus).  This 
maximizes the BSN-STC bus  utilization by filling the 
“latency  gap”  on  an individual  bus. Each  storage  bank 
utilizes independent  store  and  fetch  buffers in order  to 
decouple  the activities on the BSN-STC bus  from  those 
on the  buses  to  the  DRAMS. 

On-card array bus structure 
To  meet  the  bandwidth  requirements, every STC 
physically interleaves  four  array  buses  (each  array  bus is 
64 + 12 bits  wide),  and  for  one  line  transfer it selects  an 
individual DRAM  module twice. This  sequence  supplies 
eight doublewords  per  STC  to  complete  one line. This 
structure exploits the  CAS cycle time of  25 ns for 60-ns 
standard E D 0  RAMS  (4 X 6.25 ns = 25 ns). 

The electrical redrive challenge 
On  the  6GB  card (maximum configuration),  the two STCs 
must drive at  their  DRAM  interface 48 PSIMMs, 19 
DRAM  modules  per  PSIMM,  four  data  I/Os,  12  addresses, 
and  three  controls  per  DRAM.  Overall,  17366  DRAM 
I/Os  and 600 SRAM  I/Os  must  be  attached to the  support 
logic. Of the 748 signal I/Os  per  storage  controller, 520 
were available for  the  DRAM  interface;  they  were 
arranged in the following  matrix: 

304 data  I/Os  for  four  data  buses, 76 bits  per  data  bus 

88  address  I/Os  for  four  data  buses  and two storage 

48 address  I/Os  for every SIMM  for  the most  critical 

48  CAS I/Os  for every SIMM. 
24 RAS  I/Os  for every SIMM  pair. 

(both  storage  banks  share  the  data bus). 

banks. 

address. 
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8 write-enable  I/Os  for  four  data  buses  and two storage 
banks. 

Because of the  pin-count  limitation,  one  STC  supports 
the  SRAM  addresses while the  other  supports  data  and 
enabling signals, logically multiplexed  over the  same 
physical pins. The  rest of the  STC 110s are  used  for  the 
BSN-STC bus, STC-to-STC  communication,  spare 
DRAMs, clock signals, and  test  support.  Overall, this 
array wiring structure  supports cycle times  at  the  DRAM 
interface down to 5.1 ns if DRAMs with  50-ns RAS access 
time  are  used. 

Memory scalability and granularity 
One of the  major  requirements in  designing the  memory 
subsystem was to  support  the  modular  concept,  as well as 
a very wide range of memory  sizes for  different  product 
offerings with just  one design point (e.g., one raw card 
and  one  storage  controller  part  number).  From  the  point 
of  view of memory  card design, the  overall  G3lG4 system 
memory size ranges  from 64 MB  to 24 GB  (factor 384), 
although  not all options  are actually used in the system. 
This  has  been achieved with the following  steps: 

Factor 4 by number of buses  in  the system (one-, two-, 

Factor 2 by using only one  storage  bank  on  the  card 

Factor 3 by populating  PSIMMs  for  one, two, or  three 

Factor  16 by DRAM technology (4 Mb, 16 Mb, 64 Mb). 

four-bus system). 

(evenlodd  interleaving  disabled). 

RAS  banks  (address  depth). 

Functions complying  with SI390 architecture 
The following SI390 architecture  storage-related  functions 
have been  implemented on the  memory  card. 

Key store 
The SI390 architecture  requires a storage-protection 
mechanism which ensures  that only those  elements of the 
system which have  a correct access key can  obtain access 
to  storage  locations.  The access key protects  storage in 
increments of 4KB pages. 

reference,  and  change  information  has  been  implemented 
as a decentralized  fast  SRAM  array  (“key  store”) residing 
on  the  memory  card.  The  STC  compares  the access key of 
a requestor with the key stored  on  the  card  and  permits  or 
denies  the  alteration of the  storage  location.  The  time 
required  for  the key control is included in the  latency 
numbers,  mentioned  earlier. If permission is denied,  the 
STC  communicates  with  the  other  STC  to  suppress  the 
storage of data. 

The  storage  for  this key and  the  related  fetch, 

Fast LRU cast-out 
To  support  fast  LRU  cast-out,  the  STC  contains  separate 
fetch  and  store  buffers  for  each  storage bank. The 
command is sent  together with the  store  data  to  the STC. 
While the  STC  initiates  the  fetch access to  the  DRAMs, 
the  store  data  are  deposited in the  store  buffer.  After  the 
fetch  data  are  delivered  on  the BSN-STC bus, the  STC 
begins a second access cycle to  store  the  data  (see 
Figure 18). During  this  time,  the  other  storage  bank  can 
concurrently receive and  execute  other  commands. 

Expanded storage support 
A  similar mechanism,  called  “move  page fetchhove page 
store,” is used to  support  the exchange of lines  between 
the S/390 main storage  and  expanded  storage.  The  lines 
are  fetched  from  the  source  address  into  the  fetch  buffer 
and  subsequently  stored  through  the  store  buffer  to  the 
destination  address. 

Data  handling within one line 
Certain  operations  require  that individual  bytes or 
sequences of bytes be  changed within one  line.  This is 
also  done in the  storage  controller.  It examines the byte 
address  and  the access key, initiates  the  prefetch of the 
line,  merges  the  data,  and  stores  the  changed  line back to 
the memory. This  mechanism allows the  alteration of 
1 . . . 127  bytes  within one 128-byte  line. Examples of this 
operation  are  partial  stores  from  the  I/O  and  the 
conditional  marking of individual lines. 

Error detection and recovery 
Because of the high number of RAM  modules,  the 
memory  card  contains several error-detectionlcorrection 
schemes  to provide high reliability and availability. 

DRAM ECC 
A (76, 64)  ECC  scheme  has  been  implemented  for  the 
DRAMs which corrects all errors within one  DRAM 
module, including completely defective DRAM  modules 
(four  out of four  DRAM  I/Os defective). This gives the 
capability of DRAM chip-kill correction on the fly, 
without  impact  to  the  running  application.  The  ECC 
scheme  also  detects a very high percentage of failures of 
two or  three  DRAM  modules within one  ECC word. In 
addition  to  the  correction of defective data,  the  DRAM 
address  has  been  included  in  the  check-bit  generation  in 
order  to  detect misaddressing. Errors  detected by one  STC 
are  communicated  to  the  other  STC  to  ensure 
synchronous  data delivery. 

SAP-controlled error scrubbing 
In a background process, the system  assist processor 
periodically monitors  the  DRAMs by scanning the 
complete  address  space. If a line  has  correctable  errors, 
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Block diagram of G3/G4 clock chip functional islands. 

it is corrected by the  STC  and  restored  into  the memory. 
Depending on the  nature of the  defect, this eliminates  or 
“scrubs” soft errors in memory areas which are seldom used. 

DRAM sparing on the  fly 
During  the scrubbing  process  a hardware  error  map is 
written which contains  error  counters, defective PSIMM 
locations,  defective DRAM  modules on a  PSIMM, and 
the defective I/Os, as well as  the  nature of the  failure 
(correctable/uncorrectable). The  error  map is  also  used in 
card  manufacturing. 

If defined thresholds  are exceeded, the  redundant 
module is activated,  replacing the most  defective DRAM 
on  the  card.  This is done dynamically; Le., the  data  that 
are still correctable  are  corrected  and copied to  the 
redundant module. After  the copy is complete,  the 
defective DRAM is shut off. The  redundant  module on 
each half of the  card can be assigned to any DRAM 
location. This mechanism ensures  an  uninterrupted 
customer  operation. 

Key-store  redundancy 
To  provide high availability, the key store uses 

424 redundancy; i.e., each key-store entry is stored twice in 
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two separate  SRAM modules. In  the case of a failure,  the 
entry with the  correct  parity is used. Either of the two key 
stores  can  be disabled. 

Integrated test support 
Traditionally memory  cards  are  tested on separate,  stand- 
alone  card  testers in manufacturing  or in a laboratory 
environment. With the  progress of CMOS technology, it 
became difficult and very expensive to provide equipment 
which keeps  pace with the cycle-time requirements. 
Therefore, a freely programmable  test processor  has been 
implemented in the  storage  controller which can  generate 
practically any test  sequence. 

Internal test mode 
In this mode  the  test processor stimulates  the BSN-STC 
bus with the  same  commands  or  command  sequences as 
those issued by the BSN. It analyzes the response of the 
memory card  and  monitors  protocol  and  data  correctness. 
The  card  “tests itself.” 

External test mode 
In the  external  mode,  the  test  processor  sends  the stimuli 
to  the memory card  connector.  Thus, a  memory card 
without  DRAMS  and  SRAMs, with only two STCs, can 
stimulate a normal memory card via the  card  connector. 
The  card  “tests  another  card.” 

As  additional  equipment  external power  supplies,  a PC 
and a clock generator  card  are sufficient. Compared  to 
commercially  available stand-alone  test  equipment, this 
concept results in very low cost for  test  equipment, in the 
laboratory  and in manufacturing.  The  test  processor 
program  can be loaded in the  G3/G4 system during 
power-on from  the service element.  The  major  advantage 
of the  integrated  test processor is that  the technology of 
the  “tester”  migrates with the technology of the device to 
be  tested. 

Clock-generation  chip (CGC) 

Overview 
The  clock-generation  chip (Figure 19) provides the 
necessary clock pulses and  run  control signals for all 
S/390-related hardware building  blocks of the  G3/G4 
processor subsystem. The key features of the  CGC  are  the 
following: 

CMOS 5X technology. 
10.0-mm chip size, 0.5 million transistors. 
414 chip I/Os used. 
44-mm MLCI single-chip  module. 
5.9-ns cycle time. 
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<0.4-ns  on-chip clock skew, <1.2-ns chip-to-chip clock 
skew. 
Two supply  voltages. 

2.5 V for  connections  to  other  CMOS 5X chips. 
3.6 V for  connections  to  the  ETR  and  the service 
element. 

Clock and control-signal generation. 
Power-on reset  recognition. 
Five-wire interface  to service element. 
Start/stop  control of entire  GYG4  processor subsystem 

Serial link to all PU chips. 
External  time  reference  (ETR)  support. 
Programming of an external PLL,. 
Self-test control  for all connected chips. 

(including  check  recognition and  handling). 

Power-on reset 
After  recognition of an  external power-on  reset signal or 
an equivalent  command  from  the service element,  the 
CGC  controls  the  hardware initialization of all chips, 
consisting of the following  phases: 

Detection of all chips  connccted  to  the  CGC. 
Shift in zeros  through  the  serial  SRL network  (initial 
self-test data). 
Test all embedded  arrays via ABIST  (array built-in  self- 
test)  and  subsequent initialization of embedded  arrays 
(storing  zeros with good  parity and  directory  array valid 
bits  OFF). 
Self-test  of the  chip  internal logic via LRIST (logic built- 
in self-test). 
Set  up  the Si390 processor(s)  for  transfer of 
bootstrapping  code by the service element. 

Any chip  that  does  not pass the  ARIST  or  LRIST  remains 
disabled  and is no longer available for system operation. 
However,  the system may operate in a degraded  mode 
until  the defective component  has  been  replaced. 

Attachment  to the service element 
The clock chip  connects  to  the service element subsystem 
via the five-wire interface, which is the physical connection 
between  the service element  and  the  CGC  and consists of 
the following lines: 

Shift gate instructs  the  CGC  to shift  1-bit information on 
the  data-iddata-out lines. 
Addressidata declares  the  information  transported on the 
data  lines as either  address  or  data,  depending  on  the 
polarity. 
Set pulse is used  to  strobe  data  and  for  commands. 
Data-in is the  input  line  for  serial  bit  transport. 
Data-out is the  output line for  serial  bit  transport. 

The  CGC  implements an address  register  holding  the 
address  shifted in by the service element  and a decoder  to 
address an individual target  based  on  the  contents of the 
address  register.  Each  chip  connected  to  the  CGC  has a 
unique  address, making  it an individual target.  Some 
addresses  are reserved for facilities on the  CGC itself, 
e.g., for  the  “status  register,” which provides status 
information  about  the  entire system to  the service 
element.  Another example of a CGC  address is the 
command  to  initiate an initial microprogram  load  (IML). 

address bits and  one parity  bit is shifted  into  the  address 
register, which selects  the  target  for  the following set 
pulse or shift gate in data  mode. While the shift gate in 
data  mode  propagates a single  bit into  an  SRL  chain,  the 
set  pulse is used  to assist the  array access on the  chips  and 
to control  the  CGC.  The five-wire interface  supports 
service functions such as 

During  address  mode, a 9-bit address consisting of eight 

Serial R/W access of all SRL  chains  and  embedded 
arrays on building  blocks connected. 
Serial RIW access of SRL  chains on the  CGC itself. 
Single cycle. 
Start/stop of the  G3/G4  processor. 

In  addition  to  the five-wire interface,  the  CGC  has  the 
capability to  alert  the service element by raising the 
interrupt  line to indicate  an  asynchronous  event (e.g., a 
check  condition).  This  mechanism  eliminates  the  need  for 
polling for  certain  conditions  and  increases  the overall 
performance. 

Clock and control-signal generation 
The  CGC  provides  the clocks and  control signals  as well 
as the  address  decoding  for  the service element subsystem 
for  the following maximum configuration: 

Twelve PU chips. 
Twelve L2 chips. 
Eight BSN chips. 
Eight  STC chips (four memory cards). 
Two MBA chips. 
One  ETR chip. 
Two crypto chips. 

The  control signals of the  CGC  are  optimized  for a high- 
end system implemented  entirely in  chips. The clock chip 
supports any combination of chips. The service element 
must  validate  each configuration and  disable  particular 
chips if necessary. The valid configurations  for a G3  and a 
G4  processor subsystem differ  from  one  another. All chips 
except the  ETR  chip receive  clock  signals that  are 
synchronous with the system cycle of 5.9 ns. Each clock 
chip  generates its 5.9-11s clock  signal, locally derived from 425 
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1 OPCG schematic. 

a 23.6-ns external  reference clock, via an  on-chip  PLL. 
The  ETR  and  those  parts of the  MBA  chips  that 
communicate  with  the  ETR  chip  get a separate clock  with 
a 27-11s cycle. The  CGC  has  the capability to  start  and 
stop  each  PU  chip  on  an individual  basis. The  CGC  starts 
the  other  chips if at  least  one  PU  chip is active.  All 
start/stop  actions  execute synchronously, which means  that 
the clocks for all  chips are  enabled  or  disabled within the 
same cycle. There is also  a  clock domain available that 
never  stops  once it has  been  started  after  power-on.  This 
“continuous-running’’  clock domain is used on  the  PU  and 
MBA  chips  for  the  timer facilities and  on  the  STC  chips 
to  control  the  refresh of the  DRAMS. 

On-product clock generation (OPCG) 
In  order  to achieve this  function,  the  CGC  distributes a 
raw oscillator signal to all chips with an individual line  for 
each chip. Each  chip  including  the  CGC itself receives this 
oscillator  signal and  multiplies  the  frequency of this signal 
by four by means of an  internal PLL. The  output of the 
PLL  feeds a clock-generation  network  (CGN).  The  CGN 
uses  the  PLL  output  and  some  control  lines  driven by the 
CGC  and  generates  the  master, slave, shift, and  array 
clocks locally on  each chip. The  CGC drives the  control 
lines  as  multidrop  nets,  and  each  chip synchronizes them 
locally and  generates “Allow-x-int” signals. 

Figure 20 shows the logic of the  CGN  implemented  on 
426 each chip. The  CGN  uses  the  standard  book  set;  higher 

drive capability  is  achieved by paralleling  the  standard 
circuits. The  numbers in the  diagram show the maximum 
number of parallel circuits. The  output  load of each 
circuit is tightly controlled  during  the physical design 
process, resulting  in  a  clock skew of less than 0.4 ns for 
any two latches  on  the  same  chip [12]. Some  additional 
adders  contribute  to  the clock  skew between any two 
latches on different chips: 

Different  driver  characteristics of the drivers of the 
CGC. 
Tolerances  in  card/module wiring. 
On-chip  PLL  phase  error  plus  jitter. 

All of these  contributors  add  up  to a total clock  skew of 
less than 1.2 ns for any two latches  on  different chips. The 
technique of distributing  just  an  oscillator signal and 
several  control  lines  and using OPCG  has several 
advantages  compared  to  distributing all master, slave, 
shift,  and  array clocks from  the  CGC: 

Only the  reference clock signals must  be  length-adjusted 

Clock-gating  signals  may be  implemented as multidrop 
on all packaging levels. 

signals, reducing  the  pin  count of the  CGC. 

Error detection 
Each  chip  can signal  a  check condition  to  the clock chip 
via an individual line.  The  action  performed by the  CGC 
depends  on  the  source of the  check.  These  external checks 
are  grouped  into two different groups:  All PU chips, and 
all L2, STC, BSN, MBA, and  crypto chips. If the  check is 
raised by any PU  chip, only this  PU is stopped by turning 
off the  appropriate  control signals. The  CGC  informs  the 
remaining  PUS, which continue  to  run  without  interruption 
of this  situation, by sending a “malfunction  alert”  to all 
other  PUS via the clock-PU serial link. Any  check signaled 
to  the clock chip by any  other  chip  stops  the  entire 
system. In  addition,  the  CGC  detects  internal  malfunctions 
and  alerts  the service element accordingly. In all cases  the 
service element  must  perform  further investigation of the 
check. 

Clock-PU serial link 
The  communication  between  the clock chip  and  the  PUS is 
done by means of a synchronous  serial  interface  and is 
bidirectional [13]. Several  checking mechanisms have been 
introduced  to  improve reliability. Some of the  conditions 
signaled via this  interface  are active PUS,  malfunction 
alert,  start pulse, soft  stop  state,  and wait state. 

The clock chip is the  master of all communication. A 
communication  package consists of a specific header, a PU 
field, a command field, and a checksum  sent by the clock 
chip.  All data  besides  the  header  are  return-to-zero  (RZ) 
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Table 5 Complete frame. 

Bits Cycles Content 
~~~~~~ ~ ~ ~ ~ 

3 Header 
16 32 PU field 
16 32 Command field 
8 16 Checksum (number of ones in PU and 

command field) 
8 16 Response  bits PU0 . . . PU15 
- 99 Total cycles 

coded,  and  one  bit  takes two cycles to  transmit.  The 
header is B’110’. This is the only case in which two 
consecutive  ones  are  sent.  This  information is used to 
inform all PUS  about  the beginning of a new frame.  The 
header is the only source  for  synchronization. Two 
consecutive  ones  occurring anywhere else in the  frame 
lead  to a  check. After  sending  the  header,  the  CGC  sends 
the  16-bit  PU field. Each  bit in the  PU field selects a 
specific PU.  Depending on the  command field following, 
these bits take  on a different  meaning.  The  command 
following  specifies the  command  to  be  executed  after  the 
checksum has  been verified by the  PU.  There  are 
commands  that must be  executed by each PU  and 
commands  that  are valid for individual PUS. Finally, the 
CGC  sends  an  8-bit  checksum  to  provide  error  detection 
on  the  interface.  Each  PU  then  sends its  8-bit response  to 
the  CGC,  leading  to  the layout for a complete  frame given 
in Table 5. 

Summary 
The IBM S/390 Parallel  Enterprise  Server  Generation 3 is 
based  on a  well-balanced cache  and  modular system 
structure.  The  G3  processor  chip  set covers  a  wide 
performance  range  from a uniprocessor  to a  high- 
performance  multiprocessing system. A three-level  cache 
hierarchy  and a  high-speed processor  interconnection 
scheme  reduce  the  data latency for  the  processor 
significantly. High reliability and availability are 
guaranteed by the  error-detection  and recovery 
mechanisms  implemented  through  the  entire  chip  set.  The 
design quality of the  G3 chip  set  has  been  outstanding 
since the first  silicon was functional  to  the  extent  that all 
hardware verification programs including the  operating 
systems could  be  tested. Only one  metallization  change 
(metal  EC) was needed  for  each of the  G3  chips  to 
achieve  full  functionality. This was the key to  keeping  the 
time  from first silicon power-on  to  general availability of 
the  G3 system to only eight  months. 

and  Endicott  who  contributed  to  the success of the SI390 
Parallel  Enterprise  Server  Generation 3. 

*Trademark  or registered trademark of International Business 
Machines Corporation. 
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