Accelerating
system
Integration

by enhancing
hardware,
firmware, and
co-simulation

K.-D. Schubert
E. C. McCain
H. Pape

K. Rebmann
P. M. West

R. Winkelmann

System integration of an IBM eServer™ z990 begins when a
2990 book, which houses the main processors, memory, and
1/O adapters, is installed in a z990 frame, Licensed Internal
Code is “booted” in the service element (SE), and power is
turned on. This initial system “bringup,” also referred to as
post-silicon integration, is composed of three major steps:
initializing the chips, loading embedded code (firmware)

into the system, and starting an initial program load (IPL)
of an operating system. These processes are serialized, and
verification of the majority of the system components cannot
begin until they are complete. Therefore, it is important to
shorten this critical time period by improving the quality

of the integrated components through more comprehensive
verification prior to manufacturing. This enhanced coverage
is focused on verifying the interaction between the hardware
components and firmware (often referred to as hardware and
software co-simulation). Verification of the activities of these
components first occurs independently and culminates in a
pre-silicon system integration process, or virtual power-on
(VPO). This paper focuses primarily on the hardware
subsystem verification of the CLK chip [which is the interface
between the central electronic complex (CEC) and the service
element (SE)] and on enhanced co-simulation. It also
considers the various environments (collections of hardware
simulation models, firmware, execution time control code, and
test cases to stimulate model behavior), with their advantages
and disadvantages. Finally, it discusses the results of the
improved comprehensive simulation effort with respect to

system integration for the z990.

Introduction
Success in the server industry is directly related to the

features, quality, and development costs of a product,

and the time it takes to deliver that product to the
marketplace. To that end, IBM implements a very efficient
yet comprehensive test strategy to reach a high level of
quality. Specifically, in the eServer* systems this validation

process begins very early in the development process with
the verification of the hardware subsystem and software
designs, ending with hardware and software co-simulation.
Subsequently, with the delivery of the first engineering
hardware, the focus is shifted to post-silicon system
integration and system test. System test then uses
operating systems such as System Assurance Kernel

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor. 569

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

K.-D. SCHUBERT ET AL.

570

Hardware verification/ HW/FW Bringup
firmware verification co-simulation
i
CLK chip i
i
E Firmware
System [AQ&] testing
i
pervasive ue, p
imulati RN |
A;lll simulation 1/ IML
other 1\ 8
ools bringu;
chips o T L\t E £up Hardware
Mainline W &‘Z,&o‘\ : e
sys;em o p test
simulation ~ '
& %;\\0‘” :
) &0\ E Instrumentation
& .
Firmware N E e
verification]
|
: »
VPO PON Time

System integration bottleneck. (PON: power-on; VPO: virtual
power-on.)

CLK2CLK star L2 data ring

Book 3 |
Book 2 |
Book 1 |
Book 0

Service
control
network

al
~

Service || L] | MBA | | MBA | | MBA |
element L I I I
[TIT TTIT TTT1
— 1/O subsystem
Figure 2

Overview of eServer system. (PU: processor unit; MSC: memory
storage controller; MBA: memory bus adapter.)

(SAK), an internal IBM system exerciser, z/OS*, z/VM*,
and Linux** to verify the architecture and complex system
functions.

After review of postmortems on server products and
analysis of each phase of the development cycle, one basic
conclusion can be reached. The time from design start to
the first hardware delivery is determined primarily by the

K.-D. SCHUBERT ET AL.

complexity of the design, and that time cannot be reduced
significantly. However, the time from first engineering
hardware delivery to general customer availability is driven
by testing activities and can be optimized. One way to
optimize would be to completely overlap the system
integration and system test phases. At first this approach
appears very attractive, but several issues must be
considered. Parallelization increases the development cost
significantly because there is a cost premium on early
hardware. Also, this is difficult because of the serial
nature of the system integration phase, as stated earlier.
For example, one problem involving either hardware or
software this early in the system integration phase could
gate all test activities, thus reducing testing efficiency to
unacceptable levels. In the case of a hardware problem, it
could take weeks or months to fix the problem and fabricate
enough hardware to move past it. Finally, human resources
are a constraint in conducting many parallel test activities,
because more experts are needed than are available.

Despite these inherent limitations, parallelization is
still used for most system integration and system test
verification work because there are no alternatives at this
time. However, one activity, initial machine load (IML),
sometimes referred to as initial microcode load, is affected
to the greatest extent by the problems mentioned above,
and so cannot be overlapped because IML is the first
step in system integration. Therefore, IBM strategy is to
improve the quality of the system components at power-on
time in order to reduce the amount of time needed to
reach the parallel phase of system testing.

Another way to optimize would be to understand the
nature of certain post-silicon environments and “move”
the verification platform to a less expensive, more efficient
and user-friendly platform. If this is done correctly, the
negative consequences are minimal. This paper describes
the efforts that have been made to significantly increase
simulation coverage and verify function on the cheapest,
simplest platform possible (blue areas in Figure 1) to
reduce the time needed for system integration and test
(green areas in Figure 1).

The next section provides an introduction to the system
structure to help put subsequent explanations of the
simulation environment in perspective. The following
sections focus on the IML sequence and post-IML
simulation environments, including their scope and
possibilities as well as their limitations. Finally, a review
of lessons learned and an outlook on future opportunities
for improvement are presented.

System structure

The eServer system consists of hardware (HW) and firmware
(FW) elements. The hardware components are the central
electronic complex (CEC), consisting of a shared
multiprocessor system (SMP) with a memory subsystem,

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

an IBM ThinkPad* used as a service processor to control
the system, the I/O subsystem, and a system control network
consisting of various control chips and cables as shown in
Figure 2. The power subsystem, which is currently not in
the scope of the functional simulation activities, is not
shown. This subsystem is pre-verified with special bringup
vehicles (BUVs) prior to the full system power-on (PON).

In contrast to previous zSeries* systems, the structure
of the CEC comprises four books. This packaging was
necessary to combine up to 48 processor cores in the one
system. This multibook structure presents new challenges
because of the increase in complexity in the system control
structure and the CLK chip. The CLK chip is the interface
between the service control network [1] and all of the
chips in a book. The main tasks of the CLK chip are
starting the clocks, shifting the level-sensitive scan design
(LSSD) chains of all chips, and providing a fast data path
to the processors. To support the multibook structure,
additional functions have been added to the z990 system.
These functions include communication paths among all
CLK chips in the system and the means of unfencing
(logically separating books for simultaneous operations)
the book-to-book interfaces.

To support all of these functions, the CLK chip has
four interfaces, as shown in Figure 3, establishing the
connections to the various targets:

Service support interface (SSI) to the cage controller (CC).
 Clock service element (CSE) interface to each processor
core in a book.

Serial interface (SIF) to the system control chip (SCC)
and storage controller data (SCD) chip in a book.

In addition to the hardware pieces described above, the
system also consists of a significant amount of firmware.
One part of the firmware operates within the CEC and
is responsible for providing microprocessor and I/O subsystem
control. Another part of the firmware operates in the
service processor and is used for functions such as system
maintenance, error recovery, and multibook structure support.

IML sequence overview

An important function in a zSeries system is the IML.
During IML the hardware is initialized and system clocks
are started; then millicode and 1390 code (henceforth
referred to as CEC code) are loaded into the CEC. After
the CEC code establishes an S/390*-architected reset
state, it is ready to load an operating system and start
applications. The IML control firmware operates on

the service processor; since this firmware is in the
critical path of all other testing activities, any problems
and delays in debugging it during system integration
have a direct effect on the overall time to market.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Clock-to-clock interface (CLK2CLK) for multibook support.

‘ PUO ‘ ------ ‘ PUIS ‘ ‘ CLK ‘
t t t
v
| CSE | |CLK2CLK|
Run || yMsg Shift
control
FSP ssi
SIF
S S S S
‘MBA H MSC H sce H SCD H ETR ‘

CLK chip overview showing all interfaces. (FSP: flexible service
processor.)

IML sequence HW | CoSim | FW

Step 1: Boot service element and O
activate power to system

Clock chip initialization

Step 2: Chip and array self-test

Step 3: Initialize all chips except CLK
using shift engine

Load bootstrap code via
serial interface (SIF)

Start chip clocks

Execute bootstrap code and
elastic interface calibration

01 101 1010100
>

Memory self-test
Establish fast communication \ /
path to CPs via XMsg
Step 4: Firmware load into CEC \ /
Step 5: System reset and first I/O access \/

Step 8: Expand control block

Step 9: Load channel code

Step 10: Channel subsystem reset

Step 11: Timer setup

Step 12: Logic partitioning

Overview of IML sequence steps.

IML is a complex process that is broken down into
multiple steps; for historical reasons, the numbering of the
steps is not consecutive. Figure 4 provides an overview
of the different steps that make up IML. Before any
interaction with the service element can be executed,

K.-D. SCHUBERT ET AL.

572

the CLK chip must execute a power-on reset (POR) to
initialize itself. This is a pure hardware function which is
operated under the control of the run control engine' of
the CLK chip. This engine retains information about the
internal chip state and controls the clocks of the other
chips in the system. After the CLK chip has reached the
reset state, the connection to the service control network
is established via the SSI.

At this point the service element code can access the
CLK chip® and communicate with the other hardware
macros (engines) on the chip. To verify that the CLK chip
and the firmware in the service element are working in
lockstep, the sense control engine allows direct access to
the internal control registers of the CLK chip. When a
stable connection is established, the service element then
initializes the other chips by using the shift engine to
access the internal shift latches (chains) of these chips and
scan in the appropriate data. After the chips are in their
initial state, the first piece of code, the bootstrap code,
is loaded into the Level 2 (L2) cache [2] via the serial
interface engine on the CLK chip. Thus far, the CLK chip
has communicated only with the service element. With the
start of the clocks to the other chips and the execution of
the bootstrap code, a new communication path between
the processor and the CLK chip is established; this is
called the clock service element (CSE) interface. It allows
a higher data rate between the service element and the
processor chips when the special XMessage (XMsg)
engine of the CSE on the CLK chip is enabled. With
the end of IML step 3, this fast communication path is
available; all of the megabytes of CEC code that have
to be transferred from the service element to the CEC
in steps 4 and 5 use this path.

In addition to the functions mentioned thus far,
functions are available on the CLK chip that are required
only in a multibook system; these have additional verification
requirements. The CLK2CLK engine connects all CLK
chips with one another. It is used to synchronize the
status of the different books and exchange information
between them. Finally, the serial interface engine and the
clock service element interface are reused to fence and
unfence the SCC cache ring [3].

Of course, the CLK verification does not cover the
complete verification of the IML sequence. Each of the
remaining chips has some logic incorporated to support
the IML. These functions are related primarily to clocking
and scanning. Since the functions interface with the CLK
chip, additional environments® are used to verify each of
these chips together with the CLK chip.

! Hardware macros on the chip are referred to as engines.

2 The service element code interfaces with the books via the service control network
and the CLK chip.

3 These consist of collections of hardware simulation models, firmware, execution
time control code, and test cases to stimulate model behavior.

K.-D. SCHUBERT ET AL.

In addition to the hardware functions mentioned so
far, the IML sequence relies on firmware. The two main
firmware components described in the previous section,
the service element and CEC code, are verified separately.
After the verification of these elements in a standalone
environment, they are combined into the CEC simulator,
CECSIM [4, 5]; however, since this environment contains
no hardware model, some of the IML code must be
bypassed.

The environments described so far already cover a
significant portion of the IML sequence. As shown in
Figure 4, the hardware verification focuses on aspects
that are used mainly in steps 2 and 3, while the firmware
verification covers primarily the service control network
boot and steps 5 to 12. The third environment to be
discussed is the one that focuses on the interaction
between hardware and firmware. History has proven
that when two separate groups design the firmware
and hardware, there is a high probability of
miscommunication. Therefore, hardware/firmware co-
simulation (CoSim) was used and enhanced to verify the
consistency of design assumptions and interfaces between
hardware and firmware. This activity focuses on the IML
steps in which the likelihood of such interface problems
is relatively high, such as IML steps 3 and 4, in which
firmware is performing low-level hardware commands. To
ensure valuable overlap among the various activities, the
co-simulation also covers parts of steps 2 and 5. In the
following sections, we describe these activities in more
detail and highlight points at which they have been
skipped in one environment because they have been
verified in other environments.

Hardware verification of the CLK chip
This section focuses on the comprehensive simulation
strategy for the CLK chip using a multilevel verification
approach. The scope of verification for each level is
determined by solving the following optimization problem:
Minimize the effort required to verify a set of properties of a
system, including constraints such as start and finish dates.
The first step is to decide how the logic is to be
partitioned so that the resultant hierarchical tree structure
reduces the complexity within each level. The partitions
are typically determined along the boundaries of macros,
units, chips, or groups of chips. Each level can be
considered a single problem in verification, and a
detailed test plan can be constructed by analyzing the
characteristics of the design and its interfaces. However,
complete coverage of all test items on each level contradicts
the goal of minimizing the resources generally—a target
of the optimization problem mentioned above. This
results in decisions such as skipping aspects of the test
plan on one level in favor of integrated testing one
level up in the hierarchy.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

The design of the CLK chip is characterized by a large
set of functions with many dependencies among them [6]
which are difficult to address on a unit level. Therefore,
it was decided to skip unit-level verification, leaving the
following three verification levels for the CLK chip:
macro-level verification, chip-level verification, and
multichip-level verification.

Macro-level verification

Since macros are considered the smallest design entity,

it is common practice to assign a single designer to
implement their design. Each macro provides basic
functionality that is accessible through stimuli on

its interfaces. Since there is typically no detailed
documentation on all of the internals of a macro, the most
efficient way to verify it is to have the logic designer carry
out the macro-level verification. This allows the designer
to detect and correct many simple problems such as
typographic errors on this level.

Chip/multichip-level verification

The chip-level verification is split into two phases,
deterministic verification and random verification. Both
environments run using the same set of tools and share
common components such as drivers and monitors. In chip
verification every chip interface is typically verified using
such components. The multibook feature of the z990
eServer resulted in a design in which CLK chips are
connected to one another; thus, instead of creating
software for the CLK2CLK interface, models for two- or
four-CLK chips were built to cover this interface. Using
the CLK chip models in this way reduced the workload
significantly for the price of maintaining multiple software
behaviorals and models.

The majority of verification tests ran on these models.
Before these tests were run, however, a chip initialization
file was applied that is common to single-book and
multibook configurations (i.e., each CLK chip was
initialized with the same data). The model-build
process of the CLK chip was extended to generate the
initialization file by executing a partial POR sequence and
storing the latch values in a file. It should be noted that
the same initialization file is also applied in other
simulation environments such as hardware/firmware
co-simulation.

Deterministic environment

The deterministic verification phase (environment) was
implemented before the random verification phase. It is
based on a macro language that is built on top of the e
programming language.* These macros define stimuli on

4 Verification language provided together with the tool SPECMAN from Verisity,
Inc., Mountain View, CA.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Testcase | oooooooooo oo 210 .-""""-"":
L CSE CSE

E E K sequence sequence

: Y Internal driver driver

C 0 \ model ; ;

: ;o haccess CSE CSE

i i . driver driver

E E '\“—CD >

: ; CLK
SST (2-4)

sequence |- SSI

driver driver '
CLK

SSI
sequence |- SSI
driver driver

Deterministic CLK chip simulation environment.

the service support interface (SSI) and the clock service
element (CSE) interface. The SSI is a command-based
interface that provides read/write access to the internal
registers of the CLK chip. The CSE interface connects
the CLK chip to all processor cores in a book. Like the
SSL, it provides read/write access to the CLK chip internal
registers in the same book or via the CLK2CLK interface
to the CLK chips in remote books.

All registers accessible via SSI and CSE are located in a
set of engines: the shift engine, dealing with the shifting
of internal and external chains; the sense control engine,
with direct access to the internal clock control registers
and run control functions; the XMsg engine,’ with a fast
data communication path between the service element
and the processing units or cores; the clock-to-clock engine;
and the serial interface engine.

Figure 5 shows the simulation environment for
deterministic stimuli. Test cases are defined by a sequence
of commands, with each command based on the macro
language. The test case is then interpreted by the SSI or
CSE sequence drivers, which use the lower-level interface
drivers to execute individual commands. As a result, the
interface drivers stimulate the model on the interface. The
CLK model is checked for correct behavior, either by
comparing expected values to the data returned on the

5 The XMsg engine is a hardware interface on the clock chip that connects the
cage controller to the CEC.

K.-D. SCHUBERT ET AL.

573

574

interfaces or by checking model internal register values.
The checking code is implemented in the test case itself.

The main purpose of deterministic test cases is to
ensure that every logic function is covered at least once.
In addition, testing of these logic functions in a sequence
that mimics zSeries applications such as IML is more
complex and must also be verified. Although the
development of these test cases is a manual, labor-
intensive process, they are an important foundation for
the verification of the CLK chip. These deterministic tests
are self-checking; they are part of an extensive regression
package that is extremely valuable in ensuring that design
fixes do not impair the functionality of the chip. The
following two examples show how deterministic tests are
used and how they enhance the whole simulation process.

The first example describes the creation of the CLK
chip reset file. This test case is a sequence of SSI
commands to access internal model facilities; it comprises
the following steps: First, the CLK chip is forced into the
Power-On-Reset state. Second, stimuli from CLK chip
neighbors are emulated. (Neighbors are the chips that are
physically connected to the CLK chip in the real system.)
Third, the sequence is completed by running the CLK chip
into a well-defined Power-On-Reset-complete state. At this
time, a dump of all latch values is written to a file and
used in all subsequent environments that include the
CLK chip, i.e., the CLK chip verification itself.

The second example deals with the scan/shift function
of the CLK chip. This is a good example of a simulation
which begins with simple test cases and increases its
complexity over time. The primary contributor to the
scan function is the shift engine of the CLK chip and its
registers. The engine is accessible via the SSI and the CSE
interface. The verification begins with the checking of the
base functions, i.e., access of all registers in the shift
engine and shifting of internal scan chains such as the
CSE chain. It continues by providing test cases for
complete and partial shifting, the locking mechanism for
concurrent access via SSI and CSE, and the partial shift
of external chains. Since the shift engine can be accessed
from all processor cores in the system via a remote CLK
chip, the next step is to verify the shift mechanism via the
CLK2CLK interface, which includes the sequence for the
unfencing of the interface. Finally, all of the simulation
steps described above are the base for the simulation of
the processor sparing sequence. In this case all steps
which are initiated by millicode later in the real system
must be modeled by a comprehensive simulation sequence.

Random environment

In the deterministic simulation environment illustrated
above, scenarios are defined by test cases. These test
cases are generally not fully deterministic, but support

K.-D. SCHUBERT ET AL.

parameterization (i.e., choose to execute an SSI command
on SSI A instead of SSI B). This type of parameterization
improves the coverage, but from a more abstract point

of view, these test cases keep their deterministic
characteristics.

In the random environment we extend the idea of
parameterization significantly and thereby cover a
different state space. The basic idea is to concurrently
stimulate the interfaces of the CLK chip with randomly
selected sequences or just a single command. These
sequences are divided into those that leave the state of
the logic unchanged or at least in a known state after
completion (i.e., nondestructive sequences such as a
simple read command) and those that result in an
unknown state due to triggered internal activity.

The term unknown state refers in this context to a
state that results from a transition that is too expensive
to model and therefore leaves the checking code in

an unknown state. Thus, these sequences are called
destructive.

These destructive sequences are not desirable for the
following two reasons:

1. Checking of these scenarios and their side effects
is extremely complex and often adds no significant
coverage.

2. Some of these sequences are not likely to happen
in hardware because they are prevented by code.

However, it is desirable to run permutations of sets of
sequences that leave the CLK chip in a known state at all
times. These sequences are supposed to run concurrently.
For instance, a typical scenario is a shift operation over
the SSI interface in combination with some processors
reading or writing to the sense control engine in the local
book, and some accessing engines in remote books with
recoverable error injection. Another scenario would be to
have SSI and multiple processors concurrently® request
the lock to the shift engine.

All sequences applied during a random simulation
have variation built in for variables such as node number,
register number, or engine number. The test-case manager
maintains the status of all concurrently running sequences,
and the resource manager addresses constraints between
sequences (i.e., determines whether two sequences are
allowed to be executed concurrently). On the basis of this
infrastructure, the constraint-driven generation works as
follows. After a randomly selected number of cycles, a
new sequence is generated by the sequence generator. At
this point all degrees of freedom (i.e., engine number)
have been eliminated. The list of required resources

6 The shift engine has a lock mechanism that ensures exclusive access to it by a
single source.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

for this sequence is then computed. A constraint solver
evaluates whether it is legal to start the new sequence
while the current ones are still being executed, according
to an algorithm based only on resources. If there is a
conflict, the sequence is rejected; otherwise a new thread
is started, and the sequence is executed within it. The
execution of sequences is handled with no interaction of
the test-case manager. Sequences have built-in checking
implemented and are driven by SSI and CSE sequence
drivers. The sequence drivers utilize the SSI and CSE
drivers. This process is similar to deterministic test-case
execution, and some functionality is reused.

Thus far the test-case manager, sequence drivers, and
interface drivers have been discussed. The other components
shown in Figure 6, such as the monitors and the reference
model, make up the checking code for the CLK chip’
environment. Checking is based on self-checking commands
and is implemented via message passing.

The following example illustrates this checking strategy:
for the case “Write command to register #1 of the sense
control engine in the local book via processor #4,” it
begins with the CSE driver #4 sending the command over
its CSE bus. The corresponding CSE monitor reads the
data and starts the protocol checking, which will finish on
completion of the command or in case of an error. While
the CSE bus is being monitored, a message is assembled
that comprises information on the source processor,
target engine, target book, data, etc.; this message is sent
forward to the CSE interface. The CSE interface checks
its content, i.e., for a valid target engine. If this check is
successful, it forwards the message to the reference model.
Within the reference model, the message is associated
with the corresponding engine, register #1 is updated in
the reference model, and further actions are triggered if
needed. On completion of these actions, a message is sent
back to the CSE monitor via the same path. The CSE
monitor then compares the predicted result to the
response from the hardware model.

Hardware/firmware co-simulation

Acceleration environment

The terms hardware/firmware (HW/FW) co-simulation and
VPO imply that this activity begins before real hardware is
available [7, 8]. To be successful, the VPO concept requires
all firmware for the initial bringup to be available and
simulated by the time at which hardware design is

fixed. This concept was enhanced for the z990 system
design cycle by moving the VPO start date earlier, before
hardware design is fixed, making available more time for
“pre-silicon” co-simulation test activities. The difficulty

in following this strategy is that during this time models

7 Some checking is done by the test-case manager, as was previously explained.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Test-case manager

Generator Resource management

Dispatcher/sequence checkers

R CSE R CSE
sequence sequence
driver driver
CSE CSE
driver driver

_C> _C>

— 2-4)
CSE interface
2l SSI T
sequence | e o || Reference 8
driver & || model of || £
" g engines %
S — ||
SSI SSI 172} Sense/ 8
SEERETES | | e 21| control ||| 2
driver — | & @
. Y
. Q
. 8
@ 5

From
monitor

Random CLK chip simulation environment.

traditionally change very frequently and are too unstable
for meaningful co-simulation. Therefore, a VPO model
snapshot process was invented to closely control the model
definition and its associated data files that describe
clocking and initialization. Further, the accelerator of
choice continues to be the Cadence CoBALT** Ultra
system, because it has the performance and capacity
necessary to handle very large zSeries models. However,
since a fully configured 12-processor book cannot be built
and loaded into the CoBALT Ultra accelerator, tradeoffs
were made by deleting noncritical chips for the mainline
IML path. The model most frequently used during the
VPO of the latest zSeries 990 system comprised one
processor chip with two cores, the memory subsystem

for one book, one I/O adapter chip, and the CLK

chip.

To execute firmware against that hardware model, some
way of modeling the service control network is needed.
The simplest solution is to strip the service control
network down to just the service element, executing
the firmware code. The network itself is replaced by a
simulation-only software layer that connects the output 575

K.-D. SCHUBERT ET AL.

576

Service element Control workstation Hardware accelerator

Simulation-

Option 1
only

software
(option dep.)

Figure 7

Co-simulation environment: two options.

from the laptop to the correct interfaces in the hardware
model on the accelerator. Figure 7 shows the simulation
environment, which consists of the laptop running the
firmware, a workstation to host the special software layer
reusing components from other hardware simulation
activities, and the accelerator into which the hardware
model is loaded. The software layer establishes a socket
connection to the laptop, and any data traffic from the
laptop is translated into commands for a CLK chip
internal parallel bus [7, 9] by mimicking the function

of the replaced service control network. The serial SSI
interface that has been verified extensively during the
CLK chip verification is bypassed in this environment to
gain additional simulation speed.

With this setup, the service element code executes as
though it were targeting a real hardware z990 system. The
major differences between the service element running in
simulation and a connection to a real hardware system are
twofold. Many of the timeout settings must be modified
for simulation, since the responses in simulation take
significantly longer. In addition, all communication
between the service element and the power subsystem
must be handled within the firmware, emulating real
behavior to some extent.

The setup described thus far has been used for most of
the co-simulation activities. The environment is capable of
complete firmware-to-hardware model interaction, and it
has no constraints that would prevent it from running
through the complete IML sequence from step 2 to step
12. However, the IML is inherently a sequential process,
and simulating the whole sequence would take at least a
month of pure runtime, even on a hardware accelerator
capable of executing some 200,000 model cycles per
second.

K.-D. SCHUBERT ET AL.

Simulation of IML tasks

For all practical purposes it is not acceptable to have a
turnaround time of more than a couple of hours, since
debugging of problems becomes impossible otherwise.
Consequently, this environment is used only for those
parts of the IML process that cannot be verified
adequately by other means. This restricts the co-
simulation to IML steps 2 through 5, in which most of the
hardware/firmware interaction takes place. In addition,
some elements which require many simulation cycles can
be broken out of this process and verified in a standalone
manner. This allows us to break the sequential process of
IML into tasks that can be attacked in parallel, avoiding
delays when problems are gating progress. This is
important because the simulation has to be completed

by the time real hardware arrives on the test floor.

One of the first tasks to be performed is to prepare a
consistent system model state obtained from preceding
verification activities such as the CLK chip simulation and
CEC subsystem simulation. This shortcut approach does
not guarantee that the same initial state can be reached by
executing the code on the service element. However, it is
close enough to the real machine setup that all subsequent
activities behave in the same way as on a real system. This
initial state is the starting point for IML step 3 bypassing
the requirement to run IML step 2 and the complex
array reset process (ABIST reset) usually executed at the
beginning of step 3. Thus, using this shortcut method, the
verification of all IML step 3 activities can be started
immediately, without waiting for debugging of bypassed
functions, in effect parallelizing step 2 and step 3
debugging.

Since most of the individual steps have already been
verified in previous hardware or firmware verification
activities, this co-simulation environment finds the
problems at the interfaces or in transitions between
IML steps. For instance, a class of problems is found
when hardware initialization is completed and fast
communication between the firmware and the hardware
via the XMsg engine must be established. Another hot
spot is the engineering data, which describes the initial
values for all hardware registers. The data is provided
by the hardware design team and then processed and to
some extent interpreted by the firmware group. During
the initial scan operations, this data is shifted into the
registers. Since the shift process has been verified during
the CLK hardware verification, this typically exposes no
new problems. However, being able to shift data into
registers does not guarantee that the data values in the
registers are correct. As soon as the chip clocks are
started, any errors in this data will likely appear as errors
in the hardware, which will detect these inconsistencies
within the first few hundred cycles. Other areas in which

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

problems are found are the firmware sequences that
control the calibration of the elastic interfaces and also
the section that is responsible for initializing the memory
and performing the memory self-test. With the execution
of the code reset at the end of step 5, this activity is
completed.

In parallel with the simulation activity described thus
far, initialization shortcuts were used. However, processes
that were bypassed must be verified as well; one of these
is the array reset function. Starting from a state in which
the array state is all zeros and only a minimal amount of
surrounding control logic is set up, array built-in self-test
(ABIST) [10] reset procedures are executed. After this
process is completed, the array state is verified; it should
yield the same state as the shortcut procedures started
within IML step 3, proving those assumptions that led to
the shortcut in the original task.

Another activity is the verification of IML step 3 to step 5
with I/O chips. These I/O chips were initially left out of
the model in order to make the model smaller, thereby
improving the simulation performance. Also, since much
of the IML sequence is independent of these chips, any
problems with the engineering data of the I/O chips can
be corrected while making progress on the IML without
I/O. It is critical to have I/O chips in the model in IML
step 5, where the I/O hardware reset is executed and the
STI links are initialized.

The environment used for the IML co-simulation can
also be used to verify tools that are used later during
bringup as debugging aids. The tools are executed on
the service element and allow different types of accesses
to the hardware. They typically use scan operations to
read or write certain registers or complete arrays. Tools
requiring millicode routines to be executed on their behalf
cannot be started before the IML simulation has reached
a certain point in IML step 4. While tools verification
is often viewed as a side activity, its impact on bringup
and integration can be huge. Also, after they have been
successfully simulated, some of these tools have even been
used for debugging the IML co-simulation process itself.

Additional simulation environments

The requirements of multibook simulation are greater
than those of the tasks discussed previously. The models
are by nature at least twice as big, assuming a two-book
structure, which is an issue if acceleration capacity and
acceleration time are limited. In addition, the simulation
environment is more complex, since the simulation-only
software layer must handle two or more independent
communication streams. After setting up the environment
and finding some simple setup problems in the service
element, we terminated that activity, primarily because
almost all activities in IML steps 2 to 5 for multibook are
identical to those for a single-book IML. In addition, all

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

of the differences have already been verified in the CLK
multibook environments. Owing to limited accelerator
access, we stopped early in favor of the other activities
described in this paper. In hindsight, this was the correct
decision, because during system integration there were no
problems that could have been found in this environment.
The processes described thus far have used an
environment in which the complete service control
network between the service element and the CLK chip
has been replaced by a software layer for simulation
(Figure 7, option 1). However, the service control network
is not trivial, since it contains a few chips and executes a
significant amount of code as well. Therefore, in order
to increase the simulation coverage of the co-simulation
environment as discussed thus far, we decided to include
at least the code that is executed within the service
control network. Because the code can be executed in a
Linux environment, we added another component in our
environment, as pointed out in option 2 of Figure 7. On
one side, the Linux system is connected to the service
element, and on the other side to the simulation-only
software layer, which had to be slightly modified to
support this configuration. As a test case, the same
sequence of IML steps 3 to 5 was executed, focusing only
on problems in the firmware code that is executed on the
Linux system, since everything else had previously been
verified in the simpler environment.

Results

The first attempts to establish a VPO-like process and to
use hardware-firmware co-simulation for “virtual system
integration” or “pre-silicon” were made in 1998. Since
then, the process has been improved continuously in
zSeries systems. With the zSeries 990 eServer, a major
breakthrough in VPO simulation has been achieved. Most
of the activities planned up front have been successfully
co-simulated prior to real PON, many of them for the
first time ever (i.e., IML steps 4 and 5 with I/O chip and
bringup tools). The overlap among hardware verification,
firmware verification, and co-simulation has enabled a
very fast bringup of the simulated functions.

During the co-simulation activities after VPO, as
shown in Figure 8, a significant number of problems were
eliminated from the system. A total of 120 code problems,
seven hardware problems, and 91 problems in the
simulation environment were found. Hardware problems
found at this point, which is after tape-out (a point in
time at which the physical design layout is ready for
chip fabrication) cannot be fixed until the next tape-out;
however, it is important to state that the problems that
would have had a severe impact during system integration
were circumvented via firmware changes, and, more
significantly, the circumventions were verified prior to
PON. Thus, by identifying these verification problems and 577

K.-D. SCHUBERT ET AL.

578

140
) 120
120 B Firmware 115 1.18 1;9.
A Environment 106 @
100 O Hardware 100 B
290%™ 9090 9091
757673 B 4 A A|A A4
80 |- 71 73 A A A 89
6777 12 B <8586
636771 & § B g2
%?“l
60 |- 55 55
RN I
437 g ¥
40 262933360 a4 %2
§ A4
19202254268 B 3¢
1418 19] ‘
20 | 89 @
26‘ 45555666666667/7 77
o 1 & 1500000000000000 00
-5 0 5 10 15 20 25 30

Weeks from VPO

Co-simulation results.

installing firmware changes in the system driver, the VPO
process has significantly shortened the time required for
real system bringup. Also, if a severe gating problem was
found, weeks would be saved by immediately releasing an
emergency tape-out.

Instrumentation

PICOSIM environment

Thus far, this paper has described simulation activities
aimed at minimizing the IML bringup time. Since other
activities could benefit from similar work, it was logical to
extend the co-simulation environment discussed previously
in order to achieve additional simulation coverage. This
initiative has led to the development of the post-IML co-
simulation (PICOSIM) [11] environment, which encompasses
all CEC code (service element code, i390 code, and
millicode) and the hardware models that have already
been used for the co-simulation. PICOSIM allows the
verification of post-IML activities that would normally be
executed for the first time during bringup and system
integration.

It is very difficult to set up an environment that is
capable of modeling system functions after IML is
complete. This had been accomplished once, with the
simulation effort for the IBM Enterprise System/9000*,
but since the shift in technology to CMOS, this environment
has been dismantled [12]. One way to create such an
environment would be to run a “full” IML on the
system model; however, as already mentioned, this would
take an extremely long time even on a CoBALT Ultra

K.-D. SCHUBERT ET AL.

accelerator system. To overcome this problem, a process
has been developed by which z/CECSIM [5], a microcode
simulator that runs at zSeries speed, can be configured
to match the model in PICOSIM. To synchronize both
environments, the following four steps must be executed:

e Execute the IML.

The first step is to execute IML in z/CECSIM with

a configuration that corresponds to the one in the
PICOSIM environment. During the IML sequence,
millicode and 1390 code verify the hardware configuration
by assigning processor units (PUs), system assist processors
(SAPs), and channel path IDs (CHPIDs), and allocating

a section of memory to allow communication among
processors, 1390 code, and millicode subsystems (also
known as the hardware system area, or HSA). The
target configuration for post-IML verification for the
72990 was a 1+1, with one PU and one SAP, which was
the XSAP (Master). This configuration would match the
one-cycle model used that includes one PU chip (two
cores), one system control chip (SCC), four SCDs

(L2 cache chips), two memory storage controllers (MSCs),
a memory macro, a two-cycle MBA, an STI-M, and

a CLK chip.

Create a snapshot.

Second, a snapshot of all microarchitected facilities and
the associated data areas in memory is created from
z/CECSIM. In this particular application, after IML step
11 all of the programming model data for millicode and
1390 code is saved to a file in z/CECSIM. This includes
general-purpose registers, the processor recovery
hardware state, millicode registers, and timing facilities.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

The data that resides in memory HSA is also saved to a
file.
e Load the hardware model.
The model is pre-initialized with the data from the CEC
subsystem hardware simulation, ensuring a post-IML
clock running state for the hardware-only environment.
Then the hardware model initialization is updated with
this z/CECSIM snapshot of the associated ECC and
parity information saved in the earlier step.
Transfer the memory image into the hardware model.
By using the Memmove program (an IBM internal tool
used in verification environments to load and manage
the storage hierarchy), the large binary file, which
contains 120-150 MB of data, can be loaded into the
memory macro.

Upon completion of these steps, the clocks are started
and the instruction-fetch process begins, with each
hierarchy of cache requesting data from the level above it
until the data is found in memory. The instructions and
operand data are fetched and placed in the pipeline, and
instruction execution continues as usual. The millicode
and 390 code go to the idle loop routines until they
receive an outside stimulus such as a system restart [13];
the restart program status word (PSW) is then set up and
points to a small ESAME program or operating system
bootstrap routine. For the 2990 system, the instrumentation
millicode has been chosen as the first test case for this new
environment.

Verification of instrumentation

For the 2990, instrumentation millicode verification was
selected because it had tremendous potential for savings
by exploiting the PICOSIM environment. Instrumentation
is the mechanism used to measure the performance of the
IBM eServer z990 system. This is achieved by iterative
execution of instruction streams targeted to stress
particular hardware functions and to collect its
performance characteristics. The collection is done by
capturing selected signals and storing them in hardware
arrays within the processor. Each time the arrays are
filled, millicode routines are invoked to move the data
from the arrays to main memory. The data is later used
for the analysis of important metrics such as CPI (cycles
per instruction), cache misses, and pipeline stalls.

Since instrumentation is for internal use only, it has
little dedicated hardware. Because the hardware arrays
that are used to collect the instrumentation data require
significant real estate on the chip, they are shared with
another function. Since the arrays are normally used to
collect debugging trace data, no debugging traces can be
obtained while in instrumentation mode. For this reason,
instrumentation is extremely difficult to debug.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Historically, instrumentation has suffered from a lack of
conventional debugging and verification tools, exacerbated
by complex code and hardware interactions. Therefore, on
previous projects this function could be tested only by
using real hardware, because conventional firmware
verification environments do not include support for
the instrumentation hardware.

The comprehensive PICOSIM environment currently
provides the capability to stress the complex interactions
among hardware, 1390 code, and millicode, since the
model contains the logic design, including the special
instrumentation hardware as well as the post-IML
checkpoint from z/CECSIM. In addition to being
comprehensive, the PICOSIM environment, like any
simulation environment, is dynamic and flexible. It allows
hardware facilities and storage locations to be viewed and
altered during test-case execution. In contrast to execution
on real hardware, new test cases can be loaded into
storage without bringing the environment down, and local
fixes in the millicode can be applied, using z/CECSIM,
without generating a new image.

While debugging of the environment has been
performed on a software simulator, the environment can
easily be moved to hardware accelerators to gain the
required speed as soon as extensive simulation runs are
required. Verification using the PICOSIM environment
uncovered numerous bugs in millicode, 1390 code, and the
hardware for this system. As a result, the bringup time for
the instrumentation function has been reduced from nearly
three months on the predecessor system to only two and
a half weeks.

Future work

The environments that have been described thus far have
pushed the limits of simulation further out. The approach
of moving activities that have traditionally been executed
during system integration into simulation and, within
simulation, into the smallest possible environment has
proven to be successful. As the complexity of future
systems increases, more work must be moved into
simulation just to maintain the project cycle at

current levels. Targets for simulation, such as IML and
instrumentation, which have a high potential for savings
in bringup, have already been covered. However, the
investment required for this effort can now be directed to
address other scenarios with much less effort but sufficient
potential.

I/O-related operations are certainly a good example of
the requirement for future enhancements. Another area
that is already under investigation involves bringup tools
of all types. While a few bringup tools have already been
verified, the verification of additional ones would make a
difference during bringup as well. To mention another

K.-D. SCHUBERT ET AL.

579

580

example, error path testing has been under examination
for some time now, and may be feasible with current
environments.

To free the required resources for addressing the
items mentioned above, it is critical to improve the
handling and efficiency of the environments. This can be
achieved by tool improvements such as more automation
and faster turnaround time, by verifying certain functions
in simpler environments, or even by changing the design
to minimize simulation requirements. This would be the
ultimate extension of the strategy presented here.

Conclusion

In this paper we present a new strategy that bridges
hardware and firmware verification with the goal of
optimizing system integration. The effort was driven by
the need to save time, reduce development cost, and
enhance product quality. Through analysis of our existing
simulation environments, enhancements were identified
and implemented. All hardware and firmware components
can now be covered in the same environment; to achieve
a high overall efficiency, certain verification pieces

have been moved into the smallest and therefore least
expensive environment possible. Only minimal overlap
has been retained to ensure coverage of the boundaries
between simulation environments.

This new strategy has been successfully implemented
and executed for the eServer z990. The combined effort of
the entire development team has resulted in a significant
improvement with regard to system integration time. A
reduction of about eight weeks was achieved compared
with the original system integration plan based on data
and experience from previous projects. Simulation
efforts using PICOSIM have resulted in similar time
savings, especially when subsequent chip tape-outs are
required, because sufficient feedback from performance
measurements is available much earlier, so that these
tape-outs can take place earlier and with greater
confidence of reaching customer quality.

IBM’s investment in hardware/firmware co-simulation
is significant, but well compensated by the result of time
saving and reduction in engineering hardware required for
bringup. Also, a substantial portion of the investment was
spent on accelerator hardware that will be reused in
future projects.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or
Cadence Design Systems, Inc.

References

1. F. Baitinger, H. Elfering, G. Kreissig, D. Metz, J.
Saalmueller, and F. Scholz, “System Control Structure of

K.-D. SCHUBERT ET AL.

the IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5,
523-535 (July/September 2002).

2. P. Mak, M. A. Blake, C. C. Jones, G. E. Strait, and P. R.
Turgeon, “Shared-Cache Clusters in a System with a Fully
Shared Memory,” IBM J. Res. & Dev. 41, No. 4/5, 429-
448 (July/September 1997).

3. P. Mak, G. E. Strait, M. A. Blake, K. W. Kark, V. K.
Papazova, A. E. Seigler, G. A. Van Huben, L. Wang, and
G. C. Wellwood, “Processor Subsystem Interconnect
Architecture for a Large Symmetric Multiprocessing
System,” IBM J. Res. & Dev. 48, No. 3/4, 323-337
(May/July 2004, this issue).

4. M. Stetter, J. von Buttlar, D. Chan, D. Decker, H.
Elfering, P. Gioquindo, T. Hess, S. Koerner, A. Kohler,
H. Lindner, K. Petri, and M. Zee, “IBM eServer 2990
Improvements in Firmware Simulation,” IBM J. Res. &
Dev. 48, No. 3/4, 583-594 (May/July 2004, this issue).

5. J. von Buttlar, H. Bohm, R. Ernst, A. Horsch, A. Kohler,
H. Schein, M. Stetter, and K. Theurich, “z/CECSIM: An
Efficient and Comprehensive Microcode Simulator for the
IBM eServer z900,” IBM J. Res. & Dev. 46, No. 4/5, 607—
615 (July/September 2002).

6. G. Doettling, K. J. Getzlaff, B. Leppla, W. Lipponer,

T. Pflueger, T. Schlipf, D. Schmunkamp, and U. Wille,
“S/390 Parallel Enterprise Server Generation 3:

A Balanced System and Cache Structure,” /BM J.

Res. & Dev. 41, No. 4/5, 405-428 (July/September 1997).

7. S. Koerner, M. Kuenzel, and E. C. McCain, “IBM eServer
2900 System Microcode Verification by Simulation: The
Virtual Power-On Process,” IBM J. Res. & Dev. 46, No.
4/5, 587-595 (July/September 2002).

8. J. Kayser, S. Koerner, and K.-D. Schubert, “Hyper-
Acceleration and HW/SW Co-Verification as an Essential
Part of IBM eServer z900 Verification,” IBM J. Res. &
Dev. 46, No. 4/5, 597-605 (July/September 2002).

9. S. Koerner and S. M. Licker, “Run-Control and Service
Element Code Simulation for the S/390 Microprocessor,”
IBM J. Res. & Dev. 41, No. 4/5, 577-580 (July/September
1997).

10. Gary A. Van Huben, “The Role of Two-Cycle Simulation
in the S/390 Verification Process,” IBM J. Res. & Dev. 41,
No. 4/5, 593-599 (July/September 1997).

11. E. C. McCain, “Post Initial Microcode Load Co-
Simulation Method System, and Program Product,” U.S.
Patent Reference No. POU920040001US1, filed May 11,
2004.

12. D. F. Ackerman, M. H. Decker, J. J. Gosselin, K. M.
Lasko, M. P. Mullen, R. E. Rosa, E. V. Valera, and B.
Wile, “Simulation of IBM Enterprise System/9000 Models
820 and 900,” IBM J. Res. & Dev. 36, No. 4, 751-764 (July
1992).

13. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

Received September 18, 2003; accepted for publication
March 2, 2004, Internet publication May 27, 2004

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Klaus-Dieter Schubert [BM Systems and Technology
Group, IBM Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (kdschube@de.ibm.com). Mr.
Schubert is a Senior Technical Staff Member in the Hardware
Development organization in the Boeblingen laboratories. He
received his M.S. degree in electrical engineering in 1990
from Stuttgart University (Germany). He subsequently joined
IBM in Boeblingen and has been responsible for hardware
verification of multiple S/390 systems. He was the technical
leader for hardware verification of the z900 2064 system and
is currently responsible for system verification, including the
VPO activities for all eServers including the z990 system. Mr.
Schubert is the author of three patents; he has received two
IBM Outstanding Technical Achievement Awards for his work
on zSeries verification.

Edward C. McCain IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(mccain@us.ibm.com). Mr. McCain is currently a Senior
Verification Engineer, team leader for the design of
PICOSIM, 2990 bringup and development function verification
leader, and team leader for the S/390 emulation program. He
joined IBM in 1982 and has worked on engineering systems
testing for the IBM 308X, 3090, ES/9000, and the S/390 G3,
G4, G5, and G6. He has received a Leadership Award for his
work on PR/SM and MPG, a Division Award for his work on
the ES/9000, Excellence Awards for his work on S/390 Parallel
Sysplex EDVT testing, S/390 G4 functional test leadership,
and S/390 G6 EST project leadership, and two IBM
Outstanding Technical Achievement Awards for his work

on zSeries 900 and 990 verification, virtual power-on,

and bringup.

Hermann Pape IBM Systems and Technology Group, IBM
Entwicklung GmbH, Schoenaicherstrasse 220, 71032 Boeblingen,
Germany (hpape@de.ibm.com). Mr. Pape received his M.S.
degree in electrical engineering in 1983 from the University
of Siegen (Germany). In 1984, as a microcode development
engineer, he joined IBM Finance Systems, where he was the
microcode project leader for the IBM 4725 Statement Printer.
In 1996, he joined the zSeries hardware development group.
Mr. Pape was certified as a Project Management Professional
(PMP) by the Project Management Institute (PMI®) in 1999;
he has since worked with the zSeries system simulation group
and is currently the team leader for hardware/firmware co-
simulation efforts during the VPO phase.

Karin Rebmann IBM Systems and Technology Group, IBM
Entwicklung GmbH, Schoenaicherstrasse 220, 71032 Boeblingen,
Germany (krebmann@de.ibm.com). Mrs. Rebmann is a Staff
verification engineer in the zSeries hardware development
group. She received an M.S. degree in medical computer
science from the University of Heidelberg in 1982, joining

the IBM Development Laboratories that same year. Mrs.
Rebmann holds one verification patent and has been the
team leader for zSeries CLK chip verification since 1998.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Patrick M. West 1BM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(pmwest@us.ibm.com). Mr. West is currently a millicode
design engineer for zSeries servers. He joined IBM in
June 2001 after completing his B.S. degree in electrical
and computer engineering at Rutgers University.

Ralf Winkelmann IBM Systems and Technology Group,
IBM Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (rwinkel@de.ibm.com). Dr. Winkelmann
is a verification engineer in the Hardware Development
organization in the Boeblingen laboratory. He studied
computer science at the University of Applied Sciences
Braunschweig/Wolfenbiittel, Germany, and received his
diploma in 1994. In 1999 he received his Ph.D. degree

from the University of Greenwich, London, UK. Since

2001 he has worked for IBM in hardware verification.

K.-D. SCHUBERT ET AL.

581

