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Good performance monitoring is the basis of modern performance
analysis tools for application optimization. We are providing a
variety of such performance analysis tools for the new Blue
Genet/L supercomputer. Those tools can be divided into two
categories: single-node performance tools and multinode
performance tools. From a single-node perspective, we provide
standard interfaces and libraries, such as PAPI and libHPM,
that provide access to the hardware performance counters for
applications running on the Blue Gene/L compute nodes. From a
multinode perspective, we focus on tools that analyze Message
Passing Interface (MPI) behavior. Those tools work by first
collecting message-passing trace data when a program runs. The
trace data is then used by graphical interface tools that analyze the
behavior of applications. Using the current prototype tools, we
demonstrate their usefulness and applicability with case studies
of application optimization.

Introduction
The Blue Gene*/L (BG/L) supercomputer is a new

massively parallel system being developed by IBM

in partnership with Lawrence Livermore National

Laboratory (LLNL). BG/L uses system-on-a-chip (SoC)

integration [1] and a highly scalable architecture [2] to

assemble 65,536 dual-processor compute nodes. When

operating at its target frequency of 700 MHz, BG/L will

deliver 180 or 360 teraflops of peak computing power,

depending on its mode of operation.

Each BG/L compute node can address only its

local memory, making message passing the natural

programming model for the machine. This paper discusses

the current ongoing work on performance analysis

tools to support the analysis of the execution of

programs in BG/L. We are currently developing

and porting such tools, and, at the same time,

helping application programmers to port their

applications to BG/L.

This paper is organized as follows: We first present a

discussion of BG/L hardware, followed by a description

of the implementation of the Message Passing Interface

(MPI) communication library for this machine. The

performance analysis tools on which we are working are

introduced, followed by descriptions of the experiences

and lessons learned after using our tools in a set of

experiments with microbenchmarks and real applications.

Related work is briefly described, and conclusions drawn.

A short discussion of Blue Gene/L hardware
The Blue Gene/L hardware [2] and system software [3, 4]

have been extensively described elsewhere. In this section,

we remind the reader of the hardware features most

relevant to the discussion to follow.

Blue Gene/L processors: The 65,536 compute nodes of

BG/L are based on a custom SoC design that integrates

embedded low-power processors, high-performance

network interfaces, and embedded memory. The low-

power characteristics of this architecture permit very

dense packaging. One air-cooled BG/L rack contains

1,024 compute nodes (2,048 processors) with a peak

performance of 5.7 teraflops.

The BG/L chip incorporates two standard 32-bit

embedded IBM PowerPC* 440 (PPC440) processors with

private L1 instruction and data caches, a small (2-KB) L2

cache and prefetch buffer, and 4 MB of embedded

dynamic random access memory (DRAM), which can

be partitioned between shared L3 cache and directly

addressable memory. A compute node also incorporates

512 MB of double-data-rate (DDR) memory.

Cache coherency: The standard PPC440 cores are not

designed to support multiprocessor architectures: The L1
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caches are not coherent, and the processor does not

implement atomic memory operations. Software must

take great care to ensure that coherency is correctly

handled at the granularity of the L1 cache lines of the

central processing units (CPUs)—32 bytes. This means

that objects not delimited by 32-byte boundaries cannot

be shared by the CPUs. To mitigate these limitations,

BG/L provides a variety of custom synchronization

devices in the chip, such as the lockbox (a limited number

of memory locations for fast atomic test-and-sets and

barriers) and 16 KB of shared static random access

memory (SRAM).

Floating point: Each processor is augmented with a dual

floating-point unit (FPU) consisting of two 64-bit

floating-point units operating in parallel (termed a double-

hummer FPU). The dual FPU contains two 323 64-bit

register files and is capable of dispatching two fused

multiply–adds in every cycle, i.e., 2.8 Gflops per node

at the 700-MHz target frequency. When both cores are

used, the peak performance is doubled to 5.6 Gflops.

The torus network: The torus network is the main

network for user communication. Each compute node is

connected to its six neighbors through bidirectional links.

The 64 racks in the full BG/L system form a 643 323 32

three-dimensional torus. The network hardware

guarantees reliable, deadlock-free delivery of variable-

length packets. Routing is done on an individual basis

using one of two routing strategies: a deterministic

routing algorithm, whereby all packets between two

nodes follow the same path along the x, y, z dimensions

(in this order); and a minimal adaptive routing algorithm

that permits better link utilization but allows consecutive

packets to arrive at the destination out of order.

Network efficiency: The torus packet length is between

32 and 256 bytes in multiples of 32. The first 16 bytes of

every packet contain destination, routing, and software

header information. Therefore, at most, 240 bytes of each

packet can be used as payload. For every 256 bytes

injected into the torus, 14 additional bytes traverse

the wire with cyclic redundancy checks (CRCs), etc.

Thus, the efficiency of the torus network is at most

g = 240/270 = 89%.

Link bandwidth: Each link delivers two bits of

raw data per CPU cycle (0.25 bytes per cycle), or

g3 0.25 = 0.22 bytes per cycle of payload data.

This translates into 154 MB/s/link at the target

700-MHz frequency.

Per-node bandwidth: Adding up the raw bandwidth of

the six incoming and six outgoing links on each node, we

obtain 123 0.25 = 3 bytes per cycle per node. The

corresponding bidirectional payload bandwidth is

2.64 bytes per cycle per node.

Network reliability: The network guarantees reliable

packet delivery. In any given link, it resends packets with

errors, as detected by the CRC. Irreversible packet losses

are considered catastrophic and stop the machine. The

communication library considers the machine to be

completely reliable.

Network ordering semantics: Adaptively routed

network packets may arrive out of order, forcing the

message layer to reorder them before delivery. Packet

reordering is expensive because it involves memory copies

and requires packets to carry additional sequence and

offset information. On the other hand, deterministic

routing leads to more network congestion and increased

message latency, even on lightly used networks.

CPU/network interface: The torus network is mapped

into user-space memory. Packets are read and written

with the special 16-byte single-instruction multiple-data

(SIMD) load-and-store instructions of the custom FPUs.

These require that memory accesses be aligned to a

16-byte boundary. The communication software does

not have control over the alignment of user buffers.

In addition, the sending and receiving buffer areas

can be aligned at different boundaries, forcing packet

realignment through memory-to-memory copies.

Hardware performance counters: The CPU core used

in the system has no hardware performance analysis

capabilities. Instead, performance counters have been

implemented as a separate unit of the die, the universal

performance counter (UPC) unit. Further, the double-

hummer FPU has its own performance counters. As a

consequence of the design, hardware performance

counters are available for a large number of events,

with the exception of events internal to the CPU cores.

The UPC unit consists of 16 control registers used

to manage the behavior of 48 32-bit counter registers.

In total, 311 UPC events are available, exposing the

behavior of all aspects of the BG/L die outside the CPU

cores. This includes the prefetch unit, the L3 cache

controller, and the collective and the torus network

controllers. Additionally, one control register in each of

the double-hummer units manages two counter registers

for events related to this unit. Finally, a 64-bit timestamp

register is available. The timestamp register can be read

by user-level code, while the UPC and FPU registers

are available only in privileged mode.

The UPCs can be individually controlled to count the

rising or falling edge of an event, or the duration (in CPU

cycles) of an event state being either active or inactive.

The UPC counters can individually be set to generate

interrupts on user-selectable count thresholds. The FPU

counters are divided into one floating-point arithmetic

operation counter and one load/store counter. Each FPU

counter is user-programmable to count the occurrence of

a subset of operations, such as, for example, arithmetic

trinary operations and quadword stores.
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Architecture of Blue Gene/L MPI
The BG/L MPI is an optimized port of the MPICH2 [5]

library, an MPI library designed with scalability and

portability in mind. Figure 1 shows two components of

the MPICH2 architecture: message passing and process

management. MPI process management in BG/L is

implemented using system software services. We present

the architecture of the message-passing component as it

is relevant to the performance analysis tools.

The upper layers of the message-passing functionality

are implemented by MPICH2 code. MPICH2 provides

the implementation of point-to-point messages, intrinsic

and user-defined data types, communicators, and

collective operations, and it interfaces with the lower

layers of the implementation through the Abstract Device

Interface Version 3 (ADI3) layer [6]. The ADI3 layer

consists of a set of data structures and functions that have

to be provided by the implementation. In BG/L, the

ADI3 layer is implemented using the BG/L message layer,

which in turn uses the BG/L packet layer.

ADI layer

The ADI layer is described in terms of MPI requests

(messages) and functions to send, receive, and manipulate

these requests. The BG/L implementation of ADI3 is

called bgltorus. It implements MPI requests in terms of

message-layer messages, assigning one message to every

MPI request. Message-layer messages operate through

callbacks. Messages corresponding to send requests are

posted in a send queue. When a message transmission

is finished, a callback is used to inform the sender.

Correspondingly, there are callbacks on the receive side

to signal the arrival of new messages. The callbacks

match incoming message-layer messages to the

list of MPI posted and unexpected requests. This

implementation is the equivalent for BG/L to that usually

implemented in CH3 over sockets in Transmission

Control Protocol/Internet Protocol (TCP/IP) networks.

BG/L message layer

The BG/L message layer is an active message system

[7–10] that implements the transport of arbitrarily

sized messages between compute nodes using the torus

network. It can also broadcast data using special torus

packets that are deposited on every node along the route

they take. The message layer breaks messages into fixed-

size packets and uses the packet layer to send and receive

the individual packets. At the destination, the packets

may arrive out of order, and the message layer is

responsible for reassembling them into a message.

The software structure of the message layer is shown

in Figure 2.

The message layer addresses nodes using the equivalent

of MPI_COMM_WORLD ranks. Internally, it translates these

ranks into physical torus x, y, z coordinates, which are

used by the packet layer. The mapping of ranks to torus

coordinates is programmable by the user and can be used

to optimize application performance by choosing a

mapping that supports the logical communication

topology of the application.

Message transmission in the message layer is

implemented using one of multiple available

Figure 1

Blue Gene/L MPI software architecture. (GI � global interrupt; 
CIO � Control and I/O Protocol. CH3 is defined as the primary 
device distributed with MPICH2 for communication; MPD � 
multipurpose daemon.)
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communication protocols, roughly corresponding

to the protocols present in more conventional MPI

implementations, such as the eager and rendezvous

protocols.

The message layer is able to handle arbitrary

collections of data, including noncontiguous data

descriptors described by MPICH2 data loops. The

message layer incorporates a number of complex data

packetizers and unpacketizers that satisfy the multiple

requirements of 16-byte aligned access to the torus,

arbitrary data layouts, and zero-copy operations.

Packet layer

The packet layer is a very thin stateless layer of software

that simplifies access to the BG/L network hardware.

It provides functions to read and write the torus and

collective hardware, as well as to poll the state of the

network. Torus packets typically consist of 240 bytes of

payload and 16 bytes of header information. Collective

packets consist of 256 bytes of data and a separate 32-bit

header. To help the message layer implement zero-

copy messaging protocols, the packet layer provides

convenience functions that allow software to ‘‘peek’’ at

the header of an incoming packet without incurring the

expense of unloading the whole packet from the network.

PMI component

The Process Management Interface (PMI) component for

process management is also implemented on top of the

bgltorus in BG/L. In this case, the bgltorus component

provides the capability to load the application from the

input/output (I/O) nodes into the compute nodes using

the Control and I/O (CIO) Protocol over the collective

network.

Performance analysis tools for BG/L
Several parallel applications are currently being ported

to BG/L; in the near future, the performance of these

applications running on BG/L will require analysis [11].

HPM

We ported libHPM [12, 13] to run on the BG/L system

simulator (BGLsim; see the next section). This port was

done by extending the library to use the BGLcounters

application program interface (API), adding support for

new hardware counters and derived metrics that are

related to the BG/L architecture, such as the two-element

vector FPU, and by exploiting the possibility of counting

both at user mode and at supervisor mode during the

same execution of the program.

BGLsim

We have used a pseudo cycle-accurate simulator based on

BGLsim, an architecturally accurate complete system

simulator for parallel machines [13–15]. BGLsim exposes

all key features of the hardware, including processors,

FPUs, caches, memory, interconnection, and other

supporting devices. This approach allows the user to

run complete and unmodified code, from simple self-

contained executables to full Linux** images. The

simulator supports interaction mechanisms for inspecting

detailed machine state, thus providing monitoring

capabilities beyond what is possible with real hardware.

BGLsim was developed primarily to support the

development of system software and application code

in advance of hardware availability. It can simulate

multinode BG/L machines, but we restrict our discussion

in this paper to the simulation of a single BG/L node

system.

The BG/L pseudo cycle-accurate simulator [15] offers

higher performance than traditional cycle-accurate

simulators. Our model runs 100 to 1,000 times faster than

a cycle-accurate simulator. The idea behind the pseudo

cycle-accurate simulator is to attribute timestamps for all

relevant processor resources (such as registers, internal

pipelines, FPUs, memory subsystem, etc.); the model

checks all of the operand dependencies, updating the

corresponding timestamps. Although this is not 100%

accurate because the queuing effects on memory buses are

ignored, the obtained accuracy (error smaller than 15%

compared with the hardware) is enough to validate most

optimizations.

BGLperfctr

The large number of available events in the BG/L CPU

design and the rather complex mapping of events onto

possible physical counters is handled through a user-

level API, BGLperfctr. This API includes a set of

predefined mnemonics for each available event and

provides the user with an abstraction of 52 counters,

unifying the UPC and FPU counters and extending

them to 64-bit counters.

Since the system design is based on a single active

thread per CPU, the bookkeeping of occupied compared

with free counter registers is all provided in this API. The

setup of the counters is transaction-based in that the user

registers a number of intended changes to the running

register configuration through the API. If no collisions

are detected, these changes are committed through a

separate call to the library, which finally results in a

kernel invocation in which the content in the affected

control registers is modified and the counters start

counting the desired events.

The API has full support for all capabilities of the UPC

counters and offers simplicity to the end user, such as

the ability to generate interrupts at an arbitrary count

threshold and find an appropriate free counter for each

user-selected event.
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PAPI

As most APIs intend to expose a maximum of capabilities

of the hardware counter design to the end user,

BGLperfctr has the disadvantage of being system-specific.

Writing application code that uses hardware counter

information is generally a highly nonportable task. The

high cost of maintaining such codes is addressed by

PAPI, the Performance counter API [16]. This

specification provides a platform-independent interface to

control and read hardware counters on a large variety of

platforms widespread in high-performance computing.

The API provides mechanisms for portably naming

commonly used events, setting up sets of events, and

starting, stopping, and reading these events. BG/L

provides a functional implementation of PAPI using the

BGLperfctr abstraction of events as its implementation

substrate.

An interesting aspect of the implementation of PAPI

on BG/L, when compared with other platforms, is the

large number of events unique to this particular system.

All 319 events defined on BG/L can be programmed using

PAPI through its so-called ‘‘native events’’ interface. In

the BG/L PAPI implementation, a native event is

described by its BGLperfctr mnemonic and a bit pattern

describing the counting behavior requested (rising edge,

falling edge, duration high, or duration low). To the

extent possible, existing BG/L hardware events have been

mapped to PAPI predefined event names. However,

several events typically available on other platforms are

not available in the BG/L hardware. These include events

related to the CPU core internals, such as instructions

completed, branch prediction information, and level 1

cache events. Although such events are technically

possible to count in the BG/L simulator framework [15],

the PAPI implementation of BG/L has not incorporated

such events into its event map.

Paraver

Paraver [17] is a parallel program visualization and

analysis tool that supports both shared and distributed

memory applications. Paraver has three major

components:

� Tracing facility: For MPI, a library called MPItrace

is used to collect traces of the application during

execution. This library intercepts the calls to the MPI

primitives and records events, generating a single file

for every process involved in the application. In

addition, this tool can collect hardware performance

counters that appear as Paraver events in the trace.
� Trace merger: The individual trace files are

then merged into a single Paraver trace file/

citeparavertrace, using the mpi2prv tool.

� Visualizer: Paraver traces are visualized using the

Paraver tool, which allows the visualization of the

information collected and derives new metrics from it.

The existing MPItrace package has been ported to the

BG/L. The package uses the PAPI interface to obtain

hardware counter values and emit them into the trace file.

Until now, work has focused on the basic functionality

of the tool and its use to understand the behavior of

different Linpack and MPI library implementations.

Scalability of the tool is one of the areas to which major

effort will be devoted in the future. As of this writing, we

have been able to obtain and analyze traces on up to

1,024 processors.

BGLnodes

We are developing a simple tool to display how a scalar

value varies over a BG/L partition. This tool is being fed

by a text file containing the coordinates of the BG/L

nodes and the value to be represented for each one.

Values are translated to colors, each color indicating

an intensity of the value. That way, it is very easy to

represent in three dimensions the values of various

performance counters or other metrics derived using

Paraver, showing where the hot spots are in the BG/L

partition.

Experiences and lessons learned

BGLsim

In this subsection, we present two different experiences

carried on the BGLsim simulator analyzing the

performance of the BG/L processors. These experiments

were executed in the simulator and in the first version of

the hardware chip, running at 500 MHz.

IS benchmark case study

In this case study, we present a performance improvement

made on the NASA Advanced Supercomputing (NAS)

Integer Sort (IS) Benchmark [18] (serial version, class S)

using our set of tools. The IS benchmark performs an

integer sort. The goal here was to find a bottleneck in

IS with enough resolution to enable optimizations

that would lead to performance improvements.

To find the bottleneck in the program, we started by

using the BG/L version of libHPM [13]. We reduced

the number of iterations in the benchmark to one and

instrumented the rank () function, which is called at each

pass of the loop, in order to decompose its effects on the

cycle count. We did this by inserting hpmStart () and

hpmStop () calls around each of the rank () regions to

identify which of them were the heaviest contributors. By

doing this, we identified that two particular regions of the

rank () function were responsible for 84% of the total
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number of cycles for that iteration. These regions were

the ‘‘copy keys into work array,’’ which is referred to as

loop 1, and the ‘‘count key population,’’ which is referred

to as loop 2.

Loop 1 has a simple operation in the form

for ( i ¼ 0; i , NUM_KEYS; iþþ )

key_buff2[i] ¼ key_array[i];

Loop 2, on the other hand, has a double-referenced

operation in the form

for ( i ¼ 0; i , NUM_KEYS; iþþ )

key_buff_ptr[key_buff2[i]]þþ;

For class S, NUM_KEYS is 216, which means that there

are 216 loads and as many stores in loop 1, which is

responsible for approximately 30% of the total number

of cycles of the whole iteration. Loop 2 performs two

loads and one store instruction and is responsible for

approximately 53% of the total number of cycles.

Knowing the total number of cycles required by one

loop to execute, we can estimate the number of cycles

consumed by each iteration. However, this is just an

average value, and we know that actual iterations may

vary from one another. To find out what was going on

inside these loops and to be able to optimize them, we

obtained an instruction-level trace of the execution that

shows every instruction performed by the CPU along

with its timestamp. From this trace, we obtained the

actual number of cycles each iteration of the loop takes

to run (Table 1).

It is clear that loop 1 has a very regular and predictable

behavior, taking 17 cycles at each iteration, with the

exception of the first iteration in each block of eight

iterations, where it takes 44 or 19 cycles. This can easily

be explained by the fact that the cache size for the BG/L

machine is 32 bytes, which means that eight integers fit

into one cache line. The first element to be loaded forces a

miss in the cache and takes a longer time, while the others

have a very predictable behavior. Note that even when a

miss occurs, the number of cycles it takes is not always

the same. This is due to the L2 prefetching that occurs

after the second L1 cache miss. The 19 cycles are

explained by a misprediction by the branch predictor; at

the last time the loop is executed, the branch is not taken,

which increases the instruction fetch latency by two

cycles.

Loop 2 has such an unpredictable behavior because it

makes a load using a random index to the key_buff_ptr

array, which is stored in the key_buff2 array. The next

index in the sequence (that is, the next value in the

key_buff2 array), is likely to be in cache. The next

element in the key_buff_ptr array, however, is not, due

to the inherent randomness of the index array. This leads

to a high cache-miss probability, which results in the

noticeably higher cycle times loop 2 takes at each

iteration.

It is possible to optimize this kind of memory access by

using an explicit prefetching technique that consists of

loading the next element of key_buff_ptr one iteration

before it is going to be used, therefore hiding its load

latency. We implemented this as

prefetch ¼ key_buff2[0];

for ( i ¼ 0; i , NUM_KEYS � 1; iþþ )f
index¼ prefetch;

prefetch ¼ key_buff2[i + 1];

key_buff_ptr[index]þþ;
g
index ¼ prefetch;

key_buff_ptr[index]þþ;

The results of this optimization can be seen clearly

in Table 2 and in Figure 3, where we observe that the

higher cycle-count spikes have disappeared and that a

lower baseline has been set. Furthermore, there was

considerable improvement in the IS benchmark overall

performance: The original main loop (one execution of

Table 2 Execution times for loop 2 iterations before and after optimization.

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Original 50 23 52 23 50 50 50 79 23 52 50 52 52 52 50 27 25 50 52 27 27 50 23 54

Optimized 50 21 48 21 48 50 50 48 21 48 50 50 50 25 48 21 48 50 48 23 50 23 21 50

Table 1 Loops 1 and 2 iteration execution times (cycles).

Iteration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Loop 1 44 17 17 17 17 17 17 17 44 17 17 17 17 17 17 17 19 17 17 17 17 17 17 17 19

Loop 2 79 50 23 52 23 50 50 50 79 23 52 50 52 52 52 50 27 25 50 52 27 27 50 23 54
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the rank function) took 0.007553 seconds to be executed,

while the optimized version executed in only 0.006233

seconds, an improvement of 17.5%. The total number of

Mops measured by IS also jumped from 25.78 to 31.12.

DGEMV case study

DGEMV is the name of a subroutine that performs the

matrix–vector operation y = a � A � xþb � y, where a and

b are scalars, x and y are vectors, and A is an M3 N

matrix. In this case study, we describe the optimization

process of this dense linear algebra kernel using the

BGLsim timing model as a performance-tuning tool. The

following example shows the optimization process of a

level 2 basic linear algebra software (BLAS) kernel, which

performs operations in the form y¼ yþATx, where y and

x are vectors and AT is a matrix; AT is the transposition of

A. The routines defined by BLAS are commonly called by

a wide range of scientific software and have become a

de facto standard for elementary linear algebra operations

[19]. Therefore, a high-performance implementation of

the BLAS kernels has been developed as part of the

math library that will be delivered with the BG/L

supercomputer.

As the main goal is to achieve the highest performance

in a single-processor computation, some of the BLAS

kernels are written in assembly language and then hand-

tuned such that an efficient pipelined execution is created

for the kernel. As we show here, the results produced by

the BGLsim timing model helped us identify inefficient

sequences of code that were leading to stalls in the

pipeline and consequently degrading the execution

performance. The simulator also gives us the total

number of cycles needed for the execution of a piece of

code under a specific workload. In the optimization

process, we change the scheduling of the instructions on

the basis of the information provided by the simulator

timing model. After the changes, the new version is tested

again, and a new output is generated. Therefore, each

consecutive version is improved on the basis of the time

information provided by the BGLsim.

The first version of the code was implemented and

executed in the simulator. The output produced by the

simulator gives pseudo cycle-accurate information on the

instructions issued. The output of the execution of the

code related to the inner loop of the DGEMV kernel is

shown in Figure 4. Every iteration of this loop computes

the product y[ j ] = y[ j ] þ A[i][ j ] � x[i] for every element

of an 83 2 block of elements of the matrix A. As seen

through the execution output, every iteration takes 12

cycles to complete. Therefore, the ratio of elements

computed to CPU cycles is 4/3. Moreover, the output of

the simulation tells us that every fused multiply–add

(FMA) instruction is paired with a load instruction;

consequently, both instructions are issued in the same

cycle. However, many cycles are spent with just a load

instruction being issued, which means that the

computation pipeline is idle in that cycle.

Considering the results of the first version of the code,

after collecting execution traces from the simulator with

the cycles for each instruction, we did some improvement

on the instruction scheduling to reduce the bubbles on the

pipeline. This yielded Version 2, and we repeated the

same process testing different instruction schedules until

the final version was produced.

Figure 3

Loop 2 execution times before and after optimization.
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Figure 4

Cycles of the inner loop in the initial implementation of the DGEMV 
kernel.

Inst Cycle PC       Opcode   Decoded Instruction
1936 7586  00100EF0 7dce8bdc lfpdux f14, r14, r17
1937 7586  00100EF4 01705de6 fxcsmadd f11, f16, f11, f23
1938 7587  00100EF8 7e5093dc lfpdux f18, r16, r18
1939 7588  00100EFC 7e7093dc lfpdux f19, r16, r18
1940 7588  00100F00 01916624 fxcpmadd f12, f17, f12, f24
1941 7589  00100F04 7dee8bdc fpdux f15, r14, r17
1942 7589  00100F08 01b16e66 fxcsmadd f13, f17, f13, f25
1943 7590  00100F0C 7e9093dc lfpdux f20, r16, r18
1944 7591  00100F10 7eb093dc lfpdux f21, r16, r18
1945 7591  00100F14 014e54a4 fxcpmadd f10, f14, f10, f18
1946 7592  00100F18 7e0e8bdc lfpdux f16, r14, r17
1947 7592  00100F1C 016e5ce6 fxcsmadd f11, f14, f11, f19
1948 7594  00100F20 7ed093dc lfpdux f22, r16, r18
1949 7595  00100F24 7ef093dc lfpdux f23, r16, r18
1950 7595  00100F28 018f6524 fxcpmadd f12, f15, f12, f20
1951 7596  00100F2C 7e2e8bdc lfpdux f17, r14, r17
1952 7596  00100F30 01af6d66 fxcsmadd f13, f15, f13, f21
1953 7597  00100F34 7f1093dc lfpdux f24, r16, r18
1954 7598  00100F38 7f3093dc lfpdux f25, r16, r18
1955 7598  00100F3C 015055a4 fxcpmadd f10, f16, f10, f22 
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The output of the inner loop of the latest version is

shown in Figure 5. In this loop the product is computed

for a 23 14 block of elements of the matrix A in each

iteration, and the ratio of elements computed to CPU

cycles is 28/15, which gives us a better utilization of

the instruction pipeline. Moreover, more FMAs are

interleaved with load instructions, which translates to a

better use of processor resources, keeping the pipeline

busy most of the time.

Figures 6(a) and 6(b) respectively show the running

times for different versions of a DGEMV kernel as run

on hardware and as predicted through BGLsim. The

DGEMV kernel has been optimized for best performance

considering that the data is already in the L1 cache. As

the plot shows, the better the instruction scheduling, the

faster the kernel execution for a given workload. For both

experiments, similar performance trends are observed as

the DGEMV is improved. Hence, we observe that by

using the BGLsim timing model, we were able to generate

a version of the DGEMV kernel optimized for execution

by the hardware. The BGLsim timing model does

particularly well when simulating straight-line code that

accesses primarily the L1 cache, as represented by the

code fragments in Figures 4 and 5. The maximum

discrepancy between simulation and hardware results that

we observe in Figures 6(a) and 6(b) is 7.5%. The accuracy

of the pseudo cycle-accurate timing model depends on the

access pattern and the number of misses at L1. That is the

reason why the different experiments have different

accuracy with respect to the hardware execution.

Detecting message-passing overhead

One of the characteristics of the BG/L supercomputer is

that it has a very fast network compared with the speed of

the processor. During the project, we have developed

some microbenchmarks to determine how much

information the processor can deal with in and out of the

network. Ideally, the processor should be able to manage

six incoming and six outgoing links. In a machine running

Figure 5

Cycles of the inner loop in the optimized implementation of the 
DGEMV kernel.

Inst Cycle PC       Opcode   Decoded Instruction
7430 2438  00100F24 7e6e8bdc lfpdux f19, r14, r17
7431 2439  00100F28 7cf09bdc lfpdux f7, r16, r19
7432 2439  00100F2C 00340b66 fxcsmadd f1, f20, f1, f13
7433 2440  00100F30 7d108bdc lfpdux f8, r16, r17
7434 2440  00100F34 005413a6 fxcsmadd f2, f20, f2, f14
7435 2441  00100F38 7d308bdc lfpdux f9, r16, r17
7436 2441  00100F3C 00741be6 fxcsmadd f3, f20, f3, f15
7437 2442  00100F40 7d508bdc lfpdux f10, r16, r17
7438 2442  00100F44 00942426 fxcsmadd f4, f20, f4, f16
7439 2443  00100F48 7d708bdc lfpdux f11, r16, r17
7440 2443  00100F4C 00b42c66 fxcsmadd f5, f20, f5, f17
7441 2444  00100F50 7d908bdc lfpdux f12, r16, r17
7442 2444  00100F54 00d434a6 fxcsmadd f6, f20, f6, f18
7443 2445  00100F58 7ed08bdc lfpdux f22, r16, r17
7444 2445  00100F5C 02b4ade6 fxcsmadd f21, f20, f21, f23
7445 2446  00100F60 02809840 fpmr f20, f0, f19
7446 2446  00100F64 7db09bdc lfpdux f13, r16, r19
7447 2447  00100F68 003309e4 fxcpmadd f1, f19, f1, f7
7448 2447  00100F6C 7dd08bdc lfpdux f14, r16, r17
7449 2448  00100F70 00531224 fxcpmadd f2, f19, f2, f8
7450 2448  00100F74 7df08bdc lfpdux f15, r16, r17
7451 2449  00100F78 00731a64 fxcpmadd f3, f19, f3, f9
7452 2449  00100F7C 7e108bdc lfpdux f16, r16, r17
7453 2450  00100F80 009322a4 fxcpmadd f4, f19, f4, f10
7454 2450  00100F84 7e308bdc lfpdux f17, r16, r17
7455 2451  00100F88 00b32ae4 fxcpmadd f5, f19, f5, f11
7456 2451  00100F8C 7e508bdc lfpdux f18, r16, r17
7457 2452  00100F90 00d33324 fxcpmadd f6, f19, f6, f12
7458 2452  00100F94 7ef08bdc lfpdux f23, r16, r17
7459 2453  00100F98 02b3ada4 fxcpmadd f21, f19, f21, f22

Figure 6

Running time of different versions of the DGEMV kernel on (a) 
BG/L hardware and (b) BG/L simulator.
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at 500 MHz, each link is able to sustain 110 MB/s, giving

each node the capacity to move a total of 1,320 MB/s.

We have instrumented one of these microbenchmarks

with Paraver and hardware counters. This section

presents the results of this study. The microbenchmark

first selects a node in the middle of the current BG/L

partition and its closest neighbors. It then starts a set of

iterations in which the number of senders and receivers is

increased. In each communication phase, 30 messages of

1 MB of data each are sent. For the analysis, we collected

the hardware performance counters which indicated that

a link in each direction was available but there were no

tokens available for the node to send. When this occurs,

the specific link is full, and the destination node is not

draining it at the proper speed to sustain the required

bandwidth.

The microbenchmark was executed in a 32-node

partition, in which any of the central nodes has up to

five neighbors. The top plot of Figure 7(a) presents the

behavior of the communication phases in which a single

node (node 22—the node number is the middle term in

the expression following ‘‘Thread’’) is receiving messages

from one to five nodes simultaneously. The plot in the

bottom shows the behavior of the counters indicating

network congestion. These counters are incremented

every cycle in which a network link is available but the

hardware has no token to send data. Not having a token

is usually caused by the fact that there are packets in

transit, and the destination node is not able to collect

them. As shown, the receiver (node 22) can deal with up

to three incoming links without experiencing network

congestion. As soon as a fourth sender becomes active, all

senders start seeing a lack of tokens; this is because the

receiver is not draining the links fast enough. Observe

also that, as the counter value becomes higher, the

execution time increases for these messages to be received.

That is the effect of the sender being blocked while

waiting for tokens.

Figure 7(b) shows the same information when, in

addition to receiving messages, node 22 also sends

messages to first one and then two destination nodes.

Observe that when there is a single destination node to

which node 22 is sending messages, node 22 is no longer

able to deal with three incoming links. A lack of tokens

appears first at nodes 6 and 18 and then later at nodes

23 and 26. Also observe that as soon as a node is busy

receiving messages, it no longer has sending problems due

to the lack of tokens. This is because it has to send more

slowly. This happens to node 18 in Figure 7(b) and also to

node 21, when the lower plots in Figures 7(a) and 7(b)

are compared.

Figure 7(c) presents the behavior of the

microbenchmark when the central node, in addition to

receiving messages, sends to three and four destination

Figure 7

Lack of sending tokens when (a) receiving from a different 
number of nodes; (b) receiving from many and sending to one 
and two nodes; and (c) receiving from many and sending to three 
and four nodes.

(a)

(b)

(c)
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nodes. Observe that in this case, the detection of a lack of

send tokens is reduced to nodes 23 and 26, which are the

ones not receiving messages. Any node receiving messages

is unable to deliver messages at enough speed to detect

the lack of tokens.

Analysis of the behavior of the message layer

We used the Paraver tool to evaluate different

implementation alternatives inside the MPI message

layer. In this experiment, we compared the performance

obtained using two possible implementations (developed

as prototypes) of the low-level message layer on which the

MPI implementation relies. The Linpack benchmark

indirectly uses this portion of the message layer through

the MPI library to implement a hand-coded version of the

broadcast collective. This hand-coded version of

broadcast performs better than the built-in MPI

broadcast using any of the implementations. Currently,

this broadcast is being implemented inside the MPI

library.

The difference between the two implementations was in

the way messages are sent:

� One message at a time (first in, first out, FIFO, mode):

Considering that each node has six connections to its

neighbors, the first implementation of the message

layer allowed sending up to six messages at a time

(one in each different direction). That way, the send

queues in the connection manager (see Figure 2)

contain a single outgoing message for each direction.
� Overlapping messages: We wanted to test whether

allowing several outgoing messages for the same

destination at the same time could improve

communication performance, so we developed a

version in which any outgoing message was

immediately posted to be delivered to the network. In

this case, packets are picked up in a round-robin

fashion from all available messages in each direction.

After implementing both of these ways of dealing with

messages, we evaluated the performance of the Linpack

benchmark in 32 nodes. Table 3 shows the results of the

comparison. We observed that the performance obtained

in this application was slightly worse with overlapping

messages. Using Paraver, we were able to look inside the

application and detect which part of it performed worse

and why.

Figure 8 shows the behavior of one of the broadcasts

that was hand-coded inside the Linpack benchmark using

point-to-point communications. As can be observed, the

transmission of the messages is different in the two

versions of the message layer. The plot on the left in

Figure 8 corresponds to the first version of the message

layer, which sends a single outgoing message in each

direction. The plot on the right corresponds to the

alternative implementation, in which several messages are

sent in a round-robin fashion to the same destination.

We can observe that in the plot on the left, the first

message sent from nodes 3, 11, 19, and 27 reaches the

destination earlier than that in the plot on the right. That

is precisely because each single-link bandwidth is devoted

to a single message. Instead, in the plot on the right, all

outgoing messages from these nodes are sent in parallel,

so the first and the last ones are complete at the

destination nearly at the same time. Because of the way

this broadcast is implemented, each destination node is

going to retransmit the information to other nodes. The

parallel implementation causes the retransmission of the

first messages to be delayed because of the late arrival,

and this causes the performance degradation. The actual

degradation of the broadcast code was 30%.

In conclusion, time-sharing the links between MPI

messages to the same destination results in all messages

taking about the same time to arrive at their destination.

Keeping a FIFO order in sending messages through the

link also has the potential to keep the link fully used, but

Table 3 Gigaflops obtained in Linpack with the two versions

of the message layer.

Problem size Single message Overlapping messages

10,240 50.43 49.31

15,360 68.41 66.69

20,480 78.38 76.68

29,696 89.25 87.07

Figure 8

Comparison of the behavior of two versions of the manual 
broadcast: (a) First version (single outgoing message sent in each 
direction). (b) Alternative version (several messages sent round- 
robin to the same destination).

(a) (b)

X. MARTORELL ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

416



results in some messages arriving earlier than others. In a

situation in which all of the messages are of similar length

and most of them have to be retransmitted, the version

that keeps the FIFO order has the potential for better

performance. In this case, retransmissions will start

earlier, increasing the number of simultaneously active

links. This is visible in Figure 9, which presents, at

the same timescale, a set of messages sent by node 3

and its retransmissions, clearly showing the benefits

of having the link dedicated to a single message at

a time.

The Paraver traces helped identify this issue and

provided a good understanding of its detailed impact

in this situation. Conceptually, in other situations with

messages of different sizes, the time-sharing version might

be advantageous, depending on what the application does

with different messages.

From the analysis of the traces, we also inferred some

suggestions to the application developer about the way

the broadcast is implemented. It might be useful, for

example, first to send and receive messages that have to

be retransmitted, and only at the end send messages that

constitute the leaves of the broadcast.

Another suggestion comes from the observation that

the broadcast is actually decomposed in four subtrees,

where the root of the broadcast pipelines the message to

the four roots of each subtree. Unfortunately, two of

those trees end up being assigned to the same physical

processor. In this case, the cause is that the neighbors in

the zþand z� directions are the same nodes. This is due to

Figure 9

Comparison of specific messages sent from node 3 in broadcast. (The node number is the middle term in the expression following 
“THREAD.”)
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the 43 43 2 topology in a partition containing 32 nodes.

A more balanced topology would probably result in

better performance.

A final observation is that the root of the broadcast

pipelines the messages to each subtree root, but it finishes

sending long before the end of the whole broadcast. This

suggests that imbalanced tree approaches, where the root

keeps transmitting during the whole operation, would

potentially improve the utilization of the links.

We were also interested in a more detailed analysis of

the FIFO version. Figure 10(a) shows a view in which the

effective cost of each MPI_Waitany call is reported in

MB/s. By effective cost, we mean the ratio between the

number of bytes received by the call and the time taken

for the wait to complete. For any MPI point-to-point call,

this local bandwidth is a fair metric of how efficient the

call has been in handling the data it had to deal with. The

view focuses on a few threads and a short period of time,

and a light green color represents 40 MB/s and dark blue

400 MB/s. Surprisingly, even if the size is the same for all

of them, different instances of the MPI_Waitany take

rather different amounts of time.

Figure 10(b) shows a histogram for the whole trace of

such effective cost. For each process (row), the column

represents a range of 10 MB/s (up to a total of 1,000

MB/s). The color of each entry corresponds to the total

number of times an MPI_Waitany call achieved the

particular local effective bandwidth. As can be seen, there

is a major mode around 100 MB/s that corresponds to the

link bandwidth. There are a significant number of

instances that achieve less than the link bandwidth.

Finally, it is interesting to see some instances achieving

close to a GB/s. Nevertheless, averaging over the whole

duration of a broadcast, each processor performs

MPI_Waitany calls at the rate of 100 MB/s. This value

is still far from the physical limits of the interconnect.

The interpretation for this behavior is related to the

fact that the data is sent to and drained from the network

interface by the main node processor through polling.

The processor becomes the bottleneck because it is not

Figure 10

(a) Cost of the MPI_Waitany calls in a section of the broadcast. (b) Histogram of the MPI_Waitany calls in a broadcast: yellow if less than 
five instances, a linear gradient from five instances (light green) to 80 instances (dark blue), and red if more than 80 instances.

(a)

(b)
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capable of feeding and draining the six I/O links at their

full speed. Additionally, there are issues related to how to

proceed if the processor is simultaneously sending one

message and receiving another. When, for example,

the reception is finalized, should control be returned

immediately to the user or should the transmission

be finalized? In both cases, somebody (the local or the

remote node) is going to be delayed. Independent direct

memory access (DMA) engines would certainly help here.

The extreme variation in bandwidth achieved by some

calls can be explained if we consider that several messages

may be arriving at a node simultaneously. If the node

cannot cope with it, the whole process is slowed down,

and the first reception to finalize perceives a low

bandwidth. By that time, it is quite possible that the next

incoming message has almost been received, so when the

next MPI_Waitany call is invoked, control returns very

soon, resulting in a huge local bandwidth perceived by

such a call.

Analysis of the behavior of Linpack broadcasts

Figure 11 shows a set of views of the communication

phase in a Linpack version that performs the broadcasts

directly through the MPI broadcast call. The run is for a

problem size of 40K on a 32-processor system. The

upper view displays the MPI call (yellow: broadcast; red:

barrier; blue: send; white: receive). In the second view,

we see those processors that are the root of a given

broadcast (the different colors represent the different

communicators). The third and fourth views are derived

from the hardware counter information emitted into the

trace at the entry and exit of each MPI call. The third

view is an estimate of the number of active links. Here,

the important issue is that during most of the broadcast

time, most nodes show only a single active link. Only

the root processors achieve two active links. During the

second broadcast region, which performs a column

broadcast in Linpack, some nodes achieve three

simultaneous active links (red). The fourth view is

the equivalent bandwidth going out of a node along

all links during the whole call. In accordance with the

third view, light green is the predominant color across

the first broadcast and large portions of the second.

This means that the bandwidth achieved is far from

the peak.

It is possible to compute a histogram of the bandwidth

used during the major broadcast with message sizes above

7 MB. From the analysis of that histogram, we can

see that the root processor achieves an effective total

bandwidth of the order of 117 MB/s, while most other

processors show either 78 MB/s or 39 MB/s.

Another capability of the tools environment is the

possibility of using the powerful metric derivation and

analysis capabilities of Paraver to generate the ASCII

data for a locally developed tool, BGLnodes (discussed

above). This tool displays a single scalar value for

each processor in the physical topology. Figures 12(a),

12(b), and 12(c) respectively show the bandwidth

obtained during the major broadcast, in the x, y,

and z dimensions.

Performance counter limitations

From the experience with the current chip

implementation of performance counters on BG/L, some

lessons can be learned. BG/L is a machine targeted to

address the grand challenges in high-performance

computing. These applications typically amount to a

large number of floating-point operations. In this context,

the capabilities of the double-hummer FPU performance

counters are limited. There is one counter in the FPU

capable of registering arithmetic events. This counter

counts operations that belong to any of the following

groups: additions and subtractions, multiplications and

divisions, trinary operations, and Oedipus operations.

The first three groups relate to single-pipe operations. The

trinary operations are operations of the form a 6 b � c.
This corresponds to two classical floating-point

operations. The Oedipus operations are trinary

operations that use both functional pipes in the FPU,

using up to six operands and producing two results

per instruction. Parallel single- and dual-operator

instructions (such as, for example, fpadd) do not map

into any of the countable groups of events. Thus, even

with repeated runs of the same code, it is not possible to

count the complete number of floating-point instructions

performed. For the same reason, it is not possible to

compute a corresponding number of floating-point

operations of an algorithm by using only the performance

counters.

End users doing advanced tuning of large applications

would most likely gain from a CPU core

implementation that incorporated a performance-

counter infrastructure. The most noticeable events that

are not possible to detect are issued loads and stores, L1

cache events, branch unit events (such as branches

correctly predicted compared with mispredicted

branches), and instruction issues. The impressive

performance available in modern CPU design is highly

dependent on the ability of the code developer and

compiler to generate instruction sequences in which

branch prediction is mostly correct and the instruction

cache hit ratio is maximized. Without hardware

performance counters capable of generating a view

inside the units of the core that control these aspects of

the CPU, the code developer has no accurate way to

determine success in fully utilizing the inherent

computational power of the platform.
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Related work

Vampir [20] is a commercial product for performance

analysis that allows tracing and analysis of MPI

applications. Several execution environments such as

ParaWise1 [21] provide an interface for generating

Vampir traces. Two research projects on performance

analysis are Paradyn** [22], developed at the University

of Wisconsin, and Aksum, part of the Askalon [23]

project conducted at the University of Vienna. Both aim

at the automatic detection of performance bottlenecks.

Tuning and Analysis Utilities (TAU) [24] was developed

at the University of Oregon. It is a set of tools for

analyzing the performance of C, Cþþ, Fortran, and
Java** programs.

The advantage offered by Paraver is a high level of

flexibility in computing performance indices and statistics.

This usually allows the exploration of metrics of interest

and the influence of the parallelization choices on them.

Figure 11

Representation of the execution of the Linpack broadcasts. The upper view displays the MPI call (yellow: broadcast; red: barrier; blue: 
send; white: receive). In the second view, the different colors represent the different communicators. The third view is an estimate of the 
number of active links (blue: 1; white: 2; red: 3). The fourth view is the equivalent bandwidth going out of a node along all links during the 
whole call (gradient from green to blue; dark blue: 200 MB/s).

1 Formerly known as CAPTools.
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Conclusions
In this paper, we have presented a set of tools devoted to

performance analysis of the Blue Gene/L supercomputer.

The tools in this set range from a hardware simulator and

low-level libraries to visualization and analysis tools.

They are currently being ported and adapted to the BG/L

environment, and should not be considered as finished

work. We have made initial explorations of the

possibilities this new architecture provides for

performance analysis.

BGLsim is a pseudo cycle-accurate simulator that

runs full-system simulations and provides monitoring

capabilities beyond the level possible with real hardware.

LibHPM, BGLperfctr, and PAPI are user-level

libraries capable of managing the hardware performance

counters available in BG/L and extracting information

during application runtime. The MPItrace library collects

traces during execution for later visualization and

analysis.

Paraver and BGLnodes are visualization tools that

present the traces obtained (including performance

counters) and allow the user to analyze in detail

what is happening inside the application.

Finally, we have demonstrated the power of an

environment for collecting information about the

execution and using it to explain the performance

obtained. We have also presented a set of experiences

optimizing code using information obtained by

simulation. We have used the specific hardware

performance counters in the torus network to analyze

the behavior of the communications and determine the

limitations of the processor in each node when dealing

with up to six incoming and outgoing links. We have also

analyzed the implementation of the MPI message layer

and a hand-coded broadcast in the Linpack application.
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