C. R. Johns
D. A. Brokenshire

Introduction
to the Cell
Broadband
Engine
Architecture

This paper provides an overview of the Cell Broadband Engine™
Architecture (CBEA). The CBEA defines a revolutionary
extension to a more conventional processor organization and serves
as the basis for the development of microprocessors targeted at
the computer entertainment, multimedia, and real-time market
segments. In this paper, the organization of the architecture is
described, as well as the instruction set, commands, and facilities
defined in the architecture. In many cases, the motivation for these
facilities is explained and examples are provided to illustrate their

intended use. In addition, this paper introduces the Software
Development Kit and the software standards for a

CBEA-compliant processor.

Overview

The Cell Broadband Engine” Architecture (CBEA)
defines a family of heterogeneous microprocessors that
target multimedia and compute-intensive applications [1].
The CBEA resulted from a joint effort among the Sony
Group, Toshiba, and IBM to develop the next-generation
processor. The following motivations shaped the
development of the architecture [2]:

* Provide outstanding performance on computer
entertainment and multimedia applications.

* Develop an architecture applicable to a wide range
of platforms.

¢ Enable real-time response to the user and the
network.

® Address the three design challenges facing traditional
processors: memory latency, power, and frequency.

The CBEA extends the IBM PowerPC* 64-bit
architecture with loosely coupled, cooperative offload
processors. The CBEA is set apart from other processor
architectures by the use of two independent instruction
sets: the PowerPC and the synergistic processor unit
(SPU) instruction sets. For a processor to be considered
CBEA compliant, the processor must contain one or

more PowerPC processor elements (PPEs), one or more
synergistic processor elements (SPEs), and the required
feature set defined by the CBEA. Figure 1 is a block
diagram of a CBEA processor.

The PPE is compliant with the IBM PowerPC
Architecture® [3]. It is intended to perform the system
management and application control functions, or
“control plane” processing. Whereas other architectures
have augmented the instruction set of the processor with
tightly coupled extensions such as the vector/single-
instruction multiple-data (SIMD) multimedia extension,
the CBEA employs an independent SPU that is compliant
with the SPU instruction set architecture [4] to perform
the compute-intensive, or “data plane,” processing. This
allows the data processing and control functions to be
decoupled, enabling more application parallelism.

Another distinction between a traditional processor
and the CBEA is the definition of two storage domains:
main and local. The main storage domain is the same as
that commonly found in most processors. This domain
contains the address space for system memory and
memory-mapped [/O (MMIO) registers and devices.
Associated with each SPU is a local storage address
space, or domain, containing instructions and data for
that SPU. Each local storage domain is also assigned an
address range in the main storage domain called the /ocal

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

C. R. JOHNS AND D. A. BROKENSHIRE

503

504

SPE group 0 (SG_0)

SPE group n (SG_n)

PPE group 0 (PG_0)

PPE group p (PG_p)

[

[

SPE_0 SPE_g SPE_0 SPE_g
SPUO || «++ || SPUg SPUO [| e« || SPUg PPUO | , .. | PPUg PPUO | *** | PPUg
[Ls | | Ls BT | Ls RMT RMT RMT RMT
e e 0 e e 0
MFC MFC MFC MFC [L1 | [L1] | L1 | [L1 |
I
MMU MMU MMU MMU
RMT RMT RMT RMT
-
SLI1 SL1 L2 L2
\ BIU | \ BIU || BIU | \ BIU

Element interconnect bus (EIB)

W

‘ Bus interface controller (BIC) ‘

‘ Internal interrupt controller (IIC) ‘

‘ Memory interface controller (MIC) ‘

!

!

’ 1/0 ‘ ’ Memory ‘
BIC Bus interface controller MMU Memory management unit

BIU Bus interface unit PPE PowerPC processor element
IIC Internal interrupt controller PPU PowerPC processor unit

L1 Memory cache internal to the CPU RMT Replacement management table
L2 Memory cache external to the CPU SL1 First-level cache

LS Local storage SPE Synergistic processor element
MFC Memory flow controller SPU Synergistic processor unit

MIC Memory interface controller

CBEA processor block diagram.

storage alias. The SPU can address memory directly only
within the associated local storage. To access data in the
main storage domain and maintain synchronization with
other processors, each SPU and local storage pair is
coupled with a memory flow controller (MFC). The
combined SPU, associated local storage, and MFC make
up the SPE. In addition to the PPE and the SPE, the CBEA
includes many features for real-time applications not
typically found in conventional processor architectures.
The “Cell Broadband Engine Architecture” document,
which defines the architecture, refers to the “PowerPC
Architecture Book™ and the “SPU Instruction Set
Architecture” document to avoid duplicating
information. For a complete definition of the CBEA,
the reader must have access to all of these documents,
which are publicly available on IBM Web pages [1, 3, 4].
The CBEA document is divided into two parts: the
user-mode environment (UME) and the privileged-mode
environment (PME). The UME defines the instructions
and facilities required for application portability. This
section is similar to Books I and II of the PowerPC

C. R. JOHNS AND D. A. BROKENSHIRE

Architecture. For the PowerPC Architecture, only Book I
compliance is necessary for application portability. Since
the CBEA defines a heterogeneous multiprocessor, the
synchronization features found in Book II of the
PowerPC are necessary for cooperative processing. For
this reason, Books I and II were collapsed into a single
UME section. The PME, which defines the instructions
and facilities required for operating system and
hypervisor' development, is similar to Book III of the
PowerPC Architecture.

PowerPC processor element

Within a CBEA-compliant processor, the PPE performs
the control plane functions that typically required the
more general-purpose computing provided by the PPE.
The PPE is based on Version 2.02 of the PowerPC
Architecture, which offers many of the features required
for the application spaces targeted by the CBEA. The
'A hypervisor is a layer of software running on the processor that allows multiple

“guest” operating systems to run concurrently. The hypervisor virtualizes the
processor and the system resources.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

PPE is based on the PowerPC Architecture for four
reasons: 1) The PowerPC Architecture is a mature
architecture that is applicable to a wide variety of
platforms. 2) It supports multiple simultaneous operating
environments through logical partitioning. 3) It contains
proven microarchitectures that meet the frequency

and power challenges of the targeted market segment.
4) Use of the PowerPC Architecture leverages the IBM
investment in the PowerPC ecosystem.

A key advantage of the PowerPC Architecture is its
unique ability to support multiple concurrent operating
environments through the use of logical partitioning.
This feature is critical to executing a non—real-time
operating system (RTOS) for the user interface while
simultaneously executing a non-RTOS, such as the
Linux** operating system, for management of the system.
Concurrent execution of an RTOS and the Linux
operating system allows non-real-time processes to
be performed in the background without affecting the
performance of an application running under the RTOS.

Although the PowerPC is a mature architecture for
more traditional platforms, concurrently supporting both
an RTOS and a non-RTOS within the heterogeneous
multiprocessor presented many architectural challenges:
To meet these challenges and optimize the architecture
for media-rich applications, the PowerPC Architecture
required enhancements to the vector/SIMD multimedia
extension, as well as introduction of the mediated external
exception, the multiple concurrent large-page support,
software management of translation lookaside buffers
(TLBs), and the cache replacement management extensions.

The following subsections describe the mediated
external exception extension, the vector/SIMD multimedia
extension, and the multiple concurrent large-page
extension. Software management of TLBs and cache
replacement management are described in separate
sections because they apply to both the PPEs and the SPEs.
See the CBEA document [1] for more information on each
extension.

Mediated external exception extension
A key attribute of an RTOS is a guaranteed interrupt
latency. A single RTOS can control the interrupt latency
by not allowing interrupts to be disabled for more than a
predetermined amount of time. However, when multiple
operating systems are running, the presentation of an
interrupt can be delayed by another partition for an
arbitrary amount of time. The mediated external
exception extension to the PowerPC Architecture
overcomes this deficiency by allowing an interrupt to be
presented to the processor even if interrupts are disabled.
In the PowerPC Architecture, the term exception
describes the interrupt condition, and the term interrupt
refers to the processor acting on the exception condition or

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

jumping to the interrupt handler. The critical exception
conditions for an RTOS are those generated by SPEs and
external devices. The current PowerPC Architecture allows
an external exception to invoke a hypervisor-privileged
interrupt handler. However, an operating system still has
control of the external exception enabled in the machine
state register of the processor. The CBEA-mediated
external exception extension enables the interrupt handler
to be invoked as long as the processor is not operating
in hypervisor state or if external exceptions are enabled.
This prevents an operating system from delaying the
presentation of an exception to the processor and allows
a hypervisor-privileged interrupt handler to be invoked.
If the exception is for the RTOS, the hypervisor can
immediately pass control to the interrupt handler of the
RTOS regardless of which partition is currently active.
However, an interrupt can occur when the RTOS is in a
critical section with external exceptions disabled, and this
is where the mediated portion of the extension comes into
play. When external exceptions are disabled by the
partition that is expected to handle the interrupt, the
hypervisor-privileged interrupt handler sets a mediated
external exception request bit in the logical partitioning
control register and returns from the interrupt. When the
partition enables external exceptions, the hypervisor-
privileged interrupt handler is once again invoked with a
mediated external exception. The interrupt handler then
sets the state of the processor to mimic the original
external exception.

Vector/SIMD multimedia extension
Although the CBEA contains offload processors for
vector and streaming media processing, the architecture
team included the vector/SIMD multimedia extension for
the PPE. This multimedia extension was included to run
software developed for the vector/SIMD multimedia
extension, to make it easier to develop and port
applications to the SPE, and to allow applications
to be parallelized across the PPEs and SPEs.

The vector/SIMD multimedia extension defined
by the CBEA is very similar to the PowerPC 970*
implementation. The major difference between the two is
the rounding mode support. For compatibility with SPU
applications, the vector/SIMD multimedia extension
unit in the PPE supports the rounding modes
defined by the SPU instruction set architecture.

Multiple concurrent large-page extension

The current PowerPC Architecture supports the base
4-KB page plus one additional large page to be used
concurrently. The large-page size is implementation
dependent. In the CBEA, many types of data structures
are located in main storage, e.g., MMIO registers for
the SPEs, local storage aliases, streaming data, and video

C. R. JOHNS AND D. A. BROKENSHIRE

505

506

buffers. The limitation of only one large-page size places
a burden on the TLBs. If a large-page size of 64 KB is
selected, the number of translations needed for MMIO
registers and local storage aliases is lower than that for
the base 4-KB page size. However, more translations are
required for the relatively large streaming buffers and
video buffers in main memory. In contrast, a large-page
size of 1 MB or 16 MB reduces the number of translations
required for the streaming and video buffers, but it is too
large for mapping the MMIO registers and local storage
aliases.

To improve the efficiency of the TLBs, the CBEA
augments the PowerPC Architecture by providing
support for multiple concurrent large-page sizes. The
memory management units (MMUSs) in the SPE also
support the multiple concurrent large-pages extension.

Synergistic processor element
The SPE is the cooperative offload processor in the
CBEA intended for the computational, or data plane,
processing functions. The SPE consists of three tightly
coupled units: the SPU, the associated local storage,
and the MFC. The SPU is a SIMD processor with an
instruction set architecture optimized for compute-
intensive and media applications: It operates only on
instructions and data in the associated local storage.
Decoupling the SPU from other aspects of the system
provides a very deterministic processing environment
for the programmer.

The SPU and associated local storage are coupled
to the main storage domain and other processors by
the MFC. The MFC enables software to move data
between the storage domains and to synchronize with
other processors in the system. Data movement and
synchronization are initiated by using MFC commands.
Either the SPU or another processor in the system, such
as the PPE, can issue these commands. A direct memory
access (DMA) controller in the MFC unit performs the
data movement. All main storage accesses performed by
the DMA controller adhere to the PowerPC Architecture
for address translation and protection. They are
performed asynchronously with respect to the SPU
and all other units in the system.

Synergistic processor unit

The SPU provides the programmer with 128 registers,
each of which is a 128-bit SIMD register. The large
number of architected registers facilitates efficient
instruction scheduling and also enables important
optimization techniques such as loop unrolling. All SPU
instructions are inherently SIMD operations that process
data in one of four granules: sixteen 8-bit integers, eight
16-bit integers, four 32-bit integers or single-precision
floating-point numbers, or two 64-bit double-precision

C. R. JOHNS AND D. A. BROKENSHIRE

floating-point numbers. The SIMD registers in the SPU
are unified and can be an operand of either an integer
or a floating-point instruction, unlike the split set of
registers in the PowerPC Architecture [5].

To obtain the best performance from an SPU, the data
structures of the program should be defined around the
SIMD data flow. In addition, techniques such as double
buffering should be employed to overlap the computation
with the data movement. This technique insulates the
SPU application from the latency of the system memory
accesses. More programming tips can be found in [6].
Although the SPU is optimized for SIMD, scalar
operations can be performed; they use the preferred
slot (the upper word, or 32 bits, for 32-bit scalars) of the
SIMD register.

Channel interface

As mentioned earlier, the SPU is decoupled from the
system and the MFC provides the linkage to the main
storage domain and other processors. A channel interface
supplies the communication path between the SPU and
the MFC. The CBEA defines multiple unique channels
for issuing MFC commands and accessing MFC facilities.
These channels are accessed by using the SPU channel
instructions.

The SPU instruction set architecture defines the
channels as four words wide, but the CBEA uses only one
word, which is the preferred slot of the SIMD data flow.
Each channel has the following set of attributes defined
by the CBEA: direction, capacity, and the ability to be
blocking or nonblocking.

Channels are unidirectional, with the direction defined
by the CBEA. Channels used to retrieve information
from or transfer information to the MFC are accessed,
respectively, by using an SPU read channel (rdch) or write
channel (wrch) instruction. Accessing a read channel by
using a wrch instruction or a write channel by using an
rdch instruction is not allowed and results in an invalid
channel error.

Channel capacity (depth) defines the number of words
that can be contained within the channel. The CBEA
defines the depth for some channels; for others, it is an
implementation-specific parameter. A channel count,
which is accessed by using an SPU read channel count
(rdchent) instruction, is used to track the amount of
information in the channel. The value returned by the
rdchent instruction indicates the number of valid words
contained in a read channel and the available free space
or number of words that can be written to a write
channel.

The CBEA defines each channel as either blocking or
nonblocking. A nonblocking channel essentially has an
infinite depth, and a value of one is always returned when
reading the channel count. Blocking channels have a

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

depth of one or more, with an active channel count.
Accessing a blocking channel whose count is zero stalls
the instruction processing of the SPU until the channel
count becomes nonzero. The blocking attribute relieves
the programmer from having to check the channel
capacity before accessing the channel. When no other
useful work can be performed, this attribute allows the
program to enter a very low-power state while waiting
for the channel to become available. If useful work can
be performed, the programmer can check the channel
capacity with the rdchent instruction before accessing
the channel and can then occasionally poll the channel
count while performing other useful work.

An SPU interrupt offers an alternative to polling.

The presence of an SPU interrupt can affect the SPU
instruction sequencing in one of two ways. If interrupts
are disabled, a special SPU branch instruction (bisled) can
be executed to branch to a target address if an interrupt is
present. If interrupts are enabled, the SPU executes the
next instruction from address zero in local storage and
disables interrupts. The address of the next instruction
that would have been executed if the interrupt were not
present is saved in the SPU state save and restore register
(SRRO). SRRO can also be accessed by using two
channels, one to read SRRO and one to write SRRO. The
SPU iret instruction can be used to return to the address
stored in SRRO. SPU interrupts should not be confused
with interrupts generated by an SPE that are targeted for
the PPE (SPE interrupts).

The SPU event facility can be programmed to detect
key SPE conditions and other system events. The event
facility is accessed by using channel instructions to specify
the conditions of interest and determine the event status.
Software can use the event facility to stall the SPU while
waiting for multiple different events or to generate an
interrupt when an enabled event occurs. The SPU event
facility is described in more detail later in the paper.

Memory flow controller

The MFC provides the communication path from the
SPU and the local storage domain to the main storage
domain and other processors in the system. The MFC
essentially decouples the SPU from the main storage
domain; an application can view the SPU as having an
additional asynchronous load—store processor. If used
properly, the MFC can insulate an SPU application
from the latency of system memory.

Figure 2 is a high-level block diagram of the MFC
unit. The bus interface unit (BIU) provides the interface
to the element interconnect bus (EIB) [7]. The CBEA does
not define the EIB protocol. The first-level cache (SL1)
is a caching structure for MFC accesses to the main
storage domain, and it provides an architectural entity
for performance enhancements. In most implementations,

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

SPU channel SPULS
interface interface
A A
MFC ARE
o =
~ gl =
; =
Al A
! MEFC proxy y y MFCSPU
MEFC command command
registers [| queue queue
! RMT
DMA request unit
wwio || [DMArequestunit |—lvy
interface Atomic 1
A DMA controller LEYLES
y Y
Real | [RMT| SLI (optional) |
address
Y Y ¢
BIU |
To element interconnect bus
MEFC block diagram.

the SL1 either is omitted or is very small because of the
streaming nature of the MFC commands. The MFC SPU
command queue is dedicated to MFC commands issued
by the SPU using the channel interface. Other processors
use the MFC proxy command queue to transfer data
between the storage domains on behalf of the associated
SPE. The MFC proxy commands, which are issued by
using the MFC MMIO registers, are used primarily to
efficiently initialize the local storage before an SPU
program is executed. They are typically used by
software executing in a PPE.

The DMA controller transfers instructions and data
between SPU local storage and main storage. Programs
running on the associated SPU, a PPE, or another device
can issue MFC DMA commands. Table 1 shows the MFC
DMA commands supported by the DMA controller.

A single MFC DMA command can transfer up to
16 KB of sequential data between the storage domains. A
DMA transfer is typically performed as a series of smaller
bus transfers, usually a cache line or less. If required,
coherency is maintained for these transfers as the storage
attributes in the page table.

The parameters listed below affect the operation of
MFC DMA commands:

e CL MFC class ID.
e TG MFC command tag identification.

C. R. JOHNS AND D. A. BROKENSHIRE

508

Table 1 MFC DMA commands supported by the DMA controller.

Command Description

get<f,b>[s] Moves data from the effective address within main storage to local storage.

getl<f,b>[s] Same as get<<f,hb>, except that the effective address and size for multiple transfers are specified by list
elements in local storage.

put[r]<f,b>[s] Moves data from local storage to the effective address within main storage.
The optional “r” modifier provides a hint to the system that the data is likely to be accessed soon by the
PPE. The data transferred by the command is a candidate for copying into the PPE cache.

put[r]I<f,b> Same as put[r]<f,b>[s], except that the effective address and size for multiple transfers are specified by list
elements in local storage.

sdert SL1 data cache range touch. Brings a range of effective addresses into the SL1 (performance hint for ger
commands). Similar to the PowerPC dcht instruction.

sdertst SL1 data cache range touch for store. Brings a range of effective addresses into the SL1 (performance hint for
put commands). Similar to the PowerPC dchtst instruction.

sderz SL1 data cache range zero. Writes zeros to the contents of a range of effective addresses. Similar to the
PowerPC dcbz instruction.

sdcrst SL1 data cache range store. Stores the modified contents of a range of effective addresses. Similar to the
PowerPC dcbhst instruction.

sderf SL1 data cache range flush. Stores the modified contents of a range of effective addresses and invalidates the
block. Similar to the PowerPC dcbhf instruction.

sndsig<f,b> Sends a signal to another SPE. Updates the signal notification registers in another SPE.

barrier Orders all commands issued prior to the barrier command with respect to all subsequent commands.

mfceieio Orders the storage transactions caused by ger and put commands. Similar to the PowerPC eieio instruction.

mfesync Orders DMA put and get operations within the specified tag group with respect to other processing units and
devices on the system. Similar to the PowerPC sync instruction.

getllar Get lock line and reserve-immediate. Similar in function to the PowerPC /warx and Idarx instructions.

putllc Put lock line conditional-immediate. Similar in function to the PowerPC sfwex and stdex instructions.

putlluc Put lock line unconditional-immediate. Main storage location updated regardless of reservation ownership.

putqlluc Same as putlluc except queued with other DMA commands and has an implied fence modifier.

Note: The optional “s” modifier starts the SPU when the command completes.
The fence (<f>) and barrier () modifiers are used for command ordering. See the section on command ordering for the definition of these modifiers.

e TS MEC transfer size.

e LSZ MFC list size.

e LSA MFC local storage address.

e EAH MFC effective address high.

e EAL MFEFC effective address low.

e LA MFC list local storage address.

e LTS List element transfer size.

e LEAL List element effective address low.

the MFC and to the system about the way the storage
request should be treated. For example, the TclassID can
be used by the bus interface unit in the MFC to prevent
accesses to a slow device from blocking accesses to the
higher-bandwidth main memory. To accomplish this, the
EIB transfer request queue in the MFC (not shown in
Figure 2) is segmented into two or more areas. The
number of entries in each segment is sized according to
the latency and bandwidth characteristics of the storage
being accessed. EIB transfer requests created for a
command are placed in only the transfer request queue
segment that corresponds to the TclassID of the
command. By issuing a command with the appropriate

Each command includes a classID parameter. The
parameter contains a replacement management class
identifier (RclassID) that controls the cache replacement

management facility. The cache replacement management
facility is described later.

Software uses a TclassID identifier to classify the type
of storage being accessed. The TclassID provides a hint to

C. R. JOHNS AND D. A. BROKENSHIRE

TclassID, software can prevent the transfer request queue
from filling with transfer requests to slower devices. Since
the transfers to slower devices are limited to one area of
the request queue, transfers accessing higher-bandwidth

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

devices are guaranteed a minimum number of request
queue entries. This minimizes the latency impact created
by accesses to slower devices. Without this feature, the
transfer request queue would fill up with bus requests
for slower devices and prevent the MFC from issuing
requests for higher-bandwidth devices.

List commands

The CBEA provides a list modifier </> for MFC DMA
commands to move data that is scattered in the main
storage domain. A command with a list modifier is
called a list command. List commands are converted to
a series of commands, each of which is described by a
list element in local storage. Each list element in local
storage contains an effective address low parameter and
a transfer size parameter. When a list command is
executed, the MFC reads the list elements from local
storage and creates a series of DMA commands. Each
DMA command that is generated has the same set of
parameters as the original list command, with the
exception of the transfer size and effective address low
parameters. Each MFC DMA list command can contain
up to 2,048 list elements, each transferring up to

16 KB of data. Only an SPU can issue list commands, and
such commands cannot be issued to the proxy MFC
command queue.

The list element includes a stall-and-notify flag. When
set, the flag causes the MFC unit to stop executing the list
command and notify the SPU after all of the DMA
transfers for the list element and all previous list elements
are complete. Subsequently, software can resume the list
command. Among other uses, this feature allows the
programmer to specify a data transfer larger than the
available buffer space in local storage. The stall-and-notify
flag is placed on the last element that fills the buffer.
When the data transferred by the previous elements is
processed and buffer space made available, the program
can resume the MFC DMA list command. The CBEA
defines one read channel that identifies the list commands
that are stalled. It defines a write channel that is used to
acknowledge the stall and allow the MFC to continue
executing the list command.

Memory management unit

The MMU allows an SPU application to use the same
effective address as that used by a PPE application to
access main storage.

The effective address for an MFC command is
provided in two parameters, the EAH parameter and the
EAL parameter. The EAH parameter contains the high-
order 32 bits of the 64-bit effective address, and the EAL
parameter contains the low-order 32 bits of the address.
The EAH parameter is optional; if it is omitted, the
high-order 32 address bits are set to zero.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

The MMU translates the effective address into the real
address of main storage. This translation is compatible
with the virtual address translation mechanism defined by
the PowerPC Architecture. The PPE handles all MFC
translation faults. An MFC translation fault occurs when
a translation cannot be found for an effective address.

The MMU can use either the same page table as
that used by the PPEs or an independent page table; it
also supports the multiple concurrent large-page
extension described earlier in this paper. In addition, the
MMU supports software management of the TLBs,
which is presented subsequently.

Command ordering

As MFC commands are issued, they are placed in the
appropriate command queue. MFC commands can be
executed and completed in any order, regardless of
the order in which they were issued. The out-of-order
execution of commands allows the MFC to use system
resources efficiently to achieve the best performance. For
example, if the EIB supports simultaneous reads and
writes, the MFC can simultaneously execute one get
and one put command. If ordering were implied by
the issue order, this would not be possible.

While out-of-order command execution can help
performance, in some cases, software may require strict
command ordering. To achieve command ordering, the
CBEA provides two command modifiers (fence <f> and
barrier) and a barrier command. The command
modifiers order commands only within the same tag
group (that is, all commands issued with the same tag
parameter to the same queue). Hence, these are called
tag-specific modifiers. A command with a fence modifier
is performed after all previously issued commands within
the same tag group. Commands issued after a command
with a fence modifier are not affected. A command with
the barrier modifier is performed after all previously
issued commands within the same tag group. Commands
that are issued after a command with a tag-specific barrier
are also performed after previously issued commands.
Some commands have an implied tag-specific barrier
modifier.

When command ordering is required to be independent
of the tag group, a barrier command can be issued.
Regardless of the tag identifier, this command orders
all previously issued commands with respect to all
subsequently issued commands within the same
command queue. The CBEA does not provide a
mechanism to order commands with respect to commands
in the other command queue.

Storage access ordering

In addition to command ordering, software can also
require the EIB transfers generated by the DMA 509

C. R. JOHNS AND D. A. BROKENSHIRE

510

RRER
1. Store 0x1 to local storage location A
2. sync
3. Store 0x2 to main storage location B

Main storage

B | 0x0 — 0x2

PPE 2
1. Load from main storage location B
returns 0x2
2. sync
3. Store 0x3 to local storage location C

Local storage

SPU 3
1. Load from local storage location C A | 0x0 — Ox1
returns 0x3
2. Use the multisource synchronization C | 0x0 — 0x3
facility

3. Load from local storage location A
guaranteed to return 0x1

Example of multisource synchronization.

command to be ordered with respect to other processors
and devices in the system. Although the command
modifiers and barrier command provide for command
ordering, they do not provide ordering of the bus
transfers with respect to other processors and devices in
the system. For this type of storage ordering, the mfceieio
and mfesync commands are used in combination with the
command modifiers and barrier command. The mfceicio
command provides storage ordering that is similar to the
PowerPC eieio instruction; the mfesync command
provides storage ordering that is similar to the PowerPC
sync instruction.

The ordering of storage accesses performed by two or
more processors with respect to another processor or
device is called cumulative ordering. The CBEA follows
the PowerPC rules for cumulative ordering when all
accesses are performed within the main storage and the
proper synchronization instructions and commands are
performed. Standard PowerPC rules do not apply when
the storage accesses are performed within the main
and local storage domains. The CBEA multisource
synchronization facility addresses this case. This facility
provides software with a mechanism to ensure that all
accesses from the main storage domain, targeting the
associated local storage domain, are complete with
respect to the SPU. Figure 3 illustrates the use of
the multisource synchronization facility.

Memory-mapped I/O space and channels

The CBEA defines several SPE facilities, some of which
have already been mentioned. A facility is a set of MMIO
registers or channels that provide a specialized function.

C. R. JOHNS AND D. A. BROKENSHIRE

Facilities in the CBEA are accessed from the main storage
domain using MMIO registers or are accessed using the
channels defined by the CBEA. The facilities defined by
the CBEA provide a wide variety of functions ranging
from support of context save and restore to providing
synchronization with other SPEs and processors in the
system. The MMIO space and channels also provide
access to other miscellaneous functions.

This paper does not include all of the facilities provided
by the MMIO registers and channels, but it attempts to
give the reader an indication of what is available. Some
of the facilities provided are listed below:

* Local storage alias.

e Command issue.

e Tag-group completion facility.

® Multisource synchronization facility.
* Mailbox facility.

¢ Signal notification facility.

¢ SPU event facility and decrementer.
e Software management of TLBs.

Local storage alias facility

Within the MMIO space of the SPE is an area called the
local storage alias that is dedicated to local storage. It
provides direct access to the local storage domain of the
corresponding SPE from the main storage domain. The
local storage alias is used primarily to allow the direct
transfer of data from the local storage of one SPE to the
local storage of another SPE. For example, if an SPE
issues an MFC get command with an effective address
that maps to the local storage alias area of another SPE,
the data is transferred directly from the local storage of
the target SPE to the local storage of the issuing SPE.
Without an alias of the local storage in the main storage
domain, software would be forced to copy data through
system memory.

Command issue facility

The memory flow controller section of this paper
describes the MFC DMA commands. Commands are
issued from other processors in the system using a
sequence of MMIO register stores and loads. Commands
issued using MMIO registers are called MFC proxy
commands. Code running on an SPU issues commands
using a sequence of channel writes; these commands are
called MFC SPU commands.

MFC proxy commands are typically issued by the PPE
to initialize local storage efficiently before the SPU is
started. To issue an MFC proxy command, software
writes each parameter to the corresponding MMIO
register. Some parameters can be omitted, and the last
parameter written is the MFC command opcode. After
writing this parameter, software reads from the MFC

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

command status register to determine whether the
command was successfully placed in the MFC proxy
command queue. The MFC command opcode register
and the MFC command status register are mapped to
the same address. Therefore, software need not issue a
PowerPC eieio instruction between the last store of the
opcode and the read of the command status, since the
PowerPC Architecture requires that two accesses to the
same location be performed in program order. Queuing
a command can fail because of a command sequence
error or because of insufficient room in the MFC proxy
command queue. A command sequence error is typically
caused when the command issue sequence is interrupted
and the next process or interrupt handler issues an MFC
proxy command. The command sequence error response
eliminates the need to require a lock for the MFC proxy
queue when issuing a command. The error due to
insufficient room occurs when there is no available space
in the MFC proxy command queue. In most cases,
software can avoid this error by reading the MFC
command queue status register to ensure that there is
available space in the queue before issuing the command.
If either error is reported, software must repeat the
command issue sequence.

The MFC SPU command sequence is a series of
channel write instructions. The last channel written in the
sequence is the MFC command opcode channel. This
channel is blocking and has a depth equal to the size of
the MFC SPU command queue. If the queue is full, the
channel write results in an SPU stall until space in the
queue is available. The stall is a very efficient mechanism
for power savings when useful work cannot be performed
until after the command has been queued. Software can
avoid the stall by using the procedure described in the
channel interface section or by using the event facility
in the SPE to interrupt the SPU when space is available.
The event facility is described in a subsequent section.

Tag-group completion facility

Data movement is performed asynchronously with
respect to the execution of the SPU program. Therefore,
the CBEA provides a tag-group completion facility so
that an application can determine when a specific
command or set of commands completes. Independent
facilities are available for both the MFC proxy and MFC
SPU command queues. A tag ID is provided with each
DMA command, and commands issued with the same
tag ID to the same queue are called a tag group. To
determine when tag groups are complete, a mask that
selects the tag groups of interest is written to the
tag-group mask channel or register. The status of the
selected groups is reported in a status register for the
MFC proxy command queue. For the MFC SPU

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

command queue, a query type is written to the MFC
write tag-group status update request channel. The
request can be that either “all selected tag groups

are complete” or “any one of the selected groups is
complete.” Once the query type is set, reading from the
blocking tag-group status channel causes the SPU to stall
until the query condition is met. Like the command issue
sequence, the stall can be avoided by first determining
the channel count value of the channel.

The CBEA also provides a way to generate an interrupt
when a tag group completes. For the MFC proxy
command queue, a similar query type is provided to
determine when the interrupt is generated. The interrupt
is typically routed to the PPE for processing. For the
MFC SPU command queue, the event facility provides
the interrupt when the condition is met.

Multisource synchronization facility

In any multiprocessor system, the synchronization of
software processes is critical. The PowerPC Architecture
provides four instructions (/warx, ldarx, stwex, stdex)
for performing atomic updates of system memory.

The atomic update of system memory is used to create
software locks, which are then used to achieve the desired
synchronization. Since the SPUs do not have direct access
to the main storage domain, the CBEA defines four MFC
commands (getllar, putllc, putlluc, putglluc) that allow
an SPU to participate in the atomic update of system
memory. These commands are known as the MFC atomic
update commands. They can be issued only by an SPU to
the MFC SPU command queue; they cannot be issued
by other processors or devices. Unlike the PowerPC
instructions, these commands transfer the full reservation
granule. In most processors, the reservation granule is
typically the same size as the cache line.

The get lock line and reserve (getllar) command is
similar to the PowerPC /warx and ldarx instructions, and
the put lock line conditional (putllc) command is similar
to the stwex and stdex PowerPC instructions. These
commands are not queued in the MFC like other MFC
commands; they are executed immediately but still
require an MFC command queue slot. Since these
commands are executed immediately, they do not support
the tag parameter, and only one of these commands can
be outstanding. The CBEA provides a blocking atomic
command status channel for determining when these
commands complete and the results of the commands.

The put lock line unconditional (put/luc) and put
queued lock line unconditional (putglluc) commands are
similar to a cacheable PowerPC store instruction. These
commands are used to unconditionally release a lock.
The putlluc command is executed immediately, whereas
the putqlluc command has an implied fence and is placed

C. R. JOHNS AND D. A. BROKENSHIRE

511

512

in the MFC command queue along with other MFC
commands. Since the putqlluc command is queued,
the tag parameter is supported, and software uses the
previously described tag-group completion facility to
determine when this command is complete.

A common synchronization method is for software
to wait for the value of the lock in system memory
to change. In the PowerPC, this requires software to
continually poll the memory location associated with the
lock. In the CBEA, an SPU event can be generated when
a reservation is lost. (The reservation is lost when another
processor modifies the memory location associated with
the lock.) SPU software can avoid constantly polling the
lock by simply obtaining a reservation on the memory
location and then waiting for the reservation to be lost
using the event facility. Additionally, an SPU interrupt
can be generated when the reservation is lost. While
the reservation lost event does not guarantee that the
lock value has changed, it very effectively eliminates
the constant polling of the lock using MFC DMA
commands.

Since the performance of atomic updates can suffer
when there is a high contention for the lock, this may not
be the optimal solution for all synchronization scenarios.
Therefore, the CBEA offers additional options for process
synchronization, such as the mailbox facility and the
signal notification facility. These facilities can be used as
alternatives to the atomic update MFC commands, or
they can be used in conjunction with them for process
synchronization.

Mailbox facility

A key advantage of the CBEA is the independent nature
of the SPEs. Since the SPEs are decoupled from the PPE
and other SPEs, the CBEA provides a mailbox facility
to assist in process-to-process communication and
synchronization. The mailbox facility provides a simple,
unidirectional communication mechanism typically used
by the PPE to send short commands to the SPE and

to receive status in return. This facility consists of

an inbound, an outbound, and an outbound interrupt
mailbox. Each of these mailboxes can have a depth of one
or more entries. The direction of the mailbox is relative to
the SPU. For example, the inbound mailbox is written by
the PPE and read by the SPU. The SPU accesses the
mailboxes using the SPU channel instructions. The
mailbox channels are blocking, causing the SPU to stall if
the outbound mailbox is full or the inbound mailbox is
empty. For the PPE and other devices, MMIO registers
provide access to the mailboxes and the mailbox status.
As the name implies, the outbound interrupt mailbox
generates an interrupt when written by the SPU. The
interrupt is typically routed to the PPE for processing
and is presented as an external exception.

C. R. JOHNS AND D. A. BROKENSHIRE

For example, the mailbox facility can be used for a
command-driven SPU application. In this example, the
SPU is typically stalled waiting for a command to be
placed in the inbound mailbox. When a command is
received, the SPU performs the requested operation given
in the mailbox data or sequence of mailbox data. Once
the operation is complete, the SPU places a return code
in the outbound interrupt mailbox. The write of the
outbound interrupt mailbox generates an interrupt for
the PPE that indicates the completion of the requested
operation. The SPU code then reads the next command
from the inbound mailbox and stalls if a new command is
not available. In addition to the application given in this
simple example, many other uses were contemplated
during the development of this facility.

Signal notification facility

The signal notification facility is very similar to the
mailbox facility. It consists of two signal notification
registers. From the SPU, these registers are accessed using
channels; for other processors, these registers are mapped
into the MMIO space. In contrast to the mailbox facility,
the signal notification facility is inbound only, and the
corresponding channels are only one deep and are
blocking. Each of the signal notification registers has two
modes of operation, overwrite and logical OR. In the
overwrite mode, the contents of the register is replaced
with the new value written to the MMIO register even if
the SPU has not yet read the current value. In the logical
OR mode, the current contents of the signal notification
register is ORed with the new value written to the register.
In either mode, the signal notification register is set to
zero after it is read by the SPU.

Normal MFC “put” commands can be used to access
the signal notification facility in another SPE. However,
the MFC “send signal” commands are defined for this
purpose, allowing an implementation to use a more
efficient mechanism than MMIO for signaling between
SPUs. The signal notification facility offers an alternative
synchronization mechanism between SPUs and,
potentially, other devices. It can also be used in
conjunction with the other synchronization mechanisms.

For example, the logical OR mode can be used in a task
completion notification mechanism. In this example,
an SPU assigns a task to another processor; along
with each task, the SPU assigns a tag. When the task
completes, the processor or device performs the proper
synchronization to ensure that the results are visible. It
then writes a binary “1” in the signal notification
register bit corresponding to the tag. The overwrite mode
provides a fast communication when a single bit is not
sufficient for synchronization.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

SPU event facility and decrementer facility

The SPU event facility provides software with a
convenient mechanism to wait for a selected set of
conditions. The facility can also interrupt the SPU if
one of these conditions occurs. The facility consists of an
SPU read event status channel, a channel for reading
the SPU write event mask channel, a channel for writing
the SPU write event mask channel, and an SPU write event
acknowledgment channel. To use the facility, software
first writes the SPU write event mask channel to select the
conditions of interest. Next, the SPU read event status
channel is read. If none of the selected conditions have
occurred, the SPU stalls until at least one of the conditions
exists. The stall can be avoided either by reading the
channel count associated with the SPU write event status
channel before reading the channel or by enabling an
interrupt to occur when an event status is available. After
being notified that an event has occurred, the SPU
program should acknowledge the event by writing a
binary “1” to the corresponding bit in the SPU write event
acknowledgment channel. Acknowledging the event
enables the SPU to receive subsequent events for this
condition. The SPU read event mask channel is provided
for context save and restore operations. Software can also
use this channel to eliminate the need for a shadow copy of
the currently selected events.

As is apparent in the description of the other facilities,
events are defined for many of the stall conditions. The
event facility allows software to wait for multiple
conditions using a single blocking channel and can cause
the SPU to be interrupted. The SPU read event status
channel doubles as the interrupt status. The SPU event
facility supports the following events:

e MFC tag-group status update event.

e MFC DMA list command stall-and-notify event.
e MFC SPU command queue available event.
¢ SPU inbound mailbox event.

e SPU outbound mailbox event.

e SPU outbound interrupt mailbox event.

e SPU signal notification 1 event.

e SPU signal notification 2 event.

* Lock line reservation lost event.

e Multisource synchronization event.

* Privileged attention event.

e SPU decrementer event.

Except for the privileged attention event and the SPU
decrementer event, these events have been described in
the previous sections.

The privileged attention event allows another processor
or device to get the attention of an SPU program. Setting
the privileged attention bit in the SPU privileged control

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

register causes the privileged attention event in the SPU
event facility to be set. The SPU decrementer event is set
when the most significant bit of the SPU decrementer
changes from zero to one. The SPU software can either
wait for these events by reading the SPU read event status
channel or enable an interrupt to be generated on the
occurrence of any enabled event.

Software management of TLBs facility

Almost all modern processor architectures support a
virtual address space that requires the use of an address
translation table. The PowerPC, which is no exception,
implements virtual addressing using an architected
hardware page table in system memory. For performance
reasons, processors usually implement a cache of the
translations in an on-chip array. In the PowerPC
Architecture and the CBEA, this array is called the TLB.
Processor architectures usually handle a miss of the
TLB with software or hardware. In the PowerPC
Architecture, the TLB is hardware managed.

In general, caches introduce uncertainty into the
performance of a system. For example, a program
accessing a cache that does not contain any of the
program data (a cold cache) executes more slowly than
when accessing a cache that contains the program data (a
warm cache). Architectures have addressed this problem
for data caches by providing cache management
instructions; some even provide software access to the
TLBs. Since the PowerPC Architecture does not provide
a method to control the contents of the translation cache,
there is typically a start-up penalty when a program
is first executed that is not acceptable for real-time
applications. The CBEA addresses this issue by adding
a software TLB management facility. This facility is
specified for both the PPE and the SPE. When used in
conjunction with hardware management of the TLBs, an
operating system can preload or restore an application’s
translations to reduce the start-up effects.

A second issue with hardware-managed translations is
the fixed size and structure of the hardware page table.
In addition, all processors within the same operating
system partition typically share the same physical
hardware page table. With software management, an
operating system can choose to manage the TLBs in
software for any number of the SPEs or PPEs in a
CBEA-compliant processor. This allows an operating
system to have a specialized page table structure for an
application that is independent of the structure required
by the architecture and hardware.

Cache replacement management facility

As mentioned in the previous section, caches introduce
uncertainty into the performance of a system. Not only is
this uncertainty due to a cold cache at start-up, but it can

C. R. JOHNS AND D. A. BROKENSHIRE

513

514

also be caused by a characteristic of the application. For
example, if a streaming application reads a very long
sequential data structure, the contents of the cache is
replaced with the infrequently accessed streaming data,
thereby creating a cold cache. The cache management
instructions offered by architectures cannot prevent the
streaming data effects on the cache. Other processor
architectures have offered methods to lock data into

a cache, but they still do not address the effects of
streaming. Since streaming media is a major application
area for a CBEA-compliant processor, this issue had to
be addressed.

Caches are usually not an architectural data element;
thus, the “Cell Broadband Engine Architecture”
document [1] focuses only on the need for such a cache
replacement management facility. An example in this
document guides the processor designers with their
implementation choices.

Using the example implementation outlined in [1],
an operating system creates a set of replacement
management class identifiers (RclassIDs) and an
associated replacement management table (RMT). For
the PPE, the RclassID is generated from the address of
the data accessed using a set of address-range registers.
Separate ranges are provided for instruction and data
fetches in the PPE. The RclassID is provided as an
explicit parameter in the MFC commands.

The RclassID is used as an index into the RMT. The
RMT entry selects the sets in the cache (assuming a
set-associative cache) that can be replaced if all of the
entries in the congruence class are valid and the requested
data does not reside in the cache. If the data resides in the
cache in a different set, the data simply is accessed. If the
data does not exist in the cache and there is a nonvalid
entry in the congruence class, an implementation can
choose to place the data in the invalid entry even if it does
not correspond to the set selected by the RMT.

The cache replacement management facility provides
an operating system with two key methods for managing
both the data and translation caches, i.e., the TLBs. The
first method prevents streaming data from flushing a
cache. Accesses to streaming data are tagged with an
RclassID that allows the replacement of only a few sets,
typically one. This means that the data can be streamed
through the cache without replacing older data or
translations that may be required by the operating system
or application.

The second method allows an operating system to lock
data or translations in a cache. This method is beneficial
for many types of data and helps to reduce the caching
effects inherent in hardware-managed caches. For
example, an RTOS can use this facility for a critical PPE
interrupt handler.

C. R. JOHNS AND D. A. BROKENSHIRE

As mentioned, controlling the interrupt latency is very
important for an RTOS. By locking the translations to
the key interrupt handlers in the TLBs and locking the
interrupt code itself into the caches, an RTOS can reduce
the uncertainty of processing an interrupt. Locking data
or translations in a cache is achieved by ensuring that
only one RMT entry allows for a given cache set to be
replaced. In the example above, software should ensure
that only the address range of the interrupt routine can
select the RMT entry. If these conditions are met, no
other access will cause the interrupt hander instructions
or translations to be removed from the cache.

To eliminate the start-up cost of the very first interrupt,
the RTOS can warm the cache state by pre-touching
the interrupt handler when it is first loaded by using
the cache management instructions. When used in
conjunction with the mediated external exception
extension and cache management instructions, the cache
replacement management facility essentially eliminates
the uncertainty in the execution of an interrupt handler.

The cache replacement management facility is very
flexible, providing for both locking data in a cache and
reducing the effects of streaming data on caches. While
this facility is implementation dependent, the CBEA
recommends that an implementation provide an RMT
for each major caching structure, including the TLBs.

Internal interrupt controller

Processor architectures typically do not define an
interrupt controller. However, in the CBEA all exceptions
generated by an SPE are typically handled by the PPEs in
the system. The architecture would not be complete if it
did not define how these interrupts are presented to the
PPE. Therefore, the CBEA defines an internal interrupt
controller (IIC) that provides a method to present an
interrupt generated by an SPE to the PPE as quickly as
possible. The IIC has a sufficient set of features to act
as the interrupt controller for the system. If a different
feature set is required, the IIC can coexist with a separate
system interrupt controller.

The SPU-generated exceptions include the following:
internal SPU errors, errors created by the execution of an
MFC command, address translation faults, address
compare matches, mailbox interrupts, interrupts
generated by the execution of an SPU stop-and-signal
instruction, and tag-group completion. SPU exceptions
cause a PPE external interrupt to occur. The CBEA
defines a set of routing registers, interrupt mask registers,
and interrupt status registers for each SPE. The routing
registers are used to route the interrupt to the PPE that
will handle the interrupt. The interrupt mask and status
registers are used to enable interrupt conditions and to
record the cause of the interrupt. The IIC allows software

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

to prioritize SPE exceptions with other external interrupts
generated by the system.

The interrupt structure in the CBEA is flexible,
allowing SPE exceptions to be routed to an IIC or
directly to the system interrupt controller. Routing an
SPE exception to the system interrupt controller allows
for an alternative priority to be employed by the system
designer. In addition to handling SPE exceptions, the
IIC provides an efficient mechanism for generating
interprocessor interrupts. Interprocessor interrupts are
generated by a PPE, targeting another PPE in the system.

Resource allocation management

Real-time operating systems were a key consideration
during the development of the CBEA and were the
primary reason for including features such as cache
replacement management and software management of
TLBs in the architecture. These features help software
maintain real-time guarantees in a single-processor
environment, but they do little for the effects created by
having multiple processors. In a multiprocessor system,
critical resources such as system memory can be
consumed by a relatively few devices, which can create
latency and bandwidth issues for the remaining devices.
To address this issue, the CBEA includes a resource
allocation management (RAM) facility.

With RAM enabled, each requester in a CBEA-compliant
processor is assigned to a resource allocation group
(RAG). A portion of each critical resource is allocated to
each RAG. The definition provided in the CBEA ends
here. The remaining details of the facility, such as the
resources controlled and the controlling mechanism, are
highly implementation specific. The rest of this section
describes the Cell/B.E. processor implementation of
RAM. The Cell/B.E. processor is the first implementation
of the CBEA.

In the Cell/B.E. processor, the resources controlled by
RAM are system memory and the I/O interfaces. A
token-based control mechanism allocates a percentage
of the managed resources to each RAG. Before a
requester can access a managed resource, a token must be
requested from a central token manager. The hypervisor
initializes the token manager to generate tokens for each
RAG at a rate equivalent to the allocated percentage
of the resource. Requesters compete for the tokens
generated for their RAG using a round-robin priority
scheme. During certain intervals, the frequency of
requests from a given RAG may be lower than the
allocated token rate; this can result in unused tokens for
some RAGs, while other RAGs are throttled by their
allocated token rate. The Cell/B.E. design allows the
unused tokens to be given to another RAG, which
prevents wasting or underutilization of a resource.
Typically, software never allocates 100% of a resource in

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

order to account for variations in system performance.
This is another source of potential waste. To assist in
reducing this waste, the Cell/B.E. processor design allows
any RAG to use the unallocated percentage of a resource.
The allocation of unused tokens and the unallocated
portion of a resource is programmable and can be
independently disabled by an operating system.

As mentioned above, 100% of a resource is never
allocated in order to account for unexpected performance
variations. Allowing unallocated and unused tokens to be
used can result in overutilization of a resource. The
Cell/B.E. processor implementation addresses this issue
by automatically suspending the allocation of these
tokens when a resource becomes congested. This is
known as backpressure from the resource.

At first glance, RAM appears to be a bandwidth
management system. However, the bandwidth and
latency of system memory are very dependent on
the access size and access pattern. For example, the
bandwidth is considerably lower if an application
continually accesses addresses corresponding to the same
physical bank of memory. To avoid this problem, the
RAM facility requires a resource to obtain a token for
each physical memory bank. Software sets up a single
percentage allocation for memory, and the token
manager distributes the allocation equally among all
memory banks. Therefore, if the memory access pattern
of an application is evenly distributed, the achievable
memory bandwidth is higher than if the accesses are
poorly distributed. An application can also cause poor
utilization of system memory if it uses small accesses.
Typically, caches prevent small accesses, and they
are not a concern for most systems. However, in a
CBEA-compliant processor, MFC DMA commands can
transfer blocks smaller than a cache line. The Cell/B.E.
processor addresses this issue in two ways. First, each
token is defined as the transfer of a full cache line, or 128
bytes, regardless of the actual transfer size. Second, the
requester is required to obtain two tokens if the transfer
size requires a read—modify—write of system memory
to update the error-correction code (ECC)—one
for the read and one for the write.

Thus, the effective system memory bandwidth is a
function of the access pattern and access size. Without the
RAM, the accesses performed by one application can
affect the system memory bandwidth for all applications.
RAM provides an effective mechanism that prevents
applications with poor access patterns from affecting
the performance of other applications. RAM does not
provide a guarantee of memory bandwidth, but it does
guarantee access to a resource. Because the effective
bandwidth achieved is still dependent on the access
pattern, the facility is known as RAM instead of
bandwidth reservation.

C. R. JOHNS AND D. A. BROKENSHIRE

515

516

SPU nonisolated execution environment

Run
SPU
stopped

Exit Load

SPU

running

Stop

Exit Transition states

complete

Load
success

Load)
failed

SPU isolated execution environment

Exit Run

SPU isolated SPU isolated
(stopped) (running)

Stop

SPU and local storage isolated from system

SPU isolated state transitions.

Power management

Power management is always a key consideration in the
development of any architecture. Some channels in the
SPE are defined as blocking, which essentially allows an
SPU to enter a very low-power state while waiting for the
channel to become available. The CBEA also defines the
following set of more traditional power management
states: active, slow(n), pause(n), state retained and
isolated (SRI), and state lost and isolated (SLI).

Each element in a CBEA-compliant processor can be
in any one of the five defined states. In the active state,
the element runs at full performance level. No power
management is applied except for the dynamic power
management provided by blocking channels or the
gating of nonactive circuits found in most advanced
designs.

Several levels are allowed for the slow(n) state, with a
higher value of n representing more aggressive power
savings. As the name implies, the element executes at a
slower rate; thus, the performance is degraded but still
guaranteed to make forward progress. An example of
a slow state is running an element at a slower clock
frequency to save power. The pause(n) state is similar
to the slow(n) state except that forward progress is not
guaranteed. A simple example of a pause state is the

C. R. JOHNS AND D. A. BROKENSHIRE

situation in which an SPU is stopped but the MFC is
still active.

In the three power management states described above,
the context of the element is maintained. For example, the
TLBs and caches remain coherent with system memory
and other elements in the system. In the SRI and SLI
states, the element no longer interacts with other elements
in the system; thus, the full context for the element cannot
be maintained. (These power management states should
not be confused with the SPU isolation facility described
in the next section.) Software must prepare the element
before entering or leaving these states. The SRI state
allows software to keep the bulk of the context while
saving most of the power of the element. An example of
the SRI state is the case in which the SPE is isolated from
the system and the contents of the local storage and
MMIO registers are maintained. Coherency of the TLBs
and caches is not maintained. The SLI state is the most
aggressive power-saving state. In this state, nothing is
maintained, including the local storage, registers, and
caches. An example of this state is the situation in which
power is removed from an SPE or PPE. The actual
implementation and supported power management states
are implementation specific. Therefore, the CBEA does
not define the details.

Isolated execution environment
The CBEA includes an SPU isolation facility that is used
to create a secure execution environment within an SPE.
Figure 4 is a state diagram illustrating the transitions into
and out of the SPU isolated execution environment.
To enter an SPU isolated execution environment,
a pointer to the code to execute in the secure execution
environment is loaded into the SPU signal notification
registers 1 and 2, and the SPU is started using a Load
request. When it receives the Load request, the SPE first
sets up the isolated execution environment by removing
access to a portion of the local storage. The remaining
portion of local storage remains open. All accesses to
the local storage alias and MFC DMA commands are
forced into the open area. After the isolated environment
is initialized, the SPE loads the application into the
isolated area of local storage. As it is loaded, the code
is authenticated and decrypted by using a hardware
root key. If the load succeeds, the application is executed.
Once in the SPU isolated execution environment, the only
way out is to stop the SPU and restart it with an
Exit request. If the Load fails, the SPU remains halted in
a transition state. The only way out of the transition state
is to restart the SPU by using either another Load
request or an EXxit request.

In addition to the isolated execution environment, the
SPU isolation facility provides an application with a
random number generator and persistent storage. The

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

persistent storage maintains its state between isolation
sessions and can be accessed only by an application
executing in the SPU isolated execution environment.

Software development toolkit
To provide software developers exposure to the CBEA
with and without access to hardware, a Software
Development Kit (SDK) is available on the IBM
alphaWorks* Web site (www.alphaworks.ibm.com/topics/
cell) with open-source content distributed on the
Barcelona Supercomputing Center Web site (www.bsc.es/
projects/deepcomputing/linuxoncell).

The SDK is continuously being enhanced with
additional components and features. The key
foundational components of the SDK are as follows:

A Cell/B.E. processor—enabled Linux kernel

supporting the unique CBEA features.

e The IBM full system simulator for the Cell/B.E.
processor that supports simulation of either
uniprocessor or dual-processor systems. Both
functional and cycle accurate simulation modes are
provided so that programmers can maximize either
interactivity or timing accuracy.

* A system root image (sysroot) that provides a
standard set of Linux operating system utilities and
services for use in the simulated Linux operating
system environment.

e Standard CBEA-specific libraries including the newlib
C languages standard library, SIMD math libraries,
and an SPE runtime management library that exposes
the SPEs as heterogeneous POSIX threads.

e Code-generation tools including GNU and IBM XL
C/C++ compilers. The compilers support the
automatic generation of SIMD code for both the PPE
and the SPE.

* Productivity tools such as an Eclipse-based
integration development environment (IDE). The
IDE provides an integration framework for building,
deploying, and managing CBEA software.

e Cell/B.E. processor—enabled debug tools including the
GNU debugger (gdb). The debugger has been
enhanced to enable combined PPU and SPU
debugging and to provide user access to the unique
states of the Cell/B.E. processor.

® Performance analysis tools including the OProfile

system profiling tool, the Cell/B.E. processor

performance counter, which provides access to

Cell/B.E. processor performance monitoring facilities,

code analyzer, Feedback-Directed Program

Restructuring technology of FDPR-pro, and a

static performance analysis tool called spu_timing.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

The output from many of the tools can be visualized
using the Eclipse-based visual performance analyzer
(VPA).

* An SPE executive for invoking SPU executables
directly from a Linux shell. The executive provides
standard system services including file I/O, shared
memory, memory map, and time of day.

* Many code samples that demonstrate programming
techniques, optimized libraries with source code to
jump-start application development, and workloads
to demonstrate the computational capabilities of the
Cell/B.E. processor.

® Programming model frameworks such as the
Accelerated Library Framework (ALF), which
provides services to assist in the development of
parallel applications and libraries on multicore
architectures with hierarchical memory such as
the CBEA.

The SDK is supported on the x86, PowerPC 64, and
Cell/B.E. processor blade systems running Fedora™* core
for the Linux operating system. These configurations
minimize system costs, ensuring wide access to anyone
who wants to evaluate Cell/B.E. technology, learn
Cell/B.E. programming, or develop Cell/B.E. applications
and tools.

Software standards for CBEA

Critical to the success of the CBEA is the adoption of
software standards and conformance to these standards.
From the outset, the Sony Group, Toshiba, and IBM
worked together to establish an initial set of standards
including the following:

* Application binary interface (ABI) specifications
including the SPU Application Binary Interface
Specification and the CBE Linux Reference
Implementation ABI specification.

e Language specifications including the SPU Assembly
Language Specification and the C/C4+ Language
Extensions for Cell Broadband Engine Architecture
specification.

e Standardized library specifications including the SPE
Runtime Management Library and the SIMD Vector
Math Library specifications.

Adherence to these specifications ensures that
application code is portable and that tools produce
binaries that will coexist. To ensure compliance with the
standards, conformance tests have been developed and
made generally available.

C. R. JOHNS AND D. A. BROKENSHIRE

517

518

Conclusions: The power of the Cell/B.E.
processor

The real power behind the CBEA is the optimization
made possible by the heterogeneous design and the
memory movement, provided by the DMA, for hiding
memory latency. While initially directed toward media
and streaming applications, the flexibility of the
architecture allows for a multitude of application and
programming techniques. For example, several papers
describe CBEA applications that include features such as
software-managed caches implemented in the local
storage and software threading of the SPEs [8].
Additionally, a generalized implementation of a software
cache is provided in the SDK.

A formal request for change (RFC) process governs
changes and additions. All RFCs require unanimous
acceptance by the three partner companies—the Sony
Group, Toshiba, and IBM. Each of the partner
companies serves as an advocate to ensure that its
business partners are represented in the RFC process.

The CBEA offers a wide variety of features to improve
the performance of systems requiring RTOS, streaming,
and computing applications. In addition, the CBEA
defines a unique approach to security by offering an
SPU isolation facility. When used properly, this facility
provides an isolated execution environment that is not
accessible from other elements or by external means. The
features and flexibility of the CBEA combined with the
new development environment and software standards
create a processor architecture and ecosystem poised
to set the standard for application acceleration.

Acknowledgments

The CBEA and the Cell/B.E. processor (the first
implementation of the architecture) resulted from a

deep collaboration of engineers from Sony Computer
Entertainment Incorporated, Toshiba, and IBM. Each
of the partners brought to the team a unique set of
requirements, experience, and perspectives. The diversity
of the team enabled it to look beyond the traditional
processor architectures and develop the heterogeneous
processing structure provided by the CBEA. More than
five years and countless person-hours went into the
development of the CBEA and the Cell/B.E. processor. The
authors also wish to thank the anonymous reviewers for
their suggestions for improving the content of this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of
Linus Torvalds or Red Hat, Inc., in the United States, other
countries, or both.

Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

C. R. JOHNS AND D. A. BROKENSHIRE

References

1. Cell Broadband Engine Architecture; see http.//www.ibm.
com/chips/techlib|techlib.nsf|techdocs/|
1AEEEI1270EA2776387257060006 E61BA.

2. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the Cell
Multiprocessor,” IBM J. Res. & Dev. 49, No. 4/5, 589-604
(2005).

3. PowerPC Architecture Book, Version 2.02; see http.//
www.ibm.com/developerworks/power/library|pa-archguidev2|.

4. Synergistic Processor Unit Instruction Set Architecture; see
http:|/www.ibm.com/chips/techlib/techlib.nsf]techdocs|
76CA6C7304210F3987257060006 F2C44.

5. B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais,
R. Kim, T. Le, et al., “The Microarchitecture of the Synergistic
Processor for a Cell Processor,” IEEE J. Solid-State Circuits
41, No. 1, 63-70 (2000).

6. D. A. Brokenshire, “Maximizing the Power of the Cell
Broadband Engine Processor: 25 Tips to Optimal Application
Performance”; see http://www.ibm.com/developerworks/power/|
library|pa-celltips1).

7. D. Krolak, “Just Like Being There: Papers from the Fall
Processor Forum 2005: Unleashing the Cell Broadband Engine
Processor: The Element Interconnect Bus™; see http://
www.ibm.com/developerworks/power|librarypa-fpfeib/
index.html.

8. C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, “Ray
Tracing on the Cell Processor™; see http://graphics.cs.uni-sb.de/
~benthin/cellrt06.pdf.

Received July 22, 2006, accepted for publication
March 1, 2007; Internet publication August 9, 2007

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Charles R. Johns [BM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (crjohns@us.ibm.com).
Mr. Johns is a Senior Technical Staff Member in the
Sony/Toshiba/IBM Design Center. He received his B.S. degree in
electrical engineering from the University of Texas at Austin in
1984. After joining IBM Austin in 1984, Mr. Johns worked on
various disk, memory, voice communication, and graphics
adapters for the IBM Personal Computer. From 1988 until he
transferred to the STI project in 2000, he was part of the graphics
organization and was responsible for the architecture and
development of entry and midrange 3D graphics adapters and
raster engines. Mr. Johns is now responsible for the CBEA; he
participated in the development of the Cell/B.E. processor, which is
the first implementation of the CBEA. Mr. Johns is an IBM Master
Inventor.

Daniel A. Brokenshire [1BM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (brokensh@us.ibm.com).
Mr. Brokenshire is a Senior Technical Staff Member with six years
of experience in the Cell/B.E. Processor Design Center. He
currently serves as a senior member of the IBM Cell/B.E. Processor
Systems Enablement team working on the Cell/B.E. processor
SDK. His responsibilities include the development of programming
standards, language extensions, reusable software libraries, and
software documentation. Mr. Brokenshire received a B.S. degree
in computer science and B.S. and M.S. degrees in electrical
engineering, all from Oregon State University. Prior to his work on
the Cell/B.E. processor, he enjoyed a productive career developing
3D graphics products for Tektronix, Inc., and IBM.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

C. R. JOHNS AND D. A. BROKENSHIRE

519

