
Introduction
to the Cell
Broadband
Engine
Architecture

C. R. Johns
D. A. Brokenshire

This paper provides an overview of the Cell Broadband Enginee
Architecture (CBEA). The CBEA defines a revolutionary
extension to a more conventional processor organization and serves
as the basis for the development of microprocessors targeted at
the computer entertainment, multimedia, and real-time market
segments. In this paper, the organization of the architecture is
described, as well as the instruction set, commands, and facilities
defined in the architecture. In many cases, the motivation for these
facilities is explained and examples are provided to illustrate their
intended use. In addition, this paper introduces the Software
Development Kit and the software standards for a
CBEA-compliant processor.

Overview

The Cell Broadband Engine� Architecture (CBEA)

defines a family of heterogeneous microprocessors that

target multimedia and compute-intensive applications [1].

The CBEA resulted from a joint effort among the Sony

Group, Toshiba, and IBM to develop the next-generation

processor. The following motivations shaped the

development of the architecture [2]:

� Provide outstanding performance on computer

entertainment and multimedia applications.

� Develop an architecture applicable to a wide range

of platforms.

� Enable real-time response to the user and the

network.

� Address the three design challenges facing traditional

processors: memory latency, power, and frequency.

The CBEA extends the IBM PowerPC* 64-bit

architecture with loosely coupled, cooperative offload

processors. The CBEA is set apart from other processor

architectures by the use of two independent instruction

sets: the PowerPC and the synergistic processor unit

(SPU) instruction sets. For a processor to be considered

CBEA compliant, the processor must contain one or

more PowerPC processor elements (PPEs), one or more

synergistic processor elements (SPEs), and the required

feature set defined by the CBEA. Figure 1 is a block

diagram of a CBEA processor.

The PPE is compliant with the IBM PowerPC

Architecture* [3]. It is intended to perform the system

management and application control functions, or

‘‘control plane’’ processing. Whereas other architectures

have augmented the instruction set of the processor with

tightly coupled extensions such as the vector/single-

instruction multiple-data (SIMD) multimedia extension,

the CBEA employs an independent SPU that is compliant

with the SPU instruction set architecture [4] to perform

the compute-intensive, or ‘‘data plane,’’ processing. This

allows the data processing and control functions to be

decoupled, enabling more application parallelism.

Another distinction between a traditional processor

and the CBEA is the definition of two storage domains:

main and local. The main storage domain is the same as

that commonly found in most processors. This domain

contains the address space for system memory and

memory-mapped I/O (MMIO) registers and devices.

Associated with each SPU is a local storage address

space, or domain, containing instructions and data for

that SPU. Each local storage domain is also assigned an

address range in the main storage domain called the local

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

503

0018-8646/07/$5.00 ª 2007 IBM

storage alias. The SPU can address memory directly only

within the associated local storage. To access data in the

main storage domain and maintain synchronization with

other processors, each SPU and local storage pair is

coupled with a memory flow controller (MFC). The

combined SPU, associated local storage, and MFC make

up the SPE. In addition to the PPE and the SPE, the CBEA

includes many features for real-time applications not

typically found in conventional processor architectures.

The ‘‘Cell Broadband Engine Architecture’’ document,

which defines the architecture, refers to the ‘‘PowerPC

Architecture Book’’ and the ‘‘SPU Instruction Set

Architecture’’ document to avoid duplicating

information. For a complete definition of the CBEA,

the reader must have access to all of these documents,

which are publicly available on IBM Web pages [1, 3, 4].

The CBEA document is divided into two parts: the

user-mode environment (UME) and the privileged-mode

environment (PME). The UME defines the instructions

and facilities required for application portability. This

section is similar to Books I and II of the PowerPC

Architecture. For the PowerPC Architecture, only Book I

compliance is necessary for application portability. Since

the CBEA defines a heterogeneous multiprocessor, the

synchronization features found in Book II of the

PowerPC are necessary for cooperative processing. For

this reason, Books I and II were collapsed into a single

UME section. The PME, which defines the instructions

and facilities required for operating system and

hypervisor1 development, is similar to Book III of the

PowerPC Architecture.

PowerPC processor element
Within a CBEA-compliant processor, the PPE performs

the control plane functions that typically required the

more general-purpose computing provided by the PPE.

The PPE is based on Version 2.02 of the PowerPC

Architecture, which offers many of the features required

for the application spaces targeted by the CBEA. The

Figure 1
CBEA processor block diagram.

SL1

BIU

Element interconnect bus (EIB)

SPE group 0 (SG_0) SPE group n (SG_n) PPE group 0 (PG_0) PPE group p (PG_p)

LS

MMU

RMT

SPE_0 SPE_g

MMU

RMT

BIU

RMT

SL1

LS

MMU

RMT

SPE_0 SPE_g

MMU

RMT

BIU

RMT
RMT

RMT RMT

BIU

RMT

RMT RMT

Bus interface controller (BIC) Internal interrupt controller (IIC) Memory interface controller (MIC)

LS LS

L2 L2

BIC Bus interface controller

BIU Bus interface unit

IIC Internal interrupt controller

L1 Memory cache internal to the CPU

L2 Memory cache external to the CPU

LS Local storage

MFC Memory flow controller

MIC Memory interface controller

MMU Memory management unit

PPE PowerPC processor element

PPU PowerPC processor unit

RMT Replacement management table

SL1 First-level cache

SPE Synergistic processor element

SPU Synergistic processor unit

I/O Memory

PPUgSPU0 SPUg PPU0SPU0 SPUg PPUg PPU0

MFC MFC MFC MFC L1 L1 L1 L1

1A hypervisor is a layer of software running on the processor that allows multiple
‘‘guest’’ operating systems to run concurrently. The hypervisor virtualizes the
processor and the system resources.

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

504

PPE is based on the PowerPC Architecture for four

reasons: 1) The PowerPC Architecture is a mature

architecture that is applicable to a wide variety of

platforms. 2) It supports multiple simultaneous operating

environments through logical partitioning. 3) It contains

proven microarchitectures that meet the frequency

and power challenges of the targeted market segment.

4) Use of the PowerPC Architecture leverages the IBM

investment in the PowerPC ecosystem.

A key advantage of the PowerPC Architecture is its

unique ability to support multiple concurrent operating

environments through the use of logical partitioning.

This feature is critical to executing a non–real-time

operating system (RTOS) for the user interface while

simultaneously executing a non-RTOS, such as the

Linux** operating system, for management of the system.

Concurrent execution of an RTOS and the Linux

operating system allows non–real-time processes to

be performed in the background without affecting the

performance of an application running under the RTOS.

Although the PowerPC is a mature architecture for

more traditional platforms, concurrently supporting both

an RTOS and a non-RTOS within the heterogeneous

multiprocessor presented many architectural challenges:

To meet these challenges and optimize the architecture

for media-rich applications, the PowerPC Architecture

required enhancements to the vector/SIMD multimedia

extension, as well as introduction of the mediated external

exception, the multiple concurrent large-page support,

software management of translation lookaside buffers

(TLBs), and the cache replacementmanagement extensions.

The following subsections describe the mediated

external exception extension, the vector/SIMDmultimedia

extension, and the multiple concurrent large-page

extension. Software management of TLBs and cache

replacement management are described in separate

sections because they apply to both the PPEs and the SPEs.

See the CBEA document [1] for more information on each

extension.

Mediated external exception extension

A key attribute of an RTOS is a guaranteed interrupt

latency. A single RTOS can control the interrupt latency

by not allowing interrupts to be disabled for more than a

predetermined amount of time. However, when multiple

operating systems are running, the presentation of an

interrupt can be delayed by another partition for an

arbitrary amount of time. The mediated external

exception extension to the PowerPC Architecture

overcomes this deficiency by allowing an interrupt to be

presented to the processor even if interrupts are disabled.

In the PowerPC Architecture, the term exception

describes the interrupt condition, and the term interrupt

refers to the processor acting on the exception condition or

jumping to the interrupt handler. The critical exception

conditions for an RTOS are those generated by SPEs and

external devices. The current PowerPCArchitecture allows

an external exception to invoke a hypervisor-privileged

interrupt handler. However, an operating system still has

control of the external exception enabled in the machine

state register of the processor. The CBEA-mediated

external exception extension enables the interrupt handler

to be invoked as long as the processor is not operating

in hypervisor state or if external exceptions are enabled.

This prevents an operating system from delaying the

presentation of an exception to the processor and allows

a hypervisor-privileged interrupt handler to be invoked.

If the exception is for the RTOS, the hypervisor can

immediately pass control to the interrupt handler of the

RTOS regardless of which partition is currently active.

However, an interrupt can occur when the RTOS is in a

critical section with external exceptions disabled, and this

is where the mediated portion of the extension comes into

play. When external exceptions are disabled by the

partition that is expected to handle the interrupt, the

hypervisor-privileged interrupt handler sets a mediated

external exception request bit in the logical partitioning

control register and returns from the interrupt. When the

partition enables external exceptions, the hypervisor-

privileged interrupt handler is once again invoked with a

mediated external exception. The interrupt handler then

sets the state of the processor to mimic the original

external exception.

Vector/SIMD multimedia extension

Although the CBEA contains offload processors for

vector and streaming media processing, the architecture

team included the vector/SIMD multimedia extension for

the PPE. This multimedia extension was included to run

software developed for the vector/SIMD multimedia

extension, to make it easier to develop and port

applications to the SPE, and to allow applications

to be parallelized across the PPEs and SPEs.

The vector/SIMD multimedia extension defined

by the CBEA is very similar to the PowerPC 970*

implementation. The major difference between the two is

the rounding mode support. For compatibility with SPU

applications, the vector/SIMD multimedia extension

unit in the PPE supports the rounding modes

defined by the SPU instruction set architecture.

Multiple concurrent large-page extension

The current PowerPC Architecture supports the base

4-KB page plus one additional large page to be used

concurrently. The large-page size is implementation

dependent. In the CBEA, many types of data structures

are located in main storage, e.g., MMIO registers for

the SPEs, local storage aliases, streaming data, and video

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

505

buffers. The limitation of only one large-page size places

a burden on the TLBs. If a large-page size of 64 KB is

selected, the number of translations needed for MMIO

registers and local storage aliases is lower than that for

the base 4-KB page size. However, more translations are

required for the relatively large streaming buffers and

video buffers in main memory. In contrast, a large-page

size of 1 MB or 16 MB reduces the number of translations

required for the streaming and video buffers, but it is too

large for mapping the MMIO registers and local storage

aliases.

To improve the efficiency of the TLBs, the CBEA

augments the PowerPC Architecture by providing

support for multiple concurrent large-page sizes. The

memory management units (MMUs) in the SPE also

support the multiple concurrent large-pages extension.

Synergistic processor element
The SPE is the cooperative offload processor in the

CBEA intended for the computational, or data plane,

processing functions. The SPE consists of three tightly

coupled units: the SPU, the associated local storage,

and the MFC. The SPU is a SIMD processor with an

instruction set architecture optimized for compute-

intensive and media applications: It operates only on

instructions and data in the associated local storage.

Decoupling the SPU from other aspects of the system

provides a very deterministic processing environment

for the programmer.

The SPU and associated local storage are coupled

to the main storage domain and other processors by

the MFC. The MFC enables software to move data

between the storage domains and to synchronize with

other processors in the system. Data movement and

synchronization are initiated by using MFC commands.

Either the SPU or another processor in the system, such

as the PPE, can issue these commands. A direct memory

access (DMA) controller in the MFC unit performs the

data movement. All main storage accesses performed by

the DMA controller adhere to the PowerPC Architecture

for address translation and protection. They are

performed asynchronously with respect to the SPU

and all other units in the system.

Synergistic processor unit
The SPU provides the programmer with 128 registers,

each of which is a 128-bit SIMD register. The large

number of architected registers facilitates efficient

instruction scheduling and also enables important

optimization techniques such as loop unrolling. All SPU

instructions are inherently SIMD operations that process

data in one of four granules: sixteen 8-bit integers, eight

16-bit integers, four 32-bit integers or single-precision

floating-point numbers, or two 64-bit double-precision

floating-point numbers. The SIMD registers in the SPU

are unified and can be an operand of either an integer

or a floating-point instruction, unlike the split set of

registers in the PowerPC Architecture [5].

To obtain the best performance from an SPU, the data

structures of the program should be defined around the

SIMD data flow. In addition, techniques such as double

buffering should be employed to overlap the computation

with the data movement. This technique insulates the

SPU application from the latency of the system memory

accesses. More programming tips can be found in [6].

Although the SPU is optimized for SIMD, scalar

operations can be performed; they use the preferred

slot (the upper word, or 32 bits, for 32-bit scalars) of the

SIMD register.

Channel interface
As mentioned earlier, the SPU is decoupled from the

system and the MFC provides the linkage to the main

storage domain and other processors. A channel interface

supplies the communication path between the SPU and

the MFC. The CBEA defines multiple unique channels

for issuing MFC commands and accessing MFC facilities.

These channels are accessed by using the SPU channel

instructions.

The SPU instruction set architecture defines the

channels as four words wide, but the CBEA uses only one

word, which is the preferred slot of the SIMD data flow.

Each channel has the following set of attributes defined

by the CBEA: direction, capacity, and the ability to be

blocking or nonblocking.

Channels are unidirectional, with the direction defined

by the CBEA. Channels used to retrieve information

from or transfer information to the MFC are accessed,

respectively, by using an SPU read channel (rdch) or write

channel (wrch) instruction. Accessing a read channel by

using a wrch instruction or a write channel by using an

rdch instruction is not allowed and results in an invalid

channel error.

Channel capacity (depth) defines the number of words

that can be contained within the channel. The CBEA

defines the depth for some channels; for others, it is an

implementation-specific parameter. A channel count,

which is accessed by using an SPU read channel count

(rdchcnt) instruction, is used to track the amount of

information in the channel. The value returned by the

rdchcnt instruction indicates the number of valid words

contained in a read channel and the available free space

or number of words that can be written to a write

channel.

The CBEA defines each channel as either blocking or

nonblocking. A nonblocking channel essentially has an

infinite depth, and a value of one is always returned when

reading the channel count. Blocking channels have a

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

506

depth of one or more, with an active channel count.

Accessing a blocking channel whose count is zero stalls

the instruction processing of the SPU until the channel

count becomes nonzero. The blocking attribute relieves

the programmer from having to check the channel

capacity before accessing the channel. When no other

useful work can be performed, this attribute allows the

program to enter a very low-power state while waiting

for the channel to become available. If useful work can

be performed, the programmer can check the channel

capacity with the rdchcnt instruction before accessing

the channel and can then occasionally poll the channel

count while performing other useful work.

An SPU interrupt offers an alternative to polling.

The presence of an SPU interrupt can affect the SPU

instruction sequencing in one of two ways. If interrupts

are disabled, a special SPU branch instruction (bisled) can

be executed to branch to a target address if an interrupt is

present. If interrupts are enabled, the SPU executes the

next instruction from address zero in local storage and

disables interrupts. The address of the next instruction

that would have been executed if the interrupt were not

present is saved in the SPU state save and restore register

(SRR0). SRR0 can also be accessed by using two

channels, one to read SRR0 and one to write SRR0. The

SPU iret instruction can be used to return to the address

stored in SRR0. SPU interrupts should not be confused

with interrupts generated by an SPE that are targeted for

the PPE (SPE interrupts).

The SPU event facility can be programmed to detect

key SPE conditions and other system events. The event

facility is accessed by using channel instructions to specify

the conditions of interest and determine the event status.

Software can use the event facility to stall the SPU while

waiting for multiple different events or to generate an

interrupt when an enabled event occurs. The SPU event

facility is described in more detail later in the paper.

Memory flow controller
The MFC provides the communication path from the

SPU and the local storage domain to the main storage

domain and other processors in the system. The MFC

essentially decouples the SPU from the main storage

domain; an application can view the SPU as having an

additional asynchronous load–store processor. If used

properly, the MFC can insulate an SPU application

from the latency of system memory.

Figure 2 is a high-level block diagram of the MFC

unit. The bus interface unit (BIU) provides the interface

to the element interconnect bus (EIB) [7]. The CBEA does

not define the EIB protocol. The first-level cache (SL1)

is a caching structure for MFC accesses to the main

storage domain, and it provides an architectural entity

for performance enhancements. In most implementations,

the SL1 either is omitted or is very small because of the

streaming nature of the MFC commands. The MFC SPU

command queue is dedicated to MFC commands issued

by the SPU using the channel interface. Other processors

use the MFC proxy command queue to transfer data

between the storage domains on behalf of the associated

SPE. The MFC proxy commands, which are issued by

using the MFC MMIO registers, are used primarily to

efficiently initialize the local storage before an SPU

program is executed. They are typically used by

software executing in a PPE.

The DMA controller transfers instructions and data

between SPU local storage and main storage. Programs

running on the associated SPU, a PPE, or another device

can issue MFCDMA commands. Table 1 shows the MFC

DMA commands supported by the DMA controller.

A single MFC DMA command can transfer up to

16 KB of sequential data between the storage domains. A

DMA transfer is typically performed as a series of smaller

bus transfers, usually a cache line or less. If required,

coherency is maintained for these transfers as the storage

attributes in the page table.

The parameters listed below affect the operation of

MFC DMA commands:

� CL MFC class ID.
� TG MFC command tag identification.

Figure 2

MFC block diagram.

MFC

SL1 (optional)

BIU

D
at

a
p

at
h

RMT

DMA request unit

To element interconnect bus

L
S

 a
d

d
re

ss

Real

address

MFC

registers

MMIO

interface

MMU

RMT

SPU LS

interface

SPU channel

interface

DMA controller

Atomic

request

MFC proxy

command

queue

MFC SPU

command

queue

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

507

� TS MFC transfer size.

� LSZ MFC list size.

� LSA MFC local storage address.

� EAH MFC effective address high.

� EAL MFC effective address low.

� LA MFC list local storage address.

� LTS List element transfer size.

� LEAL List element effective address low.

Each command includes a classID parameter. The

parameter contains a replacement management class

identifier (RclassID) that controls the cache replacement

management facility. The cache replacement management

facility is described later.

Software uses a TclassID identifier to classify the type

of storage being accessed. The TclassID provides a hint to

the MFC and to the system about the way the storage

request should be treated. For example, the TclassID can

be used by the bus interface unit in the MFC to prevent

accesses to a slow device from blocking accesses to the

higher-bandwidth main memory. To accomplish this, the

EIB transfer request queue in the MFC (not shown in

Figure 2) is segmented into two or more areas. The

number of entries in each segment is sized according to

the latency and bandwidth characteristics of the storage

being accessed. EIB transfer requests created for a

command are placed in only the transfer request queue

segment that corresponds to the TclassID of the

command. By issuing a command with the appropriate

TclassID, software can prevent the transfer request queue

from filling with transfer requests to slower devices. Since

the transfers to slower devices are limited to one area of

the request queue, transfers accessing higher-bandwidth

Table 1 MFC DMA commands supported by the DMA controller.

Command Description

get,f,b.[s] Moves data from the effective address within main storage to local storage.

getl,f,b.[s] Same as get,f,b., except that the effective address and size for multiple transfers are specified by list

elements in local storage.

put[r],f,b.[s] Moves data from local storage to the effective address within main storage.

The optional ‘‘r’’ modifier provides a hint to the system that the data is likely to be accessed soon by the

PPE. The data transferred by the command is a candidate for copying into the PPE cache.

put[r]l,f,b. Same as put[r],f,b.[s], except that the effective address and size for multiple transfers are specified by list

elements in local storage.

sdcrt SL1 data cache range touch. Brings a range of effective addresses into the SL1 (performance hint for get

commands). Similar to the PowerPC dcbt instruction.

sdcrtst SL1 data cache range touch for store. Brings a range of effective addresses into the SL1 (performance hint for

put commands). Similar to the PowerPC dcbtst instruction.

sdcrz SL1 data cache range zero. Writes zeros to the contents of a range of effective addresses. Similar to the

PowerPC dcbz instruction.

sdcrst SL1 data cache range store. Stores the modified contents of a range of effective addresses. Similar to the

PowerPC dcbst instruction.

sdcrf SL1 data cache range flush. Stores the modified contents of a range of effective addresses and invalidates the

block. Similar to the PowerPC dcbf instruction.

sndsig,f,b. Sends a signal to another SPE. Updates the signal notification registers in another SPE.

barrier Orders all commands issued prior to the barrier command with respect to all subsequent commands.

mfceieio Orders the storage transactions caused by get and put commands. Similar to the PowerPC eieio instruction.

mfcsync Orders DMA put and get operations within the specified tag group with respect to other processing units and

devices on the system. Similar to the PowerPC sync instruction.

getllar Get lock line and reserve–immediate. Similar in function to the PowerPC lwarx and ldarx instructions.

putllc Put lock line conditional–immediate. Similar in function to the PowerPC stwcx and stdcx instructions.

putlluc Put lock line unconditional–immediate. Main storage location updated regardless of reservation ownership.

putqlluc Same as putlluc except queued with other DMA commands and has an implied fence modifier.

Note: The optional ‘‘s’’ modifier starts the SPU when the command completes.

The fence (,f.) and barrier (,b.) modifiers are used for command ordering. See the section on command ordering for the definition of these modifiers.

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

508

devices are guaranteed a minimum number of request

queue entries. This minimizes the latency impact created

by accesses to slower devices. Without this feature, the

transfer request queue would fill up with bus requests

for slower devices and prevent the MFC from issuing

requests for higher-bandwidth devices.

List commands

The CBEA provides a list modifier ,l. for MFC DMA

commands to move data that is scattered in the main

storage domain. A command with a list modifier is

called a list command. List commands are converted to

a series of commands, each of which is described by a

list element in local storage. Each list element in local

storage contains an effective address low parameter and

a transfer size parameter. When a list command is

executed, the MFC reads the list elements from local

storage and creates a series of DMA commands. Each

DMA command that is generated has the same set of

parameters as the original list command, with the

exception of the transfer size and effective address low

parameters. Each MFC DMA list command can contain

up to 2,048 list elements, each transferring up to

16 KB of data. Only an SPU can issue list commands, and

such commands cannot be issued to the proxy MFC

command queue.

The list element includes a stall-and-notify flag. When

set, the flag causes the MFC unit to stop executing the list

command and notify the SPU after all of the DMA

transfers for the list element and all previous list elements

are complete. Subsequently, software can resume the list

command. Among other uses, this feature allows the

programmer to specify a data transfer larger than the

available buffer space in local storage. The stall-and-notify

flag is placed on the last element that fills the buffer.

When the data transferred by the previous elements is

processed and buffer space made available, the program

can resume the MFC DMA list command. The CBEA

defines one read channel that identifies the list commands

that are stalled. It defines a write channel that is used to

acknowledge the stall and allow the MFC to continue

executing the list command.

Memory management unit
The MMU allows an SPU application to use the same

effective address as that used by a PPE application to

access main storage.

The effective address for an MFC command is

provided in two parameters, the EAH parameter and the

EAL parameter. The EAH parameter contains the high-

order 32 bits of the 64-bit effective address, and the EAL

parameter contains the low-order 32 bits of the address.

The EAH parameter is optional; if it is omitted, the

high-order 32 address bits are set to zero.

The MMU translates the effective address into the real

address of main storage. This translation is compatible

with the virtual address translation mechanism defined by

the PowerPC Architecture. The PPE handles all MFC

translation faults. An MFC translation fault occurs when

a translation cannot be found for an effective address.

The MMU can use either the same page table as

that used by the PPEs or an independent page table; it

also supports the multiple concurrent large-page

extension described earlier in this paper. In addition, the

MMU supports software management of the TLBs,

which is presented subsequently.

Command ordering

As MFC commands are issued, they are placed in the

appropriate command queue. MFC commands can be

executed and completed in any order, regardless of

the order in which they were issued. The out-of-order

execution of commands allows the MFC to use system

resources efficiently to achieve the best performance. For

example, if the EIB supports simultaneous reads and

writes, the MFC can simultaneously execute one get

and one put command. If ordering were implied by

the issue order, this would not be possible.

While out-of-order command execution can help

performance, in some cases, software may require strict

command ordering. To achieve command ordering, the

CBEA provides two command modifiers (fence ,f. and

barrier ,b.) and a barrier command. The command

modifiers order commands only within the same tag

group (that is, all commands issued with the same tag

parameter to the same queue). Hence, these are called

tag-specific modifiers. A command with a fence modifier

is performed after all previously issued commands within

the same tag group. Commands issued after a command

with a fence modifier are not affected. A command with

the barrier modifier is performed after all previously

issued commands within the same tag group. Commands

that are issued after a command with a tag-specific barrier

are also performed after previously issued commands.

Some commands have an implied tag-specific barrier

modifier.

When command ordering is required to be independent

of the tag group, a barrier command can be issued.

Regardless of the tag identifier, this command orders

all previously issued commands with respect to all

subsequently issued commands within the same

command queue. The CBEA does not provide a

mechanism to order commands with respect to commands

in the other command queue.

Storage access ordering

In addition to command ordering, software can also

require the EIB transfers generated by the DMA

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

509

command to be ordered with respect to other processors

and devices in the system. Although the command

modifiers and barrier command provide for command

ordering, they do not provide ordering of the bus

transfers with respect to other processors and devices in

the system. For this type of storage ordering, the mfceieio

and mfcsync commands are used in combination with the

command modifiers and barrier command. The mfceieio

command provides storage ordering that is similar to the

PowerPC eieio instruction; the mfcsync command

provides storage ordering that is similar to the PowerPC

sync instruction.

The ordering of storage accesses performed by two or

more processors with respect to another processor or

device is called cumulative ordering. The CBEA follows

the PowerPC rules for cumulative ordering when all

accesses are performed within the main storage and the

proper synchronization instructions and commands are

performed. Standard PowerPC rules do not apply when

the storage accesses are performed within the main

and local storage domains. The CBEA multisource

synchronization facility addresses this case. This facility

provides software with a mechanism to ensure that all

accesses from the main storage domain, targeting the

associated local storage domain, are complete with

respect to the SPU. Figure 3 illustrates the use of

the multisource synchronization facility.

Memory-mapped I/O space and channels

The CBEA defines several SPE facilities, some of which

have already been mentioned. A facility is a set of MMIO

registers or channels that provide a specialized function.

Facilities in the CBEA are accessed from the main storage

domain using MMIO registers or are accessed using the

channels defined by the CBEA. The facilities defined by

the CBEA provide a wide variety of functions ranging

from support of context save and restore to providing

synchronization with other SPEs and processors in the

system. The MMIO space and channels also provide

access to other miscellaneous functions.

This paper does not include all of the facilities provided

by the MMIO registers and channels, but it attempts to

give the reader an indication of what is available. Some

of the facilities provided are listed below:

� Local storage alias.
� Command issue.
� Tag-group completion facility.
� Multisource synchronization facility.
� Mailbox facility.
� Signal notification facility.
� SPU event facility and decrementer.
� Software management of TLBs.

Local storage alias facility

Within the MMIO space of the SPE is an area called the

local storage alias that is dedicated to local storage. It

provides direct access to the local storage domain of the

corresponding SPE from the main storage domain. The

local storage alias is used primarily to allow the direct

transfer of data from the local storage of one SPE to the

local storage of another SPE. For example, if an SPE

issues an MFC get command with an effective address

that maps to the local storage alias area of another SPE,

the data is transferred directly from the local storage of

the target SPE to the local storage of the issuing SPE.

Without an alias of the local storage in the main storage

domain, software would be forced to copy data through

system memory.

Command issue facility

The memory flow controller section of this paper

describes the MFC DMA commands. Commands are

issued from other processors in the system using a

sequence of MMIO register stores and loads. Commands

issued using MMIO registers are called MFC proxy

commands. Code running on an SPU issues commands

using a sequence of channel writes; these commands are

called MFC SPU commands.

MFC proxy commands are typically issued by the PPE

to initialize local storage efficiently before the SPU is

started. To issue an MFC proxy command, software

writes each parameter to the corresponding MMIO

register. Some parameters can be omitted, and the last

parameter written is the MFC command opcode. After

writing this parameter, software reads from the MFC

Figure 3

Example of multisource synchronization.

C

B

Main storage

A

Local storage

0x0

0x0

0x0

0x2

0x1

0x3

PPE 1

 1. Store 0x1 to local storage location A

 2. sync
 3. Store 0x2 to main storage location B

PPE 2

 1. Load from main storage location B

 returns 0x2

 2. sync
 3. Store 0x3 to local storage location C

SPU 3

 1. Load from local storage location C

 returns 0x3

 2. Use the multisource synchronization

 facility

 3. Load from local storage location A

 guaranteed to return 0x1

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

510

command status register to determine whether the

command was successfully placed in the MFC proxy

command queue. The MFC command opcode register

and the MFC command status register are mapped to

the same address. Therefore, software need not issue a

PowerPC eieio instruction between the last store of the

opcode and the read of the command status, since the

PowerPC Architecture requires that two accesses to the

same location be performed in program order. Queuing

a command can fail because of a command sequence

error or because of insufficient room in the MFC proxy

command queue. A command sequence error is typically

caused when the command issue sequence is interrupted

and the next process or interrupt handler issues an MFC

proxy command. The command sequence error response

eliminates the need to require a lock for the MFC proxy

queue when issuing a command. The error due to

insufficient room occurs when there is no available space

in the MFC proxy command queue. In most cases,

software can avoid this error by reading the MFC

command queue status register to ensure that there is

available space in the queue before issuing the command.

If either error is reported, software must repeat the

command issue sequence.

The MFC SPU command sequence is a series of

channel write instructions. The last channel written in the

sequence is the MFC command opcode channel. This

channel is blocking and has a depth equal to the size of

the MFC SPU command queue. If the queue is full, the

channel write results in an SPU stall until space in the

queue is available. The stall is a very efficient mechanism

for power savings when useful work cannot be performed

until after the command has been queued. Software can

avoid the stall by using the procedure described in the

channel interface section or by using the event facility

in the SPE to interrupt the SPU when space is available.

The event facility is described in a subsequent section.

Tag-group completion facility

Data movement is performed asynchronously with

respect to the execution of the SPU program. Therefore,

the CBEA provides a tag-group completion facility so

that an application can determine when a specific

command or set of commands completes. Independent

facilities are available for both the MFC proxy and MFC

SPU command queues. A tag ID is provided with each

DMA command, and commands issued with the same

tag ID to the same queue are called a tag group. To

determine when tag groups are complete, a mask that

selects the tag groups of interest is written to the

tag-group mask channel or register. The status of the

selected groups is reported in a status register for the

MFC proxy command queue. For the MFC SPU

command queue, a query type is written to the MFC

write tag-group status update request channel. The

request can be that either ‘‘all selected tag groups

are complete’’ or ‘‘any one of the selected groups is

complete.’’ Once the query type is set, reading from the

blocking tag-group status channel causes the SPU to stall

until the query condition is met. Like the command issue

sequence, the stall can be avoided by first determining

the channel count value of the channel.

The CBEA also provides a way to generate an interrupt

when a tag group completes. For the MFC proxy

command queue, a similar query type is provided to

determine when the interrupt is generated. The interrupt

is typically routed to the PPE for processing. For the

MFC SPU command queue, the event facility provides

the interrupt when the condition is met.

Multisource synchronization facility

In any multiprocessor system, the synchronization of

software processes is critical. The PowerPC Architecture

provides four instructions (lwarx, ldarx, stwcx, stdcx)

for performing atomic updates of system memory.

The atomic update of system memory is used to create

software locks, which are then used to achieve the desired

synchronization. Since the SPUs do not have direct access

to the main storage domain, the CBEA defines four MFC

commands (getllar, putllc, putlluc, putqlluc) that allow

an SPU to participate in the atomic update of system

memory. These commands are known as the MFC atomic

update commands. They can be issued only by an SPU to

the MFC SPU command queue; they cannot be issued

by other processors or devices. Unlike the PowerPC

instructions, these commands transfer the full reservation

granule. In most processors, the reservation granule is

typically the same size as the cache line.

The get lock line and reserve (getllar) command is

similar to the PowerPC lwarx and ldarx instructions, and

the put lock line conditional (putllc) command is similar

to the stwcx and stdcx PowerPC instructions. These

commands are not queued in the MFC like other MFC

commands; they are executed immediately but still

require an MFC command queue slot. Since these

commands are executed immediately, they do not support

the tag parameter, and only one of these commands can

be outstanding. The CBEA provides a blocking atomic

command status channel for determining when these

commands complete and the results of the commands.

The put lock line unconditional (putlluc) and put

queued lock line unconditional (putqlluc) commands are

similar to a cacheable PowerPC store instruction. These

commands are used to unconditionally release a lock.

The putlluc command is executed immediately, whereas

the putqlluc command has an implied fence and is placed

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

511

in the MFC command queue along with other MFC

commands. Since the putqlluc command is queued,

the tag parameter is supported, and software uses the

previously described tag-group completion facility to

determine when this command is complete.

A common synchronization method is for software

to wait for the value of the lock in system memory

to change. In the PowerPC, this requires software to

continually poll the memory location associated with the

lock. In the CBEA, an SPU event can be generated when

a reservation is lost. (The reservation is lost when another

processor modifies the memory location associated with

the lock.) SPU software can avoid constantly polling the

lock by simply obtaining a reservation on the memory

location and then waiting for the reservation to be lost

using the event facility. Additionally, an SPU interrupt

can be generated when the reservation is lost. While

the reservation lost event does not guarantee that the

lock value has changed, it very effectively eliminates

the constant polling of the lock using MFC DMA

commands.

Since the performance of atomic updates can suffer

when there is a high contention for the lock, this may not

be the optimal solution for all synchronization scenarios.

Therefore, the CBEA offers additional options for process

synchronization, such as the mailbox facility and the

signal notification facility. These facilities can be used as

alternatives to the atomic update MFC commands, or

they can be used in conjunction with them for process

synchronization.

Mailbox facility

A key advantage of the CBEA is the independent nature

of the SPEs. Since the SPEs are decoupled from the PPE

and other SPEs, the CBEA provides a mailbox facility

to assist in process-to-process communication and

synchronization. The mailbox facility provides a simple,

unidirectional communication mechanism typically used

by the PPE to send short commands to the SPE and

to receive status in return. This facility consists of

an inbound, an outbound, and an outbound interrupt

mailbox. Each of these mailboxes can have a depth of one

or more entries. The direction of the mailbox is relative to

the SPU. For example, the inbound mailbox is written by

the PPE and read by the SPU. The SPU accesses the

mailboxes using the SPU channel instructions. The

mailbox channels are blocking, causing the SPU to stall if

the outbound mailbox is full or the inbound mailbox is

empty. For the PPE and other devices, MMIO registers

provide access to the mailboxes and the mailbox status.

As the name implies, the outbound interrupt mailbox

generates an interrupt when written by the SPU. The

interrupt is typically routed to the PPE for processing

and is presented as an external exception.

For example, the mailbox facility can be used for a

command-driven SPU application. In this example, the

SPU is typically stalled waiting for a command to be

placed in the inbound mailbox. When a command is

received, the SPU performs the requested operation given

in the mailbox data or sequence of mailbox data. Once

the operation is complete, the SPU places a return code

in the outbound interrupt mailbox. The write of the

outbound interrupt mailbox generates an interrupt for

the PPE that indicates the completion of the requested

operation. The SPU code then reads the next command

from the inbound mailbox and stalls if a new command is

not available. In addition to the application given in this

simple example, many other uses were contemplated

during the development of this facility.

Signal notification facility

The signal notification facility is very similar to the

mailbox facility. It consists of two signal notification

registers. From the SPU, these registers are accessed using

channels; for other processors, these registers are mapped

into the MMIO space. In contrast to the mailbox facility,

the signal notification facility is inbound only, and the

corresponding channels are only one deep and are

blocking. Each of the signal notification registers has two

modes of operation, overwrite and logical OR. In the

overwrite mode, the contents of the register is replaced

with the new value written to the MMIO register even if

the SPU has not yet read the current value. In the logical

OR mode, the current contents of the signal notification

register is ORed with the new value written to the register.

In either mode, the signal notification register is set to

zero after it is read by the SPU.

Normal MFC ‘‘put’’ commands can be used to access

the signal notification facility in another SPE. However,

the MFC ‘‘send signal’’ commands are defined for this

purpose, allowing an implementation to use a more

efficient mechanism than MMIO for signaling between

SPUs. The signal notification facility offers an alternative

synchronization mechanism between SPUs and,

potentially, other devices. It can also be used in

conjunction with the other synchronization mechanisms.

For example, the logical OR mode can be used in a task

completion notification mechanism. In this example,

an SPU assigns a task to another processor; along

with each task, the SPU assigns a tag. When the task

completes, the processor or device performs the proper

synchronization to ensure that the results are visible. It

then writes a binary ‘‘1’’ in the signal notification

register bit corresponding to the tag. The overwrite mode

provides a fast communication when a single bit is not

sufficient for synchronization.

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

512

SPU event facility and decrementer facility

The SPU event facility provides software with a

convenient mechanism to wait for a selected set of

conditions. The facility can also interrupt the SPU if

one of these conditions occurs. The facility consists of an

SPU read event status channel, a channel for reading

the SPU write event mask channel, a channel for writing

the SPUwrite event mask channel, and an SPUwrite event

acknowledgment channel. To use the facility, software

first writes the SPU write event mask channel to select the

conditions of interest. Next, the SPU read event status

channel is read. If none of the selected conditions have

occurred, the SPU stalls until at least one of the conditions

exists. The stall can be avoided either by reading the

channel count associated with the SPU write event status

channel before reading the channel or by enabling an

interrupt to occur when an event status is available. After

being notified that an event has occurred, the SPU

program should acknowledge the event by writing a

binary ‘‘1’’ to the corresponding bit in the SPU write event

acknowledgment channel. Acknowledging the event

enables the SPU to receive subsequent events for this

condition. The SPU read event mask channel is provided

for context save and restore operations. Software can also

use this channel to eliminate the need for a shadow copy of

the currently selected events.

As is apparent in the description of the other facilities,

events are defined for many of the stall conditions. The

event facility allows software to wait for multiple

conditions using a single blocking channel and can cause

the SPU to be interrupted. The SPU read event status

channel doubles as the interrupt status. The SPU event

facility supports the following events:

� MFC tag-group status update event.
� MFC DMA list command stall-and-notify event.
� MFC SPU command queue available event.
� SPU inbound mailbox event.
� SPU outbound mailbox event.
� SPU outbound interrupt mailbox event.
� SPU signal notification 1 event.
� SPU signal notification 2 event.
� Lock line reservation lost event.
� Multisource synchronization event.
� Privileged attention event.
� SPU decrementer event.

Except for the privileged attention event and the SPU

decrementer event, these events have been described in

the previous sections.

The privileged attention event allows another processor

or device to get the attention of an SPU program. Setting

the privileged attention bit in the SPU privileged control

register causes the privileged attention event in the SPU

event facility to be set. The SPU decrementer event is set

when the most significant bit of the SPU decrementer

changes from zero to one. The SPU software can either

wait for these events by reading the SPU read event status

channel or enable an interrupt to be generated on the

occurrence of any enabled event.

Software management of TLBs facility

Almost all modern processor architectures support a

virtual address space that requires the use of an address

translation table. The PowerPC, which is no exception,

implements virtual addressing using an architected

hardware page table in system memory. For performance

reasons, processors usually implement a cache of the

translations in an on-chip array. In the PowerPC

Architecture and the CBEA, this array is called the TLB.

Processor architectures usually handle a miss of the

TLB with software or hardware. In the PowerPC

Architecture, the TLB is hardware managed.

In general, caches introduce uncertainty into the

performance of a system. For example, a program

accessing a cache that does not contain any of the

program data (a cold cache) executes more slowly than

when accessing a cache that contains the program data (a

warm cache). Architectures have addressed this problem

for data caches by providing cache management

instructions; some even provide software access to the

TLBs. Since the PowerPC Architecture does not provide

a method to control the contents of the translation cache,

there is typically a start-up penalty when a program

is first executed that is not acceptable for real-time

applications. The CBEA addresses this issue by adding

a software TLB management facility. This facility is

specified for both the PPE and the SPE. When used in

conjunction with hardware management of the TLBs, an

operating system can preload or restore an application’s

translations to reduce the start-up effects.

A second issue with hardware-managed translations is

the fixed size and structure of the hardware page table.

In addition, all processors within the same operating

system partition typically share the same physical

hardware page table. With software management, an

operating system can choose to manage the TLBs in

software for any number of the SPEs or PPEs in a

CBEA-compliant processor. This allows an operating

system to have a specialized page table structure for an

application that is independent of the structure required

by the architecture and hardware.

Cache replacement management facility
As mentioned in the previous section, caches introduce

uncertainty into the performance of a system. Not only is

this uncertainty due to a cold cache at start-up, but it can

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

513

also be caused by a characteristic of the application. For

example, if a streaming application reads a very long

sequential data structure, the contents of the cache is

replaced with the infrequently accessed streaming data,

thereby creating a cold cache. The cache management

instructions offered by architectures cannot prevent the

streaming data effects on the cache. Other processor

architectures have offered methods to lock data into

a cache, but they still do not address the effects of

streaming. Since streaming media is a major application

area for a CBEA-compliant processor, this issue had to

be addressed.

Caches are usually not an architectural data element;

thus, the ‘‘Cell Broadband Engine Architecture’’

document [1] focuses only on the need for such a cache

replacement management facility. An example in this

document guides the processor designers with their

implementation choices.

Using the example implementation outlined in [1],

an operating system creates a set of replacement

management class identifiers (RclassIDs) and an

associated replacement management table (RMT). For

the PPE, the RclassID is generated from the address of

the data accessed using a set of address-range registers.

Separate ranges are provided for instruction and data

fetches in the PPE. The RclassID is provided as an

explicit parameter in the MFC commands.

The RclassID is used as an index into the RMT. The

RMT entry selects the sets in the cache (assuming a

set-associative cache) that can be replaced if all of the

entries in the congruence class are valid and the requested

data does not reside in the cache. If the data resides in the

cache in a different set, the data simply is accessed. If the

data does not exist in the cache and there is a nonvalid

entry in the congruence class, an implementation can

choose to place the data in the invalid entry even if it does

not correspond to the set selected by the RMT.

The cache replacement management facility provides

an operating system with two key methods for managing

both the data and translation caches, i.e., the TLBs. The

first method prevents streaming data from flushing a

cache. Accesses to streaming data are tagged with an

RclassID that allows the replacement of only a few sets,

typically one. This means that the data can be streamed

through the cache without replacing older data or

translations that may be required by the operating system

or application.

The second method allows an operating system to lock

data or translations in a cache. This method is beneficial

for many types of data and helps to reduce the caching

effects inherent in hardware-managed caches. For

example, an RTOS can use this facility for a critical PPE

interrupt handler.

As mentioned, controlling the interrupt latency is very

important for an RTOS. By locking the translations to

the key interrupt handlers in the TLBs and locking the

interrupt code itself into the caches, an RTOS can reduce

the uncertainty of processing an interrupt. Locking data

or translations in a cache is achieved by ensuring that

only one RMT entry allows for a given cache set to be

replaced. In the example above, software should ensure

that only the address range of the interrupt routine can

select the RMT entry. If these conditions are met, no

other access will cause the interrupt hander instructions

or translations to be removed from the cache.

To eliminate the start-up cost of the very first interrupt,

the RTOS can warm the cache state by pre-touching

the interrupt handler when it is first loaded by using

the cache management instructions. When used in

conjunction with the mediated external exception

extension and cache management instructions, the cache

replacement management facility essentially eliminates

the uncertainty in the execution of an interrupt handler.

The cache replacement management facility is very

flexible, providing for both locking data in a cache and

reducing the effects of streaming data on caches. While

this facility is implementation dependent, the CBEA

recommends that an implementation provide an RMT

for each major caching structure, including the TLBs.

Internal interrupt controller

Processor architectures typically do not define an

interrupt controller. However, in the CBEA all exceptions

generated by an SPE are typically handled by the PPEs in

the system. The architecture would not be complete if it

did not define how these interrupts are presented to the

PPE. Therefore, the CBEA defines an internal interrupt

controller (IIC) that provides a method to present an

interrupt generated by an SPE to the PPE as quickly as

possible. The IIC has a sufficient set of features to act

as the interrupt controller for the system. If a different

feature set is required, the IIC can coexist with a separate

system interrupt controller.

The SPU-generated exceptions include the following:

internal SPU errors, errors created by the execution of an

MFC command, address translation faults, address

compare matches, mailbox interrupts, interrupts

generated by the execution of an SPU stop-and-signal

instruction, and tag-group completion. SPU exceptions

cause a PPE external interrupt to occur. The CBEA

defines a set of routing registers, interrupt mask registers,

and interrupt status registers for each SPE. The routing

registers are used to route the interrupt to the PPE that

will handle the interrupt. The interrupt mask and status

registers are used to enable interrupt conditions and to

record the cause of the interrupt. The IIC allows software

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

514

to prioritize SPE exceptions with other external interrupts

generated by the system.

The interrupt structure in the CBEA is flexible,

allowing SPE exceptions to be routed to an IIC or

directly to the system interrupt controller. Routing an

SPE exception to the system interrupt controller allows

for an alternative priority to be employed by the system

designer. In addition to handling SPE exceptions, the

IIC provides an efficient mechanism for generating

interprocessor interrupts. Interprocessor interrupts are

generated by a PPE, targeting another PPE in the system.

Resource allocation management
Real-time operating systems were a key consideration

during the development of the CBEA and were the

primary reason for including features such as cache

replacement management and software management of

TLBs in the architecture. These features help software

maintain real-time guarantees in a single-processor

environment, but they do little for the effects created by

having multiple processors. In a multiprocessor system,

critical resources such as system memory can be

consumed by a relatively few devices, which can create

latency and bandwidth issues for the remaining devices.

To address this issue, the CBEA includes a resource

allocation management (RAM) facility.

With RAM enabled, each requester in a CBEA-compliant

processor is assigned to a resource allocation group

(RAG). A portion of each critical resource is allocated to

each RAG. The definition provided in the CBEA ends

here. The remaining details of the facility, such as the

resources controlled and the controlling mechanism, are

highly implementation specific. The rest of this section

describes the Cell/B.E. processor implementation of

RAM. The Cell/B.E. processor is the first implementation

of the CBEA.

In the Cell/B.E. processor, the resources controlled by

RAM are system memory and the I/O interfaces. A

token-based control mechanism allocates a percentage

of the managed resources to each RAG. Before a

requester can access a managed resource, a token must be

requested from a central token manager. The hypervisor

initializes the token manager to generate tokens for each

RAG at a rate equivalent to the allocated percentage

of the resource. Requesters compete for the tokens

generated for their RAG using a round-robin priority

scheme. During certain intervals, the frequency of

requests from a given RAG may be lower than the

allocated token rate; this can result in unused tokens for

some RAGs, while other RAGs are throttled by their

allocated token rate. The Cell/B.E. design allows the

unused tokens to be given to another RAG, which

prevents wasting or underutilization of a resource.

Typically, software never allocates 100% of a resource in

order to account for variations in system performance.

This is another source of potential waste. To assist in

reducing this waste, the Cell/B.E. processor design allows

any RAG to use the unallocated percentage of a resource.

The allocation of unused tokens and the unallocated

portion of a resource is programmable and can be

independently disabled by an operating system.

As mentioned above, 100% of a resource is never

allocated in order to account for unexpected performance

variations. Allowing unallocated and unused tokens to be

used can result in overutilization of a resource. The

Cell/B.E. processor implementation addresses this issue

by automatically suspending the allocation of these

tokens when a resource becomes congested. This is

known as backpressure from the resource.

At first glance, RAM appears to be a bandwidth

management system. However, the bandwidth and

latency of system memory are very dependent on

the access size and access pattern. For example, the

bandwidth is considerably lower if an application

continually accesses addresses corresponding to the same

physical bank of memory. To avoid this problem, the

RAM facility requires a resource to obtain a token for

each physical memory bank. Software sets up a single

percentage allocation for memory, and the token

manager distributes the allocation equally among all

memory banks. Therefore, if the memory access pattern

of an application is evenly distributed, the achievable

memory bandwidth is higher than if the accesses are

poorly distributed. An application can also cause poor

utilization of system memory if it uses small accesses.

Typically, caches prevent small accesses, and they

are not a concern for most systems. However, in a

CBEA-compliant processor, MFC DMA commands can

transfer blocks smaller than a cache line. The Cell/B.E.

processor addresses this issue in two ways. First, each

token is defined as the transfer of a full cache line, or 128

bytes, regardless of the actual transfer size. Second, the

requester is required to obtain two tokens if the transfer

size requires a read–modify–write of system memory

to update the error-correction code (ECC)—one

for the read and one for the write.

Thus, the effective system memory bandwidth is a

function of the access pattern and access size. Without the

RAM, the accesses performed by one application can

affect the system memory bandwidth for all applications.

RAM provides an effective mechanism that prevents

applications with poor access patterns from affecting

the performance of other applications. RAM does not

provide a guarantee of memory bandwidth, but it does

guarantee access to a resource. Because the effective

bandwidth achieved is still dependent on the access

pattern, the facility is known as RAM instead of

bandwidth reservation.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

515

Power management

Power management is always a key consideration in the

development of any architecture. Some channels in the

SPE are defined as blocking, which essentially allows an

SPU to enter a very low-power state while waiting for the

channel to become available. The CBEA also defines the

following set of more traditional power management

states: active, slow(n), pause(n), state retained and

isolated (SRI), and state lost and isolated (SLI).

Each element in a CBEA-compliant processor can be

in any one of the five defined states. In the active state,

the element runs at full performance level. No power

management is applied except for the dynamic power

management provided by blocking channels or the

gating of nonactive circuits found in most advanced

designs.

Several levels are allowed for the slow(n) state, with a

higher value of n representing more aggressive power

savings. As the name implies, the element executes at a

slower rate; thus, the performance is degraded but still

guaranteed to make forward progress. An example of

a slow state is running an element at a slower clock

frequency to save power. The pause(n) state is similar

to the slow(n) state except that forward progress is not

guaranteed. A simple example of a pause state is the

situation in which an SPU is stopped but the MFC is

still active.

In the three power management states described above,

the context of the element is maintained. For example, the

TLBs and caches remain coherent with system memory

and other elements in the system. In the SRI and SLI

states, the element no longer interacts with other elements

in the system; thus, the full context for the element cannot

be maintained. (These power management states should

not be confused with the SPU isolation facility described

in the next section.) Software must prepare the element

before entering or leaving these states. The SRI state

allows software to keep the bulk of the context while

saving most of the power of the element. An example of

the SRI state is the case in which the SPE is isolated from

the system and the contents of the local storage and

MMIO registers are maintained. Coherency of the TLBs

and caches is not maintained. The SLI state is the most

aggressive power-saving state. In this state, nothing is

maintained, including the local storage, registers, and

caches. An example of this state is the situation in which

power is removed from an SPE or PPE. The actual

implementation and supported power management states

are implementation specific. Therefore, the CBEA does

not define the details.

Isolated execution environment
The CBEA includes an SPU isolation facility that is used

to create a secure execution environment within an SPE.

Figure 4 is a state diagram illustrating the transitions into

and out of the SPU isolated execution environment.

To enter an SPU isolated execution environment,

a pointer to the code to execute in the secure execution

environment is loaded into the SPU signal notification

registers 1 and 2, and the SPU is started using a Load

request. When it receives the Load request, the SPE first

sets up the isolated execution environment by removing

access to a portion of the local storage. The remaining

portion of local storage remains open. All accesses to

the local storage alias and MFC DMA commands are

forced into the open area. After the isolated environment

is initialized, the SPE loads the application into the

isolated area of local storage. As it is loaded, the code

is authenticated and decrypted by using a hardware

root key. If the load succeeds, the application is executed.

Once in the SPU isolated execution environment, the only

way out is to stop the SPU and restart it with an

Exit request. If the Load fails, the SPU remains halted in

a transition state. The only way out of the transition state

is to restart the SPU by using either another Load

request or an Exit request.

In addition to the isolated execution environment, the

SPU isolation facility provides an application with a

random number generator and persistent storage. The

Figure 4

SPU isolated state transitions.

SPU nonisolated execution environment

Transition states

SPU isolated execution environment

SPU and local storage isolated from system

Run

Stop

Load
failed Exit

Exit

Load

Load
success

Exit

Exit
complete

Load

Run

Stop

Exit Load

Load
failed

SPU isolated

(stopped)
SPU isolated

(running)

SPU
stopped

SPU
running

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

516

persistent storage maintains its state between isolation

sessions and can be accessed only by an application

executing in the SPU isolated execution environment.

Software development toolkit
To provide software developers exposure to the CBEA

with and without access to hardware, a Software

Development Kit (SDK) is available on the IBM

alphaWorks* Web site (www.alphaworks.ibm.com/topics/

cell) with open-source content distributed on the

Barcelona Supercomputing Center Web site (www.bsc.es/

projects/deepcomputing/linuxoncell).

The SDK is continuously being enhanced with

additional components and features. The key

foundational components of the SDK are as follows:

� A Cell/B.E. processor–enabled Linux kernel

supporting the unique CBEA features.
� The IBM full system simulator for the Cell/B.E.

processor that supports simulation of either

uniprocessor or dual-processor systems. Both

functional and cycle accurate simulation modes are

provided so that programmers can maximize either

interactivity or timing accuracy.
� A system root image (sysroot) that provides a

standard set of Linux operating system utilities and

services for use in the simulated Linux operating

system environment.
� Standard CBEA-specific libraries including the newlib

C languages standard library, SIMD math libraries,

and an SPE runtime management library that exposes

the SPEs as heterogeneous POSIX threads.
� Code-generation tools including GNU and IBM XL

C/Cþþ compilers. The compilers support the

automatic generation of SIMD code for both the PPE

and the SPE.
� Productivity tools such as an Eclipse-based

integration development environment (IDE). The

IDE provides an integration framework for building,

deploying, and managing CBEA software.
� Cell/B.E. processor–enabled debug tools including the

GNU debugger (gdb). The debugger has been

enhanced to enable combined PPU and SPU

debugging and to provide user access to the unique

states of the Cell/B.E. processor.
� Performance analysis tools including the OProfile

system profiling tool, the Cell/B.E. processor

performance counter, which provides access to

Cell/B.E. processor performance monitoring facilities,

code analyzer, Feedback-Directed Program

Restructuring technology of FDPR-pro, and a

static performance analysis tool called spu_timing.

The output from many of the tools can be visualized

using the Eclipse-based visual performance analyzer

(VPA).
� An SPE executive for invoking SPU executables

directly from a Linux shell. The executive provides

standard system services including file I/O, shared

memory, memory map, and time of day.
� Many code samples that demonstrate programming

techniques, optimized libraries with source code to

jump-start application development, and workloads

to demonstrate the computational capabilities of the

Cell/B.E. processor.
� Programming model frameworks such as the

Accelerated Library Framework (ALF), which

provides services to assist in the development of

parallel applications and libraries on multicore

architectures with hierarchical memory such as

the CBEA.

The SDK is supported on the x86, PowerPC 64, and

Cell/B.E. processor blade systems running Fedora** core

for the Linux operating system. These configurations

minimize system costs, ensuring wide access to anyone

who wants to evaluate Cell/B.E. technology, learn

Cell/B.E. programming, or develop Cell/B.E. applications

and tools.

Software standards for CBEA

Critical to the success of the CBEA is the adoption of

software standards and conformance to these standards.

From the outset, the Sony Group, Toshiba, and IBM

worked together to establish an initial set of standards

including the following:

� Application binary interface (ABI) specifications

including the SPU Application Binary Interface

Specification and the CBE Linux Reference

Implementation ABI specification.
� Language specifications including the SPU Assembly

Language Specification and the C/Cþþ Language

Extensions for Cell Broadband Engine Architecture

specification.
� Standardized library specifications including the SPE

Runtime Management Library and the SIMD Vector

Math Library specifications.

Adherence to these specifications ensures that

application code is portable and that tools produce

binaries that will coexist. To ensure compliance with the

standards, conformance tests have been developed and

made generally available.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

517

Conclusions: The power of the Cell/B.E.
processor
The real power behind the CBEA is the optimization

made possible by the heterogeneous design and the

memory movement, provided by the DMA, for hiding

memory latency. While initially directed toward media

and streaming applications, the flexibility of the

architecture allows for a multitude of application and

programming techniques. For example, several papers

describe CBEA applications that include features such as

software-managed caches implemented in the local

storage and software threading of the SPEs [8].

Additionally, a generalized implementation of a software

cache is provided in the SDK.

A formal request for change (RFC) process governs

changes and additions. All RFCs require unanimous

acceptance by the three partner companies—the Sony

Group, Toshiba, and IBM. Each of the partner

companies serves as an advocate to ensure that its

business partners are represented in the RFC process.

The CBEA offers a wide variety of features to improve

the performance of systems requiring RTOS, streaming,

and computing applications. In addition, the CBEA

defines a unique approach to security by offering an

SPU isolation facility. When used properly, this facility

provides an isolated execution environment that is not

accessible from other elements or by external means. The

features and flexibility of the CBEA combined with the

new development environment and software standards

create a processor architecture and ecosystem poised

to set the standard for application acceleration.

Acknowledgments
The CBEA and the Cell/B.E. processor (the first

implementation of the architecture) resulted from a

deep collaboration of engineers from Sony Computer

Entertainment Incorporated, Toshiba, and IBM. Each

of the partners brought to the team a unique set of

requirements, experience, and perspectives. The diversity

of the team enabled it to look beyond the traditional

processor architectures and develop the heterogeneous

processing structure provided by the CBEA. More than

five years and countless person-hours went into the

development of theCBEAand theCell/B.E. processor. The

authors also wish to thank the anonymous reviewers for

their suggestions for improving the content of this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of
Linus Torvalds or Red Hat, Inc., in the United States, other
countries, or both.

�Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References
1. Cell Broadband Engine Architecture; see http://www.ibm.

com/chips/techlib/techlib.nsf/techdocs/
1AEEE1270EA2776387257060006E61BA.

2. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, ‘‘Introduction to the Cell
Multiprocessor,’’ IBM J. Res. & Dev. 49, No. 4/5, 589–604
(2005).

3. PowerPC Architecture Book, Version 2.02; see http://
www.ibm.com/developerworks/power/library/pa-archguidev2/.

4. Synergistic Processor Unit Instruction Set Architecture; see
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/
76CA6C7304210F3987257060006F2C44.

5. B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais,
R. Kim, T. Le, et al., ‘‘The Microarchitecture of the Synergistic
Processor for a Cell Processor,’’ IEEE J. Solid-State Circuits
41, No. 1, 63–70 (2006).

6. D. A. Brokenshire, ‘‘Maximizing the Power of the Cell
Broadband Engine Processor: 25 Tips to Optimal Application
Performance’’; see http://www.ibm.com/developerworks/power/
library/pa-celltips1/.

7. D. Krolak, ‘‘Just Like Being There: Papers from the Fall
Processor Forum 2005: Unleashing the Cell Broadband Engine
Processor: The Element Interconnect Bus’’; see http://
www.ibm.com/developerworks/power/library/pa-fpfeib/
index.html.

8. C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, ‘‘Ray
Tracing on the Cell Processor’’; see http://graphics.cs.uni-sb.de/
;benthin/cellrt06.pdf.

Received July 22, 2006; accepted for publication

C. R. JOHNS AND D. A. BROKENSHIRE IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

518

March 1, 2007; Internet publication August 9, 2007

Charles R. Johns IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (crjohns@us.ibm.com).
Mr. Johns is a Senior Technical Staff Member in the
Sony/Toshiba/IBM Design Center. He received his B.S. degree in
electrical engineering from the University of Texas at Austin in
1984. After joining IBM Austin in 1984, Mr. Johns worked on
various disk, memory, voice communication, and graphics
adapters for the IBM Personal Computer. From 1988 until he
transferred to the STI project in 2000, he was part of the graphics
organization and was responsible for the architecture and
development of entry and midrange 3D graphics adapters and
raster engines. Mr. Johns is now responsible for the CBEA; he
participated in the development of the Cell/B.E. processor, which is
the first implementation of the CBEA. Mr. Johns is an IBMMaster
Inventor.

Daniel A. Brokenshire IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (brokensh@us.ibm.com).
Mr. Brokenshire is a Senior Technical Staff Member with six years
of experience in the Cell/B.E. Processor Design Center. He
currently serves as a senior member of the IBM Cell/B.E. Processor
Systems Enablement team working on the Cell/B.E. processor
SDK. His responsibilities include the development of programming
standards, language extensions, reusable software libraries, and
software documentation. Mr. Brokenshire received a B.S. degree
in computer science and B.S. and M.S. degrees in electrical
engineering, all from Oregon State University. Prior to his work on
the Cell/B.E. processor, he enjoyed a productive career developing
3D graphics products for Tektronix, Inc., and IBM.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 C. R. JOHNS AND D. A. BROKENSHIRE

519

