Architecture
and software
support in IBM

S/390 Parallel
Enterprise

Servers for IEEE

Floating-Point
arithmetic

by P. H. Abbott
D. G. Brush
C. W. Clark Il
C. J. Crone
J. R. Ehrman
G. W. Ewart
C. A. Goodrich
M. Hack
J. S. Kapernick
B. J. Minchau
W. C. Shepard
R. M. Smith, Sr.
R. Tallman
S. Walkowiak
A. Watanabe
W. R. White

IEEE Binary Floating-Point is an industry-
standard architecture. The IBM System/360™
hexadecimal floating-point architecture
predates the IEEE standard and has been
carried forward through the System/370™ to
current System/390® processors. The growing
importance of industry standards and floating-
point combined to produce a need for IEEE
Floating-Point on System/390. At the same
time, customer investment in IBM floating-
point had to be preserved. This paper
describes the architecture, hardware, and
software efforts that combined to produce a
conforming implementation of IEEE Floating-
Point on System/390 while retaining
compatibility with the original IBM
architecture.

Introduction
In late 1995, the IBM System/390* Division decided to
add support for IEEE Floating-Point arithmetic to the

evolving S/390 Parallel Enterprise Servers®. The objective
was to address the increasing prevalence of IEEE
Floating-Point in new workloads that customers wanted
to host on these new machines. This paper describes the
resulting hardware architecture and software support
provided to allow developers of these new workloads,

as well as customer programmers, to employ the new
facilities.

IBM System/360* implemented floating-point arithmetic
in hardware and offered the feature in all models of the
product line, a significant advance at the time. This
capability brought the performance of hardware floating-
point to customers using even the smallest S/360
machines. The facilities included four floating-point
registers (FPRs), short- (32-bit) and long- (64-bit) precision
data types, and an innovative hexadecimal representation
allowing for compact exponent encoding and minimizing
the shifting required to normalize operands. The elements
of this architecture were implemented in several ways in
the different models of S/360 to provide appropriate levels
of performance when compared to other machines in the

©Copyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 723

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

P. H. ABBOTT ET AL.



724

line and with other manufacturers’ processors. Later, an
extended-precision (128-bit) data type was added to the
hardware, providing significant additional precision to
floating-point representation and computation. This
support was an IBM architectural exclusive at the time of
its introduction and remains one today. This architecture
has been implemented on all IBM large-scale machines
following S/360, up to and including the current S/390
Enterprise Server products.

In the interim, the industry, including IBM, looked for a
standard floating-point system that could be implemented
efficiently on smaller systems, especially the then-
emerging line of RISC machines, and one that addressed
deficiencies in existing floating-point systems. This work
was conducted through the IEEE Floating-Point Working
Group P754. IBM’s first “straw-man” architecture
proposal for implementing the IEEE Floating-Point draft
standard [1-5] in the then-current S/370* architecture
dates from 1982. In 1985, ANSI/IEEE Standard 754-1985
[6] was approved. Today, most of the IBM systems with
which S/390 Enterprise Servers interoperate implement
this standard, including all Personal Computers, all
RISC workstations (including RS/6000%), and AS/400%*.
Programming languages have begun to include IEEE
Floating-Point as a required data type.

IBM’s current effort began in 1989, when the System
Architecture group developed an initial proposal for an
IEEE Floating-Point implementation. This architecture
effort, augmented by hardware and software engineering
activity, continued at varying levels of intensity until the
current one began in 1995.

® S/390 transformation

S/390* is in the midst of a transformation that began in
the early 1990s. The large S/390 mainframe of that time
was an extremely capable system. It hosted one or

more very robust S/390 operating systems, providing a
comprehensive hardware/software system capable of
running workloads inconceivable for other platforms,
including those of the world’s largest banks, manufacturing
companies, insurance companies, stock exchanges, and
airline reservation systems.

However, this system was perceived to be too costly
by both actual and prospective customers. It was also
considered proprietary and was labeled a “legacy” system,
a pejorative term with no concrete definition but an
implied meaning of old or obsolete, to be replaced by
inexpensive, modern, open systems based on client/server
technology.

The large systems of the time supported a vertical
model, in which customer growth requirements were met
by providing larger systems featuring faster basic engines
configured either as uniprocessors or as multiprocessors
containing two to six engines. These machines were

P. H. ABBOTT ET AL.

built from bipolar technology, which provided the

high performance required to support vertical growth.
However, this technology was also high-cost and high-risk,
requiring special environmental support, including chilled
water for cooling. These factors raised the machines’ total
cost of ownership.

Those systems also featured software technologies and
workloads characterized as proprietary or “legacy,” such
as SNA, centralized OLTP (on-line transaction processing,
as delivered through subsystems such as IMS and CICS),
and batch processing. The technologies that provided the
ability to support these workloads delivered solid value
and were critical to the large business organizations
that deployed them. They were, however, continuing to
diminish in popularity within the industry. These systems
continued support for the floating-point system first
implemented with S/360, referred to in this paper as
hexadecimal floating-point, or HFP.

® Current environment
At this point in the S/390 transformation, significant
changes have been accomplished. The most important of
these has been a change to a horizontal growth model,
featuring the S/390 Parallel Sysplex*. Today, when
customers need additional capacity, they can grow
horizontally by adding an additional system and
connecting it to the existing ones. This is accomplished by
connecting each of the systems to an additional processor
configured as a coupling facility, or CF, a form of
electronic shared memory. The CF supports a set of
operations that, with the accompanying subsystem software
support, provides scalable, low-overhead, single-system-image
operation across multiple physical machines, allowing
functions such as N-way (where N is the number of
systems) sharing of data managed by DB2* or DL1. Work
for the IMS subsystem can be routed to any system in the
Parallel Sysplex, providing another single-system view of
the environment. The combined system also supports
higher availability through facilities provided by
the communications subsystems and the coupling facility.
In addition, OS/390%, the integrated MVS system,
has embraced open-systems function by providing an
implementation of an XPG4-compliant UNIX** kernel
and a UNIX shell as an alternate execution environment
to the others it supports. This simplifies the porting of
UNIX applications and also facilitates the implementation
of important middleware technologies on OS/390.
Examples of such applications and technologies include
SAP R/3 Data Base Server and Lotus Domino**, some
of the new workloads enabled for the transformed
S/390 Enterprise Server. S/390 is also providing an
implementation of the Java** virtual machine [7], a
technology facilitated by having a UNIX environment on
0S/390. The native-float data type in the Java language [8]

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



is an IEEE float. The implementation of IEEE Floating-
Point hardware on S/390 will enable these new
technologies to run on S/390 much more efficiently.

Design objectives

Our basic objective was to add IEEE Floating-Point as an
alternative to the existing HFP, not as a replacement for
it. A set of design objectives for the project developed,
beginning with the previous architecture efforts and
continuing as we extended them to provide an architecture
and design for the S/390 IEEE Floating-Point hardware
and software implementation. These objectives are
described below.

® Affordability

The first objective was affordability. It led us to provide a
full hardware implementation, but also to provide software
to support a focused set of new applications and a
customer development capability, as opposed to support
across the OS/390 system and across the S/390

platforms. This resulted in support in the OS/390 BCP
(Basic Control Program), the UNIX kernel, the High-
Level Assembler (HLASM), the C/C++ Compiler, the

C Run-time Library, the C++ Run-time Library, the Java
virtual machine, Language Environment (LE) for OS/390,
the dbx debugger, and the VisualAge* Remote Debugger,
all in the initial release. To allow development of
customer applications, we provided support in VM/ESA*
for guest virtual machines that use IEEE Floating-Point.

® Performance

The second objective was performance. Any additional
overhead in context switching created by the new
additional floating-point registers (AFPRs) was important
to control. We adopted a “pay-as-you-go” philosophy
whereby the overhead is incurred only if the hardware
feature is actually being used. The floating-point hardware
feature must be activated before it is available for
customer use. This activation is accomplished on a per-
process basis by the first attempt to use the new
instructions or registers.

e Serviceability

The third objective was serviceability. The FPRs (the
existing four as well as the AFPRs) are made available

to both existing HFP arithmetic and the new IEEE Binary
Floating-Point (BFP) operations. An architecture tradeoff
between serviceability and the desire to economize on
instruction operation codes was settled in favor of
serviceability. This led to a new, separate instruction set
for IEEE Floating-Point, instructions visible to a debugger
or in a memory dump, as opposed to a mode-set operation
and reuse of the existing instruction set.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

It is important to note that the new AFPRs are
available to both forms of floating-point computation. As
such, a dump of the registers means nothing without an
understanding of which type of computations have been
performed.

® Compatibility

The fourth objective was compatibility. It guided us when
implementation issues arose, associated with areas of the
specification that are not clearly spelled out. The decision
made was to remain compatible with RS/6000 and AIX*
in such circumstances. This approach facilitates porting
applications to OS/390 that originated on UNIX
platforms.

® Definitive support

The fifth design objective was definitive support.
Specifically, this meant that we wanted to avoid issues of
imprecision as to whether an environment does or does
not support IEEE Floating-Point. The specific choice we
made was to provide IEEE Floating-Point support in
0S/390 Version 2 Release 6. This led to the development
of an instruction simulator, included in the OS/390 Base
Control Program (BCP), that provides support for the
instructions when the operating system is running on a
machine without the hardware feature. The machines
providing the necessary hardware support are the G5 and
its successors. However, any program compiled to use
the IEEE instructions will run on an OS/390 Version 2
Release 6 system, albeit at degraded performance on

the G4 and earlier machines.

Another aspect of definitive support was long-term
coexistence between HFP and BFP. There is minimal
support designed to encourage migration from HFP
to BFP over time. Existing applications, if either not
recompiled or recompiled without change, continue to use
HFP and four FPRs. Such applications are encouraged to
use, where possible, the AFPRs, but not to convert to BFP
unless its specific advantages apply. Conversion to BFP
requires application analysis to ensure that adequate range
is available. Mechanically, using either BFP facilities or
the AFPRs for HFP requires application recompilation
and specific compiler directive-setting.

® Conformance to the standard

The sixth objective was conformance to the standard. This
goal, taken from the hardware architecture, was to provide
a fully conforming hardware implementation of the
standard. The target was to put as few dependencies for
conformance as possible on the OS/390 BCP. Meeting this
objective allows us to enhance the control program
independently of the state of the standard and
conformance to it, a desirable degree of freedom with

P. H. ABBOTT ET AL.

725



726

respect to future work. It will allow us to broaden the
scope of software support for IEEE Floating-Point

in OS/390 in response to market requirements,
without depending on enhancements to the control
program.

Architecture

The System/360 architecture, introduced in 1964, was the
definition of the interface to the machine, both hardware
and microcode, as observable by the “program.” This

was one of the first instances of the use of the term
“architecture” pertaining to a computer system. Since that
time, the term has become very popular and has acquired
diverse meanings. It is used to describe both hardware
and software interfaces, as well as system structure. In
this paper, the terms “architecture” and “hardware
architecture” are used in the original System/360 sense.
For S/390, the official term for the current version of

this interface is Enterprise Systems Architecture/390*
(ESA/390%) [9].

Architecture design process

Architecture design is an iterative process; it involves
coordinating requirements from many areas, including
hardware, programming, and marketing. These
requirements are continually changing and seldom present
a consistent picture. This problem is particularly acute for
ESA/390, because it is supported by several different
operating system platforms (0S/390, VM, TPF), each

on different design and delivery schedules.

For any particular architecture facility, it is unusual
for the hardware and corresponding software design to
coincide; a more typical situation is that the hardware
design for the first machine to implement a new
architecture facility is frozen before the software design
begins. Thus, a good deal of guesswork may be needed to
predict requirements before they are known. Typically,
new architecture facilities delivered on a machine must
first be tolerated, and later exploited, by each software
platform. The very nature of the support for IEEE
Floating-Point exacerbated this problem.

Unlike some architecture facilities, which are
implemented in microcode, the implementation of IEEE
Floating-Point in the hardware requires fundamental
changes in dataflow. Consequently, the designers needed
much more lead time than usual. In fact, the basic
architecture model was completed in 1992, and most of
the basic dataflow changes were included in the hardware
for G4 in preparation for introduction of the facility
on G5.

Compatibility

Compatibility, one of the strengths of ESA/390, is also a
very important factor in the architecture design process.

P. H. ABBOTT ET AL.

For ESA/390, compatibility among hardware models

is even more important than it is among releases of
software. The typical life of a machine in the field is

five to ten years. A single customer may have multiple
machines with an age span of at least ten years. On the
other hand, the same customer is not expected to run
more than two releases of a particular operating system,
and even then not for an extended period of time.
Consequences of incompatible changes are much more
serious in the hardware architecture than in the operating
system. Occasional compatibility problems between
versions of an operating system can be solved by running
back levels under VM or LPAR. The corresponding
situation for hardware—keeping old machines—is much
less palatable.

Compatibility is of particular concern in the case of
IEEE Floating-Point, as this facility is intended to be used
by application programs running in the problem state. In
the ESA/390 environment, application programs have
learned to enjoy complete bit-for-bit compatibility across
the entire product line for more than three decades, a
trend that is expected to continue for several more.

Only one chance to get it right

The original System/360 architecture for HFP did not
define a guard digit for long operands. Not until after the
first machines were shipped was it discovered that this was
a serious problem. The hardware was redesigned and the
change (primarily in microcode) was retrofitted in the
field. With the G5 implementation of IEEE Floating-
Point, such a change would require hardware changes in
the chip and would be much more expensive than the 1968
alteration. Since this early correction, the System/360
definition of HFP has been unchanged for more than 30
years. Even additions to the HFP architecture have been
rare. The extended format and seven operation codes were
added in December 1967, and two operation codes for
square root were added in September 1991." In short, with
IEEE Floating-Point, we had only one chance and would
be bound essentially permanently to what we produced.

® ESA/390 design objectives

With the foregoing in mind, the following design
objectives were used as a basis for developing the
hardware architecture [10] for the ESA/390 floating-point
(FP) extensions:

e World-class definition for both current and future
markets.

e Fully conforming implementation of the IEEE standard
(all of the “shalls” and most of the “shoulds”).

!'In addition to the mainstream facilities, a vector facility with 171 operation codes
was added in January 1986, and nine new vector operation codes were added in
September 1991.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



Full support for both single and double formats.

e Performance matching or exceeding that of the original
HFP.

Support for the extended format, not just for internal
computation, but externalized to the application in the
same manner as HFP.

« A more complete set of extended-precision operations
than previously available for HFP.

e AFPRs to improve the support of complex arithmetic

and extended formats.

Control-program-independent application interface.

e Where practical, BFP additions also provided for HFP.

Coexistence of HFP and BFP applications and data.

® Dual-radix floating-point representation

Support of two floating-point radixes in the same machine
presents some special problems. Among these are
questions of whether the two should share the same FPRs,
share the same exceptions, and share the same operation
codes.

Common registers

The same FPRs are used for both BFP and HFP data,
because separate sets increase the complexity of the
design, the hardware cost, and the overhead for context
switching. Further, separate registers do not solve any of
the linkage problems associated with mixed mode.

Separate exception indications

Exception handling for BFP is quite different from that
for HFP. BFP has five exceptions, with masks and status
flags for each; HFP has four exceptions, two masks, and
no status flags. Three exceptions are common to BFP
and HFP (overflow, underflow, and division by zero), so
using the same interruption codes for both modes was a
possibility. But even for these three exceptions, the action
taken by the machine is not the same, so there was no
hardware advantage to using the same interruption
codes. It was also expected that in a mixed BFP/HFP
environment, different trap-handling routines would

be invoked for the BFP and HFP exceptions, so new
interruption codes were defined for all five BFP
interruption conditions.

BFP/HFP conversion instructions

Coexistence and migration from HFP to BFP are provided
by instructions that convert between the HFP long format
and the BFP short and long formats. Instructions for HFP
short operands are not necessary, as conversion between
HFP long and short is trivial. Conversion of extended
operands is expected to be too infrequent to justify
implementation in hardware.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

The BFP/HFP conversion instructions present some
unique problems as to whether HFP or BFP exceptions
should be reported and whether the BFP rounding modes
should apply. It is expected that these instructions will be
used in both BFP and HFP environments, so they were
defined to be independent of both. Rounding is provided
explicitly, independently of the BFP rounding modes, and
exceptions are reported by means of the condition code
rather than by program exceptions.

Mode bit or separate instructions

A key decision that must be made in such a design is
whether to reuse the existing HFP operation codes for
BFP, with the run-time interpretation controlled by a
mode bit in the PSW, or to introduce a new set of
operation codes. A similar choice had to be made in the
IEEE standard for the four different styles of rounding.
Although the standards committee could have left this
choice of implementation open, it decided to design an
explicit mode setting that would be available to the
program.

Using a mode bit and reusing operation codes offers
the clear advantages of simpler hardware and fewer new
operation codes. It also allows for mode-independent
subroutines (facilitated by a special LOAD MODAL
CONSTANT instruction, which loads one of two operands
from storage depending on the floating-point mode
setting) and might simplify compiler code generation.

While the hardware advantages are real, the software
benefits are less compelling. Algorithms for intrinsic
functions are entirely different in the two floating-point
formats, and the reuse potential of other subroutines is
marginal, given the very different mechanisms provided
for dealing with exceptions. Since compiler code
generation is heavily table-driven, a separate set of
operation codes is not a major issue.

A modal approach makes sense in the case of the IEEE
rounding style because the different modes apply nearly
uniformly to all instructions. In the BFP/HFP case, the
underlying instruction sets are somewhat different, which
weakens the leverage that might otherwise be possible.
Further, the modal approach creates compatibility
problems for old programs written for HFP if there is any
possibility that they may be executed in the BFP mode.
Finally, the modal approach presents a significant difficulty
(even for new programs) in being able to diagnose a case
in which a program that has been written for one mode
has been inappropriately called in the other (resulting
invariably in gibberish, which may or may not be quickly
detected).

For these reasons, it was decided to pay the price in
hardware and use separate operation codes to ensure the
ability to produce robust applications.

P. H. ABBOTT ET AL.

727



728

flags
S 588 S

masks
IIIITI

MMMMMOOOQOFFFFFO0O0O01lIzouxy

izo0oux iz o0oux

Byte { Byte 1
FPC register overview.
Table 1  FPC register bit assignments.

Byte Bit(s) Name Abbr.
0 0 IEEE-invalid-operation mask IMi
0 1 IEEE-division-by-zero mask IMz
0 2 IEEE-overflow mask IMo
0 3 IEEE-underflow mask IMu
0 4 IEEE-inexact mask IMx
0 5-7 (Reserved) 0
1 0 IEEE-invalid-operation flag SFi
1 1 IEEE-division-by-zero flag SFz
1 2 IEEE-overflow flag SFo
1 3 IEEE-underflow flag SFu
1 4 IEEE-inexact flag SFx
1 5-7 (Reserved) 0
2 0-7 Data-exception code DXC
3 0-5 (Reserved) 0
3 6-7 Rounding mode RM

® Registers
Several considerations determined the register-related
aspects of the architecture.

Floating-point control register
BFP operations require several new control and status
bits: five IEEE exception status flags, five IEEE exception
trap masks, and two bits to specify any of four rounding
modes defined by the standard. The traditional container
for this type of information is the PSW, but there is not
enough room. This information is therefore placed in a
new register, called the floating-point control (FPC)
register, which is accessible by the problem program. In
addition to the above information, an 8-bit data exception
code (DXC) is also placed in the FPC register when an
IEEE trap occurs.

An overview of the 32-bit FPC register is shown in
Figure 1. Details are given in Tables 1 and 2.

P. H. ABBOTT ET AL.

DXC
00CCO00RM

Byte 2 Byte 3

Additional floating-point registers

The original System/360 architecture provided four 64-bit
FPRs. In 1964, four registers constituted an innovation
and a not inconsiderable amount of hardware. Intrinsic
functions written in assembly language performed quite
well with four registers; compilers at that time could
exploit only one or two.

Today, four FPRs are too few for optimum
performance. The simplest math library routines require
four FPRs; this number doubles for complex arithmetic
and doubles again for extended precision. With the
current technology, the cost to provide additional registers
in the hardware is minimal. Support of BFP provided the
opportunity to increase the number of FPRs, for both
HFP and BFP.

The four original System/360 FPRs were numbered 0, 2,
4, and 6, making the numbering consistent with that for
the even-odd general register pairs. Extended-precision
operands, which were added later, were accommodated in
pairs of registers (0/2 or 4/6), making only two registers
available in that format.

The System/360 instruction format provides 4-bit
register fields; thus, the bits in the instruction formats
have always been there to expand the number of available
registers to 16. Coupling register pairs for extended-
precision operands was done to provide a compatible
superset of the original System/360 implementation.

Table 3 shows the layout of the FPRs, including the
coupling of register pairs for extended-precision operands.

Activating additional registers

Bit 13 of control register 0 (CRO0.13) controls the use of
the AFPRs. If a program attempts to use any of the 12
new floating-point registers or the FPC register when this
bit is zero, a program interruption occurs. (Since all BFP
instructions depend on the masks and the rounding mode
in the FPC register, they implicitly use that register.)

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



This approach provides two advantages:

1. An application can use the BFP instructions and
AFPRs independently of the operating system platform.
Thus, a control is required to prevent an application
from using the registers if the control program is not
prepared to save and restore them. If a new program
attempts to use the new registers on a new machine
running an old control program, a data exception is
reported, and no harm is done.

2. The additional registers need not be saved and restored
when running programs that do not use the new
registers.

® Conformance to the standard

To our knowledge, there is no hardware implementation
that conforms to the standard. The standard states that
“hardware components that require software support to
conform to the standard shall not be said to conform
apart from such software.” A great deal of effort was
expended to provide a fully conforming hardware
implementation of the standard. This was accomplished
for the basic formats in all but one area: binary—decimal
conversion.

Conversions between BFP format and decimal strings

The standard requires conversions between “basic format”
floating-point numbers and decimal strings, but does not
specify the format of “decimal strings.” This is the only
area required by the standard and not provided by

the hardware. The software conversions are described in
the section on conversion between decimal and binary
floating-point.

® BFP formats

The standard defines two “basic” formats: single and
double. ESA/390 provides both, but uses the terms “short”
and “long” (for 32-bit and 64-bit formats), as these terms
have been used since the inception of System/360 for HFP
operands of corresponding lengths.

The standard defines “extended” formats but permits a
great deal of implementation flexibility in this area. These
formats provide additional exponent range and precision
above the widest basic format supported by the machine.
They were primarily intended to be used to facilitate
intermediate computations by math library routines and
were not necessarily meant to be externalized. However,
the S/390 implementation does externalize the extended
format, so much care was taken in the definition. The
ESA/390 extended format is 128 bits and meets or exceeds
the requirements of the standard in every respect. The bit
representation was chosen to be completely consistent
with that used by the standard for single and double;

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Table 2 Rounding mode.

FPC Rounding mode
byte 3
bits 6-7
00 Round to nearest
01 Round toward 0
10 Round toward +oo
11 Round toward —oo

Table 3 Floating-point register layout.

128-bit FPR pair

64-bit FPR 64-bit FPR
0 2
1 3
4 6
5 7
8 10
9 11
12 14
13 15

it includes a sign bit, a 15-bit exponent, and a 112-bit
fraction with an implicit leading one bit, and supports
denormalized numbers.

The bit representation of the BFP data formats in
storage is defined to be left-to-right in a manner that
is uniform for all numeric operands in the ESA/390
architecture. Although the format diagrams in the IEEE
Floating-Point standard appear to use the same left-to-
right bit sequence, the standard only defines the meaning
of the bits without specifying how they appear in storage;
the storage arrangement is left to the implementation.
Several implementations in fact use other sequences;
this may affect programs that depend on the bit
representations of floating-point data in storage.

BFP short format

Figure 2 shows the bit distribution of a BFP short-format
operand. When a number or NaN (Not-a-Number, a
binary representation of a non-numeric character or
string) in the BFP short format is loaded into an FPR, it
occupies the left half of the register; the right half remains
unchanged.

BFP long format

Figure 3 shows the bit distribution of a BFP long-format
operand. When a number or NaN in the BFP long format
is loaded into an FPR, it occupies the entire register.

P. H. ABBOTT ET AL.

729



730

/
Exponent + 127 Fraction
S (8 bits) (23 bits)
/
01 9 31
BFP short format (4 bytes).
/
Exponent + 1023 Fraction
s {11 bits) (52 bitg)
/
01 12 63
BFP long format (8 bytes).
/
Exponent + 16383 Fraction
8 (15 bits) (112 bits)
/
01 16 127

BFP extended format (16 bytes).

BFP extended format

Figure 4 shows the bit distribution of a BFP extended-
format operand. A number or NaN in the BFP extended
format occupies an FPR pair. The sign and biased
exponent are in the leftmost 16 bits of the left register
and are followed by the leftmost 48 bits of the fraction.
The rightmost 64 bits of the fraction are in the right
register of the pair.

P. H. ABBOTT ET AL.

The properties of the three formats are presented in
Table 4.

NaN (Not-a-Number)

The standard requires two types of NaNs—signaling and
quiet—where “Signaling NaNs afford values for [. . .]
enhancements [. . .] not the subject of the standard” and
“Quiet NaNs should [. . .] afford retrospective diagnostic
information [...]” [6]. Quiet NaNs are normally
propagated through arithmetic operations without
signaling an exception. The standard does not specify the
exact encoding of NaNs, but does indicate in an appendix
that it is a mistake to use the sign bit to distinguish
signaling from quiet NaNs. The encoding chosen indicates
a quiet NaN by a one in the leftmost fraction bit. This
encoding permits a signaling NaN to be converted to a
quiet NaN by setting this bit to one.

When more than one NaN is encountered, the standard
requires one of them to be propagated but does not
specify which. Intel delivers the NaN with the larger
fraction. RS/6000 delivers a NaN according to operand
number. In ESA/390, signaling NaNs are chosen over
Quiet NaNs, and NaNs of the same type are selected by
operand number. This is similar to the technique used by
the RS/6000.

® Rounding

The standard requires four rounding modes, with “round
to nearest even” being the default. While most compilers
do not specify the details for rounding for most
operations, they do have special requirements in certain
cases. For example, FLOAT, FIX, AMOD, AINT, and
ANINT are normally expanded into in-line code that is
sensitive to the details of rounding. To facilitate such
operations, a special rounding-method field was defined to
permit the current rounding mode to be overridden. This
field permits the specification of all four rounding modes
defined by IEEE, as well as “biased round to nearest,”
which is used by ANINT. The rounding-method field is
provided for the following BFP instructions: CONVERT
TO FIXED, DIVIDE TO INTEGER, and LOAD FP
INTEGER.

® Operations
Considerations related to the way in which operations are
performed were important in several respects.

Separate operation codes for each format

Several implementations of IEEE (Intel x86 and RS/6000,
in particular) are optimized for the largest length
supported. These machines convert shorter formats to a
common format in a register, provide most operations
only on the common format, and round (when required)
to the precision of the shorter format. For ESA/390,

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



Table 4 Summary of BFP data formats.

Property Format
Short Long Extended
Format length (bits) 32 64 128
Biased-exponent length (bits) 8 11 15
Fraction length (bits) 23 52 112
Precision (p) 24 53 113
Maximum exponent (E__ ) 127 1023 16383
Minimum exponent (E_; ) —126 —1022 —16382
Exponent bias 127 1023 16383
N (1_2—24) « 128 (]_2—53) « 1024 (1_2—113) 5 10384
~3.4 x 10* ~1.8 x 10 ~1.2 x 10*%
N . Lox 27" Lox27'% 1.0 X 2719
~12%x 107" ~22%x 107" ~3.4 X 10
D,. Lo x 271 1.0 x 271 1.0 x 271
~14%x10°% ~4.9 x 107 ~6.5 X 10*%

Explanation:

~  Value is approximate.

D i, Smallest (in magnitude) representable denormalized number.
N ax Largest (in magnitude) representable number.

N i Smallest (in magnitude) representable normalized number.

separate operation codes were defined for all three
formats to match the implementation of HFP. This
also provides maximum performance for all formats.

Storage-to-register operations

Most implementations of IEEE are optimized for register-
to-register operations. The dataflow for S/390 processors is
optimized for storage-to-register operations (inherited from
System/360). To provide comparable performance for BFP
and HFP, both register-to-register and storage-to-register
operations were included. Storage-to-register versions of
LOAD LENGTHENED provide loading and conversion
as a single instruction. This also facilitates comparison
between different formats, which is required by the
standard. Storage-to-register operations for extended
precision require additional data paths in the hardware
and have not been implemented for either HFP or BFP.

Comparison

The standard permits comparison to be implemented
either as a condition code or as a true—false response to a
predicate. ESA/390 supports a condition code, whereas
most compilers support predicates. Two instructions,
COMPARE and COMPARE AND SIGNAL, were
included to permit a compiler to support the predicate form.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Remainder

The remainder operation, required by the standard, is
always exact. This operation may require thousands of
cycles. The instruction DIVIDE TO INTEGER can be
used to obtain the IEEE remainder by means of a simple
two-instruction loop whose execution can be interrupted
and restarted transparently.

Multiply—add

The instructions MULTIPLY AND ADD and MULTIPLY
AND SUBTRACT are not required by the standard. They
have the mathematical property of only one rounding.

The definition is bit-for-bit compatible with the RS/6000,
facilitating reuse of that system’s library packages.

List of instructions
Table 5 is a list of instructions supported by the
architecture for BFP operations.

® Nontrapped underflow exceptions

The standard defines underflow in terms of two events:
.. 2 .

tininess” and loss of accuracy. It permits each of these
2 The term “tininess” refers to a nonzero number whose absolute value is less

than E_; , where E_, is the smallest representable exponent (see Table 4). All
denormalized numbers fall in this range.

731

P. H. ABBOTT ET AL.



732

Table 5

Instructions operating on BFP data.

Instruction Source (bits) 32 64 128
name

Result (bits) 32 64 128 32 64 128 32 64 128
ADD R, S R, S R
COMPARE* R, S R, S R
COMPARE AND SIGNAL* R,S R, S R
CONVERT BFP TO HFP R R
CONVERT HFP TO BFP* R R
CONVERT FROM FIXED” R R R
CONVERT TO FIXED*¢ R R R
DIVIDE R, S R, S R
DIVIDE TO INTEGER** R R
LOAD R, S R, S R
LOAD AND TEST R R R
LOAD COMPLEMENT R R R
LOAD FP INTEGER* R R R
LOAD LENGTHENED R, S R, S R,S
LOAD NEGATIVE R R R
LOAD POSITIVE R R
LOAD ROUNDED R R R
LOAD ZERO* R R R
MULTIPLY R, S R, S R, S R, S R
MULTIPLY AND ADD R, S R, S
MULTIPLY AND SUBTRACT R,S R,S
SQUARE ROOT R, S R, S R
SUBTRACT R, S R, S R
STORE S S
TEST DATA CLASS" R R R

Explanation:
Instruction includes an M field to control the rounding method.

®

“ COMPARE, COMPARE AND SIGNAL, and TEST DATA CLASS set the condition code and do not produce a floating-point result.

¢ The result of CONVERT TO FIXED is placed in a general register.
DIVIDE TO INTEGER provides the IEEE remainder function.

¢ LOAD ZERO does not have a source operand.

R Operation is provided in the register-to-register form.

S Operation is provided in the storage-to-register form.

events to be detected in either of two ways, but requires
that the implementation detect them in the same way for
all operations. Tininess may be detected either 1) after
rounding’ or 2) before rounding. Loss of accuracy may
be detected as either 3) a denormalization loss or 4) an
inexact result. Methods 2 and 4 were selected as being
simpler and mathematically cleaner. This choice matches
the RS/6000 implementation.

e Traps

Dependency on the control program is minimized by
extending an existing program interruption, the data
exception. The new conditions are identified by a data
exception code (DXC) placed in the FPC register. The
application program can access this information directly
without requiring a control program service.

3 It should be noted that the phrase “after rounding” as used in the standard
means “after intermediate rounding, but before final rounding.”

P. H. ABBOTT ET AL.

The source operand for CONVERT FROM FIXED comes from a general register.

Trapped overflow and underflow on LOAD ROUNDED
The standard defines an exponent bias adjustment to be
applied to the result for trapped overflows and underflows
for “all operations except conversions.” For conversions,
the result must be returned in the same format or a wider
format than the source. Exponent adjustment is permitted,
but not required, for this case. In terms of the standard,
the instruction LOAD ROUNDED is a “conversion.”

For LOAD ROUNDED, overflow or underflow may
occur in two ways: 1) in the original format, as the result
of rounding to the precision of a shorter format, or 2) if
the exponent of the result lies in the range of the source
but not the target. In the first case, the exponent must be
adjusted to fit within the range permitted by the source
format. In the second, application of the bias adjustment
value defined by the standard may cause the result to lie
outside the range permitted by the format. The ESA/390
solution was to define a different bias adjustment value
for LOAD ROUNDED that can be consistently applied
in both cases.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



Trap result incremented

The standard requires an implementation that always traps
to indicate whether the delivered result has been rounded
up. Although the ESA/390 implementation does not
always trap, the data exception code (DXC) includes
separate indications for “inexact and truncated” and
“inexact and incremented.” This information was included
to assist the trap handler.

Conversion between decimal and binary
floating-point

® General statement of the problem

Machine numbers are in binary; input to and output from
programs is usually expected in decimal. Binary-to-decimal
conversion is used for output of floating-point results;
decimal-to-binary conversion is used for user-supplied
input and for compile-time constants.

The IEEE standard on binary-to-decimal conversion
strikes a compromise between what might be done
efficiently in hardware (in early 1980s technology) and
mathematical utility. For exponents in the center of the
format’s range (i.e., numbers whose absolute value is not
far less than or greater than one), and for a decimal
precision not exceeding the format’s binary precision, a
correctly rounded result is required; for numbers nearer
the underflow or overflow thresholds, a bit more leeway is
permitted. The standard explicitly requires that compile-
time and run-time conversions of the same input yield the
same result.

Floating-point decimal-to-binary conversion is usually
provided by software, and the S/390 solution is no
exception. Nevertheless, we wanted the conversion
functions to carry the same expectation of exact
reproducibility as one expects of a hardware instruction.

One way to achieve exact reproducibility in software
is to prescribe a specific implementation in great detail.
A better way is to prescribe a mathematically correct
definition of the expected result; this gives the
implementer the freedom to make tradeoffs suitable
to a particular situation or, more significantly, to take
advantage in the future of algorithmic improvements in
terms of speed or resource consumption. (This is how the
basic IEEE arithmetic operations are specified in the
standard.)

For floating-point conversion, the mathematically
precise definition is simply this: Perform the conversion
as if infinite precision were available, then apply a single
rounding step according to the intended rounding mode.
In the case of the normal round-to-nearest mode, this
means the result must be the single nearest representable
result, or (in the case of an exact midpoint between two
representable values) the nearest one whose low-order bit
is zero.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

The following observation reduces the problem to a
finite-precision statement: Every binary (or hexadecimal)
floating-point number has an exact decimal representation,
because all factors of the input base (2) are also factors of
the output base (10). Since the range of machine numbers
is bounded, there is a longest decimal representation, and
this bounds the required precision if decimal arithmetic
is used. For example, the largest possible number of
significant digits in the exact decimal representation of an
IEEE Double is 751. The bound is one more than this,
since we need to be able to distinguish the exact midpoint
between two representable values. This number is 1/2 D __ ,
or half the smallest denormal (~2.47 X 107*")

271 =10.000000 - - - 0000002470328 - - - 6328125

323 zeros and 752 digits

It may be interesting to illustrate how easy it is to do
exact conversion using arbitrary-precision decimal
arithmetic. The Rexx program shown in Figure 5 displays
the exact decimal value of an IEEE Double given in
hexadecimal.

® History

Gordon Slishman gives a nice account [11] of how
floating-point conversion accuracy has improved over the
years, from quite poor in the 1960s to mostly acceptable in
the late 1970s (in part due to the availability of extended
precision for intermediate calculations). Within IBM,
Assembler H and FORTRAN have had the highest
standards, although an inconsistency between equally
precise but different roundings in FORTRAN led
Slishman to develop and publish correctly rounding
conversions for HFP in the late 1980s. David Matula had
published the theoretical underpinnings (e.g., [12]) and
Jerry Coonen’s analysis [13] led to the correctness bounds
allowed by the IEEE standard. Unpublished work at IBM
includes a decimal-arithmetic-based conversion routine for
an IBM internal debugger (1977; the routines were also
used in VM/XA in the mid-1980s). Unpublished work at
MIT in the 1970s includes routines in MacLisp and
ZetaLisp; this was disclosed in two seminal papers at the
1990 SIGPLAN conference [14, 15]. The work described
here started in 1992 and evolved from an attempt to
obtain provably correct routines for the debugger
mentioned above, stimulated by the discovery of a few
incorrectly rounded numbers (the search for which was in
turn triggered by the discovery of a similar number for
Assembler H).

Most programming languages or run-time environments
that make any claim of accuracy imply no more than a
(reasonably) bounded error. Rounding carry-propagation
implies that several low-order binary (or decimal) digits
may be wrong if they are all 0 or 1 (or 9). The Java

P. H. ABBOTT ET AL.

733



734

/* Convert IEEE Double-precision floater (given in hex) to decimal. */

numeric digits 800;

/* Bufficient for exact Double conversion */

arg hexfloat; hexfloat = left(space(hexfloat,0)||copies(0,16),16);

bex = x2d(left (hexfloat,3));
if bex > 2047 then do;

gign = '-';
bex = bex-2048;
end;

else sign = '+';

if bex = 2047 then do;

say 'Infinity or Nan: ' hexfloat

exit;
end;

exp = bex - 1023 - 52;

/* Biased exponent (plus sign bit) */

/* Remove the sign bit */

if bex=0 then imant = 2 * x2d(right (hexfloat,13)}; /* Denormal */

elge imant = x2d('1l'right (hexfloat,13));

decfloat = imant * 2**exp;

/* Normal */f

/* an artifact of Rexx arithmetic may leave extra trailing zeros */
if index(decfloat,'.') > 0 then decfloat = strip{decfloat,tail,{);

decfloat = format{decflecat,1,.3,0);

say 'Hex:' hexfloat;
say 'Dec:' sign||decfloat;
exit;

/* Standard scientific layout */

Rexx program showing exact decimal value of an IEEE Double given in hexadecimal.

language may be the first to require correctly rounded
fixed-precision conversions. (Languages that support
arbitrary-precision arithmetic present a different situation.)

® Conversion basics
Floating-point numbers are traditionally expressed as

exponent

fraction X base

An equivalent representation that exposes the precision
(expressed as a number of bits or digits) is

exponent—precision

(integer + fraction) X base

P. H. ABBOTT ET AL.

When the precision of the input to conversion is implicit
in the number of bits or digits given, the fraction (in
the exposed-precision representation shown above)
will be zero. The fraction may be nonzero when this
representation is used to show the last intermediate result
of conversion, just before the rounding step. The rounding
rule takes the fraction into account when determining
whether the integer in the final result should be one more
than the integer in the intermediate result.

The basic method for converting a floating-point
number from one base to another is through a sequence

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



of transformations that leave the value intact. The starting
point is

inexp

value = infract X inbase (inbase = 2 or 10).

The ending point should be (for the same value)

outexp

value = outfract X outbase (outbase = 10 or 2).

In principle, the internal representation used during the
conversion process can differ from both input and output
representations—it might be fixed-point binary, for
example, when converting between decimal character
strings and machine floating-point formats. This leads to
the following three-step overall description of conversion:

1. Input conversion to internal format.
2. Value-preserving transformation.
3. Output conversion from internal format to final result.

The internal format used for input conversion is chosen
to make that step as straightforward as possible, and the
same argument applies to the internal format expected by
the output conversion. These internal representations are
not the same; hence the need for a value-preserving
transformation.

We know how to convert integers from one base to
another. There are machine instructions to convert
integers that fit in a register, and techniques for
converting larger integers using multiple-precision fixed-
point arithmetic are well known. The actual conversion
between decimal and binary (whether input, output, or
intermediate) is easiest when the value is in the exposed-
precision representation, where the numbers to be
converted are integers.

® Using higher-precision floating-point arithmetic
Mathematically, the transformation from the internal input
representation to the internal output representation can
be written very simply:

outfract = infract X factor,

where

inexp

inbase
factor =

outexp *

outbase

The output exponent is chosen to make this factor close to
one. The number of possible exponent values is limited by
the format, so this computation is typically carried out by
a combination of table lookup and a small number of
floating-point multiplications. If the computation can be
carried out at a higher precision than the precision of the
desired result, the error due to repeated rounding can be
kept reasonably small—but the final result will in general
not be the same as if infinite precision had been used

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

(in the constants as well as in the arithmetic), followed
by a single rounding.

If the constants are carefully chosen and the rounding
errors are carefully tracked, it is possible but nontrivial
to determine when the conversion result is in fact the
correctly rounded result; this is the case when the
rounding error is too small to bridge the gap to the next
representable number. Some correctly rounding conversion
methods do this, and retry the conversion of difficult
numbers with higher precision—typically using multiple-
precision arithmetic. (A difficult number is one whose
value is uncomfortably close to a rounding threshold—
see the subsection below on difficult numbers.)

Note that when the precision of the available machine
is no greater than the precision of the desired result,
multiple-precision arithmetic may be needed even in the
common case. The S/390 conversion routines apply the
same standard of correctness to 128-bit extended-precision
conversion, so we have to face this issue.

® Using multiple-precision integer arithmetic

The conversion routines provided with the S/390 IEEE
Floating-Point support do not actually use floating-point
arithmetic at all; they treat the floating-point formats as
bit patterns to be processed, and use multiple-precision
integer arithmetic. This has several advantages:

e The core conversion routines can be independent of the

input and output formats; only generic parameters

such as precision and exponent range are required.

Extended-precision conversion is no more difficult than

single-precision; it simply requires more resources.

(The High-Level Assembler also takes advantage of

generic conversion by offering improved conversion

for hexadecimal floating-point together with support

for IEEE binary floating-point.)

The handling of difficult numbers is not essentially

different from the easy case. This improves the

robustness of the implementation.

¢ Proving correctness is conceptually easier than for
floating-point arithmetic. This improves confidence in
the implementation.

e The conversion routines can run efficiently on hardware
that does not yet support the new floating-point
instructions. This is especially useful for compilers and

assemblers.

The internal representation is as a “bignum” fixed-point
number multiplied by a power of two as well as a power
of ten:

(integer + fraction) X 277 X 10%°?,

By bignum we mean a number expressed in a large base,

such as base 10° or 2%, where each digit can be processed 735

P. H. ABBOTT ET AL.



736

as a 32-bit machine integer. A decimal bignum uses a
power of ten as a base; 10° is a good choice because it
nearly fills a 32-bit register. This representation allows

for simple and efficient multiple-precision arithmetic. A
binary bignum uses a power of two as a base. Conversion
to and from bignums of a compatible base is easy, because
it can be done simply by grouping smallnum digits or bits
(as the case may be).

A fixed-point bignum consists of an array of 32-bit
words in storage; the position of the radix point is implicit
(i.e., the software knows where it is), and is chosen to
reflect the desired output precision. It should be large
enough to accommodate both the given input precision
and the desired output precision. In particular, the
rounding position should be in the integer part, so that
the only knowledge required of the fraction is whether it
is exactly zero or not. The actual fraction will then not
have to participate in output conversion.

The input and output conversions convert to or from a
compatible bignum base. Let us describe decimal-to-binary
conversion, to be definite, and revisit the three essential
conversion steps mentioned earlier:

1. Input conversion from a decimal character string to a
decimal bignum times a power of ten.

2. Transformation of the decimal bignum times a power
of ten into a binary bignum times a power of two.

3. Output conversion from a binary bignum times a power
of two to the desired binary machine format.

Input conversion is straightforward. The only point
worth mentioning is that an indefinite number of digits is
accepted, but if more digits are given than are necessary
to represent the longest exact decimal representation, the
extra digits are only checked to see whether they are all
zero; in effect, they are coalesced into a single “sticky”
digit. This is necessary in order to be able to break
rounding ties correctly, and useful in that it allows the
internal storage requirements to be bounded by the
result format, without restricting the input format.

Output conversion turns out to be the trickiest part,
even though it is not conceptually demanding. This is
where the single rounding step takes place, and one needs
to be careful to account for all of the bits that are (or
might have been) beyond the rounding point, in order to
break ties correctly in all cases. The rounding position has
to be determined relative to the high-order bit, and has to
take possible denormalization into account.

® A core conversion algorithm

The core of the conversion routine is the transformation
of the internal representation. We illustrate here the
algorithm for decimal-to-binary conversion. Binary-to-

P. H. ABBOTT ET AL.

decimal conversion is essentially the same, but in the
opposite direction.

The algorithm transforms the internal representation
without changing the represented value. At all points, the
representation is as follows, with value being invariant:

value = (integer + fraction) X 2""7 x 5%

At the beginning, we have a decimal bignum with a null
fraction, and binexp = decexp (because we are given a
power of ten, not a power of five).

At the end, we want decexp to be zero, with a binary
bignum. The size (number of bigdigits) of the integer part
of the binary bignum must be such that the rounding point
will be inside the integer part, with at least one bit to the
right of the rounding point. It is then sufficient to know
whether the fraction is exactly zero or not in order to
perform correct rounding, including correct tie-breaking.

This transformation is called exponent reduction. It is
achieved by multiplying the bignum by a sequence of
factors of the form 5"/2", where a and b have the same
sign as decexp. Each factor should be close to one, so as
not to change the size of the integral part of the bignum.
Indeed, the algorithm switches dynamically between a
factor that is smaller than one and a factor that is greater
than one, in order to keep the high-order bigdigit within a
narrow range. The cleverness of the algorithm lies in the
careful choice of the exponents a and b.

When the initial decexp is positive, we would be
multiplying by a power of five and dividing by a power
of two. This suggests that a binary bignum is most
appropriate, because if we choose 2° to equal the binary
bigbase (i.e., b = 32), the division is free, because it
amounts to no more than occupying a new fraction
bigdigit, since the result of the multiplication is implicitly
shifted one bigdigit to the right. Since the factor should
be close to one, this choice of b suggests a = 14 for
a factor of 5"*/2¥ ~ 1.4 > 1, or a = 13 for a factor of
5827 ~ 028 < 1.

When the initial decexp is negative, we would be
multiplying by a power of two and dividing by a power
of five. This suggests that a decimal bignum is most
appropriate, because if we pick 10 to equal the decimal
bigbase (i.e., a = 9), the division comes cost-free again.
The two factors used to achieve a balanced negative
exponent reduction are 2*/10° ~ 1.05 > 1 and
2”/10" = 0.54 < 1.

At some point, the bignum must be converted from
bigdecimal to bigbinary. It is now clear that this
conversion should be done before the multiplicative
transformation when the exponent is positive, and
afterward when it is negative. In other words, we use
either bigbinary or bigdecimal arithmetic, depending on
whether we are converting large or small magnitudes.
Performing the conversion as the first or last step also

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



Integer part

. Exact decimal fraction

binexp decexp

nput = 371 448 848 .

.024 ~» 380 382 820 . 3853

194 746 173 . 620 224
199 420 081 . 787 109

(%21
[
[
¢
Vs

T
024 -» 2064 206 163 . 7750 GO0
#00 -» 163 364 931 . OO0 GOO
2’ 2°
1.024 = = 0.512 = =
5 5'

Example determination of required bignum size.

avoids the need to convert the fraction; it is zero initially,
and at the end its actual value does not matter—only
whether it is zero or not.

Multiplication by the factors considered here is much
simpler than general bignum multiplication; it almost
degenerates to the case of multiplying one bignum by a
single-digit bignum. The factor that is smaller than one is
clearly representable by a single bigdigit. The factor that is
larger than one does not exceed twice the bignum base,
and it turns out that this is only marginally more difficult
than single-bigdigit multiplication when the bigbase is 2%,
and comes cost-free when the bigbase is 10° if we allow
the high-order bigdigit to exceed the bigbase (this works
because decimal bigdigits are stored in a binary box of size
2%, and 2 x 10° < 2°").

Exponent reduction by means of the factors described
above reduces the absolute value of the decimal exponent
by 9, 13, or 14 per step, so the last step (to reduce the
remaining decimal exponent to zero) may have to use a
different factor, chosen from a small table of residual
factors of the same general form. For example, to reduce
a residual decimal exponent of +5, use the factor 5521
which is (2 x 10%)/2%, and to reduce a residual decimal
exponent of —5, use 2'/5°, or (27 x 10%)/10°,

Note that, because of the choice of decimal arithmetic
for reducing negative exponents, all calculations described
above are exact if we allow the bignum fraction to grow
by up to one bigdigit per multiplication. The maximum
number of multiplications is determined by the valid
exponent range, and is therefore bounded by the format
of the binary floating-point number (whether input or
output). There are no difficult numbers for this method.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

=13 =13

-20 w14

~26 -7

376 =y -4

001 024 ~4 0 el

000 819 200 -42 0
2?
9.800 = ==
5

The long fraction resulting from the conversion of extreme
exponents will be discarded after checking whether it is
zero or not, because that is all that is needed to figure out
how to round the integral part correctly.

The determination of the required bignum size (which
controls the resource requirements of the algorithm) must
take into account several factors. The integral portion
must accommodate the result precision, even when the
initial high-order bigdigit is only 1/10th of the base and
when the cumulative factor applied during exponent
reduction is as small as it can be. The self-balancing
nature of exponent reduction makes the cumulative factor
come close to one, but one must know a lower bound. The
fraction must accommodate the largest possible number
of reduction steps (each can contribute at most one new
fraction bigdigit), and this is determined by the format-
derived exponent bound.

Figure 6 shows a worked-out example. We use a
decimal bigbase of 1000 in order to illustrate the
procedure. Each group of three digits represents one
bigdigit. The reduction factors would be 1.024 and
0.512 in this case. The given input is 3.71448848e—5 (or
371448848 X 10"), to be converted to IEEE Single (with
a 24-bit fraction). The result is 163364931 x 2™ plus a
very small increment whose only significance is that there
will be no tie-breaking during rounding after 24 bits,
which is indeed safely within the 28-bit hexadecimal
number 9BCC043. Normalizing to one bit before the
binary point yields 1.00110111100110000000100, X 27"
for a biased exponent of 127 — 15 = 112 (hex 70).
Putting the pieces together yields the hex representation
of 381BCCO04 for this IEEE Single.

P. H. ABBOTT ET AL.

737



738

Integer part

Exact decimal fraction

input = 371 448 848 .
.024 -> 380 363 620 . 352
.512 ~» 194 746 173 . 620 224

N -

Integer part

.024 —> 199 420 081 . 787 109 376
.024 —> 204 206 163 . 750 000 001 024
.800 -> 163 364 831 . 000 000 000 819 200

. Truncated fraction

{two fraction bigdigits)

input = 371 448 848

1.024 —> 380 363 620 . 352
0.512 -> 194 746 173 . 620
1.024 ~-> 199 420 081 ., 786
1.024 —> 204 206 163 . 748
0.800 —> 163 364 930 . 998

{same int) . 352

{same int) . 620 224
{same int} . 787 109 . . .
(game int) . 749 999
{same int) . 999 999

Example exponent reduction with truncation after one and after two bigdigits.

® [mproving performance using truncated bignum
multiplication

The exact fraction can grow to be quite large, especially
for extended precision—and yet it will be discarded at
the end. It would seem certain that a better approach is
possible.

Suppose we keep only one fraction bigdigit (i.e., we
discard all new fraction bigdigits after the first). (We do
need to keep track of the zeroness of the fraction.) The
result will certainly not be greater than the exact result,
but it may be smaller. Each truncated multiplication drops
data beyond the last surviving fraction bigdigit, so the
incremental error is bounded by one in the value of this
bigdigit. Each error is multiplied by the cumulative
reduction factors that follow, but those are close to one,
and the largest relevant factor is bounded independently
of the number of multiplications. The cumulative error is
therefore proportional to the number of multiplications.
This number can be determined from the exponent
to be reduced, so we have a useful bound on the total
truncation error. With a bigbase of 10°, this error is at
most a few thousand across the entire exponent range of
BFP extended precision. A blind error threshold of 5000
would be sufficient (in fact, the program picks the error
threshold dynamically). With this, any first-fraction
bigdigit exceeding 999995000 would be suspicious; with

P. H. ABBOTT ET AL.

“random” inputs, this might happen once out of 100000
conversions.

When the truncated result is suspicious, we can retry
the exponent reduction with higher precision, but that
might still not be enough, as revealed by the example
shown in Figure 7. The cost of exact multiplication is not
grossly worse than that of truncated multiplication—
factors of 2 to 10 in execution time were measured (for
double precision). Since the actual retry probability (using
tight error bounds, and two fraction bigdigits when the
number of multiplications is large) is less than 1 in 107,
any retry is in fact done exactly.

The conversion example shown earlier can be used to
illustrate the effect. We repeat the exponent reduction in
Figure 7 with truncation after one and after two bigdigits
(base 1000 in this example). The error threshold in
this simple example would have been 5, and this last
fraction bigdigit exceeding 995 would have been judged
“suspicious,” for a good reason: The exact answer is
indeed different before the decimal point.

The example shown in Figure 8 illustrates that a
truncated result may look very suspicious and yet be
correct. It shows a different kind of difficult number.
The exact and truncated values are shown side by side
here. The number is 5.29097127¢—7.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



Integer part

. Exact fraction

With truncated fraction

input = 529 097 127 .

1.024 —> 541 795 458 . 048

.512 ~> 277 399 274 . 520 576
.024 —> 28B4 056 857 . 109 069 824
.024 -> 290 B74 221 . 679 687 499
.024 -> 297 855 202 . 999 999 999

B P B o

{same int)

{same int) . 048

{same int) . 520 576

(game int) . 109 068
776 (same int) . 679 686
770 624 (same int}) . 999 938

Example exponent reduction illustrating a correct but suspicious-looking truncated result.

® Difficult numbers

A difficult number is one whose binary (decimal)
representation has a very long run of zeros or ones (nines)
near the rounding point. Such a long run permits tiny
errors to affect the bits that are to be retained, because

of carry propagation.

In the context of our conversion algorithm, they are
numbers that cause the initial (integral) bignum bigbeg
to be transformed to a near-integer result bigend by
multiplying it by a factor of the form 2%/5" whose value is
close to 1 (in the range 1/5 to 5; x and y are integers of
the same sign):

2%
bigend = bigbeg X (5)) * tinyfraction.
If tinyfraction = 0, then one of bigbeg or bigend is a power
of 2 and the other is a power of 5.

The continued-fraction expansion of a real number
leads to a sequence of progressively better “best” rational
approximations of the number, where “best” means that
there is no better rational approximation with a smaller
(reduced) denominator. Continued-fraction expansion of a
rational number such as 2'/5” leads to a finite sequence of
rational approximations, the last of which is exact. The
point is that the given numerator and denominator may
be very large, whereas the partial convergents start out
as very simple fractions (the crudest being 1/1 when
the rational number is between 1/2 and 2), and require
progressively more digits as the approximations converge
to the true value.

Our difficult numbers correspond to partial convergents
of such fractions. The examples used above were found by
looking for nine-digit partial convergents for increasing
exponents x in 2'/5” (with y chosen to keep the ratio close

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

to one). One can find thousands of examples of this

kind for single and double precision, and hundreds of
thousands for extended precision, dispelling any hope of
simply checking for a handful of exceptions. (For large
exponents, as are encountered with extended precision,
each continued-fraction expansion may yield several
thousand partial convergents, and for each power of ten
there are four or five ratios in the range (1/5, 5) to try,
since 2* < 5% < 2°. Not every convergent leads to a good
difficult number (because the run of zeros or nines may be
too short, or may not occur near enough to the rounding
point), but a significant proportion of them does.

The length of a run of zeros or nines (ones) can be
shown to be bounded by the size (in digits or bits) of the
initial bignum plus the size of the partial quotients at the
point where the partial convergent is taken. This means
that if we could bound the size of the partial quotients
that occur in the continued-fraction expansions of near-
unity ratios of the form 2/5”, we could bound the bignum
fraction length required to guarantee the correctness of the
integral part without having to resort to exact multiplication.

The number of possibly relevant expansions is bounded
by the exponent range of the format being converted,
so a bound on partial quotient size can be obtained by
exhaustive search. This is time-consuming and not very
elegant, but preliminary experiments suggest that this
bound may be surprisingly small: The largest partial
quotient encountered across the range of possible
exponents had nine digits (28 bits). This is small,
considering that the corresponding convergents contain up
to 21000 digits. (For the range of exponents possible with
double precision, the largest partial quotient was the
seven-digit number 7651576 (23 bits).

A future implementation of the conversion algorithm
may be able to take advantage of this observation, if

P. H. ABBOTT ET AL.

739



740

confirmed or rigorously proved. It would be especially
advantageous (in terms of the required resources) in
cases in which the size of the decimal input or output is
restricted to a number of digits commensurate with the
binary precision (9, 17, or 35 digits), because the bignum
fraction would have to be only one or two bigdigits longer
than the integral part (which in turn would require at
most four bigdigits).

Thanks to a single Assembler H rounding error
discovered in the late 1980s, we are now able to generate
many more difficult numbers. Here are some examples:

DC E.1053771313464019060319004056804E-41 '
31-digit HFP single

DC D.303325544866797714604E-10 '
21-digit HFP double

DC L'.8031692147E-10 '
10-digit HFP extended

High-Level Assembler Release 3 (see the subsection on
the High-Level Assembler) supports the new conversion
routines in addition to the old ones, so the reader might
like to compare results for these difficult numbers. In
particular, comparing types D, DH and L for the HFP
double example, or types E, EH and D for the HFP single
example, demonstrates that the old types (E and D) fail
to round up. The single-precision number is particularly
stunning, because it looks like an exact tie even in
extended precision; it takes 15 bits more than 128-bit
extended precision to show that there are additional
nonzero bits, and that the number should be rounded
up even if IEEE rounding were applied, where an exact
tie should have rounded down.

e Conversion resource requirements

The resources required for conversion are time and
scratch storage. The primary factors affecting storage
requirements are the covered exponent range and the
number of decimal digits allowed. The decimal size may
be unbounded, because there is a natural bound derived
from the exponent range, as was mentioned earlier. This
bound is 126 digits for single, 752 for double, and 11503
for extended precision.

The most expensive single operation (in terms of
execution time) is the decimal-to-binary conversion of the
bignum integer; it is quadratic in the number of bigdigits.
This is an issue only when thousands of digits (leading to
hundreds of bigdigits) are given for extended precision
(because of the implied maximum for double and single
precision). In practice, only as many digits as make sense
for the desired precision are given (some languages do
not even allow more), in which case there are at most
four integral bigdigits, and this is not an issue.

P. H. ABBOTT ET AL.

Exponents near the extreme of the range require many
exponent reduction steps (bignum multiplications where
one factor has a single bigdigit). This number is roughly
one-tenth of the absolute value of the decimal exponent.
For difficult numbers, the exact retry can be expensive
(because of the growing fraction), but one would have to
compile a large table where all numbers are difficult for
this to be a problem.

The storage requirements for the maximum possible
fraction growth must be met, however, because no matter
how rare the need may be, a failure cannot be tolerated.
In the case of decimal-to-binary conversion, negative
exponents are doubly expensive: Exponent reduction
reduces the remaining decimal exponent by only 9 per
step (instead of 13 or 14 for positive exponent reduction),
and the largest starting exponent (in absolute value) can
be very large because it must account for the input
precision (the given number of digits) as well as for
possible denormals. The worst case is extended-precision
D, .. (roughly 4e—4966) given as an 11503-digit exact
decimal. The starting decimal exponent in that case would
be —16470, requiring up to 1830 fraction bigdigits! (This
is in addition to the 1279 bigdigits required to hold the
integer part of this bignum.)

The work area size (in bytes) turns out to be 256 +
0.45E + 1.34D__, where E___is the highest decimal
fraction exponent (38, 307, or 4915) and D__is the given
or implied bound on the number of decimal digits. This is
at most 18 KB (extended precision, unbounded decimal
length). It is 2.5 KB when restricted to 36 digits and only
a few hundred bytes when further restricted to double.
For double with unbounded decimal length (e.g., as
required for the Java language) it is about 1.5 KB. When
constraints are known in advance, a fixed work area can
be used; alternatively, when the conversion fails because
of insufficient room, one can expand the work area
dynamically and then retry the conversion.

(If the bound on continued-fraction expansions is
confirmed, the dependency on £ would be removed
from the space requirement, and a few hundred bytes
would suffice even for extended precision if the decimal
precision is limited to, say, 36 digits.)

® [Extra considerations for HLASM
The Assembler has traditionally supported the generation
of artificially shortened constants by means of an explicit
length declaration (overriding the natural length of the
format). This length could even be specified in bits, e.g.,
DL.12'1.2,3.4" would assemble two 12-bit “double-
precision” floating-point numbers in three bytes, with
rounding in the last retained bit position.

The generic conversion algorithm described here is
totally unconcerned about this, since it supports any

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



fraction length, and there is nothing special about the
lengths implied by the standard formats.

The High-Level Assembler was thus able to retain this
idiosyncrasy for binary floating-point formats (it is difficult
to call DBL.27'123" an “IEEE Double”).

Software support

Support for IEEE Floating-Point involves both hardware
and software. In this section, software-related aspects are
described.

® 0S8/390 Control Program support

The OS/390 Base Control Program (BCP) and Base UNIX
System Services were enhanced to support IEEE Floating-
Point.

Base Control Program support

The OS/390 Base Control Program [27-29] support for
IEEE Floating-Point underpins all of the higher layers of
software. Since it is more convenient for the upper layers,
especially applications, to base their initial use of IEEE
Floating-Point on a given level of OS/390, rather than
being restricted to S/390 processors that support the FP
extensions, the BCP also simulates the new instructions
and registers at the machine-code level.

Support of hardware

BCP support for the FP extensions consists of detecting
the presence of the new hardware and enabling its use
by software, including the new registers in status saving,
handling new hardware exceptions, and extending RAS
support to include the new registers.

Detection and enablement  Although the FP extensions
are always available on all of the CPUs of a G5 processor,
it would be dangerous to allow an application to use these
facilities on an older level of the BCP, since the AFPRs
and FPC register would not be saved and restored on
interrupts and task switches. Therefore, as described
above in the subsection on activating additional registers,
the BCP must enable use of these facilities by setting on
the CPU’s AFPR-control bit (CR 0.13). Besides providing
compatibility, this requirement has the additional benefit
of reducing supervisor overhead for saving and restoring
the new registers; this overhead is incurred only for
dispatchable units* that actually use them.

During IPL the BCP determines whether the FP
extensions are available. Because multiple programs may
wish to check for its presence, a general use programming
interface (GUPI) is provided by a flag in the
communications vector table (CVT). For programs that

4 Dispatchable unit is an S/390 term for a unit of work that is performed through
execution of a program by one CPU at a time, e.g., an OS/390 task or service
request block.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

require the capabilities of the FP extensions but make
only light use of them, a second CVT flag indicates
whether floating-point simulation is available.

After IPL, if the FP extensions are available, the BCP
selectively enables its use by application programs.
Enablement occurs transparently to the dispatchable unit
as follows:

1. When a program tries to execute a BFP instruction or
use an AFPR with CR 0.13 off, the CPU presents a
data exception with a special DXC value.

2. The program check handler in the BCP recognizes the
special exception and enables CR 0.13 and supervisor
status saving of the AFPRs and FPC register. For a
task, a flag is set in the secondary task control block
(STCB) to allow upper software layers to determine
whether it is using the new registers.

3. The program check handler then redrives the
instruction, and the program continues execution.

The IEEE 754 standard defines default settings for
the rounding mode and exception mask. When the
BCP enables a dispatchable unit to use the FP extensions,
it establishes these defaults by clearing the FPC register to
zero.’

Normally, once a dispatchable unit is enabled to use the
FP extensions, it remains enabled for its lifetime, and the
system incurs a small status-saving overhead even if the
dispatchable unit stops using the new registers. While not
a significant penalty for normal applications, a long-lived
dispatchable unit might wish to disable use of the new
registers and discontinue the associated status saving when
these are no longer needed. For example, a transaction
manager scheduling many transactions under the same
task, where only a few transactions use FP extensions,
might find this advantageous. A BCP service provides the
disable function.

New register status saving ~ The supervisor must include
the AFPRs and FPC register when saving and restoring
status for dispatchable units that are enabled to use them.
This occurs when the dispatcher switches the current
dispatchable unit and on some interrupts. Although
floating-point is normally used by applications running in
task mode, the new registers must also be included in
service request block (SRB) status saving for subsystems
such as DB2 that use SRBs to process application
requests.

Another area where the BCP could choose to save and
restore the AFPRs and FPC register is in system linkages,
such as LINK and XCTL, and supervisor calls (SVCs).

5 An application run-time environment must perform its own initialization of the
FPC register, however, because some program could have run under the unit of
work prior to run-time initialization and set the FPC register.

M

P. H. ABBOTT ET AL.



742

Similarly, the hardware could add the new registers to the
status saved or restored by the PC/PR/PT and BAKR
instructions. It was decided, however, to continue the
previous policy of allowing the FPRs to be managed by
the application within the scope of a dispatchable unit.
Besides being compatible with the past, this approach

¢ Reduces status-saving overhead, since system code rarely
uses the FPRs.

e Avoids development cost in the BCP to add floating-
point status saving at multiple points.

¢ Avoids behavior and performance changes for the
PC/PR/PT and BAKR instructions.

 Allows the application program full control of the FPRs.

The last point is also a drawback, however, since an
application program must be aware that it is responsible
for saving and restoring the new registers across these
linkages, if needed.

Hardware exceptions ~ The BCP has minimal involvement
in handling IEEE Floating-Point exceptions. The extended
synchronous program interrupt exit (ESPIE) interface
allows an application (or run-time environment) to enable
for certain HFP exceptions (in the program mask field

of the PSW) and gain control in an exit routine when
they occur. For BFP, all IEEE exceptions occur as data
exceptions. The application manages the exception mask
and flags in the FPC register. When an IEEE exception
occurs, the program check first-level interrupt handler
(FLIH) processes the data exception normally. The only
additional support required is to copy the DXC value
from low storage and pass it to the application program’s
ESPIE routine or, via the recovery termination manager
(RTM), to the recovery routine for the dispatchable unit
[functional recovery routine (FRR) or extended specify
task abnormal exit (ESTAE)], if either of these is
established. The ESPIE or recovery routine accesses the
FPRs directly, if needed.

Reliability, availability, and serviceability (RAS) A critical
area of system reliability and availability involves machine
check handling and alternate CPU recovery. In these
cases, an error in the CPU has occurred and its status may
have to be saved for software recovery, including possibly
moving the current dispatchable unit to another CPU.

To enable such recovery, the G5 processor includes the
AFPRs and FPC register as part of the CPU status. For
serviceability, the AFPRs and FPC register are included
and formatted in the logging of CPU errors. The new
registers are saved when a standalone dump is taken in
the event of a system failure. Application and system
dumps and formatters also include the new registers.

P. H. ABBOTT ET AL.

Scheduling IEEE Floating-Point work in a sysplex
Applications using the FP extensions and running in a
parallel sysplex environment must be scheduled on a
system with the hardware, or at least the software, that
supports them. This requirement was anticipated in an
earlier OS/390 release by the WorkLoad Manager (WLM)
[16]. The WLM allows an installation to identify jobs that
require specific hardware, software, or data resources

and to define systems as having, or not having, those
resources. The WLM then ensures that jobs are scheduled
only on systems with the required resources. This
capability can be used to direct applications using the

FP extensions to systems in a sysplex running on a G5
processor or, for light use, to systems with floating-point
simulation.

Floating-point instruction simulator

The primary goal of the simulator is to allow application
programs that exploit the FP extensions to run on OS/390
Version 2, Release 6 when a G5 processor is not available.
With the exception of speed, a program will function
identically. Secondary goals are to minimize the
differences to ancillary functions such as tracing when
using simulation and to make the simulation paths
relatively efficient.

Implementation ~ Simulation of the FP extensions entails
not only performing floating-point operations and
detecting associated exception cases, but also detecting
most other conditions that can occur when a CPU
executes an S/390 instruction (e.g., storage access and
specification exceptions). To perform this kind of
simulation, software must

1. Receive control on each instruction to be simulated.

2. Determine the instruction (operation code) to be
simulated.

3. Decode the instruction, generate the result, and detect
any exceptions that would occur in hardware execution.

4. Return to the point that would receive control in
hardware execution (continue to the next sequential
instruction or process an exception).

It is more efficient to perform this level of simulation very
close to the hardware, so it is implemented as a second-
level interrupt handler (SLIH) that receives control from
the program check first-level interrupt handler (FLIH).
The FLIH receives control for instruction simulation
when the FP extensions are not available and the CPU
encounters either a new floating-point instruction
(operation exception) or an existing floating-point
instruction using an AFPR (specification exception).
Normally these exceptions would be presented to the
program’s ESPIE or recovery routine as an error. In

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



0S/390 Version 2, Release 6, however, when not running
on a G5 processor, the FLIH invokes the simulation
SLIH. To avoid clogging the system trace table with
unnecessary entries, program interruptions for simulated
instructions are not traced.

The simulation SLIH fetches the instruction and
determines whether the operation is one of those to be
simulated. To detect storage access exceptions that the
user’s program would trigger if running on the actual
hardware, the SLIH runs in the address-space control
(ASC) mode of the user’s program to fetch the instruction,
and accesses user storage with the user’s key.

The job of fetching the instruction is further
complicated by the fact that the instruction typically
resides in pageable storage, but the SLIH is running with
the CPU disabled for interrupts. If a page fault occurs, it
must be treated like a normal page fault. This is done by
setting a footprint flag before the instruction fetch, so that
if the FLIH is re-entered for a page fault, it is known that
this happened on a simulated instruction. The FLIH resets
the environment so that the page fault appears to have
occurred on the original instruction and is handled
normally.

A table-driven routine is used to decode the instruction
and invoke the processing routine for it. The task of
creating software routines to faithfully imitate the more
than 100 new floating-point instructions in the G5
processor was made less daunting by reusing the
algorithms from a hardware test tool. Using the same
algorithms in the software simulation also helped to
ensure that results were identical with those of the
actual G5 hardware.

The algorithms simulate all functions of the hardware,
including setting the condition code, checking and setting
fields in the FPC register, and detecting exception
conditions. The original FPRs (0, 2, 4, and 6) are used to
improve performance of the simulation. Page faults that
occur when fetching operands or storing a result are
handled as described earlier for instruction fetch.

If no exceptions are detected by the simulation, the
SLIH returns to the FLIH to continue with the next
sequential instruction in the user’s program. If an
exception is detected, the SLIH directs the FLIH
to change the original program interruption to the
appropriate exception type and handle it as if it had
occurred in the hardware.

Validation  To ensure that it produces results identical
to those of the G5 processor, the floating-point simulator
underwent rigorous testing using the same test suite as the
hardware test tool.

Performance and side effects  Naturally, the CPU time
used to simulate a floating-point instruction is vastly

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

greater than with the G5 hardware. On a per-instruction
basis, the simulator is at least 100 times slower.

Time spent in the simulator could be counted as
CPU time for the user’s program (“captured” time) or
considered to be system overhead (“uncaptured” time).
Although in all other ways the simulator behaves
identically to the hardware, the need to account for the
CPU resource consumed by user programs requires that
simulator time be captured. As a result, performance
reporting tools such as the Resource Measurement Facility
(RMF) show higher CPU times for jobs run using the
simulator.

Base UNIX System Services support

0S5/390 includes standard UNIX functions that replicate,
reuse, or create new environments [17-20]. Some of these
functions must be changed to initialize or copy the AFPRs
and FPC register. However, no action is taken if the task’s
STCB flag indicates that the new registers are not enabled
for use.

« fork() creates a copy of a process. The AFPRs and FPC
register are copied from the parent process to the child
process.

exec() creates a new execution environment with a new
task. The FPC register is set to the IEEE 754 standard
defaults, as discussed above in the subsection on
detection and enablement.

spawn() is logically a fork() followed by an exec(). The
initialization is the same as for exec(). For a medium-
weight spawn(), however, the task is reused, and the
BCP service is called to disable use of the AFPRs and
FPC register.

pthread_create() produces a new heavy- or medium-
weight thread, running as a new task. The FPC register
is copied from the initial pthread-creating task (IPT).
When a medium-weight thread exits and gets new work,
the enablement state of the AFPRs and FPC register,
and the FPC register itself, are reset to their original
conditions for the thread.

0S/390 UNIX also includes the ptrace() function, which
allows debuggers, such as the OS/390 UNIX System
Services Debugger, to obtain information about and
control another process. Support is added to ptrace()
to set and get the AFPRs and FPC register for a thread.
Although not part of the base UNIX support, the
od command in the UNIX Shell and Utilities deserves
mention; od reads data from a file and formats it for
output, according to the data type specified by the user.
This command supports floating-point data types and was
updated to allow the user to specify that data is in BFP or
HFP format.

P. H. ABBOTT ET AL.

743



744

® VM/ESA support
VM/ESA supports FP extensions to enable guest virtual
machines to exploit all aspects of the new architecture.

Host support
The VM control program itself makes only minimal use
of the new facilities. In particular, it

1. Detects whether they are installed, in order to
determine whether they can be provided to guests.

2. Creates extended save areas so that a machine check
saves the AFPRs and FPC register for use in error
recording and to preserve guest integrity.

3. Ensures that guest AFPRs and FPC register contents
are saved and restored appropriately.

Guest operation

VM hosts support guests at multiple levels. A virtual
machine operating directly on the host VM system is
called a real guest, or R-guest. Real guests can run VM
support guests of their own. A virtual machine operating
on a real guest is called a virtual guest, or V-guest.

When an R-guest dispatches a V-guest using the
interpretive execution facility, the host VM intercepts that
dispatch and runs the V-guest directly, much as it runs an
R-guest. Consequently, when a V-guest running VM/ESA
dispatches a virtual machine (conceptually a V-V-guest),
the dispatch is intercepted by the R-guest, which tries to
run the V-V-guest directly, as a V-guest of the host. That
dispatch is intercepted in turn by the host, which runs the
V-guest directly. Consequently, even though there can be
guests of guests to almost any depth, from the host’s
perspective there are only R-guests and V-guests. This
bears directly on how VM enables guest exploitation of
FP extensions [21].

Real guest support
VM’s real guest support for FP extensions has two
principal components:

1. Detection and enablement detects a guest’s attempts to
use IEEE FP facilities and establishes the environment
to allow that use.

2. Console functions support manual operations that affect
aspects of a virtual machine’s FP extensions.

Detection and enablement

When a real guest is first created and IPLed, it is not
enabled to use the FP extensions. That is, the host’s AFP-
register-control bit (CR0.13) is not turned on. Even
though the guest may enable the FP extensions for use

by turning on its CR0.13, it is not enabled from VM’s
perspective until the R-guest issues a BFP instruction or

P. H. ABBOTT ET AL.

references an AFPR. At that point, VM receives either
a BFP-instruction or an AFP-register data exception.

If the guest’s CR0.13 is on and FP extensions are
installed, VM initializes the additional data structures
required to hold the AFPRs and FPC register. It then
resumes execution of the guest at the instruction causing
the interception, this time with the host’s CR0.13 turned
on to allow the instruction to be executed by the hardware.
Thereafter, whenever the guest stops running (e.g., at the
end of its dispatch slice), its AFPRs and FPC register
are saved. The next time the guest is dispatched, those
registers are restored and the host’s CR0.13 is turned on.

The benefit of this implementation is that R-guests that
do not exploit the extensions do not require the additional
data structures and do not incur the performance cost
associated with saving and restoring the AFPRs and FPC
register across dispatches.

In the event that a machine check is reflected to a real
guest, VM stores guest FPR and FPC register contents
in the guest’s extended save area if it is defined
and enabled.

Console functions

VM Control Program commands (console functions)

are extended. In particular, the DISPLAY, STORE, and
TRACE console functions accommodate the new facilities.

DISPLAY register  The DISPLAY command allows the
contents of the AFPRs and FPC register to be displayed.
Traditionally, displaying an FPR produces the value in
hexadecimal and in decimal using scientific notation,
interpreting it as an HFP number. DISPLAY works this
same way. Since the interpretation of a register’s content
is program-dependent, the decimal value may not be
meaningful in all cases.

The AFPRs and FPC register are not accessible via
DISPLAY until the virtual machine has enabled the use of
FP extensions, as described in the previous subsection.

DISPLAY storage  The DISPLAY command for storage
has an I-format option that causes storage contents to be
displayed in instruction format. It is extended to display
the new floating-point instruction operation code
mnemonics and operands.

STORE The STORE command allows the values of the
AFPRs and FPC register to be altered. The new contents
of an FPR are specified in hexadecimal and may be up to
16 digits long. The FPC register value is specified in
hexadecimal and may be up to eight digits long.

The reserved bits of the FPC register must be zero in
the value to be stored; otherwise, an error message is
produced and the store operation is not performed.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



The AFPRs and FPC register are not accessible via
STORE until the virtual machine has enabled the use of
FP extensions.

STORE STATUS The STORE STATUS command saves
the AFPRs and FPC register in an extended save area if
one is defined and its use is enabled via guest CR14.2.

TRACE The TRACE command displays the new
floating-point instruction operation code mnemonics,
operands, and related effective addresses and condition
codes when these instructions are encountered.

Virtual guest support

When VM dispatches a V-guest on behalf of an R-guest,
the host’s CR0.13 is turned on only if both the R-guest’s
CRO0.13 is on and the host has detected that the R-guest
is using FP extensions, as described in the subsection on
detection and enablement. This means that when a
V-guest first uses an AFPR or a BFP instruction, it is
retried several times.

The first time the instruction is executed, neither the
host nor the R-guest has CR0.13 turned on. The V-guest
turns on its CR0.13 and attempts to use one of the new
facilities. The host receives a data exception of the
appropriate type, observes that the R-guest’s CR0.13 is
not turned on, and reflects the data exception to the
R-guest. The R-guest turns on its CR0.13, enables the
V-guest use of FP extensions, and redispatches the
V-guest to execute the failing instruction a second time.
The host intercepts the dispatch and runs the V-guest on
behalf of the R-guest. Again, the instruction causes a data
exception because the host’s CR0.13 is not turned on. This
time, because the R-guest’s CR0.13 is on, the host turns
on its own CR0.13, enables the R-guest to use FP
extensions, and redispatches the V-guest to execute the
failing instruction a third (and finally successful) time.

The foregoing description assumes that the R-guest in
question is VM/ESA with FP extensions support or a
system that behaves similarly. Each additional level of
guest causes another instruction re-execution as the
enablement process works its way down through the
various guest levels until it eventually reaches the host. If
any guest along the way does not support FP extensions,
its guests and any at higher levels cannot access them.

CMS guest support

CMS, the Conversational Monitor System, is a general-
purpose single-user operating system designed specifically
to run in a virtual machine. It is mentioned separately
here not because it is a different kind of guest from an
architectural viewpoint, but rather because there are some
subtle considerations for exploiting FP extensions in the
CMS environment.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

There is currently no specific CMS support for FP
extensions. CMS Application programs can exploit the
new hardware facilities as long as the underlying hardware
and VM/ESA control program support them. However,

CMS does not provide new facilities to assist such exploitation.

In particular, interrupt handling and multitasking interfaces
neither preserve nor restore the AFPRs. A CMS program
wishing to exploit FP extensions is responsible for ensuring
that the AFP-register-control bit (CR0.13) is turned on.

Despite these limitations, a typical single-user
application program running in the CMS environment can
take advantage of the new facilities. In fact, initial testing
of the VM support was conducted using programs running
under CMS.

® Application support

Beyond basic enablement, IEEE Floating-Point required
enhancements to a variety of application support facilities.
These extensions are described below.

Register conventions

The addition of 12 AFPRs and the FPC register required
a new S/390 linkage convention to govern how these
registers are handled on calls between programs.

Previous conventions
The original S/390 convention was to treat the four FPRs
(0, 2, 4, and 6) as volatile across calls.

There is no FPC register in the HFP architecture. The
PSW program mask controls whether interruptions occur
for certain HFP and other arithmetic exceptions, and
in this sense it is analogous to the FPC register. The
program mask can be set by programs that establish their
own ESPIE routine or by high-level language programs
using a run-time service. The PSW program mask is usually
assumed to be preserved across calls between programs.
Care must be taken when altering the program mask, as
this can change the results of some programs. The same
considerations hold for changes to the FPC register.

FPR convention

The S/390 linkage convention adopted for 16 FPRs is that
FPRs 0 to 7 are volatile and FPRs 8 to 15 are nonvolatile.
That is, if a called routine uses any of FPRs 8 to 15, it
must save the caller’s FPRs before use and restore them
before returning to the caller. The called routine may use
any of FPRs 0 to 7 without saving and restoring them. To
preserve those registers, the caller must save them before
the call and restore them afterward. Because FPRs 0-7
are volatile across calls, conventions may be defined that
use these registers to return values.

6 This was more a de facto result of not requiring the FPRs to be saved and
restored than an explicity stated convention.

P. H. ABBOTT ET AL.

745



746

The standard four FPRs were treated as
volatile because it was difficult for compilers to optimize
by keeping values in these registers, so there was little
value in preserving them across calls. With 16 FPRs,
significant optimization can be done by keeping values
in the FPRs for long periods.

Making some of the FPRs nonvolatile across calls is
expected to improve performance by allowing compilers
and assembly language programs to leave values in FPRs
across calls without having to save and restore them. For
example, a calling program can leave data in FPRs 8 to
15, while the called program uses FPRs 0 to 7. The calling
program does not have to save and restore FPRs 8 to 15
and, if the called program is a leaf routine, it does not
have to save and restore FPRs 0 to 7. (Most serious
technical computing platforms have a split of volatile and
nonvolatile FPRs.)

An 8/8 split of volatile and nonvolatile FPRs is the
simplest convention to document and understand. For
compatibility, the original four FPRs must continue to be
treated as volatile across a call. Thus, FPRs 0 to 7 are the
volatile set.

Rationale

FPC register convention

The FPC register contents are described in the subsection
on the floating-point control (FPC) register. The settings
of the IEEE mask and rounding mode bits in the FPC
register can affect the results of a program and must be
handled carefully.

The majority of applications run with the IEEE
defaults: IEEE exceptions are disabled and round-to-
nearest is in effect. Some applications enable IEEE
exceptions, but only a sophisticated few set a rounding
mode other than round-to-nearest.

The S/390 linkage convention is that the FPC register
is nonvolatile across calls, except for two fields, the
IEEE exception flags and the DXC, which are volatile.
Therefore, if a called routine changes any fields in the
FPC register other than the IEEE exception flags and the
DXC, it must save the caller’s values before making the
change and restore them before returning to the caller.
The called routine can change the IEEE exception flags
and DXC, explicitly or by triggering exception conditions,
without saving and restoring the caller’s values. If the
caller depends on maintaining the pre-call value of the
IEEE exception flags or DXC, they must be saved before
the call and restored afterward.

As with the PSW program mask, it is the responsibility
of the application programmer to manage the FPC
register settings within the application.

Rationale  The IEEE exception mask is analogous to the
PSW program mask. This convention is similar to PSW

P. H. ABBOTT ET AL.

program mask handling and parallels the way AIX handles
C programs.

Making the IEEE exception flags and the DXC volatile
across a call allows a called routine to use BFP
instructions without the overhead of saving and restoring
the FPC register.

Components
The component stack that supports applications on
0S/390 is made up of language translators (compilers
and interpreters), language run-time libraries, a common
run-time library, Language Environment (LE) for
0S/390, a linker (the DFSMS binder), and two IBM
debugger products, dbx and the VisualAge Remote
Debugger. With the exception of the DFSMS binder, all
components are involved in supporting an application’s
ability to use S/390 IEEE Floating-Point hardware
support.

The following sections describe the IEEE Floating-Point
support provided by the component stack as well as by
other products.

Language translators

Exploitation of IEEE Floating-Point required support in
language translators. The related compiler and assembler
support is described below.

C/C++ for OS/390 compiler
The OS/390 C/C+ + [22-24] compiler was enhanced to
support BFP data types and operations. The three
floating-point formats supported by the hardware—short,
long, and extended—correspond to the types single,
double, and double extended, which are defined in the
IEEE 754 standard. These in turn correspond to the C
and C++ types float , double , and long double
Compiler support for FP extensions is enabled by the
new FLOAT compiler option. This option determines
characteristics of the code generated by the compiler,
as follows:

e Which floating-point model to use.

e Whether to use the AFPRs (available for both HFP
and BFP).

e Whether to use the MULTIPLY AND ADD instruction
(for BFP only).

These choices are indicated by keyword suboptions. For
example, FLOAT(HEX,AFP) specifies that HFP is used
and that the compiler can generate code that exploits the
AFPRs. This is the recommended setting for “legacy”
numeric applications that are to run on a G5 or later
processor.

Other new compiler options affect the behavior of the
compiler:

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



ROUND specifies the rounding mode used for BFP
computations done at compile time.

STRICT inhibits certain optimizations that may
change the order in which computations
are done in compiler-generated code.

Details of these options can be found in [22].

In no case does the compiler require a G5 processor
during compilation; the user can create applications that
exploit the FP extensions on any system running OS/390
V2R6 or later.

It was decided not to provide support for mixing the
two floating-point models in the same compilation. The
compiler does not provide a means to specify a variable or
constant of “the other” floating-point type or to generate
instructions belonging to the other model. Furthermore,
in C++, the compiler takes explicit steps to avoid the
problems that would probably result if compilations using
the two models were accidentally mixed: different internal
(“mangled”) names are used for functions taking floating-
point arguments and having the same declared name,
depending on the floating-point model used at compile
time. This helps prevent the accidental invocation of a
function that expects HFP by another, in a different
compilation, that passes BFP.

This capability was useful in packaging the C++ Class
Library DLLs. Both HFP and BFP versions of many
functions were packaged in the same I/O streams DLL.
The C++ statement cout <<1.0; results in a call to
member function ostreamé& operator  <<(float) of the
ostream class. When this statement is compiled with
FLOAT(IEEE), the actual (“mangled”) name of the
function is _1s_7ostreamFBd ; when compiled with
FLOAT(HEX), it becomes _1s_7ostreamFd . Having
different names for these two implementations of the <<
operator allows them to be packaged in the same DLL.

C does not offer the function-overloading facilities of
C++; a C function is named according to its declared
name only, with no decoration coming from its parameter
types. To accommodate this situation, the compiler
provides a “Feature Test Macro,” _BFP_, that is defined
when FLOAT(IEEE) is specified. This allows developers
of libraries to remap names according to the floating-point
model in use and package functions that support the two
models in the same library (archive) or DLL. One use of
this is described in the subsection on C/C++ run-time
library floating-point support.

Another change to parameter passing makes it
dangerous to try to mix floating-point models in an
application, even in C-only code: The “widening” rule for
floating-point parameters has changed. In the HFP model,
double-precision floating-point numbers can be treated as
single-precision simply by using their first four bytes. In
both C and C++, HFP single-precision floating-point

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

parameters (float ) are “widened” to double precision
(double ) when they are passed as parameters. This is not
done for BFP parameters, where changing the precision of
a floating-point number has greater run-time cost. Thus, a
function compiled to use BFP passing two float s (single
precision) to another function would use eight bytes on
the stack, whereas a receiving function compiled to use
HFP would expect 16 bytes (two double s).

Having the AFPRs resulted in another change in the
function-calling mechanism. As discussed in the subsection
on register conventions, functions are now expected to
save the nonvolatile FPRs if they change their values. The
save area provided to a function has not been enlarged to
accommodate this; functions that use these FPRs must
save them in their own automatic storage in an area
described to the run-time by static control blocks compiled
into the code. This is described in [25].

High-Level Assembler

The High-Level Assembler (HLASM) [26-29] and its
associated Toolkit Feature were updated to support the
FP extensions.

HLASM  Two major types of enhancement were
required in the assembler: new instructions and new data

types.

New instructions ~ Many of the FP extensions instructions
introduce new instruction formats; these required
modifications to the instruction tables and subsequent
assembly of symbolic instructions into machine language.
The ACONTROKktatement provides localized source-
program control over HLASM’s recognition of the AFPRs:

ACONTROL AFPR Recognize AFPR
ACONTROL NOAFPR Disallow AFPR

AFPRmeans that all 16 floating-point registers are allowed
in subsequent statements, while NOAFPRmeans that only
FPRs 0, 2, 4, and 6 are allowed.

New floating-point data types ~ Compatibility with floating-
point data in existing programs required that they
continue to generate the same binary constants. Because
there are a limited number of unassigned constant-type
letters, we chose a subtype (B, H) extension for floating-
point constants (types E, D, L), rather than introducing
new constant types. For example,

DC DB0.1 ' long BFP 0.1
DC DHO.1 ' long HFP 0.1

Using a subtype extension simplifies future language
enhancements.

As discussed in the subsection on conversion between
decimal and binary floating-point, for typical values the

P. H. ABBOTT ET AL.

747



748

IEEE standard expects precisely rounded conversion from
decimal to binary. Since this required new conversion
routines, we used the opportunity to provide support for
the four IEEE-defined rounding modes for both HFP and
BFP. The rounding mode is specified by a new element of
the nominal value of a constant:

DC DB0.1 R7’ round toward
DC DH0.1 R5’ round toward O

—infinity

The new conversion routines also support signed zeros,
so that DC EB —0Q' generates X'80000000 '.

Consistency is ensured between assembly and run times
because the same perfectly rounding algorithms are used
in the LE run-time library.

For compatibility, the existing HFP conversions are
unchanged. However, conversions with the H subtype
provide both rounding controls and slightly greater
precision (see examples of “difficult” HFP numbers in the
subsection on conversion between decimal and binary
floating-point). The conversion routine also supports
“traditional” biased round-to-nearest, by adding a
correctly signed one-bit to the intermediate result at the
position of the most significant discarded bit:

DC DHO.1 R1 ' traditional rounding

The IEEE standard specifies two types of “special
value”: infinities and NaNs. HLASM supports special
values in symbolic format:

e Computational values (INF, MAX, and MIN), as in

DC DB(INF) ' long BFP infinity

MAX is the largest representable value; MIN is the
smallest normalized value of the specified format.
(Minimum denormalized values are easily expressible as
XL(n) '1’, where n = 4, §, or 16.)

e Not-a-Number (SNaN, QNaN, NaN), as in

DC DB(NaN) ' long BFP NaN

The (NaN) format assembles as the default quiet NaN
generated by the hardware for invalid-operation
exceptions; its two high-order fraction bits are set to
B'10’. HLASM also supports two software NaNs: a quiet
NaN (QNaN, with high-order fraction bits set to B'11’,
and a signaling NaN (SNaN), with high-order fraction
bits set to B'01".

Some related changes or restrictions are as follows:

To ensure that no significant bits are lost, restrictions
are placed on bit-length modifiers: For computational
values in the short, long, and extended formats, the data
length must be at least 9, 12, or 16 bits, respectively; the
minimum bit lengths for NaNs must be 11, 14, and 18

P. H. ABBOTT ET AL.

bits, respectively. (See the discussion of HLAs in the
subsection on conversion between decimal and binary
floating-point.)

* No scale modifier is allowed for BFP constants,
because unnormalized values are not supported.

e No exponent modifier is allowed for special values.

e The allowed range of exponent modifiers and nominal-
value exponents was greatly expanded.

« New diagnostics indicate exceeded ranges, invalid
modifiers, and invalid rounding indicators.

Because there is no assembly-time support for IEEE
standard-defined exception traps or flags, certain
predefined actions are taken, depending on the specified
(or default) rounding mode:

¢ Excessively large values round to MAX or infinity.
¢ Excessively small values round to denormals or zero.

These actions are accompanied by warning messages.

HLASM Toolkit Feature ~ Three components of the
Toolkit Feature were enhanced: the disassembler
(ASMDASM), the Interactive Debug Facility (ASMIDF),
and the Program Understanding Tool (ASMPUT). The
enhancements are described in the Toolkit Feature
publications.

ASMDASM  “Disassembly” is a function common to
ASMIDF and ASMDASM. Because disassembling all of
the new operations involved extensive modifications, we
created a common disassembly module used by both
components. This module is also shared by other OS/390
components.

ASMIDF  Enhancements to the Debug Facility include
the following:

e A new AFPRcommand controls the display of either the
traditional four FPRs or all 16 registers plus the FPC
register. The contents of displayed registers may be
modified by overtyping their contents.

 Storage fields may be displayed in disassembled
or “dump” format and may be modified by
overtyping.

ASMPUT  The Program Understanding Tool was
updated to recognize the new operation codes during
program analysis.

Assembler summary ~ Many other useful features and
enhancements were delivered with HLASM V1R3, and
are described in the product documentation [26].

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



FORTRAN
The primary IBM S/390 FORTRAN Compiler is the
VS FORTRAN product. It supports the FORTRAN 77
standard. At the moment, the compiler and its run-time
library have not been enhanced to support BFP.
Extensions to the FORTRAN standard have led to the
current FORTRAN 90 level of the standard, and a 95
level is anticipated. The FORTRAN 90 standard defines
the REAL data type as an IEEE float. To date, the only
FORTRAN 90 implementation for OS/390 is provided by
a compiler developed by Numeric Algorithms Group, a
firm in Oxford, England. At the moment, this compiler
emulates IEEE Floating-Point.

Application program run-time libraries
For application programs, run-time support is required
to enable effective use of IEEE Floating-Point.

Language Environment

Most of the changes to Language Environment (LE)

[25, 30] necessary to support the FP extensions are in the
C/C+ + language-specific component. However, some
changes were required to the base LE component, the
Common Execution Library (CEL). These changes can
be functionally grouped into two categories: exception
handling and saving and restoring nonvolatile registers.

Exception handling  In S/390, exceptions are presented to
the operating system as program interruptions, which in
turn are processed by the operating system and presented
to LE via the ESPIE or ESTAE mechanism. LE maps the
interrupt code into an “LE condition token,” which is

the basic construct it uses to represent any exception
(software and hardware) to the application (or to a
language-specific component, which can map the condition
token into a construct appropriate for that language, such
as a signal in the C language). For example, a program
interrupt code of X'07' (data exception) is mapped to the
LE condition token CEE3207 (which in the case of C is
in turn mapped to a SIGFPE signal).

Interrogating the data exception code and setting the
appropriate condition token ~ With the addition of BFP,
ten new exception conditions were defined. Since each
condition is presented as a data exception program
interruption, a new field in the EPIE or SDWA is used to
identify it as one of the new BFP exceptions. New LE
condition tokens are defined to correspond to the various
exceptions.

Default condition handling  When a condition is not

handled by the application (or the language-specific run-
time), CEL performs some default processing, which

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

includes issuing an error message and terminating the
application abnormally.

Saving the machine state When LE saves the state of
the machine after an exception occurs, it also saves the
AFPRs and the FPC register.

CEEDUMP  LE’s formatted dump facility, CEEDUMP,
has been enhanced to display the contents of the 16 FPRs
and the FPC register.

Saving/restoring nonvolatile registers ~ Nonvolatile FPRs
must be preserved across a call, based on the conventions
described in the subsection on register conventions.

Saving nonvolatile floating-point registers ~ Since LE does
not know whether any of the nonvolatile FPRs will be
modified by the application, its Create Thread routine
saves all of them.

Nested enclaves  LE creates a “nested enclave” in
association with its use of the OS/390 LINK service. When
0S/390 starts a program, it sets the FPRs and the FPC
register to zero. However, when that program invokes
another via LINK, the FPRs and FPC register are not
initialized. In order to ensure a consistent programming
model for the application, when LE creates a nested
enclave, it zeros the FPRs and the FPC register.

Restoring nonvolatile floating-point registers ~ To complete
the process of ensuring the integrity of the nonvolatile
FPRs, LE’s Destroy Execution Environment routine
restores the contents of the nonvolatile FPRs.

Out-of-block goto When an out-of-block goto is
performed [e.g., when the C longjmp()  function is
invoked, the contents of the nonvolatile FPRs must be
restored. Functions such as C’s setjimp()  use a buffer
allocated by the application to save the state (e.g.,
registers, instruction pointer) that longjmp()  restores.
Since this buffer is allocated by the application, it would
have to be increased in size to provide room to save
the nonvolatile FPRs. Changing the buffer size would
introduce an incompatibility, so instead the nonvolatile
FPRs are saved on the stack.

As part of the extension to LE to support volatile and
nonvolatile FPRs, all LE-compliant applications must
ensure that each of their functions and procedures saves
the nonvolatile FPRs on the stack (in their stack frame).
They must also generate a format 1 Program Prolog Area
(PPA1) that identifies which FPRs were saved and where.

This new PPA1 and stack frame format enable LE
to restore the nonvolatile FPRs as it traverses from the
stack frame of the invoker of the out-of-block goto [e.g.,

P. H. ABBOTT ET AL.

749



750

#include <_TIeee?54.h>

#define _FP_MODE_VARIABLE

#include <foo.h>

int main(int argc, char *argv[]) {
double x, v;

fp_setmode (_FP_HFP_MQODE};

y = foo{x};

Hypothetical run-time library function.

the function that issued longjmp() ] to that of the target
[e.g., the function that issued setjmp() .

C/C++ run-time library

Beginning with OS/390 V2R6, the C/C++ compiler
generates compile units’ that use either HFP or BFP
format to represent floating-point values. This necessitates
support for both formats by functions in the C/C+ + run-
time library [31]. Since functions cannot determine the
formats of floating-point parameters and return values by
inspection, the compiler and run-time library must provide
identification mechanisms for them to use.

Compile-time function mapping  The simplest and most
efficient identification mechanism is for the run-time
library to provide two implementations of each (floating-
point-related) service: one to handle HFP-format and the
other to handle BFP-format parameters. This is illustrated
below for a hypothetical run-time library header,

<foo.h >, and function, foo() , with prototype:

double foo(double) ;

Besides foo() , the <foo.h > header also contains
prototypes for

double @@FOO@B(double);
/* Version of foo() to handle BFP values * /

double @@FOO@H(double);
/* Version of foo() to handle HFP values * /

7 This section uses the abstraction of an application composed of a set of compile
units produced by different compilers (e.g., assembler compile units are hand-
compiled). These compile units may be bound together, by a linkage editor or
binder, or not (e.g., as in the case of an application composed of a set of DLLs,
each containing one or more bound compile units).

P. H. ABBOTT ET AL.

Moreover, <foo.h > uses the new compiler macro,
_BFP_, to select one of these functions during the
preprocessing phase of compilation, as follows:
#ifdef  _BFP_

#pragma map(foo, “@@FOO@B");

/* Version of foo() to handle BFP * /
#else

#pragma map(foo, “@@FOO@H");
/* Version of foo() to handle HFP * /
#endif
The compiler defines _BFP_ only when the
FLOAT(IEEE) option is used. Hence, the conditional
logic shown above tells the preprocessor to map foo to
@@FOO@Ben the FLOAT(IEEE) option is specified and
to @@FOO@therwise.

Bypassing compile-time function mapping  Although
compile-time binding of compile units to HFP- or BFP-
specific implementations of functions in the run-time
library is efficient, the programmer of a compile unit
may not always want this to happen. Therefore, besides
recognizing _BFP_, run-time library headers also
recognize a new feature test macro,
_FP_MODEVARIABLE, which prevents compile-time
mapping of function and constant names in these headers
to HFP- or BFP-specific names. For example,

#define _FP_MODEVARIABLE
#include  <floath >
#include  <limits.h >
#include  <math.h >

prevents function and constant names in the run-time
library <float.h >, <limits.h >, and <math.h >
headers from being mapped to HFP- or BFP-specific
names during compilation. This allows a compile unit to
call run-time library functions to process either HFP or
BFP data, independent of its compilation mode. The
sample compile-unit source shown in Figure 9 illustrates
how this is done for hypothetical run-time library function
foo()

Regardless of the compile option that is used, defining
_FP_MODEVARIABLE before <foo.h > prevents the
function name (foo ) from being mapped to @@FOO@H
@@FOO@wring preprocessing. The _fp _setmode()
function call sets a thread-specific fp _mode flag to tell
foo() whether floating-point parameter x is HFP or BFP
format. The fp _mode flag for a thread remains unchanged
until it issues a subsequent _fp _setmode() call.

Run-time function mapping Header <_leee754.h >,
which is new for OS/390 V2R6, contains the prototypes
for the _fp _setmode() function, associated macros, and
a related function, _isBFP() ; see Figure 10. Macros in

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



vold_£fp_setmode (int mode);
_FP_MODE_RESET
_FP_HFP_MODE
_FP_BFP_MODE
int____isBFP(void};

Function for _fp_setmode ().

#include < _Ieee754.h>

/* Determine mode from ieee_option flag in PPA2 */
/* Set fp_mode to hexadecimal floating-point */
/* Set fp_mode to IEEE floating-point */

double foo(double input) {/* Representative of C/C++ run-time *
* library floating-point functions. */

if (__isBFP())}

return @@FQ0EB{input);
else

return @@FQO0EH (input);

Structure of a floating-point-related run-time library function.

the list shown after the prototype of _fp _setmode()
are valid values of the mode parameter. The comment
to the right of each macro in the list gives its meaning
as a mode value.

Floating-point-related run-time library functions are
generally structured as shown in Figure 11. Whether the
application calls foo() directly or calls some other run-
time library routine that eventually results in foo() being
called, the _isBFP() function interrogates the fp _mode
flag value set by the last call to the _fp _setmode()
function on the same thread. It returns a value indicating
whether the mode is HFP or BFP.

Determining compile-time function mapping ~ When the
compiler creates a compile-unit object, it includes a
format 2 program prolog area (PPA2) to specify attributes
of the object. The PPA2 includes a flag indicating whether
it is an application or run-time library compile unit.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Also, starting with OS/390 V2R6, the PPA2 contains an
ieee _option flag that the compiler sets to indicate

the compilation mode. When _isBFP() is invoked, it
searches the stack for the current thread until it finds the
application compile unit that invoked some run-time
library function with a floating-point parameter and
returns the value of the ieee _option flag in the PPA2
of this application compile unit.

Mixing compile- and run-time function mapping  The
programmer must be very careful after using

_fp _setmode() to set a floating-point mode that
corresponds to the FLOAT compile option. The fp _mode
flag set by _fp _setmode() is a run-time flag; it affects
only run-time library behavior. More specifically, the
compiler knows nothing about the run-time fp _mode flag.
Only the FLOAT option, which is a compile-time flag,
affects the floating-point machine instructions the

P. H. ABBOTT ET AL.

751



752

#include < Ieee754.h>

#define _FP_MODE_VARIABLE

#include <foo.h>

int main{int arge, char *argv(]) {
double x;

fleoat y: /***** Different from original sample source (above) ****x/

__fp_setmode(_ FP_HFP_MODE) ;
y = foo(x);

Modified version of function shown in Figure 11.

compiler produces. For example, if a compile unit is
compiled with the FLOAT(IEEE) option, the compiler
generates BFP machine instructions to perform floating-
point operations. This is the case even if the compile unit
contains a _fp _setmode( _FP_HFP_MODE)call.

Suppose the sample program used above is modified
slightly, as shown in Figure 12. The program will not
work. Function foo(x) returns an HFP value. The
assignment operation fails if the source is compiled with
the FLOAT(IEEE) option because the compiler rounds
the double value returned by foo(x) to float format,
destroying the original double HFP result.

<_leee754.h > provides a _fp _cast()
can be used to avoid the specific problem this example
illustrates. However, it does not provide functions for
other operations such as addition, multiplication, or
casting to integer formats. In general, the programmer
must avoid using operators on floating-point data whose
format conflicts with the FLOAT option specified at
compile time.

function that

Avoiding function mapping conflicts  Perhaps a safer
programming practice is to organize applications so that
when a compile unit obtains floating-point data that
conflicts with the way it was compiled, it immediately calls
another compile unit to handle the data. However, it is
still the responsibility of the programmer to call a compile
unit only if it is compiled to handle the format of floating-
point data being passed to it.

Another alternative is to convert floating-point data to
the format that matches the FLOAT option of the compile

P. H. ABBOTT ET AL.

unit(s) that will operate on it. <_leee754.h > provides
functions to convert between HFP and BFP format.
Source and target values may be of float, double, or long
double type. When conversion is not exact, a specified
rounding mode is used. <_leee754.h > contains macros
that define the supported data types and rounding modes.

It should be noted that even though conversion between
HFP and BFP avoids problems associated with using
_FP_MODEVARIABLE and _fp _setmode() , the
conversion strategy has problems of its own. That is,
conversion may be inexact, nonreflexive, or even
impossible. For example, the magnitude of (normalized)
HFP double values ranges from 10" to 10”.

However, BFP double values range from 107" to 10™".
If a conversion strategy is adopted, return values from
conversion functions which indicate that exponent
underflow or overflow has occurred must be heeded.

The bottom line is that it is not easy to mix processing
of HFP and BFP data in the same application. This is true
whether the application consists of a single compile unit
or of multiple compile units generated using different
options. Because neither hardware nor software can
distinguish HFP from BFP values, the onus falls on
programmers to exercise care when developing mixed-
floating-point-format applications. This is particularly
important when adding FLOAT(IEEE) compile units to
existing S/390 applications (whose existing compile units
and databases are implicitly HFP).

Additional functions  Besides the functions already
described, <_leee754.h > includes

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



¢ A set of functions to access the FPC register. These
functions can read and change any FPC register field.
They may be used, for example, to enable traps or to
change rounding mode.

The _fp _level()  function, which indicates the level
of FP extensions support, either hardware or floating-
point simulation, available at run time. Macros in
<_leee754.h > define its return values.

The _chkbfp()  function, which indicates whether the
FP extensions have been used on a thread and may be
used to avoid unnecessarily activating floating-point
simulation in an exception handler.

Up to this point, much has been said about functions
in <_leee754.h > because they are unique to OS/390.
Functions in other run-time library headers that have
floating-point parameters or return floating-point values
now support both HFP and BFP formats. Generally,
0S/390 C/C++ run-time library functions emulate their
AIX counterparts when processing BFP parameters, unless
this conflicts with the IEEE 754 standard. However, there
are notable exceptions to this principle:

¢ AIX math library algorithms are not used. Instead, Sun

Microsystems Freely Distributed Math Library (fdlibm)

was selected as the OS/390 C/C+ + run-time library

math library, because it is the preferred Java math
library. (Note: The run-time library enforces round-to-
nearest across calls to fdlibm functions. Application
rounding mode, if different, is saved during

fdlibm execution and restored before return to the

application.)

The OS/390 family of scanf()  and printf()

use the conversion algorithms (described in the

subsection on conversion between decimal and binary

floating-point) for BFP values with magnitudes ranging
from 107" to 10¥*. The results of scanf() and
printf() may not be bit-for-bit compatible with AIX
because these algorithms round correctly across the
entire range, which exceeds the requirements of the

IEEE standard.

e All OS/390 C/C++ run-time library formatted input
and output functions support slightly different external
representations of IEEE Floating-Point QNaN, SNaN,
and infinities than does AIX.

functions

Other supported products

Several other products exploit IEEE Floating-Point, as
discussed in the following subsections.

Java

The Java language is an object-oriented language that
owes a significant part of its syntax to C and C++. Java

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

source code is commonly compiled into a platform-neutral
byte code that is executed by a Java virtual machine. At
application run-time, the Java virtual machine interprets
each of the byte-code operations in sequence.

An alternative to the interpretation done by the Java
virtual machine is a just-in-time (JIT) compiler. The JIT
improves performance by translating sets of byte codes
rather than individual ones, using a variety of optimization
techniques to generate efficient machine code, and caching
the translated byte code for reuse. The net effect can be
to reduce processor use by a factor of two or more.

IEEE Floating-Point and Java  The Java Language
Specification [8] specifies that single- and double-precision
floating-point values and operations conform to the IEEE
754 standard. In some ways the Java definition is tighter:

1. Floating-point operations do not produce exceptions.

2. The Java language always uses round-to-nearest, except
when converting floating-point numbers to integers, in
which case it uses round-to-zero.

3. Extended formats are not supported.

Prior to the introduction of G5 hardware, all Java
floating-point arithmetic on S/390 was emulated. Java
Development Kit (JDK**) level 1.1.6 and above, executing
on G5 hardware, can take advantage of native BFP
support to reduce application execution time.

The Java product contains two separate DLLs (code
bases)—one that emulates floating-point arithmetic and
one that uses native BFP instructions. The availability of
the FP extensions is detected when the Java virtual
machine is started and determines which code base is
loaded.

JIT and Java virtual machine floating-point use is
similar in both DLLs. Emulation is replaced by C function
calls in the Java virtual machine and by generation of
native code in the JIT. For operations on float or double
data, the JIT generates native BFP instructions. For
operations on long (64-bit integer) data with float or
double data types, the JIT generates native emulation
code.

For math functions, the Java virtual machine calls the
C run-time library, which uses BFP instructions. The JIT
either generates native code or calls the C run-time
library.

Performance  The performance of Java programs
depends on the density of their floating-point operations.
For applications with high floating-point content,
performance improvement with the FP extensions can be
one or two orders of magnitude. The benefits apply to
common Java data types and can produce unexpected

P. H. ABBOTT ET AL.

753



754

improvements. Floating-point data can also be used
implicitly in Java routines, such as those that handle dates.
In addition, eliminating emulation code reduces program
size.

Migration and interaction ~ Applications written entirely in
the Java language will not require change; BFP use will be
transparent to them, but the interaction of Java programs
with existing code that contains calls to floating-point
emulation routines will see no performance benefit. For
example, extensions can be made to Java applications
using the Java native interface (JNI) to invoke code
written in other languages. If that non-Java code currently
invokes floating-point emulation routines, those calls will
continue to be made and application performance will not
change.

High-Performance Compiler for Java (HPCJ) The HPCJ
is an alternative to interpreting Java byte code using the
Java virtual machine. It takes as input Java source code
or byte code and then uses the same compiler-based
optimization technology as today’s C and C+ + compilers
to generate executables.

The HPCJ is contained in the IBM product VisualAge
for Java, Enterprise Edition for OS/390. Exploitation of
the FP extensions by HPCJ is available beginning with
Release 2 of that product (available from mid-1999) to
improve performance for Java applications that use
floating-point. This exploitation includes generation of
BFP instructions and data in HPCJ object code. Just as
for the interpreted Java language, the generation of BFP
instructions is transparent to the Java application, which
runs unchanged.

Domino 5.0 on §/390

Domino is a client/server application that supports a
variety of platforms, including OS/390, OS/400, AIX, Sun
Microsystems SunSoft Solaris**, and Windows NT**. In
many cases, customers run several Domino servers on
different platforms. Domino databases may be copied
between servers. Domino also supports replication of
databases, which keeps multiple copies of a database

on different servers up to date.

Databases may have fields containing IEEE Floating-
Point numbers. Domino applications can read such
numbers from a database, perform mathematical
operations on them, and store the results back in the
database. If the database is moved to another platform,
some other operations may be performed on those
same IEEE Floating-Point numbers. Consequently, it is
important that all platforms provide consistent floating-
point operations.

P. H. ABBOTT ET AL.

LotusScript ~ LotusScript** defines floating-point numbers
using the IEEE Floating-Point range. Since the S/390 HFP
representation supports a smaller range (for double-
precision values), converting IEEE Floating-Point
numbers to HFP, performing mathematical operations

on them, and converting them back was not a viable
solution.

Domino C API Tool Kit  The Domino C APIs define
all floating-point parameters as IEEE Floating-Point
numbers.

Domino floating-point requirements ~ Domino on S/390
had the following requirements:

1. Support math operations on IEEE Floating-Point
numbers stored in databases.

2. Support math operations on IEEE Floating-Point
numbers passed on C API calls.

3. Support the IEEE Floating-Point value range.

4. Require as few changes as possible to Domino source
code.

5. Allow the same Domino executables to run on both
new and old S/390 hardware processors.

Solutions to Domino floating-point requirements  The FP
extensions support added to OS/390 V2R6 exceeded all
Domino floating-point requirements. OS/390 V2R6
supports BFP on the G5 processor and on older
processors that do not support FP extensions. This was
crucial to meeting Domino’s requirement of running the
same Domino executables on new and older S/390
processors. The new C/C++ compiler FLOAT(IEEE)
option made the transition to BFP extremely easy. It was
completely transparent to Domino source code running on
other platforms. Most significantly, Domino has produced
consistent results performing IEEE Floating-Point math
operations running on S/390 under OS/390 V2R6 and on
other hardware platforms.

IMS DB

IMS* DB does not define floating-point data types and
does not have to distinguish HFP and BFP values. Thus,
the existing IMS DB product can support transaction
programs that use BFP.

When scheduling a new transaction, IMS reuses the task
in a message-processing partition. For transactions that
use BFP, the FPC register might not be initialized and
should be set to the IEEE default value. This is the
responsibility of the application or its run-time library.
For LE applications, run-time initialization performs
this function for each new transaction.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



DB2 UDB for 0S§/390

DB2 Universal Database* for OS/390 (henceforth DB2)
must be able to deal with both HFP and BFP at the same
time in order to operate on data currently stored in
customer tables and allow new applications to use BFP
data. Support for BFP must be equivalent to that for HFP
to allow customers to implement applications and business
processes using BFP. A phased approach is the likely path
to achieve this goal.

Toleration  In order to take advantage of BFP as soon as
possible, DB2 will provide a PTF to allow Assembler and
C/C++ programs that use BFP to seamlessly pass that
data to DB2.® With this PTF, DB2 will convert BFP
values to HFP at the application/DB2 interface. DB2 will
continue to process and store floating-point data internally
as HFP. As data is retrieved from or passed back to an
application that uses BFP, DB2 will convert HFP values to
BFP. This support is similar to that provided by the SQLJ
and JDBC drivers for Java applications that use SQLJ or
JDBC to access DB2. Conversion between BFP and other
numeric formats such as integer and decimal is also
provided.

DRDA applications that use DB2 UDB for OS/390 as a
requestor will be able to pass BFP data to the requestor.
This data will first be converted to HFP and then passed
to the DRDA server.

The LOAD utility will be enhanced to accept BFP-
format data as input. The BFP data will be converted to
the proper type (Smallint, Integer, Decimal, or HFP
Float) as it is loaded into a DB2 table.

In order to take advantage of the performance
improvements provided by the new hardware instructions,
DB2’s existing IEEE Floating-Point/HFP conversion
routines will be changed to use these instructions if they
are available. DB2 has had its own conversion routines
between IEEE Floating-Point and HFP since Version 2
Release 3. If testing determines that the existing software
support is not as precise as the new hardware instructions,
an option will likely be devised to allow customers to
choose which conversion method to use.

Full support  Additional support will be needed to
achieve parity between BFP and HFP in DB2. A new
data type will be required to allow DB2 to store and
manipulate BFP data. Changes to statements such as
CREATE TABLE, CREATE PROCEDURE, CREATE
FUNCTION, and CREATE DISTINCT TYPE will be
needed to allow BFP data to be specified. Support at this
level includes basic arithmetic operations, as well as built-
in function support [e.g., SELECT CHAR(BFP_VALUE)

8 As other languages such as PL/I and COBOL add support for BFP, it is
anticipated that DB2 will provide similar support for them.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

FROM T1], and the ability to specify BFP in a user-
defined type (UDT) or pass BFP data to a user-defined
function (UDF) or stored procedure (SP). The ability to
cast between BFP and other compatible DB2 data types
(Smallint, Integer, Decimal, and HFP Float) will also be
needed at this level.

Many other issues must also be resolved. Promotion
rules, which define how to perform an operation within a
group of related data types, will be affected. For example,
adding an INTEGER value to a BFP value will result in a
BFP value. But what will adding an HFP value and a BFP
value produce? The answer is probably BFP, but an option
or new syntax may be required to allow the result format
to be specified.

Support for BFP in C/C++ applications that use ODBC
to access DB2 is another issue that must be addressed.

A change to the DRDA architecture will be needed to
allow DB2 to send BFP data to another DRDA client
or server. The DRDA architecture as it is now defined
determines, at a platform level, the type of floating-point
data (HFP or IEEE Floating-Point) that is transmitted by
a client or server. DB2 for OS/390 currently sends HFP
data, while DB2 for UNIX, NT, OS/2, and AS/400 all send
IEEE Floating-Point data. Changes will be needed on all of
these platforms to recognize BFP data from DB2 for OS/390.

Conclusions regarding DB2 ~ DB2 will provide toleration
support to allow customers to begin using BFP data in
their applications. Additional changes will be required in
order to provide full support. A new numeric data type
will require many changes and much care to ensure the
compatibility and integrity of existing customer data and
applications while allowing full exploitation of the OS/390
implementation of IEEE Floating-Point.

Debuggers
Two debuggers, Debug Tool and dbx, provide support for
IEEE Floating-Point.

Debug Tool support for IEEE Floating-Point ~ Debug
Tool [32] supports display of expressions involving BFP
variables and literals (except expressions that include
function calls). It also supports display and modification
of BFP variables and registers. The C/C++ compiler
options FLOAT(IEEE) and FLOAT(HEX) generate
symbolic information about floating-point variables for
use by Debug Tool. Debug Tool supports mixing HFP
and BFP floating-point in the same program, even if that
produces logical inconsistencies. In the example shown in
Figure 13, external variable x2 is interpreted as HFP in
ml.c and as BFP in p2.c , depending on the compile
option used.

For floating-point expressions, Debug Tool behaves
like the C/C++ compiler. All variables and constants

P. H. ABBOTT ET AL.

755



756

/* ml.c ( compile with FLOAT(HEX) ) */
$include <stdio.h>
extern void setx2(float f);
float x2 = 2.0;
int main()
{
X2 = 2.0;
setx2(2.0);
printf(" x2 = %f\n", x2};
return 0;
}
/* p2.c
extern float x2;
void setx2(float f1)
{
x2 = f1;
x2 = 2.0;

Example program mixing HFP and BFP.

evaluated by the debugger within the scope of a compile
unit are interpreted according to the options that are
used to compile it. The rounding mode used by Debug
Tool to evaluate BFP expressions is always the

IEEE default mode, not the one set by the run-time
library.

Debug Tool’s support of both HFP and BFP can help
find bugs related to inconsistent floating-point modes.
For example, in main() , before the call to setx2() ,
variable x2 is interpreted as HFP. Displaying x2 shows
the value 2.0000000E +00. The type of x2 is reported
as a 4-byte float. Within the scope of ml.c, all
floating-point variables and constants are interpreted as
HFP because it was compiled with the FLOAT(HEX)
option.

Immediately after entering setx2() , variable x2
is interpreted as BFP. Displaying x2 shows the value
1.0000000000000000E  +001. Its type is reported as a
4-byte IEEE float, which is different than before. While
the value displayed looks like a debugger error, it is a user
error because X2 contains an HFP version of 2.0 that is
being interpreted as BFP by the program. Within the
scope of p2.c , all floating-point variables and constants
are interpreted this way because it was compiled with the
FLOAT(IEEE) option.

P. H. ABBOTT ET AL.

(compile with FLOAT(IEEE)} } */

/* x2 is initialized to the HFP version of 2.0 */

/* x2 is set to the HFP version of 2.0 */
/* thig call leaves x2 set with the BFP version of 2.0 */
/* prints a BFP version of 2.0 as if it were HFP */

/* x2 is set to the EEX version of 2.0 from main() */
/* %2 is set to the IEEE version of 2.0 */

Debug Tool also supports viewing and modification
of the AFPRs. For example, evaluating the expression
%FPR3= 3.14; sets the value of FPR 3.

UNIX System Services Debugger (dbx): debugging mixed
HFP/BFP programs The C/C++ compiler and LE allow
a load module to contain multiple object files, of which
some use HFP and others use BFP. dbx supports this kind
of mixed-type floating-point data at both the C/C++
source level, in which the data is stored in variables,

and the machine level, in which the data is stored in
registers. dbx performs the appropriate conversions when
assignments or references in expressions are made to
floating-point values of different types.

On the basis of the type information provided by the
compiler, dbx knows whether a variable is HFP or BFP.
However, this is not true for registers. Therefore, a
separate set of symbols has been created to indicate
whether the contents of an FPR are to be treated as HFP
or BFP. The user decides which type of data is contained
in the FPR and uses the appropriate dbx symbol to format
it as HFP or BFP. The size of the HFP exponent does not
change when the format of the floating-point number is
4, 8, or 16 bytes, so representing all floating-point data
using an 8-byte register was an acceptable approximation.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



However, since the BFP exponent changes size as the
format changes, a precision flag allows the user to set the
size of HFP or BFP register symbols.

dbx is a C program and allows LE functions to be used
to operate on BFP and HFP data. However, this cannot
be based on the way in which LE determines whether a
compile unit uses HFP or BFP, since one portion of dbx
code may have to operate on both types of floating-point
data. On the basis of the _BFP_ compiler flag, a global
variable in dbx is set so that it can determine how it was
compiled. Data in an expression is converted to and
operated on using the dbx compiled floating-point mode.
This approach allows most of the expression processing
to remain untouched. The only case in which data is
converted to the other floating-point type is when the
result of an expression is assigned to a variable or a
register of that type. Because of the size differences
between HFP and BFP exponents, the preferred dbx
compile mode is BFP.

Users debugging a program with dbx can assign either
a BFP or an HFP value to a BFP or HFP variable or FPR
in any combination. The values of BFP or HFP variables
or the FPRs can be displayed at any time, in any
combination, and can consist of expressions that have
mixed BFP and HFP operands.

Summary and conclusions

The goal of providing IEEE Floating-Point computing on
S/390 for use by new workloads has been achieved with
the G5 architecture and OS/390 V2R6 and VM/ESA
software support. With a G5 architecture that provides
most of the support for compliance with the IEEE 754
standard as a basis, operating system infrastructure,
language, run-time, other product, and debugging support
for IEEE Floating-Point provide a solid yet affordable
base for application exploitation. The OS/390 BCP
instruction simulator has succeeded in providing this base
independently of the G5 hardware and is available to any
program. Additionally, the IEEE Floating-Point capability
has been added to S/390 in a very transparent way:
Applications that use HFP format are unaffected, system
performance is identical when the new capabilities are not
used, and the ability to service the system is maintained.
To enhance the portability of applications between
platforms, considerable compatibility with RS/6000 and
AIX has been achieved in the architecture and in C/C++
language and run-time external interfaces.

The hardware support in the G5 and the support for C
and C++ programs in OS/390 V2R6 enables porting of
new floating-point workloads to OS/390 without having
to adjust for the historical difference in floating-point
formats. Exploitation of the G5 hardware by applications
of the Java language for OS/390 allows real use of
floating-point in Java programs without the large

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

performance penalty of the previous software simulation.
Also, HLASM support allows the creation of highly tuned
subroutines using IEEE Floating-Point on S/390.

Given the IEEE Floating-Point capability provided by
the G5 processor and OS/390 V2R, it is expected that
numerous applications, and especially emerging workloads,
will choose to exploit IEEE Floating-Point when porting
to 0S/390. While HFP will continue to be fully supported,
over time IEEE Floating-Point will become the format of
choice for S/390 because of the widespread acceptance of
the IEEE 754 standard in the industry.

Acknowledgments

John Franciscovich of IBM VM Development was
responsible for turning the concepts behind VM’s support
of IEEE Floating-Point into reality. Damian Osisek of
IBM VM Development provided valuable guidance for
the VM implementation. Peter Relson of IBM OS/390
Development designed and implemented the BCP support,
including the instruction simulator.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group or
X/Open Company Ltd., Lotus Development Corporation, Sun
Microsystems, Inc., or Microsoft Corporation.

References

1. D. Stevenson, “A Proposed Standard for Binary Floating-
Point Arithmetic,” IEEE Computer 14, No. 3, 51-62
(March 1981).

2. W. J. Cody, “Analysis of Proposals for the Floating-Point
Standard,” IEEE Computer 14, No. 3, 63—-68 (March 1981).

3. D. Hough, “Applications of the Proposed IEEE 754
Standard for Floating-Point Arithmetic,” IEEE Computer
14, No. 3, 70-74 (March 1981).

4. J. T. Coonen, “Underflow and the Denormalized
Numbers,” IEEE Computer 14, No. 3, 75-87 (March
1981).

5. W.J. Cody et al., “A Proposed Radix- and Word-Length-
Independent Standard for Floating-Point Arithmetic,”
IEEE Micro 4, No. 4, 86-99 (August 1984).

6. “IEEE Standard for Binary Floating-Point Arithmetic,”
ANSI/IEEE Standard No. 754-1985, American National
Standards Institute, Washington, DC, 1985.

7. T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Addison-Wesley Publishing Co., Inc.,
Reading, MA, August 1996.

8. J. Gosling, B. Joy, and G. Steele, The Java Language
Specification, Addison-Wesley Publishing Co., Inc.,
Reading, MA, August 1996.

9. IBM Corporation, Enterprise Systems Architecture/390
Principles of Operation, Order No. SA22-7201-05 or later;
available through IBM branch offices.

10. E. M. Schwarz, R. M. Smith, and C. A. Krygowski, “The
S/390 G5 Floating Point Unit Supporting Hex and Binary
Architectures,” Proceedings of the 14th IEEE Symposium
on Computer Arithmetic, Adelaide, Australia, April 14-16,
1999, pp. 258-265.

11. G. Slishman, “Fast and Perfectly Rounding
Decimal/Hexadecimal Conversions,” Research Report
RC-15683, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, 1990.

P. H. ABBOTT ET AL.

757



758

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

. D. Matula, “The Base Conversion Theorem,” Proc. Amer.
Math Soc. 19, No. 3 (1968).

J. T. Coonen, “Contributions to a Proposed Standard
for Binary Floating-Point Arithmetic,” Ph.D. Thesis,
University of California, Berkeley, 1984.

W. D. Clinger, “How to Read Floating Point Numbers
Accurately,” Proceedings of the ACM SIGPLAN 90
Conference on Programming Design and Implementation,
1990.

G. L. Steele and J. L. White, “How to Print Floating
Point Numbers Accurately,” Proceedings of the ACM
SIGPLAN 90 Conference on Programming Design and
Implementation, 1990.

IBM Corporation, OS/390 V2R4.0 MVS Planning:
Workload Management, Order No. GC28-1761-03 or later;
available through IBM branch offices.

IBM Corporation, OS/390 UNIX System Services User’s
Guide, Order No. SC28-1891-05 or later; available
through IBM branch offices.

IBM Corporation, OS/390 UNIX System Services
Programming Tools, Order No. SC28-1904-04 or later;
available through IBM branch offices.

IBM Corporation, OS/390 UNIX System Services
Command Reference, Order No. SC28-1892-05 or later;
available through IBM branch offices.

IBM Corporation, OS/390 UNIX System Services
Programming: Callable Services Reference, Order No. SC28-
1899-05 or later; available through IBM branch offices.
D. L. Osisek, K. M. Jackson, and P. H. Gum, “ESA/390
Interpretive-Execution Architecture, Foundation for
VM/ESA,” IBM Syst. J. 30, No. 1, 34-51 (1991).

IBM Corporation, OS/390 C/C++ User’s Guide, Order
No. SC09-2361-03 or later; available through IBM branch
offices.

IBM Corporation, OS/390 C/C++ Language Reference,
Order No. SC09-2360-03 or later; available through IBM
branch offices.

IBM Corporation, OS/390 C/C++ Programming Guide,
Order No. SC09-2362-03 or later; available through IBM
branch offices.

IBM Corporation, Language Environment for OS/390 &
VM Vendor Interfaces, Order No. SY28-1152-05 or later;
available through IBM branch offices.

IBM Corporation, IBM High Level Assembler for MVS &
VM & VSE Language Reference, Order No. SC26-4940-02
or later; available through IBM branch offices.

IBM Corporation, OS/390 MVS Programming: Assembler
Services Guide, Order No. GC28-1762-05 or later;
available through IBM branch offices.

IBM Corporation, OS/390 MVS Programming: Assembler
Services Reference, Order No. GC28-1910-05 or later;
available through IBM branch offices.

IBM Corporation, OS/390 MVS Programming: Authorized
Assembler Services Guide, Order No. GC28-1763-05 or
later; available through IBM branch offices.

IBM Corporation, Language Environment for OS/390 &
VM Programming Guide, Order No. SC28-1939-06 or later;
available through IBM branch offices.

IBM Corporation, OS/390 C/C++ Run-Time Library
Reference, Volumes 1 and 2, Order No. SC28-1663-04 or
later; available through IBM branch offices.

IBM Corporation, Debug Tool User’s Guide and Reference,
Order No. SC09-2137-03 or later; available through IBM
branch offices.

Received November 9, 1998; accepted for publication

Ju

P.

ly 23, 1999

H. ABBOTT ET AL.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



Paul H. Abbott IBM Centre for Java Technology, IBM
Hursley Park, Winchester, SO21 2JN, United Kingdom
(pabbott@uk.ibm.com). Dr. Abbott is a Software Engineer in
the Java Technology Centre, working in the Java for OS/390
porting team. He joined IBM in 1997, moving straight into
Java porting on the OS/390 platform. He has worked on
several areas of the 390 JVM, including the porting and
development of Java floating-point on OS/390, AWT support,
security, and code conversion. Dr. Abbott received a B.Sc.
degree in computer science from the University of Teesside,
England, in 1990 and an M.Sc. degree in applied artificial
intelligence from Aberdeen University, Scotland, in 1992. In
1996 he was awarded a Ph.D. by Wolverhampton University,
England, on the application of artificial intelligence to
analytical chemistry. He is an associate member of the British
Computer Society.

David G. Brush IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (k62cdgbc@us.ibm.com). Mr.
Brush is an Advisory Software Engineer working in OS/390
Language Environment Design and Development. He
designed IEEE support for the C Run-time Library and
Common Execution Library components of LE and was the
team leader for implementation of this support. Mr. Brush
joined IBM in Kingston, New York, in 1968. He received an
M.S. degree in mathematics from Trinity College.

Clarence W. Clark lll IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (clarence@us.ibm.com).
Mr. Clark currently works in the S/390 e-Business area,
focusing on Java. Prior to his current assignment, he spent
many years working in a variety of technical and managerial
positions related to systems and database performance,
analysis, and design. For the past several years his work has
focused on systems implications related to object technology
and associated application development issues.

Chris J. Crone IBM Software Solutions Division,

Santa Teresa Laboratory, San Jose, California 95141
(cjc@us.ibm.com). Mr. Crone is an Advisory Software
Engineer and team leader for the run-time component of DB2
UDB for 0S/390. In 1989 he joined IBM in the National
Service Division, where he worked on the L3 change team for
DB2. In 1990 he moved to the Software Solutions Division
and began working in DB2 development. He has contributed
to the Stored Procedures and Outer Join projects in DB2
V4R1, ASCII Server support in DB2 V5R1, and most recently
was involved with Object Extensions and User-Defined
Functions projects in DB2 V6R1. Mr. Crone received a B.S.
degree in computer science from the California Polytechnic
State University at San Luis Obispo in 1989. He has received
an IBM Invention Achievement Award and several IBM
individual and team awards for his work on DB2.

John R. Ehrman IBM Software Solutions Division,

Santa Teresa Laboratory, San Jose, California 95141
(ehrman@us.ibm.com). Dr. Ehrman received the B.A. degree
from Oberlin College and the Ph.D. degree from the
University of Illinois, both in physics. After 17 years as a
computer mathematician at the Stanford Linear Accelerator
Center, he joined IBM in 1983, and has since pursued
interests in application development tools, including VS
FORTRAN and the High-Level Assembler.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Graham W. Ewart IBM Software Group, Toronto
Laboratory, Toronto, Ontario, Canada (ewart@ca.ibm.com).
Mr. Ewart is a Senior Software Developer in C/C+ +
Development. He has worked in the computer industry
for almost 35 years, 23 at IBM. In 1987 he joined the
Application Development Technology Centre to work

on design and development of the C Compiler family.

Clark A. Goodrich IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (cgoodric@us.ibm.com).
Mr. Goodrich is currently a Senior Software Engineer on

the Domino for S/390 product. While working for IBM, he
has also designed and developed software for the OS/390
UNIX System Services signal processing component, DPPX
Application Peer Peer Networking (APPN), and DPPX CPU
management. Before joining IBM, Mr. Goodrich worked as a
scientific application programmer using APL and FORTRAN.
He has also written real-time software for the National
Aeronautics and Space Administration. Mr. Goodrich
graduated from Buffalo State College in 1976 with a
bachelor’s degree in electrical engineering.

Michel Hack IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (hack@us.ibm.com). Dr. Hack studied at the Ecole
Nationale Supérieure des Télécommunications in France
(Ingenieur Civil, 1969) and at Project MAC at the
Massachusetts Institute of Technology (M.S. 1972 and

Ph.D. 1976), before joining IBM as a Research Staff
Member. He started in the 801 group, and moved on to
System Programming and Operating System research, where he
participated in the development of an experimental operating
system for the S/370. He has tracked the evolving S/370
architecture through a machine-level debugger for operating
systems that is independent of the software and could thus be
used to debug several very different operating systems at the
lowest level. Dr. Hack has worked on the low-level software
structure of a large-memory fault-tolerant computer system
that supports reliable applications across operating system
failures. He is currently tracking the evolution of the S/390
architecture into the next century.

John S. Kapernick IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12602 (kapernic@us.ibm.com).
Mr. Kapernick is a Senior Technical Staff Member in the
S/390 Software Systems Design organization. He joined IBM
in 1966 in the Data Processing Division in Atlanta, Georgia,
working in a variety of field and staff assignments. Since
moving to Poughkeepsie, New York, in 1980, he has worked
in a variety of technical and management assignments. His
current responsibilities are in the area of applications and
application-enabling facilities, including development tools
for the OS/390 UNIX environment. Mr. Kapernick received
a B.LLE. degree from the Georgia Institute of Technology

in 1963 and an M.S. degree in system engineering from
Polytechnic University in 1994. He has received a number of
IBM formal and informal awards, has one patent, and is a
member of ACM and the IEEE Computer Society.

Brian J. Minchau IBM Software Solutions Division, Toronto
Laboratory, Toronto, Ontario, Canada (minchau@ca.ibm.com).
Dr. Minchau is a Software Engineer in the IBM Toronto
Laboratory. His present responsibilities include language

P. H. ABBOTT ET AL.

759



760

support for Java, C++, and C within Debug Tool. Since
joining IBM in 1991, he has also worked on the C/C+ +
compiler and prelinker and has an IBM patent for Dynamic
Link Library support on OS/390. He received a B.Sc. degree
in mathematics from the University of Alberta in 1980, and a
Ph.D. degree in theoretical physics from Brown University in
1986.

William C. Shepard IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (shep@us.ibm.com).

Mr. Shepard is an Advisory Software Engineer in the

S/390 Software Systems Design Department. His current
responsibilities focus on CPU-related operating system design.
Assignments have included operating system performance and
constraints analysis, and I/O-related operating system design.
He received a B.S. degree in mathematics and physics from
St. Lawrence University in 1975, and an M.S. degree in
computer science from Villanova University in 1980.

Ronald M. Smith, Sr. IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12602 (rmsmithl@us.ibm.com).
Mr. Smith is a Senior Technical Staff Member in the

Systems Architecture Department of the Mid-Hudson Valley
Development Laboratory in Poughkeepsie, New York. He
received his B.E.E. degree in electrical engineering from Ohio
State University in 1957 and joined IBM at the Endicott
Laboratory the same year, moving to Poughkeepsie in 1961.
He worked on assignments in circuit design, central processor
design, and programming before joining the Systems
Architecture Department in 1966.

Richard Tallman IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (rtallman@us.ibm.com). Mr.
Tallman is a Senior Software Engineer in the S/390 Software
Systems Design Department, responsible for the overall
design of the Language Environment component of OS/390.
He joined IBM in 1974 in Kingston, New York, where he
worked on the development of several IBM operating systems
and on numerous components within them. In 1990 he was
one of the initial designers/developers on the team that added
UNIX support to the MVS operating system. In 1996 he
moved to Poughkeepsie, New York, to work on OS/390.

Mr. Tallman received a B.S. degree in electrical engineering
and an M.S. degree in computer engineering from Lowell
Technological Institute in 1974. He is the author of a number
of patents and has received several IBM Invention
Achievement Awards.

Steven Walkowiak IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (swalk@us.ibm.com). Mr.
Walkowiak is an Advisory Software Engineer in the OS/390
Kernel/dbx Development Department. He is responsible for
the overall design of the dbx debugger component of OS/390.
Mr. Walkowiak joined IBM in 1981 in Kingston, New York,
where he worked on the system test and development of other
IBM operating systems and on various components within
these operating systems. In 1990 he was one of the initial
designers/developers on the team that ported the dbx
debugger to the MVS operating system. Mr. Walkowiak
moved to Poughkeepsie in 1966 to continue work on
debugging on MVS.

P. H. ABBOTT ET AL.

Akio Watanabe IBM Systems Sales Division, Yamato
2428502, Japan (watana@jp.ibm.com). Mr. Watanabe joined
IBM in 1986 and is currently a Staff Marketing Systems
Engineer. He worked on the Java Just-In-Time (JIT) compiler
for S/390 at the Tokyo Research Laboratory.

W. Romney White IBM System/390 Division, Endicott
Programming Laboratory, Endicott, New York 13760
(romney@us.ibm.com). Mr. White is a Senior Software
Engineer in VM Development. He joined IBM in 1997 and is
currently involved in advanced VM development in support of
new hardware architectures. Mr. White received a B.Math.
degree (1970) in computer science and an M.Math. degree
(1976) in software from the University of Waterloo, Canada.
He has received several IBM formal and informal awards and
is a member of ACM.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999



