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This paper discusses our experiences and results in applying
functional formal verification (FFV) techniques to the design of
the IBM pSeriest microprocessor and communication subsystem.
We describe the evolution of FFV deployment across several
generations of this product line, including tool and algorithmic
improvements, as well as methodological improvements for
prioritizing the portions of the design that should be considered
for formal verification coverage. Improvements made in the
formal verification toolset, including the introduction of
semiformal verification and bounded-model-checking algorithms,
have allowed increasingly larger partitions to become candidates
for formal coverage. Other tool enhancements, such as phase-
abstraction techniques to deal with clock gating schemes, are
presented. Overall, numerous complex design defects were
discovered using formal techniques across the microprocessor
and communication subsystem, many of which would likely
have escaped to the test floor.

1. Introduction

Functional formal verification (FFV) is the process of

proving that a design adheres to its specification. Unlike

simulation-based approaches, which may fail to expose

certain design flaws, formal verification yields complete

coverage with respect to the properties specified [1, 2].

The practical limitation of FFV stems from the fact that

formal algorithms tend to require exponential resources

with respect to design size. Thus, in practice, FFV can

only be applied to the smaller design components.

The task of developing a complete set of correctness

properties to be verified at these lower design levels

requires careful review by the design and verification

teams. While FFV is guaranteed to expose all flaws

with respect to the specified properties, design defects

(commonly referred to as ‘‘bugs’’) may slip through

the process because of omitted or improperly defined

properties. Simulation environments, which scale to the

chip and system level, benefit from the fact that at these

higher levels even design flaws which are not targeted by

dedicated checks are likely to propagate to other logic

and ultimately be exposed. Thus, the exhaustive coverage

for specified properties yielded by formal verification and

the broader sampling of coverage yielded from simulation

are complementary methods in the verification process.

Formal verification has been identified in the hardware

development industry as a critical technology in the

overall design and verification process because of

its ability to expose design flaws that reside in rarely

exercised paths. Such paths are probabilistically difficult

to hit in a random simulation environment and can be

challenging to hit in the fabricated hardware. Design

defects that reside in these rarely exercised paths are

referred to as ‘‘corner-case’’ bugs. These design flaws

that remain unexposed throughout the pre-fabrication

verification process lead to considerable expense in

schedule delays once the problem is ultimately exposed

on the test floor or in the field. Thus, industry has

increasingly made use of formal verification techniques

to catch such corner-case problems before fabricating

the design. For example, bounded-model-checking

techniques have been applied to the design of the Alpha
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microprocessor memory subsystem [3], and Intel has

invested in formal tools and methodologies to expose

problems in its microprocessor designs [4, 5]. FFV has

been deployed on the IBM pSeries* processors and

communication subsystems since 1996 with the

POWER3* chips. The POWER3 microprocessor

verification effort used an early version of RuleBase [6],

a formal verification tool developed by the IBM Haifa

Research Laboratory, in an experimental and limited

fashion. A larger formal effort was deployed on the

POWER4* microprocessor [7]. Through the POWER4

effort, the verification team gained experience in using the

formal tools as well as in choosing the most appropriate

logic to verify. For the POWER5* verification work,

improvements in the formal verification tools, including

the availability of semiformal algorithms, allowed the

verification team to test larger blocks of logic. This

enabled formal verification to be deployed on more logic

with less effort. The ability to test larger partitions

allowed the team to target more encompassing

architectural and microarchitectural properties, rather

than the restricted subset of properties at lower-level

interfaces. This additionally enabled the application of

formal methods to tasks which hitherto would have been

infeasible, such as the re-creation of test-floor failures and

analysis of coverage results [8], both at larger design

partitions encompassing numerous communicating

blocks of logic.

This paper details the experience of deploying formal

methods on the pSeries POWER5 processor and the

communication subsystem, which consists of the pSeries

High Performance Switch (HPS) and the Switch Network

Interface (SNI). The motivation and value of using

functional formal verification is discussed, as well as the

strategy used in choosing where to deploy FFV within the

designs. The processor and communication subsystem

designs have differing design characteristics, which in turn

affects the selection of the formal algorithms that will

be most effective on those designs. Functional formal

verification on the processor core posed unique challenges

that were not encountered in the HPS or SNI designs.

One primary difference in the processor design is the use

of multi-phase latching schemes. The phase-abstraction

technique described in Section 5 details the methodology

developed to deal with this complexity, which helps make

FFV feasible on such a design. A second difference

between the designs is the type of partitioning

appropriate to the designs. Within the communication

subsystem, meaningful partitions could be readily

identified that fit within the size limitations of FFV.

Specific properties within these designs could be difficult

to fully prove at times, but some level of meaningful

coverage was generally attainable. In the POWER4

timeframe, a common challenge on the processor core

was simply to identify a meaningful partition of logic that

was within the size limitations of FFV. While numerous

design defects were found that were significant to the

integrity of the POWER4 design, the FFV deployment

was often restricted to lower-level partitions that could fit

within the size limitations of the tools, rendering the

overall architectural and microarchitectural coverage

attained through those efforts somewhat lacking. The

introduction of semiformal methods in POWER5 helped

alleviate these restrictions.

The remainder of this paper is organized as follows. In

Section 2 we describe the overall system under verification.

The motivation for FFV described in Section 3 and the

general FFV strategy described in Section 4 are common

to the experience of applying FFV on the HPS, the SNI,

and the processor core. The phase-abstraction techniques

described in Section 5 were developed in response to the

unique challenges of the processor core. Similarly, the

development of the semiformal verification methodology,

described in Section 6, was motivated largely by the

challenges of applying FFV to the POWER4 processor

core. Section 7 describes the FFV tools used in these

efforts, and Section 8 describes the results. In Section 9,

we summarize the work presented in this paper.

2. Design overview
The capabilities of the IBM eServer* p4 and p5 systems

are extended through the use of the pSeries High

Performance Switch (pSeries HPS) communication

subsystem [9]. The eServer p4 system is based on the

POWER4 microprocessor, and the eServer p5 system is

based on the POWER5 microprocessor. The POWER5

microprocessor was introduced in 2004 and is a derivative

of the POWER4 microprocessor design [10]. The

POWER5 microprocessor design features two-way

simultaneous multithreading (SMT), enabling the

processor to fetch instructions from more than

one thread. The POWER5 implementation allows

instructions to execute from each thread when possible,

and allows instructions from one thread to utilize all

execution units if the other thread encounters a long-

latency event. Fully verifying the SMT functionality was

a key verification challenge on POWER5; hence, much of

the formal verification resource was devoted to verifying

aspects of SMT. The total switching power of the

microprocessor core increased with the introduction of

SMT as more instructions executed per cycle. To help

offset this, the POWER5 design implements aggressive

dynamic power management to reduce the switching

power. The design uses a dynamic clock-gating

mechanism to gate off clocks to a local clock buffer if

dynamic power management logic detects that the set of

latches driven by the buffer will not be used during the

next cycle. The dynamic clock-gating implementation
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added complexities to the verification process, which is

described in Section 5.

The HPS System Area Network (SAN) architecture is

designed for efficient interconnection of processing and I/O

nodes. The HPS SANwas first introduced with the eServer

p4 system, providing large-scale system performance to the

50–200-Tflops range. Its high link bandwidth, robust

network scalability for high throughput to thousands of

endpoints, and support for multiple classes of traffic

types make it suitable for a wide range of uses in

high-performance server systems. The SNI provides

connectivity between separate nodes over the system area

network to formamessage-passing cluster. TheHPSchip is

a hardware element that routes traffic from one node to

another node, designed such that any node can connect to

any other node in the system. The SNI, also known as

the communication adapter, is a microcoded hardware

element that is a physical interface between the node and

the switch. The SNI and the HPS chip enable the exchange

of information at a very high data rate among a large

number of high-performance SMP nodes. Each SMP node

connects to an HPS switch board through an SNI

physically contained within the node itself, as shown in

Figure 1. The SNI was updated for the eServer p5 system to

allow for connection over a GXþbus. The same pSeries

HPS design serves both p4- and p5-based systems.

3. Motivation for FFV

Since the advent of POWER4, investment has been made

both in tools development and in execution, with the

ongoing goal of increasing the quality of the hardware

designs. This investment has included a significant focus

on FFV owing to the following types of benefits obtained

by those technologies:

� Executing FFV on a design tends to result in a

reduced number of test-floor escapes to (refer to the

subsection on re-creation of test-floor failures).

� Complex design defects tend to be discovered earlier

in the verification cycle, enabling more thorough and

robust fixes to be applied without risking a schedule

slip. Generally, the random simulation process first

exposes ‘‘simple’’ defects—those exposed by relatively

simple input patterns. Complex bugs are design flaws

that require a more stressful input stimulus to expose.

It can take random simulation running millions of

simulation cycles over the course of weeks ormonths to

achieve the necessary coverage to expose complex bugs.

� A higher-quality and more robust design often

results from the identification of performance bugs,

‘‘unexpected interface assumptions’’ required by the

design to ensure its functional correctness, and other

subtle problems that are discovered through the FFV

process.

� FFV tends to increase the understanding of the design

for both the designers and the verification team,

improving the quality of design documentation.

� Regression is superior in formal verification. FV

regressions are typically completed within hours or

days. In simulation, it can take months to achieve

Figure 1

HPS SAN topology.
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coverage goals that give a satisfactory level of

confidence in the regressed model.

The types of design defects found by FFV can generally

be categorized as one or more of the following:

1. Schedule advantage: Formal verification can

generally begin earlier than higher levels of

verification, such as unit or chip simulation. For

example, FFV may be performed on a partially

implemented design as soon as it compiles. Thus, the

discovery of some design flaws by FFV early in the

verification cycle is simply due to the fact that FFV

was the first to evaluate the logic. The resolution

of this class of design defects helps provide a more

stable model for subsequent simulation, and enables

a more robust design to be developed as bugs are

flushed out directly as logic entry is performed.

2. Exposure of gaps in simulation coverage: FFV may

reveal coverage gaps in the simulation environment.

For this class of design defects, it is often deemed

important for simulation to add the appropriate

modifications to driver/checker code so that

simulation can expose the failing behavior as well.

3. Corner-case and complex bugs: FFV can expose

corner-case bugs that are extremely difficult to find in

a random simulation environment. These represent

the true power of FFV to expose problems that

are too probabilistically difficult to expose with

simulation alone, that likely would be incorporated

in the chip design (commonly referred to as ‘‘slipping

into silicon’’) without formal analysis. Complex

bugs, as discussed above, are design flaws that would

likely be exposed in simulation once a certain level of

coverage was achieved. The exhaustive nature of

formal verification allows such problems to be

exposed earlier in the verification process.

4. Performance flaws: FFV can expose design defects

that would manifest themselves as performance

problems in the hardware design rather than

functional problems. This is an important class of

design defects, because it may be exceedingly difficult

to detect performance-related problems through

simulation, and very difficult to resolve them if

they are observed only on the test floor. Especially

in the area of high-performance computing (HPC),

performance is function, and performance-related

problems can be a reason to re-fabricate the design.

5. Spurious failure: Some defects exposed by FFV may

be deemed ‘‘impossible’’ in the current environment.

That is, the neighboring logic could not behave in

a way that drives the failing input sequence to the

block interface. Nevertheless, the designer may often

consider such a problem to be a true bug exposing an

‘‘unexpected interface assumption’’ required by the

design to ensure its correctness, and provide a fix.

Such fixes are often beneficial, since the behavior on

the interface may occasionally change at some future

point in time and possibly exhibit the previously

disallowed behavior, resulting in a true hardware

flaw. Overall, such changes tend to increase the rigor

of the design.

4. Strategy

Two important aspects of the formal methodology are

the selection of the design portions to verify and the

development of the formal specifications used to verify

those portions. In this section we address these topics.

Choosing logic for FFV

Not all logic that could be verified with FFV is actually

verified that way. The formal verification team works

with the simulation and design teams to identify logic that

would most benefit from formal coverage. The initial lists

of possible FFV candidates are then prioritized and

refined to a smaller list, which represents the logic deemed

most critical. As experience is gained with formal

methods, a set of guidelines on choosing logic for FFV

has evolved. These guidelines include the following:

� Logic that is difficult to stress through random

simulation. Logic that falls into this category often

has many independent interfaces and hence is prone

to corner-case bugs. It is difficult for random

simulation to fully exercise all possibilities of inputs

on those interfaces, risking late defect discovery and

incorporation in the chip design.
� Logic that is difficult to verify in simulation, and for

which correctness is essential to the overall design

integrity. Some properties, such as the absence of

deadlock1 or livelock,2 are nearly impossible to verify

in a simulation environment. Formal verification is

able to prove the correctness of such properties (if

the model size permits); such confidence cannot be

gained through simulation.
� Logic that was problematic in previous versions of the

design. Some portions of the design are evolutionary

in nature. If there was a test-floor escape in a

particular portion, that logic is likely to be considered

for proactive FFV in the next version of the design.

1Deadlock: A condition that occurs when two processes are each waiting for the other
to complete before proceeding. The result is that both processes fail to complete.
2Livelock: A condition that occurs when two or more processes continually change
their state in response to changes in the other processes. The result is that none of the
processes will complete.
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� New logic (i.e., not obtained by a simpler evolution

from a prior design) that is anticipated to be complex

and error-prone. For such complex new logic, FFV

is considered a strong mechanism to help stabilize

that logic more quickly.
� Logic that is not covered by simulation until late

in the verification schedule. Simulation sometimes

cannot be used to cover all logic in the desired

timeframe. In such cases, FV might be used to help

provide coverage.

Developing the specification

After a partition of logic has been chosen for formal

coverage, two elements must be determined: a) how

to drive legal stimulus to the interface, and b) what

properties to verify. Discussions with the design and

simulation team are held to help determine how to model

these specification aspects. As discussed in the subsection

on strategy for choosing between formal and semiformal

approaches, properties to verify tend to fall into the

following three categories, which may affect the choice

of formal tools and algorithms:

� ‘‘Sanity check’’ properties.
� Liveness properties.
� Functional correctness properties.

‘‘Sanity check’’ properties are simple invariants that

describe a good event that should always be true, or an

illegal event that should never occur—for example, ‘‘these

multiplexor selectors must be one-hot,’’ and ‘‘this state

machine should never be in more than one state.’’ In

many designs, this type of property holds true even with

completely random behavior of the driver, and it tends

to be very simple to code. When FFV is begun on a

new piece of logic, such properties are often good to

verify first. They can be extremely powerful in exposing

complex design defects, and have the benefit of being

straightforward to code and maintain, while offering

design insight that helps the development of the other,

more-encompassing types of properties.

The second type of property, a liveness property,

describes a desired or necessary system condition that

must eventually be reached [1]. This is a key area for

formal methods, since it is nearly impossible to verify

such correctness in a simulation environment. An

example liveness property is the following: ‘‘when a

request is received, the design must eventually issue an

acknowledgment.’’ Unbounded liveness properties tend

to be simple to code, and can be extremely powerful in

exposing complex bugs. However, unbounded liveness

properties tend to be much more computationally

expensive to verify than the other classes of properties.

For this reason, on larger design partitions, it is

occasionally beneficial to attempt to cast an unbounded

liveness property as a bounded liveness property. An

example of a bounded liveness property is the following:

‘‘when a request is received, the design must issue an

acknowledgment within 20 clock periods.’’ Most

unbounded liveness properties may be straightforwardly

translated to bounded liveness properties in this manner.

The only practical difficulties we have encountered in

such a translation are due to the presence of ‘‘fairness’’

constraints needed to enable a liveness proof. A fairness

constraint is one that specifies that a certain condition

must occur infinitely often. For example, the liveness

property ‘‘every low-priority request_lo eventually

receives an acknowledgment’’ may require the fairness

condition ‘‘the higher-priority request_hi is inactive

infinitely often.’’ Note that fairness conditions often

imply a strategy to translate more complex liveness

properties into bounded variants, such as ‘‘when a

request_lo is received, the design must issue an ack within

20 clock periods as long as request_hi remains inactive.’’

Translating unbounded liveness properties into bounded

ones requires manual effort, though the bounded

properties have the benefits of lesser computational

complexity to verify; being suitable for a wider range of

verification algorithms (such as semiformal algorithms);

and yielding more performance insight than mere liveness

properties alone.

The third class of properties, the functional correctness

properties, verify that the implemented design behaves

as dictated by its specification. These properties tend to

capture higher-level behavior—for example, ‘‘in response

to a particular sequence of events, the design produces

a correct sequence of responses.’’ These properties are

generally more difficult to code and maintain. Often,

a reference model that at least partially mimics the

predicted design behavior is needed to verify functional

correctness. Compared to the ‘‘sanity checks’’ and

liveness properties, the functional correctness properties

tend to have a greater number of ‘‘spurious failures,’’ in

which the property or driver is incorrect rather than the

design. The higher number of false failures often stems

from the design specification being inadequate, or

unexpected ‘‘special-case’’ situations that have to be

specifically accounted for. In spite of the extra burden

associated with functional correctness properties,

they are a valuable class to include in the verification

effort, often necessary for capturing architectural or

microarchitectural correctness. They are capable

of uncovering complex design flaws and exposing

performance-related design defects. The performance-

related bugs discovered through this type of verification

are extremely valuable in that such problems are often

difficult to detect and debug in a simulation environment.
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5. Design modeling
All design modules were written in Very high speed

integrated circuit Hardware Description Language

(VHDL) and converted into a netlist representation using

a VHDL compiler. All memory arrays (e.g., RAM

blocks) were expanded into a two-dimensional grid of

state elements called registers. The other state elements in

the processor core were designed using primarily level-

sensitive latches to help enable the degree of pipelining

needed for the high clock speeds therein. The technique

of phase abstraction was utilized to automatically

convert this logic into a more compact register-based

representation, as described below. The communication

subsystem was directly designed using registers.

The multi-phase latching scheme pervasive in the

processor core had posed challenges to formal verification

since POWER4 for several reasons. First, most formal

algorithms rely upon enumerating the reachable states of

the design under verification, which generally requires

exponential resources with respect to the number of state

elements in the design. Multi-phase latch-based designs

tend to comprise a significantly greater number of state

elements than functionally correspondent register-based

designs. Second, the depth of such multi-phase designs—

i.e., the number of verification timesteps necessary to

enumerate all reachable states—tends to be several times

greater than that of functionally correspondent register-

based designs. This is because an oscillating clock must

be modeled that sensitizes only a single phase of latches

per verification timestep, whereas a register-based design

may be evaluated at a full clock period per verification

timestep. This also tends to increase the amount of

computational resource necessary to obtain a given

amount of coverage using formal and semiformal

verification.

Phase abstraction [11] is a commonly used technique

for enhancing the coverage attainable with formal and

semiformal verification on multi-phase designs. Phase

abstraction converts latches of all but a single phase to

wires, and converts the remaining phase into registers.

This transformation is depicted in Figure 2 for a two-

phase design. Figure 2(a) depicts the original design, with

latch phases shown as L1 (level 1) and L2; the L1 latches

are clocked by an L1 clock, and the L2 latches are clocked

by an L2 clock (which is often modeled as opposite in

polarity to the L1 clock). Figure 2(b) shows the phase-

abstracted design, in which the L1 latches are converted

to wires and the L2 latches are converted to registers that

are ‘‘hot-clocked’’3 every timestep. More formally, the

resulting registers sample the data at their inputs every

timestep and re-drive that sampled data to their outputs

one timestep later; an oscillating clock is no longer used

to prevent sampling at certain timesteps.

While this phase-abstraction technique was initially

developed for POWER4, the aggressive power savings

utilized in POWER5 resulted in a significantly larger

diversity of clocking and latching schemes, including

‘‘clock gating,’’ whereby one may utilize functional logic

to dynamically turn the clocks on and off to portions

of the design. Such clock gating may clearly affect the

functional correctness of the design; if the clock used by a

portion of the design is turned off at the wrong time, it

may yield incorrect computations. The existing phase-

abstraction methodology thus had to be made more

flexible to enable classification of the various clocking

schemes and identification of the clock-gating schemes.

Our solution to this problem was to develop a new

methodology for annotating the HDL of the local clock

buffers to indicate whether they were gated or nongated;

in the former case, we also annotated the functional

‘‘clock-gating’’ signals that were used to turn off the

individual clocks. We next developed an automated

toolset that interpreted these annotations and performed

phase abstraction accordingly. This automated toolset is

integrated into the design importation path in the formal/

semiformal verification toolsets. The transformation

performed by the phase-abstraction toolset for non-gated

latches is as shown in Figure 2. The transformation of

gated latches differs; such latches are first transformed

into semantically equivalent non-gated variants,

then abstracted as in Figure 2. This preprocessing

transformation is depicted in Figure 3 for a gated L1

latch. The GATE signal is removed from the clock

expression to the L1 latch, enabling the L1 to be directly

clocked by a non-gated L1 clock. The GATE expression

selects a newly created multiplexor; when ‘‘1’’ (i.e., the

GATE is not disabling the latch clock), DIN (data in)

Figure 2

Phase abstraction: (a) Two-phase level-sensitive latch-based 
design. (b) Corresponding phase-abstracted register-based design.

L1 clock L2 clock

L1 latch
L2 latch

Register

Hot clock

(a)

(b)

3Hot-clocked: Clocked by an always-active clock rather than by an oscillating clock.
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combinationally drives the input to the L1 latch. When

‘‘0,’’ the L1 latch input is driven by a newly created L2,

used to hold the last-driven value of the L1 latch (or its

initial value, at time 0). With this transformation, all

resulting functional clocks may be held active (since

the gating is reflected by data feedback loops); all

nonfunctional (e.g., built-in self test) clocks are held

inactive during the functional verification.

Once these modifications to the methodology were in

place, the local clock buffers were easily annotated to

enable phase abstraction to identify the various clocking

schemes and perform the abstraction accordingly. The

formal and semiformal efforts were consequently able to

exploit the coverage benefits of phase abstraction despite

the more aggressive dynamic power-management scheme.

6. Semiformal verification
The term semiformal verification refers to a hybrid type of

design exploration that moves iteratively between random

simulation and a resource-bounded exhaustive search.

The simulation portion is able to quickly reach deep

states, and the bounded exhaustive search is able to reach

probabilistically difficult states. This approach avoids the

state–space explosion issue encountered in a pure

unbounded exhaustive search, yet yields much higher

coverage than a standalone simulation run [12]. This

process is depicted in Figure 4. The red circles indicate

the exhaustive bounded search of the state space of the

design, and the zigzag lines indicate random simulation.

The depth of each exhaustive bounded search is

controlled by some resource bound, possibly a time limit

or a depth limit. The depth of each random simulation

run is also bounded by a resource limit. Each semiformal

iteration consists of a bounded exhaustive search phase

and a random simulation phase. If any design defects are

exposed during this process, they are reported. Otherwise,

the semiformal engine selects a state encountered during

its previous processing and seeds the next iteration into it.

The next phase of the exhaustive search and random

simulation is started from this seeded state. This choice is

often made using some type of coverage analysis to select

a state which seems the most different from previously

encountered states, or one which heuristically seems the

closest to a bug.

As depicted in Figure 4, the search begins from the

designated initial state of the design at the bottom left.

Two bugs are shown in the design; one is reachable rather

shallowly from the initial state of the design (at the left),

and the other is reachable only very deeply from the

initial state (at the right). The red circles surrounding the

initial state indicate bounded-model checking. Note that

the initial bounded-model check comes very close to

hitting the leftmost bug. If given more resources, this

search likely would have generated a ‘‘shortest trace’’

exposing this bug (though note that exhaustive bounded

search generally requires exponentially increasing

resources as its depth increases, often rendering it unable

to detect deeper design defects on larger designs). As

depicted, numerous semiformal iterations are performed

before this bug is found, in this case yielding a much

longer trace than necessary. Overall, the shorter

exhaustive-search-only traces tend to be much easier

to debug for several reasons. First, they contain less

information because of their shorter length. Second, the

formal algorithms tend to illustrate only ‘‘necessary’’

toggling of the design logic to expose the design defect,

whereas random-simulation-based traces tend to contain

a large degree of unnecessary activity.

For deep bugs such as the one to the right, random

simulation and semiformal verification are often the only

approaches to expose such flaws; exhaustive search alone

Figure 4

Illustration of semiformal search.

Completed
exhaustive search

Unexplored
state space

Random
simulation

Initial state

Bug

Figure 3

Transformation of gated-clock latches: (a) Original gated-clock 
latch. (b) Semantically equivalent non-gated model.
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fails to penetrate deep enough on larger designs. The

motivation for using semiformal verification instead of

random simulation alone is generated by the immense

increase in coverage achieved by the bounded exhaustive

search in semiformal verification.

Methodologically, it is often beneficial to apply several

types of semiformal search in parallel on a given design.

One type performs many semiformal iterations, allowing

relatively little resource for each individual exhaustive

search and simulation search per iteration. This type of

run is useful to quickly obtain relatively high coverage

throughout the state space. Another type devotes large

resources to each exhaustive search phase, allowing the

exhaustive search to proceed as deeply as possible to help

obtain short traces and to obtain higher coverage local to

the semiformal-seeded states. With respect to Figure 4,

the former type of application correlates to more yet

smaller red circles spread throughout the state space,

whereas the latter correlates to fewer yet larger red circles

spread throughout the state space.

In random simulation frameworks, the notion of

‘‘random biasing’’ is critically important to ensure

the highest coverage. Semiformal verification is less

dependent on random input stimulus, since it requires

only that simulation come relatively near a bug, then

may use exhaustive search to fill in the gap and locate

it. Nevertheless, for highest coverage, semiformal

verification is still dependent upon random simulation to

provide a good sampling of the state space—i.e., to touch

states that are at least ‘‘near’’ to all reachable states—to

help ensure that no design defects are missed. Random

biasing of certain types of inputs is thus practically

important in a semiformal verification methodology.

For example, a design may have a flush input which, if

asserted, will bring the design back to the region of its

initial state. It may be necessary to toggle this input

occasionally to ensure that all design flaws are exposed,

but this may be required only very infrequently (e.g., once

per 1,000 timesteps rather than once per two timesteps

on average). The biasing of such an input may thus

be adjusted to prevent the random simulation from

effectively getting stuck near the initial states, in turn

reducing semiformal coverage of deeper states. Note

that the exhaustive search itself ignores all biasing by

definition.

7. Formal verification tools
Two internally developed formal verification tools,

RuleBase and SixthSense, were used in the POWER5

verification. RuleBase [6] was developed by the IBM

Haifa Research Laboratory and initially released in 1996.

At the core of the original RuleBase was an enhanced

version of Symbolic Model Verifier (SMV), a symbolic

model checker licensed from Carnegie Mellon University

[13]. RuleBase has had a number of enhancements that

were delivered in the POWER5 timeframe, which are

detailed in the next section. Midway through the

POWER5 verification cycle, the internally developed

IBM SixthSense semiformal verification tool was

released. The release of SixthSense allowed the

verification team to target blocks of logic that were too

large for pure exhaustive search techniques. RuleBase and

SixthSense are described in the next sections, followed

by a section detailing the strategy for choosing a

particular tool for given verification problems.

RuleBase

In the POWER5 verification timeframe, the IBM Haifa

Research team made available to internal users a beta

release of the RuleBase Parallel Edition (PE) [14].

RuleBase PE, which became publicly available in

February 2004, offers many enhancements over the

original version of RuleBase. In RuleBase PE, additional

verification engines are made available to the user.

RuleBase PE dispatches the selected verification engines

to run on the same problem in parallel. The results of the

multiple engines are coordinated such that if one engine

finds a failure or proves the property, the other engines

are halted. This allows the user to dispatch multiple

engines, or even the same engine with different runtime

parameters, to work on a single problem. In general, the

user does not know which engine may perform the most

efficiently for a given problem. Thus, dispatching multiple

engines can lead to savings in verification time. The

verification engines that were used in the work reported

in this paper are briefly described here:

� Discovery: Discovery is an optimized SMV-based

model checker. Safety properties are evaluated on the

fly during computation of the reachable states [14]. A

safety property describes a condition that must not be

violated at any instance in time. For other properties

(e.g., liveness), the reachable states are used to

simplify the model before classical model-checking

algorithms are deployed to perform the verification.

Discovery can evaluate multiple properties in a single

run, and can find counter-examples (cases in which

the property has been violated) as well as prove

properties.
� Satisfiability engine (SAT): SAT is a bounded-model-

checking engine that performs bounded exhaustive

search from the designated initial states of the design

in an attempt to find a case in which the property

under test does not hold (refer to the initial exhaustive

search in Figure 4). SAT can verify only a single

property at a time (safety only), and cannot generate

proofs. The SAT engine in RuleBase PE is an
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enhanced version of the Princeton Chaff SAT

engine [15].
� Unfolding: The Unfolding engine is a Boolean

Decision Diagram (BDD)-based bounded-model

checker with under-approximation support to enable

deeper yet incomplete searches [16]. Unfolding

attempts to find violations of safety properties, and

may evaluate multiple properties in a single run, but

generally cannot yield proofs.
� Beelzebub: Beelzebub is a BDD-based adaptive search

engine combining forward and backward search as

well as various approximations. It operates on a

single safety property at a time and is most effective at

finding fails, though it is also able to complete proofs

[17].

RuleBase also incorporates several reduction

techniques that automatically reduce design size before

the above verification engines are called, which reduces

their degree of exponential blowup. RuleBase utilizes a

set of unique languages: the Environment Description

Language (EDL) for writing the driver for the HDL logic,

and Sugar [18] for writing properties. A more complete

discussion of EDL and Sugar can be found in [19].

SixthSense

SixthSense [20] is a semiformal verification toolset that

was developed in the IBM Systems and Technology

Group, overlapping with the development of the IBM

combinational equivalence checker Verity [21].

SixthSense is a novel transformation-based verification

toolset; it integrates numerous automatic complexity-

reducing abstraction algorithms to iteratively and

synergistically simplify and decompose complex problems

into simpler ones that may be processed more easily by

terminal verification algorithms. Example abstractions

range from straightforward reduction techniques, such as

constant propagation and redundancy removal, to more

novel and aggressive transformations, such as minimum-

area (min-area) retiming. The incorporated verification

algorithms range from random simulation to pure formal

analysis to a hybrid semiformal search that iterates

between random simulation and a resource-bounded

exhaustive search, as discussed in Section 6. The primary

engines that were used in the work reported in this paper

are the following:

� Semiformal search: This engine performs hybrid

semiformal search that moves iteratively between

random simulation and exhaustive bounded search

(primarily using the SAT engine described below).

This engine is the primary bug finder of SixthSense.

� SAT: SixthSense uses the structural SAT solver

shared with Verity, which integrates SAT algorithms

with structural simplification techniques and BDD-

based analysis [22]. The robust fusion of these

techniques enables applications for deep bounded

analysis under semiformal search, even on large

designs.
� Redundancy removal: There are two engines in

SixthSense that perform redundancy removal.

One performs simpler combinational analysis

on sequential designs to eliminate constant and

functionally equivalent gates [22]. The other performs

more aggressive sequential analysis (e.g., induction) to

achieve a similar type of reduction; it requires greater

computational resources, though it yields greater

reductions than the first engine. The latter engine is

also useful in providing quick proofs of correctness

in certain cases, even on very large designs.
� Min-area retiming: This engine applies the design

technique of retiming (relocating registers beyond

combinational gates) to reduce the total number of

registers in the design [23]. Particularly on the highly

pipelined processor core, retiming tends to be a very

powerful reduction technique, capable of yielding

50% or more register reductions than would be

possible through redundancy removal alone. The

synergy between retiming and redundancy removal

tends to yield incrementally greater reductions

through repeated applications.
� Reachability: This engine evaluates the reachable

states of the design to enable proofs. As with any

reachability engine, this tends to be the only size-

limited engine used in SixthSense, prone to memory-

outs beyond several hundred registers.

SixthSense uses a VHDL-based specification language

called BugSpray. BugSpray is used both for specifying

safety properties to check for the design under verification

and for specifying the random drivers that govern the

behavior of the input stimulus applied to the design under

verification. The Bugspray language is presented in more

detail in [24].

Capacity of tools

The capacity of the formal verification toolset has

increased significantly since the POWER4 verification

work. At that time, RuleBase, the primary formal

verification tool, was capable of exhaustively verifying

design partitions of up to approximately 300 registers

after reductions [6]. RuleBase could load initial designs

(before automatic reductions) of up to a few thousand

registers. Enhancements to RuleBase since then have

allowed for much larger initial designs to be loaded
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(in the ten-thousands of registers). SixthSense became

available during POWER5, and can load initial designs

with 100,000þ registers; the largest model imported into

SixthSense (though not on this project) had several

million registers. Nevertheless, note that formal

algorithms generally require exponential resources with

respect to design size, particularly register count. Thus, as

the size of the reduced design increases, the likelihood of

completing a proof with either tool decreases; semiformal

verification and bounded-model-checking algorithms

may then be the best mechanisms to perform bug-hunting

for larger designs.

The introduction of bounded-model checkers and

semiformal verification provided the ability to work with

increasingly larger design partitions; this allowed efforts

to be dominated by the type of architectural and

microarchitectural properties for which verification was

desired, instead of by the size of the design portions that

could be fitted into the formal tools. While full proofs

may not always be obtained, these techniques have

proven to be powerful bug finders, able to expose

complex corner-case problems that would be difficult to

uncover using random or directed simulation approaches

alone. Verified block sizes are listed for the HPI, SNI, and

processor in Section 8.

Strategy for choosing between formal and

semiformal approaches

In verifying a portion of the design, the strategy used

in choosing between formal and semiformal approaches

has been governed largely by the size of the reduced

design. If the reduced design contains more than 400

registers, it is highly likely that a semiformal or bounded-

model-checking effort will be the best approach, since the

chance of obtaining a proof may be diminished. In other

words, as the size of the reduced design increases, the

verification goal often moves away from obtaining full

proofs to exposing design flaws. In some cases, it is

known at the beginning that the design size is likely to

be too large for an exhaustive effort. In those cases, a

semiformal approach is taken from the start; obtaining

proofs on such larger designs is desirable but is not

deemed as critical as obtaining high semiformal coverage

on the more encompassing, larger design partition. In

some cases, after (or in parallel to) a higher-level

semiformal effort, the higher-level design partition has

been further pruned to enable the application of formal

techniques to obtain proofs in order to ensure the highest

coverage overall. This pruning is performed either by

choosing a subset of the higher-level design partition to

verify in isolation, or by overconstraining and manually

abstracting the larger design partition. In such cases, the

semiformal efforts have often been very useful in helping

to identify the location of design flaws and complexity

within the higher-level design partition, in turn yielding

insight into which smaller portions of the design should

be targeted by pure formal verification.

As another point, the semiformal algorithms in

SixthSense and the bounded-model-checking algorithms

in RuleBase support only safety properties. If the goal is

to prove liveness properties and design size is amenable,

RuleBase is the preferred tool. Otherwise, it is often

desirable to attempt to cast the unbounded liveness

properties as bounded liveness properties that are safety

properties and thus amenable to a wider variety of

algorithms.

8. Results
In this section we discuss the application of FFV to

portions of the pSeries High Performance Switch, the

pSeries Switch Network Interface, and the POWER5

microprocessor. We provide details of the portions of

these designs that were verified, the tools used for these

efforts, and the results of these efforts.

High Performance Switch (HPS)

The pSeries HPS chip is the switching element of HPS

System Area Networks; it is the fourth generation of the

IBM Scalable Parallel switch chip [25]. The pSeries HPS

supports the high-bandwidth, low-latency network needs

of a distributed shared memory (DSM) system. Figure 5

shows a high-level view of the HPS chip.

FFV was executed on Pass2 and Pass3 of the pSeries

HPS chip. Formal verification was not started on Pass2

until well after simulation had stabilized. At this point

in time, the design was stable and there was working

hardware for Pass1 on the test floor. Thus, the formal

verification effort targeted only areas that were difficult to

verify in a random simulation environment. The main

focus was on the verification of arbitration properties

within the output port of the switch chip. The output port

Figure 5

High-level view of the pSeries HPS chip.
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is responsible for transmitting data provided to it by

other internal device logic. Each output port performs an

arbitration among the competing input port requests,

central buffer requests, and service requests. The

properties verified for the output port included aspects

of the arbitration schemes designed to meet performance

requirements. These properties are difficult to evaluate in

a random simulation setting. General liveness properties

were also verified. Additionally, limited FFV work was

targeted on the input port, primarily for performance-

related functions.

For the HPS Pass3, FFV support was applied late

in the verification cycle to assist the simulation team

in validating error injection functionality. The FFV

environment was able to drive specified error conditions

and determine that the correct local-level error detection

and recovery action had been taken. The error injection

testing relied heavily on the newly delivered SAT

engine in the RuleBase tool.

Table 1 summarizes the work on the HPS. Even though

the FFV effort was limited in duration and scope, it

uncovered 37 design defects, 10% of the overall number

of design problems found throughout the Pass2/Pass3

verification effort.

Switch Network Interface (SNI)

The IBM Scalable Parallel (SP*) Switch2 Adapter, the

communication adapter for use with POWER3 systems,

was the first project within the SP verification group to

apply FFV on a large scale. During the verification effort,

FFV located approximately 200 design defects using

RuleBase out of a total of 771 defects. Building on its

success in the SP Switch2 Adapter effort, the FV team

engaged the design and simulation team at the start of the

verification process for the follow-on to that design, the

pSeries Switch Interface (SI) chip, which is an internal

component of the SNI. The SI chip provides message-

passing capabilities for eServer p4 systems across a GX

bus. The design was modified to provide this capability to

eServer p5 systems across a GXþbus. The function within

the SI chip targeted for FFV coverage remained largely

unchanged between the two designs.

In contrast to the SP Switch2 Adapter, a key portion

of the SI chip is the microcode-driven Inter-Partition

Communication (IPC) sequence engine. A high-level

diagram of the SI chip is shown in Figure 6. The IPC was

the primary area of focus for the FV team because it was

deemed prone to corner-case bugs. In addition to the

IPC, the Transport Macro (FTM) and the Media Access

Controller (MAC) arbiter were identified for formal

coverage. The FTM is responsible for ensuring end-to-

end in-order delivery of data. The MAC is responsible for

transmission of packets across multiple virtual lanes. Of

an initial eleven FV candidates, seven were chosen for

formal analysis. The decision was based on design nature,

simulation coverage, and FV resources. Table 2 lists the

partitions verified using FFV. RuleBase was used for all

blocks on the SI chip. The Discovery engine was deployed

in all rules, and in the majority of rules, complete proofs

were obtained. Some restrictions were required in order

to control design size to enable proofs. For example, in

the MAC arbiter verification, only two of eight virtual

lanes were used. The SAT engine proved to be very useful

in exposing design defects for rules that were challenging

for the Discovery engine. In the largest of the partitions

verified, the IPC packet mover, complete proofs were

Table 1 FFV summary for the HPS chip (RuleBase was used in all cases).

Block name Initial

model size

(no. of

registers)

No. of

inputs

Average size

of reduced

model (no. of

registers)

No. of

rules

written

No. of

completed

proofs

Engines used Maximum

depth

of logic

Output port 2,071 506 70–320 80 62 Discovery, SAT ;3,500

Input port 2,514 549 180–330 34 27 Discovery, SAT ;2,200

Figure 6

High-level diagram of SNI chip.

SR
A

M

GX�
Elastic

interface
2

E
la

st
ic

in
te

rf
ac

e
E

la
st

ic
in

te
rf

ac
e

M
ed

ia
 a

cc
es

s
co

nt
ro

lle
r

M
ed

ia
 a

cc
es

s
co

nt
ro

lle
r

Route/path
table TOD

macro

SVC
macro

Inter-partition
communication

facility
(IPC)

GX+
macro

M
A

C
 a

rb
ite

r

G
X

�
 b

us

Registers
macro

Transport macro

Transport macro

Echo
macro

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 R. M. GOTT ET AL.

575



not obtained for 20 rules. Two additional engines,

Unfolding and Beelzebub, were deployed in these

cases. The Unfolding engine was able to uncover

bugs that were not exposed by any other engine.

The FFV effort discovered a total of 95 design defects

out of a total of 809 defects. Of the 95 defects exposed

in FFV, 5% to 10% were characterized as corner-case

bugs, which were unlikely to be exposed through

random simulation.

Microprocessor

There were two types of formal verification applications

on the processor core: proactive work and re-creation of

test-floor failures. The goal of the proactive work was

to expose design flaws before the design was fabricated.

Re-creation of a test-floor failure was undertaken with

FFV if a bug exposed on the test floor in the fabricated

hardware could be narrowed to a set of design

components, and it was deemed difficult for traditional

simulation to re-create the test-floor fail condition.

Proactive work

The components of the POWER5 core that were

proactively verified with FFV were chosen primarily

because of the amount of new and complex functionality

added to the component since the prior design generation.

One significant cause of such functionality modification

was the addition of simultaneous multithreading (SMT)

to the POWER5 core.

Applying formal verification early in the design cycle

can help to quickly stabilize the design. Design flaws

found early in the design cycle permit fixes that can be

more robust and extensive because of the amount of time

available to perform verification and synthesis on the

modified design. An example of such an application was

the FFV effort on the Branch Instruction Queue (BIQ).

This logic was chosen because of design changes for SMT

and the high bug count of its counterpart on POWER4.

Formal verification began while the component evolved

from the POWER4 implementation to support SMT.

This allowed verification of the modifications as they

were entered, enabling design defects to be identified

immediately and fixed. Formal verification of the BIQ

uncovered more than 20 defects, many of which were

quite complex in nature.

Later in the design cycle, formal verification is useful to

uncover the complex design flaws that simulation has not

exposed. As an example, the Instruction Prefetch Buffer

(IFPF) was formally verified later in the design cycle. This

logic had been problematic in POWER4 and was changed

for POWER5. In the POWER4 timeframe, RuleBase was

used on the IFPF. While numerous design defects were

exposed in that effort, this logic posed size problems

for the formal algorithms and had to be significantly

constrained. For example, its buffer size was cut in half

to reduce complexity for the formal algorithms. For

POWER5, SixthSense was available in time for the

formal verification effort. This allowed semiformal

verification to be applied to the logic without any

constraints, exposing six bugs. The majority of these

design flaws were very complex in nature and required the

unconstrained environment. For example, some of the

bugs required more than half of the buffer to be active.

One showed a possible input stimulus that the simulation

environment was not exercising; the simulation

environment was subsequently augmented to exercise

this behavior.

With the advent of POWER5, the use of SixthSense

to check equivalence between two design points was

realized. During the design cycle, the condition register

Table 2 FV summary for the SI chip (RuleBase was used in all cases).

Block name Initial

model size

(no. of

registers)

No. of

inputs

Average size

of reduced

model (no. of

registers)

No. of

rules

written

No. of

completed

proofs

Engines used Maximum

depth

of logic

MAC arbiter 4,000 1,063 ;200 14 14 Discovery, SAT 25

FTM receiver 1,353 1,085 160–200 37 37 Discovery 214

IPC packet mover 8,002 730 200–460 126 106 Discovery, SAT,

Unfolding, Beelzebub

788

IPC data mover 700–6,300 175–1,148 50–210 298 268 Discovery, SAT 496

IPC packet mover interface 1,520 347 50–160 32 32 Discovery 42

IPC array interface (arbiter) 39 20 16–33 18 18 Discovery 344

IPC sequencer 1,730–3,269 197–434 70–185 51 36 Discovery 124
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file was redesigned to improve timing. The design change

had to preserve sequential input/output equivalence with

respect to its designated initial states. Since the redesign

entailed a change in the sequential implementation of the

design (i.e., the two versions of the design had different

state points), Verity [21] could not be readily used to

verify this equivalence. SixthSense was therefore used for

this purpose, composing the two versions of the design,

correlating their inputs, and adding assertions to check

that the corresponding output pins evaluated to the same

sequence of values. This effort uncovered three design

flaws in the new design. Once the design flaws were fixed,

the SixthSense reduction and transformation engines

efficiently proved that the two designs were equivalent

under all possible input stimulus.

Re-creation of test-floor failures

Re-creation of a test-floor failure is the process of

identifying the cause of a logic problem encountered in

a fabricated chip. This process has become a powerful

use of formal verification, because any design flaw that

has reached silicon has already evaded a great deal

of simulation. For this reason, formal verification is

often desired to increase the confidence in any fixes.

Additionally, sometimes the information obtained on the

test floor provides only a vague idea of the true location

of the problem, and a complete trace of the fail is desired

to facilitate a fix. Test-floor data is used to define directed

simulation cases to attempt to re-create the failure. For

difficult corner-case bugs, however, even directed

simulation may be inadequate to recreate it. In contrast,

the coverage achievable through formal verification is

often powerful enough to obtain a complete trace

exposing the design flaw. Sometimes formal verification

can illustrate multiple scenarios of a defect, ensuring that

the resulting fix is robust and covers all failing scenarios

instead of merely the first encountered one. In some cases,

the re-creation effort evolves into a proactive bug-finding

effort for the next fabrication of the design.

An example of the power of FFV in the re-creation of

a test-floor failure was demonstrated in the Instruction

Effective to Real Address Translation (ERAT) logic.

Formal verification was engaged on this logic after an

address translation error was encountered on the test

floor. SixthSense was used for this effort because of the

size of the desired model, which included the Instruction

ERAT logic as well as several neighboring control blocks.

After coding the environment and assertion to target the

design flaw, an unknown bug was identified in addition to

re-creating the known problem. This effort then evolved

into a proactive type of verification to check additional

functionality prior to the next refabrication. During this

work, several other design defects were discovered, all

present in the prior fabricated hardware. All of these bugs

were very complex corner cases, as is evident by the fact

that they had slipped into silicon. Some of these proved

too difficult to recreate with directed simulation efforts or

in hardware, even given the data from the formal traces.

Microprocessor and memory subsystem work

summary

In Table 3 we provide a summary of the processor design

components to which we applied FFV. The Branch

Instruction Queue (BIQ) maintains information about

branches in case of branch mispredictions. The Data

ERAT LRU encodes a least-recently-used algorithm for

the Data ERAT. The Segment Lookaside Buffer (SLB)

control logic provides arbitration for address translator

logic. The Fabric Bus Controller (FBC) logic, as well as

the Sidecar logic, comprise data- and control-intensive

logic responsible for routing data to and from various

internal interfaces and system buses. The FBC Dataflow

and MCM model leveraged the power of semiformal

verification to compose some of the smaller components

into larger partitions, against which more encompassing

architectural properties were checked. The IFPF is the

instruction prefetch logic. The Completion Subunit tracks

the completion of instructions. Both the Data and

Instruction ERAT logic were formally verified. The

Condition Register (CR) Mapper is a register-renaming

unit for the condition registers. The Instruction Fetch

Address Register (IFAR) implements program-counter

functionality. The SCMD is a memory controller.

Finally, the ERAT Miss Queue (EMQ) is a queue for

address translations. Overall, a total of 41 design flaws

were proactively exposed by these efforts on the

microprocessor core and memory subsystem.

9. Summary
Formal verification has matured from an academic

interest to a verification method applicable to industrial

designs, and the successful deployment of FFV

technologies on the IBM pSeries designs reflects this

growing maturity. The improvements in formal tools

have allowed larger partitions of logic to benefit from

formal coverage. In the POWER4 timeframe, a common

challenge on the processor core was to simply identify a

meaningful partition of logic that was within the size

limitations of FFV. That is, when sizing the design

for FFV, partitions within the size limitation of the

current tools were often deemed ‘‘too small’’ to capture

interesting architectural or microarchitectural properties.

Larger partitions often required many over-constraints

on the design (e.g., disabling or restricting certain

behavior of the design) such that it lessened the

confidence in the overall coverage attained even when

a proof was completed. Thus, while a significant number

of high-quality bugs were discovered using FFV during
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the POWER4 core verification effort, the overall

formal coverage attained from an architectural or

microarchitectural point of view was rather limited. Most

design defects tended to reflect violations of lower-level

block assertions. Additionally, the formal work done

on the POWER4 processor core tended to operate at

the level of smaller blocks, whose interfaces were often

complicated, not well documented (aside from the FFV

effort), and prone to frequent changes. These factors led

to an overall increase in the amount of work necessary

to obtain formal results. With the improvement in the

formal toolset, specifically the introduction of semiformal

verification, higher-level properties became candidates

for formal coverage in the POWER5 timeframe.

Across the High Performance Switch, the Switch

Interface Chip and the POWER5 processor, FFV was

used to discover complex design flaws, of which a fair

number were characterized as unlikely to be detected

by simulation. As FFV has proven its value over the

course of POWER4 and POWER5, we expect continued

investment in tool development and application on IBM

designs. Close collaboration with the simulation and

design teams will remain essential as FFV is used to

augment simulation coverage, targeting the areas deemed

most complex for the traditional simulation environment.

Generally, if simulation misses a logic bug, it is because

the random environment could not create the conditions

necessary to expose it. If FFV misses detecting a logic

flaw, the most likely reason is that a rule was not written

that would expose it. In future projects, means of better

leveraging verification resources between simulation and

FFV will be explored, e.g., through reuse of specifications

and by increased exploitation of the growing capacity of

the formal toolsets to improve the coverage of a larger set

of verification tasks. As the formal tools continue to

improve and evolve, continued deployment of these

technologies in the ongoing effort of improving our

hardware designs is expected.

Table 3 FFV summary for the POWER5 microprocessor core and memory subsystem.

Block name Initial model

size (no. of

registers after

phase

abstraction)

Average size

of reduced

model (no. of

registers)

No. of

inputs

No. of

rules

written

No. of

completed

proofs

Tool used Maximum

depth

of logic

BIQ 5,785 98–124 529 63 63 RuleBase 27

Data ERAT LRU 1,012 40–42 63 2 2 RuleBase 5

SLB Control 431 124–125 80 8 8 RuleBase 54

FBC NCU Controller 407 31–47 246 8 8 RuleBase 14

FBC GX Controller 119 34 67 9 9 RuleBase 18

FBC L2 Controller 271 35–60 97 15 15 RuleBase 11

FBC L3 Controller 268 46–75 120 6 6 RuleBase 11

Sidecar 323 117 28 2 2 RuleBase 72

Sidecar þ Arbiter 532 221 28 2 2 SixthSense 76

FBC data flow 3,954 946 5,394 4 4 SixthSense 142

FBC MCM Model 3,800 823 40 4 0 SixthSense unknown

IFPF 11,220 966 464 19 0 SixthSense unknown

Completion Subunit 17,622 3,027 461 7 0 SixthSense unknown

Data ERAT 45,637 19,913 6,874 4 0 SixthSense unknown

Instruction ERAT 9,512 2,072–2,205 1,456 18 0 SixthSense unknown

CR Mapper 17,355 2,371 604 6 0 SixthSense unknown

IFAR 3,533 182 763 2 0 RuleBase and

SixthSense

unknown

CR Register File 1,398 1,264 84 21 21 SixthSense unknown

SCMD 2,259 764 105 2 0 SixthSense unknown

EMQ 1,892 1,086 217 3 0 SixthSense unknown
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*Trademark or registered trademark of International Business
Machines Corporation.
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