Self-timed
Interface

for S/390

/0 subsystem
Interconnection

by . Hoke

Bond

P ==

. Pidala

J.
P.
T.
F.
G. Steinbrueck

o)

A high-speed interface has been designed for
interconnection of the S/390° I/0 subsystem to
the IBM S/390 G5 processor. The self-timed
interface (STI) provides high bandwidth,
greater communication distances, and simpler
timing within the S/390 servers than traditional
interfaces. The STI communicates between the
memory bus adapter and the expanded S/390
I/0 subsystem, which now includes the new
S$/390 fiber channel offering (FICON™) and
other network-based protocols such as ATM,
Fast Ethernet, and Gigabit Ethernet. Also new
for G5 is the use of STI for the integrated
cluster bus (ICB), providing direct links among
multiple G5 servers. The STI communicates
over cables up to ten meters in length at a
clock frequency of 167 MHz. Data is sent at
twice the clock frequency (333 MB/s). The
hardware implementation comprises specially
designed logic macros, differential drivers and
receivers, and the cables and connectors. The
receive macro accommodates up to three bit-
times of skew by retiming each data bit of the
interface to the transmitted clock. This paper
describes the STI logic, the characteristics of
the link, and the transmission and reception of
the data (and clock).

Introduction

The self-timed interface (STI) was first introduced with
the third generation of $/390* CMOS servers (G3) to
satisfy the increasing I/O bandwidth requirements of these
improving large systems. As the performance of the
processors increased, it became apparent that in order for
IBM to be successful with its new line of CMOS servers,
the bandwidth and connectivity of the I/O subsystem had
to scale along with the processor. STI was developed to
satisfy those requirements.

Figure 1 is a block diagram of an S/390 CMOS machine
showing STT usage. The STI provides the interface
between the memory bus adapters (MBAs) and the
traditional I/O bridge chips (FIBBs), thus enabling legacy
I/O such as parallel channels, ESCON¥, and intersystem
channels (ISC) for machines prior to G5. Today, with the
delivery of the fifth generation of S/390 CMOS servers
(G5), the role of the STI is further expanded as the
primary interconnection method for the I/O subsystem.
The STI is used for the direct connection of the new
S/390 fiber channel offering (FICON*), as well as other
network-based protocols such as ATM, Fast Ethernet, and
Gigabit Ethernet, to the I/O subsystem through a PCI
bridge chip. Also new with G5 is the ability to create
direct communication links, using the STI, between
other G5 servers via the Integrated Cluster Bus

(ICB) [1].

©Copyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

J. M. HOKE ET AL.

829

830

M M
Processor \ : ¢ / II\E/I Processor \ § ¢ / 1]\34
and L2 <———|o and L2 <o
memory R memory R
cage / / Y cage / \ \ Y
[MBa] [mBA| [mMBA| [MBA] [MBa] [mBA| [MBA| [MBA]
TTTTTT TTTTrT TT[7 TTTTTT TTTTTT TTTTTT TTTTTT TTTTTT
24 STI ports ICB f 24 STI ports
1/0 PCI 1/0 /o /0 PCI
cage bridge bridge cage bridge bridge
A A4 A A A4
G5 server G5 server
y ISC ISC v
ATM | ESCON v ATM
FICON | L ESCON | FICON
Ethernet Parallel Parallel Ethernet

STI links as used in the G5 server.

To appreciate the advantages of the STI as an I/O
subsystem interconnection, it is helpful to look at its
predecessor. In the G1/G2 machines, the first generation
of IBM CMOS mainframes, the I/O subsystem was
connected to the processors and memory via the internal
bus (IB) [2]. The IB interface was an 8-byte-wide
bidirectional data bus running at a 27-MHz clock rate.
This allowed a peak data transfer rate of less than
300 MB/s, but in only one direction at a time. Another
limiting factor of the IB was its synchronous nature, which
limited the maximum length of the cable to one meter.
This limited the G1/G2 machines to a single I/O cage.
Furthermore, the number of conductors alone made the
IB cable very expensive.

Today’s STI link uses a relatively inexpensive copper
cable and can extend up to ten meters in distance
depending upon the system topology. The upper distance
limit is dictated by the electrical signal quality delivered to
the receiver. (It is entirely realistic that STI links could be
extended over much greater distances by the use of optical
fiber in place of copper.) With the one-meter distance
limitation of the IB eliminated, multiple I/O cages and
ICBs were made possible. For example, G5 allows a
maximum of three I/O cages.

The STI transmits one byte of data, a combination
parity/flag bit and a half-speed clock signal in each
direction. This requires 20 differential signal pairs (ten
pairs in each direction) in the cable. The raw STI data

J. M. HOKE ET AL.

rate is 333 MB/s (667 MB/s total), producing 3-ns data
pulse widths using a half-speed 167-MHz clock signal.
One major problem with operating a copper link at
these speeds is that the skew between data signals on
the link can exceed the bit-time.

The adoption of the STI as the I/O subsystem
interconnection dramatically improved the total system
bandwidth. An STI port requires 40 chip I/O pins in
comparison with an IB port, which uses more than 80 chip
I/O pins. Consequently, the G1/G2 MBA chip had
only enough chip I/O pins for two IB ports. Aided by
technology density improvements, a G5 MBA chip is able
to support six STI ports. This gives the current S/390 CMOS
servers more I/O subsystem bandwidth than was possible
with even the most powerful bipolar mainframes [2].

The STI is implemented using specially designed
semicustom macros to handle the STI physical-layer
protocol. The function is partitioned into a physical send
macro (PSM) and a physical receive macro (PRM), as
shown in Figure 2. These entities interface with the STI
logical-layer macros, LSM and LRM, respectively. The STI
logical macros handle flow control and packet creation for
the STI link [1, 2]. The primary function of the PSM is to
serialize the word-wide interface from the LSM down to
one byte for transmission onto the STI cable. The function
of the PRM is to receive the signals from the cable,
resynchronize the data signals to the transmitted clock,
and, finally, deserialize the four bytes of data back into a

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Logical Physical Differential SCSI
send |36 send |10, drivers 20 connector

macro macro

10-meter
STI cable

- - Physical Logical
SCsI 249> Differential =N| e ceive receive
connector ‘ receivers macro macro
‘ 3ns 12ns
‘LBridge chip Host logic

Components of the STI link.

word for presentation to the LRM. A detailed description
of the PSM and PRM follows.

The STI combines both parallel and serialized data
running at high speeds. This paper discusses the
challenges encountered during the development of the STI
physical link and details its implementation. The topics
presented include the electrical characteristics of the
copper cable and the resulting consequences, the problem
of jitter and noise on link performance, the effects of
silicon tolerances, and the ability of the STI to
compensate for skew between data bits.

STI physical send macro

® Description of the transmit logic

A high-level block diagram of the PSM is shown in
Figure 3. As mentioned earlier, the function of the PSM
is to serialize a word of data received from the LSM and
transmit it one byte at a time over the cable interface.
Figure 3 shows the bit-slice nature of the PSM. The logic
is designed for a single bit and then replicated eight times.
This is referred to as a bit-slice or “one-bit” of the PSM.
The details of the PSM one-bit are shown in Figure 4(a).
The serialization process first converts the four bits of
data captured from the LSM into two-bit data fields using
the capturing 12-ns oscillator as a controlling input to a

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Transmit clock
generation and [— Clock out
distribution

!

One-bit — Serial data out (parity)

167 MHz from PLL —»
PGI out

(Parity) 0
1l —»
22—
3 —

Bit 0 —»
Sz onebit
24—

— Serial data out 0

Bit 1 —»
52| onebit
25—

[— Serial data out 1

Bit 2 —»
19 2| onebit
26—

— Serial data out 2

Bit 3 —»
{é —| Onebit
27—

— Serial data out 3

Bit 4 —»
5(2) One-bit
28 —>

— Serial data out 4

Bit 5 —»
é? One-bit
29 —>

— Serial data out 5

Bit 6
14 —»
22 —»
30 —>

One-bit — Serial data out 6

Bit 7 —
15 —
23 —»
3] —>

One-bit — Serial data out 7

STI physical send macro.

pair of 2:1 selectors. When the 12-ns oscillator is low, bits
0:1 are captured into a two-bit register by a 6-ns clock;
when the 12-ns oscillator is high, bits 2:3 are similarly
captured.

The next stage of the serialization process, as shown in
Figure 4(a), converts the two-bit fields of data into a serial
data stream. A pair of latches (SRLO and SRL1) whose
clocks are 180° out of phase from each other capture the
two bits of data, thus creating staggered data-valid
windows for presentation to a custom-designed select-
balanced selector (SBSEL). At this point, the most crucial
step of the serialization process occurs. The design goal
for the controlling input of the SBSEL is to achieve a
perfectly balanced 50% duty-cycle oscillator signal. The
symmetry of this signal will ultimately define the bit time
or baud interval which is transmitted on the STT link.

J. M. HOKE ET AL.

831

832

_,—>

Bit N of byte 0 ——

6 ns —»| Serialization

Selector
L 2-bit

1 —— 4-bit

9 — 5| register

3 —

T J—> register
L, Selector L
12-ns oscillator —f

6ns —> TJatch SRLI

_‘—> latch SRLO Select
elect-
balanced » | Differential + Data
selector driver -
Serialization

6-ns oscillator J

SRLO X 0o X2 X

Inputs to

select-balanced SRLI

selector

6-ns oscillator _|

Output of
SBSEL

o
|

(b)

(a) STI physical send macro one-bit logic; (b) timing diagram for the final stage of the serialization process.

From the logic timing diagram in Figure 4(b), it can be
seen how the STI is able to transmit data at 333 MB/s
while using an oscillator that cycles at one half of the data
rate. The serialization process is now completed by the
PSM, and serial data is sent to the differential drivers for
transmission on the STI cable. It should be understood
that any deviation in the 50% duty cycle of the 6-ns
oscillator signal will be perceived as data-bit jitter by the
STI PRM at the other end of the cable.

® Skew between the data bits

In Figure 3, which shows the one-bits of the PSM, all
data bits launched on the link have a common 167-MHz
oscillator signal as the controlling input to the SBSELs
inside the one-bits. The first source of data-bit skew is the
inevitable variation in the 167-MHz oscillator distribution
network to each one-bit. The next contributing factor is
the difference in chip wiring from each PSM one-bit to its
respective differential driver. Other contributors to skew
are the differences in the chip wiring from the differential
driver outputs to the C4 pads of the chip, differences in
the substrate wire lengths from the C4 pads to the module
I/O pins, differences in the board wire lengths from the
module I/O to the connector pins, and, finally, differences
in the conductors within the connector and cable itself.

A similar set of contributors must be considered at the
receiving end of the STT link. Naturally, silicon variations
along the entire path must also be taken into
consideration.

J. M. HOKE ET AL.

There is a distinct difference between data-bit skew
and jitter. Although they are caused by similar sources,
jitter results from the time-varying component of these
sources and applies only to an individual data-bit path.
Skew, on the other hand, is defined by the variations
between one data-bit path and another. The largest
contributor to skew is the physical difference in wiring
paths from bit to bit. Jitter results primarily from noise
sources that cause variation of silicon delays and from
variations in transmission-line delays.

Transmission of electrical signals
The STI transmission system employs differential signaling
with a swing of approximately 1 V for each phase of the
signal (2 V peak to peak differentially). The common-
mode voltage for the system is nominally 1.25 V. A typical
path for the signal would include wiring on a chip and an
MCM or SCM, the pins associated with the module, some
circuit wiring on a card or board, a cable connector, and a
length of cable, with a similar arrangement at the other
end of the cable. In the case of the STI, the connector
is a 50-pin SCSI connector, while the cable comprises 22
sections of 28-gauge “twinax” (twin-wire axial cable).
Twinax is ideally suited for differential signal
propagation with a consistent differential impedance and
low skew within a pair. Ten sections of twinax are used for
transmission in one direction, while another ten sections
are used in the opposite direction. The remaining sections
are used by the system to sense cable connections. The

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

overall cable bundle is surrounded by a shield to reduce
radiation from the cable. Finally, the entire cable is
surrounded by a protective insulating outer layer.

The differential receiver, to a first order, responds only
to differential signals at the two receiver inputs and is able
to handle a common-mode excursion of about £0.5 V.
Further discussion of the receiver common-mode voltage
is given in the context of receiver jitter.

As with all copper-wire transmission systems, there are
physical limitations on the distance and speed of the
system, and the STI is no exception. The primary problem
with wire transmission systems is distortion of the signal
due to high-frequency loss, as well as phase distortion
caused by the cable and card wiring. Here the primary
culprit is the well-known skin-effect loss in the card and
cable wire [3]. Thus, the higher-frequency components of
the signal are more attenuated than the low-frequency
components, which in turn distorts the signal and
leads to problems in decoding the data and maintaining
synchronization. To a lesser extent, the reflections caused
by discontinuities in the signal path (i.e., at connectors,
module pins, vias, terminations, etc.) can also lead to
signal degradation.

In general, the signal distortion problem is analyzed
by modeling the various sections of the package.
Transmission-line models that include skin-effect and
dielectric losses have been developed for the card wiring
and cable [3]. Models have also been developed for the
connectors, the module, and the pins associated with the
module package. The entire package is simulated in the time
domain using the ASX electrical simulation program [4].

Jitter as the source of bit errors

Simply put, the job of the STI is to deliver error-free data
over the link. From the standpoint of electrical and signal
transmission, several effects can interfere with error-free
data transmission. The first and perhaps the easiest to
understand is noise induced from adjacent signal lines.

If sufficient noise signal is induced when the data signal

is sampled, a bit error can result. The STI is wired to
minimize induced signal noise—differential pairs are
separated as much as possible from one another on the
cards and boards, coupling between the pairs is minimized
in the cable bundle, and any induced coupling from vias,
pins, module wiring, etc. is kept small enough to prevent
significant coupling problems.

The most likely source of error in the STI link is the
cumulative effect of jitter. Jitter is defined as the cycle-to-
cycle variation in the “zero crossings” of the data. There
are numerous sources of jitter in the STI link, and the
combined effect of these various sources has the greatest
potential to cause a bit error. The overall effect of jitter is
to move the desired bit sufficiently in time to cause it to
be incorrectly sampled by the clock.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

* Data-pattern-dependent jitter 1440 ps
* Delay-line resolution 500 ps
* Delay-line jitter 90 ps
* PLL jitter 100 ps

* Transmit data duty cycle variation
* Transmit clock duty cycle variation

(RMS) 100 ps
(RMS) 100 ps

* Data-receiver-induced jitter (RMS) 50 ps
* Clock-receiver-induced jitter (RMS) 50 ps
* Data-coupled-noise jitter (RMS) 400 ps
* Clock-coupled-noise jitter (RMS) 400 ps
* Sum 2130 ps
* RMS sum 587 ps
* Total (sum + RMS) 2717 ps

Jitter budget for 333-MB/s STI.

Many jitter sources must be considered in the analysis
of the link. All of these sources are analyzed and then
placed in a “jitter budget” to ensure proper operation of
the link (see Figure 5). First and perhaps foremost is the
effect of high-frequency losses on the signal. The phase
and frequency response of the card wire and cable spread
the bits out in time, causing intersymbol interference.
Intersymbol interference, in turn, causes the effective
boundaries, or zero crossings, of bits to be dependent on
the previous data. This problem, in which the present bit
is affected by the previous bits, is well known as data-
pattern-dependent jitter [4]. By itself, data-pattern-
dependent jitter is not capable of causing a bit error,
but it can be a contributing cause when its effects are
combined with the other sources of jitter in the STI link.

To assess the amount of data-pattern-dependent jitter,
simulation is done in the time domain using frequency-
dependent models for each segment of the signal
transmission path. The actual driver and receiver circuits
are included in the simulation in order to assess their
performance under anticipated conditions. The link is
driven by various data patterns—some random, some
fixed—to evaluate the jitter of the entire link. The
resulting waveforms are “folded over” in time at a
multiple of the bit rate to produce an “eye diagram”

[5]. From these diagrams, the amount of data-pattern-
dependent jitter for the system can be analyzed.

Although their effects are minimized by design,
coupling between differential pairs on the package can
contribute to jitter. As previously mentioned, the coupling
that occurs comes from parallel module wiring, inside
connectors, adjacent vias and pins, etc. The induced
voltage will alter the zero crossing in time, and the

J. M. HOKE ET AL.

833

834

Receive clock
Clock in —— | generation and |— PGl in
distribution
— (Parity) 0
Serial data in (parity) — One-bit - é
. 3
— Bit 0
Serial datain 0 ———> One-bit - 16
— > 24
— Bit 1
al . hi l— 9
Serial datain | —— One-bit - 17
— 25
— Bit 2
] P . —— 10
Serial datain 2 ———» One-bit 18
— 26
— Bit 3
. g 3 l— 11
Serial datain 3 ——— One-bit 19
— 27
—— Bit 4
. . . —— 12
Serial datain 4 ——— One-bit < 20
— 28
— Bit 5
. . . —— 13
Serial datain 5 ———» One-bit - o1
— 29
. Bit 6
Serial datain6 ———| One-bit [»
— 30
—— Bit 7
. . . — 15
Serial datain 7 —— One-bit 23
—> 31
Global

PGI out — | controland [— Interface

(timing req) sync active

STI physical receive macro.

cumulative effect of coupling throughout the net can
cause jitter on both the data and the clock nets; therefore,
these items are included in the jitter budget.

Extensive measures are taken to strive for a perfect
50% duty cycle on the clock and data signals. As
mentioned previously, any deviation from this goal
contributes to the jitter. Since we cannot achieve perfect
signal symmetry, we include these items in the jitter
budget.

Finally, within-pair skew, or the difference in the arrival
time between the two signals in the differential pair, will
affect the performance of the receiver. It is virtually
impossible to keep the propagation delay of the two

J. M. HOKE ET AL.

phases of the differential signal equal throughout the
entire path. Differences in wiring, imperfections in the
cable, etc. will contribute to the within-pair skew, which
will cause the voltage at which the two phases become
equal (zero differential voltage) to vary from cycle to
cycle. The varying crossover voltage will affect the delay
through the receiver, causing jitter. Stringent wiring

rules attempt to control the within-pair skew to some
reasonable number—usually a small fraction of the rise
and fall times at the receiver. This skew effect is factored
into the design of the receiver. The crossover transitions
will usually not occur at the nominal common-mode
voltage, and the receiver must be able to handle the
varying voltage crossover. From a differential standpoint,
it should be pointed out that the timing from crossover to
crossover is not affected by the within-pair skew. Jitter
contributions to the data and clock caused by within-pair
skew result primarily from the propagation-delay variation
through the receiver in response to the varying crossover
voltages.

Jitter budget

The jitter budget in Figure 5 shows that there are many
causes of jitter other than the packaging. These other
sources arise in the STI electronics. For instance, there

is a fixed increment of time resolution in the delay line
which leads to a resolution error in determining the exact
edges of the data bit. This in turn leads to an error in
locating the center of the data bit. The error in the bit
center contributes to jitter by leaving less margin for data
and clock perturbations in time. This is the origin of the
delay-line resolution component of the jitter budget.
Power-supply noise on the chip also affects the delay-line
resolution, since power-supply noise modulates the delay
through the delay line. This component is referred to as
delay-line jitter. These two jitter sources are particular

to the STI logic and will be better understood after the
operation of STI is presented.

With all of the jitter components identified and
analyzed, an acceptable method of combining all of the
components must be developed. Perhaps the simplest
method would be to add all of the various components.
Since the components probably have truncated worst-case
distributions, this would guarantee that the system would
work. However, that approach is far too conservative. For
example, not all links will have the worst-case coupled
jitter combined with the worst-case duty cycle for both
clock and data, etc. On the other hand, items such as
data-pattern-dependent jitter, delay-line resolution, delay-
line jitter, and PLL jitter are very common. A more
desirable approach is to add the data-pattern-dependent
jitter, delay-line resolution, delay-line jitter, and PLL
jitter. The remaining components are root-mean-square
(RMS) summed together and then added to the sum

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

above. The criterion for concluding whether or not the
link will function is to require that the total jitter be less
than the bit interval. Figure 5 shows a total jitter budget
of 2717 ps, less than the 3000-ps bit interval.

STI physical receive macro

Thus far we have discussed the STI transmit function,
differential signaling, the electrical characteristics of the
copper cables, and the components contributing to skew
and jitter. We next describe what occurs in the STI at the
receiving end of the link. The physical receive macro
(PRM) receives the signals from the cable, resynchronizes
the data signals with the transmitted clock, and deserializes
the byte-wide data bus back into a word-wide interface
for delivery to the logical receive macro (LRM). Again,
Figure 2 illustrates this dataflow.

Figure 6 shows a high-level block diagram of the PRM;
the figure shows the bit-slice nature of the PRM, which is
similar to that of the PSM. The logic is designed for a
single bit and then replicated eight times. The details of
the PRM one-bit are shown in Figure 7.

Serial data first enters the bulk delay chain, where delay
is added to each data bit on an individual basis, with the
primary goal being to center the data-bit window for
sampling within the fine delay chain. The elements of both
delay chains are custom-designed, balanced inverters.

Next the serial data enters the fine delay chain. One
way to view the fine delay chain is as a memory in which
each element contains slightly different phase information
about the data signal. Three address registers address this
memory element—early edge, late edge, and data. These
registers select particular elements of the delay chain for
output to be sampled and then presented to the edge
detectors.

The edge detectors locate and lock onto the edges of
the data bit to be sampled. After the edges are located,
the position of the data sample is calculated as the center
between the early edge and late edge addresses. This
identifies the ideal point at which to sample the incoming
serial data stream.

The STI has two distinct modes of operation: timing
mode and operational mode. During timing mode, both
ends of the STT link participate in the self-timing of the
interface. The PSM transmits a predetermined pattern
called the timing pattern, which consists of a string of
zeros followed by a periodic one. The PRM expects to see
the timing pattern while in timing mode, and the bulk
delay is adjusted in this mode. After timing mode is
complete, the bulk delay is frozen; however, the edge
detectors continue to update the early, late, and data
address for the fine delay chain. Through the feedback
path surrounding the fine delay chain (i.e., data sample,
edge detection process, filter, and finally edge address
register update), the STI is capable of maintaining a lock

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

4 bits wide
— Bit N of byte 0
— 1

Bit-byte-word
sync

- 2
—» 3

A (12 ns)

2 bits wide
(6 ns)

1

Early
edge edge
detector ||| detector

EEEy

Early Late
edge Data edge
sample [| sample | | sample

N

Ul —>I Fine delay chain of inverters I
delay L - T .
Y

Data Random-
address walk

? ? filter

—

Late

r(i
Bulk
control

+ >
Data

receiver

Differential

Random-
walk
filter

Early Late
edge edge |«

address address

t f

STI physical receive macro one-bit logic.

on the incoming serial data stream. As the environment of
the system changes because of temperature and voltage
variations, the STI is able to track these variations,
thereby maintaining error-free sampling of the incoming
serial data stream. The details of each of these functions
are presented next.

® The problem of receiving skewed data

Consider the data transmission system shown in Figure 8.
Data is launched by a clock from a set of latches (six
shown) on the transmitting end of the link through a set
of off-chip drivers (OCD) into a set of conductors. In this
case, the launching clock is sent along with the data. At
the receiving end of the conductors, a corresponding set
of off-chip receivers (OCR) processes the incoming
signals, which are then captured by receiving latches using
the received clock.

Although the data for each conductor is launched at the
same time, the arrival times at the receiver are skewed
because of the variations of the individual transmission
paths, as previously discussed. In addition to illustrating
the physical link, Figure 8 also shows the hypothetical

J. M. HOKE ET AL.

Clock(S) Clock(R)

‘4— Timing —>‘

~<—— | <— Links —» | «———— Receiver ——

Sender

Data transmission problem.

Latch
|I Cable
T OCD OCR ‘

Selected
tap

Delay line '
with taps

k Sampling edge

Basic concept of phase selection.

skewed arrival times at the receiving end of the link. The
836 timing diagram shows that the signal on Conductor A

J. M. HOKE ET AL.

Internal logic

arrives at the receiving chip the earliest, and the signal
on Conductor E arrives the latest. If nothing is done,
Conductor A is sampled late and Conductor C and
Conductor D are sampled early. Conductor E and
Conductor F are sampled incorrectly. Only Conductor B
happens to be properly centered with the sampling edge of
the received clock. Clearly, the received signals must be
properly phase-aligned with respect to the sampling edge
of the clock in order to be accurately captured into the
receiving latches. Jitter also exists on the data edges,
which further compounds the problem. The STI provides
a solution to this problem by automatically aligning the
incoming data bits with the received clock.

® The STI solution

The STI concept is novel and straightforward. Each data
input signal to the receiver chip is fed to a delay line

with multiple taps, as shown in Figure 9. The delay line
contains many identical delay elements, with the output of
each delay element representing a unique phase of the
incoming data signal. At the core of the STI is the phase-
selection logic, which is responsible for selecting the
preferred phase of the data bit to be sampled—at the
center of its data-valid window. Once identified, a built-in
servo-mechanism locks the data phase selection and makes
dynamic adjustments to maintain the lock; hence the name
“self-timed interface.”

Central to the phase-selection process is centering the
data-valid window with respect to the sampling clock edge.
Consider a data pulse as it propagates down the delay
line, as illustrated in Figure 10. First the edges of the data
bit must be found by means of the edge-detection process,
to be discussed later in detail. As shown, the leading edge
of the C2 clock aligns with the trailing edge of the data
window and identifies the corresponding tap as tap E.

In a similar way, the leading edge of the C2 clock aligns
with the leading edge of the data window, which occurs

at tap L. Finding the center of the data window becomes
a simple matter of choosing a tap midway between tap E
and tap L. Tap D is chosen as the tap from which data is
sampled, because the sampling edge of the C2 clock falls
directly into the center of the data window. This process is
also known as bit synchronization. Tap E is located earlier
in the delay chain than tap D; hence it is called the early
guard-band (EGB) tap. Similarly, tap L is located later in
the delay chain, and is thus called the late guard-band
(LGB) tap.

® Description of the receive logic
Fine delay line and bulk delay line
The fine delay line consists of 32 precisely controlled delay

stages. A convenient way to implement these delay stages
is with custom-designed inverters having symmetrical rise

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

and fall times. The delay-line taps mentioned earlier
represent not just one single inverter output, but the
outputs of a pair of adjacent inverters. These inverter
pairs are selected by an address register in a “leapfrog”
manner. For example, if the address is “0000,” inverter 0
and inverter 1 are selected as the first pair. When the
address is advanced to “0001,” inverter 1 and inverter 2
(not 2 and 3) are selected as the second pair, and so on.
The selected pair presents a true output phase and a
complement output phase of the input data. The reason
for selecting adjacent inverter pairs is explained shortly.
As mentioned earlier, the principal function of the bulk
delay line is to add sufficient delay so that the data bit
window is centered within the fine delay line. As shown in
Figure 10, it is important that when the sampling edge
(positive-going edge of C2 in this example) occurs, the
entire data window of bit(i) must be stored within the fine
delay line. In the event that this condition is not met, such
as in the case when half of bit(i) and half of bit(i + 1)
are stored within the fine delay line at the time of
sampling, an additional amount of bulk delay must be
added so that the entire bit(i) will be shifted into the fine
delay line, as shown in Figure 11. Like the fine delay
element, the bulk delay element is a custom-designed
inverter having symmetrical rise and fall times. The bulk
delay line has multiple taps to provide delay from a
fraction of a bit-time (1/10, 1/5, etc.) up to slightly
more than one bit-time. This is done to ensure that, for all
possible phase relationships between clock and data, the
data can be centered and sampled in the fine delay line.
For a fast-process chip, which requires more inverters to
hold a bit-time, our design goal is to ensure that no fewer
than 1.5 bits are stored in the fine delay line. This allows
plus or minus one quarter bit-time for dynamic tracking of
the data edges. For a slow-process chip, which requires
fewer inverters to hold a bit-time, our design goal is to
ensure that no fewer than eight inverters exist between the
data edges stored in the fine delay line. Figure 11 shows
the fine delay line and bulk delay line cascaded together.
The process of determining the proper amount of bulk
delay is carried out during timing mode, which is discussed
in detail later in this paper.

Early and late guard-band tap selection

Figure 12 shows a more detailed block diagram of the
STI one-bit, with particular attention paid to the phase-
selection logic. The fine delay line has 32 output taps,
which are divided into three groups. The first group,
comprising inverters 0-15, is assigned to the EGB; the
second group, comprising inverters 16-31, is assigned to
the LGB. A third group of inverters, 8-23, is assigned to
the data tap and shared with the upper half of the EGB
and the lower half of the LGB, respectively. The three
groups of inverter outputs are fed as inputs to three pair-

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Latch Cable

— Time

\

E M Bit(i) ‘I

Selected
phase
for data

SC2 N
\ + centered
\ . here \

z \

Delay line

‘<7 Data window 4>‘
o]
Il
‘S
|+
S

~

Data window centering.

X Bit(i) X

Fine delay line

lolldolo Ll

Pair 0
} Pair 1

| 2:1 Selector | 8:1 Selector
e Pttt 1t
Dawin—={ o 110 [[0 1/5 25 3/5 45 1| Bulkdelayline

Fine delay line and bulk delay line.

selector blocks. The pair-selector blocks are built using a
series of custom-designed, balanced-output multiplexors.
One pair-selector on the left chooses the EGB tap, or

tap E, which is controlled by the early address register.
Another pair-selector on the right selects the LGB tap, or
tap L, whose selection is controlled by the late address
register. A pair-selector block receives a four-bit address
code from the address registers. The pair-selector will

J. M. HOKE ET AL.

837

838

i + i > Data2
Ty

= 8 A 8 =
I R SO -0 b, 2 o2 [P N e
o g2 03 |2 o E I o E R oe2
DSE |«— /@3 |2 (S sample = g g i 5=

] ED 2 o 2 ED]

— (5] 5] -

1 - 2] ‘ H

k| 1
™
Ly |L 5\
+ [i |f
™| E o — ==
— Pair-selector (data)
o —
Data — 01 234567 8 9 101112131415
—A—, address A A A A A A LA A A A 44 —_
Ad lT register t| |f t| |f Ak T

Early > Pair-selector Pair-selector - Late
address g (EGB) (LGB) i address
register > 01 2345 9 [10|11(12|13|1415 0|1|2[3[4]|5]|6 8 9101112131415 - register

ERRRARRRUSZILEE

'—T-b\l

PERERPEET T {111}

Fine delay line (32 inverters)

-

Serial
data input — Bulk delay line

Detailed block diagram of the physical receive macro one-bit.

select a pair of inverter outputs from the 15 possible pairs
formed by the 16 inverters in the EGB, LGB, and data
groups. The inverter pairs chosen by a pair-selector are
labeled ¢ and f. As we explain shortly, the edge detectors
use both true and false taps of EGB and LGB at the same
time.

Data tap selection

The EGB address and the LGB address correspond to the
fine delay line taps, where the trailing and the leading
edges of the data window occur. The data tap control
logic, also shown on the left in Figure 12, averages the
EGB and the LGB addresses to generate a third address
for the data tap. Tap D is obtained by feeding the
calculated data address into another pair-selector.
Therefore, finding the optimum tap within the fine delay
line from which to sample data becomes a matter of
finding the early (tap E) and late (tap L) edges of the
data bit and then finding their midpoint.

Unlike the EGB and LGB, only one tap of the
true/false data samples is used at a time by the edge
detectors. The reason for collecting both true and false
data samples, even though only one data sample can be
used at a time, is to smooth the process of changing from

J. M. HOKE ET AL.

one tap to the next. These two phases are selected
alternately as the address register selects “leapfrog” pairs
of inverters. When the data address changes, the STI
never switches to a new tap immediately for fear of
corrupting the data. The next tap is always available

and stable before it is used.

Sampling the serial data

The three selected pairs of true and false taps are fed to
their respective sampling blocks to generate samples for
the edge detectors. The three sampling blocks shown in
Figure 12 are the EGB sample, the LGB sample, and the
data sample. The data sampling block also serves as the
first step of the deserialization process, converting the
serial data stream into a two-bit-wide data stream labeled
as Datal and Data2. The edge-detection process is an
iterative feedback process that will eventually converge on
the proper settings for the three address registers. Before
describing the edge detector, it is necessary to describe
how the STI samples the incoming serial data. Details of
the sampling logic are shown in Figure 13. A serial data
stream is fed to the inputs of both an L1/L2 (master/slave)
latch and an L2* (pronounced L2 star) latch. It is given
that the bit time of the data stream is one half of the

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

clock cycle. As stated earlier, the PSM transmits data
using both edges of the clock; hence, two bits of data must
be captured during each clock cycle, one using the positive
edge of the clock and the other from the negative edge of
the clock.

The received-link clock shown in Figure 13 is connected
to the input of a clock splitter that generates two
complementary-phase clock outputs, C1 and C2, which
drive master/slave latches. C1 is an out-of-phase clock
gating the master (L1) part of the L1/L2 latch. C2 is an
in-phase clock gating both the slave (L2) part of the L1/L2
latch and the L2* latch. The L2* latch is like an L1/L2
latch except that the L2 portion is directly accessible and
the L1 portion of the L2* need not be used.

In the timing diagram of Figure 13, the positive-going
edge (marked X) of the clock points to the “current” data
bit Data(i). When the CI clock is closed while Data(i) is
active, Data(i) is sampled or captured into the L1 portion
of the L1/L2 latch. When C2 is on, the data latched in L1
will be transferred to the L2 portion of the L1/L2 latch.
As a result, Data(i) appears at the output of the L1/L2
latch beginning at the positive-going edge of C2 and
remains valid for an entire cycle, labeled as Cycle(i).

The L2* latch works somewhat differently. When the
C2 clock is high, the input data is flushed directly to the
output of the L2* latch, resulting in part of the Data(i)
appearing as “noise” at the L2* output. Since the C2 clock
is closed while Data(i + 1) is active, Data(i + 1) is
captured into the L2* latch and remains there for the
remainder of Cycle(i). The “noise” at the output of the
L2* latch can be removed by adding another L1/L2 latch
(shown as SRL2). To match the timing, SRL1 is added to
the output of the L1/L2 latch. As a result, two stable data
samples, Data(i) and Data(i + 1), appear at Cycle(i + 1).

In summary, Data(i) is sampled by the positive-going
edge of the clock, and Data(i + 1) is sampled by the
negative-going edge of the clock. The data samples of
different bit-times in the serial data stream (one half cycle
apart) are now lined up in the same cycle so that in
Figure 12, the data sample block converts the serial data
into two-bit-wide parallel data, Datal and Data2. As
shown, Figure 13 assumes that Data in is from the “true”
tap of the fine delay line. If Data in were from the “false”
tap of the fine delay line, inverters would be added
between L2 and SRLI1 and between L2* and SRL2. It
should be mentioned that the EGB and LGB samples use
the same L1/L2 and L2* configuration to sample data
from the fine delay line. Also worth noting is that by
design, the EGB and LGB samples operate at the
transitions of the data to be captured. Therefore, standard
design techniques are employed to avoid metastability
hazards.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

S

<L |
Cl~ O .
2] L2 I~ Sample(i)
Data in —»— o
Clock Clock [~Cl — % -_; Sample(i + 1)
ock —
¢ splitter |~ 2

SRL2

Data(i —1) Data(i + 1) Data(i + 3)
Data in
Data(i) Data(i + 2)
X
Clock]) | | r
Cl e
C2 1 A [| I

Output of L1/L2

Output of L2* I// Data(i + 1),
Output of SRL1];ata(i) Data Datal
Output of SRL2 “noise” samples Data2
|
‘ Cycle(i) ‘ Cycle(i + 1) ‘
Sampling logic.

The edge-detection process: Transition detector
Understanding how STI captures data from a serial data
stream and aligns two samples in the same cycle, we are
now able to use the sampled data in downstream logic.
Figure 14 shows an example of a transition detector which
is used by the edge detector described later. Let S(i) be
the sample of Data(i) and S(i + 1) be the sample of
Data(i + 1). The late edge (LE) exists when S(i + 1)
differs from S(i). Therefore, performing an exclusive-OR
operation between these two samples will produce a
signal, LE_exist, indicating the presence of the late
transition.

Similarly, the early edge (EE) exists when Data(i — 1)
is different from Data(i). The sample of Data(i — 1)
labeled as S(i — 1) is generated by the cycle preceding
the one corresponding to Data(i). The added latch SRL3
will bring that sample into the same time slot as S(i) and
S(i + 1) so that a comparison can be readily made.
Samples S(7) and S(i — 1) will be connected to another
exclusive-OR to produce a signal, EE_exist, indicating the
existence of the early edge. It is imperative that the edge
detectors be able to distinguish the difference between the
case in which either EGB or LGB is incorrectly positioned
and the case in which the serial data simply did not
change from bit to bit.

J. M. HOKE ET AL.

839

840

Y Transition detector

LE_exist
Data in

Data(i —l)i iData(i + 1) Data(i + 3)

Data in
Data(i) Data(i + 2)
X
Clock] 777 N
1 el

oupuori2 YOGui Ty
Output of SRLI \Data(z)
Outputof SRL2 X Data(i — 1) X Data(i + 1) X_
Output of SRL3 Data(i — 1)

Three data samples
are lined up here

Transition detector.

The edge-detection process: Edge detector

Detecting where the edges occur is the critical step in
the phase-selection process. Figure 12 shows two edge
detectors: the early guard-band (EGB) edge detector and
the late guard-band (LGB) edge detector. Each edge
detector is independent from the other and has as its
inputs one data sample and two adjacent-edge samples.
Under typical operating conditions, the data edge would
be trapped between the adjacent-edge inverters. The
principle of operation is the same for both, but the
implementations are slightly different. Let us look at the
LGB edge detector to illustrate the concepts.

In the timing diagram of Figure 15, there are four cases
to be considered. They differ in terms of the relationship
between the serial data and the sampling edge of the
clock (C2). Figure 15 shows a data stream with all zeros
followed by a single one which is followed by all zeros
again. The single one is a half cycle wide and is
represented by the shaded area. D is the data tap (top
middle of Figure 12). L is a selected true/false pair of

J. M. HOKE ET AL.

samples from the LGB (assume that all necessary
inversions have been introduced). Tap L has more delay
than tap D, as shown in both Figure 12 and Figure 15.
The objective is to locate an edge within the half-cycle
window. For example, for the leading edge of the one, the
window of search is between the two vertical dotted lines.
Consider Case 1 of Figure 15 in which data transition
edges (EE and LE) are found. By this we mean that tap
L, which represents a pair of adjacent phases, is properly
chosen such that the transition of one phase falls
immediately to the left side of the sampling clock edge
and the transition of the next phase falls immediately to
the right side of the sampling clock edge. Since there are
two sampling edges, the positive-going edge of the C2

) MM ®
@A@

Case 1 L
@V
c2

edges

et

Case 2 L { 4 4

&))
Case 3 L
&
‘\Samplmg/v

edges

VA@%

—
—

Case 4 t
< _l— Sampling

= edges =

Concept of edge detector.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

clock and the negative-going edge of the C2 clock, there
are six tap samples for the edge-detection process; these
are labeled in circles in Figure 15. Sample 1 (or S1) is
captured by the positive-going edge of the C2 clock and
taken from one of the two phases (true or false) of tap D.
Samples 2 and 3 (S2 and S3) are also generated by the
positive-going edge of the C2 clock and taken from the
phase pair of tap L. Samples 4, 5, and 6 (S4, S5, and S6)
are all generated by the negative-going edge of the C2
clock in a like manner. From the timing diagram, we learn
that in order for this condition to be met, the samples
must have the following characteristics:

Case 1:

* S2 =S1.
* S3 # S1.
* S5 =S4
e S6 # S4.

Action: None, because the late edges have been found.

If Case 1 is detected, no action is taken by the edge
detector because tap L has been located such that the
data edges fall right on the sampling edges of the clock.
Note that in this implementation of the edge detector, all
samples are lined up in the same cycle by the sampling
logic described earlier. The desired logic comparisons can
be readily made by means of exclusive-OR gates.

Consider Case 2 of Figure 15, in which the data
transitions (EE and LE) are not found because an earlier
tap L pair has been selected. The corrective action is to
select a later tap, which has more delay, from the fine
delay line. This situation has the following characteristics:

Case 2:

* S2 = S1.
* S3 = S1.
o S5 = S4.
* S6 = S4.

Action: The LGB edge detector will generate an Edge_up
(or EU) pulse in an attempt to select a tap pair with more
delay (i.e., a later tap). This is done by incrementing the
LGB address register by one. This action is taken only
when transitions exist.

Case 3 of Figure 15 shows the situation for which there
are no data transitions in the serial data. The STI receives
a constant logic level (either all ones or all zeros) for the
duration of the sampling interval of interest. The samples
obtained have the same characteristics as in Case 2, but
no corrective action should be taken because no edge
transitions are found. This is why the action taken in

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

s2 @; H
S1 ——
:D_, EU
S3 @—‘
Transition |EE_exist
detector
LE_exist
ED
S4 —
[]

Edge detector.

Case 2 must depend on whether or not the serial data has
had a transition.

Case 4 of Figure 15 shows the situation for which a very
late tap L is selected. The sampling characteristic is as
follows:

Case 4:

e S2 # S1.
e 83 # S1.
* S5 # S4.
e S6 # S4.

Action: The LGB edge detector will generate an
Edge_down (or ED) pulse in an attempt to select a tap
pair with less delay. The goal is to decrement the late-
address register by one.

On the basis of this understanding, the LGB edge
detector can be constructed. Figure 16 shows a possible
implementation in which six samples are taken to generate
either Edge_up (EU) or Edge_down (ED) signals. The
same principle of operation applies to the EGB edge
detector, the only difference being that tap L is replaced
by tap E (see Figure 12) and the EU and ED definitions
are swapped.

The edge-detection feedback process is a matter of
taking the proper actions to find the right tap £ and tap L
such that Case 1 is always maintained. However, in the
presence of jitter (noise) and environmental changes in
temperature and voltage, the data edges will drift within

J. M. HOKE ET AL.

841

842

Reset

100000

—lo|o|=]! F—OEdge_up
—|lo|~=|o]|! HEdge_down
<
]

S|l |-

RWF_down

RWF_up

Random-walk filter.

the delay lines, causing the edge detectors to move in and
out of the Case 1 situation. Therefore, corrective actions
will always be necessary. This dynamic tracking mechanism
is desirable, since it guarantees stable data centering,
making the system more robust and tolerant of
environmental variations.

Random-walk filter
Because data on the STI link is subject to noise, jitter,
and environmental changes, it is unavoidable that some
edge samples taken at the transition region will be wrong.
This will in turn cause the edge detectors to produce
incorrect EU or ED signals. It follows, then, that
instantaneous adjustment of the address registers is not
prudent; rather, an adjustment based on an average of
several transitions is in order. A random-walk filter
(RWF) is used to smooth out the edge-detector outputs
before updating the address registers. An individual
RWEF is assigned to each edge detector, as shown in
Figure 12.

Figure 17 shows a logical view of the RWF consisting
primarily of a 6-bit up/down counter. At the beginning of
the edge-detection process, the counter is preset to its

J. M. HOKE ET AL.

Tpp (|alBf[c[p[E]F[G]|H]
Clock !
Datal | S Ay ¢]
Dat2 | | [B~ D]
- 03 Case 0
o
TpD (|alBf[c[p[E[F]c]u] |
Clock
Datal | NERA)
Data2 I k'l A \’l C | 2
Case 1
Datal > Case 0
'_O‘\O—>D i
é }»40 atal_adj
e Case 1
Case 0
Data 40 So——— Data2_adj
Lo
Case 1

Step one of byte synchronization.

middle value, b'100000'. It can count up 31 positions or
down 32 positions depending on whether Edge_up or
Edge_down is received.

If a net of 31 Edge_up pulses have been received since
reset, an RWF_up signal is generated. However, if a net
of 32 Edge_down pulses have been received, an RWF_down
signal is generated. The RWF_up or RWF_down signal
will update the corresponding EGB or LGB address register,
causing a new tap E or tap L to be selected from the fine
delay line. When the counter reaches either all ones or
all zeros, it resets itself to the middle again and produces an
UP/DN signal. Thus, the RWF effectively averages and
removes jitter from the edge-detector outputs.

Byte and word synchronization

The data-sampling logic (upper middle of Figure 12)
deserializes the serial data from tap D and places it on
two parallel data buses, Datal and Data2. We assume at
this point that the phase-selection logic has already
selected the proper tap D such that the sampling edge of
the clock falls in the middle of its data window. The next
question is whether bits on the Datal and Data2 buses are
in the proper order.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Figure 18 shows a serial data stream ABCDEFGH . ..
arriving from tap D at the data-sampling logic with the
transitions of the clock aligned in the middle of the data
window. Two possible relationships can exist, depending
upon the arbitrary relationship between clock and data for
a particular one-bit. Case 0 shows the positive-going edge
of the clock lined up with bits A, C, E, and G. Case 1
shows the other possibility, in which the positive-going
edge of the clock lines up with bits B, D, F, and H. As
we have described earlier, the serial data sampled by the
positive-going edge of the clock is put on the Datal bus,
and the serial data sampled by the negative-going edge
of the clock is put on the Data2 bus. From Figure 18, it
follows that Case 0 and Case 1 yield different results on
the parallel data buses.

If we assume that Case 0 is desired, a mechanism must
exist so that Case 0 can be derived from Case 1. This is
the first step in a process called byte synchronization.
From the timing diagram in Figure 18, the required
mechanism can be seen: Delay Data2 by one cycle and
swap the two buses. A high-level representation of the
byte-alignment logic is shown in Figure 18 as an SRL and
a pair of selectors. This logic transforms the Datal and
Data2 buses into a pair of new (Datal_adj and Data2_adj)
buses capable of producing the correct data-bit order. As
mentioned previously, during timing mode, a particular
timing pattern is transmitted to help the PRM one-bits
identify whether the phase-selection logic is producing
Case 0 or Case 1. For example, if the data stream is a
repeating pattern of 'X010' (A=X,B=0,C =1,
D=0,E=X,F=0,G=1,H = 0, and so on, where
X can be either 1 or 0), then for Case 0, the Data2 bus
is always at logic zero, and for Case 1, the Datal bus
is always zero. Hence, by simply detecting which bus
is always zero, both cases can be identified.

The next step in the byte-synchronization process is
to account for the anticipated three bit-times of skew
between the data bits within the STI link. Nothing can
be done to speed up the slower one-bits; therefore, the
earlier-arriving bits must be delayed an appropriate
amount until they are aligned with the latest-arriving bit.
Figure 19 shows the logic required to perform this
alignment, as well as the final step in the deserialization
process. The amount of delay, measured in bit-times, is
controlled by Switch A and Switch B. Note that Switch A
is the same one referred to in Figure 18. Switch A and
Switch B are controlled by a two-bit control counter, SO
and S1, within the signature detector.

During timing mode, each one-bit goes through byte
synchronization independently. The two-bit control
counter is cycled until the signature detector recognizes a
good signature (i.e., 'X010") as provided by the timing
pattern. An example illustrates this point. Refer to the
switch control truth table shown in Figure 20. If the

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Switch B Switch C
Switch A) ~||:|—~ Dyl
| o
: o 1 DOLI[2
—0
| | b
: i Dout3
—0 |
! N =] S
58
=z Q
Switch controller 58 \
n ° Global
soT SIT; synchronization

logic

Byte and word synchronization.

(S0,S1) Switch A Switch B Comments
00 0 0 delay = 0 (reference)
01 1 0 delay = +1 bit-time
10 0 1 delay = +2 bit-times

11 1 1 delay = +3 bit-times

Switch control truth table.

slowest bit finds the timing pattern signature with
S0:S1 = 00, a bit which is one bit-time faster will set
S0:S1 = 01, and the one-bit which is two bit-times faster
will set S0:S1 = 10. The fastest bit, potentially three bit-
times earlier than the slowest one, will set S0:S1 = 11.

The final step in the synchronization process is word
synchronization. Word synchronization is done at a global
level by the global synchronization logic, which compares
the most significant bit, D_ 0, from each one-bit. This
logic compares every cycle to ensure that the X bits of the
timing pattern are identical for each one-bit. Switch C of
each one-bit is controlled by the global synchronization
logic and introduces an additional four bit-times of delay
to the one-bits it affects.

An example illustrates this function. Assume that Switch
C is initially set to position 0, as shown in Figure 19. If

the slowest one-bit sets S0:S1 = 01 instead of 00, the 843

J. M. HOKE ET AL.

844

fastest bit will wrap back and set S0:S1 = 00. However,
this will put the fastest bit ahead of the slowest by four
bit-times, or one word-time, because now the fast bit is
one bit-time ahead (00 versus 01) plus the three bit-times
by which it arrived ahead of the slow bit originally. To
achieve word synchronization, Switch C of the fast bit is
thrown to position 1, thereby delaying it back into the
same word as the slow bit. Similarly, if the slowest bit
sets S0:S1 = 10, the fastest bit will wrap back and set
S0:S1 = 01. Again, the fastest bit will be four bit-times
ahead of the slowest. The global synchronization logic
will throw Switch C of the fast bit to position 1 to realign
it with the slowest bit.

Summarizing byte and word synchronization, the byte-
alignment logic will adjust until the third bit of the
'X010"' timing pattern is always one. If this is not the
case, it advances the two-bit counter until the condition is
attained. The global synchronization logic compares all
most significant bits X (one or zero) of all one-bits to
verify that they are all the same. If not, the corresponding
Switch C will be toggled to position 1 and rechecked.

Timing mode and functional mode
When the system is powered on or reset, the STI must
enter timing mode. Timing mode is initiated by the host
logic and controlled by a timer in the PRM, in conjunction
with state machines in the LRM and LSM. During timing
mode, the timing pattern is generated by the LSM and
transmitted by the PSM. Timing mode is typically
completed in less than two milliseconds, and after a few
“handshaking” signals, the STI enters functional mode.
The timing-mode timing pattern as sent from the STI
LSM to PSM is

FF 00 FF 00 00 00 FF 00 00 00 FF 00 00 00 FF 00.
This translates to each one-bit seeing
1010 0010 0010 0010.

At the beginning of timing mode, the bulk delay of each
one-bit is reset to zero, and the related tap E and tap L
are reset to near the middle of the fine delay line. In
order for the edge-detector algorithm to work, tap E and
tap L must never allow more than one data bit to fall
between them. For example, the early-address register is
preset to 10, and the late-address register is preset to 2. It
then follows that the data address register for tap D will
be calculated as (10 + 2)/2, or 6. As the bit-synchronization
process proceeds, tap E will “walk” toward the beginning
(moving down by ED) of the delay line and tap L
will walk toward the far end (moving up by EU) of the delay
line, until the data edges are found.

It is desirable to have the entire data window centered
in the middle of the fine delay line to allow maximum
tracking range. To prevent one edge from being too close

J. M. HOKE ET AL.

to the middle and the other edge being too close to either
end of the delay line, the EGB range for tap E and the
LGB range for tap L must be defined. If one of the

edges is not found, or if the found edge falls outside the
specified guard-band ranges, this is an indication that the
data window for that particular one-bit is not properly
centered inside its fine delay line. If this is the case, a unit
of bulk delay (Figure 11) is added for each one-bit that
falls into this category. Then, as before, tap E is again

preset at 10 and LGB is preset at 2, and the bit-synchronization
process is repeated once more. If this time the edges are
still not found or the found edge still falls outside the
specified guard-band ranges, another unit of bulk delay is
added. This process is repeated as many times as needed
on a per-bit basis until both edges are found and they lie
within the specified guard-band ranges. Once timing mode
is complete, the bulk delay values are frozen, as are the
byte-alignment and word-alignment logic, leaving the fine
delay line and edge-detection process to continue into
operational mode.

Conclusions

The introduction of STI as the interconnection for the
I/O subsystem of S/390 has enabled new interfaces such
as ICB, FICON, ATM, Fast Ethernet, and Gigabit
Ethernet to be integrated with the IBM legacy channels
ISC, ESCON, and parallel channel. With STT as the I/O
subsystem interconnection, S/390 CMOS servers now have
an I/O subsystem that provides the necessary bandwidth
and connectivity to scale with the performance
improvements being realized in processor speed.

This paper has presented the design goals and details of
the self-timed interface. As the evolution of S/390 CMOS
servers continues, so must STI, by exploiting the latest
offerings in circuit, cable, and connector technologies to
achieve even higher data rates.

Acknowledgments

The authors wish to acknowledge the pioneers of the STI,
Frank Ferraiolo and Daniel Casper. Also contributing to
the advancement of STI were Richard Jordan, Anthony
Perri, Mark Fischer, and Jack Yarolin. We also wish to
thank Evan Davidson, Frank Ferraiolo, and Daniel
Stigliani for reviewing this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. T. A. Gregg, K. M. Pandey, and R. K. Errickson, “The
Integrated Cluster Bus for the IBM S/390 Parallel Sysplex,”
IBM J. Res. Develop. 43, No. 5/6, 795-806 (1999, this issue).

2. T. A. Gregg, “S/390 CMOS Server I/O: The Continuing
Evolution,” IBM J. Res. Develop. 41, No. 4/5, 449-462
(1997).

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

3. A. Deutsch, G. V. Kopcsay, V. A. Ranieri, J. K. Cataldo,
E. A. Galligan, W. S. Graham, R. P. McGouey, S. L.
Nunes, J. R. Paraszczak, J. J. Ritsko, R. J. Serino, D. Y.
Shih, and J. S. Wilczynski, “High-Speed Signal Propagation
on Lossy Transmission Lines,” IBM J. Res. Develop. 34, No.
4, 601-615 (1990).

4. John G. Proakis, Digital Communications, McGraw-Hill
Book Co., Inc., New York, 1995.

5. A. Bruce Carlson, Communications Systems, McGraw-Hill
Book Co., Inc., New York, 1986.

Received March 2, 1999; accepted for publication
June 28, 1999

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Joseph M. Hoke IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (jmhoke@us.ibm.com). Mr.
Hoke is an Advisory Engineer in the S/390 Connectivity
Solutions Development group. He received the B.S. degree

in electrical engineering from the University of Illinois at
Chicago in 1987 and continued his studies under a university
fellowship, receiving the M.S. degree in electrical engineering
from Northwestern University in 1989. He joined IBM at
Poughkeepsie, New York, in 1989 and has held various
technical positions in $/390 I/O development. Mr. Hoke holds
several patents used in IBM ESCON and sysplex products and
has received two IBM Invention Achievement Awards. He has
received an IBM Outstanding Technical Achievement Award
for his work on ESCON and another for his contributions to
the S/390 G5 Server.

Paul W. Bond IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (pwbond@us.ibm.com). Mr.
Bond is an Advisory Engineer in the Mid-Hudson Valley
High-Performance Design Center. He received his B.S. degree
in electrical engineering from Rensselaer Polytechnic Institute
in 1972 and an M.E. degree in electrical engineering, also
from Rensselaer Polytechnic Institute, in 1973. He joined IBM
in Kingston, New York, in 1973. He is currently involved with
the development of high-speed CMOS serial links.

Tin-chee (TC) Lo IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (tclo@us.ibm.com). Mr.
Lo received the M.S. degree in electrical engineering from
Carnegie Mellon University. He joined IBM at East Fishkill,
New York, in 1977, working on DRAM development projects.
He became a Senior Engineer in 1984 and moved to IBM
Poughkeepsie in 1985, working on assignments related to

the design of System/390. Mr. Lo has engaged in different
technical activities including bipolar and MOS device
modeling, n-MOS and CMOS circuit design, static and
dynamic memories, ABIST, and various logic design programs
for high-end servers. His current interests are in high-speed
interconnections and signal propagation. Mr. Lo holds

14 U.S. patents and has published numerous papers and
invention disclosures in a variety of areas in the field of
microelectronics and logic design. He has also received many
technical awards during his career in IBM. Prior to joining
IBM, he worked for American Micro-System and Fairchild
Semiconductor, both in northern California.

Frank S. Pidala IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (pidala@us.ibm.com). Mr.
Pidala is a Staff Programmer Analyst in the Mid-Hudson
Valley High-Performance Design Center. He joined IBM in
East Fishkill, New York, in 1969. He is currently responsible
for the physical design and release of self-timed interface
(STI) macros. Mr. Pidala has received various recognition
and informal awards, and more recently he received an

IBM Outstanding Technical Achievement Award for his
work on GS5.

Gary Steinbrueck IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (steinbru@us.ibm.com).
Mr. Steinbrueck is a Senior Engineer in the Mid-Hudson
Valley High-Performance Design Center. He received the
B.S. degree in electrical engineering from the University of
Missouri at Rolla in 1968. He joined IBM at East Fishkill,

J. M. HOKE ET AL.

845

New York, and has held a wide variety of technical positions,
including thermal engineering, advanced development of
power devices, CMOS and bipolar memories, microprocessors,
and packaging and product development of bipolar and
CMOS logic circuits; he is currently responsible for the design
of circuits for high-performance communication links for
S/390, Power Parallel Systems, and OEM products. He has
received many technical awards, including IBM Outstanding
Technical Achievement Awards for his contributions to the
IBM S/390 G3 and G5 systems.

846

J. M. HOKE ET AL. IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

