Functional i Ven
verification D. G. Bar _
of the CMOS £ 1 Ko
S/390 Parallel axgﬁ;z;n
Enterprise Server ;=™
G4 system

Server G4 processor and level 2 cache (L2)
chips was performed using a different
approach than previously. This paper
describes the methods employed by our
functional verification team to demonstrate
that its logical system complied with the S/390
architecture while staying within the changing
cost structure and time-to-market constraints.
Verification proceeded at four basic levels
defined by the breadth of logic being tested.
The lowest level, designer macro verification,
contained a single designer’s hardware
description language (in VHDL). Unit-level
verification consisted of a logical portion of
function that generally contained four or five
designers’ logic. The third level of verification
was the chip level, in which the processor or
L2 chips were individually tested. Finally,
system-level verification was performed

on symmetric multiprocessor (SMP)
configurations that included bus-switching
network (BSN) chips and 1/0 connection chips,
designated as memory bus adaptors (MBAs),
along with multiple copies of the processor
and L2 chips.

To verify the logical design of the $/390® Parallel
Enterprise Server G4 (CMOS 4) processor and L2 chips
before chip fabrication, our relatively small team of
verifiers (hereafter designated simply as the verification
team) defined the basic approaches that drove the
verification effort. The initial focus was on the lowest
levels of simulation, through which bugs could be removed
as early as possible. This meant that our verification team
assisted individual designers in creating simulation
environments at designer macro levels, facilitating the
removal of a large number of the bugs before traditional
structured simulation (chip level) began. Throughout the
effort described here, our team and the processor and L2
design teams were jointly responsible for the simulation
of the design, which allowed for critical tuning of the
environments that created test patterns and monitored
for architectural and implementation compliance.
Furthermore, this allowed for accelerated problem
removal and bug-discovery-to-fix turnaround time. Finally,
rather than having verification engineers assigned to work
solely on particular verification levels, there was vertical
movement of people across the four different levels. Not
only did this enable our verification team to use their
macro-level understanding of the design implementation,
but it also allowed for environment portability as the model

©Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

549

0018-8646/97/$5.00 © 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

B. WILE ET AL.

550

scope increased across the levels. Furthermore, our team’s
shifting of effort from the lower levels to the higher levels

corresponded to the maturity and functionality of the design.

Because the $/390 architecture is mature, a stable set
of core tools was used for the architectural-level test
generation. A strong architectural-level instruction
stream test-case generator, AVPGEN, already existed [1].
Similarly, the random SMP methodologies used on prior
S/390 storage controllers [2] were adapted and enhanced
for the CMOS 4 storage hierarchy. Additionally,
comprehensive escape analysis information from previous
projects was used to direct verification, building upon
knowledge gained from prior $/390 systems.

At the same time, advances in verification
methodologies were used. The use of multiple simulation
engines (hardware and software) for specific verification
levels was coupled with a common application interface
[3], SimAPI, which allowed for reuse of code across the
platforms. Random and directed random drivers targeted
at the design implementation were developed and utilized
from the start of the program. TIMEDIAG/GENRAND,
a tool set that uses timing diagrams to drive general or
specific test patterns, was developed for the designer
macro level [4]. New modeling techniques allowed
functional verification to expand its boundaries to include
full scan-ring, clock, and built-in self-test (BIST) testing
in cycle simulation [5]. Performance improvements in
proprietary cycle-simulation tools continued to increase the
magnitude of simulation cycles available per unit of time.

With these strategies in place, the goals for the
verification effort were set. While it might have been
noble to strive for zero defects in the design, it was not a
productive business goal given the current simulation
methodologies. The time it would take to remove the last
handful of bugs is considered to be better spent by
learning from the fabricated chips. Therefore, the
verification goals were set with our primary objective in
mind: time to market. Verification, working closely with
design, delivered a solid functional design that would
allow the final problems to be removed in hardware so
that learning about circuit design, timing, and logic
correctness would proceed in parallel. Success would be
indicated by the functionality of the first hardware release
and the ability to work around the complex problems that
remained in the design. In light of these goals, firm
release criteria that supported functional progress were
defined and enforced.

Verification methods
® Simulation engines
Verification of the logical functions was performed with

both event and cycle simulators, as well as hardware
acceleration engines. The choice of simulation platform

B. WILE ET AL.

for a given test depended mostly upon model size, model
build time, and performance needs, although certain tests
required features that were provided only in event
simulation.

Since most test-case coding was done using the SimAPI
user interface, detailed benchmarks on simulator
performance were conducted that allowed both test-case
interface tuning and analysis of platform efficiency for a
given test suite or level. In general, event simulation was
used only at the designer macro level, where model build
time was fast and simulator performance was acceptable
for small models. A commercially available VHDL event
simulator was used. Unit- and chip-level verification were
performed with proprietary cycle simulators, TEXSIM and
ZFS. System-level verification used ZFS cycle simulation
and three Engineering Verification Engine (EVE 1.5)
hardware accelerators.

Cycle simulation generally provided a performance
improvement of more than 100X over event simulation.
The choice of cycle simulators, TEXSIM or ZFS,
depended mostly upon the latch-switching factor.' Because
TEXSIM and ZFS use different algorithms to perform
cycle simulation, the latch-switching factor was the
indicator of which simulator performed better for a given
test and model. In general, such performance is inversely
proportional to model size, because a small model can be
driven harder with implementation testing than a larger
model that has architectural restrictions. As a result,
larger models such as the processor chip used ZFS for
cycle simulation, while smaller models used TEXSIM.

Hardware acceleration was used for the largest of
models, where performance can be achieved only with
specialized systems. EVE 1.5 hardware accelerators [6]
were used to run extended test streams on mature system
models. These tests achieved speeds up to 20 times faster
than the cycle simulators. The relative performance of
simulators used in the verification process is shown in
Table 1.

The event simulator, TEXSIM, and ZFS were all used
on a pool of RISC System/6000* workstations. ZFS was
also run on 5/390 server engines. Overnight batch
capacities on an average night after the design was stable
allowed for a cumulative 100 million cycles of processor
chip testing, 15 million cycles of L2 chip testing, and 150
million cycles of unit testing. EVEs gave an additional
capacity of 65 million cycles a day.

® Test-case types

In the past, test cases were software code that stimulated
the logic model and were handwritten by verification
experts. A test case could be viewed before simulation to
see exactly what stimulus would be applied to the model.

I The average percentage of latches changing their values per cycle in the test case.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Test-case libraries were maintained for regression
purposes so that interesting patterns could be rerun to
guard against breakage in the logic. In §/390, test cases
have evolved in two directions, test-case generators and
test-case drivers, as shown in Figure 1.

® Test-case generators

Test-case generators are used to create numerous hard-
coded test cases. These generators are sophisticated
software engines that can be focused on very specific
scenarios or broadened to cover a wide range of logic.
Thousands of test cases can be created in the time it used
to take a verification engineer to write just one test case.
And because the focus can be changed from narrow to
wide, the generators can be used with a shotgun or a
sniper approach to uncovering bugs.

The role of verifier has changed along with the test-
case generators. The verifier used to be anchored at the
architectural level of the design, having to write many
interesting test cases by hand. Because writing test cases
this way was time-consuming, it was difficult to touch the
microarchitecture implementation. The efficient use of
test-case generators creates two roles for the verifier. The
first role entails maintaining the generator itself, including
adding new features and updating the prediction software
within the generator. The second role is that of test-case
writer, in which the verifier studies the microarchitecture
and creates templates for the generator. These templates
create hundreds of different test cases that stress the
implementation of the logic, creating conditions such as
“buffer full,” “pipe stall,” or “unavailable resource.”

® Test-case drivers

Test-case drivers do not create test cases that are viewable
prior to simulation. Instead, they consist of software that
drives the model’s interfaces using the parameter settings
for the particular run. Test-case drivers use pseudorandom
coding techniques to choose from the parameter lists. At
the heart of the test-case driver is the prediction-checking
software that monitors the interfaces and flags error
conditions. The checking is done in real time so that race
conditions need not be predicted up front. In this mode,
the inputs to simulation are merely a seed and a
parameter file.

Test-case drivers run for a predetermined number of
cycles. The test case ends either when an error condition
is detected or when the predetermined number of cycles
have been successfully run and the model is quiesced. In
either case, while a readable test case is not available before
the run, a full history of the test case is logged by the
driver. All interesting actions that occurred during the run
can be viewed in this history, with even more information
than that within a hard-coded test case.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

‘Test patterns Hand-generated
Hand-checked

Hard-coded

Test cases Hand-generated
Self-checking

Hard-coded

(Architectural
verification
programs)

Time

Test-case Test-case
generators drivers

Tool-generated
Self-checking

Hard-coded
AVPGEN, RTPG;

Interactive on-the-fly generation
On-the-fly checking

SAK Random SMP

% Evolution of test-case methodology.

Table 1 Relative performance of simulators.
Level Relative Full model Performance
model build time (cycles/s)
size
Designer macro 1 2 min 40
(event simulation)
Unit (TEXSIM) 30 1hr 240
L2 chip (TEXSIM) 35 1hr 220
Processor chip (ZFS) 120 4 hr 120
System (EVE) 1180 4 hr 380
(postprocessor

chip build)

There are three main advantages to test-case driver
verification. First, the drivers are not architecturally
restricted, allowing the behaviorals to author sequences
that target the implementation of the hardware. As a
result, the test cases can be far more stressful than
conventional hard-coded tests. The second advantage is
that the results of the complex internal conditions created
during the test case need not be predicted before run
time. This allows the monitors to make decisions on result
validity after the race conditions have been resolved in the
hardware. A main advantage of this is that there is no
test-case library maintenance problem when internal
timings change. The third advantage is that the tests can
run as long as desired, with maximum stress throughout all

B. WILE ET AL.

551

552

100
l ——:Designer
80 L == Unit
'§ ’ N T i Element
ek 1 Mo ~ == System
53 i \ }" .,
2 ;
] 1 ¥
540t ' iy
= : iy
& : £ nn
B i / Nk
20 y ‘,. N
, 2 N,
i AT
0 it Lo L 1 doimesacl i 4 L 1 L2 i Sl v SO |
Months

Problem rate for each level of verification.

of the cycles. This allows many “hard-to-create” conditions
to occur during the test case. Cases of cache LRU
castouts, timeouts, hang conditions, and lockouts are all
more likely to occur in longer-running simulations.

Verification engineers using test-case drivers must
perform the same types of work as those who support test-
case generators. Software maintenance is required when
interface specifications change, new commands are added,
or additional result checking is needed. The behaviorals
that drive the model must have the intelligence to
understand the internal implementation as well as the
interface protocol. By updating the behaviorals and
adjusting the parameter files, the verifier creates new and
interesting conditions within the logic.

® Verification levels

Verification experts were involved with the design before
VHDL was even available for simulation. Each unit

had a verifier working with the designers of that unit
(approximately one verification engineer to every three
designers). The verification expert served as a mentor for
the designers in that unit as, together, designer macro
simulation was performed. At the same time, the verifier
was creating a unit-level environment that would be ready
for unit-level testing as soon as the macros within the unit
passed the readiness criteria. As the unit environment
began running, the verification engineer began to focus on
the chip-level environment. Here, code sections such as
cache loaders and chip interface behaviorals that were
created for the designer macro- and unit-level tests were
reused for the chip-level environment. Thus, time and
effort were saved through the planned reuse of code. In
this manner, insights about the design learned at the
macro level were carried throughout all of the higher
levels of verification.

B. WILE ET AL.

System-level testing required earlier planning than the
paradigm used at the lower three levels, where verifiers
moved with the design as it matured. Aspects such as
multiple design language simulation and the host-to-EVE
interface required extended tool development time that
would not fit into the above “just-in-time” structure of
personnel movement across the levels. Therefore, system-
level preparation work began in parallel with the designer
macro level.

The verification team comprised just twelve people.

For the most part, the team designed and authored the
environments needed for unit-, chip-, and system-level
testing, while problem debug was shared by both designers
and verifiers. As a result of this teamwork, fix turnaround
time became far shorter than that of previous machines.
At the point when unit testing was subsiding and chip
testing was starting, it was not uncommon to have five or
more problems identified, fixed, and verified each morning
after the previous night’s batch runs. Historically, prior
projects had error rates that topped out at 20 bugs per
week in the processor. The peak bug rate on this program
was 60 bugs per week for the processor-level verification.
Additional problems were simultaneously screened out
(especially breakage) by the lower-level tests that were
still in place to provide regression vehicles for VHDL

- changes due to timing or logic fixes. The result of this was

that the models became fully functional relatively quickly.
The problem rates for each of the levels of verification are
shown in Figure 2.

Designer macro verification

Implementation verification on the smallest portions of
the design has proven to be an effective alternative to the
slower and often less stressful chip-level architectural
testing. Today’s leading-edge verification methodologies,
such as formal verification, are geared toward
implementation verification on smaller models. However,
since production-quality formal verification tools were not
available when designer macro-level testing was ongoing,
the design/verification team had three choices for
implementation testing:

e VHDL test benches or hard-coded SimAPI test cases.
e C/C++ program that drives patterns and checks results.
« TIMEDIAG/GENRAND.

The logic under test dictates the method chosen for
designer macro-level testing. Complex control logic, for
example, requires a more rigorous environment than
simple dataflow logic.

The instruction unit’s operand compare logic was
thoroughly tested using a straightforward VHDL
testbench. This testing consisted of the use of hard-coded
patterns that cycled through the interesting opcode

1BM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

compare logic cases and checked for correct results.
Although limited in scope, this type of testing was
sufficient for certain logic macros.

More complex control logic required the use of more
sophisticated drivers and checkers. For these macros,
C/C++ code was used to generate the interesting
scenarios required to verify the logic. Often these
programs used some random-pattern-generation
techniques. The bus interface logic in the L2 chip used
such an approach. In this case, 1500 lines of C code were
written to drive the interfaces and check the results.
Routines such as “Do_L2_Fetch” and “Do_LRU_Castout”
stimulated the bus interface control logic with requests for
actions. Other code routines, such as “LoadCastOQut” and
“Empty_CastOut,” performed as behavioral logic that
responded to the direction of the bus interface logic.
These routines replaced other internal L2 macros that act
as slaves to the bus interface logic (that is, they do not
independently create their own stimuli, merely respond to
requests made upon them). Control routines such as
“Select_Op” were used to arbitrate among the requesters
to the bus interface logic. Random-pattern generators
created unique data to shuffle through the data paths.
Finally, check routines such as “Check_L3_L2” ensured
that the bus interface logic acted as expected.

As in the case of the C programs written for specific
macros, TIMEDIAG and GENRAND were used to create
high-stress environments that fully test the internals of the
macro. TIMEDIAG and GENRAND allowed designers to
utilize a pseudorandom methodology after creating generic
interface protocol timing diagrams. TIMEDIAG, the
timing diagram editor, allows the designer to make one or
more timing diagrams that are used by GENRAND, the
simulation driver, to create complex scenarios. Each
timing diagram describes one or more actions on an
interface, including expected results. Timing diagrams can
be simple or complex, with looping conditions, random
values, complex expressions, and particular start-up
conditions. GENRAND uses this information to learn the
interface protocols and then drive the timing diagrams
pseudorandomly within the limits of the interface rules.

There were several advantages to creating the
simulation environments just described. The greatest
was that the chosen methodology was specific to the
implementation, creating more stress on the logic than any
other level achieved (including the actual hardware test
environments). The most complex of conditions were
created with relative ease at the macro level. Another
advantage of these environments was the ease of
regression. While most of these C environments took a
month to create, the time was more than returned in ease
of regression and speed of bug removal. Throughout the
project, whenever timing, physical, or logic changes were
made, these environments quickly verified the changed

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Verification = Major tools Simulator
level
Hardware | SAK in cache S)fstems
test MVS, VM bring-up
1
System | SAK on EVE ‘;‘ IRIT
Power-on-reset m
Chip AVPGEN "
Random SMP h
Scan-ring verify
Unit TIMEDIAG/ =
GENRAND 2
BCE random SMP E
Designer | E-AVP E
macro C programs =
Test benches 5

? Verification levels. Verification proceeded from the designer
i macro level through the system level; at each level, environments
i and platforms were used that were best suited for that level.
¢

VHDL to ensure correctness. For those macros where
these methodologies were feasible, all of the higher levels
of verification (unit, chip, and system) primarily became
tests of the communications among macro interfaces.

Designer macro-level verification was performed
primarily on the event simulator. Small units of logic fit
well into the event simulator process because smaller
models can be created quickly, and, since the model is
tiny, the speed of the simulator is tolerable. Furthermore,
the on-screen source-code debugger and enhanced graphic
capabilities were welcome features for macro-level debug
and logic analysis. The verification tools used at the
designer macro level as well as the unit, chip, and system
levels are shown in Figure 3.

Unit verification

Unit-level verification varied according to the function
being tested. Two areas that required sophisticated
methodologies at the unit level were the execution

unit (E-unit) and the buffer control element (BCE).
Investment of time and resource into these environments
was high. The E-unit environment used the test-case
generator approach because the generator already existed
and was to be used at the chip level. The BCE unit
environment used the test-case driver approach in order to
bypass architectural (instruction stream) restrictions and
attack the BCE implementation. Both methodologies were
successful; the chip-level testing produced a low volume of
problems in both of these units. The methodologies are
explained in this section.

B. WILE ET AL.

BCE
Toad and ron
program

L2
behavioral

+
T

Environment

=

mode switch

Diata and

monitor

control.checking

—

L2
behavioral

AVP
load and run
program

end of testzcase
checking

test-case tesults
collection

3
s N N
1
Instruction BCE Instruthn : ; Instriiction
unit logic unit X Instraction hew it
: behavioral : unit B
behaviaral model v \ (mirror)
/
5
\ 5% S
C p N
)
. . Execution .
Execution Register it : : - Execution
dinit it ! . Execution Register uhit
behavi : behavioral : \init unit .
avioral behavieral (itror) ; (mirror)
T
¥
NG AN 5 - |
1
! Processor logic model
I
Parameter ! AVP
fil
< Low:level . End of test case
i
{
1

(a)

(a) BCE unit and (b) processor environments. The L2 behavioral code was used for both the BCE unit-level test-case environment and the

processor chip-level verification environment.

E-AVP To efficiently verify the E-unit, an environment
was created to use architectural verification programs
(AVP) with a stand-alone E-unit mode! running on the
event simulator. This environment, designated E-AVP,
consisted of a set of programs to interpret the instruction
stream in an AVP, and to “drive” the instruction unit (I-
unit) and BCE interfaces to the E-unit. The programs also
monitored the E-unit/BCE interface to record any data
transactions that were done. Actual results for registers
and storage were checked against the expected results in
the AVP.

By running real instruction-stream tests at the E-unit
level, complex E-unit problems were quickly discovered
and fixed. Also, the same test-generation tool (AVPGEN)
was used at both the unit and chip levels. The logic
designers were able to use both AVPGEN and E-AVP
themselves, tailoring the AVPs for the instruction streams
in which they were interested. In order to drive the E-unit

B. WILE ET AL.

correctly with the instruction stream, the E-AVP programs
accurately modeled the controls in the I-unit for decoding
instructions and fetching operands, and the fetch and
store controls in the BCE. By having programs control
these interfaces, the user controlled the random biasing of
certain key parameters such as the length of time between
decodes, the delay on an operand fetch, and the amount
of time that the BCE was busy for a data transaction.

BCE (L1) random Historically, the BCE has been

the most difficult unit in the system to verify. On past
microarchitectures, the BCE had the largest number of
simulation escapes into the hardware bring-up. The
problems reflect the high complexity intrinsic to any S/390
L1 cache and control, which must handle multiprocessing
requirements for the processor, address translation, and
multiple cache requests from the instruction unit.
Therefore, thorough BCE verification was performed at

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

the unit level on the CMOS 4 S/390 program. The test-
case driver methodology was used to accomplish this task.

The BCE consists of a store-through L1 cache, dynamic
address translator (DAT), access register translator
(ART), translation lookaside buffer (TLB), ART
lookaside buffer (ALB), cross-invalidate (XI) stack, read-
only system (ROS) array, and store buffer. The BCE has
interfaces with the I-unit, E-unit, register unit (R-unit),
and L2, as shown in Figure 4. In the simulation model,
everything except the BCE was modeled as C++
behaviorals. These behaviorals were responsible for
driving requests into the BCE and responding to BCE
requests. The behaviors were programmed to obey
interface protocol specifications and user parameter files.
All behaviors shared a common address space that was
generated at the beginning of each simulation run. The
addresses that were generated for each run caused
different levels of cache contention depending on the
parameter file, which dictated the range of the number of
addresses and the level of cache contention for any one
run. The address-space generation code was used in the
BCE, L2, and processor simulation environments.

The $/390 architecture has many different address-
translation modes. In order to test both address
translations and cache contention, multiple virtual
addresses were mapped to the same absolute address. The
architecture also contains a common segment (CS) bit,
which was verified by mapping one virtual address to
multiple absolute addresses. A virtual address mapped
down to one of two absolute addresses, depending on the
state of the CS bit in the TLB. The L2 behavior was
responsible for responding to BCE requests and sending
random XIs to the BCE. This allowed simulation of
multiprocessor contention with only one BCE in the
configuration. When the BCE no longer required data that
it had used (released ownership of a line), the L2 behavior
updated the address space with new data. This emulated
the many cases where a second processor stored into a
line in which the BCE currently holds.

The I-unit, E-unit, and R-unit behaviorals were
responsible for initiating new requests to the BCE.
Multiple parameter files were used as input to these
behaviorals to stress different parts of the BCE. The
section on L2 verification presents a detailed description
of how the behaviorals used the parameter files.

In addition to the behaviorals, use was also made of
automatic checking routines which were responsible for
ensuring proper operation of the BCE. The checking
routines dynamically updated expected results on the basis
of events occurring in the simulation model. The checking
routines verified such elements as cache coherence
protocols, BCE-generated responses, translations, and
interface protocols.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

/*
Store 4 bytes of an RX op over some other RX op.
Do the store a little away from where we are.
*/
psc3 : sig
{
nl: L with NoException, x:R1, Mem2Start = psc.n3;
ST with NoException, R1 = x, Mem2Start = psc3.n2;
sequence (1..2 of AnyNonBranchOp() with NoException;);
n2: AnyRXOp() with NoException; /* 4 bytes of (OLD) op */

sequence (1..2 of AnyNonBranchOp() with NoException;);
end
n3: AnyRXOp() with NoException;
}

/* 4 bytes of (NEW) op */

Storing into the instruction stream.

Chip verification

Processor verification ~ The processor model consisted of
VHDL design for the I-unit, E-unit, R-unit, and BCE,
along with the L2 behavioral (described in the unit-level
verification section and shown in Figure 4) emulating the
memory hierarchy. The model also included the licensed
internal millicode (LIC), which was used to implement
some of the more complicated S/390 instructions. The
chip-level model was configured as a uniprocessor but was
controlled at times, through the L2 behavioral, as if it
were an SMP. This enabled random cross-invalidates (XIs)
to the BCE from the L2 behavioral that allowed data- and
instruction-stream contention typical of multiple-processor
environments. The main verification strategy used at the
chip level was random-biased testing, a methodology that
has proven to be effective for verifying processor designs
[7]. AVPGEN, a random-biased test-case generator, was
used heavily in the verification of the CMOS 4 $/390
processor [1]. Many symbolic instruction graphs (SIGs)
were created to stress specific types of §/390 instruction
operations.

AVPGEN test cases covered the majority of the
hardware function. These test cases were augmented
in two ways. The first was with fixed AVPs, including
both legacy AVPs and new AVPs targeted for specific
functions. The second method used to increase the scope
of verification was to alter the environment in which the
random AVPs were run. This was accomplished with
parameters that were randomly selected when the test
cases were executed. Examples of the functions that were
tested concurrently with the AVPs are cross-invalidates,
quiesce, forced serialization, trace/instrumertation, error
injection, and degraded/disabled modes.

B. WILE ET AL.

555

556

/*
Test Address Generation Interlock among several instructions.
Interlock on both base and index registers.

*/
agl : sig
{
nl: L with NoException,firstR1:R1;
oneof(LA with secondR1:R1,X2=firstR1;
LA with secondR1:R1,B2=firstR1;
);
L with NoException,thirdR1:R1,B2=secondR1;
oneof(AnyRXOp() with X2=thirdR1;
AnyRXOp() with B2=thirdR1;

);
AnyNonBranchOp();

Stressing register interlocks.

/*
Test serialization by using SACF to switch Address Space bits.
followed by any serializing op, followed by other ops.
*/
serial : sig
{
nl: sequence (1..2 of SACF;’) with NoException;
AnySerializerOp() with NoException;
AnyOp(t1) with NoException;
sequence (1..2 of SAFC;) with NoException;
AnySerializerOp() with NoException;
AnyOp(tl);

Control instructions followed by dependent instructions.

The majority of the simulation effort went into verifying
the mainline function of the processor (the term mainline
refers to normal $/390 instruction execution). Nonmainline
functions included resets and recovery.

The mainline verification consisted of the following
strategy:

» AVPGEN testing
Approximately 60 000 AVPGEN test cases were run
nightly. The AVPGEN test cases were generated daily
from a collection of over 60 SIGs. Some examples of
these SIGs were the following:

B. WILE ET AL.

* Complex branch sequences.

e Storing into the instruction stream (see Figure 5).

* Stressing register interlocks (see Figure 6).

 Control instructions which change the processor state,
followed by instructions dependent on the new state
(see Figure 7).

Fixed AVPs

The legacy AVPs were a subset of the test-cases used on

previous $/390 processors. In addition to the legacy

AVPs, a limited amount of new test-case development

was done. This development occurred when AVPGEN

and legacy AVPs did not cover a particular instruction,

or when a legacy AVP required overhaul due to

machine implementation. In all, approximately 25 000

fixed AVPs were regressed weekly.

* Timing facilities
Use was made of a C behavioral program that was
written to emulate the timing signals from the MBA
chip (e.g., time of day update and synchronization). This
program was used in conjunction with AVPGEN and
fixed AVPs to verify the $/390 timing facility instructions
and interrupts.

o Interrupts
Programs were written to inject external and I/O
interrupts. AVPs were modified to control the injection
(type and event), and were run with these programs.
These AVPs also checked that interrupt masking worked
correctly.

Functions tested outside the mainline environment
included the following:

* 1390 mode verification
1390 is special code that handles the service processor
interface to the system. This testing used a fixed set of
AVPs that focused on entry and exit from 1390 mode,
storage access, 1390 special instructions, and interrupts.
* Recovery verification
Error detection was tested by randomly injecting errors
into the design while running a mainline AVP and
checking to see whether the error was detected. Error
recovery was verified by continuing the error-detection
test case and checking to see that the system was
successful in recovering from the injected error. These
test cases were intricate in that the timing on certain
injections was key to the recoverability of the logic.
Injections that caused data integrity to be compromised
were flagged to ensure that the logic halted the
erroneous data propagation.
Scan-ring testing
Chip-level scan-ring verification was performed using the
process described later in the section on scan-ring
verification.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

e Trace and instrumentation testing
The trace and instrumentation functions were verified
via a monitor that ran concurrently with AVPs. The
controls were set up randomly at the beginning of the
run. The monitor was a C program that was called each
simulation cycle. The model facilities were examined and
evaluated, and the expected data were put into program
copies of the trace and instrumentation facilities. Each
time the array filled up, as well as at the end of the test,
the program data were compared to the actual data.

Each morning a regression report was generated and
the failures were analyzed. A team screening approach
was adopted, with the “screen team” consisting of both
verification engineers and key logic designers. The
designers were assigned to look at problems that related
to their logic area. The “screen team” strategy worked
extremely well and was one of the major reasons that
problem turnaround time consistently averaged less than
one day. As a result, a large number of bugs were
removed from the design in a very short period of time.

L2 verification The L2 chip contains a second-level
cache and associated dataflow and control logic. It
interfaces with multiple processor chips and with the bus-
switching network (BSN) chips, which provide a gateway
to the L3 storage arrays. The L2 chip services data
requests from the processor and BSN chips and maintains
cache coherency within the multiprocessor system.

L2 chip-level verification was accomplished by applying
the random SMP methodology used on prior S/390 storage
controllers as a base [2], and by using experiences on past
machines to enhance the scope and the efficiency of the
simulation. While the goal of L2 chip-level verification was
to ensure the functionality of the L2 chip itself, the
simulation methodology on this CMOS 4 $/390 processor
was expanded to allow the additional incorporation of
several BSN chips, producing an L2-BSN multichip
simulation model. Because the L2 and the BSN chips were
designed at two different sites, the chance of interface
protocol misunderstanding was greater. The L2-BSN
multichip simulation model provided the ability to verify
the interface between the two chips prior to system
verification. In addition, since the random SMP
methodology provided maximum stress of the functions
within the L2 and BSN chips, it was an excellent way to
achieve additional simulation on BSN chip functions.

L2 and L2-BSN chip-level simulation was performed
using the TEXSIM cycle simulator. The L2-BSN chip-
level model was built using a mixed design language
process, since the L2 chip was designed in VHDL and the
BSN chip design was not (see the subsection on mixed-
language simulation). The core of the random SMP
methodology is in the test-case drivers and automated

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

checking programs, which are commonly called the
“simulation environment.” These programs were
developed using C++ object-oriented techniques, enabling
easy reuse of code across different levels of simulation.
The following C++ objects were developed and reused
across more than one level of simulation:

» Address space

The address space object maintained a full set of
addresses to be used in each test case, the latest copy of
data for each of the addresses, and other relevant
information pertaining to the addresses. This object was
incorporated into the BCE unit-level, L2 chip-level, and
CP chip-level simulation environments. It was referenced
by the test-case drivers and automated checking
programs whenever address-specific information was
required.

Parameter list interface

The parameter list is a file which is read by the test-case
driver programs in order to obtain biasing information
which determines the type of pseudorandom sequences
that the driver will issue. The parameter list interface
object provided a convenient way for the driver
programs to access the information in the parameter

list file. It also provided a mechanism for the driver
program to choose random entries from tables based on
probability values.

Facility interface

The facility interface object provided a mechanism for a
user to set or obtain signal and latch facility values in
the event simulator, TEXSIM, or ZFS models. The
facility interface object allowed the user to specify the
model facility names in a separate parameter list file. If
a facility name changed from one model to the next, the
user updated the parameter list file for the new name,
thus avoiding a program recompile.

The L2 chip simulation environment for the CMOS 4
S/390 processor contained test-case driver programs for
the processor chips and for the BSN chips. These test-case
driver programs were executed every simulation cycle and
monitored the interfaces to the L2 chip. They provided
stimuli into the L2 chip in a manner consistent with the
interface protocol. The command stimulus issued to the
L2 chip was based both on the bias values in the
parameter list and on a random seed. The driver programs
were enhanced to provide two modes of operation: heavy
stress mode and random delay mode. In heavy stress
mode, the test-case drivers monitored the L2 interface to
determine which types of commands could be issued. Once
this was determined, the drivers accessed the parameter
list to choose from the subset of commands that could be
issued. This mode of operation generally kept the L2 chip
extremely busy, with few idle cycles between commands.

B. WILE ET AL.

557

558

In random delay mode, the driver accessed the parameter
list to choose a command first. If the command could not
be issued because the interface protocol prohibited it, the
driver would not issue any other commands until the
chosen command was issued. This method of operation
produced more gaps between commands and uncovered
design problems which actually required a “less busy”
state.

In addition to test-case driver programs, the L2 chip
simulation environment contained automated checking
programs. Like the test-case drivers, the checking
programs were executed on each simulation cycle. They
updated expected results dynamically, on the basis of
events occurring in the simulation model. The automated
checking programs ensured that data integrity was
maintained in a multiprocessor system by interacting with
the address space object to update the latest copy of the
data when appropriate (for instance, when the driver
program issued a store command to the L2) or by
comparing data sent by the L2 to any processor against
the expected latest copy of data. The automated checking
programs also ensured that the ownership of each line in
the address space was consistent with protocol. Any
miscompares between the expected results from the
automated checking program and the actual results caused
the simulation to fail.

There were many other automated checking programs
in this environment. Many of these verified that the 1.2
adhered to the interface protocols, that commands were
processed in a timely manner, or that correct responses
were sent from the L2 chip. Because the automated
checking programs had no communication with the driver
programs, a driver program could be removed and the
associated automated checking program could remain in
the environment. An example of this was the replacing of
the BSN chip driver with the real BSN chip design. The
L2-BSN interface protocol checking program remained in
the simulation model in order to ensure that no interface
violations occurred.

The L2 chip-level simulation environment was also used
to simulate recovery scenarios. Errors were randomly
injected into the L2, and the automated checking
programs expected the appropriate recovery actions to be
taken. After a successful recovery occurred, the simulation
proceeded and the next random error was injected.

System verification

System verification of the CMOS 4 §/390 machine involved
challenges not seen at the lower levels of verification.
Components of the system design were implemented using
multiple design languages. Methods had to be developed
to compile the multiple languages into a single simulation
model. Another challenge was in the area of resets, where
different levels of code first come together. Finally,

B. WILE ET AL.

controlling the large model size so that the system can
be run on the existing EVE 1.5 engines took finesse in
swapping components for maximizing performance and
coverage.

Mixed-language simulation Before an EVE 1.5 model
was created, a ZFS companion model had to be created.
This model was used for early system verification as well
as for debugging miscompares that originally occurred on
the EVE engine.

Previous $/390 designs were developed at a single
laboratory where simulation models were described in a
single database. The process for creating a two-component
simulation model was also used for large-system models
involving dozens of components (i.e., “macros,” “units,” or
“chips”). With just a single design language, building a
ZFS model involved linking components within the design-
entry database, translating that single component into
a flat “ZFS object,” and then compiling a ZFS model
from that ZFS object. Building an EVE model involved
translating each design-entry component into a flat
ZFS object and then to an “EVE object,” linking the
components’ EVE objects, and then compiling the EVE
model. In both cases, component objects were linked by
name (i.e., as flat models) and not through a hierarchical
description.

For the CMOS 4 S/390 system, nonlocal components
were delivered as flat “TEXSIM objects,” since those
laboratories used TEXSIM for chip/unit simulation.

The problem was to develop a process for building EVE
(and ZFS) models which included those components. The
components came from VHDL, BDL/CS, and DSL design
description languages. One possible solution was to create
system models as TEXSIM objects, but we found that this
format was inefficient for large (five-million-gate) models,
and was more suited for component simulation. The
production-level solution to this problem involved
changing the manner in which ZFS models were built. A
“merger” was used to link ZFS objects in a hierarchical
manner, preserving the names of component pins as
aliases. A translator then converted TEXSIM objects into
ZFS objects, and, with the construction of an appropriate
hierarchical description, a single ZFS object was formed
for the system model. That object was then compiled into
a ZFS model in the standard way.

For EVE, the hierarchical description was used to affect
the translation of (component) ZFS objects into EVE
objects, allowing the existing EVE link-and-compile
process to be used. This methodology of translating
between simulator object-forms allows construction of a
simulator-specific model from components described in
any of a number of design-entry databases, thus avoiding
a requirement that design communities adopt simulator-
specific conventions.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Configurations The main limitation on the model
configurations used for system verification was model

size. System verification used both the EVE hardware
accelerator and the ZFS cycle simulator. Model size

was restricted by the amount of logic that EVE could
support. The EVE model size capacity was determined by
interactively adding chips to the model until the model
outgrew the EVE capacity. ZFS, on the other hand,
allowed larger models, but for debugging purposes the
models had to match. By having matching models, failures
on the EVE simulator could be played back on ZFS§,
where debug was more user-friendly. In order to use

the system assurance kernel (SAK), an architectural
verification program used to verify the hardware, the
largest possible main memory space was required. This
meant that the models must contain all four STC chips
(or behaviorals). Along with the four STC chips, four BSN
chips were necessary to support the function of the STC
chips. Therefore, the chips that could be varied in the
model were the processor, L2, and MBA.

From logic designers’ input, it was decided that two L2
configurations would be most beneficial to test. The first
was a logical L2 (two L2 chips), with all three processor
chips attached. This placed the most stress on the L2
chips to ensure that they functioned properly with a heavy
workload. The second configuration was one in which
separate logical L2s were required to communicate with
one another. This resulted in a model with two processors
attached to two logical L2s. We then added two MBA
chips to the “three-processor/two-L2” model [Figure 8(a)],
while the “four-processor/four-L2” model [Figure 8(b)]
had no MBAs but used real STC chips. On the three-
processor/two L2 model with the MBA chips, the STC
behavioral was used, because the model size exceeded
EVE capacity with the real STCs. This was not a concern,
because the real STC logic would be tested on the other
configuration. These two models provided the capability of
testing all chips in the system (processor, L2, BSN, STC,
and MBA), with a focus on the CMOS 4 chips (processor
and L2).

One concern that arose from these two configurations
was that the clock chip was not included with the other
chips in the system. To address this concern, a two-cycle
version of the chips was necessary [5]. The CMOS 3
(S/390 Parallel Enterprise Server G3) “nest chips” (BSN,
STC, and MBA) were already in a two-cycle environment
as a result of their DSL design language and compile
process. The CMOS 4 processor and L2 chips were
designed in VHDL, which allowed for smaller and faster
one-cycle versions to run on our simulators. The two-cycle
versions of the processor and L2 chips nearly doubled the
size of these chips. In order to reduce the size of the two-
cycle model, a single L2 chip model was built which
provided a degraded version of the CMOS 4 system while

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

DATA
i 1
BSN! ' STC1 | KEY

)

The two “one-cycle” system integration model configurations: (a)
Three-processor/two-L2 configuration; (b) four-processor/four-L2
configuration. Boxes indicate real VHDL logic; ovals indicate
behaviorals. Line connections represent both data and control
lines.

still allowing the necessary clock testing. The resulting
model (Figare 9) was one with three processors, half of a
logical L2, two BSNs, two STCs, and one MBA.

Mainline SAK testing The mainline test strategy used for
the CMOS 4 §/390 processor and L2 chips was similar to
that used on previous /390 machines [2]. SAK generated
test instruction streams to verify the $/390 architecture
and implementation of SMP system models running on the
EVE 1.5 hardware accelerator. The EVE 1.5 enabled
large-system models to run over 100 million cycles per
week. For the CMOS 4 $/390 system, a new mapper

B. WILE ET AL.

559

560

MBAO

The “two-cycle” three-processor/one-L2 system integration model
configuration. Representations as in Figure 8.

N ——

program (known as Memmove) was written in C to
interact with the storage hierarchy utilizing the SimAPIT
interfaces [3]. Test-case specification parameters used by
SAK were modified so that new architecture and specifics
of the implementation were correctly handled during test-
case generation.

All aspects of mainline test were done primarily by two
individuals. This was accomplished by delaying SAK
testing until the processor and L2 chips were verified by
chip simulation to be functionally capable of working
in the more complex system environment, rather than
being bound by a development schedule that called for
premature testing on the EVE machines. Once started,
chip verification had completed most of the CP and 1.2
mainline testing and was concentrating on other aspects
of the design. By staging the verification in this manner,
mainline system test found the more complex problems
rather than stumbling over simpler problems that should
be uncovered at lower verification levels. This significantly
reduced duplicate or concurrent problems and provided a
more efficient use of the limited EVE 1.5 resources.

The need for system verification was underscored when
two problems in the processor and L2 interface logic were
discovered using the initial system-level models. However,
after discovery of these bugs, millions of EVE cycles were
run before the next bug was encountered. This bug was a
complex SMP condition that involved three processors and
back-to-back cross-invalidate (XI) requests. A tightly
coupled relationship with chip-level verification tools and
personnel and a graphical simulation trace browser
helped reduce problem isolation time to a minimum.
Furthermore, the designers typically turned around fixes in

B. WILE ET AL.

a few hours so that the fix could be verified and testing
could continue in a timely manner.

Resets, IML. One of the most visible metrics of the
success of the verification effort comes when the system is
powered-on on the engineering test floor. If the system is
able to power-on-reset and start SAK, the design and
simulation effort has achieved its first real measure of
success. Therefore, it is important to verify the power-
on-reset sequence prior to chip release.

Verification of power-on-reset on the CMOS 4 $/390
system presented a number of new challenges. The first
was the use of the service word interface from the service
element (SE) to the processor through the X-register in
the MBA. This path is used to transfer data blocks,
including millicode and 1390 code [see the SE behavioral
and X-reg connection in Figure 8(a)]. The second was the
use of multiple levels of code to perform the subfunctions
of power-on-reset.

One way to attack this testing which was used
successfully in the past was to attach the real SE to the
simulation model and drive it with the SE code [8].
However, this approach requires that the SE code be
available early in the test cycle. Alternatively, the
approach that was taken on the CMOS 4 §/390 project
allowed the hardware to be verified without needing the
SE code by using a state machine behavioral in place of
the SE code. The behavioral controls the flow of the reset
by sending and responding to service words on the X-
register interface. This method enabled verification of the
SE-processor communications and sequence through the
power-on-reset. This sequence involved running through
multiple layers of code. First, bootstrap millicode was
loaded into the L2 cache via a fast load mechanism. The
bootstrap millicode verified that the interfaces between
the processors and the rest of the chips were functional.
Next the functional millicode was loaded into main
memory via the X-register. This code was then executed to
set up the $/390 environment that is necessary for the next
phase, when the I390 code is loaded into memory via the
X-register. Finally, control blocks were built in memory
and a final reset took place. Executing all of this code in a
reasonable period of time required the EVE 1.5 hardware
accelerator, which executed this environment at a speed of
300 cycles per second. At this speed, enough of the code
was executed to ensure the verification of the hardware
and the majority of the code layers.

This method of power-on-reset verification proved
highly successful. Ten hardware problems and 35 millicode
problems were found by verification. When the system
powered-on on the engineering test floor, power-on-reset
was achieved quickly, a significant achievement for a new
processor design.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

o Explicit testing

Clock testing
The clock chip was designed by the IBM Boeblingen
Laboratory and was used to drive both CMOS 3 S/390 and
CMOS 4 5/390 systems. Because of differences in the
implementations of the processors, it was necessary to
implement CMOS 4 §/390-specific functions in the clock
chip. The CMOS 4 §/390-specific functions were verified
separately by this team. The clock chip was driven by a
behavioral developed for the CMOS 3 §/390 system and
restructured to work in the CMOS 4 §/390 simulation
environment. The clock chip was simulated on ZFS with
test cases written in REXX using the SimAPI interface.
The functions verified on the clock chip were self-test,
serial interface (SIF), single-cycle operations, chain
shifting, and starting and stopping of clocks. Self-test on
the CMOS 4 S/390 processor used the service element to
control the initialization and signature checking, whereas
the CMOS 3 S/390 processor used the clock chip to
control and execute the entire self-test sequence. Testing
in this area uncovered a multitude of design problems that
were common to both processors. In the CMOS 4 S/390
design, the serial interface cycles only while the clocks are
running and is inactive when the clocks are stopped. All
valid commands for the serial interface were verified,
with an emphasis on stopping the clocks during a frame
transfer. Design failures were encountered on normal SIF
operation, with two failures encountered on restart of the
SIF after the clocks to the processor had been stopped.
Single-cycle operations are similar on both systems, while
stop on count end (SOCE) is a function unique to CMOS 4
S/390. This area required intense testing, with empbhasis
on the proper timing and interface protocol to the
processor. This verification uncovered one timing problem
on the interface. Chain shifting and starting/stopping of
clocks were identical on both processors. This area was
tested by driving a CMOS 4 S/390 processor and
monitoring facilities and interfaces to ensure proper
operation. The clock chip experienced a successful test-
floor bring-up and functioned correctly with both of the
systems. The test plan used to verify this chip will be used
to verify follow-on clock chips in the S/390 family.

Array built-in self-test
Array built-in self-test (ABIST) test details can be found
in a companion paper [5] in this issue.

Logic built-in self-test

A goal in design verification for this system was to
double-check that the test patterns generated for chip
manufacturing were correct. A prior methodology used
a test-simulation model to run logic built-in self-test
(LBIST) and generate a multiple-input shift register

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

(MISR) signature that was compared to the actual MISR
signature results on the new chips. Success was declared
when the signatures matched on a cross section of the
chips. Unfortunately, in this prior methodology, the
signatures did not match in most cases, and a painstaking
effort was put forth to analyze the differences between
the simulation model and the hardware. With limited
troubleshooting aids, it was very difficult to isolate the
failure to an error in the modeling of the logic or a
problem in the “real hardware.” This process increased
the test time on the chips and delayed the start of
functional testing.

The new solution to this problem was to run LBIST on
two independent simulation models and compare the
signatures. If the signatures matched after a finite set of
patterns were run, the probability increased that the MISR
signatures generated by a set of test patterns were correct.
To accomplish this goal, a two-cycle representation of the
processor and L2 was created [5]. The two-cycle processor
and L2 models were driven by the system clock chip. This
model was initialized with the correct LBIST latch values
and simulated using the ZFS cycle simulator. Each pattern
required 4000 cycles on the L2 chip, while it took 10 000
cycles to accomplish the same task on the processor. The
performance of these models ranged from 40 to 80 cycles
per second. This pattern was then compared to the pattern
generated by TestBench* [9]. When a mismatch occurred,
the comparison usually showed that a latch was modeled
incorrectly in either TestBench or ZFS. Latch modeling
was then corrected on the failing simulator. The original
goal was to get a minimum of ten patterns to match. The
goal was exceeded, as more than 100 successful pattern
comparisons were completed.

With this process in place, there was a high degree of
confidence that the test patterns generated were correct. If
a mismatch occurred between the simulated patterns and
the real hardware on the testers, the problem was likely in
the hardware. This expansion of verification helped reduce
the chip test time dramatically, and chip test-pattern debug
can now be completed in less than one week.

Scan-ring verification

The CMOS 4 S/390 system uses scan rings to reset the
system rather than the logic-based reset used on prior
systems. The system is forced to a reset state using a
single scan ring per chip, with the scan data and controls
arriving from the SE code through the clock chip
interface. The processor and L2 have additional scan-ring
capabilities through the use of LBIST, where the chip-long
scan ring can be divided into 60 subrings. In LBIST mode,
each of these subrings is used with random data patterns
for hardware chip testing. Utilization of the subrings was

an integral part of verifying the single long ring, as each 561

B. WILE ET AL.

562

of the 60 shorter rings was simulated in parallel to create
a faster chip-level scan verification.

The overall scan-ring verification effort had the
following goals:

1. Ensure that every functional latch is on the scan ring
and give latch count.

2. Ensure correct latch connectivity.

3. Identify all ring inversion points.

4. Determine design data (order of latches on the ring).

5. Verify scan starting/stopping capability.

Scan-ring verification was approached on four different
levels. First, each macro was checked for connectivity by
the individual designers. Next, the chip ring was verified
using the event simulator. The third-level cross-checked
the second-level test by running a Boolean check on the
cycle simulator’s software model. Finally, the chip scan
ring was rotated in the middle of a mainline chip-level test
case.

The first-level macro connectivity test was run on the
event simulator. A generic C program was written to be
used for all scan-ring macro testing. The program was
personalized for the individual macros by a simple input
file that defined the scan_in, scan_out, L1_clock, L2_clock,
and scan_enable signals for the macro. After reading the
personalization file, the program used the event-simulation
software interface to traverse the model hierarchy and
count the latches in the macro. Then, with the entire
model in the “U” (uninitialized) state, scan clocking was
applied and a pattern was scanned into the macro. The
simulation was completed when the pattern appeared on
the scan_out signal. The number of L1/L2 clock pulses
required to scan the pattern through the macro was then
compared with the latch count taken at the start. This
testing uncovered problems with inversions on the ring,
disconnected rings, and latches not appearing on the ring.

Chip-level scan-ring verification used a test scheme
similar to that used by the macro level. The main
difference was that the 60 LBIST subrings, each of length
up to 1152 latches, were scanned in parallel because of
event-simulator speed constraints (scanning the entire
60 000-latch processor ring would have taken about ten
days). This test could not be executed on either cycle
simulator because “U” data are supported only on the
event simulator. A unique pattern was propagated through
each subring.

The chip-level testing on the event simulator resulted in
verification of macro-to-macro ring connections, global
logical clock and scan control connections, and a chip-
level latch count (derived from the sum of the length of
the 60 subrings). The latch count was then cross-checked
with the results from the third level of scan-ring
verification: Boolean analysis of the two-cycle simulation

B. WILE ET AL.

model. Instead of actually running this model on a

cycle simulator, the software tool traversed the model
connections through the scan ring, flagging ambiguities or
dual paths. The software also tracked the order of the
latches on the ring, as well as the position of any inverters
on the ring. This information was used to create the
design data for initializing and debugging the hardware
when it reached the engineering test laboratory.

The final scan-ring test used the cycle simulator to
verify the system clocking in conjunction with scanning
and scan clocking. A mainline test case was initiated with
normal clocking. After running about half of the test case,
the system clocks were stopped and the scan sequence
began. Using the latch count derived in the second and
third levels of scan verification, the ring was rotated with
the scan_out pin connected back to the scan_in pin. When
the scan operation rotated the ring exactly one time, the
system clocks were restarted and the test case continued.
A successful AVP test case indicated that the full rotation
of the scan ring returned all latch values to a state
identical to the one that existed before the clocks were
stopped and that no arrays or combinatorial logic were
erroneously clocked during the scan sequence. A single
test case completed in six to eight hours, as the scan
operation added 400 000 cycles to the test case. The test
was repeated for a handful of AVP (processor) and
random (L2) test cases.

This four-step methodology for verifying the scan rings
was successful. No problems were encountered in any
scan-ring connections or clocking, allowing the resetting
of the system to proceed without hardware incidents.

When to release?
With the emphasis on time to market, a balance had
to be struck between business and technical pressures.
Therefore, the verification team strove for a clean first-
pass system, with the understanding that success was
measured by swift progress of the system through
hardware systems bring-up. To achieve this, the logic
design had to be able to perform most functions flawlessly.
The key to this strategy was threefold. First, the
verification and design teams had to understand the
strengths and weaknesses of the methodologies. The
L2 random methodology, for example, is capable of
uncovering very tight window condition error cases, but
weaker at discovering static “hang” conditions where a
small number of steady requesters lock one another out of
the priority logic. With this type of information in mind,
designers implemented hardware “dither” modes which
can help break out of loops. At the same time, verification
efforts to attack hang conditions were enhanced. Still,
special care was taken to ensure that the dither mode
would work if a hang condition were discovered in
hardware system test.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Table 2 CMOS 4 S/390 logical bug totals.

Designer Unit level Chip level System level Engineering
macro level test lab
Problem count 1600 1400 1000 40 26
Percentage 39.4% 34.4% 24.6% 1% 0.6%

Second, priorities of hardware bring-up must be
understood and fully verified. The hardware bring-up
team’s test plan was thoroughly examined by the
verification team to understand the order in which tests
would occur as well as the priority. Resetting the system
at power-on was obviously a function that had no room
for errors. Therefore, the entire reset sequence was fully
simulated to give 100% confidence in the scanning and
reset capabilities of the hardware. On the other hand,
error injection, where a hardware test expert verified
system recovery after a hard or soft error, was less
important in the early stages of systems bring-up. An area
such as recovery could afford to have a few problems
found on the hardware and fixed in the second release.

Third, the work-around mechanisms that allow for
avoidance of failing scenarios had to be understood and
fully functional. Understanding the work-around
mechanisms assisted in directing test cases toward the
boundaries of the work-around conditions. This
understanding also led to a test suite for the work-around
mechanisms themselves.

With these principles in hand, comprehensive
verification release criteria were created. The criteria were
in checklist form so that each engineer could sign off on
individual functions of the design. The criteria contained
tests from all levels of verification. The release criteria
were based on functional performance rather than number
of simulation cycles, as in the past. While the functional
performance measurement is currently qualitative, the
verification personnel were best suited to make the
judgment on how well the logic was performing. Although
the number of cycles and error rate were used in the
judgment, the most important factors were the completion
of the test plan and the stress on the logic during
simulation runs. Future release criteria will use coverage
metrics to quantify the stress on the logic.

Results and concluding remarks

The success of the verification effort on the CMOS 4
$/390 system was judged at both qualitative and
quantitative levels. While the stated goal of “swift bring-
up and test of the hardware to aid time to market” is a
qualitative statement, a quantitative hardware escape
count has historically been used. Setting a quantitative
target was therefore unavoidable. The number, based on

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

the estimated maximum number of escapes that the
engineering test laboratory could handle without affecting
the schedule, was set at 40.

By both measures, the verification effort was a success.
While only 26 hardware problems were found in the
engineering test laboratory (Table 2), the main goal of
“swift bring-up and test” was accomplished. The level of
complexity of the escapes found in the laboratory was
relatively high. However, all of the problems could be
circumvented with relative ease, permitting testing to
continue (Table 3).

All of the 26 hardware escapes were thoroughly
analyzed by the verification team. The purpose of this
analysis was to correct shortcomings in the process for
this project as well as future programs. The analysis was
separated into two parts: problem classification and
methodology update.

The following process was followed for each escape
analysis:

1. Escape is discovered in the engineering laboratory and
assigned a problem number in a database.

2. The design and verification team debug the problem
and reproduce it on a simulator. This step took from
one to seven days, depending on the difficulty of
reproducing in simulation.

3. The fix is verified in simulation.

4. The database is updated with a full description of the
problem.

5. The verification team performs the analysis and
classification.

Classification categories described information about the
problem, the failure in the methodology that would have
found the problem, the type of problem, the associated
error in the design, the work-around capability, and the
duration from problem discovery to understanding of the
problem. These classifications helped define future
methodology improvements and focus items for research
and development.

The CMOS 4 S/390 logic verification results compare
favorably to those for the previous CMOS 3 $/390 systems
(50% fewer problems to the engineering test laboratory).
Additionally, the results compare favorably to those for
the previous nonderivative S/390 systems (one tenth of the

B. WILE ET AL.

563

564

Table 3 Laboratory escape category and definitions.

Category Definition Number of escapes
in category
Tolerate Problem occurs rarely and is easy to recognize. 10
A work-around is identified, but not used
unless the problem becomes an annoyance.
Direct/nongating The work-around fixes the exact occurrence of 11
the problem and does not gate any further
testing.
Indirect/some function disabled The granularity of the work-around is such 5
that other cases may take the work-around
path or that some minor function testing may
be gated.
None/major function disabled No work-around exists, or the work-around 0

causes major function testing to be gated or

disabled.

problems found in the engineering test laboratory on the
previous bipolar system). Much of the success in attaining
the time-to-market goals for the system can be attributed
to the verification methodologies used. The movement of
verification engineers across multiple levels of simulation
also contributed to the time-to-market success. The
learning gained at the lower levels, along with the
software tools that the engineers reused, were
instrumental in quickly debugging higher levels and
achieving targeted schedules. While future efforts will
continue to benefit from new techniques such as formal
verification, we expect that the methods adopted by our
team will be used in conjunction with future development
efforts.

Acknowledgments

The authors wish to acknowledge the contributions of
tools and support personnel, including Ken Shepard,
Tom Ruane, Gary Hallock, Dan Beece, Lisa Lacey, Rick
Seigler, and Anne Huston. We also acknowledge the
support and encouragement given by Paul Minear and
Vijay Lund in their management roles.

*Trademark or registered trademark of International Business

Machines Corporation.

References

1. A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair,

B. Rosen, M. Mullen, J. Yoon, R. Armoni, D. Geist, and
Y. Wolfsthal, “AVPGEN—A Test Generator for
Architecture Verification,” IEEE Trans. Very Large Scale
Integration (VLSI) Syst. 3, No. 2, 188-200 (June 1995).
2. D. F. Ackerman, M. H. Decker, J. J. Gosselin, K. M.
Lasko, M. P. Mullen, R. E. Rosa, E. V. Valera, and
B. Wile, “Simulation of IBM Enterprise System/9000
Models 820 and 900,” IBM J. Res. Develop. 36, No. 4,
751-764 (July 1992).

B. WILE ET AL.

3. G. G. Hallock, E. J. Kaminski, Jr., K. M. Lasko, and M. P.
Mullen, “SimAPI—A Common Programming Interface for
Simulation,” IBM J. Res. Develop. 41, No. 4/5, 601-610
(1997, this issue).

4. B. Wile, “Designer-Level Verification Using
TIMEDIAG/GENRAND,” IBM J. Res. Develop. 41,

No. 4/5, 581-591 (1997, this issuc).

5. Gary A. Van Huben, “The Role of Two-Cycle Simulation in
the §/390 Verification Process,” IBM J. Res. Develop. 41,
No. 4/5, 593-599 (1997, this issue).

6. D. K. Beece, G. R. Deibert, G. P. Papp, and G. F. Villanti,
“The IBM Engincering Verification Engine,” Proceedings of
the 25th ACM/IEEE Design Automation Conference, 1988,
pp- 218-224.

7. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman,

M. Leibowitz, and V. Schwartzburd, “Verification of the
IBM RISC System/6000 by a Dynamic Biased Pseudo-
Random Test Program Generator,” IBM Syst. J. 30, No. 4,
527-538 (1991).

8. S. Koerner and S. M. Licker, “Run-Control and Service
Element Code Simulation for the $/390 Microprocessor,”
IBM J. Res. Develop. 41, No. 4/5, 577-580 (1997, this issue).

9. W. V. Huott, T. J. Koprowski, B. J. Robbins, M. P. Kusko,
S. V. Pateras, D. E. Hoffman, T. G. McNamara, and T. J.
Snethen, “Advanced Microprocessor Test Strategy and
Methodology,” IBM J. Res. Develop. 41, No. 4/5, 611-627
(1997, this issue).

Received December 9, 1996; accepted for publication
May 19, 1997

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

Bruce Wile IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (bwile@vnet.ibm.com). Mr.
Wile is currently a Senior Engineer and Verification Manager
in $/390. He has worked in verification since joining IBM in
1985, and was the verification team leader for the S$/390 G4
(CMOS 4) system. Mr. Wile’s previous verification
experiences included storage controller element simulation for
the S/390 bipolar ES/9000 machines including the 6-way, 8-
way, and 10-way multiprocessor systems. He was previously
verification team leader for the 10-way IBM ES/9000 system.
Mr. Wile received a B.S. in computer science from
Pennsylvania State University in 1984. He received an IBM
Excellence Award in 1992 and an IBM Team Award in 1993,
and in 1995 an IBM Invention Achievement Award for
inventions and patent submissions pertaining to the
TIMEDIAG/GENRAND tool set.

Michael P. Mullen IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (mmullen@vnet.ibm.com).
Mr. Mullen is currently a Senior Programmer; he joined
IBM in 1976. He received a B.S. degree in computer

science from Union College in 1976, and an M.S. degree in
computer/information sciences from Syracuse University in
1981. Mr. Mullen has worked on the development of several
mainframe systems, and is currently responsible for the
hardware design verification of IBM §/390 CMOS processors.
He received IBM Outstanding Technical Achievement Awards
for his work on the IBM 3090 processor controller microcode
(1985), ES/9000 processor simulation (1991), and AVPGEN
development (1994).

Cara Hanson [BM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (carah@vnet.ibm.com). Mrs.
Hanson joined IBM in 1984; she is currently an Advisory
Engineer. Since 1987, she has worked in the area of storage
controller simulation for the IBM ES/9000 and S/390 G4
machines. Mrs. Hanson received a B.S. in electrical
engineering from Rutgers University in 1984, and an M.S. in
computer engineering from Syracuse University in 1994. In
1991 she received an IBM Gold Level Quality Award for her
work on ES/9000 storage controller simulation, and in 1996
she received an IBM Team Award for her contributions to
$/390 G3 common chip verification.

Dean G. Bair IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (dgbair@vnet.ibm.com). Mr.
Bair joined IBM in 1984 as a systems test technician. In 1986
he joined the IBM S/390 design verification team, where

he is currently a Staff Software Engincer. He has worked on
verification of I/O controllers, L1 cache designs, and shared
L2 cache designs for the 6-way and 8-way IBM ES/9000
systems and the S/390 G4 system. In 1992 Mr. Bair received an
IBM Outstanding Technica!l Achievement Award for his work
on the 8-way ES/9000 BCE random test driver development.
He received an IBM Invention Achievement Award in 1995
for his work on the TIMEDIAG/GENRAND tool set.

Kevin M. Lasko IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (km_lasko@vnet.ibm.com). Mr.
Lasko is currently an Advisory Engineer in §/390 simulation,
performing system verification of the IBM §/390 G4 system.
He joined IBM in 1978 in Subproducts Manufacturing
Engineering. Since 1981 he has simulated various $/390

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

systems at the element and system level. Mr. Lasko received a
B.S. in electrical engineering from Union College in 1978 and
an M.S. in computer engineering from Syracuse University

in 1983. He received an IBM Outstanding Technical
Achievement Award in 1987 for his work on random test-case
development for element simulation of the 3090 storage
controller. In 1996 he received an IBM Team Award for his
work on $/390 G3 common chip verification.

Patrick J. Duffy iBM Systerm/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (pjduffy@vnet.ibm.com). Mr.
Duffy joined IBM in 1990 as a logic designer on an advanced
processor design project. From 1992 until 1994 he worked on
an IBM ES/9000 project as both a TCM coordinator and SCE
designer. In 1994 he joined the $/390 design verification team,
where he is currently a Senior Associate Engineer performing
system verification. He received a B.S. in computer
engineering from Lehigh University in 1990 and is currently
pursuing an M.S. in computer engineering from Syracuse
University. Mr. Duffy received IBM Team Awards for his
design work on the ES/9000 project in 1993 and for his
verification efforts on the §/390 G3 common chip in 1996,

Edward J. Kaminski, Jr. IBM System/390 Division,

522 South Road, Poughkeepsie, New York 12601
(eddiek@vnet.ibm.com). Mr. Kaminski received a B.S. in
electrical engineering from Rensselaer Polytechnic Institute
in 1987, joining IBM that same year. He is currently a Staff
Engineer, and has worked on verification of shared L2 cache
and system controller elements of the IBM S/390 systems:
6-way, 8-way, and 10-way IBM ES/9000, and $/390 G4. Mr.
Kaminski received IBM Team Awards for his work on the
10-way IBM ES/9000 in 1993 and S/390 G3 common chip
verification in 1996, and an IBM Invention Achievement
Award for his work on the TIMEDIAG/GENRAND tools in
1995.

Thomas E. Gilbert IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (1gilbert@vnet.ibm.com).
Mr. Gilbert joined IBM in 1974 and has held many technical
and management positions. He is currently an Advisory
Engineer in IBM $/390 design verification, working on the
CMOS clock chip and system integration of the §/390 G4
system. His previous verification experiences include team
leader and verification engineer in connection with various
$/390 systems and CMOS channels. He has been working in
design verification since 1984. Mr. Gilbert received an IBM
Outstanding Innovation Award in 1988 for his work on

I/O subsystem drivers, an IBM Outstanding Technical
Achievement Award in 1990 for his work on scan-ring
modeling, and an IBM Team Award for his work on the
$/390 G3 common chip verification.

Steven M. Licker [BM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (slicker@vnet.ibm.com).
Mr. Licker is an Advisory Engineer working in IBM S§/390
design verification. He joined IBM in 1977, and has held a
number of technical and management positions in engineering
systems testing on the IBM 308X and 3090 projects. Mr.
Licker has spent the last ten years doing processor and system
simulation on the IBM ES/9000 and S/390 G4 systems. He
received an IBM Team Award for $/390 G3 common chip
verification in 1996.

B. WILE ET AL.

566

Robert G. Sheldon IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (rgs@vnet.ibm.com). Mr.
Sheldon is a Staff Programmer who, for the past twelve years,
has worked on simulation accelerators (EVE) in support

of IBM S/390 system simulation. He received an M.S. in
computer science from Purdue University in 1976, and did
postgraduate study at the University of California at Berkeley.

William D. Wollyung 1BM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (bwollyung@vnet.ibm.com,).
Mr. Wollyung joined IBM in 1974, and has worked in the
simulation area since 1983. He is currently an Advisory
Engineer working on storage controller simulation; he also
worked on the hardware design verification of the IBM
ES/9000 and S/390 G4 processors. In 1989 Mr. Wollyung
received an IBM Outstanding Technical Achjevement Award
for his work on 3090 S simulation, and in 1991 he received an
IBM Gold Level Quality Award for his work on the 9121
simulation team.

William J. Lewis /BM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (wjlewis@vnet.ibm.com). Mr.
Lewis joined IBM in 1982 and is currently an Advisory
Programmer. He received a B.A. degree in computer science
from the State University of New York at Oswego. He started
in the hardware performance area working on workload
characterization and storage hierarchy modeling. Mr. Lewis
has been working on CP, storage, and I/O microcode
verification since 1983, except for a brief return to
performance to do CP modeling.

Robert J. AdKins [BM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (radkins@vnet.ibm.com).
Mr. Adkins is a Staff Software Engineer who is currently
working on storage controller element simulation. From 1985
through 1995, Mr. Adkins was responsible for hardware design
verification of the IBM ES/9000 and S/390 G4 processors. In
1991 he received an IBM Outstanding Technical Achievement
Award for his work on ES/9000 processor simulation.

B. WILE ET AL.

IBM J. RES. DEVELOP. VOL. 41 NO. 4/5 JULY/SEPTEMBER 1997

