Functional formal
verification on designs of
pSeries microprocessors

R. M. Gott

J. R. Baumgartner
P. Roessler

S. I. Joe

and communication

subsystems

This paper discusses our experiences and results in applying
functional formal verification (FFV) techniques to the design of
the IBM pSeries® microprocessor and communication subsystem.
We describe the evolution of FFV deployment across several
generations of this product line, including tool and algorithmic
improvements, as well as methodological improvements for
prioritizing the portions of the design that should be considered
for formal verification coverage. Improvements made in the
formal verification toolset, including the introduction of
semiformal verification and bounded-model-checking algorithms,
have allowed increasingly larger partitions to become candidates
for formal coverage. Other tool enhancements, such as phase-
abstraction techniques to deal with clock gating schemes, are
presented. Overall, numerous complex design defects were
discovered using formal techniques across the microprocessor
and communication subsystem, many of which would likely

have escaped to the test floor.

1. Introduction

Functional formal verification (FFV) is the process of
proving that a design adheres to its specification. Unlike
simulation-based approaches, which may fail to expose
certain design flaws, formal verification yields complete
coverage with respect to the properties specified [1, 2].
The practical limitation of FFV stems from the fact that
formal algorithms tend to require exponential resources
with respect to design size. Thus, in practice, FFV can
only be applied to the smaller design components.

The task of developing a complete set of correctness
properties to be verified at these lower design levels
requires careful review by the design and verification
teams. While FFV is guaranteed to expose all flaws
with respect to the specified properties, design defects
(commonly referred to as “bugs”) may slip through

the process because of omitted or improperly defined
properties. Simulation environments, which scale to the
chip and system level, benefit from the fact that at these
higher levels even design flaws which are not targeted by
dedicated checks are likely to propagate to other logic

and ultimately be exposed. Thus, the exhaustive coverage
for specified properties yielded by formal verification and
the broader sampling of coverage yielded from simulation
are complementary methods in the verification process.
Formal verification has been identified in the hardware
development industry as a critical technology in the
overall design and verification process because of
its ability to expose design flaws that reside in rarely
exercised paths. Such paths are probabilistically difficult
to hit in a random simulation environment and can be
challenging to hit in the fabricated hardware. Design
defects that reside in these rarely exercised paths are
referred to as “corner-case” bugs. These design flaws
that remain unexposed throughout the pre-fabrication
verification process lead to considerable expense in
schedule delays once the problem is ultimately exposed
on the test floor or in the field. Thus, industry has
increasingly made use of formal verification techniques
to catch such corner-case problems before fabricating
the design. For example, bounded-model-checking
techniques have been applied to the design of the Alpha

©Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/05/$5.00 © 2005 IBM

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

R. M. GOTT ET AL.

565

566

microprocessor memory subsystem [3], and Intel has
invested in formal tools and methodologies to expose
problems in its microprocessor designs [4, 5]. FFV has
been deployed on the IBM pSeries* processors and
communication subsystems since 1996 with the
POWER3* chips. The POWER3 microprocessor
verification effort used an early version of RuleBase [6],
a formal verification tool developed by the IBM Haifa
Research Laboratory, in an experimental and limited
fashion. A larger formal effort was deployed on the
POWER4* microprocessor [7]. Through the POWER4
effort, the verification team gained experience in using the
formal tools as well as in choosing the most appropriate
logic to verify. For the POWERS* verification work,
improvements in the formal verification tools, including
the availability of semiformal algorithms, allowed the
verification team to test larger blocks of logic. This
enabled formal verification to be deployed on more logic
with less effort. The ability to test larger partitions
allowed the team to target more encompassing
architectural and microarchitectural properties, rather
than the restricted subset of properties at lower-level
interfaces. This additionally enabled the application of
formal methods to tasks which hitherto would have been
infeasible, such as the re-creation of test-floor failures and
analysis of coverage results [§], both at larger design
partitions encompassing numerous communicating
blocks of logic.

This paper details the experience of deploying formal
methods on the pSeries POWERS processor and the
communication subsystem, which consists of the pSeries
High Performance Switch (HPS) and the Switch Network
Interface (SNI). The motivation and value of using
functional formal verification is discussed, as well as the
strategy used in choosing where to deploy FFV within the
designs. The processor and communication subsystem
designs have differing design characteristics, which in turn
affects the selection of the formal algorithms that will
be most effective on those designs. Functional formal
verification on the processor core posed unique challenges
that were not encountered in the HPS or SNI designs.
One primary difference in the processor design is the use
of multi-phase latching schemes. The phase-abstraction
technique described in Section 5 details the methodology
developed to deal with this complexity, which helps make
FFV feasible on such a design. A second difference
between the designs is the type of partitioning
appropriate to the designs. Within the communication
subsystem, meaningful partitions could be readily
identified that fit within the size limitations of FFV.
Specific properties within these designs could be difficult
to fully prove at times, but some level of meaningful
coverage was generally attainable. In the POWER4
timeframe, a common challenge on the processor core

R. M. GOTT ET AL.

was simply to identify a meaningful partition of logic that
was within the size limitations of FFV. While numerous
design defects were found that were significant to the
integrity of the POWER4 design, the FFV deployment
was often restricted to lower-level partitions that could fit
within the size limitations of the tools, rendering the
overall architectural and microarchitectural coverage
attained through those efforts somewhat lacking. The
introduction of semiformal methods in POWERS helped
alleviate these restrictions.

The remainder of this paper is organized as follows. In
Section 2 we describe the overall system under verification.
The motivation for FFV described in Section 3 and the
general FFV strategy described in Section 4 are common
to the experience of applying FFV on the HPS, the SNI,
and the processor core. The phase-abstraction techniques
described in Section 5 were developed in response to the
unique challenges of the processor core. Similarly, the
development of the semiformal verification methodology,
described in Section 6, was motivated largely by the
challenges of applying FFV to the POWER4 processor
core. Section 7 describes the FFV tools used in these
efforts, and Section 8 describes the results. In Section 9,
we summarize the work presented in this paper.

2. Design overview

The capabilities of the IBM eServer* p4 and p5 systems
are extended through the use of the pSeries High
Performance Switch (pSeries HPS) communication
subsystem [9]. The eServer p4 system is based on the
POWER4 microprocessor, and the eServer p5 system is
based on the POWERS microprocessor. The POWERS
microprocessor was introduced in 2004 and is a derivative
of the POWER4 microprocessor design [10]. The
POWERS microprocessor design features two-way
simultaneous multithreading (SMT), enabling the
processor to fetch instructions from more than

one thread. The POWERS implementation allows
instructions to execute from each thread when possible,
and allows instructions from one thread to utilize all
execution units if the other thread encounters a long-
latency event. Fully verifying the SMT functionality was
a key verification challenge on POWERS; hence, much of
the formal verification resource was devoted to verifying
aspects of SMT. The total switching power of the
microprocessor core increased with the introduction of
SMT as more instructions executed per cycle. To help
offset this, the POWERS design implements aggressive
dynamic power management to reduce the switching
power. The design uses a dynamic clock-gating
mechanism to gate off clocks to a local clock buffer if
dynamic power management logic detects that the set of
latches driven by the buffer will not be used during the
next cycle. The dynamic clock-gating implementation

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

Memory

/0
— ® links
HE|(HE 10 | o
1= hubs
zlzl|[zIzIEY
Processors and cache —] (>D< °
B0 BB =" »
EE EE ———/]

Memory

° °
Host
nodes

° °

Switch board
Switch board

N

)
o Intermediate
e Switch boards

HPS SAN topology.

added complexities to the verification process, which is
described in Section 5.

The HPS System Area Network (SAN) architecture is
designed for efficient interconnection of processing and I/O
nodes. The HPS SAN was first introduced with the eServer
p4 system, providing large-scale system performance to the
50-200-Tflops range. Its high link bandwidth, robust
network scalability for high throughput to thousands of
endpoints, and support for multiple classes of traffic
types make it suitable for a wide range of uses in
high-performance server systems. The SNI provides
connectivity between separate nodes over the system area
network to form a message-passing cluster. The HPS chip is
a hardware element that routes traffic from one node to
another node, designed such that any node can connect to
any other node in the system. The SNI, also known as
the communication adapter, is a microcoded hardware
element that is a physical interface between the node and
the switch. The SNI and the HPS chip enable the exchange
of information at a very high data rate among a large
number of high-performance SMP nodes. Each SMP node
connects to an HPS switch board through an SNI
physically contained within the node itself, as shown in
Figure 1. The SNI was updated for the eServer p5 system to
allow for connection over a GX+ bus. The same pSeries
HPS design serves both p4- and p5-based systems.

3. Motivation for FFV

Since the advent of POWER4, investment has been made
both in tools development and in execution, with the
ongoing goal of increasing the quality of the hardware

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

designs. This investment has included a significant focus
on FFV owing to the following types of benefits obtained
by those technologies:

e Executing FFV on a design tends to result in a
reduced number of test-floor escapes to (refer to the
subsection on re-creation of test-floor failures).

e Complex design defects tend to be discovered earlier
in the verification cycle, enabling more thorough and
robust fixes to be applied without risking a schedule
slip. Generally, the random simulation process first
exposes “simple” defects—those exposed by relatively
simple input patterns. Complex bugs are design flaws
that require a more stressful input stimulus to expose.
It can take random simulation running millions of
simulation cycles over the course of weeks or months to
achieve the necessary coverage to expose complex bugs.

* A higher-quality and more robust design often
results from the identification of performance bugs,
“unexpected interface assumptions” required by the
design to ensure its functional correctness, and other
subtle problems that are discovered through the FFV
process.

¢ FFV tends to increase the understanding of the design
for both the designers and the verification team,
improving the quality of design documentation.

e Regression is superior in formal verification. FV
regressions are typically completed within hours or
days. In simulation, it can take months to achieve

R. M. GOTT ET AL.

567

568

coverage goals that give a satisfactory level of
confidence in the regressed model.

The types of design defects found by FFV can generally
be categorized as one or more of the following:

1. Schedule advantage: Formal verification can
generally begin earlier than higher levels of
verification, such as unit or chip simulation. For
example, FFV may be performed on a partially
implemented design as soon as it compiles. Thus, the
discovery of some design flaws by FFV early in the
verification cycle is simply due to the fact that FFV
was the first to evaluate the logic. The resolution
of this class of design defects helps provide a more
stable model for subsequent simulation, and enables
a more robust design to be developed as bugs are
flushed out directly as logic entry is performed.

2. Exposure of gaps in simulation coverage: FFV may
reveal coverage gaps in the simulation environment.
For this class of design defects, it is often deemed
important for simulation to add the appropriate
modifications to driver/checker code so that
simulation can expose the failing behavior as well.

3. Corner-case and complex bugs: FFV can expose
corner-case bugs that are extremely difficult to find in
a random simulation environment. These represent
the true power of FFV to expose problems that
are too probabilistically difficult to expose with
simulation alone, that likely would be incorporated
in the chip design (commonly referred to as “slipping
into silicon”) without formal analysis. Complex
bugs, as discussed above, are design flaws that would
likely be exposed in simulation once a certain level of
coverage was achieved. The exhaustive nature of
formal verification allows such problems to be
exposed earlier in the verification process.

4. Performance flaws: FFV can expose design defects
that would manifest themselves as performance
problems in the hardware design rather than
functional problems. This is an important class of
design defects, because it may be exceedingly difficult
to detect performance-related problems through
simulation, and very difficult to resolve them if
they are observed only on the test floor. Especially
in the area of high-performance computing (HPC),
performance is function, and performance-related
problems can be a reason to re-fabricate the design.

5. Spurious failure: Some defects exposed by FFV may
be deemed “impossible” in the current environment.
That is, the neighboring logic could not behave in
a way that drives the failing input sequence to the

R. M. GOTT ET AL.

block interface. Nevertheless, the designer may often
consider such a problem to be a true bug exposing an
“unexpected interface assumption” required by the
design to ensure its correctness, and provide a fix.
Such fixes are often beneficial, since the behavior on
the interface may occasionally change at some future
point in time and possibly exhibit the previously
disallowed behavior, resulting in a true hardware
flaw. Overall, such changes tend to increase the rigor
of the design.

4, Strategy

Two important aspects of the formal methodology are
the selection of the design portions to verify and the
development of the formal specifications used to verify
those portions. In this section we address these topics.

Choosing logic for FFV

Not all logic that could be verified with FFV is actually
verified that way. The formal verification team works
with the simulation and design teams to identify logic that
would most benefit from formal coverage. The initial lists
of possible FFV candidates are then prioritized and
refined to a smaller list, which represents the logic deemed
most critical. As experience is gained with formal
methods, a set of guidelines on choosing logic for FFV
has evolved. These guidelines include the following:

¢ Logic that is difficult to stress through random
simulation. Logic that falls into this category often
has many independent interfaces and hence is prone
to corner-case bugs. It is difficult for random
simulation to fully exercise all possibilities of inputs
on those interfaces, risking late defect discovery and
incorporation in the chip design.

e Logic that is difficult to verify in simulation, and for
which correctness is essential to the overall design
integrity. Some properties, such as the absence of
deadlock' or livelock,” are nearly impossible to verify
in a simulation environment. Formal verification is
able to prove the correctness of such properties (if
the model size permits); such confidence cannot be
gained through simulation.

* Logic that was problematic in previous versions of the
design. Some portions of the design are evolutionary
in nature. If there was a test-floor escape in a
particular portion, that logic is likely to be considered
for proactive FFV in the next version of the design.

1 Deadlock: A condition that oceurs when two processes are each waiting for the other

to complete before proceeding. The result is that both processes fail to complete.

2Livelock: A condition that occurs when two or more processes continually change

their state in response to changes in the other processes. The result is that none of the
processes will complete.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

e New logic (i.e., not obtained by a simpler evolution
from a prior design) that is anticipated to be complex
and error-prone. For such complex new logic, FFV
is considered a strong mechanism to help stabilize
that logic more quickly.

e [ogic that is not covered by simulation until late
in the verification schedule. Simulation sometimes
cannot be used to cover all logic in the desired
timeframe. In such cases, FV might be used to help
provide coverage.

Developing the specification

After a partition of logic has been chosen for formal
coverage, two elements must be determined: a) how

to drive legal stimulus to the interface, and b) what
properties to verify. Discussions with the design and
simulation team are held to help determine how to model
these specification aspects. As discussed in the subsection
on strategy for choosing between formal and semiformal
approaches, properties to verify tend to fall into the
following three categories, which may affect the choice
of formal tools and algorithms:

e “Sanity check” properties.
e Liveness properties.
* Functional correctness properties.

“Sanity check” properties are simple invariants that
describe a good event that should always be true, or an
illegal event that should never occur—for example, “these
multiplexor selectors must be one-hot,” and “this state
machine should never be in more than one state.” In
many designs, this type of property holds true even with
completely random behavior of the driver, and it tends
to be very simple to code. When FFV is begun on a
new piece of logic, such properties are often good to
verify first. They can be extremely powerful in exposing
complex design defects, and have the benefit of being
straightforward to code and maintain, while offering
design insight that helps the development of the other,
more-encompassing types of properties.

The second type of property, a liveness property,
describes a desired or necessary system condition that
must eventually be reached [1]. This is a key area for
formal methods, since it is nearly impossible to verify
such correctness in a simulation environment. An
example liveness property is the following: “when a
request is received, the design must eventually issue an
acknowledgment.” Unbounded liveness properties tend
to be simple to code, and can be extremely powerful in
exposing complex bugs. However, unbounded liveness
properties tend to be much more computationally
expensive to verify than the other classes of properties.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

For this reason, on larger design partitions, it is
occasionally beneficial to attempt to cast an unbounded
liveness property as a bounded liveness property. An
example of a bounded liveness property is the following:
“when a request is received, the design must issue an
acknowledgment within 20 clock periods.” Most
unbounded liveness properties may be straightforwardly
translated to bounded liveness properties in this manner.
The only practical difficulties we have encountered in
such a translation are due to the presence of “fairness”
constraints needed to enable a liveness proof. A fairness
constraint is one that specifies that a certain condition
must occur infinitely often. For example, the liveness
property “every low-priority request_lo eventually
receives an acknowledgment” may require the fairness
condition “the higher-priority request_hi is inactive
infinitely often.” Note that fairness conditions often
imply a strategy to translate more complex liveness
properties into bounded variants, such as “when a
request_lo is received, the design must issue an ack within
20 clock periods as long as request_hi remains inactive.”
Translating unbounded liveness properties into bounded
ones requires manual effort, though the bounded
properties have the benefits of lesser computational
complexity to verify; being suitable for a wider range of
verification algorithms (such as semiformal algorithms);
and yielding more performance insight than mere liveness
properties alone.

The third class of properties, the functional correctness
properties, verify that the implemented design behaves
as dictated by its specification. These properties tend to
capture higher-level behavior—for example, “in response
to a particular sequence of events, the design produces
a correct sequence of responses.” These properties are
generally more difficult to code and maintain. Often,

a reference model that at least partially mimics the
predicted design behavior is needed to verify functional
correctness. Compared to the “sanity checks” and
liveness properties, the functional correctness properties
tend to have a greater number of “spurious failures,” in
which the property or driver is incorrect rather than the
design. The higher number of false failures often stems
from the design specification being inadequate, or
unexpected “special-case” situations that have to be
specifically accounted for. In spite of the extra burden
associated with functional correctness properties,

they are a valuable class to include in the verification
effort, often necessary for capturing architectural or
microarchitectural correctness. They are capable

of uncovering complex design flaws and exposing
performance-related design defects. The performance-
related bugs discovered through this type of verification
are extremely valuable in that such problems are often
difficult to detect and debug in a simulation environment.

R. M. GOTT ET AL.

569

570

L1 latch
L2 latch
|I> |_| N~]
L1 clock 4—‘ ’_‘ﬁk L
(a)
Register
| I [
I
Hot clock —
(b)

Phase abstraction: (a) Two-phase level-sensitive latch-based
design. (b) Corresponding phase-abstracted register-based design.

5. Design modeling

All design modules were written in Very high speed
integrated circuit Hardware Description Language
(VHDL) and converted into a netlist representation using
a VHDL compiler. All memory arrays (e.g., RAM
blocks) were expanded into a two-dimensional grid of
state elements called registers. The other state elements in
the processor core were designed using primarily level-
sensitive latches to help enable the degree of pipelining
needed for the high clock speeds therein. The technique
of phase abstraction was utilized to automatically
convert this logic into a more compact register-based
representation, as described below. The communication
subsystem was directly designed using registers.

The multi-phase latching scheme pervasive in the
processor core had posed challenges to formal verification
since POWERA4 for several reasons. First, most formal
algorithms rely upon enumerating the reachable states of
the design under verification, which generally requires
exponential resources with respect to the number of state
elements in the design. Multi-phase latch-based designs
tend to comprise a significantly greater number of state
elements than functionally correspondent register-based
designs. Second, the depth of such multi-phase designs—
i.e., the number of verification timesteps necessary to
enumerate all reachable states—tends to be several times
greater than that of functionally correspondent register-
based designs. This is because an oscillating clock must
be modeled that sensitizes only a single phase of latches
per verification timestep, whereas a register-based design
may be evaluated at a full clock period per verification
timestep. This also tends to increase the amount of
computational resource necessary to obtain a given
amount of coverage using formal and semiformal
verification.

R. M. GOTT ET AL.

Phase abstraction [11] is a commonly used technique
for enhancing the coverage attainable with formal and
semiformal verification on multi-phase designs. Phase
abstraction converts latches of all but a single phase to
wires, and converts the remaining phase into registers.
This transformation is depicted in Figure 2 for a two-
phase design. Figure 2(a) depicts the original design, with
latch phases shown as L1 (level 1) and L2; the L1 latches
are clocked by an L1 clock, and the L2 latches are clocked
by an L2 clock (which is often modeled as opposite in
polarity to the L1 clock). Figure 2(b) shows the phase-
abstracted design, in which the L1 latches are converted
to wires and the L2 latches are converted to registers that
are “hot-clocked™ every timestep. More formally, the
resulting registers sample the data at their inputs every
timestep and re-drive that sampled data to their outputs
one timestep later; an oscillating clock is no longer used
to prevent sampling at certain timesteps.

While this phase-abstraction technique was initially
developed for POWERA4, the aggressive power savings
utilized in POWERS resulted in a significantly larger
diversity of clocking and latching schemes, including
“clock gating,” whereby one may utilize functional logic
to dynamically turn the clocks on and off to portions
of the design. Such clock gating may clearly affect the
functional correctness of the design; if the clock used by a
portion of the design is turned off at the wrong time, it
may yield incorrect computations. The existing phase-
abstraction methodology thus had to be made more
flexible to enable classification of the various clocking
schemes and identification of the clock-gating schemes.

Our solution to this problem was to develop a new
methodology for annotating the HDL of the local clock
buffers to indicate whether they were gated or nongated;
in the former case, we also annotated the functional
“clock-gating” signals that were used to turn off the
individual clocks. We next developed an automated
toolset that interpreted these annotations and performed
phase abstraction accordingly. This automated toolset is
integrated into the design importation path in the formal/
semiformal verification toolsets. The transformation
performed by the phase-abstraction toolset for non-gated
latches is as shown in Figure 2. The transformation of
gated latches differs; such latches are first transformed
into semantically equivalent non-gated variants,
then abstracted as in Figure 2. This preprocessing
transformation is depicted in Figure 3 for a gated L1
latch. The GATE signal is removed from the clock
expression to the L1 latch, enabling the L1 to be directly
clocked by a non-gated L1 clock. The GATE expression
selects a newly created multiplexor; when “1” (i.e., the
GATE is not disabling the latch clock), DIN (data in)

*Hot-clocked: Clocked by an always-active clock rather than by an oscillating clock.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

combinationally drives the input to the L1 latch. When
“0,” the L1 latch input is driven by a newly created L2,
used to hold the last-driven value of the L1 latch (or its
initial value, at time 0). With this transformation, all
resulting functional clocks may be held active (since

the gating is reflected by data feedback loops); all
nonfunctional (e.g., built-in self test) clocks are held
inactive during the functional verification.

Once these modifications to the methodology were in
place, the local clock buffers were easily annotated to
enable phase abstraction to identify the various clocking
schemes and perform the abstraction accordingly. The
formal and semiformal efforts were consequently able to
exploit the coverage benefits of phase abstraction despite
the more aggressive dynamic power-management scheme.

6. Semiformal verification

The term semiformal verification refers to a hybrid type of
design exploration that moves iteratively between random
simulation and a resource-bounded exhaustive search.
The simulation portion is able to quickly reach deep
states, and the bounded exhaustive search is able to reach
probabilistically difficult states. This approach avoids the
state—space explosion issue encountered in a pure
unbounded exhaustive search, yet yields much higher
coverage than a standalone simulation run [12]. This
process is depicted in Figure 4. The red circles indicate
the exhaustive bounded search of the state space of the
design, and the zigzag lines indicate random simulation.
The depth of each exhaustive bounded search is
controlled by some resource bound, possibly a time limit
or a depth limit. The depth of each random simulation
run is also bounded by a resource limit. Each semiformal
iteration consists of a bounded exhaustive search phase
and a random simulation phase. If any design defects are
exposed during this process, they are reported. Otherwise,
the semiformal engine selects a state encountered during
its previous processing and seeds the next iteration into it.
The next phase of the exhaustive search and random
simulation is started from this seeded state. This choice is
often made using some type of coverage analysis to select
a state which seems the most different from previously
encountered states, or one which heuristically seems the
closest to a bug.

As depicted in Figure 4, the search begins from the
designated initial state of the design at the bottom left.
Two bugs are shown in the design; one is reachable rather
shallowly from the initial state of the design (at the left),
and the other is reachable only very deeply from the
initial state (at the right). The red circles surrounding the
initial state indicate bounded-model checking. Note that
the initial bounded-model check comes very close to
hitting the leftmost bug. If given more resources, this
search likely would have generated a “shortest trace”

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

DIN L1 latch
L1 clock DOUT
—_ | DLOUL
GATE :>—>
(a)
L1 latch
L DOUT

DIN
—_— L2 latch
GATE

L1 clock

155

L2 clock

(b)

Transformation of gated-clock latches: (a) Original gated-clock
latch. (b) Semantically equivalent non-gated model.

. Completed
exhaustive search

[] Unexplored
state space

Random
simulation

O Initial state

® Bug

Illustration of semiformal search.

exposing this bug (though note that exhaustive bounded
search generally requires exponentially increasing
resources as its depth increases, often rendering it unable
to detect deeper design defects on larger designs). As
depicted, numerous semiformal iterations are performed
before this bug is found, in this case yielding a much
longer trace than necessary. Overall, the shorter
exhaustive-search-only traces tend to be much easier
to debug for several reasons. First, they contain less
information because of their shorter length. Second, the
formal algorithms tend to illustrate only “necessary”
toggling of the design logic to expose the design defect,
whereas random-simulation-based traces tend to contain
a large degree of unnecessary activity.

For deep bugs such as the one to the right, random
simulation and semiformal verification are often the only
approaches to expose such flaws; exhaustive search alone

R. M. GOTT ET AL.

571

572

fails to penetrate deep enough on larger designs. The
motivation for using semiformal verification instead of
random simulation alone is generated by the immense
increase in coverage achieved by the bounded exhaustive
search in semiformal verification.

Methodologically, it is often beneficial to apply several
types of semiformal search in parallel on a given design.
One type performs many semiformal iterations, allowing
relatively little resource for each individual exhaustive
search and simulation search per iteration. This type of
run is useful to quickly obtain relatively high coverage
throughout the state space. Another type devotes large
resources to each exhaustive search phase, allowing the
exhaustive search to proceed as deeply as possible to help
obtain short traces and to obtain higher coverage local to
the semiformal-seeded states. With respect to Figure 4,
the former type of application correlates to more yet
smaller red circles spread throughout the state space,
whereas the latter correlates to fewer yet larger red circles
spread throughout the state space.

In random simulation frameworks, the notion of
“random biasing” is critically important to ensure
the highest coverage. Semiformal verification is less
dependent on random input stimulus, since it requires
only that simulation come relatively near a bug, then
may use exhaustive search to fill in the gap and locate
it. Nevertheless, for highest coverage, semiformal
verification is still dependent upon random simulation to
provide a good sampling of the state space—i.e., to touch
states that are at least “near” to all reachable states—to
help ensure that no design defects are missed. Random
biasing of certain types of inputs is thus practically
important in a semiformal verification methodology.
For example, a design may have a flush input which, if
asserted, will bring the design back to the region of its
initial state. It may be necessary to toggle this input
occasionally to ensure that all design flaws are exposed,
but this may be required only very infrequently (e.g., once
per 1,000 timesteps rather than once per two timesteps
on average). The biasing of such an input may thus
be adjusted to prevent the random simulation from
effectively getting stuck near the initial states, in turn
reducing semiformal coverage of deeper states. Note
that the exhaustive search itself ignores all biasing by
definition.

7. Formal verification tools

Two internally developed formal verification tools,
RuleBase and SixthSense, were used in the POWERS5
verification. RuleBase [6] was developed by the IBM
Haifa Research Laboratory and initially released in 1996.
At the core of the original RuleBase was an enhanced
version of Symbolic Model Verifier (SMV), a symbolic
model checker licensed from Carnegie Mellon University

R. M. GOTT ET AL.

[13]. RuleBase has had a number of enhancements that
were delivered in the POWERS timeframe, which are
detailed in the next section. Midway through the
POWERS verification cycle, the internally developed
IBM SixthSense semiformal verification tool was
released. The release of SixthSense allowed the
verification team to target blocks of logic that were too
large for pure exhaustive search techniques. RuleBase and
SixthSense are described in the next sections, followed
by a section detailing the strategy for choosing a
particular tool for given verification problems.

RuleBase

In the POWERS verification timeframe, the IBM Haifa
Research team made available to internal users a beta
release of the RuleBase Parallel Edition (PE) [14].
RuleBase PE, which became publicly available in
February 2004, offers many enhancements over the
original version of RuleBase. In RuleBase PE, additional
verification engines are made available to the user.
RuleBase PE dispatches the selected verification engines
to run on the same problem in parallel. The results of the
multiple engines are coordinated such that if one engine
finds a failure or proves the property, the other engines
are halted. This allows the user to dispatch multiple
engines, or even the same engine with different runtime
parameters, to work on a single problem. In general, the
user does not know which engine may perform the most
efficiently for a given problem. Thus, dispatching multiple
engines can lead to savings in verification time. The
verification engines that were used in the work reported
in this paper are briefly described here:

® Discovery: Discovery is an optimized SMV-based
model checker. Safety properties are evaluated on the
fly during computation of the reachable states [14]. A
safety property describes a condition that must not be
violated at any instance in time. For other properties
(e.g., liveness), the reachable states are used to
simplify the model before classical model-checking
algorithms are deployed to perform the verification.
Discovery can evaluate multiple properties in a single
run, and can find counter-examples (cases in which
the property has been violated) as well as prove
properties.

o Satisfiability engine (SAT): SAT is a bounded-model-
checking engine that performs bounded exhaustive
search from the designated initial states of the design
in an attempt to find a case in which the property
under test does not hold (refer to the initial exhaustive
search in Figure 4). SAT can verify only a single
property at a time (safety only), and cannot generate
proofs. The SAT engine in RuleBase PE is an

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

enhanced version of the Princeton Chaff SAT
engine [15].

* Unfolding: The Unfolding engine is a Boolean
Decision Diagram (BDD)-based bounded-model
checker with under-approximation support to enable
deeper yet incomplete searches [16]. Unfolding
attempts to find violations of safety properties, and
may evaluate multiple properties in a single run, but
generally cannot yield proofs.

e Beelzebub: Beelzebub is a BDD-based adaptive search
engine combining forward and backward search as
well as various approximations. It operates on a
single safety property at a time and is most effective at
finding fails, though it is also able to complete proofs
[17].

RuleBase also incorporates several reduction
techniques that automatically reduce design size before
the above verification engines are called, which reduces
their degree of exponential blowup. RuleBase utilizes a
set of unique languages: the Environment Description
Language (EDL) for writing the driver for the HDL logic,
and Sugar [18] for writing properties. A more complete
discussion of EDL and Sugar can be found in [19].

SixthSense

SixthSense [20] is a semiformal verification toolset that
was developed in the IBM Systems and Technology
Group, overlapping with the development of the IBM
combinational equivalence checker Verity [21].
SixthSense is a novel transformation-based verification
toolset; it integrates numerous automatic complexity-
reducing abstraction algorithms to iteratively and
synergistically simplify and decompose complex problems
into simpler ones that may be processed more easily by
terminal verification algorithms. Example abstractions
range from straightforward reduction techniques, such as
constant propagation and redundancy removal, to more
novel and aggressive transformations, such as minimum-
area (min-area) retiming. The incorporated verification
algorithms range from random simulation to pure formal
analysis to a hybrid semiformal search that iterates
between random simulation and a resource-bounded
exhaustive search, as discussed in Section 6. The primary
engines that were used in the work reported in this paper
are the following:

e Semiformal search: This engine performs hybrid
semiformal search that moves iteratively between
random simulation and exhaustive bounded search
(primarily using the SAT engine described below).
This engine is the primary bug finder of SixthSense.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

® SAT: SixthSense uses the structural SAT solver
shared with Verity, which integrates SAT algorithms
with structural simplification techniques and BDD-
based analysis [22]. The robust fusion of these
techniques enables applications for deep bounded
analysis under semiformal search, even on large
designs.

® Redundancy removal: There are two engines in
SixthSense that perform redundancy removal.

One performs simpler combinational analysis

on sequential designs to eliminate constant and
functionally equivalent gates [22]. The other performs
more aggressive sequential analysis (e.g., induction) to
achieve a similar type of reduction; it requires greater
computational resources, though it yields greater
reductions than the first engine. The latter engine is
also useful in providing quick proofs of correctness
in certain cases, even on very large designs.

* Min-area retiming: This engine applies the design
technique of retiming (relocating registers beyond
combinational gates) to reduce the total number of
registers in the design [23]. Particularly on the highly
pipelined processor core, retiming tends to be a very
powerful reduction technique, capable of yielding
50% or more register reductions than would be
possible through redundancy removal alone. The
synergy between retiming and redundancy removal
tends to yield incrementally greater reductions
through repeated applications.

® Reachability: This engine evaluates the reachable
states of the design to enable proofs. As with any
reachability engine, this tends to be the only size-
limited engine used in SixthSense, prone to memory-
outs beyond several hundred registers.

SixthSense uses a VHDL-based specification language
called BugSpray. BugSpray is used both for specifying
safety properties to check for the design under verification
and for specifying the random drivers that govern the
behavior of the input stimulus applied to the design under
verification. The Bugspray language is presented in more
detail in [24].

Capacity of tools

The capacity of the formal verification toolset has
increased significantly since the POWER4 verification
work. At that time, RuleBase, the primary formal
verification tool, was capable of exhaustively verifying
design partitions of up to approximately 300 registers
after reductions [6]. RuleBase could load initial designs
(before automatic reductions) of up to a few thousand
registers. Enhancements to RuleBase since then have
allowed for much larger initial designs to be loaded

R. M. GOTT ET AL.

573

574

2.0-GB/s payload

Z Input
port |3 :
0

2.0-GB/s payload

PN R
17 X 8 Q
crossbar .
: ng Central
crossbar | e buffer(s) | +
(8 banks) Output
port
4 4 7

High-level view of the pSeries HPS chip.

(in the ten-thousands of registers). SixthSense became
available during POWERS, and can load initial designs
with 100,000+ registers; the largest model imported into
SixthSense (though not on this project) had several
million registers. Nevertheless, note that formal
algorithms generally require exponential resources with
respect to design size, particularly register count. Thus, as
the size of the reduced design increases, the likelihood of
completing a proof with either tool decreases; semiformal
verification and bounded-model-checking algorithms
may then be the best mechanisms to perform bug-hunting
for larger designs.

The introduction of bounded-model checkers and
semiformal verification provided the ability to work with
increasingly larger design partitions; this allowed efforts
to be dominated by the type of architectural and
microarchitectural properties for which verification was
desired, instead of by the size of the design portions that
could be fitted into the formal tools. While full proofs
may not always be obtained, these techniques have
proven to be powerful bug finders, able to expose
complex corner-case problems that would be difficult to
uncover using random or directed simulation approaches
alone. Verified block sizes are listed for the HPI, SNI, and
processor in Section 8.

Strategy for choosing between formal and
semiformal approaches

In verifying a portion of the design, the strategy used

in choosing between formal and semiformal approaches
has been governed largely by the size of the reduced
design. If the reduced design contains more than 400
registers, it is highly likely that a semiformal or bounded-
model-checking effort will be the best approach, since the
chance of obtaining a proof may be diminished. In other
words, as the size of the reduced design increases, the
verification goal often moves away from obtaining full

R. M. GOTT ET AL.

proofs to exposing design flaws. In some cases, it is
known at the beginning that the design size is likely to
be too large for an exhaustive effort. In those cases, a
semiformal approach is taken from the start; obtaining
proofs on such larger designs is desirable but is not
deemed as critical as obtaining high semiformal coverage
on the more encompassing, larger design partition. In
some cases, after (or in parallel to) a higher-level
semiformal effort, the higher-level design partition has
been further pruned to enable the application of formal
techniques to obtain proofs in order to ensure the highest
coverage overall. This pruning is performed either by
choosing a subset of the higher-level design partition to
verify in isolation, or by overconstraining and manually
abstracting the larger design partition. In such cases, the
semiformal efforts have often been very useful in helping
to identify the location of design flaws and complexity
within the higher-level design partition, in turn yielding
insight into which smaller portions of the design should
be targeted by pure formal verification.

As another point, the semiformal algorithms in
SixthSense and the bounded-model-checking algorithms
in RuleBase support only safety properties. If the goal is
to prove liveness properties and design size is amenable,
RuleBase is the preferred tool. Otherwise, it is often
desirable to attempt to cast the unbounded liveness
properties as bounded liveness properties that are safety
properties and thus amenable to a wider variety of
algorithms.

8. Results

In this section we discuss the application of FFV to
portions of the pSeries High Performance Switch, the
pSeries Switch Network Interface, and the POWERS
microprocessor. We provide details of the portions of
these designs that were verified, the tools used for these
efforts, and the results of these efforts.

High Performance Switch (HPS)

The pSeries HPS chip is the switching element of HPS
System Area Networks; it is the fourth generation of the
IBM Scalable Parallel switch chip [25]. The pSeries HPS
supports the high-bandwidth, low-latency network needs
of a distributed shared memory (DSM) system. Figure 5
shows a high-level view of the HPS chip.

FFV was executed on Pass2 and Pass3 of the pSeries
HPS chip. Formal verification was not started on Pass2
until well after simulation had stabilized. At this point
in time, the design was stable and there was working
hardware for Passl on the test floor. Thus, the formal
verification effort targeted only areas that were difficult to
verify in a random simulation environment. The main
focus was on the verification of arbitration properties
within the output port of the switch chip. The output port

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

is responsible for transmitting data provided to it by
other internal device logic. Each output port performs an
arbitration among the competing input port requests,
central buffer requests, and service requests. The
properties verified for the output port included aspects
of the arbitration schemes designed to meet performance
requirements. These properties are difficult to evaluate in
a random simulation setting. General liveness properties
were also verified. Additionally, limited FFV work was
targeted on the input port, primarily for performance-
related functions.

For the HPS Pass3, FFV support was applied late
in the verification cycle to assist the simulation team
in validating error injection functionality. The FFV
environment was able to drive specified error conditions
and determine that the correct local-level error detection
and recovery action had been taken. The error injection
testing relied heavily on the newly delivered SAT
engine in the RuleBase tool.

Table 1 summarizes the work on the HPS. Even though
the FFV effort was limited in duration and scope, it
uncovered 37 design defects, 10% of the overall number
of design problems found throughout the Pass2/Pass3
verification effort.

Switch Network Interface (SNI)
The IBM Scalable Parallel (SP*) Switch2 Adapter, the
communication adapter for use with POWER3 systems,
was the first project within the SP verification group to
apply FFV on a large scale. During the verification effort,
FFV located approximately 200 design defects using
RuleBase out of a total of 771 defects. Building on its
success in the SP Switch2 Adapter effort, the FV team
engaged the design and simulation team at the start of the
verification process for the follow-on to that design, the
pSeries Switch Interface (SI) chip, which is an internal
component of the SNI. The SI chip provides message-
passing capabilities for eServer p4 systems across a GX
bus. The design was modified to provide this capability to
eServer p5 systems across a GX+ bus. The function within
the SI chip targeted for FFV coverage remained largely
unchanged between the two designs.

In contrast to the SP Switch2 Adapter, a key portion
of the SI chip is the microcode-driven Inter-Partition

3 GX+
"_i__ Elastic || GX+
] interface | | macro
@)) % 5
Transport macro S2l|a 8
Lisgl|ge
) S5 =2
N =y 512 8 £
Inter-partition [cho | | = =
ot I 1| macro =
% communication o 8 -
i ili [% =
& facility = § 5o §
(IPC) Transport macro = | 2 g ‘g S
= —_— 8
B3| E
o o =
11| SVC || =
L —
Route/path | | macro .
1 4L A
table T A TOD
/ 7 e
2 Sy .7 _*|macro
M Registers |7 -7
-
macro

High-level diagram of SNI chip.

Communication (IPC) sequence engine. A high-level
diagram of the SI chip is shown in Figure 6. The IPC was
the primary area of focus for the FV team because it was
deemed prone to corner-case bugs. In addition to the
IPC, the Transport Macro (FTM) and the Media Access
Controller (MAC) arbiter were identified for formal
coverage. The FTM is responsible for ensuring end-to-
end in-order delivery of data. The MAC is responsible for
transmission of packets across multiple virtual lanes. Of
an initial eleven FV candidates, seven were chosen for
formal analysis. The decision was based on design nature,
simulation coverage, and FV resources. Table 2 lists the
partitions verified using FFV. RuleBase was used for all
blocks on the SI chip. The Discovery engine was deployed
in all rules, and in the majority of rules, complete proofs
were obtained. Some restrictions were required in order
to control design size to enable proofs. For example, in
the MAC arbiter verification, only two of eight virtual
lanes were used. The SAT engine proved to be very useful
in exposing design defects for rules that were challenging
for the Discovery engine. In the largest of the partitions
verified, the IPC packet mover, complete proofs were

Table 1 FFV summary for the HPS chip (RuleBase was used in all cases).

Block name Initial No. of Average size No. of No. of Engines used Maximum
model size inputs of reduced rules completed depth
(no. of model (no. of written proofs of logic
registers) registers)
Output port 2,071 506 70-320 80 62 Discovery, SAT ~3,500
Input port 2,514 549 180-330 34 27 Discovery, SAT ~2,200

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

R. M. GOTT ET AL.

575

576

Table 2 FV summary for the SI chip (RuleBase was used in all cases).

Block name Initial No. of Average size No. of No. of Engines used Maximum
model size inputs of reduced rules completed depth
(no. of model (no. of written proofs of logic

registers) registers)

MAC arbiter 4,000 1,063 ~200 14 14 Discovery, SAT 25

FTM receiver 1,353 1,085 160-200 37 37 Discovery 214

IPC packet mover 8,002 730 200-460 126 106 Discovery, SAT, 788

Unfolding, Beelzebub

IPC data mover 700-6,300 175-1,148 50-210 298 268 Discovery, SAT 496

IPC packet mover interface 1,520 347 50-160 32 32 Discovery 42

IPC array interface (arbiter) 39 20 16-33 18 18 Discovery 344

IPC sequencer 1,730-3,269 197434 70-185 S1 36 Discovery 124

not obtained for 20 rules. Two additional engines,
Unfolding and Beelzebub, were deployed in these
cases. The Unfolding engine was able to uncover
bugs that were not exposed by any other engine.

The FFV effort discovered a total of 95 design defects
out of a total of 809 defects. Of the 95 defects exposed
in FFV, 5% to 10% were characterized as corner-case
bugs, which were unlikely to be exposed through
random simulation.

Microprocessor

There were two types of formal verification applications
on the processor core: proactive work and re-creation of
test-floor failures. The goal of the proactive work was
to expose design flaws before the design was fabricated.
Re-creation of a test-floor failure was undertaken with
FFV if a bug exposed on the test floor in the fabricated
hardware could be narrowed to a set of design
components, and it was deemed difficult for traditional
simulation to re-create the test-floor fail condition.

Proactive work

The components of the POWERS core that were
proactively verified with FFV were chosen primarily
because of the amount of new and complex functionality
added to the component since the prior design generation.
One significant cause of such functionality modification
was the addition of simultaneous multithreading (SMT)
to the POWERS core.

Applying formal verification early in the design cycle
can help to quickly stabilize the design. Design flaws
found early in the design cycle permit fixes that can be
more robust and extensive because of the amount of time
available to perform verification and synthesis on the
modified design. An example of such an application was

R. M. GOTT ET AL.

the FFV effort on the Branch Instruction Queue (BIQ).
This logic was chosen because of design changes for SMT
and the high bug count of its counterpart on POWER4.
Formal verification began while the component evolved
from the POWER4 implementation to support SMT.
This allowed verification of the modifications as they
were entered, enabling design defects to be identified
immediately and fixed. Formal verification of the BIQ
uncovered more than 20 defects, many of which were
quite complex in nature.

Later in the design cycle, formal verification is useful to
uncover the complex design flaws that simulation has not
exposed. As an example, the Instruction Prefetch Buffer
(IFPF) was formally verified later in the design cycle. This
logic had been problematic in POWER4 and was changed
for POWERS. In the POWER4 timeframe, RuleBase was
used on the IFPF. While numerous design defects were
exposed in that effort, this logic posed size problems
for the formal algorithms and had to be significantly
constrained. For example, its buffer size was cut in half
to reduce complexity for the formal algorithms. For
POWERS, SixthSense was available in time for the
formal verification effort. This allowed semiformal
verification to be applied to the logic without any
constraints, exposing six bugs. The majority of these
design flaws were very complex in nature and required the
unconstrained environment. For example, some of the
bugs required more than half of the buffer to be active.
One showed a possible input stimulus that the simulation
environment was not exercising; the simulation
environment was subsequently augmented to exercise
this behavior.

With the advent of POWERS, the use of SixthSense
to check equivalence between two design points was
realized. During the design cycle, the condition register

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

file was redesigned to improve timing. The design change
had to preserve sequential input/output equivalence with
respect to its designated initial states. Since the redesign
entailed a change in the sequential implementation of the
design (i.e., the two versions of the design had different
state points), Verity [21] could not be readily used to
verify this equivalence. SixthSense was therefore used for
this purpose, composing the two versions of the design,
correlating their inputs, and adding assertions to check
that the corresponding output pins evaluated to the same
sequence of values. This effort uncovered three design
flaws in the new design. Once the design flaws were fixed,
the SixthSense reduction and transformation engines
efficiently proved that the two designs were equivalent
under all possible input stimulus.

Re-creation of test-floor failures
Re-creation of a test-floor failure is the process of
identifying the cause of a logic problem encountered in
a fabricated chip. This process has become a powerful
use of formal verification, because any design flaw that
has reached silicon has already evaded a great deal
of simulation. For this reason, formal verification is
often desired to increase the confidence in any fixes.
Additionally, sometimes the information obtained on the
test floor provides only a vague idea of the true location
of the problem, and a complete trace of the fail is desired
to facilitate a fix. Test-floor data is used to define directed
simulation cases to attempt to re-create the failure. For
difficult corner-case bugs, however, even directed
simulation may be inadequate to recreate it. In contrast,
the coverage achievable through formal verification is
often powerful enough to obtain a complete trace
exposing the design flaw. Sometimes formal verification
can illustrate multiple scenarios of a defect, ensuring that
the resulting fix is robust and covers all failing scenarios
instead of merely the first encountered one. In some cases,
the re-creation effort evolves into a proactive bug-finding
effort for the next fabrication of the design.

An example of the power of FFV in the re-creation of
a test-floor failure was demonstrated in the Instruction
Effective to Real Address Translation (ERAT) logic.
Formal verification was engaged on this logic after an
address translation error was encountered on the test
floor. SixthSense was used for this effort because of the
size of the desired model, which included the Instruction
ERAT logic as well as several neighboring control blocks.
After coding the environment and assertion to target the
design flaw, an unknown bug was identified in addition to
re-creating the known problem. This effort then evolved
into a proactive type of verification to check additional
functionality prior to the next refabrication. During this
work, several other design defects were discovered, all
present in the prior fabricated hardware. All of these bugs

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

were very complex corner cases, as is evident by the fact
that they had slipped into silicon. Some of these proved
too difficult to recreate with directed simulation efforts or
in hardware, even given the data from the formal traces.

Microprocessor and memory subsystem work
summary

In Table 3 we provide a summary of the processor design
components to which we applied FFV. The Branch
Instruction Queue (BIQ) maintains information about
branches in case of branch mispredictions. The Data
ERAT LRU encodes a least-recently-used algorithm for
the Data ERAT. The Segment Lookaside Buffer (SLB)
control logic provides arbitration for address translator
logic. The Fabric Bus Controller (FBC) logic, as well as
the Sidecar logic, comprise data- and control-intensive
logic responsible for routing data to and from various
internal interfaces and system buses. The FBC Dataflow
and MCM model leveraged the power of semiformal
verification to compose some of the smaller components
into larger partitions, against which more encompassing
architectural properties were checked. The IFPF is the
instruction prefetch logic. The Completion Subunit tracks
the completion of instructions. Both the Data and
Instruction ERAT logic were formally verified. The
Condition Register (CR) Mapper is a register-renaming
unit for the condition registers. The Instruction Fetch
Address Register (IFAR) implements program-counter
functionality. The SCMD is a memory controller.
Finally, the ERAT Miss Queue (EMQ) is a queue for
address translations. Overall, a total of 41 design flaws
were proactively exposed by these efforts on the
microprocessor core and memory subsystem.

9. Summary

Formal verification has matured from an academic
interest to a verification method applicable to industrial
designs, and the successful deployment of FFV
technologies on the IBM pSeries designs reflects this
growing maturity. The improvements in formal tools
have allowed larger partitions of logic to benefit from
formal coverage. In the POWER4 timeframe, a common
challenge on the processor core was to simply identify a
meaningful partition of logic that was within the size
limitations of FFV. That is, when sizing the design

for FFV, partitions within the size limitation of the
current tools were often deemed “too small” to capture
interesting architectural or microarchitectural properties.
Larger partitions often required many over-constraints
on the design (e.g., disabling or restricting certain
behavior of the design) such that it lessened the
confidence in the overall coverage attained even when

a proof was completed. Thus, while a significant number
of high-quality bugs were discovered using FFV during 577

R. M. GOTT ET AL.

578

Table 3 FFV summary for the POWERS microprocessor core and memory subsysten.

Block name Initial model Average size No. of No. of No. of Tool used Maximum
size (no. of of reduced inputs rules completed depth
registers after model (no. of written Proofs of logic
phase registers)
abstraction)
BIQ 5,785 98-124 529 63 63 RuleBase 27
Data ERAT LRU 1,012 40-42 63 2 2 RuleBase 5
SLB Control 431 124-125 80 8 8 RuleBase 54
FBC NCU Controller 407 31-47 246 8 8 RuleBase 14
FBC GX Controller 119 34 67 9 9 RuleBase 18
FBC L2 Controller 271 35-60 97 15 15 RuleBase 11
FBC L3 Controller 268 46-75 120 6 6 RuleBase 11
Sidecar 323 117 28 2 2 RuleBase 72
Sidecar + Arbiter 532 221 28 2 2 SixthSense 76
FBC data flow 3,954 946 5,394 4 4 SixthSense 142
FBC MCM Model 3,800 823 40 4 0 SixthSense unknown
IFPF 11,220 966 464 19 0 SixthSense unknown
Completion Subunit 17,622 3,027 461 7 0 SixthSense unknown
Data ERAT 45,637 19,913 6,874 4 0 SixthSense unknown
Instruction ERAT 9,512 2,072-2,205 1,456 18 0 SixthSense unknown
CR Mapper 17,355 2,371 604 6 0 SixthSense unknown
IFAR 3,533 182 763 2 0 RuleBase and unknown
SixthSense
CR Register File 1,398 1,264 84 21 21 SixthSense unknown
SCMD 2,259 764 105 2 0 SixthSense unknown
EMQ 1,892 1,086 217 3 0 SixthSense unknown

the POWER4 core verification effort, the overall

formal coverage attained from an architectural or
microarchitectural point of view was rather limited. Most
design defects tended to reflect violations of lower-level
block assertions. Additionally, the formal work done

on the POWER4 processor core tended to operate at
the level of smaller blocks, whose interfaces were often
complicated, not well documented (aside from the FFV
effort), and prone to frequent changes. These factors led
to an overall increase in the amount of work necessary
to obtain formal results. With the improvement in the
formal toolset, specifically the introduction of semiformal
verification, higher-level properties became candidates
for formal coverage in the POWERS timeframe.

Across the High Performance Switch, the Switch
Interface Chip and the POWERS processor, FFV was
used to discover complex design flaws, of which a fair
number were characterized as unlikely to be detected
by simulation. As FFV has proven its value over the

R. M. GOTT ET AL.

course of POWER4 and POWERS, we expect continued
investment in tool development and application on IBM
designs. Close collaboration with the simulation and
design teams will remain essential as FFV is used to
augment simulation coverage, targeting the areas deemed
most complex for the traditional simulation environment.
Generally, if simulation misses a logic bug, it is because
the random environment could not create the conditions
necessary to expose it. If FFV misses detecting a logic
flaw, the most likely reason is that a rule was not written
that would expose it. In future projects, means of better
leveraging verification resources between simulation and
FFV will be explored, e.g., through reuse of specifications
and by increased exploitation of the growing capacity of
the formal toolsets to improve the coverage of a larger set
of verification tasks. As the formal tools continue to
improve and evolve, continued deployment of these
technologies in the ongoing effort of improving our
hardware designs is expected.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

*Trademark or registered trademark of International Business
Machines Corporation.

References

1.

2.

10.

11.

12.

13.

14.

15.

T. Kropf, Introduction to Formal Hardware Verification,
Springer, Berlin, Germany, 1999.

P. Camurati and P. Prinetto, “Formal Verification of
Hardware Correctness: Introduction and Survey of Current
Research,” IEEE Computer 21, No. 7, 8-19 (1988).

. P. Bjesse, T. Leonard, and A. Mokkedem, “Finding Bugs

in an Alpha Microprocessor Using Satisfiability Solver,”
Proceedings of the 13th International Conference on Computer-
Aided Verification, Paris, July 2001; Lecture Notes in Computer
Science 2102, 454-464 (2001).

R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard,
and T. F. Melham, “Practical Formal Verification in
Microprocessor Design,” IEEE Design & Test of Computers
18, 16-25 (July—August 2001).

F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kambhi, A.
Tacchella, and M. Y. Vardi, “Benefits of Bounded Model
Checking at an Industrial Setting,” Proceedings of the 13th
International Conference on Computer-Aided Verification,
Paris, July 2001; Lecture Notes in Computer Science 2102,
275-292 (2001).

I. Beer, S. Ben-David, C. Eisner, and A. Landver, “RuleBase:
An Industry-Oriented Formal Verification Tool,” Proceedings
of the 33rd Design Automation Conference, June 1996; Lecture
Notes in Computer Science 1254, 480483 (1997).

J. M. Ludden, W. Roesner, G. M. Heiling, J. R. Reysa, J. R.
Jackson, B.-L. Chu, M. L. Behm, J. R. Baumgartner, R. D.
Peterson, J. Abdulhafiz, W. E. Bucy, J. H. Klaus, D. J. Klema,
T. N. Le, F. D. Lewis, P. E. Milling, L. A. McConville, B. S.
Nelson, V. Paruthi, T. W. Pouarz, A. D. Romonosky, J.
Stuecheli, K. D. Thompson, D. W. Victor, and B. Wile,
“Functional Verification of the POWER4 Microprocessor and
the POWER4 Multiprocessor Systems,” IBM J. Res. & Dev.
46, No. 1, 53-76 (January 2002).

D. W. Victor, J. M. Ludden, R. D. Peterson, B. S. Nelson,
W. K. Sharp, J. K. Hsu, B.-L. Chu, M. L. Behm, R. M.
Gott, A. D. Romonosky, and S. R. Farago, “Functional
Verification of the POWERS Microprocessor and POWERS
Multiprocessor Systems,” IBM J. Res. & Dev. 49, No. 4/5,
541-553 (2005, this issue).

International Business Machines Corporation, “eServer
Cluster 1600: pSeries High Performance Switch Planning,
Installation, and Service,” Publication No. GA22-7951-02,
September 2004.

R. Kalla, B. Sinharoy, and J. Tendler, “IBM POWERS5 Chip:
A Dual Core Multithreaded Processor,” IEEE Micro 24,
40-47 (March—April 2004).

J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz, “An
Abstraction Algorithm for the Verification of Level-Sensitive
Latch-Based Netlists,” J. Formal Meth. Syst. Design 23, No. 1,
39-65 (July 2003).

M. K. Ganai, A. Aziz, and A. Kuehlmann, “Enhancing
Simulation with BDDs and ATPG,” Proceedings of the Design
Automation Conference (DAC’99), New Orleans, June 1999,
pp- 385-390.

K. McMillan, Symbolic Model Checking, Kluwer Academic
Publishers, Dordrecht, Netherlands, 1993.

S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal, “Model
Checking at IBM,” J. Formal Meth. Syst. Design 22, No. 2,
101-108 (March 2003).

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and

S. Malik, “Chaff: Engineering an Efficient SAT Solver,”
Proceedings of the 38th Design Automation Conference,

June 2001, pp. 530-535.

. R. Tzoref, M. Matusevich, E. Berger, and 1. Beer, “An

Optimized Symbolic Bounded Model Checking Engine,”
presented at the CHARME 2003 12th Advanced Research
Working Conference on Correct Hardware Design and

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

Verification Methods, L’Aquila, Italy, October 2003; see
http:|jwww.di.univaq.it/charme2003).

17. S. Keidar and Y. Rodeh, “Searching for Counter-Examples
Adaptively,” presented at the 6th International Workshop on
Formal Methods, Dublin City University, Ireland, July 2003;
see http:/lewic.bes.org/conferences/2003 [iwfm03].

18. 1. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze,
and Y. Rodeh, “The Temporal Logic Sugar,” Proceedings
of the 13th International Conference on Computer-Aided
Verification, Paris, July 2001; Lecture Notes in Computer
Science 2102, 363-367 (2001).

19. Web version of the RuleBase User Manual; see http://
www.haifa.il.ibm.com/projects/verification/ RB_Homepage.

20. H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman,
and A. Kuehlmann, “Scalable Automated Verification via
Expert-System Guided Transformations,” presented at the
Conference on Formal Methods in Computer-Aided Design
(FMCAD’04), Austin, TX, November 2004.

21. A. Kuehlmann, A. Srinivasan, and D. LaPotin, “Verity—A
Formal Verification Program for Custom CMOS Circuits,”
IBM J. Res. & Dev. 39, No. 1/2, 149-165 (January/March
1995).

22. A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai,
“Robust Boolean Reasoning for Equivalence Checking and
Functional Property Verification,” IEEE Trans. Computer-
Aided Design 21, No. 12, 1377-1394 (December 2002).

23. A. Kuehlmann and J. Baumgartner, “Transformation-Based
Verification Using Generalized Retiming,” Proceedings of the
13th International Conference on Computer-Aided Verification,
Paris, July 2001; Lecture Notes in Computer Science 2102,
104-117 (2001).

24. H.-W. Anderson, H. Kriese, W. Roesner, and K.-D. Schubert,
“Configurable System Simulation Model Build Comprising
Packaging Design Data,” IBM J. Res. & Dev. 48, No. 3/4,
367-378 (May/July 2004).

25. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A.
Bender, D. G. Grice, P. H. Hochschild, D. J. Joseph, B. J.
Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R.
Varker, “The SP2 High-Performance Switch,” IBM Syst. J.
34, No. 2, 185-204 (1995).

Received November 11, 2004, accepted for publication
March 29, 2005; Internet publication August 11, 2005

R. M. GOTT ET AL.

579

Rebecca M. Gott 1BM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (gott@us.ibm.com).
Dr. Gott joined IBM in 1999; she is currently an Advisory
Engineer with the IBM Systems and Technology Group. For the
last four years, she has worked in the area of functional formal
verification, and for the last three years has served as the team
leader for functional formal verification within the IBM
Advanced Processor Development organization. Most recently
she has worked on the formal verification of the POWER6*
microprocessor. In 1995, she received her Ph.D. degree in electrical
engineering from Tulane University. Following her graduation, she
served on active duty in the U.S. Air Force at Holloman AFB,
New Mexico, working in the area of GPS development and test.
Dr. Gott has recently taken a new position at IBM as the
simulation leader for the zSeries™ processor subsystem.

Jason R. Baumgartner [BM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (baumgarj@us.ibm.com).
Dr. Baumgartner is a Senior Engineer and Master Inventor with
the IBM Systems and Technology Group. He received his Ph.D.
degree in electrical and computer engineering from the University
of Texas at Austin in 2002. His research interests have been fueled
by years of functional formal verification applications at IBM. He
has pioneered numerous automatic abstraction techniques to yield
exponential speedups to formal analysis, which are the subject

of numerous papers, patents, and his doctoral dissertation. Dr.
Baumgartner is currently the team leader for the IBM internal
semiformal verification toolset SixthSense. He recently received an
IBM Excellence Award and an IBM Outstanding Innovation
Award for his formal verification application, research, and
development work on POWER4 and POWERS.

Paul Roessler [BM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (roessler@us.ibm.com). Mr.
Roessler joined IBM at Austin in 2001. He has spent his career
working in the area of applied functional formal verification on
microprocessor designs. He received a B.S. degree in electrical
engineering from New Mexico State University in 1998. Mr.
Roessler recently received an IBM Outstanding Technical
Achievement Award for his POWERS formal verification
applications. He is currently working on the functional
verification of the POWERG6 microprocessor.

Soon |. Joe IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, New York 12601 (soonjoe@us.ibm.com). Mr.
Joe received a Master of Science degree in electrical engineering
from Drexel University in 1981, joining IBM that same year at
Charlotte, North Carolina. He is currently an Advisory Engineer
with the IBM Systems and Technology Group. He has held a
variety of test and logic design positions throughout his career.
Since 1999 he has worked in the area of functional formal
verification. Mr. Joe is currently working on the functional
verification of the POWERG6 microprocessor memory subsystem.

580

R. M. GOTT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

