
by R. E. Matick
T. J. Heller
M. Ignatowski

Analytical analysis
of finite cache
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per instruction
of a multiprocessor
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using miss rates
and queuing theory

Advances in technology have provided a
continuing improvement in processor speed
and capacity of attached main memory.
The increasing gap between main memory
and processor cycle times has required
increasingly more levels of caching to prevent
performance degradation. The net result is
that the inherent delay of a memory hierarchy
associated with any computing system is
becoming the major performance-determining
factor and has inspired many types of analysis
methods. While an accurate performance-
evaluation tool requires the use of trace-
driven simulators, good approximations and
significant insight can be obtained by the use
of analytical models to evaluate finite cache
penalties based on miss rates (or miss ratios)
and queuing theory combined with empirical
relations between various levels of a

memory hierarchy. Such tools make it possible
to readily determine trends in performance
vs. changes in input parameters. This paper
describes such an analysis approach—one
which has been implemented in a spreadsheet
and used successfully to perform early
engineering tradeoffs for many uniprocessor
and multiprocessor memory hierarchies.

1. Introduction
Queuing theory has a long history and has been applied
to numerous systems [1]. It has historically been used for
analyzing telephone and switching network traffic and for
performance evaluations of early computer systems [2].
These early computer systems typically contained many
I/O devices which served multiple user programs, resulting
in characteristics similar to those of a telephone network.

While the processing power of computers has provided
the ability to analyze very complex systems in more detail,
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nevertheless, the system on the drawing board has always
overtaxed the ability to model and analyze it. For instance,
a uniprocessor of the near future could be running at a
2-GHz cycle time (0.5-ns cycle) and processing an average
of two instructions per cycle. To model such a system
using a trace-driven simulation and to simulate 60 seconds
of its CPU time would require about 240 billion
instructions in the trace. If each instruction were to
require eight bytes of storage, the trace alone would
require nearly 2000 GB to store. In addition, the time to
perform the simulation would be unreasonable. A cycle-
by-cycle simulation model can typically model the next-
generation system at a rate of 0.1 to 1 million instructions
per second, depending on the complexity of the model
and the system used to perform the modeling. Assuming
the worst case, to execute a cycle-simulation model of
60 seconds of the above next-generation design on an
available processor would require nearly 666 hours, or
more than a month of processor time. Analytical analysis
can reduce this by orders of magnitude, typically requiring
at most a few seconds.

This paper describes one application of open input
queuing theory to rather complex multiprocessor memory
hierarchy performance analysis. The input is assumed to
follow a Poisson distribution, which allows the use of
relatively simple equations to depict queues and queue
delays. Such analysis, in various forms, has been used
within IBM for more than 15 years. It is one of many
tools used for the projection of hardware system
performance for servers. Several variations of this
methodology have also been used for performance
projections, including some for recent IBM servers. A
highly accurate projection of the performance of future
high-end server designs has been achieved using the

analysis technique described. The accuracy has been
greatest for designs which are structurally similar to the
preceding generation design. Accurate miss-rate data
obtained from carefully validated processor and system
bus traces are obviously required for good results. The
effort required to collect and process these traces exceeds
the effort required to build the performance model.
Accuracy of �3% was achieved for the prediction of IBM
ES/9000* performance (measured in cycles per instruction,
or CPI) with a model structure that had been verified
using actual performance data from IBM ES/3090*
mainframes. These comparisons are summarized in
Figure 1 for different applications (miss statistics)
running on a uniprocessor and a 6-way multiprocessor
(MP). More detailed and recent comparisons are
currently proprietary and hence have not been included.

The model to be described is a memory hierarchy
driven by cache misses. As indicated previously, the model
assumes an open input queue, which means that any
number of input misses can be outstanding at any given
time. Since the actual hardware allows only a fixed
number of outstanding misses per processor, typically one
or at most a few, modified types of analytical models have
been pursued to account for this restriction. One well-used
technique is mean value analysis (MVA) [3], from which a
closed-input model can be constructed, thus restricting the
number of outstanding input misses. A separate detailed
study was performed which compared the results of an
MVA closed queuing model to those of our open-queue,
constant-service-time model, for a relatively complex MP
model similar to that described in this paper. The results
showed that the two techniques were typically within
about 3%, with a maximum difference of 10% over a wide
range of miss rates and cache sizes.1 In addition, the trend
curves of performance and bus utilizations vs. various miss
rates had identical shapes for essentially all cases studied.
Since open-queue models are easier to model, this method
is still widely used. Other types of analytical analysis of
different aspects of an MP system are also possible [4, 5].

Basic concepts and analytical approach
The ideal, raw processing power of a processor is
measured in CPI for an infinite cache [6], i.e., its first-level
cache functions as if there were no cache misses and thus
no reload penalties. The actual performance for any
system with a memory hierarchy is considerably less
because of stalls and delays caused by cache reloading.
This additional delay, measured as cycles per instruction
executed, is typically known as the finite cache penalty

1 The open input queue is self-limiting for memory hierarchy models of the type
used herein—see Appendix A. Thus, the use of an open rather than a closed input
queue appears to be a second-order consideration for such systems and the
assumed workload statistics. This is not generally true, but often can be so.

Figure 1
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(FCP). These two parameters are added together to obtain
the actual system performance:

CPI[system] � CPI[infinite cache] � FCP. (1)

The CPI[infinite cache] is independent of the memory
hierarchy and is assumed to be given. The attached
memory hierarchy affects only the FCP term. We start
with a uniprocessor having a simple memory hierarchy and
derive the additional cycles per instruction incurred by
cache misses and reloads from the hierarchy. The resulting
equation for the FCP of a uniprocessor is relatively
simple, involving miss rates (or miss ratios) and delays.

We then add complexities such as those occurring in
actual systems when multiple miss requests from multiple
processors are permitted to percolate throughout the
memory hierarchy.2 This introduces two additional features
to the uniprocessor hierarchy model: 1) additional delay
structures representing some or all levels of the hierarchy
in order to provide delay paths representing cross-
interrogation for cache coherency3 or for address-space-
shared, distributed memory4 and 2) additional queue
delays at various points in the model. Fundamentally,
this complexity only adds more terms to the FCP part of
Equation (1). Each such term is represented by a separate
calculation, and the final FCP is a sum of all of these
terms. In the general case, multiple processors can and
will create multiple requests on the various resources in
the memory hierarchy, such as buses, arrays, staging
buffers, etc. Such multiple requests result in queuing
delays as part of the reload delay terms in the FCP
equation. Standard queuing equations are used to
approximate all queue delays. However, as will be seen,
these queue delays depend on the request rates for
reloads, which in turn are inversely proportional to
the CPI (system)—the smaller the CPI, the faster the
instructions are processed, thereby generating more
memory requests per second. But any increase in memory
requests per second (due to a decrease in the CPI) creates
larger queue delays, which then increase the FCP value
and hence the CPI value, making the queue delays
smaller, etc. The new queue delay must then be used to
recalculate the resulting new CPI value; this recalculation
is continued until the current CPI value produces queues
that match (approximately) the new CPI for the new
queues. Thus, an iterative type of recalculation can be
used and is available in all common spreadsheets or
mathematical analysis software such as Mathsoft’s
Mathcad**. (The time needed for the recalculations

is insignificant for all cases encountered.) An iterative
calculation is not fundamentally necessary, since the
final FCP value can be expressed as a large polynomial
equation. Any tool with a polynomial or simultaneous
equation solver can be used to evaluate it. However, the
order of the polynomial typically goes as x � 1, where
x is the number of queues in the system. Expressing the
complete polynomial as one function can be quite complex
and prone to error, thus making a spreadsheet or similar
equation-solving software more user-friendly.5

2. Finite cache penalty for uniprocessor
memory hierarchy
A uniprocessor system consists of a single processor
having an n-level memory hierarchy, as illustrated in
Figure 2. A processor and first-level cache (L1) are
typically a single, self-contained unit on an island or chip
and thus are not available for optimization as part of the
hierarchy analysis. Rather, the processor and L1 are the
source which generates misses (and possibly castouts)6 at
a given miss rate of mr1 misses per instruction executed.
If there were no misses (infinite L1 cache) or if the miss
latency time were 0, the resulting cycles per instruction
would be the CPI value at infinite cache. It is assumed
that this parameter is given. Our task is to determine
the FCP, which is the additional number of cycles per
instruction required for the given memory hierarchy. Miss
rates are used as the measure of the miss characteristics
of each level of the hierarchy, where

miss rate � number of misses per instruction executed by

the processor �mr1�. (2)

It is possible to express the FCP in terms of a miss ratio:
the number of misses per access to that level. These
parameters are equivalent, except for one small difficulty
with the miss ratio of the L1 cache, as discussed in
Appendix B.

In Figure 2, the miss latency time at each level is
assumed to be a fixed constant Tn , where n � 2, 3, 4, etc.
for each downstream level as indicated. This time is the
total effective time to reload a hit at any level, including
all electrical, logical, and trailing-edge delays, as discussed
in Section 3. The L1 miss rate, mr1 , serves as input to the
memory hierarchy for the FCP calculation. The task at
hand is to determine the total average number of cycles
per instruction required to reload these mr1 misses per
instruction, or “misses/I.” All L1 misses first interrogate a
second-level cache, L2, producing some L2 hits, with the
remainder being L2 misses. The L2 misses propagate to
L3, producing some L3 hits, with the remainder being L3
misses. This hit–miss behavior continues to the level that

2 A similar situation can result from a uniprocessor architecture which allows
multiple outstanding cache misses.
3 See the section on private or semiprivate cache with cross-interrogation for
definition.
4 A linear, logical memory address space can be implemented as a single physical
array, or it can be broken into pieces which are distributed in arrays that are
physically distinct and separated from one another. The latter is known as address-
space-shared, distributed memory—see the section on shared cache, address-sliced.

5 Lotus 1-2-3** and Mathcad have been used to implement models.
6 See the section on castout ratio approximation.
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produces only hits, which is main memory in this model.
I/O is included indirectly and affects only the queuing
demand on the data buses and main memory. A specific
hit at any level is reloaded with appropriate delay, and
terminates any further interrogations downstream.7

Portions of the total average reload delay will come from
each level. For a general case, this will include hits in L2
with delay T2 , hits in a third-level cache, L3, with delay
T3 , hits in L4 with delay T4 , etc., as shown in Figure 2.
These amounts are easily determined as follows. The hit
rate, hrn , at any level n (except cross-interrogated levels—
see below), is expressed in terms of inputs, outputs, and
misses per instruction (I) given by

hrn � inputs/I � outputs/I � misses/I �previous level�

� misses/I �current level�

� mrn�1 � mrn . (3)

The portion of the total FCP contributed by each level, n,
of the cache hierarchy is the number of hits [Equation (3)]
multiplied by the average effective reload time per hit
of that level. FCP is expressed in units of processor cycles
per instruction, so all delays Tn are expressed in units of
number of processor cycles per hit rather than absolute time.
Thus, the contribution to the finite cache penalty, in cycles
per instruction, for any level of the hierarchy is given by

FCPn � hrn � Tn � �mrn�1 � mrn�Tn . (4)

The total FCP of an n-level hierarchy is the sum of all
individual terms, or

FCP � �
n�2

z

�mrn�1 � mrn�Tn . (5)

Assuming no misses in main memory, a hierarchy having
four levels below main memory would have

FCP � �mr1 � mr2�T2 � �mr2 � mr3�T3 � �mr3 � mr4�T4

� mr4Tmain . (6)

[Note: Hit rates and FCP terms for a cross-interrogated
portion take a different form, per Equations (8) and (9)
in Section 5.]

3. Effective reload time and trailing-edge-effect
approximation
In a typical cache memory hierarchy, a miss in L1 will hit
in some downstream level, and requires multiple processor
cycles to reload the full cache block or line. The hit at
the downstream level will usually start at the logical word
boundary which caused the original miss. This logical word
is “loaded through” on the data buses to the processor to
enable the task to restart quickly. In the meantime, the
remainder of the cache block is transferred (reloaded) to
the requesting cache on subsequent bus cycles while the
processor continues processing the task. If the processor
requires another logical word in the currently reloading7 Hits flow downstream from L1 to L2 to L3, etc., while reloads flow upstream.

Figure 2

Uniprocessor with simple n-level memory hierarchy.
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cache block and it has not yet been reloaded, the
processor must wait until it is available. This is known as
the “trailing-edge” effect, and it adds additional average
delay to the total effective reload time at any given level.
An empirical approximation is that the additional trailing-
edge delay,8 on average, is some fixed percentage, P, of
the total time to complete the block (line)9 reload after
the first logical word is reloaded. If we let NBR equal the
total number of bus cycles to fully reload a block, this can
be expressed as

trailing-edge delay � P�NBR � 1� BTn�1,n , (7)

where BTn�1,n is the total bus delay, in cycles, between
levels n and n � 1, and P can vary from 10% to 30% or
more, depending on the application. For instance, if BT21

is three processor cycles (i.e., bus running at 1/3 processor
frequency), and P is 10%, then for a 256-byte block
reloaded from L2 to L1 in 16 bus cycles (i.e., 16 bytes
per bus cycle), the predicted trailing-edge delay adder is
4.5 processor cycles. This amount is added to the total
time, T2 , to access the first logical word from L2, and the
sum becomes the total effective reload delay. Reducing
the block size to 128 bytes reduces this delay to 2.1
processor cycles. Thus, this delay adder can be significant
or negligible, depending on the design point. Large, high-
performance systems are typically designed with wide,
high-speed buses such that this effect is small.

4. Castout ratio approximation
A store-in (or write-back) cache is one for which any
modified blocks are stored in this cache and the
modifications do not appear anywhere else. Thus, when a
cache miss requires the replacement of a valid, modified
cache block, this block must be “cast out” to some higher
level of the cache, typically the next level. In contrast to
this, a store-through (or write-through) cache will store
all writes to more than one level of cache, typically the
current one and next higher level, thus not requiring a
castout.

For a store-in cache, the castout (CO) ratio is assumed
to be a constant, ranging from 20% to 40% of misses.
These are typical values observed for many different
workloads over many years. For all cases we have
modeled, any value within this range is typically
acceptable, since the effect of castouts on the number of
CPI was too small to justify additional complexity. The
user can determine the significance of this effect in any
given model by changing the CO ratio and observing the
effect on the final FCP value. If the effect is significant,
more accurate statistics may be needed.

5. Definitions of cache types
In order to understand the general case of a
multiprocessor hierarchy with multiple processors all
making memory requests, it is expedient to consider a
single processor making requests to a multiprocessor
hierarchy. In this manner, we will see how the single
accesses are partitioned to the various multiprocessor
memory modules, from which the multiple, simultaneous
accesses are easily derived afterward.

A multiprocessor system can be constructed with caches
at any level partitioned in various physical configurations.
Two major types are typically used for multiprocessor
modeling in addition to the simple structures already
shown. These two types and their corresponding FCP
are detailed below.

Private or semiprivate cache with cross-
interrogation
A private (or semiprivate) cache refers to one that is
dedicated primarily to serving one (private) or a few
(semiprivate) processors directly. Other processors access
this cache for data only by cross-interrogation for cache
coherency. This occurs only if a given processor incurs a
miss in its private cache and sharing is supported. If the
latter is true, the system must examine these other private
caches to see if the data is there and take appropriate
action. This analytical analysis models the effects of such
cross-interrogations on the array and bus utilizations and
resulting queue delays—the model need not and does not
do anything with respect to the action or results occurring
in an actual system except for the inclusion of queues and
timing delays for transfers of data found in other caches.

Cross-invalidation For such private or semiprivate
caches, shared data can exist in several such caches
simultaneously, in a read-only state. If one cache should
subsequently receive a request for a store operation to
one such block, the block is already in the local cache,
so no data transfer is required. However, this cache
block must be invalidated in all other caches. Since the
invalidation procedure uses only address and control lines,
and these are typically very lightly utilized in comparison
to data buses, the cross-invalidations are not modeled—
their effect on the FCP cannot usually be seen in this
model. However, this need not always be true. For
such cases, statistics on cross-invalidation rates will be
required. These should then be included in the utilization
calculations for each appropriate shared bus, directory
array, etc.

FCP for a private cache level with cross-interrogates to other
private caches at same level, each having different delay
Cross-interrogates (XI) occur in an MP system as follows:
A task on one processor makes an access to its private

8 Empirical approximation from the work of Keith Langston, IBM Server Group,
Poughkeepsie, New York.
9 The terms block and line are both used to refer to the smallest replaceable unit
in any given cache level.
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cache (say L2), and the access results in a miss. If the
system supports sharing and there are other private L2s
in the system, the desired information may possibly be
residing in one of these other L2s, or “OtherL2.”10 In
some cases, it may be the only valid copy in the system.
Thus, in order to obtain the correct information, a cross-
interrogation with transfer of the cache block (line) may
be required.

For such cases, the single processor misses emanating
from L2 shown in Figure 2 do not access L3; rather, they
are redirected to all OtherL2 in the system which must be
cross-interrogated. The L1 reload request first goes to the
private “OwnL2” associated with the L1 generating the
miss, as illustrated in Figure 3. The misses per instruction
emanating from OwnL2 then access the OtherL2. The
statistical parameter used for determining the hit and miss
rates to these OtherL2 is a hit ratio, HRO2, which specifies
the percentage of OwnL2 misses which hit all OtherL2.
(Note that HRO2 does not include cross-invalidates which

only invalidate a block in another cache, with no data
transfer.) This hit ratio is typically in the range of 10%
to 50% for many cases, the exact percentage being
dependent on the system and application11 [7]. Thus,
we know that the hit rate to all OtherL2 will be

hit rate[hits/I] to all OtherL2 � hro2 � mr2 � HRO2 , (8)

where mr2 is the usual miss rate for OwnL2 and HRO2 is
the percentage of OwnL2 misses which hit all OtherL2.
The OtherL2 typically consists of several modules with
different reload delay times T2X, as indicated in Figure 3.
(Modules with equal or nearly equal delays can be
grouped together as one delay group.) The hits to all
OtherL2 are apportioned to each module, B, C, D, etc.
of L2 in terms of probability of access, derived later. The
misses from all OtherL2 become the input accesses to L3
as indicated. Thus, the FCP component contributed by
cross-interrogation to all OtherL2 is given by

10 If this level is address-slice-shared, the desired block could not reside in another
cache at this same level.

11 For example, Table 4.1 of Reference [7] gives HRO2 of 13.5% for TPC-B**
and 16.1% for TPC-D (sum of rows 4, 5, and 6) for a 512KB L2. Larger L2s
tend to have larger values.

Figure 3

Representation of component of finite cache penalty for cross-interrogates in other modules of private L2s.
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FCP[OtherL2] � mr2 HRO2 P2BT2B � mr2 HRO2 P2CT2C

� mr2 HRO2 P2DT2D � · · ·

� mr2 HRO2 �P2BT2B � P2CT2C � P2DT2D

� · · ·� (9)

where T2B, T2C, and T2D are the effective reload times of
each private L2, and P2B, P2C, and P2D are the probabilities
of accessing L2, typically each equal to 1/#OtherL2. [Note
that Equation (9) is different from Equation (4), which
represents hits out of non-cross-interrogated levels. This
results from the use of a known miss ratio (HRO2) rather
than a miss rate, which are easily shown to be equivalent.

The accesses/I to L3 are now the sum of the misses/I
out of all OtherL2, or

Access/I �to L3� � mr2�1 � HRO2� P2B � mr2�1 � HRO2� P2C

� mr2�1 � HRO2� P2D

� mr2�1 � HRO2��P2B � P2C � P2D � · · ·� .

(10)

The sum of all probabilities P2B, P2C, P2D, etc. must equal
1, so Equation (10) reduces to

Access/I �to L3� � mr2�1 � HRO2� . (11)

If there are no cross-interrogates (HRO2 � 0), the above
reduces to mr2 as it should.

Shared cache, address-sliced
Suppose a system has four separate L3 arrays in which the
address space is divided into four separate linear pieces,
with the first piece mapped to the first L3 array, second
piece to the second array, etc. In other words, the address
is bit-sliced on two of the real address bits. We model this
by assuming random addresses so that any given cache
access will have the same probability (equal to 1⁄4) of
being accessed from any of the four arrays. Thus, since the
arrays will often have different reload delays, the average
reload time is scattered randomly among the four address-
sliced arrays which make up the single logical L3.

FCP for a multiple-module, address-slice-shared cache level
with each module having different delay
Consider a hierarchy similar to that in Figure 2, except
that one of the levels, say L3, consists of m physical
modules as in Figure 4, each module having a different
effective reload delay, T3m . It is assumed that the L3
address space is divided among these modules such
that any given address will always access module 1 with
probability P31 , module 2 with probability P32 , module 3
with probability P33 , etc., and module m with probability
P3m . If the address space is equally divided among these m
modules, which is often the case, the module probabilities

are identical and are all equal to 1/m. Note that mr3 is
the miss rate of the full address range seen by any one
processor, so it is the miss rate of all of the combined
L3 slices, i.e., the logical L3 seen by a processor.

For the general case, the finite cache penalty FCP3 for
this level consists of m separate components, as shown in
Figure 4. The essential idea is to apportion the reload
delay to the separate L3 modules in direct relation to the
probability of accessing that module for the reload request
from L2. As shown in Figure 4, the FCP component for an
address-slice-shared L3 is

FCP3 � �mr2 � mr3��T31P31 � T32P32 � T33P33 � · · ·

� T3mP3m�. (12)

Obviously, since the above component reduces to the L3
component in Equation (6) when the L3 address space is
divided equally among all modules, the probabilities are
all equal, summing to 1, and the reload delays are each
equal to T3 . The above two analytical formulations for
finite cache penalty terms of a single processor accessing
a multiprocessor hierarchy having private and shared
cache levels are used below in the analysis of a general
multiprocessor example.

6. Multiprocessor systems: General model
A multiprocessor system is basically an interconnection
of multiple simple hierarchies of Figure 2 in which
the various cache levels each have several modules
(components) which can be private, semiprivate, locally
shared, or globally shared. The analysis calculates the FCP
of one processor in a manner similar to that done previously,

Figure 4

Memory hierarchy with m modules of address-sliced L3, each with a 

separate reload delay.
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but includes the additional delays resulting from the other
processors and memory hierarchies. In essence, these other
processors and memory structures will only increase the
FCP of the previous uniprocessor by increasing the
average reload time. To include these in the analytical
model, it is fundamentally important to understand that
we essentially model a multiprocessor as a uniprocessor in
a manner similar to that of Figure 2, but incorporate two
additional types of delays to account for the remainder of
the system: 1) additional modules (components) at each
level to account for either cross-interrogates (similar to
Figure 3) or shared-memory accessing (similar to Figure 4);
2) queue delays for shared resources such as request buses
(i.e., address/control), data buses, and, where appropriate,
array access. Each additional module represents some
other memory hierarchy component introduced by the
other multiple processors. These are included in the
determination of the total average latency of each level.
This is illustrated for a very general case in Figure 5. The
L2 cache might consist of several modules, as in Figure 3,
each having a separate probability and delay per hit.
Similarly, L3 might consist of several modules, as in
Figure 4. Queues arise because the multiple processors

may have simultaneous cache misses scattered at any level
or all levels of the hierarchy. As a result, it is possible for
multiple requests to occur at any shared resource such as
address/control (i.e., request) buses, data buses, or cache
arrays. This produces queues at each shared resource, as
indicated generally in Figure 5, where RBQ refers to
request bus queues and DBQ refers to data bus queues.
Even though the modeling is done independently of the
hardware design, it is necessary to be sure that the
intended hardware will actually implement these queues;
otherwise, a different model is required. Buses may be
shared and are usually as narrow (in byte width) as
possible in order to reduce cost. This makes the hit reload
delay path more complex, as shown by the finite cache
penalty contribution of each level of the hierarchy at the
bottom of Figure 5. Note that the FCP calculation for a
multiprocessor has new terms, namely Q delays, in the
total reload path. Because the queues for the request
buses are difficult to illustrate in this type of schematic,
they are not fully shown and are indicated only by ¥(RBQ),
the sum of the appropriate request bus queues. These
are illustrated later, in the example. The multiprocessor
system also increases the bus electrical and circuit delay

Figure 5

Representation of queue and delay components for FCP for all levels.
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terms, T2 , T3 , etc., which obviously increase the FCP.
These delays are assumed to be given parameters and are
not calculated here. In order to calculate the FCP of a
multiprocessor system such as that depicted in Figure 4,
we proceed as follows:

1. Calculate the probabilities of hits for each cache
module of the hierarchy.

2. Calculate queue delays for each bus (requires an
assumed initial CPI value).

3. Calculate total delay per hit for each module, including
multiple queue and bus delays in the total path, as
needed.

4. Sum all terms for the total FCP, as in Figure 4, and
obtain a new CPI value.

5. Compare the new, calculated CPI value with that
assumed for the initial Q calculations: If different, redo
the FCP and CPI calculations using a new CPI value
for Q calculations; and repeat until the CPI values
match sufficiently closely.

The Q calculations provide the recursive connection
between the delay and the FCP, as will be seen. In the
following, the general expressions for the probability
of hits per module are first derived. Afterward, queue
calculations and a specific example are presented.

General hit probabilities and delay categories
The required probabilities are obtained separately below
for a private cache with cross-interrogates and address-
shared cache.

Hit probabilities for private cache with cross-interrogated data
The L2 shown in Figure 3 represents a general case of the
type needed for our analysis. It is necessary to determine
the probabilities of accessing each individual module or
groups of modules that have a different reload delay
from all the rest, within the OtherL2 group in Figure 2.
We must first specify the makeup of each module, then
determine its probability of hits. This is easily done as
follows.

General case: delay categories
For the general case, there can be many L2s on a card
and multiple cards in the system, as shown in Figure 6(a).
The effective reload delay can be different for each L2,
but usually there are groups of L2s which have the same
or very nearly the same delay. All of the OtherL2 are thus
grouped into a few convenient delay categories, with those
in any given category having identical or approximately
the same delay, as specified in Figure 6(b). The adjacent
L2s, or “AdjL2,” are those which are typically the closest,
distance- and delay-wise, to the OwnL2. The “OppL2”
category contains those which are typically at a greater

diagonal distance and hence have larger delay. If there is
more than one L2 in this category, the delay difference
between these is often small enough to allow them to be
assumed equal. If not, additional delay categories are
necessary.

If there are more than two cards present, the difference
in delay from the given processor to two L2s on different
cards is usually small enough to allow all other cards to be
categorized as “OtherCardL2” for FCP calculations. If the
delay differences to these L2s are significant, additional
delay categories are needed.

Using the categories defined above and in Figure 6(b),
the general expression for the hits per category requires
only determination of the probabilities in Figure 3. For all
cases, it is assumed that the accessing patterns are random
with uniform distributions, so that any module of equal
size has the same probability of being accessed.

Probability of accessing adjacent L2s
There are a total of #AdjL2 modules of L2 adjacent to
OwnL2 on any card, so this probability is simply this value
divided by the total number of other L2s in the system, or

Prob[AdjL2] � #AdjL2/#OtherL2

� #AdjL2/�Total#L2 � 1�, (13)

where

#OtherL2 � Total#L2 � OwnL2 � �Total#L2 � 1�. (14)

Figure 6

Partitioning of a cross-interrogated L2 into delay categories, each with 

a separate reload delay and FCP contribution: (a) MP system with 

cross-interrogated L2 showing OwnL2 and OtherL2 categories on all 

cards; (b) delay categories derived from (a). Each category is assumed 

to have one fixed reload delay.
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Probability of accessing opposite L2s
There are a total of #OppL2 modules of L2 either
opposite or further from OwnL2 on any card, so this
probability is this value divided by the total number of
other L2s in the system, or

Prob[OppL2] � #OppL2/#OtherL2

� #OppL2/�Total#L2 � 1�. (15)

Probability of accessing L2s on other cards
In direct analogy to the above, assuming that the delay
to L2s on other cards is the same for all cards, this
probability is

Prob[OtherCardL2]

� #OtherCardL2/#OtherL2

� #OtherCardL2/�Total#L2 � 1�

� �Total#L2 � #L2perCard�/�Total#L2 � 1�. (16)

Hit probabilities for shared L3s
A general case of the type needed for our analysis is
represented by L3, shown in Figure 4. It is necessary to
determine the probabilities of accessing each individual
module or groups of modules that have a different reload
delay from all the rest, within the L3 group (Figure 4).
Delay categories similar to that above for L2 are used
for L3. One important difference is that all misses from

OtherL2 are scattered randomly across all L3 modules,
unlike L2, where all L1 misses are directed first to
OwnL2, and only misses out of OwnL2 are scattered
across OtherL2. Thus, the probability expressions for
L3 typically have in the denominator a term Total#L3
in place of the term (Total#L2 � 1) in Equations (13)
and (16).

The total shared L3 is illustrated for a general case in
Figure 7(a), with several possible delay categories shown
in Figure 7(b). It is assumed that the CPU which creates
this path is on the card OwnL3. Typically, if there are
multiple L3s on one level of a package, such as a card,
the total effective reload delay is the same, or nearly so.
Thus, all L3 modules at this level, i.e., card in this case, are
categorized as OwnL3 with a fixed delay. If this is not true,
additional delay categories may be needed. If the cards
are arranged somewhat as shown, delay to the L3s on the
adjacent card will be larger than to those on the “OwnCard,”
and hence constitute another category, AdjL3. The L3s on
cards farther away will have even larger reload delays and
provide additional categories. Depending on the physical
arrangement, we may have cards facing opposite the
OwnCard, or in Other positions, as indicated. The
probability determination is straightforward for any new
cases. It is assumed, as previously, that all L3 modules
in Figure 7(b) are of the same size and equally divided
across the full address space. Thus, the probability of
accessing any one given L3 module, no matter where it
resides, is 1/Total#L3. The probability of accessing any
given delay category is simply the number of L3 modules
in this category times 1/Total#L3.

Probability of accessing OwnL3
There are #L3perCard accessible modules on any card, so
the probability is this value divided by the total number
of address-sliced L3 in the system, or

Prob[OwnL3] � #L3perCard/Total#L3. (17)

Probability of accessing adjacent L3s
If the adjacent L3s consist of several cards, #AdjCards, the
probability is this number of cards times Equation (17), or

Prob[AdjL3] � #AdjCards � #L3perCard/Total#L3.

(18)

Probability of accessing opposite L3s
This is Equation (18) with the parameter #AdjCards
replaced by parameter #OppCards, giving

Prob[OppL3] � #OppCards � #L3perCard/Total#L3.

(19)

Figure 7

Partitioning of a shared L3 into delay categories, each with a separate 

reload delay and FCP contribution: (a) MP system with shared L3; (b) 

delay categories derived from (a). Each category is assumed to have 

one fixed reload delay.
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Probability of accessing L3s on other cards
This is given by Equation (19) with the parameter
#AdjCards replaced by #OtherCards:

Prob[OtherCardL3] � #OtherCards

� #L3perCard/Total#L3. (20)

Hit probabilities for shared main memory
Hit probabilities for shared main memory (or, simply,
“main”) are completely analogous to those for shared
L3s, except that the delay categories are defined slightly
differently. As with L3, main memory is assumed to
consist of several separate self-contained modules, with
each module containing one slice of the full address space,
each of equal size. It is also assumed that each main slice
is associated with one processor module; i.e., access to any
main module must first proceed through the associated
processor module. A general case might be similar to that
in Figure 8(a), in which each processor module is closely
connected to one module of main, its “OwnMain,” with an
access/reload time much smaller than to any other main
slice. Thus, OwnMain is one delay category, as indicated
in Figure 8(b). The other main memory slices associated
with processor modules on the same packaging level
(card) will have longer delays, but typically nearly equal to
one another. Main memory slices associated with these are

grouped together as “AdjMain,” all with the same delay
for reloads to the processors/L1 (on processor module 1
connected to OwnMain), as shown in Figure 8(b). All
other main slices on other cards have very nearly the
same access/reload delay and are thus grouped together
in the delay category “OtherCardMain,” as shown in the
figure. The hit probabilities for these delay categories are
analogous to those for L3 and are given below. Since it is
assumed that the main memory miss rate is 0, the number
of hits for all cases is given by the probability multiplied
by mr3 , as can be seen from Figures 2 or 5, by letting
mr4 � 0.

Probability of accessing OwnMain

Prob[OwnMain] � #OwnMain/Total#Main. (21)

Probability of accessing AdjMain

Prob[AdjMain] � #AdjMain/Total#Main. (22)

Probability of accessing OtherCardMain

Prob[OtherCardMain] � #OtherCardMain/Total#Main.

(23)

The hit probabilities derived above will be useful in the
following queue calculations.

Main

Figure 8

Partitioning of a shared main memory into delay categories, each with a separate reload delay and FCP contribution: (a) MP system with shared 

main memory; (b) delay categories derived from (a). Each category is assumed to have one fixed reload delay.

Processor

module

Processor

module

Processor

module

Main Main Main Main Main

Processor

module

Processor

module

Processor

module

Main

Processor

module

Processor

module

Main

Main

Processor

module

Processor

module

Processor

module

Main Main Main Main Main

Processor

module

Processor

module

Processor

module

Main

Processor

module

Processor

module

Main

OwnMain OtherCardMainAdjMain

(a)

(b)

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 R. E. MATICK ET AL.

829



General queue delays
Readers not familiar with queuing theory can acquire all
needed fundamentals from Appendix A. Queues arise as
follows. In Figure 3, only one processor is shown accessing
its OwnL2, with misses propagating to the OtherL2 of the
system. A more detailed configuration for a multiprocessor

system is shown in Figure 9, in which each processor can
be accessing its OwnL2, have a miss, and require a cross-
interrogate access to the other L2s. These additional
processors affect only the original L2 of Figure 2 by
making simultaneous requests, as indicated. Thus, they
are included in the original uniprocessor model only as a
queue delay at the appropriate points. Some such points
are shown in Figure 5 and can occur at the input to
request buses (address/control buses which send and
communicate the reload requests), DRAM array accesses
for reasons discussed later, and at the input to data buses.

In a similar manner, Figure 4 shows only one processor
accessing the shared L3 with misses propagating to L4.
A more detailed configuration is shown in Figure 10,
again indicating that multiple requests occur on buses and
arrays. Figure 5 shows some of the request and data bus
queues and how they might contribute to the total FCP.
The final structure is very dependent on the specifics of
the system (a detailed example is given later, in Figure 13).
These are the queues which must be calculated. In order
to do this, every possible activity on the bus or array
must first be identified; then, request rates, utilizations,
and finally queue delays for each component are
calculated. The total utilization, U, also allows
determination of the average length of the queue using
Equation (A6). From Equation (A5a), any resource with
a constant service time and having a total average U of
about 73% will have an average queue length of one or
more, increasing rapidly as U increases. Generalized
queue categories are not readily definable because queues
are so dependent on the hierarchy details, particularly the
busing structure. Queue calculations are best understood
by example, as shown below.

7. Multiprocessor example
One specific example of a general MP is shown in
Figure 11. The basic building block is the 4-way card.
It is assumed to contain four processors (CPUs), each
with its own private, nonshared L1 cache (i.e., no cross-
interrogates to L1, only to L2). Two processors with L1s
are packaged on an assumed processor module, along with a
semiprivate, inclusive L212 which is electrically very close,
as indicated. Misses from only these two L1s can make
direct (non-cross-interrogate) access to the semiprivate
L2. It is assumed that shared data can be stored in L2, so
the L2 levels of other processor modules require cross-
interrogation for cache coherency, as discussed later. The
two processor modules on the 4-way card are connected
by means of buses which connect through a switch and
routing logic function shown in Figure 11. These buses
have separate request (address/control) buses as shown,

12 Use of the term inclusive L2 implies that any block in L1 is also in L2 (locked).
Thus, any block reloaded to L1 must also be loaded to L2. This is an assumption,
and is often used in such a system.

Figure 9

Representation of component of FCP for cross-interrogates in other 

modules of private L2s.
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and either unidirectional or bidirectional data buses
to/from each processor module. In the model structure,
the choice between a unidirectional and a bidirectional
bus affects only the terms in the bus queue delay. A
bidirectional bus must include request rates in both
directions, and thus has higher utilization. In addition,
bidirectional buses generally have longer latencies because
of electrical turnaround time. This switch also connects to
an L3 which is assumed to be address-sliced-shared such
that all L3s in the system contain only part of the full
address space. A larger system is built by connecting
multiple 4-way MP cards using the external bus, as
shown for the 8-way system of Figure 11. The bus
interconnection is achieved by means of the switch
function, but other methods are also possible.13 It is
assumed in all cases that a hit at any given level will be
reloaded to all upstream levels (e.g., a hit in L3 due to an
L1 miss causes the reloading block to be put into L2 as
well, the L2 being upstream of L3). All cache levels are
assumed to be store-in, thus requiring some castouts which
are a fixed percentage of the misses. It is further assumed
that all I/O slices and main memory slices are connected
via one data bus to the processor module interface unit as
shown in Figure 11, with one I/O slice and one memory
slice per processor module (i.e., per two CPUs). The
general techniques and equations previously derived are
now applied to this model.

Full-model FCP path
The final model for the FCP calculation of the example of
Figure 11 is similar to Figure 5, in which the L2 and L2-
XI are of the form shown in Figure 3, and the L3 cache as
well as main are of the form shown in Figure 4, with main
memory replacing L4. Modules and buses have various
queues which depend on the detailed configuration.
Figure 12 maps the general delay categories of Figure 5
into the specific categories defined above in Section 6. The
equations expressing the probability of hits-per-instruction
are shown in Figure 12 for each of these delay categories
for both the 4-way (one card) and 8-way configurations.
The more complex 8-way parameter is derived below
using the relations derived previously. Evaluation of the
accompanying queue delays for some request bus, data
bus, and appropriate array access queue, as well as total
path delays, will be discussed afterward.

Hit probabilities and hits/instruction for MP example
with two cards (8-way MP)

Hits/instruction for L2 delay categories using hit probability
equations

OwnL2
Regardless of whether one or two cards are used, there is
always only one OwnL2, as shown in Figure 12, with the
hits/I contribution to FCP given by

Hits/I[OwnL2, 4- or 8-way] � mr1 � mr2 . (24)
13 For example, the IBM POWER4 GHz Processor [8] uses a ring-type bus
structure.

Figure 11

Generalized 8-way multiprocessor configured from two separate 4-way cards, having private, semiprivate, and globally shared, address-sliced levels.
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AdjL2 and OtherCardL2
As indicated in Figure 12, there are a total of four L2, of
which three are OtherL2. One is the AdjL2, and the other
two, which have identical reload delays, are on the second
card in the category OtherCardL2. Assuming randomly
scattered addresses, the probability of accessing any of
these three OtherL2 is 1/3. From Equation (13), the
probability PAdj of accessing AdjL2 in Figure 12 is now
1/3. Since category OtherCardL2 contains two such
modules, each with probability of 1/3, its probability
of being accessed is 2/3. This is in agreement with
Equation (16). Thus, the new Hits/I components for
FCP contributions are

Hits/I [AdjL2, 8-way] � mr2 HRO2/3 (25)

and

Hits/I �OtherCardL2, 8-way� � mr2 HRO2 2/3. (26)

Hits/instruction for shared L3 delay categories of MP example
As indicated in Figures 11 and 12, there are two L3
modules in the full system. Thus, OwnL3 � 1, AdjL3 � 1,
and Total#L3 � 2, so by Equation (17),

Prob[OwnL3, 8-way] � 1/ 2, (27)

and the Hits/I component for its FCP contribution is given
by

Hits/I �OwnL3, 8-way� � �mr2�1 � HRO2� � mr3�1/ 2. (28)

Comparable terms for the AdjL3 component from
Equation (18) are

Prob[AdjL3, 8-way] � 1/ 2, (29)

and the Hits/I component for its FCP contribution is given
by

Hits/I �AdjL3, 8-way� � �mr2�1 � HRO2� � mr3�1/ 2. (30)

Figure 12

Progression of hits and misses per instruction through entire 4-way or 8-way MP memory hierarchy example used for FCP calculation.
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There are no OppositeL3 nor OtherL3 for this example,
so these terms equal 0. Note, as required, that the sum of
all probabilities for each cache level (4-way or 8-way) must
equal 1.

The hits/I for main memory delay categories of our
multiprocessor example are obtained in a manner similar
to that above for L3, using the equations previously
derived for these delay categories. All hit components
for both 4-way and 8-way configurations are summarized
in Figure 12; also shown, for completeness, are some
categories defined earlier which are irrelevant for this
example but which might be required for more complex
cases. Each of these individual HIT components must be
multiplied by the total effective reload time for each path.
The path delays, which must include all queues, latency,
and trailing-edge terms, are derived separately below,
after the queue evaluations.

Queue calculations for MP example
For the example of Figure 11, all queue delays needed for
determining the total effective reload delay of each delay
category are shown in Figure 13. Request bus queues,
or RBQs, indicate the points at which multiple sources
compete for use of that bus, in order to send a reload or
other request. Array access queues, or AAQs, appear only
at the input to DRAM arrays, and represent the point at
which multiple sources compete for use of the array.14

In this example, L2 is assumed to be SRAM and L3 is
DRAM, so L2 has no AAQ. Data bus queues, or DBQs,
are on the inputs to all buses that can have multiple
pending requests for data transfer. Obviously, because
of symmetry, many of the queues will be identical.
To obtain the queue delays, it is necessary to calculate
the utilization U of each of these resources, which
first requires the specification of all traffic on each.
Figure 13 shows the traffic on the major buses. We
include the utilization and queue calculations for only
several resources, since the details become somewhat
repetitive and tedious—extensions to remaining and
other cases should be obvious. The following queue
calculations are done only for the 2-card 8-way MP
of Figure 10, each card having the same queue
structure as Figure 13, connected by way of the
external bus.

Processor module internal queues
Queues for the processor module of our example are
determined using the general expressions previously
determined in Section 6.

Queues associated with L2
For the configuration as shown in Figure 13, the L2
directory is located within the bus-interface unit which
receives all L2 traffic for both the directory and array.
As a result, the traffic to the directory and array will be
somewhat different, as detailed below. We consider only
requests to the array which involves the request bus
RBL2 and data bus DBL2, with associated queues
RBQL2 and DBQL2, respectively, as well as L2 array
queue AAQL2. All requests for reloads, castout fetches
(castouts require separate array fetches), or stores to
L2 use the request bus and array. The data bus, if
bidirectional, would do likewise, but is assumed to be
unidirectional as shown. The separate events which occur
on these buses are shown for this specific MP example in
Figure 13 and occur as follows.

L2 request bus RBL2 and queue RBQL2

● OwnL2 hits—reload Each processor module has two
L1s (designated in Figure 13 as CPU/L1), each making
requests which hit at the rate given by Equation (24),
or (mr1 � mr2) Hits/I. These are processed at the rate
of 1/CPI instructions per cycle. The bus service time
is given as Sta2; thus,

U�OwnL2� � 2 Hits/I�OwnL2�Sta2/CPI

� 2 �mr1 � mr2�Sta2/CPI. (31)

● OwnL2 castouts, CO, to L3 due to OwnL2 misses All
castouts are assumed to be 1/3 of misses. The OwnL2
miss rate is mr2 per processor, so this component is

U�OwnL2 CO� � 1/3 �2 mr2 Sta2)/CPI. (32)

● OtherL2 cross-interrogate hits in OwnL2 All processors
other than the two used above will perform cross-
interrogates (XI) to this L2. In this 8-way MP, there are
(8 � 2) � 6 other processors, and their XI hits will be
spread out evenly to (4 � 1) or 3 OtherL2, of which
the current OwnL2 represent one of these. Thus, the
probability of any one of these processors performing
an XI access to this OwnL2 is 1/3, and we thus have
six processors accessing each OtherL2, and P � 1/3,
mrx�1 � mr2 , HRx � HRO2, giving

U�XI from OtherL2� � 6�1/3� mr2 HRO2 Sta2/CPI. (33)

● Castouts to L2 from this processor’s own L1 L1 is
assumed to be a store-in cache, thus requiring castouts.
All castouts are assumed to be 1/3 of the L1 misses. The
L1 miss rate is mr1 per processor, and there are two
processors and two L1s, so this component is

U�L1 CO to L2� � 1/3 �2 mr1 Sta2)/CPI. (34)

● Reloads for OwnL2 misses If a miss in either of the
two L1 caches associated with an OwnL2 incurs a

14 SRAM array cycle times are typically too small to cause any significant queue.
DRAM array cycle plus refresh times can be significant and create queues.
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subsequent miss in the L2 directory/logic (in the bus
interface unit), a request must be sent to the L2 array to
initiate the reloading process. This will occur for all
misses in L2 due to its two associated processors

accessing L2, each with a miss rate of mr2 . Thus, this
component is

U�OwnL2 misses� � 2 mr2 Sta2/CPI. (35)

Figure 13

Data bus, request bus, and DRAM array access utilization components and queues for 4-way MP card.
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The above five components of Equations (31) through
(35) represent all utilization of request bus RBL2. They
must be added in order to obtain the total utilization,
or

URBL2 � Equation (31) � Equation (32) � Equation (33)

� Equation (34) � Equation (35). (36)

The actual Q wait delay which will be needed in the
final FCP calculation is given by Equation (A3) with Sta2

used as the service time, or

RBQL2 � 0.5 � StL2

URBL2

1 � URBL2

. (37)

L2 array queue
If SRAM rather than DRAM is used for L2, the array
queue will usually be negligible. If DRAM is used, the
queue should be evaluated as follows. The requests which
appear on the request bus above obviously appear at the
input to the L2 array. Thus, the utilization components
are the same except that the bus cycle time is replaced by
the array cycle time, TcL2. The effective DRAM cycle time
should include a weighed average contribution due to
refresh time, which is a function of the specific chips used.
Obviously, the different service time between request bus
and array can make the array queue AAQL2 different
from the RBQL2.

L2 data bus queues
The data buses DBL2-in and DBL2-out are shown
separately, both to clarify the utilizations and to show the
procedure if the data bus is actually two unidirectional
buses. Obviously, the components on these buses must be
responses to the input requests on the request bus and
are divided as indicated in Figure 13. The utilization and
queue calculations will be similar but require a modified
service time. The utilization components of the data-out
bus, DBL2-out, are given by Equations (31), (32), and
(33), but with service time given by

DBL2 service time

� SDBL2

� TDBL2�#Bytes/Block�/�#Bytes/DataBus�, (38)

where TDBL2 � data bus cycle time. If TDBL2 � 3 processor
cycles,15 #Bytes/Block � 64, and #Bytes/DataBus � 16,
then SDBL2 � 12 processor cycles per request.

Utilization of the data-in bus is obtained in a similar
manner. The Q delay for each of these is obtained from
Equation (A3), using the service time of Equation (38).

Processor module external bus queues
This analysis is limited to only one major bus which has
complex utilization components, namely the data bus
between switch and processor module. This bus, as shown
in Figure 13, is assumed to consist of two separate
unidirectional buses, DBsw and DBpm. Detailed
calculations are performed only for the DBsw, which
carries data from the switch to the processor module. If
only one bidirectional data bus is used, the two separate
bus utilization components must be added. The individual
activities which occur on bus DBsw are expressed as follows.

DBsw— data bus from switch to processor module
The service time of this bus is assumed to be twelve
processor cycles/request. Data coming into processor
module A from the switch in Figure 13 will be all requests
from the two L1s on module A which miss their OwnL2
except hits to their OwnMain, plus L3 castouts to the
main slice attached to processor module A, plus all other
processor I/O stores to the I/O slice attached to processor
module A. These are broken into finer, individual
categories of utilization, as defined in Figure 13:

● Hits in AdjL2 Request rate RR is the hits/I in
adjacent L2s from Equation (26) multiplied by two
processors, divided by CPI, or

RR�AdjL2� � 2 Hits[AdjL2]/CPI � 2 mr2 HRO2/�3 CPI�.

(39)

The utilization component is

U�AdjL2� � SDBswRR � 12 � 2 mr2 HRO2/�3 CPI�

� 8 mr2 HRO2/CPI. (40)

● All utilization component calculations are similar to that
above, using the same service time. It is only necessary
to derive the correct RR for each component, as shown
below.

● Hits in OtherCardL2 RR[OtherCardL2] requires
substitution of Hits[OtherCardL2] given by Equation (26)
for Hits[AdjL2] in Equation (39) to obtain

RR�OtherCardL2� � 2 Hits[OtherCardL2]/CPI

� 2 mr2 HRO2 2/�3 CPI�. (41)

The utilization component is

U�OtherCardL2] � SDBswRR�OtherCardL2�

� 12 � 4 mr2 HRO2/�3 CPI�

� 16 mr2 HRO2/CPI. (42)

● Hits in OwnL3 RR[OwnL3] requires substitution of
Hits[OwnL3] given by Equation (28) for Hits[AdjL2] in
Equations (39) and (40) to obtain15 All delays are normalized in units of “number of processor cycles.”
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U�OwnL3� � SDBsw RR�OwnL3�

� 12 � 2 �mr2�1 � HRO2� � mr3� 1/ 2 �1/CPI�

� 12 �mr2�1 � HRO2� � mr3�/CPI. (43)

● Hits in AdjL3 Analogous to that above, using
Equation (30) for the hit rate gives

U�AdjL3� � SDBswRR�AdjL3�

� 12 � 2 �mr2�1 � HRO2� � mr3� 1/ 2 �1/CPI�

� 12 �mr2�1 � HRO2� � mr3�/CPI. (44)

Note that there are no Opposite L3 nor OtherCard L3.

Castouts from all L3 to this main memory slice
Castouts are taken as 1/3 of all misses. We first calculated
all misses, scattered them equally to all main memory
slices, and multiplied by 0.333. There are two L3 slices,
with a combined miss rate of mr3 , so we may consider
these as one memory with miss rate mr3 per processor.
The eight processors miss the memory at this rate, and the
castouts so produced are scattered over four main slices,
so the RR component for these castouts to main slice A is

RR�L3CO� � 0.333 � 8 mr3/�4 CPI� � 0.333 �2 mr3/CPI�.

(45)

The utilization contribution is

U�L3CO� � 12 � 0.333 �2 mr3/CPI� � 8 mr3/CPI. (46)

Note that since main memory has no misses, all L3 misses
are main hits:

● Hits in AdjMain RR[AdjMain] requires substitution
of Hits[AdjMain] for Hits[AdjL2] in Equation (39) to
obtain

RR�AdjMain� � 2 Hits[AdjMain]/CPI � 2 mr3/�4 CPI�.

(47)

● The utilization component is

U�AdjMain� � SDBswRR�AdjMain�

� 12 mr3/�2 CPI� � 6 mr3/CPI. (48)

● Hits in OtherCardMain Analogous to that above,
using Equation (44) for the hit rate gives

U�OtherCardMain� � SDBswRR�OtherCardMain�

� 12 � 2 mr3/�2 CPI� � 12 mr3/CPI.

(49)

I/O contribution to queues
In order to include I/O fetches and stores, we assume
some fixed number of I/O fetches per instruction and I/O
stores per instruction, as for a miss rate. The I/O fetches

only pass data from the I/O modules to main memory, and
I/O stores only pass data from main memory to I/O over
all appropriate buses. All I/O modules are considered
as one large, shared resource similar to main memory.
Thus, the I/O fetch requests from any one processor are
randomly accessed from all I/O modules, with block
transfers randomly scattered across all main memory
modules.

Fundamentally, there are two components to I/O traffic,
one due to page swapping (assuming a paged virtual
memory environment) and the other due to normal I/Os.
In systems with small main memory, the paging I/O can
be significant and will vary with main size. However, the
normal I/O rates are independent of main memory size
and correlate very well with the instructions executed
(see [9], p. 38). For systems with large main memory,
the paging I/O is typically negligible and is the inherent
assumption implied in the above MP model. If page-
swapping I/O is significant, the modeler can either use a
slightly different model which includes an effective miss
rate for main memory to represent the paging I/O rate,
or simply increase the above I/O rate to account for
the additional activity.

Fetches from adjacent I/Os
I/O fetches per instruction executed, IOF/I, are assumed
to occur at a fixed average rate of IOF/I 	 1/1500 per
processor, meaning that each processor makes this
number of requests per instruction executed, IE, to all
I/O modules.16 There are two processors on the processor
module, each requesting IOF/I, and these are scattered to
four I/O modules. Three of these I/O will supply fetches
over this bus, so the request rate is

RR�IOF� � 2 �
3 IOF/I

4 CPI
�

3 IFO/I

2 CPI
, (50)

and utilization is

U �IOF� � 12 �
3 IOF/I

2 CPI
� 18

IOF/I

CPI
. (51)

Stores from all other processors to this I/O
I/O stores are assumed to occur at the same fixed average
rate of IOF/I � IOS/I 	 1/1500. There are six other
processors, each performing stores at this rate, scattered
over all four I/O modules. Thus the request rate to the
one of four I/Os which uses this bus for such stores is

RR�IOS� �
6 IOF/I

4 CPI
�

3 IFO/I

2 CPI
, (52)

and the utilization is

16 Note that this is similar to mr3 , which is the miss rate per processor to all slices
of L3 considered as one memory.
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U �IOS� � 12 �
3 IOF/I

2 CPI
� 18

IOF/I

CPI
. (53)

The total utilization of this bus, as before, is the sum
of all of the above components, and the average queue
is obtained from Equation (A3).

Other buses
The individual utilization components on the DBpm
data bus from processor module to switch are listed in
Figure 13, as well as those on several other buses. Each
component for each bus is calculated in a manner
analogous to that above, and all queues illustrated
in Figure 13 are determined. Once this is completed,
the final FCP can be determined.

Summing path delays and calculating the FCP
The final finite cache penalty is calculated in a manner
illustrated in Figure 5. Each delay category as defined
above, or as defined for a different configuration, has its
own total path delay for hits at that level, consisting of
various bus queues, array queues if necessary, electrical
wiring and logic circuit delays, and trailing-edge delays on
data buses. For our example, the delay categories and hit
probabilities are shown in Figure 12, with bus queues
illustrated in Figure 13. The path delay for OwnL2 is
expressed as follows, assuming that the L2 consists of
SRAM chips and is sufficiently fast that the array queue,
AAQL2 in Figure 13, is not seen:

OwnL2 FCP contribution

� �mr1 � mr2��RBQL2 � DBQL2

� TRBL2 � TDBL2 � TEDBL2 � TL2), (54)

where

RBQL2 � queue on request bus RBL2 as determined
above;

DBQL2 � queue on data bus DBL2 as determined above
(if a single bidirectional bus is used, the queue of the
combined bus is used; i.e., individual utilizations must be
added);

TRBL2 � total electrical wiring and circuit delay on request
bus RBL2;

TDBL2 � total electrical wiring and circuit delay on data
bus DBL2 (larger value for a bidirectional bus);

TL2 � L2 array access time;

TEDBL2 � trailing-edge delays on data bus DBL2 as
calculated according to Equation (7).

Similarly, again using Figures 12 and 13, and recalling
that AdjL2 is the L2 on the other processor module of the
same card,

AdjL2 FCP contribution

� mr2�HRO2/3��RBQpm � RBQsw

� RBQL2 � DBQL2 � DBQpm

� DBQsw � TRBpm � TRBsw � TRBL2

� TDBL2 � TEDBL2 � TDBpm � TEDBpm

� TDBsw � TEDBsw � TL2). (55)

Note that request buses are used only in the forward direction.
Any returning signals are usually transferred by the use of
dedicated control lines which are not modeled. If backward
traffic is needed and significant, it should be included.

In a similar manner, the FCP contributions of each
delay category for each level in Figure 12 are determined
by multiplying the appropriate hit probability by the sum
of the queues and delays in Figure 13, along each path.
For paths involving a DRAM array which connects to a data
bus, and in which both the array and bus have a queue,
these two tandem queues generally cannot be added.
Rather, only the maximum one of the two is used, as
discussed in Appendix A, section on tandem queues.
The final FCP is the sum of all of these contributions, as
illustrated in Figure 5. The final system CPI is the sum of
this FCP and the given CPI [infinite cache], as in Equation
(1). Recall that in order to determine the queues, we had
to assume some initial value for this system CPI. The new
value of CPI will likely be different from the initial value.
Thus, it is necessary to recalculate all of the utilizations
and queues using this new value, and find a new CPI, as

Figure 14
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above. The process is repeated until the new and previous
CPI are sufficiently close (about ten recalculations
maximum). At this point, the analysis is complete.
A spreadsheet or any mathematical analysis tool with
recalculation, recursion, or a simultaneous equation solver
can conveniently implement the above calculations.

8. Results
Performance results for one system which was similar to
the above example are summarized in Figures 14 and 15.
The total system CPI (Figure 14) and L3 cache utilization
(Figure 15) are plotted vs. the reciprocal of the L2 cache
miss rate for the L3 miss rate fixed at 0.2%, and L1 miss
rates of 6.6, 3.3, 2.2, and 1.7%. By the use of Script
programming in a spreadsheet, all of these curves and
others can easily be generated. By varying various input
parameters such as bus width and speed, memory delays,
and sizes (via miss rates), the sensitivity of the design
to these parameters can be studied. For instance, in
Figure 14, the CPI for this example varies slowly when
the L1 miss rate changes from 3.3% to 1.7%, but increases
dramatically at 6.6%. Such sensitivity results are essential
for critical design choices.

9. Conclusions
Analytical analyses of memory hierarchies which include
queuing delays can provide early design tradeoffs for
systems ranging from simple to many-way multiprocessors.
Complex behavior of multiple-level memory hierarchies
with cross-interrogation can be included with simple
statistical parameters and appropriate delays. Even though
the correct value of the system CPI may not be obtainable
to the percentage of accuracy desired, the performance

trends obtained as parameters are changed are quite
accurate. Thus, if the memory hierarchy configuration is
reasonably complete and characterized with appropriate
statistics, an analytical analysis can quickly provide relative
comparisons as well as sensitivities. For a given system,
the sizes and speed of various caches, width and delay of
data buses, cross-interrogation rates, etc. can be changed
to determine the sensitivity of utilizations and CPI to
each parameter. In addition, changes in the design, such
as busing and memory configuration, can be modeled
considerably faster than with a simulation model.
Thus, critical bottlenecks or poor designs can often be
uncovered and corrected in the initial design stage. Such
early analysis tools are an indispensable part of the overall
design optimization and are becoming increasingly
important as we migrate to larger multiprocessors and
complex systems on a chip.

Appendix A: Queuing theory fundamentals for
analytical analysis
The key parameter needed for determining the average
queue delay is the utilization, U, of any shared resource.
The utilization is first determined, and the queue delay is
then calculated from it by a well-known queuing theory
formula, as below. The queuing equations used here have
two inherent requirements. First, the input requests to the
server should approximate a Poisson probability function,
resulting in an exponential cumulative interarrival time
distribution [3(c), 10]. This is approximately true for
misses per instruction emanating from any given cache.17

We use this approximation because no other simple
analytical method is available, and it gives reasonable
results. The second requirement is that all queues be
of unbounded length (i.e., a maximum value cannot be
specified), which is hardly the case in actual hardware.
However, because the final FCP and thus CPI increase as
queues become larger, which in turn makes the queues
smaller, the inherent feedback will always prevent the
queues from becoming infinite, or even very large.
Nevertheless, we cannot specify any of the queue sizes,
but rather only determine the average size after the
analysis has converged (see the Introduction for
comparison of open- and closed-input queue models).

Server utilization
A server is any shared resource which can have a queue.
Utilization U, which is the percentage of time a server is
busy, is given by

U � input request rate/output service rate. (A1)

17 Separate studies of various SPEC95 and IBM internal traces show many
examples which closely approximate a Poisson distribution and many which, while
similar, deviate by a significant amount. For cases which deviate, there is no simple
method available for estimating the error.

Figure 15

Calculated L3 cache utilization vs. reciprocal of L2 miss rate for a 

multiprocessor similar to that of example, with mr
3
 � 0.02% and L1 

miss rates of (a) 6.6%; (b) 3.3%; (c) 2.2%; (d) 1.7%.
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The input request rate, RR, to a server is represented in
units of requests per cycle (i.e., customers per cycle) and
can be calculated for any level, n, from the known miss
rate, mrn (misses/I), as

RR � mr/CPI miss requests/cycle.

The output service rate is the inverse of the service time,
St, which is the total time the server is busy with a request
and thus cannot accept another request, in units of
cycles/input request. For a memory array, this is typically
the array cycle time. Thus, utilization is easily seen
to be the product of the above two parameters, or

U � RR � St . (A2)

For a Poisson type of input, with exponential service time
distribution, the waiting time in the queue line alone is

Qw � St

U

1 � U
. (A3a)

But buses and arrays typically have constant service time,
St, which reduces the above queue delay by a factor of 2
and gives the queue time for constant service time18 as

Qw � 0.5 � St

U

1 � U
� 0.5 �

RR S t
2

1 � RR St

. (A3b)

After the Q wait, there remains the normal time, St, to get
through the server. Thus, the total delay introduced by a
constant-service-time server is

Qw � St � St�1 � 0.5 �
U

1 � U� . (A4)

In most of our analyses, St is already included in the total
reload path delay term, Tn , so that only the Qw wait time
of Equation (A3a) is needed for determining the extra
delay.

Queue waiting line length
For exponential inputs (Poisson), and exponential [exp]
and constant [const] service times, the mean lengths of the
waiting lines alone are

Lw [exp] �
U 2

1 � U
and Lw[const] �

U 2

2�1 � U�
. (A5a)

Note that Lw becomes 1 at approximately U � 62%
and 73% for exponential and constant service times,
respectively, and increases rapidly with U, becoming
infinite at U � 1. The mean size of the queue (number
of inputs waiting plus the number in service) for the
same case of exponential inputs and service time is

Qsize �
U

1 � U
. (A5b)

For a constant service time, the mean size is slightly less
than that given above, approximately

Qsize �
U � U 2/ 2

1 � U
. (A6)

This is obviously smaller than that of Equation (A5b) by
the factor U 2/ 2 in the numerator. The queue sizes are
approximately 1 at utilizations of about 0.5 (50%) and
0.58 (58%) for exponential and constant service times,
respectively, but increase rapidly for increasing values of U.

Tandem queues
In order to initiate a reload to a cache which is several
levels away, the request must propagate from the CPU/L1
control logic through the various intermediate levels of
directories and request buses. Directories at each level are
either fast, or their access delay for translation is included
in the bus latency delays used as input parameters.
Clearly, all tandem electrical wire and logic circuit
delays are added for any path. Tandem queues can be
added together only if the inputs to each queue have
approximately a random interarrival time distribution.
Since there are many processors making scattered requests
over the hierarchy, this is approximately true for most
queues, except for the data-out buffer queue discussed in
the next section. All other tandem queues in the system
are linearly added to the path delay time as appropriate.

Tandem DRAM— data bus queue
Typical arrays in a hierarchy access a full cache block on
one array cycle and load this into an output buffer, which
connects to the data bus. Most data buses have a much
narrower data width than the output buffer and hence
require multiple bus cycles to transfer the full block back
to the requester. If no queue is provided on the output of
the data-out buffer (DOB), i.e., in front of the data bus,
a new array access cannot start until the DOB is fully
empty; otherwise, the previous data can be overwritten.
Since both the array access/cycle time and the DOB
transfer time over the bus can be quite long, we assume
that a queue is provided on the input to the data bus to
reduce the total reload time. If there are multiple arrays
at the same level, all using the same data bus, they also
benefit from this queue. For U and Q calculations, the bus
service time per block request is given by Equation (38),
which can be significantly larger than the bus service time.
For example, for a 128-byte cache block transfer over a
bus of 16 bytes width and 3 processor cycles per bus
transfer, the total service time per block request is
3 
 128/16 � 24 cycles.18 See Reference [10], Vol. II, p. 10.
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An important issue relating to tandem queues arises in
the actual queue delays to be used in the above path. The
queue theory equations require Poisson inputs, meaning
that the arrivals are scattered in time in a certain way.
The input requests to the array are assumed to have
this distribution, while if the array access queue always
has an entry, the input requests to the data bus queue
arrive at fixed intervals, namely the array cycle time.
We model this situation by calculating both queues,
assuming that the inputs have exponential interarrival
times via Equation (A3), and then using only the
maximum of these two queues in the FCP reload delay,
namely

Total path queue delay � RBQn � RBQ(n�1)

� max[AAQ(n � 1) or DBQ(n�1] � . . . , (A7)

where

n is the level of the hierarchy where the path delay starts,
and progresses to subsequent levels, n � 1, n � 2, etc.;

RBQn and RBQ(n � 1) � request bus queues of any sort
on levels n and n � 1, respectively;

AAQ(n � 1) � DRAM array queue delay for level n � 1;

DBQ(n � 1) � tandem queue delay of the data bus fed by
the DRAM array.

The justification for the use of the maximum of the two
queues [AAQ(n � 1) or DBQ(n � 1)] above requires the
consideration of two cases:

● Case 1: Sarray � Sbus, so AAQ(n � 1) � DBQ(n � 1).
If the bus service time component Sbus is smaller than
Sarray of the array such that the array Q, AAQ(n � 1), is
larger than the bus Q, DBQ(n � 1), and if the array has
a significant queue (i.e., length � 1), the output rate of
the array will be constant. Hence, the bus input request
rate, RRbus, is a constant, equal to the reciprocal of the
service time of the array. Since the bus service time was
assumed to be smaller than that of the array, and since
the bus request rate RRbus � 1/Sarray, the bus will process
the requests faster than the array, so there can be no
queue on the bus. The queue equations are not valid for
the bus, and the analysis is trivial. The only queue seen
in the actual path is the larger array Q, AAQ(n � 1), so
discarding DBQ(n � 1) is correct for this case.

● Case 2: Sarray � Sbus, so AAQ(n � 1) � DBQ(n � 1).
Assume that the bus service time component is larger
than that of the array, so that the array Q is smaller
than the bus Q. If for some reason the AAQ(n � 1)
happens to be significant (i.e., length � 1), then, as
above, the array output will provide a constant rate into
the bus of value RRbus � 1/Sarray. Since the bus service

time is larger than the array service time, the utilization
term will be greater than 1, so the actual system will
attempt to develop an infinite bus queue. However, the
CPI will increase to the point where this does not occur.
The actual array Q will decrease to a point such that it
does not produce a constant output rate. Therefore, the
array Q is negligible, and only the bus Q is seen in the
actual system.

Appendix B: Miss rates vs. miss ratios
Miss rates and miss ratios are related by simple
expressions at all cache levels except L1. Unfortunately, at
the L1 cache level, conversion of miss rate to miss ratio
requires a new and imprecise parameter, AI, as shown
below.19 At all other levels, FCP terms can be expressed
using either miss rates or miss ratios, since conversion
requires no extra parameters. Miss rate, mr, is defined
as the number of misses at any level of a cache, as a
percentage of the total number of instructions executed
by the processor, IE:

L1 miss rate � mr1 � total # L1 misses/IE � ML1/IE ,

(B1)

with similar definitions for L2, L3, etc.
Miss ratios are defined as the number of misses per

cache access, or

L1 miss ratio � MR1

� total # L1 misses/total # L1 accesses,

(B2)

and

L2 miss ratio � MR2

� total # L2 misses/total # L2 accesses,

with similar definitions for L3, L4, etc.
Miss ratios, MRn , are related to miss rates, mrn ,

by the following conversion relations:

MR1 �
mr1

AI

, (B3)

MR2 �
mr2

mr1

, (B4)

MR3 �
mr3

mr2

, (B5)

where AI is the average number of L1 (memory) accesses
issued by the processor per instruction executed, expressed
as

AI � IPA/IE or IE � IPA/AI . (B6)

19 See Reference [11], p. 272, for further discussion of AI and analysis of first-level
caches.
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IPA is the total number of processor instructions, or parts
thereof, which make one access to the L1 cache, and thus
equals the total number of L1 accesses. To use MR1 for
L1, we must know AI, which requires a knowledge of
the value of IPA. The parameter IPA causes the difficulty
because some instructions will make multiple accesses to
L1 (load or store multiple, etc.), the number depending
on the program input variables, which cannot be known
ahead of time and are not easily measured. Thus, we
do not have a measure of IPA, the actual number of L1
references, so AI and thus the L1 miss ratio cannot
be determined. However, it is relatively easy to measure
the number of L1 misses, since this comes off the
external bus, and we always know the total number
of instructions executed. Hence, the L1 miss rate is
easily obtained from Equation (B1).

Assuming that we know IPA and AI, the proof of the
identity in Equation (B3) is as follows. Substituting
Equation (B6) into Equation (B1) gives

mr1 � ML1 AI /IPA .

Dividing both sides by AI and substituting Equation (B2)
gives

mr1/AI � ML1/IPA

� total # L1 misses/total # L1 accesses

� MR1 .

The proof of the identities for MR2 and MR3 follows
directly from their definitions.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Lotus Development
Corporation, MathSoft Engineering & Education, Inc., or
Transaction Processing Performance Council.
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