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Verification  of the S/390@’ Parallel  Enterprise 
Server G4 processor and  level  2  cache  (L2) 
chips  was  performed  using  a  different 
approach  than  previously.  This  paper 
describes  the  methods  employed  by  our 
functional verification team to demonstrate 
that its logical system  complied with the S/390 
architecture  while  staying within the  changing 
cost structure and time-to-market constraints. 
Verification  proceeded  at  four  basic  levels 
defined  by the breadth  of logic being  tested. 
The lowest level,  designer  macro  verification, 
contained  a  single  designer’s  hardware 
description  language  (in VHDL). Unit-level 
verification consisted  of  a logical portion of 
function that generally  contained  four  or five 
designers’  logic.  The third level  of verification 
was the chip  level, in which  the  processor  or 
L2 chips  were  individually  tested.  Finally, 
system-level verification was  performed 
on  symmetric  multiprocessor (SMP) 
configurations that included bus-switching 
network (BSN) chips and I/O connection  chips, 
designated  as  memory  bus  adaptors  (MBAs), 
along with multiple copies  of  the  processor 
and  L2  chips. 

Introduction 
To verify the logical  design of the S/390@ Parallel 
Enterprise  Server G4 (CMOS 4) processor  and L2 chips 
before  chip  fabrication,  our relatively  small team of 
verifiers (hereafter  designated simply as the verification 
team) defined the basic approaches  that  drove  the 
verification effort.  The  initial  focus was on the lowest 
levels of simulation,  through which bugs could be  removed 
as early as  possible. This  meant  that  our verification team 
assisted  individual designers in creating  simulation 
environments  at  designer  macro levels, facilitating  the 
removal of a large  number of the bugs before  traditional 
structured  simulation  (chip level) began.  Throughout  the 
effort  described  here,  our  team  and  the  processor  and L2 
design teams  were jointly responsible  for  the  simulation 
of the design, which allowed for critical tuning of the 
environments  that  created  test  patterns  and  monitored 
for  architectural  and  implementation  compliance. 
Furthermore,  this allowed for  accelerated  problem 
removal and bug-discovery-to-fix turnaround  time. Finally, 
rather  than having verification engineers assigned to work 
solely on particular verification  levels, there was vertical 
movement of people across the  four  different levels. Not 
only did  this  enable  our verification team  to  use  their 
macro-level understanding of the design implementation, 
but it also allowed for  environment portability as the model 
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scope  increased across the levels. Furthermore,  our team's 
shifting of effort  from the lower levels to  the higher levels 
corresponded to  the maturity and functionality of the design. 

Because  the S/390 architecture is mature, a stable  set 
of core  tools was  used for  the  architectural-level  test 
generation. A strong  architectural-level  instruction 
stream  test-case  generator,  AVPGEN,  already existed [l]. 
Similarly, the  random  SMP  methodologies  used on prior 
S/390 storage  controllers [ 2 ]  were  adapted  and  enhanced 
for  the  CMOS 4 storage  hierarchy.  Additionally, 
comprehensive  escape analysis information  from  previous 
projects was used  to  direct verification,  building upon 
knowledge gained  from  prior S/390 systems. 

At  the  same  time,  advances in  verification 
methodologies  were  used.  The  use of multiple  simulation 
engines  (hardware  and  software)  for specific  verification 
levels was coupled with  a common  application  interface 
[3], SimAPI, which allowed for  reuse of code across the 
platforms.  Random  and  directed  random  drivers  targeted 
at  the design implementation  were  developed  and utilized 
from  the  start of the  program.  TIMEDIAGIGENRAND, 
a tool  set  that  uses timing diagrams  to drive general  or 
specific test  patterns, was developed  for  the  designer 
macro level [4]. New modeling  techniques allowed 
functional verification to  expand its boundaries  to  include 
full  scan-ring,  clock, and built-in  self-test (BIST)  testing 
in cycle simulation [5]. Performance  improvements in 
proprietary cycle-simulation tools  continued to increase the 
magnitude of simulation cycles available per unit of time. 

With  these  strategies in place,  the goals for  the 
verification effort  were  set.  While it  might  have been 
noble  to strive for  zero  defects in the design,  it was not a 
productive business goal given the  current  simulation 
methodologies.  The  time it  would take  to  remove  the  last 
handful of bugs is considered  to  be  better  spent by 
learning  from  the  fabricated chips. Therefore,  the 
verification  goals were  set with our  primary objective  in 
mind: time  to  market. Verification,  working closely with 
design,  delivered a  solid functional design that would 
allow the final problems  to  be  removed in hardware so 
that  learning  about circuit design, timing, and logic 
correctness would proceed in  parallel.  Success  would be 
indicated by the  functionality of the first hardware  release 
and  the ability to  work  around  the complex problems  that 
remained in the design. In light of these goals, firm 
release  criteria  that  supported  functional  progress  were 
defined and  enforced. 

Verification  methods 

Simulation engines 
Verification of the logical functions was performed with 
both  event  and cycle simulators,  as well as  hardware 
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for a given test  depended mostly upon  model size, model 
build time,  and  performance  needs,  although  certain  tests 
required  features  that  were  provided only in event 
simulation. 

Since  most test-case  coding was done using the  SimAPI 
user  interface,  detailed  benchmarks  on  simulator 
performance  were  conducted  that allowed both  test-case 
interface  tuning  and analysis of platform efficiency for a 
given test  suite  or level. In  general,  event  simulation was 
used  only at  the  designer  macro level, where  model build 
time was fast  and  simulator  performance was acceptable 
for small  models.  A  commercially  available VHDL  event 
simulator was used.  Unit-  and chip-level  verification were 
performed with proprietary cycle simulators,  TEXSIM  and 
ZFS. System-level  verification  used ZFS cycle simulation 
and  three  Engineering Verification Engine  (EVE 1.5) 
hardware  accelerators. 

Cycle simulation  generally  provided a performance 
improvement of more  than lOOX over  event  simulation. 
The  choice of cycle simulators,  TEXSIM  or  ZFS, 
depended mostly upon  the latch-switching factor.'  Because 
TEXSIM  and  ZFS  use  different  algorithms  to  perform 
cycle simulation,  the latch-switching factor was the 
indicator of which simulator  performed  better  for a given 
test  and  model.  In  general, such performance is inversely 
proportional  to  model size, because a  small model  can  be 
driven harder with implementation  testing  than a larger 
model  that  has  architectural  restrictions.  As a result, 
larger  models such as  the  processor  chip  used ZFS for 
cycle simulation, while smaller  models  used  TEXSIM. 

Hardware  acceleration was used  for  the  largest of 
models, where  performance  can  be achieved only with 
specialized  systems. EVE 1.5 hardware  accelerators [6] 
were  used  to  run  extended  test  streams  on  mature system 
models. These  tests achieved speeds  up  to 20 times  faster 
than  the cycle simulators.  The  relative  performance of 
simulators used  in the verification process is shown  in 
Table 1. 

The  event  simulator,  TEXSIM,  and ZFS were all used 
on a pool of RISC System/6000* workstations.  ZFS was 
also run  on S/390 server  engines.  Overnight  batch 
capacities  on  an  average night after  the design  was stable 
allowed for a cumulative 100 million cycles of processor 
chip  testing, 15 million cycles of L2 chip  testing,  and 150 
million cycles of unit testing. EVES gave an  additional 
capacity of 65 million cycles a  day. 

Test-case types 
In  the  past,  test  cases  were  software  code  that  stimulated 
the logic model  and  were  handwritten by verification 
experts. A test  case could be viewed before  simulation  to 
see exactly what  stimulus would be  applied  to  the  model. 

The average percentage of latches changing their values per cycle in the test case. 

B. WILE ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULY/SEPTEMBER 1997 



Test-case  libraries  were  maintained  for regression 
purposes so that  interesting  patterns could be  rerun  to 
guard against breakage in the logic. In S/390, test  cases 
have  evolved  in two directions,  test-case  generators  and 
test-case drivers,  as  shown in Figure 1. 

Test-case generators 
Test-case  generators  are used to  create  numerous  hard- 
coded  test cases. These  generators  are  sophisticated 
software  engines  that  can  be  focused on very specific 
scenarios  or  broadened  to cover  a  wide range of logic. 
Thousands of test  cases can be  created in the  time it used 
to  take a  verification engineer  to  write  just  one  test case. 
And  because  the  focus  can  be  changed  from  narrow  to 
wide, the  generators  can  be used  with  a shotgun  or a 
sniper  approach  to uncovering bugs. 

The  role of verifier has  changed  along with the  test- 
case  generators.  The verifier  used to  be  anchored  at  the 
architectural level of the design,  having to write  many 
interesting test cases by hand.  Because writing test  cases 
this way was time-consuming,  it  was difficult to  touch  the 
microarchitecture  implementation.  The efficient use of 
test-case  generators  creates two roles  for  the verifier. The 
first role  entails  maintaining  the  generator itself,  including 
adding new features  and  updating  the  prediction  software 
within the  generator.  The  second  role is that of test-case 
writer, in which the verifier studies  the  microarchitecture 
and  creates  templates  for  the  generator.  These  templates 
create  hundreds of different  test  cases  that  stress  the 
implementation of the logic, creating  conditions such as 
“buffer  full,”  “pipe  stall,”  or  “unavailable  resource.” 

Test-case drivers 
Test-case drivers do  not  create  test  cases  that  are viewable 
prior  to  simulation.  Instead,  they consist of software  that 
drives the model’s interfaces using the  parameter  settings 
for  the  particular run. Test-case  drivers use pseudorandom 
coding techniques  to  choose  from  the  parameter lists. At 
the  heart of the  test-case  driver is the  prediction-checking 
software  that  monitors  the  interfaces  and flags error 
conditions.  The checking is done in real  time so that  race 
conditions  need  not  be  predicted  up  front. In this  mode, 
the  inputs  to  simulation  are  merely a seed  and a 
parameter file. 

Test-case  drivers  run  for a predetermined  number of 
cycles. The  test  case  ends  either when an  error  condition 
is detected  or  when  the  predetermined  number of cycles 
have been successfully run  and  the  model is quiesced. In 
either case, while a  readable test case is not available before 
the  run, a full history of the  test  case is logged by the 
driver.  All interesting  actions  that  occurred  during  the  run 
can  be viewed in this history, with even  more  information 
than  that within  a hard-coded  test  case. 
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I Evolution of test-case  methodology. 

Table 1 Relative performance of simulators. 

Level Relative Full model Performance 
model build time (cyclesls) 

size 

Designer macro 1 2 min 40 

Unit (TEXSIM) 30 1 hr 240 
L2 chip (TEXSIM) 35 1 hr 220 
Processor chip (ZFS) 120 4 hr 120 
System (EVE) 1180 4 hr 380 

(event simulation) 

(postprocessor 
chip build) 

There  are  three main advantages  to  test-case  driver 
verification. First,  the  drivers  are  not  architecturally 
restricted, allowing the  behaviorals  to  author  sequences 
that  target  the  implementation of the  hardware. As  a 
result,  the  test  cases  can  be  far  more  stressful  than 
conventional  hard-coded tests. The  second  advantage is 
that  the  results of the complex internal  conditions  created 
during  the  test  case  need  not  be  predicted  before  run 
time.  This allows the  monitors  to  make decisions on result 
validity after  the  race  conditions have been resolved  in the 
hardware. A main advantage of this is that  there is no 
test-case library maintenance  problem  when  internal 
timings change.  The  third  advantage is that  the  tests  can 
run  as long as  desired, with  maximum stress  throughout all 
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At  the  point when unit  testing was subsiding and  chip 
testing was starting, it was not  uncommon  to have five or 

of the cycles. This allows many “hard-to-create’’  conditions 
to  occur  during  the  test  case.  Cases of cache  LRU 
castouts,  timeouts,  hang  conditions,  and  lockouts  are all 
more likely to  occur in longer-running  simulations. 

Verification engineers using test-case  drivers  must 
perform  the  same types of work as those  who  support  test- 
case  generators.  Software  maintenance is required  when 
interface specifications change, new commands  are  added, 
or  additional  result checking  is needed.  The  behaviorals 
that drive the  model must  have the intelligence to 
understand  the  internal  implementation as well as the 
interface  protocol. By updating  the  behaviorals  and 
adjusting  the  parameter files, the verifier creates new and 
interesting  conditions within the logic. 

Verification levels 
Verification experts  were involved with  the design before 
VHDL was even available for  simulation.  Each  unit 
had a  verifier  working  with the  designers of that  unit 
(approximately  one verification engineer  to every three 
designers).  The verification expert  served as  a mentor  for 
the  designers in that  unit as, together,  designer  macro 
simulation was performed.  At  the  same  time,  the verifier 
was creating a  unit-level environment  that would be  ready 
for unit-level testing  as soon as the  macros within the  unit 
passed the  readiness  criteria.  As  the  unit  environment 
began  running,  the verification engineer  began  to  focus  on 
the chip-level environment.  Here,  code  sections such  as 
cache  loaders  and  chip  interface  behaviorals  that  were 
created  for  the  designer  macro-  and unit-level tests  were 
reused  for  the chip-level environment.  Thus,  time  and 
effort  were saved through  the  planned  reuse of code. In 
this manner, insights about  the design learned  at  the 
macro level were  carried  throughout all of the  higher 
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more  problems  identified, fixed, and verified each  morning 
after  the previous night’s batch runs.  Historically, prior 
projects  had  error  rates  that  topped  out  at 20 bugs per 
week  in the  processor.  The  peak  bug  rate  on  this  program 
was 60 bugs per  week  for  the processor-level  verification. 
Additional  problems  were  simultaneously  screened  out 
(especially breakage) by the lower-level tests  that  were 
still  in  place to  provide regression  vehicles for  VHDL 
changes  due  to timing or logic fixes. The  result of this was 
that  the  models  became fully functional relatively  quickly. 
The  problem  rates  for  each of the levels of verification are 
shown  in Figure 2. 

Designer macro verijication 
Implementation verification on  the  smallest  portions of 
the design has  proven  to  be  an effective alternative  to  the 
slower and  often less stressful  chip-level architectural 
testing.  Today’s leading-edge verification methodologies, 
such  as formal verification, are  geared  toward 
implementation verification on smaller  models.  However, 
since production-quality  formal verification tools  were  not 
available when  designer macro-level testing was ongoing, 
the designiverification team  had  three choices for 
implementation testing: 

VHDL  test  benches  or  hard-coded  SimAPI  test cases. 
C/C+ + program  that drives patterns  and checks  results. 
TIMEDIAG/GENRAND. 

The logic under  test  dictates  the  method  chosen  for 
designer macro-level  testing. Complex  control logic, for 
example,  requires a more  rigorous  environment  than 
simple  dataflow logic. 

The  instruction unit’s operand  compare logic was 
thoroughly  tested using  a straightforward  VHDL 
testbench.  This  testing  consisted of the  use of hard-coded 
patterns  that cycled through  the  interesting  opcode 

B. WILE ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 



compare logic cases  and checked for  correct results. 
Although limited in scope, this type of testing was 
sufficient for  certain logic macros. 

sophisticated  drivers  and checkers. For  these  macros, 
C/C++  code was used to  generate  the  interesting 
scenarios  required  to verify the logic. Often  these 
programs used some  random-pattern-generation 
techniques.  The  bus  interface logic in the L2 chip used 
such an  approach.  In  this case, 1500 lines of C code  were 
written  to drive the  interfaces  and  check  the results. 
Routines such  as “Do-L2-Fetch” and “Do-LRU-Castout” 
stimulated  the  bus  interface  control logic with requests  for 
actions. Other  code  routines, such  as “LoadCastOut”  and 
“Empty-Castout,”  performed  as behavioral logic that 
responded  to  the  direction of the bus interface logic. 
These  routines  replaced  other  internal  L2  macros  that  act 
as  slaves to  the  bus  interface logic (that is, they  do  not 
independently  create  their own stimuli,  merely respond  to 
requests  made  upon  them).  Control  routines such  as 
“Select-Op”  were  used to  arbitrate  among  the  requesters 
to  the  bus  interface logic. Random-pattern  generators 
created  unique  data  to shuffle through  the  data  paths. 
Finally,  check routines  such as “Check-L3-L2” ensured 
that  the  bus  interface logic acted as  expected. 

As in the  case of the C programs  written  for specific 
macros,  TIMEDIAG  and  GENRAND  were  used  to  create 
high-stress environments  that fully test  the  internals of the 
macro.  TIMEDIAG  and  GENRAND allowed designers  to 
utilize  a pseudorandom  methodology  after  creating  generic 
interface  protocol timing  diagrams. TIMEDIAG,  the 
timing diagram  editor, allows the  designer  to  make  one  or 
more  timing  diagrams  that  are  used by GENRAND,  the 
simulation driver, to  create complex scenarios.  Each 
timing diagram  describes  one  or  more  actions on an 
interface, including  expected  results.  Timing diagrams can 
be simple or complex,  with looping  conditions,  random 
values,  complex  expressions, and  particular  start-up 
conditions.  GENRAND uses this information  to  learn  the 
interface  protocols  and  then drive the timing diagrams 
pseudorandomly within the limits of the  interface  rules. 

There  were several advantages  to  creating  the 
simulation  environments just described.  The  greatest 
was that  the  chosen  methodology was specific to  the 
implementation,  creating  more  stress on the logic than any 
other level achieved  (including the  actual  hardware  test 
environments).  The most  complex of conditions  were 
created with relative  ease  at  the  macro level. Another 
advantage of these  environments was the  ease of 
regression.  While  most of these C environments  took a 
month  to  create,  the  time was more  than  returned in ease 
of regression  and  speed of bug  removal. Throughout  the 
project,  whenever timing, physical, or logic changes  were 
made,  these  environments quickly verified the  changed 

More complex control logic required  the use of more 
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Verification Major tools Simulator 
level 

Hardware 
test 

System 

Chip 

Unit 

Designer 
macro 

SAK in cache 
MVS, VM 

S A K ~ ~ E V E  
‘c! 

Power-on-reset k 
AVPGEN 
Random SMP 
Scan-ring verify 

TIMEDIAGI 3 GENRAND x 
BCE random SMP 2 
E-AVP 
C programs 

E 

Test benches 

k7I - 
& 

Verification  levels. Verification proceeded from the designer 
I macro level through the system level; at each level, environments 
i and  platforms were used that were best suited for that level. 
t 

VHDL  to  ensure  correctness.  For  those  macros  where 
these  methodologies  were  feasible, all of the  higher levels 
of verification (unit, chip, and system)  primarily became 
tests of the  communications  among  macro  interfaces. 

Designer macro-level  verification was performed 
primarily on the  event  simulator. Small units of logic fit 
well into  the  event  simulator  process  because  smaller 
models  can  be  created quickly, and, since the  model is 
tiny, the  speed of the  simulator is tolerable.  Furthermore, 
the  on-screen  source-code  debugger  and  enhanced  graphic 
capabilities  were welcome features  for macro-level debug 
and logic analysis. The verification tools used at  the 
designer  macro level as well as  the  unit,  chip,  and system 
levels are shown in Figure 3. 

Unit verification 
Unit-level  verification varied  according  to  the  function 
being  tested. Two areas  that  required  sophisticated 
methodologies  at  the  unit level were  the  execution 
unit (E-unit)  and  the  buffer  control  element  (BCE). 
Investment of time  and  resource  into  these  environments 
was high. The  E-unit  environment  used  the  test-case 
generator  approach  because  the  generator  already existed 
and was to  be  used  at  the  chip level. The  BCE  unit 
environment used the  test-case  driver  approach in order  to 
bypass architectural  (instruction  stream)  restrictions  and 
attack  the  BCE  implementation.  Both  methodologies  were 
successful; the chip-level testing  produced a low volume of 
problems in both of these units. The  methodologies  are 
explained in this section. 
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E-AVP To efficiently verify the  E-unit, an environment 
was created  to use architectural verification programs 
(AVP) with a stand-alone  E-unit model running  on  the 
event simulator.  This  environment,  designated  E-AVP, 
consisted of a set of programs  to  interpret  the  instruction 
stream in an AVP,  and  to  “drive”  the  instruction  unit  (I- 
unit)  and  BCE  interfaces  to  the  E-unit.  The  programs also 
monitored  the  E-unit/BCE  interface  to  record any data 
transactions  that  were  done. Actual results  for  registers 
and  storage were checked  against  the  expected  results in 
the  AVP. 

By running real instruction-stream  tests  at  the  E-unit 
level, complex E-unit  problems  were quickly discovered 
and fixed. Also, the  same  test-generation tool (AVPGEN) 
was used at both the  unit  and  chip levels. The logic 
designers  were  able  to  use  both  AVPGEN  and  E-AVP 
themselves, tailoring  the  AVPs  for  the  instruction  streams 

554 in which they were  interested.  In  order  to drive the  E-unit 

correctly with the  instruction  stream,  the  E-AVP  programs 
accurately  modeled  the  controls in the  I-unit  for  decoding 
instructions  and  fetching  operands,  and  the  fetch  and 
store  controls in the  BCE. By having programs  control 
these  interfaces,  the  user  controlled  the  random biasing of 
certain key parameters such  as the  length of time  between 
decodes,  the delay on  an  operand  fetch,  and  the  amount 
of time  that  the  BCE was busy for a data  transaction. 

BCE (LI)  random Historically, the  BCE  has  been 
the  most difficult unit in the system to verify. On past 
microarchitectures,  the  BCE  had  the  largest  number of 
simulation escapes  into  the  hardware bring-up. The 
problems reflect the high complexity intrinsic  to any S/390 
L1 cache  and  control, which must  handle  multiprocessing 
requirements for the  processor,  address  translation,  and 
multiple  cache  requests  from  the  instruction unit. 
Therefore,  thorough  BCE verification was performed  at 
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the  unit level on the  CMOS 4 Si390 program.  The  test- 
case  driver  methodology was used to accomplish  this  task. 

The  BCE consists of a store-through L1 cache, dynamic 
address  translator  (DAT), access register  translator 
(ART),  translation  lookaside  buffer  (TLB),  ART 
lookaside  buffer  (ALB), cross-invalidate (XI)  stack,  read- 
only system (ROS) array,  and  store  buffer.  The  BCE  has 
interfaces with the  I-unit,  E-unit,  register unit (R-unit), 
and L2, as shown in Figure 4. In the  simulation  model, 
everything  except the  BCE was modeled as C +  + 
behaviorals. These  behaviorals  were  responsible  for 
driving requests  into  the  BCE  and  responding  to  BCE 
requests.  The  behaviors were programmed  to obey 
interface  protocol specifications and  user  parameter files. 
All  behaviors shared a common  address  space  that was 
generated  at  the beginning of each  simulation  run.  The 
addresses  that  were  generated  for  each  run  caused 
different levels of cache  contention  depending  on  the 
parameter file, which dictated  the  range of the  number of 
addresses  and  the level of cache  contention  for any one 
run. The  address-space  generation  code was used in the 
BCE, L2, and  processor simulation environments. 

The Si390 architecture  has many different  address- 
translation modes. In order  to  test  both  address 
translations  and  cache  contention,  multiple  virtual 
addresses were mapped  to  the  same  absolute  address.  The 
architecture also contains a common  segment  (CS) bit, 
which was verified by mapping  one  virtual  address  to 
multiple  absolute  addresses. A virtual  address  mapped 
down to  one of two absolute  addresses,  depending  on  the 
state of the CS bit in the TLB. The  L2  behavior was 
responsible  for  responding  to  BCE  requests  and  sending 
random  XIS  to  the  BCE.  This allowed simulation of 
multiprocessor  contention with only one  BCE in the 
configuration. When  the  BCE no longer  required  data  that 
it had  used  (released  ownership of a line),  the  L2  behavior 
updated  the  address  space with new data.  This  emulated 
the many cases  where a second  processor  stored  into a 
line in which the  BCE  currently holds. 

The  I-unit,  E-unit,  and  R-unit  behaviorals  were 
responsible  for  initiating new requests  to  the  BCE. 
Multiple  parameter files were used as input  to  these 
behaviorals  to  stress  different  parts of the  BCE.  The 
section on L2 verification presents a detailed  description 
of how the  behaviorals used the  parameter files. 

In  addition  to  the behaviorals, use was also made of 
automatic checking routines which were  responsible  for 
ensuring  proper  operation of the  BCE.  The checking 
routines dynamically updated  expected  results  on  the basis 
of events  occurring in the simulation  model. The checking 
routines verified such elements  as  cache  coherence 
protocols,  BCE-generated  responses,  translations,  and 
interface  protocols. 
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I* 
Store 4 bytes of an  RX op over some other RX op. 
Do the  store a little away from where we are. 

*I 
psc3 : sig 

1 
n l :  L with NoException, x:R1, Mem2Start = psc.113; 

ST with NoException, R1 = x, Mem2Start = psc3.112; 
sequence (1..2 of AnyNonBranchOpO with NoException;); 

sequence (1..2 of AnyNonBranchOp() with NoException;); 
end 

n2: AnyRXOpO with NoException; I* 4 bytes of (OLD) op */ 

t 
n3: AnyRXOpO with NoException; I* 4 bytes of (NEW) op */ 

j Storing into the instruction stream. 

Chip verification 

Processor verification The  processor  model  consisted of 
VHDL design for  the  I-unit,  E-unit,  R-unit,  and  BCE, 
along with the  L2  behavioral  (described in the unit-level 
verification  section and shown in Figure 4) emulating  the 
memory hierarchy. The  model also  included the licensed 
internal millicode (LIC), which was used to  implement 
some of the  more  complicated Si390 instructions.  The 
chip-level model was configured as a uniprocessor but was 
controlled  at times, through  the  L2  behavioral,  as if it 
were  an SMP. This  enabled  random cross-invalidates (XIS) 
to  the  BCE  from  the  L2  behavioral  that allowed data-  and 
instruction-stream  contention typical of multiple-processor 
environments.  The main  verification  strategy  used at  the 
chip level was random-biased  testing, a methodology  that 
has  proven  to  be effective for verifying processor designs 
[7]. AVPGEN, a random-biased  test-case  generator, was 
used heavily in the verification of the  CMOS 4 Si390 
processor [l]. Many symbolic instruction  graphs  (SIGs) 
were  created  to  stress specific types of Si390 instruction 
operations. 

AVPGEN  test  cases covered the majority of the 
hardware  function.  These  test  cases were augmented 
in two ways. The first was with fixed AVPs, including 
both legacy AVPs  and new AVPs  targeted  for specific 
functions.  The  second  method  used  to  increase  the  scope 
of verification was to  alter  the  environment in which the 
random  AVPs  were run. This was accomplished with 
parameters  that  were randomly selected when the  test 
cases were executed.  Examples of the  functions  that  were 
tested  concurrently with the  AVPs  are cross-invalidates, 
quiesce,  forced  serialization,  trace/instrumentation,  error 
injection,  and  degradedidisabled  modes. 
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I* 
Test Address Generation  Interlock among several  instructions. 
Interlock on both base and index registers. 

* I  
agi : sig 
{ 

nl:  L with NoException,firstRl:Rl; 
oneof( LA with secondRl:Rl,X2=firstRl; 

LA with  secondRl:Rl,B2=firstRl; 

L with NoException,thirdRl:Rl,B2=secondRl; 
oneof( AnyRXOpO with  XP=thirdRl; 

1; 

AnyRXOpO with B2=thirdRl; 

Stressing register interlocks. 

I* 
Test serialization by using SACF to switch Address Space bits. 
followed by any serializing op, followed by other  ops. 

*I 
serial : sig 

( 
nl: sequence  (1..2 of SACF; ) with NoException; 

AnySerializerOp() with NoException; 
AnyOp(t1) with NoException; 
sequence ( 1..2 of SAFC; ) with NoException; 
AnySerializerOp() with NoException; 
AnyOp(t1); 

1 

1 Control instructions followed by dependent instructions. 
E 

The majority of the simulation effort went into verifying 
the  mainline function of the processor (the  term mainline 
refers  to  normal S/390 instruction execution).  Nonmainline 
functions included resets  and recovery. 

The mainline  verification  consisted of the following 
strategy: 

AVPGEN testing 
Approximately 60 000 AVPGEN  test cases  were run 
nightly. The  AVPGEN  test cases were  generated daily 
from a  collection of over 60 SIGs.  Some examples of 

556 these  SIGs  were  the following: 

Complex branch sequences. 
Storing  into  the  instruction  stream  (see Figure 5). 
Stressing  register  interlocks (see Figure 6) .  
Control  instructions which change  the  processor  state, 
followed by instructions  dependent  on  the new state 
(see Figure 7). 

Fixed AVPs 
The legacy AVPs  were a subset of the test-cases  used on 
previous S/390 processors. In addition  to  the legacy 
AVPs,  a  limited amount of new test-case development 
was done.  This  development  occurred when AVPGEN 
and legacy AVPs did  not cover  a particular  instruction, 
or when  a legacy AVP  required  overhaul  due  to 
machine  implementation.  In all,  approximately 25 000 
fixed AVPs were  regressed weekly. 

Use was made of a  C  behavioral program  that was 
written  to  emulate  the timing  signals from  the MBA 
chip (e.g., time of day update  and synchronization). This 
program was used in conjunction with AVPGEN  and 
fixed AVPs  to verify the S/390 timing facility instructions 
and  interrupts. 

Programs were written  to inject external  and I/O 
interrupts.  AVPs  were modified to  control  the injection 
(type  and  event),  and were run with these programs. 
These  AVPs also  checked that  interrupt masking worked 
correctly. 

Timing  facilities 

Interrupts 

Functions  tested  outside  the  mainline  environment 
included the following: 

I390 mode verification 
I390 is special code  that  handles  the service processor 
interface  to  the system. This testing  used  a fixed set of 
AVPs  that focused on  entry  and exit from I390 mode, 
storage access, I390 special  instructions, and  interrupts. 

Error  detection was tested by randomly  injecting errors 
into  the design while running a mainline  AVP  and 
checking to  see  whether  the  error was detected.  Error 
recovery was verified by continuing  the  error-detection 
test  case  and checking to  see  that  the system was 
successful in recovering from  the injected error.  These 
test cases  were intricate in that  the timing on  certain 
injections was key to  the recoverability of the logic. 
Injections  that  caused  data integrity to  be compromised 
were flagged to  ensure  that  the logic halted  the 
erroneous  data  propagation. 

Chip-level  scan-ring  verification was performed using the 
process  described later  in  the  section  on scan-ring 
verification. 

Recovery verification 

Scan-ring testing 
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Trace and  instrumentation testing 
The  trace  and  instrumentation  functions  were verified 
via a monitor  that  ran  concurrently with  AVPs. The 
controls  were  set  up randomly at  the beginning of the 
run.  The  monitor was a  C program  that was called  each 
simulation cycle. The  model facilities were  examined  and 
evaluated,  and  the  expected  data  were  put  into  program 
copies of the  trace  and  instrumentation facilities. Each 
time  the  array filled up, as well as  at  the  end of the  test, 
the  program  data  were  compared  to  the  actual  data. 

Each  morning a regression  report was generated  and 
the  failures were  analyzed. A team  screening  approach 
was adopted, with the  “screen  team” consisting of both 
verification engineers  and key logic  designers. The 
designers  were assigned to look at  problems  that  related 
to  their logic area.  The  “screen  team”  strategy  worked 
extremely well and was one of the  major  reasons  that 
problem  turnaround  time consistently averaged less than 
one day. As a result, a large  number of bugs were 
removed  from  the design  in  a very short  period of time. 

L2 veriJication The L2 chip  contains a  second-level 
cache  and  associated dataflow and  control logic. It 
interfaces with multiple  processor  chips  and with the bus- 
switching network (BSN) chips,  which provide a  gateway 
to  the L3 storage  arrays.  The L2 chip services data 
requests  from  the  processor  and BSN chips  and  maintains 
cache  coherency within the  multiprocessor system. 

L2 chip-level  verification was accomplished by applying 
the  random  SMP  methodology used on prior S/390 storage 
controllers  as a base [2], and by using experiences  on  past 
machines  to  enhance  the  scope  and  the efficiency of the 
simulation. While the goal of L2 chip-level  verification was 
to  ensure  the  functionality of the L2 chip itself, the 
simulation  methodology  on this CMOS 4 S/390 processor 
was expanded  to allow the  additional  incorporation of 
several BSN chips, producing  an L2-BSN multichip 
simulation  model.  Because  the L2 and  the BSN chips  were 
designed  at two different  sites,  the  chance of interface 
protocol  misunderstanding was greater.  The L2-BSN 
multichip  simulation  model provided the ability to verify 
the  interface  between  the two chips  prior  to system 
verification. In  addition, since the  random  SMP 
methodology  provided maximum stress of the  functions 
within the L2 and BSN chips,  it  was an excellent way to 
achieve additional  simulation  on BSN chip  functions. 

L2 and L2-BSN chip-level simulation was performed 
using the  TEXSIM cycle simulator.  The L2-BSN chip- 
level model was  built  using  a mixed design language 
process, since  the L2 chip was designed in VHDL and  the 
BSN chip design  was not  (see  the  subsection  on mixed- 
language  simulation).  The  core of the  random  SMP 
methodology is  in the  test-case  drivers  and  automated 

checking programs, which are commonly  called the 
“simulation  environment.”  These  programs  were 
developed using C +  + object-oriented  techniques,  enabling 
easy reuse of code across different levels of simulation. 
The following C +  + objects  were  developed  and  reused 
across more  than  one level of simulation: 

Address space 
The  address  space  object  maintained a  full set of 
addresses  to  be  used in each  test case, the  latest copy of 
data  for  each of the  addresses,  and  other  relevant 
information  pertaining  to  the  addresses.  This  object was 
incorporated  into  the  BCE unit-level, L2 chip-level, and 
CP chip-level simulation  environments.  It was referenced 
by the  test-case  drivers  and  automated checking 
programs  whenever address-specific information was 
required. 

The  parameter list is a file which is read by the  test-case 
driver  programs in order  to  obtain biasing information 
which determines  the type of pseudorandom  sequences 
that  the driver will issue. The  parameter list interface 
object  provided a convenient way for  the  driver 
programs  to access the  information in the  parameter 
list file. It  also  provided a mechanism  for  the  driver 
program  to  choose  random  entries  from  tables  based  on 
probability  values. 

The facility interface  object  provided a mechanism  for a 
user  to  set or obtain signal and  latch facility values  in 
the  event  simulator,  TEXSIM, or ZFS models. The 
facility interface  object allowed the  user  to specify the 
model facility names in  a separate  parameter list file. If 
a  facility name  changed  from  one  model  to  the next, the 
user  updated  the  parameter list file for  the new name, 
thus avoiding  a program  recompile. 

Parameter list interface 

Facility interface 

The L2 chip  simulation  environment  for  the  CMOS 4 
S/390 processor  contained  test-case  driver  programs  for 
the  processor  chips  and  for  the BSN chips. These  test-case 
driver  programs  were  executed every simulation cycle and 
monitored  the  interfaces  to  the L2 chip. They  provided 
stimuli into  the L2 chip in  a manner  consistent with the 
interface  protocol.  The  command  stimulus issued to  the 
L2 chip was based  both  on  the  bias values  in the 
parameter list and  on a random  seed.  The  driver  programs 
were  enhanced  to provide two modes of operation: heavy 
stress  mode  and  random delay mode.  In heavy stress 
mode,  the  test-case  drivers  monitored  the L2 interface  to 
determine which types of commands  could  be issued. Once 
this was determined,  the drivers  accessed the  parameter 
list to  choose  from  the  subset of commands  that  could  be 
issued. This  mode of operation generally kept  the L2 chip 
extremely busy, with few idle cycles between  commands. 557 

B. WILE ET AL. IBM J .  RES,  DEVELOP.  VOL. 41 NO. 415 JULY/SEPTEMBER 1997 



558 

In  random delay mode,  the driver  accessed the  parameter 
list to  choose a command first. If the  command could not 
be issued because  the  interface  protocol  prohibited it, the 
driver  would not issue  any other  commands until the 
chosen  command was issued. This  method of operation 
produced  more  gaps  between  commands  and  uncovered 
design problems which actually required a “less busy” 
state. 

In  addition  to  test-case  driver  programs,  the  L2  chip 
simulation  environment  contained  automated checking 
programs. Like the  test-case drivers, the checking 
programs  were  executed  on  each  simulation cycle. They 
updated  expected  results dynamically, on  the basis of 
events  occurring in the  simulation  model.  The  automated 
checking programs  ensured  that  data integrity was 
maintained in a multiprocessor system by interacting with 
the  address  space  object  to  update  the  latest copy of the 
data when appropriate  (for  instance, when the  driver 
program issued  a store  command  to  the  L2)  or by 
comparing  data  sent by the  L2  to any processor against 
the  expected  latest copy of data.  The  automated checking 
programs also ensured  that  the  ownership of each  line in 
the  address  space was consistent with protocol. Any 
miscornpares between  the  expected  results  from  the 
automated checking program  and  the  actual  results  caused 
the  simulation  to fail. 

There  were many other  automated checking programs 
in  this environment. Many of these verified that  the  L2 
adhered  to  the  interface  protocols,  that  commands  were 
processed in  a  timely manner,  or  that  correct  responses 
were sent  from  the  L2 chip. Because  the  automated 
checking programs  had  no  communication with the  driver 
programs, a driver  program could be  removed  and  the 
associated  automated checking program  could  remain in 
the  environment.  An example of this was the replacing of 
the BSN chip  driver with the  real BSN chip design. The 
L2-BSN interface  protocol checking program  remained in 
the  simulation  model in order  to  ensure  that  no  interface 
violations occurred. 

The  L2 chip-level simulation  environment was also used 
to  simulate recovery scenarios.  Errors  were  randomly 
injected  into  the L2, and  the  automated checking 
programs  expected  the  appropriate recovery actions  to  be 
taken.  After a  successful  recovery occurred,  the  simulation 
proceeded  and  the next random  error was injected. 

System verification 
System verification of the  CMOS 4 S/390 machine involved 
challenges  not  seen  at  the lower levels of verification. 
Components of the system  design were  implemented using 
multiple design  languages. Methods  had  to  be  developed 
to compile the  multiple languages into a  single simulation 
model. Another  challenge was in the  area of resets,  where 
different levels of code first come  together. Finally, 
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controlling  the  large  model size so that  the system can 
be  run  on  the existing EVE 1.5 engines  took finesse  in 
swapping components  for maximizing performance  and 
coverage. 

Mixed-language simulation Before  an  EVE 1.5 model 
was created, a ZFS  companion  model  had  to  be  created. 
This  model was used  for early  system  verification as well 
as for debugging miscompares  that originally occurred  on 
the  EVE  engine. 

Previous Si390 designs were  developed  at a  single 
laboratory  where  simulation  models  were  described in  a 
single database.  The  process  for  creating a two-component 
simulation  model was also used for large-system models 
involving dozens of components (i.e., “macros,”  “units,”  or 
“chips”).  With  just a  single  design language, building  a 
ZFS  model involved  linking components within the design- 
entry  database,  translating  that single component  into 
a  flat “ZFS  object,”  and  then compiling  a ZFS  model 
from  that  ZFS  object. Building an  EVE  model involved 
translating  each design-entry component  into a  flat 
ZFS  object  and  then  to  an  “EVE  object,” linking the 
components’  EVE objects, and  then compiling the  EVE 
model.  In  both cases, component  objects  were  linked by 
name (Le., as  flat models)  and  not  through a hierarchical 
description. 

For  the CMOS 4 Si390 system, nonlocal  components 
were  delivered as  flat “TEXSIM  objects,” since those 
laboratories used TEXSIM  for  chip/unit  simulation. 
The  problem was to  develop a process  for building EVE 
(and  ZFS)  models which included  those  components.  The 
components  came  from  VHDL, BDL/CS, and  DSL design 
description languages. One possible solution was to  create 
system models as TEXSIM objects, but we found  that this 
format was inefficient for  large (five-million-gate)  models, 
and was more  suited  for  component sirnulation. The 
production-level  solution  to  this  problem involved 
changing  the  manner in which ZFS  models  were built.  A 
“merger” was used to link ZFS  objects in  a hierarchical 
manner, preserving the  names of component  pins as 
aliases.  A translator  then  converted  TEXSIM  objects  into 
ZFS objects, and, with the  construction of an  appropriate 
hierarchical  description, a  single ZFS  object was formed 
for  the system model.  That  object was then  compiled  into 
a ZFS  model in the  standard way. 

the  translation of (component)  ZFS  objects  into  EVE 
objects,  allowing the existing EVE  link-and-compile 
process  to  be  used.  This  methodology of translating 
between  simulator  object-forms allows construction of a 
simulator-specific model  from  components  described in 
any of a number of design-entry  databases,  thus avoiding 
a requirement  that design communities  adopt  simulator- 
specific conventions. 

For  EVE,  the  hierarchical  description was used  to affect 
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Configurations The main limitation  on  the  model 
configurations used for system verification was model 
size. System  verification  used both  the  EVE  hardware 
accelerator  and  the  ZFS cycle simulator.  Model size 
was restricted by the  amount of logic that  EVE could 
support.  The  EVE  model size  capacity was determined by 
interactively adding  chips  to  the  model until the  model 
outgrew  the  EVE capacity. ZFS, on the  other  hand, 
allowed larger  models,  but  for debugging purposes  the 
models  had  to  match. By having matching  models,  failures 
on the EVE simulator could be played  back on ZFS, 
where  debug was more user-friendly. In  order  to  use 
the system assurance  kernel  (SAK),  an  architectural 
verification program  used  to verify the  hardware,  the 
largest possible  main  memory space was required.  This 
meant  that  the  models must contain all four  STC  chips 
(or behaviorals). Along with the  four  STC chips, four BSN 
chips  were necessary to  support  the  function of the  STC 
chips. Therefore,  the  chips  that  could  be  varied in the 
model  were  the  processor, L2, and MBA. 

configurations  would be most  beneficial to  test.  The first 
was a  logical L2 (two L2 chips),  with all three  processor 
chips attached.  This  placed  the  most  stress  on  the L2 
chips  to  ensure  that  they  functioned  properly with  a heavy 
workload.  The  second configuration  was one in which 
separate logical L2s were  required  to  communicate with 
one  another.  This  resulted in a model with two processors 
attached  to two logical L2s. We  then  added two MBA 
chips  to  the “three-processor/two-L2” model [Figure 8(a)], 
while the “four-processor/four-L2” model [Figure 8(b)] 
had  no MBAs but used real  STC chips. On the  three- 
processor/two L2 model with the  MBA chips, the  STC 
behavioral was used,  because  the  model size exceeded 
EVE capacity  with the  real STCs. This was not a concern, 
because  the  real  STC logic would be  tested  on  the  other 
configuration. These two models  provided  the capability of 
testing all chips in the system (processor, L2, BSN, STC, 
and  MBA), with  a focus  on  the  CMOS 4 chips  (processor 
and L2). 

One  concern  that  arose  from  these two configurations 
was that  the clock chip was not  included with the  other 
chips in the system. To  address  this  concern, a two-cycle 
version of the  chips was necessary [5]. The  CMOS 3 
(S/390 Parallel  Enterprise  Server G3) “nest  chips” (BSN, 
STC,  and  MBA)  were  already in  a two-cycle environment 
as a result of their DSL design language  and  compile 
process. The  CMOS 4 processor  and L2 chips were 
designed in VHDL, which allowed for  smaller  and  faster 
one-cycle  versions to  run on our  simulators.  The two-cycle 
versions of the  processor  and L2 chips nearly doubled  the 
size of these chips. In  order  to  reduce  the size of the two- 
cycle model, a  single L2 chip  model was built which 
provided a degraded version of the  CMOS 4 system  while 

From logic  designers’ input, it was decided  that two L2 

CPO I CPl 

L20A L20B 

The two “one-cycle” system integration model configurations: (a) 
Three-processor/two-L2 configuration; (b) four-processor/four-L2 

* configuration.  Boxes  indicate real VHDL logic;  ovals  indicate 
,’ behaviorals.  Line  connections  represent both data  and  control 

lines. 

still allowing the necessary  clock testing.  The resulting 
model (Figure 9) was one with three  processors, half of a 
logical L2, two BSNs, two STCs, and  one MBA. 

Mainline SAK testing The  mainline  test  strategy  used  for 
the  CMOS 4 S/390 processor  and L2 chips was similar to 
that used on previous S/390 machines [2]. SAK generated 
test  instruction  streams  to verify the S/390 architecture 
and  implementation of SMP system models  running on the 
EVE 1.5 hardware  accelerator.  The  EVE 1.5 enabled 
large-system models  to  run over 100 million cycles per 
week. For  the  CMOS 4 S/390 system,  a new mapper 559 
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a few hours so that  the fix could be verified and  testing 
could  continue in  a  timely manner. 

. . . . . . .I . . 

1 The “two-cycle” three-processor/one-L2 system integration model 1 configuration. Representations as in  Figure 8. 

program (known  as Memmove) was written in C to 
interact with the  storage  hierarchy utilizing the  SimAPI 
interfaces [3]. Test-case specification parameters used by 
SAK  were modified so that new architecture  and specifics 
of the  implementation  were  correctly  handled  during  test- 
case  generation. 

All aspects of mainline  test  were  done primarily by two 
individuals. This was accomplished by delaying  SAK 
testing  until  the  processor  and L2 chips were verified by 
chip  simulation  to  be  functionally  capable of working 
in the  more complex  system environment,  rather  than 
being  bound by a development  schedule  that called for 
premature  testing on the  EVE machines. Once  started, 
chip verification had  completed most of the CP and L2 
mainline  testing  and was concentrating  on  other  aspects 
of the design. By staging the verification  in this  manner, 
mainline system test  found  the  more complex problems 
rather  than  stumbling  over  simpler  problems  that  should 
be  uncovered  at lower  verification levels. This significantly 
reduced  duplicate  or  concurrent  problems  and  provided a 
more efficient use of the limited EVE 1.5 resources. 

The  need  for system  verification was underscored when 
two problems in the  processor  and L2 interface logic were 
discovered  using the initial  system-level models. However, 
after discovery of these bugs,  millions of EVE cycles were 
run  before  the next  bug was encountered.  This bug was a 
complex SMP  condition  that involved three  processors  and 
back-to-back cross-invalidate (XI)  requests. A tightly 
coupled  relationship with  chip-level  verification tools  and 
personnel  and a graphical  simulation  trace browser 
helped  reduce  problem  isolation  time  to a  minimum. 

560 Furthermore,  the  designers typically turned  around fixes in 

Resets, IML One of the most visible metrics of the 
success of the verification effort  comes when the system is 
powered-on on the  engineering  test floor. If the system is 
able  to  power-on-reset  and  start SAK, the design and 
simulation  effort  has achieved  its first real  measure of 
success. Therefore, it is important  to verify the  power- 
on-reset  sequence  prior  to  chip  release. 

Verification of power-on-reset  on  the  CMOS 4 Si390 
system presented a number of new challenges. The first 
was the use of the service  word interface  from  the service 
element  (SE)  to  the  processor  through  the  X-register in 
the  MBA.  This  path is  used to  transfer  data blocks, 
including  millicode and 1390 code [see the  SE  behavioral 
and  X-reg  connection in Figure  8(a)].  The  second was the 
use of multiple levels of code  to  perform  the  subfunctions 
of power-on-reset. 

One way to  attack this testing which was  used 
successfully in the  past was to  attach  the real SE  to  the 
simulation  model  and drive  it with the  SE  code [8]. 
However,  this approach  requires  that  the SE code  be 
available early in the  test cycle. Alternatively, the 
approach  that was taken  on  the  CMOS 4 S/390 project 
allowed the  hardware  to  be verified without  needing  the 
SE  code by using a state  machine  behavioral in place of 
the  SE  code.  The  behavioral  controls  the flow of the  reset 
by sending  and  responding  to service words  on  the X- 
register  interface.  This  method  enabled verification of the 
SE-processor  communications  and  sequence  through  the 
power-on-reset.  This  sequence involved running  through 
multiple layers of code. First, bootstrap millicode was 
loaded  into  the L2 cache via a fast  load  mechanism.  The 
bootstrap millicode verified that  the  interfaces  between 
the  processors  and  the  rest of the  chips were functional. 
Next the  functional millicode was loaded  into main 
memory via the  X-register.  This  code was then  executed  to 
set  up  the Si390 environment  that is necessary for  the next 
phase, when the I390 code is loaded  into memory via the 
X-register. Finally, control blocks were  built in  memory 
and a  final reset  took  place.  Executing all of this code in  a 
reasonable  period of time  required  the  EVE 1.5 hardware 
accelerator, which executed  this  environment  at a speed of 
300 cycles per second. At  this  speed,  enough of the  code 
was executed  to  ensure  the verification of the  hardware 
and  the majority of the  code layers. 

This  method of power-on-reset verification  proved 
highly successful. Ten  hardware  problems  and 35 millicode 
problems  were  found by verification. When  the system 
powered-on  on  the  engineering  test floor, power-on-reset 
was achieved quickly, a  significant achievement  for a  new 
processor design. 
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Explicit testing 

Clock testing 
The clock chip was designed by the  IBM Boeblingen 
Laboratory  and was used to drive both  CMOS 3 Si390 and 
CMOS 4 Si390 systems.  Because of differences in the 
implementations of the processors, it was necessary to 
implement  CMOS 4 Si390-specific functions in the clock 
chip. The  CMOS 4 Si390-specific functions  were verified 
separately by this team.  The clock chip was driven by a 
behavioral  developed  for  the  CMOS 3 Si390 system and 
restructured  to work in the  CMOS 4 Si390 simulation 
environment.  The clock chip was simulated  on  ZFS with 
test  cases  written in REXX using the SimAPI interface. 

The  functions verified on  the clock chip  were self-test, 
serial  interface (SIF), single-cycle operations, chain 
shifting, and  starting  and  stopping of clocks. Self-test  on 
the  CMOS 4 Si390 processor  used  the service element  to 
control  the initialization and  signature checking, whereas 
the  CMOS 3 Si390 processor  used  the clock chip  to 
control  and  execute  the  entire self-test sequence.  Testing 
in  this area uncovered  a multitude of design problems  that 
were common  to  both processors. In  the  CMOS 4 Si390 
design,  the  serial  interface cycles only while the clocks are 
running  and is inactive  when the clocks are  stopped. All 
valid commands  for  the  serial  interface were  verified, 
with an  emphasis  on  stopping  the clocks during a frame 
transfer. Design failures were encountered  on  normal  SIF 
operation, with two failures  encountered  on  restart of the 
SIF after  the clocks to the  processor  had  been  stopped. 
Single-cycle operations  are similar on  both systems, while 
stop  on count end  (SOCE) is a function unique to CMOS 4 
Si390. This  area  required  intense testing, with emphasis 
on  the  proper timing and  interface  protocol  to  the 
processor.  This verification  uncovered one timing problem 
on  the  interface.  Chain shifting and  startingistopping of 
clocks  were  identical on  both processors. This  area was 
tested by driving a CMOS 4 Si390 processor  and 
monitoring facilities and  interfaces  to  ensure  proper 
operation.  The clock chip  experienced a  successful test- 
floor bring-up  and  functioned  correctly with both of the 
systems. The test plan used to verify this chip will be used 
to verify follow-on clock chips in the Si390 family. 

Array built-in self-test 
Array built-in self-test  (ABIST)  test  details  can  be  found 
in a companion  paper [5] in this issue. 

Logic built-in self-test 
A  goal in design  verification for this system was to 
double-check  that  the  test  patterns  generated  for  chip 
manufacturing  were  correct. A prior methodology  used 
a test-simulation  model  to  run logic built-in self-test 
(LBIST)  and  generate a multiple-input shift register 

(MISR)  signature  that was compared  to  the  actual  MISR 
signature  results  on  the new chips.  Success  was declared 
when the  signatures  matched  on a  cross section of the 
chips. Unfortunately, in  this prior  methodology,  the 
signatures  did  not  match in most  cases, and a painstaking 
effort was put  forth  to analyze the  differences  between 
the  simulation  model  and  the  hardware.  With limited 
troubleshooting aids,  it was very difficult to  isolate  the 
failure  to  an  error in the  modeling of the logic or a 
problem in the  “real  hardware.”  This  process  increased 
the  test  time  on  the  chips  and delayed the  start of 
functional  testing. 

two independent  simulation  models  and  compare  the 
signatures. If the  signatures  matched  after a  finite set of 
patterns were run,  the probability increased  that  the  MISR 
signatures  generated by a set of test  patterns  were  correct. 
To accomplish  this  goal,  a two-cycle representation of the 
processor  and L2 was created [5]. The two-cycle processor 
and L2 models  were driven by the system clock chip. This 
model was initialized with the  correct LBIST latch values 
and  simulated using the  ZFS cycle simulator.  Each  pattern 
required 4000 cycles on  the L2 chip, while it took 10 000 
cycles to accomplish the  same task on  the  processor.  The 
performance of these  models  ranged  from 40 to 80 cycles 
per  second.  This  pattern was then  compared  to  the  pattern 
generated by TestBench* [9]. When a  mismatch occurred, 
the  comparison usually  showed that a  latch was modeled 
incorrectly  in either  TestBench  or ZFS. Latch  modeling 
was then  corrected  on  the failing simulator.  The original 
goal was to  get a  minimum of ten  patterns  to  match.  The 
goal was exceeded, as more  than 100 successful pattern 
comparisons were completed. 

With  this  process in place, there was a high degree of 
confidence that  the  test  patterns  generated  were  correct. If 
a  mismatch occurred  between  the  simulated  patterns  and 
the  real  hardware  on  the  testers,  the  problem was likely in 
the  hardware.  This expansion of verification helped  reduce 
the chip test time dramatically, and chip test-pattern  debug 
can now be  completed in  less than  one week. 

The new solution  to  this  problem was to  run  LBIST  on 

Scan-ring verification 
The  CMOS 4 Si390 system uses scan  rings to  reset  the 
system rather  than  the logic-based reset used on  prior 
systems. The system is forced  to a reset  state using  a 
single  scan  ring per  chip, with the scan data  and  controls 
arriving from  the SE code  through  the clock chip 
interface.  The  processor  and L2 have additional  scan-ring 
capabilities  through  the  use of LBIST, where  the chip-long 
scan  ring can  be divided into 60 subrings. In  LBIST  mode, 
each of these  subrings is used with random  data  patterns 
for  hardware  chip testing. Utilization of the  subrings was 
an  integral  part of verifying the single long ring, as  each 561 
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of the 60 shorter rings was simulated in parallel  to  create 
a faster chip-level  scan  verification. 

following goals: 

1. Ensure  that every functional  latch is on the scan  ring 

2. Ensure  correct  latch connectivity. 
3. Identify all ring  inversion  points. 
4. Determine design data  (order of latches on the ring). 
5. Verify scan  starting/stopping capability. 

The  overall scan-ring  verification effort  had  the 

and give latch  count. 

Scan-ring  verification  was approached on four  different 
levels. First,  each  macro was checked  for connectivity by 
the individual designers. Next, the  chip ring was verified 
using the  event  simulator.  The third-level  cross-checked 
the second-level test by running a Boolean check on the 
cycle simulator’s software  model. Finally, the  chip scan 
ring was rotated in the  middle of a mainline chip-level test 
case. 

The first-level macro connectivity test was run on the 
event  simulator. A generic C program was written  to  be 
used  for all  scan-ring macro  testing.  The  program was 
personalized  for  the individual macros by a  simple input 
file that defined the scan-in, scan-out,  Ll-clock, L2_clock, 
and scan-enable  signals for  the  macro.  After  reading  the 
personalization file, the  program used the  event-simulation 
software interface  to  traverse  the  model  hierarchy  and 
count  the  latches in the  macro.  Then, with the  entire 
model in the “U” (uninitialized)  state,  scan clocking was 
applied  and a pattern was scanned  into  the  macro.  The 
simulation was completed  when  the  pattern  appeared on 
the scan-out signal. The  number of L1/L2 clock pulses 
required  to scan the  pattern  through  the  macro was then 
compared with the  latch  count  taken  at  the  start.  This 
testing  uncovered  problems with  inversions on the ring, 
disconnected rings, and  latches  not  appearing on the ring. 

Chip-level  scan-ring  verification used a test  scheme 
similar to  that used by the  macro level. The main 
difference was that  the 60 LBIST subrings, each of length 
up  to 1152 latches,  were  scanned in parallel  because of 
event-simulator  speed  constraints (scanning the  entire 
60 000-latch processor ring  would  have taken  about  ten 
days). This  test could not  be  executed on either cycle 
simulator  because “U” data  are  supported only on the 
event  simulator. A unique  pattern was propagated  through 
each  subring. 

The chip-level testing on the event simulator  resulted in 
verification of macro-to-macro ring connections,  global 
logical  clock and scan control  connections,  and a chip- 
level latch  count  (derived  from  the  sum of the  length of 
the 60 subrings).  The  latch  count was then cross-checked 
with the  results  from  the  third level of scan-ring 

562 verification: Boolean analysis of the two-cycle simulation 

model. Instead of actually running  this  model on a 
cycle simulator,  the  software  tool  traversed  the  model 
connections  through  the  scan ring, flagging ambiguities  or 
dual  paths.  The  software  also  tracked  the  order of the 
latches on the ring, as well as  the  position of any inverters 
on  the ring. This  information was used  to  create  the 
design data  for initializing and debugging the  hardware 
when  it reached  the  engineering  test  laboratory. 

The final scan-ring  test used the cycle simulator  to 
verify the system clocking  in conjunction with  scanning 
and  scan clocking.  A mainline  test  case was initiated with 
normal clocking. After  running  about half of the  test case, 
the system  clocks were  stopped  and  the scan sequence 
began. Using  the  latch  count  derived in the  second  and 
third levels of scan  verification, the ring was rotated with 
the scan-out pin connected back to  the scan-in pin.  When 
the  scan  operation  rotated  the ring exactly one  time,  the 
system  clocks were  restarted  and  the  test  case  continued. 
A  successful AVP  test  case  indicated  that  the full rotation 
of the scan  ring returned all latch values to a state 
identical  to  the  one  that existed before  the clocks were 
stopped  and  that no arrays  or  combinatorial logic were 
erroneously clocked during  the scan sequence. A  single 
test  case  completed in six to eight hours, as the  scan 
operation  added 400 000 cycles to  the  test case. The  test 
was repeated  for a handful of AVP  (processor)  and 
random  (L2)  test cases. 

was successful. No problems  were  encountered in  any 
scan-ring connections  or clocking,  allowing the  resetting 
of the system to  proceed  without  hardware incidents. 

When to release? 
With  the  emphasis  on  time  to  market, a balance  had 
to  be  struck  between business and  technical  pressures. 
Therefore,  the verification team  strove  for a clean first- 
pass  system,  with the  understanding  that success  was 
measured by swift progress of the system through 
hardware systems bring-up.  To achieve  this, the logic 
design had  to  be  able  to  perform most functions flawlessly. 

The key to this strategy was threefold.  First,  the 
verification and design teams  had  to  understand  the 
strengths  and  weaknesses of the  methodologies.  The 
L2 random  methodology,  for example, is capable of 
uncovering very tight window condition  error cases, but 
weaker  at discovering static  “hang”  conditions  where a 
small number of steady  requesters lock one  another  out of 
the  priority logic. With  this type of information in mind, 
designers  implemented  hardware  “dither”  modes which 
can  help  break  out of loops. At  the  same  time, verification 
efforts  to  attack  hang  conditions  were  enhanced. Still, 
special care was taken  to  ensure  that  the  dither  mode 
would  work if a hang  condition  were discovered  in 
hardware system test. 

This  four-step  methodology  for verifying the scan  rings 
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Table 2 CMOS 4 Si390  logical  bug totals. 
~ _ _ _ _ ~  ~ 

Designer Unit level Chip level System level Engineering 
macro level test lab 

Problem count 1600 1400 1000 40 26 
Percentage 39.4% 34.4% 24.6% 1% 0.6% 

Second,  priorities of hardware  bring-up must be 
understood  and fully verified. The  hardware  bring-up 
team’s test  plan was thoroughly  examined by the 
verification team  to  understand  the  order in which tests 
would occur as well as the priority. Resetting  the system 
at power-on was obviously a function  that  had  no  room 
for  errors.  Therefore,  the  entire  reset  sequence was fully 
simulated  to give 100% confidence in the scanning and 
reset  capabilities of the  hardware.  On  the  other  hand, 
error  injection,  where a hardware  test  expert verified 
system recovery after a hard  or  soft  error, was less 
important in the  early  stages of systems bring-up.  An  area 
such as recovery  could  afford to have  a few problems 
found  on  the  hardware  and fixed in the  second  release. 

Third,  the  work-around mechanisms that allow for 
avoidance of failing scenarios  had  to  be  understood  and 
fully functional.  Understanding  the  work-around 
mechanisms assisted  in directing  test  cases  toward  the 
boundaries of the  work-around  conditions.  This 
understanding  also  led  to a test  suite  for  the  work-around 
mechanisms themselves. 

With  these principles  in hand,  comprehensive 
verification release  criteria  were  created.  The  criteria were 
in checklist form so that  each  engineer could sign off on 
individual functions of the design. The  criteria  contained 
tests  from all levels of verification. The  release  criteria 
were  based  on  functional  performance  rather  than  number 
of simulation cycles, as in the  past. While the  functional 
performance  measurement is currently  qualitative,  the 
verification personnel  were  best  suited  to  make  the 
judgment  on how well the logic was performing.  Although 
the  number of cycles and  error  rate  were used in the 
judgment,  the  most  important  factors  were  the  completion 
of the  test plan and  the  stress  on  the logic during 
simulation  runs.  Future  release  criteria will use coverage 
metrics  to  quantify  the  stress  on  the logic. 

Results and concluding remarks 
The success of the verification effort  on  the  CMOS 4 
Si390 system was judged  at  both  qualitative  and 
quantitative levels. While  the  stated  goal of “swift bring- 
up  and  test of the  hardware  to aid time  to  market” is a 
qualitative  statement, a quantitative  hardware  escape 
count  has historically been  used.  Setting a quantitative 
target was therefore  unavoidable.  The  number,  based  on 563 
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the  estimated maximum number of escapes  that  the 
engineering  test  laboratory  could  handle  without affecting 
the  schedule, was set  at 40. 

By both  measures,  the verification effort was a  success. 
While only 26 hardware  problems  were  found in the 
engineering  test  laboratory (Table 2), the main  goal of 
“swift bring-up and  test” was accomplished. The level of 
complexity of the  escapes  found in the  laboratory was 
relatively high. However, all of the  problems could be 
circumvented with relative  ease,  permitting  testing to 
continue (Table 3). 

All of the 26 hardware  escapes  were  thoroughly 
analyzed by the verification team.  The  purpose of this 
analysis was to  correct  shortcomings in the  process  for 
this  project as well as future  programs.  The analysis was 
separated  into two parts:  problem classification and 
methodology  update. 

analysis: 
The following process was followed for  each  escape 

1. 

2. 

3. 
4. 

5. 

Escape is discovered in the  engineering  laboratory  and 
assigned  a problem  number in  a database. 
The design and verification team  debug  the  problem 
and  reproduce it on a simulator.  This  step  took  from 
one  to seven days, depending  on  the difficulty of 
reproducing in simulation. 
The fix is verified  in simulation. 
The  database is updated with  a  full description of the 
problem. 
The verification team  performs  the analysis and 
classification. 

Classification categories  described  information  about  the 
problem,  the  failure in the  methodology  that would  have 
found  the  problem,  the type of problem,  the  associated 
error in the design, the  work-around capability, and  the 
duration  from  problem discovery to  understanding of the 
problem.  These classifications helped define future 
methodology  improvements  and  focus  items  for  research 
and  development. 

The  CMOS 4 Si390 logic verification results  compare 
favorably to  those  for  the previous CMOS 3 Si390 systems 
(50% fewer problems  to  the  engineering  test  laboratory). 
Additionally, the  results  compare favorably to  those  for 
the previous nonderivative Si390 systems (one  tenth of the 



Category DeJinition Number of escapes 
in category 

Tolerate  Problem occurs  rarely and is easy to recognize.  10 
A work-around is identified, but  not used 
unless the  problem  becomes  an annoyance. 

Directinongating 

Indirect/some  function disabled 

The  work-around fixes the exact occurrence of 
the  problem  and  does  not  gate any further 
testing. 

The  granularity of the  work-around is such 
that  other cases may take  the  work-around 
path  or  that  some  minor  function  testing may 
be  gated. 

None/major  function disabled No  work-around exists, or  the  work-around 
causes major  function testing to  be  gated  or 
disabled. 

11 

5 

0 

problems  found in the  engineering  test  laboratory  on  the 
previous  bipolar system).  Much of the success  in attaining 
the  time-to-market  goals  for  the system can  be  attributed 
to  the verification methodologies used. The  movement of 
verification engineers across multiple levels of simulation 
also  contributed  to  the  time-to-market success. The 
learning  gained  at  the lower levels, along with the 
software  tools  that  the  engineers  reused,  were 
instrumental in quickly debugging higher levels and 
achieving targeted  schedules. While future  efforts will 
continue  to  benefit  from new techniques such  as formal 
verification, we expect that  the  methods  adopted by our 
team will be used in conjunction with future  development 
efforts. 

3. G.  G. Hallock, E. J. Kaminski,  Jr., K. M. Lasko, and M. P. 
Mullen, “SimAPI-A Common  Programming  Interface  for 
Simulation,” IBMJ. Res. Develop. 41, No. 4/5, 601-610 
(1997, this  issue). 

TIMEDIAGIGENRAND,” IBM J. Res. Develop. 41, 
No. 4/5, 581-591 (1997, this issue). 

5. Gary A. Van  Huben,  “The  Role of Two-cycle  Simulation in 
the S/390 Verification Process,” IBM .I. Res. Develop. 41, 
No. 4/5, 593-599 (1997, this  issue). 

6. D. K. Beece,  G.  R.  Deibert,  G.  P.  Papp,  and  G. F. Villanti, 
“The  IBM  Engineering Verification Engine,” Proceedings of 
the 25th ACMIIEEE Design Automation Conference, 1988, 
pp. 218-224. 

M. Leibowitz, and V. Schwartzburd,  “Verification of the 
IBM RISC System/6000 by a  Dynamic  Biased Pseudo- 
Random  Test  Program  Generator,” IBM Syst. J. 30, No. 4, 

4. B. Wile, “Designer-Level Verification  Using 

7. A.  Aharon, A. Bar-David, B. Dorfman, E. Gofman, 

527-538 (1991). 
8. S. Koerner  and S. M. Licker, “Run-Control  and Service 

Acknowledgments Element  Code  Simulation  for  the S/390 Microprocessor,” 
The  authors wish to acknowledge the  contributions of ZBMJ. Res. Develop. 41, No. 4/5, 577-580 (1997, this issue). 

9. W. V.  Huott, T. J. Kourowski, B. J.  Robbins, M. P. Kusko, 
tools  and  support  personnel, including  Ken Shepard, S. V. Pateras,  D.  E.  Hbffman, T. G.  McNamara,  and T. J. 
Tom  Ruane,  Gary Hallock, Dan  Beece, Lisa  Lacey, Rick Snethen,  “Advanced  Microprocessor  Test Strategy and 
Seigler,  and  Anne  Huston.  We also  acknowledge the 

Methodology,” IBM J. Res. Develop. 41, No. 4/5, 611-627 
(1997, this issue). 

support  and  encouragement given by Paul  Minear  and 
Vijay Lund in their  management  roles. Received December 9, 1996; accepted for publication 

*Trademark  or  registered  trademark of International Business 
Machines  Corporation. 

May 19, 1997 

References 
1. A.  Chandra, V. Iyengar, D.  Jameson, R. Jawalekar, I. Nair, 

B. Rosen, M. Mullen, J.  Yoon,  R.  Armoni, D. Geist,  and 
Y.  Wolfsthal,  “AVPGEN-A Test  Generator  for 
Architecture Verification,” IEEE Trans. Very  Large Scale 
Integration (VLSI) Syst. 3, No. 2, 188-200 (June 1995). 

2. D. F. Ackerman, M. H. Decker,  J.  J. Gosselin, K. M. 
Lasko, M. P.  Mullen, R. E. Rosa, E. V.  Valera,  and 
B. Wile, “Simulation of IBM  Enterprise System/9000 
Models 820 and 900,” IBMJ.  Res. Develop. 36, No. 4, 

564 751-764 (July  1992). 

B. WILE ET AL. IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997 



Bruce  Wile IBM System/390 Division, 522 South  Road, 
Poughkeepsie, New York 12601 (bwile@vnet.ibm.com). Mr. 
Wile is currently a Senior  Engineer  and Verification Manager 
in Si390. He  has  worked in verification  since joining  IBM in 
1985, and was the verification team  leader  for  the S/390 G4 
(CMOS  4) system.  Mr. Wile’s previous  verification 
experiences included storage  controller  element simulation for 
the S/390 bipolar ES/9000 machines including the 6-way, 8- 
way, and 10-way multiprocessor systems. He was  previously 
verification team  leader  for  the 10-way IBM  ES/9000  system. 
Mr. Wile  received  a B.S. in computer science from 
Pennsylvania State University in 1984. He received an  IBM 
Excellence  Award in 1992 and  an IBM Team Award in 1993, 
and in 1995 an  IBM Invention  Achievement Award for 
inventions and  patent submissions pertaining  to  the 
TIMEDIAG/GENRAND  tool  set. 

Michael P.  Mullen IBM System/390 Division, 522 South 
Road, Poughkeepsie,  New York 12601 (mmullen@vnet.ibm.com). 
Mr.  Mullen is currently a Senior  Programmer;  he  joined 
IBM in 1976. He received  a B.S. degree in computer 
science from  Union College in 1976, and  an M.S. degree in 
computer/information sciences from Syracuse  University in 
1981. Mr. Mullen has  worked  on  the  development of several 
mainframe systems, and is currently responsible for  the 
hardware design  verification of IBM S/390 CMOS processors. 
He received IBM Outstanding  Technical Achievement  Awards 
for his  work  on the  IBM 3090 processor  controller  microcode 
(1985), ES/9000 processor simulation  (1991), and  AVPGEN 
development (1994). 

Cars Hanson IBM System/390 Division, 522 South  Road, 
Poughkeepsie, New York 12601 (carah@vnet.ibm.com). Mrs. 
Hanson  joined  IBM in 1984; she is currently  an Advisory 
Engineer. Since 1987, she has  worked in the  area of storage 
controller simulation for  the  IBM ESi9000 and S/390 G4 
machines. Mrs. Hanson received  a B.S. in electrical 
engineering  from  Rutgers University in 1984, and  an M.S. in 
computer  engineering  from Syracuse  University in 1994. In 
1991 she received an IBM  Gold Level Quality  Award for  her 
work on ESi9000 storage  controller  simulation,  and in 1996 
she received an  IBM  Team Award for  her  contributions to 
S/390 G3  common chip Verification. 

Dean G. Bair IBM System/390 Division, 522 South  Road, 
Poughkeepsie, New  York 12601 (dgbair@vnet.ibm.com). Mr. 
Bair joined IBM in 1984 as  a  systems test  technician.  In 1986 
he  joined  the  IBM S/390 design  verification team,  where 
he is currently a Staff Software  Engineer. He has  worked on 
verification of I/O  controllers, L1 cache designs, and  shared 
L2 cache designs for  the 6-way and 8-way IBM ESi9000 
systems and  the S/390 G4 system. In 1992 Mr. Bair received an 
IBM Outstanding  Technical  Achievement Award for his work 
on the 8-way ES/9000 BCE  random  test driver development. 
He received an IBM Invention Achievement  Award in 1995 
for his work on  the  TIMEDIAG/GENRAND  tool  set. 

Kevin M. Lasko IBM Systeml390 Division, 522 South  Road, 
Poughkeepsie, New York 12601 (kmlasko@vnet.ibm.com). Mr. 
Lasko is currently  an Advisory Engineer in S/390 simulation, 
performing system  verification of the IBM S/390 G4 system. 
He joined IBM in 1978 in Subproducts  Manufacturing 
Engineering.  Since 1981 he  has  simulated  various S/390 

systems at  the  element  and system  level. Mr. Lasko received  a 
B.S. in electrical  engineering  from  Union College in 1978 and 
an MS.  in computer  engineering  from Syracuse  University 
in 1983. He received an IBM Outstanding Technical 
Achievement Award in 1987 for his  work on random test-case 
development  for  element  simulation of the 3090 storage 
controller.  In 1996 he received an IBM Team Award for his 
work on S/390 G3  common  chip verification. 

Patrick J.  DUffy IBM System/390 Division, 522 South  Road, 
Poughkeepsie, New York 12601 (pjdufi@vnet.ibm.com). Mr. 
Duffy joined IBM in 1990 as a logic designer  on  an advanced 
processor design  project. From 1992 until 1994 he  worked  on 
an IBM ES/9000 project  as  both a TCM  coordinator  and  SCE 
designer. In 1994 he  joined  the S/390 design  verification team, 
where  he is currently a Senior Associate Engineer  performing 
system verification. He received  a B.S. in computer 
engineering  from Lehigh  University in 1990 and  is  currently 
pursuing  an M.S. in computer  engineering  from Syracuse 
University. Mr. Duffy  received IBM  Team  Awards  for his 
design  work on the ESi9000 project in 1993 and  for his 
verification efforts on the S/390 G3 common chip  in 1996. 

Edward J. Kaminski, Jr. IBM System/390 Division, 
522 South  Road, Poughkeepsie, New York 12601 
(eddiek@vnet.ibm.com). Mr.  Kaminski  received  a B.S. in 
electrical engineering  from  Rensselaer Polytechnic Institute 
in 1987, joining IBM  that  same year. He is currently a Staff 
Engineer,  and  has  worked on verification of shared  L2  cache 
and system controller  elements of the  IBM S/390 systems: 
6-way, &way, and 10-way IBM ES/9000, and Si390 G4.  Mr. 
Kaminski  received  IBM Team  Awards  for his  work on  the 
10-way IBM ESi9000 in 1993 and S/390 G3  common  chip 
verification in 1996, and  an  IBM  Invention  Achievement 
Award for his  work on  the  TIMEDIAG/GENRAND  tools in 
1995. 

Thomas E. Gilbert IBM System/390 Division, 522 South 
Road, Poughkeepsie, New York 12601 (tgilbert@vnet.ibm.com). 
Mr. Gilbert  joined  IBM in 1974 and  has held many technical 
and  management positions. He is currently  an Advisory 
Engineer  in IBM Si390 design  verification,  working on  the 
CMOS clock chip  and system integration of the Si390 G4 
system. His previous  verification experiences  include  team 
leader  and verification engineer in connection with  various 
S/390 systems and  CMOS  channels.  He  has  been working in 
design  verification  since 1984. Mr.  Gilbert received an IBM 
Outstanding  Innovation Award in 1988 for his  work on 
I/O subsystem  drivers, an IBM Outstanding  Technical 
Achievement Award in 1990 for his  work on scan-ring 
modeling, and  an  IBM  Team Award for his  work on the 
Si390 G3  common chip Verification. 

Steven M. Licker IBM System/390 Division, 522 South 
Road, Poughkeepsie, New York 12601 (slicker@vnet.ibm.com). 
Mr. Licker is an Advisory Engineer working in IBM S/390 
design  verification. He joined  IBM in 1977, and  has held  a 
number of technical and  management  positions in engineering 
systems  testing on the IBM 308X and 3090 projects. Mr. 
Licker  has spent  the last ten years  doing processor  and system 
simulation  on  the IBM ES/9000 and Si390 G4 systems. He 
received an IBM Team Award for S/390 G3  common  chip 
verification in 1996. 

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 B. WILE ET AL. 



Robert G. Sheldon IBM System/390 Division, 522 South 
Road, Poughkeepsie, New York 12601 (rgs@vnet.ibm.com). Mr. 
Sheldon is a Staff Programmer who, for  the  past twelve years, 
has worked on simulation  accelerators  (EVE) in support 
of IBM Si390 system  simulation. He received an M.S. in 
computer science from  Purdue University in 1976, and  did 
postgraduate study at  the University of California at Berkeley. 

William D. WoiiyUng ZBM Systemi390 Division, 522 South 
Road, Poughkeepsie, New York 12601 (bwollyung@vnet.ibm.com). 
Mr. Wollyung joined IBM in 1974, and  has  worked in the 
simulation area since 1983. He is currently  an Advisory 
Engineer working on storage  controller simulation; he  also 
worked on the  hardware design  verification of the IBM 
ESi9000 and SI390 G4 processors. In 1989 Mr. Wollyung 
received an IBM Outstanding Technical Achievement Award 
for his  work on 3090 S simulation,  and in 1991 he received an 
IBM Gold Level Quality  Award for his work on the 9121 
simulation team. 

William J. Lewis IBM System1390 Division, 522 South  Road, 
Poughkeepsie, New  York 12601 (wjlewis@vnet.ibm.com). Mr. 
Lewis joined IBM in 1982 and is currently  an Advisory 
Programmer. He received  a  B.A. degree in computer science 
from  the  State University of New York  at Oswego. He  started 
in the  hardware  performance  area working on workload 
characterization  and  storage hierarchy  modeling. Mr. Lewis 
has  been working on CP, storage,  and IiO microcode 
verification  since 1985, except for a brief return to 
performance  to  do  CP modeling. 

Robert J. Adkins IBM System/390 Division, 522 South 
Road, Poughkeepsie, New  York 12601 (radkins@vnet.ibm.com). 
Mr. Adkins is a  Staff  Software Engineer who is currently 
working  on storage  controller  element  simulation.  From 1985 
through 1995, Mr.  Adkins was responsible  for  hardware design 
verification of the  IBM ES/9000 and Si390 G4 processors. In 
1991 he received an IBM Outstanding  Technical  Achievement 
Award for his  work on ES/9000 processor  simulation. 

566 

B. WILE ET AL IBM J.  RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1 997 


