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P. WojciakSuperior availability is one of the outstanding features of

modern zSeries� machines, among the most highly rated of any
existing computer platforms in this reqard. Many features
contribute to this characteristic, some in hardware, some in
software. This paper describes the first error data capture (FEDC)
concept in the zSeries 990. The concept is used for both zSeries
integration efficiency and its ability to gain field data for problem
determination in the user environment. FEDC is not a single
function, but part of all internal software (firmware) in the z990.
This paper explains the overall concept and implementation
details of the various internal functional layers (subsystems).

Introduction: z990 FEDC concept
The first error data capture (FEDC) concept is a
feature of the z990 series of computers that significantly
contributes to its high availability characteristics. The basic
concept is that at the occurrence of any failure in the
system, FEDC gathers and saves enough data for later
analysis to assist in creating a solution. Technically, FEDC
involves all firmware layers in the z990 system. The
backbone functionality is similar for all subsystems.
However, the function set of each subsystem is tailored
to its needs. The benefits of the concept are twofold.

The first advantage occurs during the system bringup
and integration phase. The efficiency of system integration
is directly related to whether the problems can be
solved with the data already available— or whether
a re-creation on the test floor is necessary. A good FEDC
implementation would, in most cases, deliver a sufficient
set of data for developers to work with and solve the
problem. During the development of the z990 program,
the FEDC functionality delivered the correct data on the
first attempt in 70% of all test-floor-found problems. This
reduced the system integration time of a zSeries* system
significantly.

The second effect is in the field. Here, it is of
importance to get the right set of data when the problem
occurs, since we cannot expect the customer to allow the
problem to be re-created for the purpose of additional
data collection.

In the following sections, the z990 FEDC technical
implementation is described, as are the field behavior and

the experiences gained during system integration. In all
of the events that lead to insufficient data, the cases
are examined in detail to determine the root cause and
whether improvements to the FEDC implementation have
to be made.

z990 system components relevant to FEDC
The z990 system structure supported by the FEDC
concept comprises the host firmware—I/O subsystem
(IOSS), processing unit subsystem (PSS), and logical
partitioning (LPAR)—and the corresponding I/O adapter
firmware (IOPs), together with the power, service, and
control network (PSCN) controller and the support
element (SE) (Figure 1). The IOSS firmware handles all
I/O work on the host, the PSS firmware is part of the
z/Architecture* and supports the instruction execution.
The PSCN and SE belong to the control structure of the
system [1–3].

All subsystems send their logs, traces, and dumps to the
SE, where they are permanently stored. Collecting and
storing the data is done by the use of a common FEDC
infrastructure. In the following sections, the specific
implementation and features of the z990 FEDC
subsystems are described.

Support element
The SE is a system management console implemented on
a notebook computer (IBM ThinkPad*). Two of these
notebooks are installed within a z990 machine. Both keep
their dynamic data synchronized at all times. The second
SE is there for redundancy; it dynamically takes over the

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 S. KOERNER ET AL.

557



workload from the first one in case of a problem. The fact
that each SE has its own hard disk that can store large
amounts of data is an important prerequisite for effective
FEDC and a great advantage. As the destination of all
FEDC data, the SE features an extensive set of FEDC
management functions, described below.

Background
The reliability of the zSeries systems has improved over
time [1, 4]. Through this period, the reliability of firmware
components remained relatively stable, but, due to the
increased reliability of the hardware, firmware failures
represented an increasingly larger percentage of overall
system failures in the field. Additionally, due to the
increasing complexity of the firmware components,
the cost of thoroughly testing the firmware was also
increasing. A high percentage of test resources was being
spent on recreating failures in order to collect sufficient
failure data for the developer to solve the problem.
Additionally, for machines installed in field environments,
it was not practical to request time on a customer�s system
to re-create a failure, even if insufficient data was captured
at problem occurrence.

Although FEDC has been part of zSeries products for
many years, until recently there was no coordinated

procedure for how this data was collected and transmitted
to IBM. The common point was transmitting the system
log file to IBM on problem call home. The standards were
that each failure-describing log entry contain a system
reference code (SRC) that indicated the source of the
failure, and that the data include information on the
suspected field-replaceable unit (FRU) (i.e., the failing
hardware part that must be replaced). What other
information was captured and stored in the log file
was left up to the individual developer.

It was recognized that this was not the most effective
way of dealing with an issue critical to the successful
debugging of failures on the system. Therefore, FEDC
became an area with specific focus, and the FEDC
infrastructure was born, with a recognition that it
had to meet certain criteria:

● It had to be centralized so that all components could
use the same set of tools.

● It had to be easy to tailor it to each failure symptom.
● It had to be easily modifiable so that information

learned in the testing phase could be quickly
incorporated into the process.

● It had to provide a basic level of FEDC for all failures.

The infrastructure had to be reliable and always had to
deliver the available data without introducing new failures
into the system. It had to be efficient in that it could not
introduce timing delays into the failure recovery path,
since this could lead to additional problems. It also had to
collect the data as close to the time of the initial failure as
possible and provide a mechanism to store the data until
it could be successfully offloaded.

System log file
From the beginning, the system log was (and in many
cases still is) the cornerstone of the FEDC infrastructure.
The three main purposes of the system log are

● Journaling of all significant system events.
● Problem data repository for automatic problem analysis

(auto PA).
● FEDC.

The auto PA feature and FEDC have a similar
background. The first is there to attempt, insofar as
possible, to automatically determine and recover a
problem, the latter to gather additional data whenever
auto PA fails and the developer must analyze the failure
to determine the exact cause of the problem.

The type and amount of data gathered for both purposes
are very different. Auto PA requires a predefined data
structure upon which it can apply its rules set and
analyze, correlate, and prioritize a set of problem-

The first error data capture (FEDC) subsystem structure in the z990. 
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related information. FEDC data has to be much more
exhaustive and, in general, is a much larger set of data
than that needed for auto PA. The system log file for the
z990 has a 30-MB capacity. One log entry can have a size
up to 128 Kb. While this may seem very generous, it
proves very valuable by providing a history of system
events that may well reach back several months.

The FEDC infrastructure provides tailored interfaces
for each component. Most of the FEDC data is received
on the SE together with an event for the system log.
Components that are external to the SE can send FEDC
data via the power, service, and control network (PSCN).

For the most part, these external components send only
raw data to the SE, where that information is structured
and split up into the part that will be posted to the system
log and the part that will be stored in individual files on
the SE hard disk. This is done to offload as much of the
workload as possible from the host to avoid negative
impact on overall system performance.

When posting an event in the system log, the component
can decide whether or not that event must be handled by
auto PA. All events forwarded to auto PA must bring
along an SRC that describes as exactly as possible the
type of error. For hardware failures, this SRC is supplied
with a reference code extension that provides information
on the possibly affected hardware FRU(s). These
reference codes and the structure of the reference
code extension are maintained centrally for all z990
systems to guarantee uniqueness across the z990 series.
The IBM support organization can link each SRC to its
owning developer and route the FEDC data to that person
for analysis.

Log file housekeeping
For a pure journaling log, a simple wraparound (when
the buffer is full, overwrite the oldest entries) would be
sufficient. However, since the system log is used for
problem analysis, a more sophisticated housekeeping
approach is needed; i.e., events directly related to
problems must be kept longer in the log file than other
events. A pruning algorithm was implemented that
prioritized the log events according to their long-term
importance. This allows PA to correlate subsequent
service actions and avoid redundant call homes for the
same problem. The pruning algorithm kicks in whenever a
log event would increase the size of the system log above
its allowed maximum. The pruning reduces the size of the
log to, at most, 50% of that maximum. Previous back
versions of the system log are kept on the SE; these are
not sent home but can be collected manually in case the
data in the latest system log is not sufficient for analysis.
However, this is relatively rare.

SE tracing
One important tool for debugging firmware problems
is the tracing of program steps. On the SE, this is done
through a central wraparound buffer in memory. There is
a common routine that any C or C�� program can call to
create a trace entry. The SE coding conventions require
tracing of the entry and exit of every major function.
Additionally, a trace can be taken at any critical point in
the code that the developer deems would be helpful in
debugging a code problem. Since the memory buffer for
tracing is a shared resource used by all SE applications,
care has to be taken to ensure that the correct level of
tracing is done without adding spurious entries that would
cause more pertinent entries to be wrapped out. For
example, a trace entry within a loop would be undesirable.

Whenever a log is taken, the developer has the option
of including the SE trace information with the log. In
addition to being able to retrieve a subset of the entire
buffer, a subset of the trace entries created only by the
calling process and a subset created only within the
calling process and thread can be requested.

In addition to the system trace buffer, the SE provides
for a separate private trace buffer. This private buffer is
reserved for long-running applications, such as power-
on reset. Depending on the amount of tracing done, the
system trace buffer typically wraps in a matter of seconds,
while the debugging of some functions requires data on
their program flow from the beginning. Instead of filling
the system log with snapshots of data that are not needed
for the successful passes through the routines, the
developer can use the private trace buffer and, through
the utilities described below, save this longer-running
process trace on error indications. The total sum of all
independent trace buffers amounts to 36. The time to
create a log entry is in the range of microseconds.

Table-driven data collection
In the early years of the zSeries, the system log was the
only data repository for FEDC. Over time, however, the
size of FEDC data increased with the complexity of the
systems to a point at which the amount of data needed
grew beyond a realistic log file size. Algorithms were then
put in place that could detach the FEDC data from larger
log entries and write them to separate files on the SE hard
disk. The log entry would keep only a reference to that
detached data file.

In other cases, data is needed that was not part of the
event, but would already be available on the SE hard
disk, e.g., machine configuration data or system status
information. A key enhancement was the creation of a
table-driven approach that enabled attaching the necessary
files whenever needed; for certain groups of log events,
files can be collected and added to the FEDC data. Also
from these tables it is possible to invoke SE functions that
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can generate this data from dynamic system information at
the time the log is written. One prominent example is the
SE trace collection mentioned above.

The table-driven approach is very flexible and makes
quick changes to the FEDC dataset possible without
having to alter and recompile actual SE code. This proved
especially useful during the early system development
phase when these FEDC tables had to be updated and
enhanced rather frequently.

Whenever a log event is posted to the system log, the
FEDC tables are scanned for related entries. Functions
are called and files are scheduled for collection. If the
automatic problem analysis determines that the event
should be called home, it collects the FEDC files for all
events related to the problem.

Another important enhancement to the FEDC
infrastructure was the creation of a virtual RETAIN.
(RETAIN—which stands for remote technical assistance
information network—is the IBM service organization
problem management system. It is a repository used for
long-term retention of FEDC information from IBM
Enterprise-class machines.) Instead of waiting to collect
the files until a connection is made to RETAIN, these files
are compressed and put into a virtual RETAIN directory.
Once the connection to RETAIN is made, the files from
the virtual RETAIN directory are transmitted to the IBM
service organization.

Because of limited bandwidth, there is a maximum
allowed data size that can be transferred to RETAIN
via modem. If the total size of FEDC data exceeds that
maximum, only a defined subset is transmitted (the system
log is always part of that subset), and the remainder of
the data resides in the virtual RETAIN directory to be
manually collected if necessary. The virtual RETAIN
directories are deleted only after a problem is successfully
serviced and closed.

Display tools for FEDC
Along with the FEDC infrastructure, appropriate tools
had to be developed to ease collecting and attaching the
failure data for the test floor and for viewing the data
once it is collected. The most important tool for FEDC
display is the system log displayer, because much of
the FEDC information is still included there. The log
displayer on the SE features a plug-in architecture for
data formatting routines. These formatters are invoked on
the basis of data format information stored within the log
entries.

Besides the main system log displayer, there are several
other viewers that expand the complex data structures
contained in the log and trace files into human-readable
format. The correct interpretation and user-friendly
presentation of that data is crucial for debugging and
development efficiency.

Cage controller and FEDC
The cage controller (CC) is an embedded controller based
on an IBM PowerPC* processor. The current zSeries
system z990 can have up to 16 CCs. Each controller
has 51 MB of random-access memory (RAM) and two
Ethernet interfaces. The controllers are connected with
the SE via redundant internal Ethernet networks. The CCs
themselves are also redundant. Each CC has a counterpart
that waits in a warm standby mode to take over the job of
the other CC if it fails or reboots for another reason (e.g.,
a code update). There are up to eight units in the z990
with such a pair of CCs [power subsystem, up to four
central electronic complex (CEC) units, and up to three
I/O units].

Other than a small flash memory that holds the basic
I/O system (BIOS), the CCs have no local hard disk or
flash memory or any other kind of persistent storage.
Therefore, to store FEDC data from the CC on the SE,
a working Ethernet is needed. This arrangement is not a
problem for error scenarios in which the operating system
is still fully functional, but in some cases—for example, if
a parity check (memory, processor cache) fails, the CC
memory might contain random data. If the CC tries to
send something to the SE, it might hang or fail again
(which opens the possibility of an endless loop) or it might
do something completely unexpected, such as switching
off the power of an I/O card or the CEC. Thus, the CC
should not take any action except for a reboot. The most
important thing is to keep the system running. The fact
that a CC is rebooting is not important, and probably not
noticeable, to the user, so the reboot is the safest action.

To obtain the FEDC data in this instance, a brute force
method was chosen: The BIOS of the CC recognizes the
error reboot and sends the complete CC memory content
to the SE. The BIOS does a clean start “from scratch”
(i.e., after a processor reset) and uses some reserved
memory to avoid overwriting any memory used by the
firmware. This way, the BIOS can safely use the internal
network to send the dump to the SE. With this memory
dump, all available data that was on the CC is saved, so
all possible FEDC data can be analyzed in depth. A CC
dump is the final “safety net” for firmware errors. The CC
itself just does the dumping: It sends its memory content
to the SE. After the CC dump is received on the SE, an
entry is made in the system log that refers to the file
with the CC dump. PA later puts the dump into virtual
RETAIN.

A postmortem analyzer analyzes the dump and is able
to extract the status of the CC operating system and the
applications running on the CC at reboot time. The trace
buffers and the logs in the log queue can be extracted
as well.

Tracing on the CC resembles a flight recorder: Events
can be recorded in multiple trace buffers. The major
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difference with tracing on the SE is the larger number of
trace buffers. This is to avoid the traces of one component
overwriting the traces of others. Another feature of CC
tracing is optimized performance, due to the slower
central processing unit (CPU) of the CC.

Traces on the SE are stored in a textual format. Creating
this text takes considerable CPU time, and storing the
strings consumes a lot of space. Usually a trace consists
of static and dynamic data, e.g., a constant string in
which some numbers are filled in at runtime. The CC
tracing stores only the dynamic data (the numbers) and an
identification for the constant part (the string). This way,
one trace event is very small (24 bytes plus up to 36 bytes
of dynamic data) and fast (around four microseconds on
a 200-MHz PowerPC 405*). This reduces both time and
space by 80%. A postprocessor on the SE or in the trouble
ticket system translates the dynamic data and the
identification into a human-readable text.

Some components such as device drivers run very
frequently, while others have long delays between actions.
If a component has to wait some time before it can
assume and report an error (e.g., networking code that
works with timeouts), another component could overwrite
the traces of the reporting component and the FEDC
information would be lost. Therefore, the CC provides
several trace buffers, one or even two for each component.
This has proven to be very valuable.

The CC can put a log into the system log on the SE.
The logs are queued on the CC and transferred to the SE
via the internal network. Some or all of the CC trace
buffers can be attached to a log. These traces are stored
on the SE as separate files and included in virtual
RETAIN by PA (see above).

Logs are usually used to report broken or misbehaving
hardware so that repair actions can be triggered or to
report software (i.e., firmware) errors. Of course, the
traces are important in the latter case for finding the
errors, but even in the former case, they help in
understanding what went wrong with the hardware.

CEC firmware FEDC techniques
The CEC firmware also incorporates FEDC techniques—
such as tracing, logging, and memory dumps—as important
design elements; these can be summarized as follows.

Tracing
A trace macro writes 8 � 64 bits of data to a dedicated
wraparound buffer per processing unit (PU). The first two
doublewords hold a time stamp, a PU identifier, a trace
identifier, and the so-called word one trace data. The
following 6 � 64 bits can be used for payload that the
code designer specifies when calling the macro. Via an
SE panel, it is possible to limit tracing to certain code

areas and to one of four trace levels ranging from flow
information to error information. This way, one can obtain
just the information needed to analyze a problem without
filling the buffer too rapidly and overwriting older trace
entries. Tracing is usually used to track the code flow and
save some limited critical data during code debugging and
system bringup. It is turned off during normal customer
operation because of its potentially large impact on system
performance. Tracing is turned on for a limited time and
for a limited set of trace identifications only if a system
experiences problems during normal operation that make
an error recovery run necessary. Traces collected by
recovery are automatically transferred to the SE via a log
entry added to the system log file. In all other cases,
writing the buffer contents to the SE must be triggered
by a manual action via an SE panel.

Logging
This mechanism stores larger amounts of data to
permanent storage. Any CEC code can fill a buffer with
data that is to be placed in the system log. This can be
error information or state information. The buffer content
must be transferred to the SE because the CEC has no
permanent storage for its exclusive use. The transfer is
managed by a call to the log handler facility and realized
by the internal data transfer protocol.

Memory dumps (CECDUMP)
If the system encounters problems that do not allow
further execution of the CEC firmware, a dump of the
entire hardware system area (HSA) memory is written
to the SE disk. This happens only in rare cases in which
recovery is not able to handle the failure. It holds all
system state information at the moment the CECDUMP
was written.

These techniques ensure that all data necessary for debugging
a problem is available or provides enough information to
re-create the failure at an IBM site so that more data can
be gathered by performance-impacting or highly invasive
techniques (e.g., a system checkstop on a trace match).

CEC environment
The implementation of the above techniques must take
into account some constraints imposed by the CEC
environment. During normal user operation, the CEC
provides computing power for all mission-critical
applications and drives the I/O requests to the channel
subsystem. The CEC firmware keeps track of the system
state in its private control block data structure, located in
HSA. This state information is shared by all PUs in the
system and by the channel subsystem. Access to it must
be very fast in order to provide the highest possible
performance. Any benefit that might be gained by data
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collection during normal operation (flight recorder; see the
section below on new FEDC in CEC firmware) must be
balanced against its impact on performance.

FEDC and recovery
System operation is different if a problem is detected.
This places the system on the recovery path and should
happen only in rare cases. Performance is of secondary
importance to the goal of recovering from the error and
gathering all relevant data related to the error. This
approach ties FEDC in the CEC environment more
closely to recovery than is the case in most subsystems,
making it very important to detect errors as early as
possible.

One of the first steps taken by recovery is to activate
the internal host firmware trace facility that records the
code flow and important symbols used by the present
recovery run. Before any attempt is made to recover the
error, some FEDC data is gathered and written to a log
file. Depending on the type of the failure (hardware
failure or code bug), hardware registers are scanned
and/or internal state information is taken from the HSA.

After FEDC collection, recovery decides on an action
plan and takes all necessary steps to recover from the
error. During this process, the concept of secondary error
data capture (SEDC) is introduced to complement the
FEDC data. Each action performed by recovery writes
data to a log that reflects the results of this action.

Several code functions that are required during normal
operation also provide a version that must be used during
a recovery run. This serves two purposes. First, the
recovery version does not have to obey the high-
performance requirements of the critical path. It is
designed to perform more checking on all handled data,
log this data for FEDC if problems are found, and provide
error escalation mechanisms for all problems that can be
conceived of during the code design. The second benefit is

that this is a different code path that might work, even if
the normal version fails because of a microcode error.

Failure types
If one does not take into account user errors, there are
basically two different types of failures: failures resulting
from hardware malfunction and failures resulting from
coding errors. Hardware errors usually cause a recovery
run that resets or fences the component from the system.
FEDC and SEDC data are used to automatically identify
the failing FRU and trigger its replacement by a call
home. These failures cause temporary system degradation,
but usually do not cause a catastrophic customer
disruption.

Coding errors are much more critical because the type
of failure and its consequences are not predictable.
Recovery attempts to reset all involved hardware and code
components and checks to see if normal operation can be
restored. If this is not successful, the system is halted and
a CECDUMP is triggered, as the most complete set of
FEDC data that can be obtained.

Learning from previous errors
As a result of the restrictions that apply to FEDC data
collection in a field environment, it is important to
develop a feeling for error scenarios that are likely to
occur. These scenarios can be translated into test cases to
regression-test all new code using a CEC firmware code
simulator [5]. The test case is used during unit test or
as an error-inject scenario during bringup on the real
hardware. Test cases based on FEDC data from previous
error scenarios help identify new problems at an early
stage of development. This makes FEDC a very important
tool long before a system is shipped to the customer.
Figure 2 shows the FEDC phases.

New FEDC in CEC firmware
For some long-term problems, the scope of the system log
has been found to be insufficient for tracking the cause
of a problem to its origin. A problem may have been
introduced days or weeks ago in an activity which, at
that point, went errorless.

Traces are still the most often used method of capturing
sequences of events. It is a debugging feature, but it becomes
a FEDC feature when it is always available during
runtime, be it during bringup or in the field. Having a
single trace buffer available for use by all CEC internal
firmware was considered insufficient, because particular
internal functions have different frequencies and time
spans.

These considerations led to a collection of FEDC
features for CEC firmware code called CEC debug data
manager (CDDM). CDDM consists of three components:

FEDC phases.

Figure 2
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1. Flight recorders (FLRs), which are small internal trace
buffers for each requesting function named. There are
currently ten functions with separate buffers. Each PU
has a separate buffer to avoid false sharing between
PUs. The synchronized time of day on all PUs is the
same. This time has a resolution down to about 4 ns
and is used to generate a timestamp for every FLR
entry. Thus, a later merge can be performed on all
buffers, and the entry sequence can be reconstructed
over the PU and buffer boundaries. The buffers wrap
according to their size and use. The FLRs remain
in memory. Every entry holds eight doublewords
(8 � 8 � 64 bytes) of binary data. To obtain a longer
history, one of the following methods may be used.

2. Text logs (TLGs), or inline generated text. The logging
feature is of great use during debugging, but its final
use is limited conceptually to less than one text log per
second. Bursts are supported. The text logs are sent to
the SE to be saved in a separate subdirectory. They
do not have the strong relationship to SRCs that the
system log has. It is a repository for state/transition
information useful for debugging CEC firmware
situations and complements the error information
stored in the system log. TLGs are written at useful
debugging points, not necessarily error situations, but the
resulting text log is waiting to be picked up if the data
becomes important for a particular error situation.

3. Dumps (DMPs) of memory data into selectable files on
the SE in that same subdirectory. In one such DMP,
up to 512 KB of binary data may be saved. With this
feature, the state of control variables and structures can
be saved, as can the contents of one FLR buffer or an
entire group of FLR buffers for all PUs. On the SE,
the DMP data is appended to the selected file. If the
size of the resulting file is above an individual limit, it
is compressed, and a new file is started. The limits are
controlled in a control file on the SE. Essentially, this
ensures that CDDM data cannot overwhelm the hard
disk capacity on the SE. Finally, there is the chance of
loss of debugging data, but, because different applications
use different files, every application can fit its own
debugging requirements.

CEC firmware development now has a collection of
FEDC features at hand for those situations in which an
error has not yet occurred, but valuable data must be
saved in order to facilitate analysis of problems that
are not easy to debug when only the system log is
available. The system log is used when an error is
detected and an SRC is generated. Now, according to
that SRC, further debug data may be appended to the
system log. This data may very well contain portions
of the saved CDDM data in the separate subdirectory
on the SE.

CECDUMP improvement for CEC firmware
The already very valuable CECDUMP as a postmortem
dump of the z990 memory state was a significant
improvement. On former zSeries machines, only the
memory contents were dumped to the SE; the architected
state of the PUs remained unknown in the CECDUMP.
This was a significant deficiency for some debugging situations.
On the z990, a new mechanism is used to trigger all PUs
to save their current state and their internal hardware
trace data to memory, providing much more complete
postmortem FEDC information. The CECDUMP is now
invoked through a special machine check that spreads
synchronously to all PUs, in both single-book and
multibook z990 systems. Even hang situations are
disrupted, and thus, the most complete system view
including all PU states plus memory is generated. This
also allows analysis of most of the problems between
two or more PUs, which can be very hard to debug.

This improvement is amplified by a new browser tool to
examine CECDUMPs and help in understanding the data
content in a short time. Figure 3 shows the general CEC
system structure in relationship to FEDC. SCD and SCC
together make up the L2 caches of the system.

Effect of virtual RETAIN on problem reproduction
requirements
Each zSeries system has the ability to connect to RETAIN
via a modem or high-speed network. Some limitations of
this repository, such as the bandwidth of the upload link
(phone line) and the maximum size of each file being
uploaded, have been mentioned. In response to this, a
longer-term repository, virtual RETAIN, resides on the
SE hard drive and has been expanded for z990. Virtual
RETAIN keeps the last 100 incidents� worth of FEDC
information, regardless of size. A common compression
tool reduces the size of each error dataset stored in virtual
RETAIN. (Data sent to RETAIN over the modem is also
compressed before transmission.)

Prior to the introduction of virtual RETAIN, there were
instances in which FEDC information kept on the SE
was overlaid by new data. This caused the data from
the original failure to be lost, making diagnosis all but
impossible. Another problem was that, for a given failure,
many different files may have to be collected. In some
cases, collection of this data was not automatic and would
require several trips by an IBM Customer Engineer to
the machine at the customer�s data center. These same
difficulties were frequently encountered by the engineering
test team. The FEDC information was overwritten, pruned
by the automatic log management process, inadvertently
erased by the user prior to a new test, or the user
had collected only a partial set of FEDC files when
documenting the problem. In all of these cases, the
problem inevitably would have to be re-created before
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diagnosis could be completed, or in some cases, even be
started.

With the current virtual RETAIN packaging scheme for
FEDC, instances of overwritten data have been virtually
eliminated. Also, there has been a marked reduction in
instances in which the originator of a problem has not
attached the minimum FEDC information. This, however,
is really more a matter of educating problem originators on
proper FEDC collection than anything to do with the code.

Table 1 shows an improvement trend with respect to
percentage of problems written where the minimum
FEDC is not collected by the problem originator. Virtual
RETAIN was introduced after the 9672 G05 model
introduction.

The log management process of the SE performs
housekeeping tasks on logged data. The event log, in which

much of the FEDC information is housed, was previously
limited to 1.4 MB (the size of a floppy diskette), but it
has been expanded to 10 MB on the z990. When the
amount of logged information is about to exceed that
limit, log management housekeeping performs two tasks:
log compression and log pruning. Log pruning causes
data to be discarded directly, contributing to lost
FEDC information.

A look at the percentage of problems written in which
the FEDC information was pruned out also shows a
substantial improvement trend (Table 1). The larger
event log is probably the single biggest contributor to
this improvement.

zSeries machine FEDC effectiveness
Historically, on S/390* and zSeries servers, about 33%
of the problems written (identified and logged) during
engineering tests and from incidents in the field required
additional data beyond that produced by FEDC to isolate
and understand the root cause. This is termed the more-data
rate, because that portion of problems written requires more
data for resolution. As mentioned previously, insufficient
data from a field machine can inhibit the ultimate resolution
of a problem. Additionally, since a field machine is used 24
hours a day, seven days a week, there is rarely a chance to
reproduce the problem on site. Thus, obtaining the failure
data on first occurrence is paramount.

Table 1 Percentage of problems with missing minimum
debugging data not attached and with missing minimum
debugging data not available.

9672 G05 z900 z990

Minimum debug data not
attached to problem ticket

16.2 11.4 9.9

Minimum debug data not
available

21.1 13.9 2.0

Figure 3

FEDC flow. 1. Firmware on any PU detects a fatal error. 2. Firmware signals a special machine check to the L2 ring. 3. The L2 control chip 

on one book starts a broadcast to all books in the system and its own PUs under full hardware control. 4. The broadcast travels on the 

interfaces. (On other books in the system, the broadcast reaches the PUs a few cycles delayed.) 5. All PUs write their PU state independently 

into memory. 6. The CECDUMP continues as usual to dump the data to the SE.
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For the zSeries z990 machine, the early indications are
that the overall more-data rate is about 25%. This means
that instead of one in three problems requiring more data,
the rate has been reduced to about one in four. Given the
number of problems written during engineering tests for
such a product, this translates to a significant savings in
labor and machines. Further, because of the increased
complexity of the z990 with respect to previous processor
families, just maintaining more-data rates—let alone
improving them—was a monumental challenge that
required significant FEDC enhancements. Table 2 reflects
a comparison of the more-data rate for the 9672 G05, the
z900, and the z990 families of machines per code
subsystem.

Another measure can be drawn by looking into types of
more-data requests. The person requesting additional data
for a problem must select the reason for the more-data
request. One of these reasons maps directly to insufficient
FEDC. A comparison of the 9672 G05, z900, and z990
programs is shown in Table 3.

Another way to quantify more-data activity and
improvements from one machine to the next is with the
ratio

Total number of more-data requests

Number of problems with a more-data request

� more-data requests per problem.

This ratio is useful because higher numbers often reflect
that the weaker FEDC of a subsystem is contributing to
multiple requests for reproduction per problem; if the
FEDC mechanisms are improving, this ratio should
decrease. Table 4 illustrates the improvement trend of the
more-data requests per problem ratio. What may seem
like small movements in the values represent thousands of
hours of labor and machine time for the test organization,
product engineering, and development.

Comparison of various metrics useful for analyzing the
effects of FEDC on problem more-data rates demonstrates
that those of the z990 system exceed those of prior zSeries
machines. The improvements in FEDC for zSeries have
evolved from one machine to the next. There is a direct
correlation between better FEDC and lower problem
more-data rates. In turn, this can be translated into real
personnel and test machine time savings, representing
significant test process productivity improvements.

Future direction and outlook
On the basis of experience gained during the last few
zSeries programs and positive customer response, FEDC
coverage will continue to increase by further analysis of
the FEDC data gathered during the integration phase and
in the field. Over time, this will lead to fewer more-data
requests, which, in turn, can increase the integration

efficiency and drive down costs. The tool suite that
surrounds the FEDC functionality will be enhanced to
make it easier and more error-free to use, and these
changes will also include optimizing the human interface.

Table 2 Subsystem-based percentage of more-data
requests. (Percentage of problems written by the Engineering
Test and Product Engineering organizations during the initial
testing and first three months after general availability that
went into more-data status.)

Subsystem 9672 G05 z900 z990

Support element 28.2 31.7 25.0
Processor millicode 31.1 27.2 26.0
Processor i390 32.5 42.3 24.3
Channel 33.7 38.1 36.7
Power 19.8 12.9 16.9
PSCN NA 32.6 20.9
LPAR 34.5 41.7 36.0
All hardware 23.7 22.2 26.4
SAK/PCX (Test software) 11.8 11.7 13.2

Totals (w/o SAK/PCX) 29.7 30.0 25.4

Table 3 Areas of more debug data requests due to
insufficient FEDC (%).

Subsystem 9672 G05 z900 z990

Support element 31.3 32.7 25.4
Processor millicode 63.3 55.6 32.4
Processor i390 50.0 40.0 40.4
Channel 37.2 59.9 33.9
Power 19.2 9.1 9.5
PSCN NA 27.4 21.0
LPAR 78.6 50.0 26.7
All hardware 47.4 51.4 25.5
SAK/PCX (test software) 62.5 42.2 35.7

Totals (w/o SAK/PCX) 43.6 43.1 30.2

Table 4 More-data per problem ratio comparison by
subsystem.

Subsystem 9672 G05 z900 z990

Support element 1.57 1.59 1.44
Processor millicode 1.58 2.05 1.48
Processor i390 1.67 1.67 1.58
Channel 1.78 1.83 1.54
Power 1.37 1.34 1.32
PSCN NA 1.54 1.47
LPAR 1.47 1.87 1.84
All hardware 1.36 1.68 1.39
SAK/PCX (test software) 1.6 1.25 1.32

Totals (w/o SAK/PCX) 1.60 1.63 1.50
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As an integral part of the zSeries system, FEDC will
influence eServer* series systems in the future.

*Trademark or registered trademark of International Business
Machines Corporation.
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