Blue Gene/L
performance
tools

Good performance monitoring is the basis of modern performance
analysis tools for application optimization. We are providing a
variety of such performance analysis tools for the new Blue
Gene®/L supercomputer. Those tools can be divided into two
categories: single-node performance tools and multinode
performance tools. From a single-node perspective, we provide
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standard interfaces and libraries, such as PAPI and libHPM,

that provide access to the hardware performance counters for
applications running on the Blue Gene/L compute nodes. From a
multinode perspective, we focus on tools that analyze Message
Passing Interface (MPI) behavior. Those tools work by first
collecting message-passing trace data when a program runs. The
trace data is then used by graphical interface tools that analyze the
behavior of applications. Using the current prototype tools, we
demonstrate their usefulness and applicability with case studies

of application optimization.

Introduction

The Blue Gene*/L (BG/L) supercomputer is a new
massively parallel system being developed by IBM

in partnership with Lawrence Livermore National
Laboratory (LLNL). BG/L uses system-on-a-chip (SoC)
integration [1] and a highly scalable architecture [2] to
assemble 65,536 dual-processor compute nodes. When
operating at its target frequency of 700 MHz, BG/L will
deliver 180 or 360 teraflops of peak computing power,
depending on its mode of operation.

Each BG/L compute node can address only its
local memory, making message passing the natural
programming model for the machine. This paper discusses
the current ongoing work on performance analysis
tools to support the analysis of the execution of
programs in BG/L. We are currently developing
and porting such tools, and, at the same time,
helping application programmers to port their
applications to BG/L.

This paper is organized as follows: We first present a
discussion of BG/L hardware, followed by a description
of the implementation of the Message Passing Interface
(MPI) communication library for this machine. The
performance analysis tools on which we are working are
introduced, followed by descriptions of the experiences
and lessons learned after using our tools in a set of

experiments with microbenchmarks and real applications.
Related work is briefly described, and conclusions drawn.

A short discussion of Blue Gene/L hardware
The Blue Gene/L hardware [2] and system software [3, 4]
have been extensively described elsewhere. In this section,
we remind the reader of the hardware features most
relevant to the discussion to follow.

Blue Gene/L processors: The 65,536 compute nodes of
BG/L are based on a custom SoC design that integrates
embedded low-power processors, high-performance
network interfaces, and embedded memory. The low-
power characteristics of this architecture permit very
dense packaging. One air-cooled BG/L rack contains
1,024 compute nodes (2,048 processors) with a peak
performance of 5.7 teraflops.

The BG/L chip incorporates two standard 32-bit
embedded IBM PowerPC* 440 (PPC440) processors with
private L1 instruction and data caches, a small (2-KB) L2
cache and prefetch buffer, and 4 MB of embedded
dynamic random access memory (DRAM), which can
be partitioned between shared L3 cache and directly
addressable memory. A compute node also incorporates
512 MB of double-data-rate (DDR) memory.

Cache coherency: The standard PPC440 cores are not
designed to support multiprocessor architectures: The L1
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caches are not coherent, and the processor does not
implement atomic memory operations. Software must
take great care to ensure that coherency is correctly
handled at the granularity of the L1 cache lines of the
central processing units (CPUs)—32 bytes. This means
that objects not delimited by 32-byte boundaries cannot
be shared by the CPUs. To mitigate these limitations,
BG/L provides a variety of custom synchronization
devices in the chip, such as the lockbox (a limited number
of memory locations for fast atomic test-and-sets and
barriers) and 16 KB of shared static random access
memory (SRAM).

Floating point: Each processor is augmented with a dual
floating-point unit (FPU) consisting of two 64-bit
floating-point units operating in parallel (termed a double-
hummer FPU). The dual FPU contains two 32 X 64-bit
register files and is capable of dispatching two fused
multiply—adds in every cycle, i.e., 2.8 Gflops per node
at the 700-MHz target frequency. When both cores are
used, the peak performance is doubled to 5.6 Gflops.

The torus network: The torus network is the main
network for user communication. Each compute node is
connected to its six neighbors through bidirectional links.
The 64 racks in the full BG/L system form a 64 X 32 X 32
three-dimensional torus. The network hardware
guarantees reliable, deadlock-free delivery of variable-
length packets. Routing is done on an individual basis
using one of two routing strategies: a deterministic
routing algorithm, whereby all packets between two
nodes follow the same path along the x, y, z dimensions
(in this order); and a minimal adaptive routing algorithm
that permits better link utilization but allows consecutive
packets to arrive at the destination out of order.

Network efficiency: The torus packet length is between
32 and 256 bytes in multiples of 32. The first 16 bytes of
every packet contain destination, routing, and software
header information. Therefore, at most, 240 bytes of each
packet can be used as payload. For every 256 bytes
injected into the torus, 14 additional bytes traverse
the wire with cyclic redundancy checks (CRCs), etc.
Thus, the efficiency of the torus network is at most
n = 240/270 = 89%.

Link bandwidth: Each link delivers two bits of
raw data per CPU cycle (0.25 bytes per cycle), or
n X 0.25 = 0.22 bytes per cycle of payload data.

This translates into 154 MB/s/link at the target
700-MHz frequency.

Per-node bandwidth: Adding up the raw bandwidth of
the six incoming and six outgoing links on each node, we
obtain 12 X 0.25 = 3 bytes per cycle per node. The
corresponding bidirectional payload bandwidth is
2.64 bytes per cycle per node.

Network reliability: The network guarantees reliable
packet delivery. In any given link, it resends packets with
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errors, as detected by the CRC. Irreversible packet losses
are considered catastrophic and stop the machine. The
communication library considers the machine to be
completely reliable.

Network ordering semantics: Adaptively routed
network packets may arrive out of order, forcing the
message layer to reorder them before delivery. Packet
reordering is expensive because it involves memory copies
and requires packets to carry additional sequence and
offset information. On the other hand, deterministic
routing leads to more network congestion and increased
message latency, even on lightly used networks.

CPU/network interface: The torus network is mapped
into user-space memory. Packets are read and written
with the special 16-byte single-instruction multiple-data
(SIMD) load-and-store instructions of the custom FPUs.
These require that memory accesses be aligned to a
16-byte boundary. The communication software does
not have control over the alignment of user buffers.

In addition, the sending and receiving buffer areas
can be aligned at different boundaries, forcing packet
realignment through memory-to-memory copies.

Hardware performance counters: The CPU core used
in the system has no hardware performance analysis
capabilities. Instead, performance counters have been
implemented as a separate unit of the die, the universal
performance counter (UPC) unit. Further, the double-
hummer FPU has its own performance counters. As a
consequence of the design, hardware performance
counters are available for a large number of events,
with the exception of events internal to the CPU cores.

The UPC unit consists of 16 control registers used
to manage the behavior of 48 32-bit counter registers.
In total, 311 UPC events are available, exposing the
behavior of all aspects of the BG/L die outside the CPU
cores. This includes the prefetch unit, the L3 cache
controller, and the collective and the torus network
controllers. Additionally, one control register in each of
the double-hummer units manages two counter registers
for events related to this unit. Finally, a 64-bit timestamp
register is available. The timestamp register can be read
by user-level code, while the UPC and FPU registers
are available only in privileged mode.

The UPCs can be individually controlled to count the
rising or falling edge of an event, or the duration (in CPU
cycles) of an event state being either active or inactive.
The UPC counters can individually be set to generate
interrupts on user-selectable count thresholds. The FPU
counters are divided into one floating-point arithmetic
operation counter and one load/store counter. Each FPU
counter is user-programmable to count the occurrence of
a subset of operations, such as, for example, arithmetic
trinary operations and quadword stores.
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Architecture of Blue Gene/L MPI

The BG/L MPI is an optimized port of the MPICH?2 [5]
library, an MPI library designed with scalability and
portability in mind. Figure 1 shows two components of
the MPICH2 architecture: message passing and process
management. MPI process management in BG/L is
implemented using system software services. We present
the architecture of the message-passing component as it
is relevant to the performance analysis tools.

The upper layers of the message-passing functionality
are implemented by MPICH2 code. MPICH?2 provides
the implementation of point-to-point messages, intrinsic
and user-defined data types, communicators, and
collective operations, and it interfaces with the lower
layers of the implementation through the Abstract Device
Interface Version 3 (ADI3) layer [6]. The ADI3 layer
consists of a set of data structures and functions that have
to be provided by the implementation. In BG/L, the
ADI3 layer is implemented using the BG/L message layer,
which in turn uses the BG/L packet layer.

ADI layer

The ADI layer is described in terms of MPI requests
(messages) and functions to send, receive, and manipulate
these requests. The BG/L implementation of ADI3 is
called bgltorus. It implements MPI requests in terms of
message-layer messages, assigning one message to every
MPI request. Message-layer messages operate through
callbacks. Messages corresponding to send requests are
posted in a send queue. When a message transmission

is finished, a callback is used to inform the sender.
Correspondingly, there are callbacks on the receive side
to signal the arrival of new messages. The callbacks
match incoming message-layer messages to the

list of MPI posted and unexpected requests. This
implementation is the equivalent for BG/L to that usually
implemented in CH3 over sockets in Transmission
Control Protocol/Internet Protocol (TCP/IP) networks.

BG/L message layer
The BG/L message layer is an active message system
[7-10] that implements the transport of arbitrarily
sized messages between compute nodes using the torus
network. It can also broadcast data using special torus
packets that are deposited on every node along the route
they take. The message layer breaks messages into fixed-
size packets and uses the packet layer to send and receive
the individual packets. At the destination, the packets
may arrive out of order, and the message layer is
responsible for reassembling them into a message.
The software structure of the message layer is shown
in Figure 2.

The message layer addresses nodes using the equivalent
of MPI_COMM_WORLD ranks. Internally, it translates these
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ranks into physical torus x, y, z coordinates, which are
used by the packet layer. The mapping of ranks to torus
coordinates is programmable by the user and can be used
to optimize application performance by choosing a
mapping that supports the logical communication
topology of the application.

Message transmission in the message layer is
implemented using one of multiple available
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communication protocols, roughly corresponding
to the protocols present in more conventional MPI
implementations, such as the eager and rendezvous
protocols.

The message layer is able to handle arbitrary
collections of data, including noncontiguous data
descriptors described by MPICH?2 data loops. The
message layer incorporates a number of complex data
packetizers and unpacketizers that satisfy the multiple
requirements of 16-byte aligned access to the torus,
arbitrary data layouts, and zero-copy operations.

Packet layer

The packet layer is a very thin stateless layer of software
that simplifies access to the BG/L network hardware.

It provides functions to read and write the torus and
collective hardware, as well as to poll the state of the
network. Torus packets typically consist of 240 bytes of
payload and 16 bytes of header information. Collective
packets consist of 256 bytes of data and a separate 32-bit
header. To help the message layer implement zero-

copy messaging protocols, the packet layer provides
convenience functions that allow software to “peek” at
the header of an incoming packet without incurring the
expense of unloading the whole packet from the network.

PMI component

The Process Management Interface (PMI) component for
process management is also implemented on top of the
bgltorus in BG/L. In this case, the bgltorus component
provides the capability to load the application from the
input/output (I/O) nodes into the compute nodes using
the Control and I/O (CIO) Protocol over the collective
network.

Performance analysis tools for BG/L

Several parallel applications are currently being ported
to BG/L; in the near future, the performance of these
applications running on BG/L will require analysis [11].

HPM

We ported libHPM [12, 13] to run on the BG/L system
simulator (BGLsim; see the next section). This port was
done by extending the library to use the BGLcounters
application program interface (API), adding support for
new hardware counters and derived metrics that are
related to the BG/L architecture, such as the two-element
vector FPU, and by exploiting the possibility of counting
both at user mode and at supervisor mode during the
same execution of the program.

BGLsim
We have used a pseudo cycle-accurate simulator based on
BGLsim, an architecturally accurate complete system
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simulator for parallel machines [13—15]. BGLsim exposes
all key features of the hardware, including processors,
FPUs, caches, memory, interconnection, and other
supporting devices. This approach allows the user to
run complete and unmodified code, from simple self-
contained executables to full Linux** images. The
simulator supports interaction mechanisms for inspecting
detailed machine state, thus providing monitoring
capabilities beyond what is possible with real hardware.
BGLsim was developed primarily to support the
development of system software and application code

in advance of hardware availability. It can simulate
multinode BG/L machines, but we restrict our discussion
in this paper to the simulation of a single BG/L node
system.

The BG/L pseudo cycle-accurate simulator [15] offers
higher performance than traditional cycle-accurate
simulators. Our model runs 100 to 1,000 times faster than
a cycle-accurate simulator. The idea behind the pseudo
cycle-accurate simulator is to attribute timestamps for all
relevant processor resources (such as registers, internal
pipelines, FPUs, memory subsystem, etc.); the model
checks all of the operand dependencies, updating the
corresponding timestamps. Although this is not 100%
accurate because the queuing effects on memory buses are
ignored, the obtained accuracy (error smaller than 15%
compared with the hardware) is enough to validate most
optimizations.

BGLperfctr

The large number of available events in the BG/L CPU
design and the rather complex mapping of events onto
possible physical counters is handled through a user-
level API, BGLperfctr. This API includes a set of
predefined mnemonics for each available event and
provides the user with an abstraction of 52 counters,
unifying the UPC and FPU counters and extending
them to 64-bit counters.

Since the system design is based on a single active
thread per CPU, the bookkeeping of occupied compared
with free counter registers is all provided in this API. The
setup of the counters is transaction-based in that the user
registers a number of intended changes to the running
register configuration through the API. If no collisions
are detected, these changes are committed through a
separate call to the library, which finally results in a
kernel invocation in which the content in the affected
control registers is modified and the counters start
counting the desired events.

The API has full support for all capabilities of the UPC
counters and offers simplicity to the end user, such as
the ability to generate interrupts at an arbitrary count
threshold and find an appropriate free counter for each
user-selected event.
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PAPI

As most APIs intend to expose a maximum of capabilities
of the hardware counter design to the end user,
BGLperfctr has the disadvantage of being system-specific.
Writing application code that uses hardware counter
information is generally a highly nonportable task. The
high cost of maintaining such codes is addressed by
PAPI, the Performance counter API [16]. This
specification provides a platform-independent interface to
control and read hardware counters on a large variety of
platforms widespread in high-performance computing.
The API provides mechanisms for portably naming
commonly used events, setting up sets of events, and
starting, stopping, and reading these events. BG/L
provides a functional implementation of PAPI using the
BGLperfctr abstraction of events as its implementation
substrate.

An interesting aspect of the implementation of PAPI
on BG/L, when compared with other platforms, is the
large number of events unique to this particular system.
All 319 events defined on BG/L can be programmed using
PAPI through its so-called “native events” interface. In
the BG/L PAPI implementation, a native event is
described by its BGLperfctr mnemonic and a bit pattern
describing the counting behavior requested (rising edge,
falling edge, duration high, or duration low). To the
extent possible, existing BG/L hardware events have been
mapped to PAPI predefined event names. However,
several events typically available on other platforms are
not available in the BG/L hardware. These include events
related to the CPU core internals, such as instructions
completed, branch prediction information, and level 1
cache events. Although such events are technically
possible to count in the BG/L simulator framework [15],
the PAPI implementation of BG/L has not incorporated
such events into its event map.

Paraver

Paraver [17] is a parallel program visualization and
analysis tool that supports both shared and distributed
memory applications. Paraver has three major
components:

e Tracing facility: For MPI, a library called MPItrace
is used to collect traces of the application during
execution. This library intercepts the calls to the MPI
primitives and records events, generating a single file
for every process involved in the application. In
addition, this tool can collect hardware performance
counters that appear as Paraver events in the trace.

® Trace merger: The individual trace files are
then merged into a single Paraver trace file/
citeparavertrace, using the mpi2prv tool.
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® Visualizer: Paraver traces are visualized using the
Paraver tool, which allows the visualization of the
information collected and derives new metrics from it.

The existing MPItrace package has been ported to the
BG/L. The package uses the PAPI interface to obtain
hardware counter values and emit them into the trace file.
Until now, work has focused on the basic functionality
of the tool and its use to understand the behavior of
different Linpack and MPI library implementations.

Scalability of the tool is one of the areas to which major
effort will be devoted in the future. As of this writing, we
have been able to obtain and analyze traces on up to
1,024 processors.

BGLnodes

We are developing a simple tool to display how a scalar
value varies over a BG/L partition. This tool is being fed
by a text file containing the coordinates of the BG/L
nodes and the value to be represented for each one.
Values are translated to colors, each color indicating

an intensity of the value. That way, it is very easy to
represent in three dimensions the values of various
performance counters or other metrics derived using
Paraver, showing where the hot spots are in the BG/L
partition.

Experiences and lessons learned

BGLsim

In this subsection, we present two different experiences
carried on the BGLsim simulator analyzing the
performance of the BG/L processors. These experiments
were executed in the simulator and in the first version of
the hardware chip, running at 500 MHz.

IS benchmark case study
In this case study, we present a performance improvement
made on the NASA Advanced Supercomputing (NAS)
Integer Sort (IS) Benchmark [18] (serial version, class S)
using our set of tools. The IS benchmark performs an
integer sort. The goal here was to find a bottleneck in
IS with enough resolution to enable optimizations
that would lead to performance improvements.

To find the bottleneck in the program, we started by
using the BG/L version of libHPM [13]. We reduced
the number of iterations in the benchmark to one and
instrumented the rank () function, which is called at each
pass of the loop, in order to decompose its effects on the
cycle count. We did this by inserting hpmStart () and
hpmStop () calls around each of the rank () regions to
identify which of them were the heaviest contributors. By
doing this, we identified that two particular regions of the
rank () function were responsible for 84% of the total

X. MARTORELL ET AL.

411



412

Table 1

Loops | and 2 iteration execution times (cycles).

Iteration 0 I 2 3 4 5 6 7 8 9 10

11

12 13 14 15 16 17 18 19 20 21 22 23 24

Loopl 44 17 17 17 17 17 17 17 44 17 17
Loop2 79 50 23 52 23 50 50 50 79 23

17

17 17 17 17 19 17 17 17 17 17 17 17 19

52 50 52 52 52 50 27 25 S50 52 27 27 S50 23 54

Table 2 Execution times for loop 2 iterations before and after optimization.

Iteration 1 2 3 4 5 6 7 8 9 10

11

12 13 14 15 16 17 18 19 20 21 22 23 24

50 23
50 21

5223 50
48 21 48

50 50 79 23
50 50 48 21

Original
Optimized

5250 52 52
48 50 50 50

52 50 27 25 50 52 27 27 50 23 54
25 48 21 48 50 48 23 50 23 21 50

number of cycles for that iteration. These regions were
the “copy keys into work array,” which is referred to as
loop 1, and the “count key population,” which is referred
to as loop 2.

Loop 1 has a simple operation in the form

for (i=0; i < NUM_KEYS; i++)
key_buff2[i]=key_arrayl[il;

Loop 2, on the other hand, has a double-referenced
operation in the form

for (i=0; i <NUM_KEYS; i++)
key_buff_ptrlkey_buff2[i]]++;

For class S, NUM_KEYS is 2'°, which means that there
are 2'° loads and as many stores in loop 1, which is
responsible for approximately 30% of the total number
of cycles of the whole iteration. Loop 2 performs two
loads and one store instruction and is responsible for
approximately 53% of the total number of cycles.

Knowing the total number of cycles required by one
loop to execute, we can estimate the number of cycles
consumed by each iteration. However, this is just an
average value, and we know that actual iterations may
vary from one another. To find out what was going on
inside these loops and to be able to optimize them, we
obtained an instruction-level trace of the execution that
shows every instruction performed by the CPU along
with its timestamp. From this trace, we obtained the
actual number of cycles each iteration of the loop takes
to run (Table 1).

It is clear that loop 1 has a very regular and predictable
behavior, taking 17 cycles at each iteration, with the
exception of the first iteration in each block of eight
iterations, where it takes 44 or 19 cycles. This can easily
be explained by the fact that the cache size for the BG/L
machine is 32 bytes, which means that eight integers fit
into one cache line. The first element to be loaded forces a
miss in the cache and takes a longer time, while the others
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have a very predictable behavior. Note that even when a
miss occurs, the number of cycles it takes is not always
the same. This is due to the L2 prefetching that occurs
after the second L1 cache miss. The 19 cycles are
explained by a misprediction by the branch predictor; at
the last time the loop is executed, the branch is not taken,
which increases the instruction fetch latency by two
cycles.

Loop 2 has such an unpredictable behavior because it
makes a load using a random index to the key_buff_ptr
array, which is stored in the key_buff2 array. The next
index in the sequence (that is, the next value in the
key_buff2 array), is likely to be in cache. The next
element in the key_buff_ptr array, however, is not, due
to the inherent randomness of the index array. This leads
to a high cache-miss probability, which results in the
noticeably higher cycle times loop 2 takes at each
iteration.

It is possible to optimize this kind of memory access by
using an explicit prefetching technique that consists of
loading the next element of key_buff_ptr one iteration
before it is going to be used, therefore hiding its load
latency. We implemented this as

prefetch=key_buff2[07];

for (i=0; 1 < NUM_KEYS — 1; i++){
index=prefetch;
prefetch=key_buff2[i+1];
key_buff_ptrlindex]++;

}

index =prefetch;

key_buff_ptrlindex]++;

The results of this optimization can be seen clearly
in Table 2 and in Figure 3, where we observe that the
higher cycle-count spikes have disappeared and that a
lower baseline has been set. Furthermore, there was
considerable improvement in the IS benchmark overall
performance: The original main loop (one execution of
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the rank function) took 0.007553 seconds to be executed,
while the optimized version executed in only 0.006233
seconds, an improvement of 17.5%. The total number of
Mops measured by IS also jumped from 25.78 to 31.12.

DGEMYV case study

DGEMV is the name of a subroutine that performs the
matrix—vector operation y = o - 4 - x+ f - y, where o and
p are scalars, x and y are vectors, and 4 is an M X N
matrix. In this case study, we describe the optimization
process of this dense linear algebra kernel using the
BGLsim timing model as a performance-tuning tool. The
following example shows the optimization process of a
level 2 basic linear algebra software (BLAS) kernel, which
performs operations in the form y =y + 47x, where y and
x are vectors and A7 is a matrix; A7 is the transposition of
A. The routines defined by BLAS are commonly called by
a wide range of scientific software and have become a
de facto standard for elementary linear algebra operations
[19]. Therefore, a high-performance implementation of
the BLAS kernels has been developed as part of the
math library that will be delivered with the BG/L
supercomputer.

As the main goal is to achieve the highest performance
in a single-processor computation, some of the BLAS
kernels are written in assembly language and then hand-
tuned such that an efficient pipelined execution is created
for the kernel. As we show here, the results produced by
the BGLsim timing model helped us identify inefficient
sequences of code that were leading to stalls in the
pipeline and consequently degrading the execution
performance. The simulator also gives us the total
number of cycles needed for the execution of a piece of
code under a specific workload. In the optimization
process, we change the scheduling of the instructions on
the basis of the information provided by the simulator
timing model. After the changes, the new version is tested
again, and a new output is generated. Therefore, each
consecutive version is improved on the basis of the time
information provided by the BGLsim.

The first version of the code was implemented and
executed in the simulator. The output produced by the
simulator gives pseudo cycle-accurate information on the
instructions issued. The output of the execution of the
code related to the inner loop of the DGEMYV kernel is
shown in Figure 4. Every iteration of this loop computes
the product y[j] = y[j]+ A[i[j] - x[i] for every element
of an 8 X 2 block of elements of the matrix 4. As seen
through the execution output, every iteration takes 12
cycles to complete. Therefore, the ratio of elements
computed to CPU cycles is 4/3. Moreover, the output of
the simulation tells us that every fused multiply—add
(FMA) instruction is paired with a load instruction;
consequently, both instructions are issued in the same
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Iteration

Loop 2 execution times before and after optimization.

Inst Cycle PC Opcode  Decoded Instruction

1936 7586 00100EF0 7dce8bdc 1fpdux fl4, rl4, rl7

1937 7586 00100EF4 01705de6 fxcsmadd f11, f16, f11, f23
1938 7587 00100EF8 7e5093dc 1fpdux f18, rl6, rl8

1939 7588 00100EFC 7e7093dc 1fpdux f19, rl6, rl8

1940 7588 00100F00 01916624 fxcpmadd fl12, f17, fl2, f24
1941 7589 00100F04 7dee8bdc fpdux f15, rl4, rl7

1942 7589 00100F08 01bl6e66 fxcsmadd f13, f17, f13, f25
1943 7590 00100F0C 7e€9093dc 1fpdux f20, rl6, rl8

1944 7591 00100F10 7eb093dc 1fpdux f21, rl6, rl8

1945 7591 00100F14 0l4eb4a4 fxcpmadd 10, f14, f10, f18
1946 7592 00100F18 7e0e8bdc 1fpdux fle, rl4, rl7

1947 7592 00100F1C 01l6ebce6 fxcsmadd f11, f14, f11, f19
1948 7594 00100F20 7ed093dc 1fpdux f22, rl6, rl8

1949 7595 00100F24 7ef093dc 1fpdux f23, rl6, rl8

1950 7595 00100F28 018f6524 fxcpmadd fl12, f15, fl12, f20
1951 7596 00100F2C 7e2e8bdc 1fpdux f17, rld, rl7

1952 7596 00100F30 0laf6d66 fxcsmadd 13, f15, f13, f21
1953 7597 00100F34 7f1093dc 1fpdux f24, rl6, rl8

1954 7598 00100F38 7f3093dc 1fpdux f25, rl6, rl8

1955 7598 00100F3C 015055a4 fxcpmadd 10, f16, f10, f22

Cycles of the inner loop in the initial implementation of the DGEMV
kernel.

cycle. However, many cycles are spent with just a load
instruction being issued, which means that the
computation pipeline is idle in that cycle.

Considering the results of the first version of the code,
after collecting execution traces from the simulator with
the cycles for each instruction, we did some improvement
on the instruction scheduling to reduce the bubbles on the
pipeline. This yielded Version 2, and we repeated the
same process testing different instruction schedules until
the final version was produced.
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Inst
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459

Cycle PC

2438
2439
2439
2440
2440
2441
2441
2442
2442
2443
2443
2444
2444
2445
2445
2446
2446
2447
2447
2448
2448
2449
2449
2450
2450
2451
2451
2452
2452
2453

00100F24
00100F28
00100F2C
00100F30
00100F34
00100F38
00100F3C
00100F40
00100F44
00100F48
00100F4C
00100F50
00100F54
00100F58
00100F5C
00100F60
00100F64
00100F68
00100F6C
00100F70
00100F74
00100F78
00100F7C
00100F80
00100F84
00100F88
00100F8C
00100F90
00100F94
00100F98

Opcode

7e6e8bdc
7cf09bdc
00340b66
7d108bdc
005413a6
7d308bdc
00741beb
7d508bdc
00942426
7d708bdc
00b42c66
7d908bdc
00d434a6
7ed08bdc
02b4adeb
02809840
7db09bdc
003309e4
7dd08bdc
00531224
7df08bdc
00731a64
7e108bdc
009322a4
7e308bdc
00h32aed
7e508bdc
00d33324
7ef08bdc
02b3ada4

Decoded Instruction
1fpdux 19, rl4, rl7
1fpdux 7, rl6, rl9
fxcsmadd f1, 20, f1, f13
1fpdux 8, rl6, rl7
fxcsmadd f2, 20, f2, fl4
1fpdux 9, rl6, rl7
fxcsmadd f3, 20, f3, f15
1fpdux f10, rl6, rl7
fxcsmadd f4, 20, f4, f16
1fpdux f11, rl6, rl7
fxcsmadd f5, f20, f5, f17
1fpdux f12, rl6, rl7
fxcsmadd f6, 20, f6, f18
1fpdux f22, rl6, rl7
fxcsmadd f21, f20, f21, f23
fpmr 20, f0, f19

1fpdux 13, rl6, rl9
fxcpmadd f1, f19, f1, f7
1fpdux f14, rl6, rl7
fxcpmadd f2, f19, f2, f8
1fpdux f15, rl6, r17
fxcpmadd f3, f19, f3, f9
1fpdux f16, rl6, rl7
fxcpmadd f4, 19, f4, f10
1fpdux f17, rl6, rl7
fxcpmadd f5, f19, f5, f11
1fpdux 18, rl6, rl7
fxcpmadd f6, f19, f6, f12
1fpdux 23, rl6, rl7
fxcpmadd f21, f19, f21, f22

Cycles of the inner loop in the optimized implementation of the
DGEMV kernel

The output of the inner loop of the latest version is
shown in Figure 5. In this loop the product is computed
for a 2 X 14 block of elements of the matrix 4 in each
iteration, and the ratio of elements computed to CPU
cycles is 28/15, which gives us a better utilization of
the instruction pipeline. Moreover, more FMAs are
interleaved with load instructions, which translates to a
better use of processor resources, keeping the pipeline
busy most of the time.

Figures 6(a) and 6(b) respectively show the running
times for different versions of a DGEMYV kernel as run
on hardware and as predicted through BGLsim. The

DGEMYV kernel has been optimized for best performance
considering that the data is already in the L1 cache. As
the plot shows, the better the instruction scheduling, the
faster the kernel execution for a given workload. For both
experiments, similar performance trends are observed as
the DGEMYV is improved. Hence, we observe that by
using the BGLsim timing model, we were able to generate

X. MARTORELL ET AL.

3,500
3,000 - —— First version (rows = 56)
a - == Second version (rows = 56) .
= 2,500 = --»-. Third version (rows = 56) P,
> .
Q s e
5 2,000 |- P
£ .
= 1,500 |
£
=
§ 1,000 =
=
500 -
0 1 1 1 1 1
0 10 20 30 40 50 60
Columns (doubleword elements)
(a)
3,500
3,000 | —— First version (rows = 56)
7 = == Second version (rows = 56) .
2 2,500 |- --»-. Third version (rows = 56) e
o e
2 2,000 |
,§ 1,500
8
2 1,000 -
o
500 -
0 L L L L L
0 10 20 30 40 50 60
Columns (doubleword elements)
(b)

Running time of different versions of the DGEMYV kernel on (a)
BG/L hardware and (b) BG/L simulator.

a version of the DGEMYV kernel optimized for execution
by the hardware. The BGLsim timing model does
particularly well when simulating straight-line code that
accesses primarily the L1 cache, as represented by the
code fragments in Figures 4 and 5. The maximum
discrepancy between simulation and hardware results that
we observe in Figures 6(a) and 6(b) is 7.5%. The accuracy
of the pseudo cycle-accurate timing model depends on the
access pattern and the number of misses at L1. That is the
reason why the different experiments have different
accuracy with respect to the hardware execution.

Detecting message-passing overhead

One of the characteristics of the BG/L supercomputer is
that it has a very fast network compared with the speed of
the processor. During the project, we have developed
some microbenchmarks to determine how much
information the processor can deal with in and out of the
network. Ideally, the processor should be able to manage
six incoming and six outgoing links. In a machine running
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at 500 MHz, each link is able to sustain 110 MB/s, giving
each node the capacity to move a total of 1,320 MB/s.

We have instrumented one of these microbenchmarks
with Paraver and hardware counters. This section
presents the results of this study. The microbenchmark
first selects a node in the middle of the current BG/L
partition and its closest neighbors. It then starts a set of
iterations in which the number of senders and receivers is
increased. In each communication phase, 30 messages of
1 MB of data each are sent. For the analysis, we collected
the hardware performance counters which indicated that
a link in each direction was available but there were no
tokens available for the node to send. When this occurs,
the specific link is full, and the destination node is not
draining it at the proper speed to sustain the required
bandwidth.

The microbenchmark was executed in a 32-node
partition, in which any of the central nodes has up to
five neighbors. The top plot of Figure 7(a) presents the
behavior of the communication phases in which a single
node (node 22—the node number is the middle term in
the expression following “Thread”) is receiving messages
from one to five nodes simultaneously. The plot in the
bottom shows the behavior of the counters indicating
network congestion. These counters are incremented
every cycle in which a network link is available but the
hardware has no token to send data. Not having a token
is usually caused by the fact that there are packets in
transit, and the destination node is not able to collect
them. As shown, the receiver (node 22) can deal with up
to three incoming links without experiencing network
congestion. As soon as a fourth sender becomes active, all
senders start seeing a lack of tokens; this is because the
receiver is not draining the links fast enough. Observe
also that, as the counter value becomes higher, the
execution time increases for these messages to be received.
That is the effect of the sender being blocked while
waiting for tokens.

Figure 7(b) shows the same information when, in
addition to receiving messages, node 22 also sends
messages to first one and then two destination nodes.
Observe that when there is a single destination node to
which node 22 is sending messages, node 22 is no longer
able to deal with three incoming links. A lack of tokens
appears first at nodes 6 and 18 and then later at nodes
23 and 26. Also observe that as soon as a node is busy
receiving messages, it no longer has sending problems due
to the lack of tokens. This is because it has to send more
slowly. This happens to node 18 in Figure 7(b) and also to
node 21, when the lower plots in Figures 7(a) and 7(b)
are compared.

Figure 7(c) presents the behavior of the
microbenchmark when the central node, in addition to
receiving messages, sends to three and four destination

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

(b)

Fijsending_3 and_4_comm @ bandwidth-NO_VCDO_VCDL TOKENS.prv

©

Lack of sending tokens when (a) receiving from a different
number of nodes; (b) receiving from many and sending to one
and two nodes; and (c) receiving from many and sending to three
and four nodes.
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(a) (b)

Comparison of the behavior of two versions of the manual
broadcast: (a) First version (single outgoing message sent in each
direction). (b) Alternative version (several messages sent round-
robin to the same destination).

Table 3 Gigaflops obtained in Linpack with the two versions
of the message layer.

Problem size Single message Overlapping messages

10,240 50.43 49.31
15,360 68.41 66.69
20,480 78.38 76.68
29,696 89.25 87.07

nodes. Observe that in this case, the detection of a lack of
send tokens is reduced to nodes 23 and 26, which are the
ones not receiving messages. Any node receiving messages
is unable to deliver messages at enough speed to detect
the lack of tokens.

Analysis of the behavior of the message layer
We used the Paraver tool to evaluate different
implementation alternatives inside the MPI message
layer. In this experiment, we compared the performance
obtained using two possible implementations (developed
as prototypes) of the low-level message layer on which the
MPI implementation relies. The Linpack benchmark
indirectly uses this portion of the message layer through
the MPI library to implement a hand-coded version of the
broadcast collective. This hand-coded version of
broadcast performs better than the built-in MPI
broadcast using any of the implementations. Currently,
this broadcast is being implemented inside the MPI
library.

The difference between the two implementations was in
the way messages are sent:

X. MARTORELL ET AL.

* One message at a time (first in, first out, FIFO, mode):
Considering that each node has six connections to its
neighbors, the first implementation of the message
layer allowed sending up to six messages at a time
(one in each different direction). That way, the send
queues in the connection manager (see Figure 2)
contain a single outgoing message for each direction.

* Overlapping messages: We wanted to test whether
allowing several outgoing messages for the same
destination at the same time could improve
communication performance, so we developed a
version in which any outgoing message was
immediately posted to be delivered to the network. In
this case, packets are picked up in a round-robin
fashion from all available messages in each direction.

After implementing both of these ways of dealing with
messages, we evaluated the performance of the Linpack
benchmark in 32 nodes. Table 3 shows the results of the
comparison. We observed that the performance obtained
in this application was slightly worse with overlapping
messages. Using Paraver, we were able to look inside the
application and detect which part of it performed worse
and why.

Figure 8 shows the behavior of one of the broadcasts
that was hand-coded inside the Linpack benchmark using
point-to-point communications. As can be observed, the
transmission of the messages is different in the two
versions of the message layer. The plot on the left in
Figure 8 corresponds to the first version of the message
layer, which sends a single outgoing message in each
direction. The plot on the right corresponds to the
alternative implementation, in which several messages are
sent in a round-robin fashion to the same destination.

We can observe that in the plot on the left, the first
message sent from nodes 3, 11, 19, and 27 reaches the
destination earlier than that in the plot on the right. That
is precisely because each single-link bandwidth is devoted
to a single message. Instead, in the plot on the right, all
outgoing messages from these nodes are sent in parallel,
so the first and the last ones are complete at the
destination nearly at the same time. Because of the way
this broadcast is implemented, each destination node is
going to retransmit the information to other nodes. The
parallel implementation causes the retransmission of the
first messages to be delayed because of the late arrival,
and this causes the performance degradation. The actual
degradation of the broadcast code was 30%.

In conclusion, time-sharing the links between MPI
messages to the same destination results in all messages
taking about the same time to arrive at their destination.
Keeping a FIFO order in sending messages through the
link also has the potential to keep the link fully used, but
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Comparison of specific messages sent from node 3 in broadcast. (The node number is the middle term in the expression following

“THREAD.”)

results in some messages arriving earlier than others. In a
situation in which all of the messages are of similar length
and most of them have to be retransmitted, the version
that keeps the FIFO order has the potential for better
performance. In this case, retransmissions will start
earlier, increasing the number of simultaneously active
links. This is visible in Figure 9, which presents, at
the same timescale, a set of messages sent by node 3
and its retransmissions, clearly showing the benefits
of having the link dedicated to a single message at
a time.

The Paraver traces helped identify this issue and
provided a good understanding of its detailed impact
in this situation. Conceptually, in other situations with
messages of different sizes, the time-sharing version might
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be advantageous, depending on what the application does
with different messages.

From the analysis of the traces, we also inferred some
suggestions to the application developer about the way
the broadcast is implemented. It might be useful, for
example, first to send and receive messages that have to
be retransmitted, and only at the end send messages that
constitute the leaves of the broadcast.

Another suggestion comes from the observation that
the broadcast is actually decomposed in four subtrees,
where the root of the broadcast pipelines the message to
the four roots of each subtree. Unfortunately, two of
those trees end up being assigned to the same physical
processor. In this case, the cause is that the neighbors in
the z+ and z— directions are the same nodes. This is due to

X. MARTORELL ET AL.

417



418

THRERD
THRERD
THRERD
THRERD
THRERD
THRERD
THRERD
THRERD

$02460,12 us

(b)

Figure 10

(a) Cost of the MPI_Waitany calls in a section of the broadcast. (b) Histogram of the MPI_Waitany calls in a broadcast: yellow if less than
five instances, a linear gradient from five instances (light green) to 80 instances (dark blue), and red if more than 80 instances.

the 4 X 4 X 2 topology in a partition containing 32 nodes.
A more balanced topology would probably result in
better performance.

A final observation is that the root of the broadcast
pipelines the messages to each subtree root, but it finishes
sending long before the end of the whole broadcast. This
suggests that imbalanced tree approaches, where the root
keeps transmitting during the whole operation, would
potentially improve the utilization of the links.

We were also interested in a more detailed analysis of
the FIFO version. Figure 10(a) shows a view in which the
effective cost of each MPI_Waitany call is reported in
MB/s. By effective cost, we mean the ratio between the
number of bytes received by the call and the time taken
for the wait to complete. For any MPI point-to-point call,
this local bandwidth is a fair metric of how efficient the
call has been in handling the data it had to deal with. The
view focuses on a few threads and a short period of time,
and a light green color represents 40 MB/s and dark blue
400 MB/s. Surprisingly, even if the size is the same for all
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of them, different instances of the MPI_Waitany take
rather different amounts of time.

Figure 10(b) shows a histogram for the whole trace of
such effective cost. For each process (row), the column
represents a range of 10 MB/s (up to a total of 1,000
MB/s). The color of each entry corresponds to the total
number of times an MPI_Waitany call achieved the
particular local effective bandwidth. As can be seen, there
is a major mode around 100 MB/s that corresponds to the
link bandwidth. There are a significant number of
instances that achieve less than the link bandwidth.
Finally, it is interesting to see some instances achieving
close to a GB/s. Nevertheless, averaging over the whole
duration of a broadcast, each processor performs
MPI_Waitany calls at the rate of 100 MB/s. This value
is still far from the physical limits of the interconnect.

The interpretation for this behavior is related to the
fact that the data is sent to and drained from the network
interface by the main node processor through polling.
The processor becomes the bottleneck because it is not
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capable of feeding and draining the six I/O links at their
full speed. Additionally, there are issues related to how to
proceed if the processor is simultaneously sending one
message and receiving another. When, for example,

the reception is finalized, should control be returned
immediately to the user or should the transmission

be finalized? In both cases, somebody (the local or the
remote node) is going to be delayed. Independent direct
memory access (DMA) engines would certainly help here.
The extreme variation in bandwidth achieved by some
calls can be explained if we consider that several messages
may be arriving at a node simultaneously. If the node
cannot cope with it, the whole process is slowed down,
and the first reception to finalize perceives a low
bandwidth. By that time, it is quite possible that the next
incoming message has almost been received, so when the
next MPI_Waitany call is invoked, control returns very
soon, resulting in a huge local bandwidth perceived by
such a call.

Analysis of the behavior of Linpack broadcasts
Figure 11 shows a set of views of the communication
phase in a Linpack version that performs the broadcasts
directly through the MPI broadcast call. The run is for a
problem size of 40K on a 32-processor system. The
upper view displays the MPI call (yellow: broadcast; red:
barrier; blue: send; white: receive). In the second view,
we see those processors that are the root of a given
broadcast (the different colors represent the different
communicators). The third and fourth views are derived
from the hardware counter information emitted into the
trace at the entry and exit of each MPI call. The third
view is an estimate of the number of active links. Here,
the important issue is that during most of the broadcast
time, most nodes show only a single active link. Only
the root processors achieve two active links. During the
second broadcast region, which performs a column
broadcast in Linpack, some nodes achieve three
simultaneous active links (red). The fourth view is

the equivalent bandwidth going out of a node along
all links during the whole call. In accordance with the
third view, light green is the predominant color across
the first broadcast and large portions of the second.
This means that the bandwidth achieved is far from
the peak.

It is possible to compute a histogram of the bandwidth
used during the major broadcast with message sizes above
7 MB. From the analysis of that histogram, we can
see that the root processor achieves an effective total
bandwidth of the order of 117 MB/s, while most other
processors show either 78 MB/s or 39 MB}/s.

Another capability of the tools environment is the
possibility of using the powerful metric derivation and
analysis capabilities of Paraver to generate the ASCII
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data for a locally developed tool, BGLnodes (discussed
above). This tool displays a single scalar value for
each processor in the physical topology. Figures 12(a),
12(b), and 12(c) respectively show the bandwidth
obtained during the major broadcast, in the x, y,

and z dimensions.

Performance counter limitations

From the experience with the current chip
implementation of performance counters on BG/L, some
lessons can be learned. BG/L is a machine targeted to
address the grand challenges in high-performance
computing. These applications typically amount to a
large number of floating-point operations. In this context,
the capabilities of the double-hummer FPU performance
counters are limited. There is one counter in the FPU
capable of registering arithmetic events. This counter
counts operations that belong to any of the following
groups: additions and subtractions, multiplications and
divisions, trinary operations, and Oedipus operations.
The first three groups relate to single-pipe operations. The
trinary operations are operations of the form a = b - .
This corresponds to two classical floating-point
operations. The Oedipus operations are trinary
operations that use both functional pipes in the FPU,
using up to six operands and producing two results

per instruction. Parallel single- and dual-operator
instructions (such as, for example, fpadd) do not map
into any of the countable groups of events. Thus, even
with repeated runs of the same code, it is not possible to
count the complete number of floating-point instructions
performed. For the same reason, it is not possible to
compute a corresponding number of floating-point
operations of an algorithm by using only the performance
counters.

End users doing advanced tuning of large applications
would most likely gain from a CPU core
implementation that incorporated a performance-
counter infrastructure. The most noticeable events that
are not possible to detect are issued loads and stores, L1
cache events, branch unit events (such as branches
correctly predicted compared with mispredicted
branches), and instruction issues. The impressive
performance available in modern CPU design is highly
dependent on the ability of the code developer and
compiler to generate instruction sequences in which
branch prediction is mostly correct and the instruction
cache hit ratio is maximized. Without hardware
performance counters capable of generating a view
inside the units of the core that control these aspects of
the CPU, the code developer has no accurate way to
determine success in fully utilizing the inherent
computational power of the platform.
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Figure 11

Representation of the execution of the Linpack broadcasts. The upper view displays the MPI call (yellow: broadcast; red: barrier; blue:
send; white: receive). In the second view, the different colors represent the different communicators. The third view is an estimate of the
number of active links (blue: 1; white: 2; red: 3). The fourth view is the equivalent bandwidth going out of a node along all links during the
whole call (gradient from green to blue; dark blue: 200 MB/s).

Related work

Vampir [20] is a commercial product for performance
analysis that allows tracing and analysis of MPI
applications. Several execution environments such as
ParaWise' [21] provide an interface for generating
Vampir traces. Two research projects on performance
analysis are Paradyn** [22], developed at the University
of Wisconsin, and Aksum, part of the Askalon [23]

! Formerly known as CAPTools.
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project conducted at the University of Vienna. Both aim
at the automatic detection of performance bottlenecks.
Tuning and Analysis Utilities (TAU) [24] was developed
at the University of Oregon. It is a set of tools for
analyzing the performance of C, C++, Fortran, and
Java*™* programs.

The advantage offered by Paraver is a high level of
flexibility in computing performance indices and statistics.
This usually allows the exploration of metrics of interest
and the influence of the parallelization choices on them.
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Conclusions

In this paper, we have presented a set of tools devoted to
performance analysis of the Blue Gene/L supercomputer.
The tools in this set range from a hardware simulator and
low-level libraries to visualization and analysis tools.
They are currently being ported and adapted to the BG/L
environment, and should not be considered as finished
work. We have made initial explorations of the
possibilities this new architecture provides for
performance analysis.

BGLsim is a pseudo cycle-accurate simulator that
runs full-system simulations and provides monitoring
capabilities beyond the level possible with real hardware.

LibHPM, BGLperfctr, and PAPI are user-level
libraries capable of managing the hardware performance
counters available in BG/L and extracting information
during application runtime. The MPItrace library collects
traces during execution for later visualization and
analysis.

Paraver and BGLnodes are visualization tools that
present the traces obtained (including performance
counters) and allow the user to analyze in detail
what is happening inside the application.

Finally, we have demonstrated the power of an
environment for collecting information about the
execution and using it to explain the performance
obtained. We have also presented a set of experiences
optimizing code using information obtained by
simulation. We have used the specific hardware
performance counters in the torus network to analyze
the behavior of the communications and determine the
limitations of the processor in each node when dealing
with up to six incoming and outgoing links. We have also
analyzed the implementation of the MPI message layer
and a hand-coded broadcast in the Linpack application.
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