
IBM POWER6
accelerators:
VMX and DFU

L. Eisen
J. W. Ward III

H.-W. Tast
N. Mäding

J. Leenstra
S. M. Mueller

C. Jacobi
J. Preiss

E. M. Schwarz
S. R. Carlough

The IBM POWER6e microprocessor core includes two
accelerators for increasing performance of specific workloads. The
vector multimedia extension (VMX) provides a vector acceleration
of graphic and scientific workloads. It provides single instructions
that work on multiple data elements. The instructions separate a
128-bit vector into different components that are operated on
concurrently. The decimal floating-point unit (DFU) provides
acceleration of commercial workloads, more specifically, financial
transactions. It provides a new number system that performs implicit
rounding to decimal radix points, a feature essential to monetary
transactions. The IBM POWERe processor instruction set is
substantially expanded with the addition of these two accelerators.
The VMX architecture contains 176 instructions, while the DFU
architecture adds 54 instructions to the base architecture. The IEEE
754R Binary Floating-Point Arithmetic Standard defines decimal
floating-point formats, and the POWER6 processor—on which a
substantial amount of area has been devoted to increasing
performance of both scientific and commercial workloads—is the
first commercial hardware implementation of this format.

Introduction: VMX unit

A major purpose of high-performance microprocessors is

the manipulation of data through complex calculations.

Current designs allow for a wide array of calculations on

very large and very precise operands. While the current

standard is 64 bits, many types of calculations do not

require this high amount of precision and thus are unable

to realize the full potential of the microprocessor design

through conventional methods. Some examples include

graphics (such as calculations made by computer-aided

design tools), scientific visualizations, data encryption,

real-time video processing, and calculations used in the

evaluation of seismic data.

One alternative way to address this potential deficiency

is to use a single-instruction multiple-data (SIMD)

design. Instead of working on a single piece of data and

offering a high degree of precision, SIMD designs offer

data parallelism by performing the same operation on

multiple, lower-precision operands at the same time. This

provides multiple virtual pipelines where only a single

pipeline exists physically.

The vector multimedia extension (VMX) instruction

set—announced as AltiVec** [1]—is a SIMD extension of

the IBM Power Architecture* technology. It was jointly

developed by the IBM Corporation, Apple, Inc.,

and Freescale Semiconductor, Inc., formerly the

Semiconductor Products Sector of Motorola. The AltiVec

instruction set was designed to provide RISC (reduced

instruction set computing) type of instructions that allow

for rapid data manipulation. The AltiVec architecture

operates on 128-bit vector registers that can represent four

32-bit single-precision floating-point or integer operands,

eight 16-bit integers, or sixteen 8-bit integers.

The first IBM-designed processor to implement the

AltiVec instruction set was the IBM PowerPC* 7400 [2].

The IBM POWER6* processor VMX unit is the latest

incarnation of this vectorized design. The paramount

challenge of the POWER6 processor design was its

aggressive frequency target of 13 FO4 (fanout of

4-inverter delay). This high-frequency goal put stress on

the logic design, layout, and fine-tuning of the final

design. These difficulties are discussed in more detail in

the following sections.

Unique to the POWER6 processor design was the

introduction of a recovery unit (RU) to the processor

core. The RU is used to maintain a shadow copy of the

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

1

0018-8646/07/$5.00 ª 2007 IBM

current state of the core. If an error is detected within the

core, execution in the core is halted, and the RU can be

used to restore the core to a known good state before

execution is resumed. To support this, the VMX unit had

to present its results to the RU for storage as well as

support the restoration of state in the event of a recovery.

The following sections give an overview of the

POWER6 processor VMX implementation. Particular

focus is given to the challenges encountered in

implementing a high-frequency design and how those

challenges were overcome. The POWER6 processor

support of the RU is discussed as well.

VMX unit overview

The VMX unit is treated as a separate execution unit by

the POWER6 processor core. The VMX inputs are driven

by the instruction dispatch unit (IDU), which also feeds

instructions to the binary and decimal floating-point units

(BFU and DFU, respectively). Instructions are presented

to the VMX unit in program order and must be retired in

program order. The IDU tracks the order of instruction

execution across execution units, and the VMX control

logic is responsible for tracking the instructions within the

unit.

The VMX unit contains seven distinct execution

subunits that control the dataflow pipelines shown in

Figure 1. They are two load subunits, one store subunit,

and four execution subunits. The execution subunits are

the arithmetic logic unit (ALU) simple unit (XS), the

vector floating-point unit (VF), the complex unit (XC),

and the permute unit (PM). Each load unit controls its

own dataflow pipeline (two total). The remaining

subunits are divided across two execution pipelines. The

first pipeline consists of the XS, VF, and store units, and

the second pipeline consists of the XC and PM units.

While each of the four dataflow pipes may contain a

valid instruction on any given cycle, they are tracked in

parallel to ensure that program-order execution is

preserved. This also simplifies the tracking of

dependencies between the pipes; if they were allowed to

move independently, the degree of complexity would

significantly increase.

The vector register file (VRF) contains a writeback port

for each of the four dataflow pipes and is capable of

writing from all four simultaneously on any given cycle.

The POWER6 processor VMX uses two instances of the

VRF: one per execution pipeline. In the VMX floorplan,

the VRFs are placed close to their corresponding pipeline;

this allows for a fast register file access. Loads and writes

update both copies of the VRF.

Instruction flow control details

Instruction flow through the VMX unit begins at the top

of the pipeline with the instruction and load data circular

queues. Under optimal operation (no stalls within the

VMX unit), the queues are bypassed and cause no delay

for the instruction. Instructions are maintained in the

queue until they are issued to their respective subunit.

The read pointer for the instruction and data queues is

controlled by two primary mechanisms: stalls and rejects.

Stalls are generated when a read-after-write (RAW)

dependency is detected. If an instruction has a RAW

dependency, it will be stalled the minimum number of

cycles required to have the data available. The primary

reason for rejects is write-after-write (WAW)

dependencies.

The different reactions to the above dependencies are

due to the stage of the VMX pipeline in which they are

detected. Instructions are allowed to stall within the top

four stages of the VMX pipeline; beyond that, they will

proceed down the pipe unimpeded. RAW dependency

detection is done early enough to catch the dependent

instruction within one of the early stalled stages.

The loading on the stall generation was a primary

concern in the unit design. To mitigate this loading as

much as possible, a reject capability was added to handle

cases that are not performance critical. Part of this load

reduction was done by moving WAW dependency

checking to a later pipeline stage. This detection is done

beyond the stall pipeline boundary. To allow for this, a

WAW-dependent instruction is invalidated from the

instruction pipeline and is reread from the queue. This

reject results in a seven-cycle delay in the instruction.

The WAW–reject pairing was done because a compiler

should be able to avoid WAW dependencies (without an

interveningRAWdependency, or otherwise an intervening

RAW dependency will generate a stall).

An instruction reject may also occur following an

estimate-form floating-point instruction. These estimate

instructions require additional pipeline stalls within the

floating-point unit (FPU). Rather than further load the

VMX stall detection logic, these instructions were fed

through the reject path. In addition, any stall condition

that would last for seven cycles or longer is fed through

the reject detection instead, since rejecting the instruction

does not result in a performance penalty.

Operands are presented to each of the execution subunits

from one of five possible sources: from the VRF, bypassed

from the load result bus, bypassed from the remote pipe,

bypassed from another subunit on the local pipe, or

bypassed from the result bus of the subunit. Operands that

are read from the VRF have no dependencies so their

results are available from the register file. The VRF write

operation requires two cycles to complete.

Operands bypassed from the load result bus are used to

cover the two-cycle window required to write the results

into the VRF. Operands bypassed from the remote

execution pipe cover the last cycle of the VRF write

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

2

window; floorplan restrictions prevent the data from

being available sooner. Operands bypassed from the local

execution pipe cover both cycles of the VRF write

window.

Operands bypassed from the subunit result bus cover

three to four cycles—the two-cycle VRF write window

and the one (for XS, XC, and PM) or two (VF) cycles

preceding. These additional cycles are gained because of

the proximity between the subunit result bus and the

operand macro.

The two execution pipes are grouped as follows: Pipe A

contains the XS, VF, and store formatter, and pipe B

Figure 1
VMX pipeline. (IQ: instruction queue; LQ: load queue; BY1: first bypass stage; WB: writeback cycle; RES: result available. Execution cycles

are distinguished by shaded and unshaded bars.)

ld_fmt1

ld_fmt2

ld_fmt1

ld_fmt2

To VRF

To VRFs

IQLQ

VRF1VRF0

VFXS XC PM

RES

RES

RES

BY1
BY1

WB1 WB2
WB2 WB1

WB1WB1

WB2WB2

Load0

Data/Op/EA

Load1

Data/Op/EA Inst0 Inst1

To VRFs
To VRFs

RES

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

3

contains the XC and PM. This selection was done for

optimal instruction-type grouping and to have the two

pipes mirror each other as closely as possible.

The final function of the control logic is to track the

valid instructions as they pass through the execution

subunits toward completion. This tracking is done to

control the writeback ports of the VRF, to track

dependencies as they flow through the pipes, and to signal

valid VMX results to the RU.

Dependency tracking

Compromises in dependency detection proved to be one

of the most difficult aspects of the POWER6 VMX

design. Each VMX instruction can have up to three

source operands.

Dependencies of an incoming instruction had to be

done by comparing against 14 stages of each execution

pipe (28 stages total) and four stages of each load pipe (8

stages total). Accounting for 36 pipeline stages3 3 source

operands 3 2 destinations for the incoming instructions

required 216 comparisons each cycle for RAW

dependencies.

WAW dependencies add another 68 comparisons. The

two execution pipes must compare the incoming target

register against the target registers of seven stages of each

pipe (2323 7¼28 compares). The incoming load targets

must be compared to ten stages of each pipe because

loads write back to the VRF much earlier than the

execution pipes (2 incoming load targets 3 2 pipes 3 10

stages ¼ 40 compares).

Doing these compares on a single pipe cycle was

impossible from a loading, timing, and floorplanning

perspective. To mitigate this, compares were spread out

across three pipeline stages, with the most critical

compares done first.

The first comparisons done were to generate stalls for

RAW dependencies. If a RAW dependency exists, the

instruction will be stalled for the minimum number of

cycles required until all of its operands are available.

The second set of compares was done to calculate the

bypass controls for each operand. These bypass controls

are calculated once; if the instruction stalls because of a

RAW dependency, the bypass controls shift every cycle so

they are aligned properly when the stall is released.

The third set of compares was done to calculate reject

scenarios, such as WAW dependencies or RAW

dependencies whose stalls are greater than the reject

penalty. Instructions reach this final comparison only

after they have passed the final stall stage. Thus, any

WAW dependency that is detected is one without an

intervening read (which would have stalled because of a

RAW dependency). The compiler should not allow this to

happen, so any performance penalty from this is not

pertinent.

A reject causes the instruction to be invalidated in the

execution pipe, and the instruction is then reread from the

queue at the top of the VMX pipe. When the instruction

exits the queue, it passes through the same comparison

stages a second time. The reject penalty is seven cycles; if

a WAW dependency still exists when the rejected

instruction reaches the final comparison stage, it is

rejected again. Because of the length of the VMX

execution pipes, any given instruction can be rejected up

to two times for WAW dependencies.

PM

The vector PM is 128 bits wide; therefore, only one

instantiation of this entity exists. The vector PM performs

instructions of the following types:

� Permute.
� Merge.
� Shift (by octet and by bit).
� Splat (repeat a part of the input operand).
� Pack (modulo and saturate).
� Unpack.

The permute, merge, shift, and splat instructions are

used to efficiently replicate or align data of a storage

operand after it is loaded into a register. The pack and

unpack instructions compress and uncompress data.

The vector PM can be issued one instruction per cycle

and has a back-to-back latency of four cycles. During the

first and second stages of the pipeline, the operands and

controls are modified and applied to the crossbar switch,

which forms the third pipeline stage. The forwarding of

the result to the input register is done in the fourth

pipeline stage.

Crossbar switch

The central macro of the PM is the crossbar switch. All

instructions performed in the vector PM deliver their

results through it into the target register. The crossbar

switch is built as 16 separate multiplexers (one per byte of

the target register). Each one of these multiplexers can

select any byte of a 32-byte input vector and deliver it to

the target register.

The functionality of the crossbar is identical to the

requirements of the permute instruction. Registers A

and B (16 bytes each) deliver the 32-byte inputs to the

crossbar switch, while register C (16 bytes wide, but only

5 bits per byte used) defines the permutation for the result

value put into target register T. All other instructions

executed by vector PM are mapped to the permute

instruction. This is done by manipulating the operands in

such a way that executing a permute in the crossbar

delivers the correct result. The manipulation of the

operands is done in the first two stages of vector PM.

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

4

Figure 2(a) depicts the classical layout of a permute

crossbar. It shows how byte n of register T depends on

byte n of register C. The five bits in register C select one

byte of the 2 3 16 bytes in the source registers A and B.

Like the permute instruction, the instructions pack

modulo, merge, and splat deliver permutations of the

bytes in operands A and B. In contrast to the permute

instruction, the instructions pack modulo, merge, and

splat depend on the operation code (opcode) rather than

operand C to control the crossbar switches. For these

instructions, it is, therefore, sufficient to compute the

proper register C value for the crossbar based on the

instruction.

There are other instructions performed in the vector

PM that must modify the A and B input operands

before the values are applied to the crossbar. These

modifications are done in the two pipeline stages before

the crossbar switch. The pack pixel, for example, picks

predefined bits from a word. The pack instructions with

saturation force the saturation value depending on the

pack result and the opcode. For the unpack instructions,

predefined bits are distributed over wider areas of target

register T.

Implementation of the crossbar switch

With the POWER6 processor high-frequency design goal,

the main challenge for the implementation of vector PM

was to design an efficient crossbar switch. A design in

which the crossbar switch uses two pipeline stages would

have increased the back-to-back latency to five cycles

and, more importantly, would have needed a register

bank for the intermediate result. The intermediate results

of a crossbar contain several times more data than the

final result. The challenge was to get the shortest possible

back-to-back latency with a minimum of silicon area and

power consumption.

The classical permute crossbar layout shown in

Figure 2(a) does not achieve the required cycle time. It

implies the wiring distances shown in Figure 2(b). The

vertical blue line is the control vector distribution. The

red (vertical) and green (horizontal) lines are the distance

to travel from the leftmost byte of operand register A to

the rightmost byte of the target register T. Along this

distance there are the logic gates forming the 32:1

multiplexer. In our technology, the fastest circuit to

implement the 32:1 multiplexer is a combination of 4:1

and 2:1 multiplexers. Although the propagation delay of

these logic gates consumes part of the cycle time, the

majority of the delay inside the crossbar is caused by the

length of the wiring and the buffers needed to drive these

long wires.

The first step to reduce the amount of vertical wire is to

move register B to the bottom of the crossbar and register

T to the vertical center. The 32:1 multiplexer is split into

two 16:1 (each constructed out of 4:1 multiplexers) and a

2:1 multiplexer near the target register. This change

reduces the red line to approximately half the length of

the implementation shown in Figure 2(b). Moving

register C near register T cuts the effective length of the

blue line in half, which is the distance from the source

(register C) to the most distant sink.

Figure 2

Crossbar switch: (a) classical layout; (b) classical wiring; (c)

POWER6 processor core layout wiring.

Register A (16 bytes)

Register B (16 bytes)

Register T (16 bytes)

Crossbar

32 bytes to 16 bytes

Register C (16 bytes)

n

n

32:1 multiplexer
Select

Register A (16 bytes)

Register B (16 bytes)

Register T (16 bytes)

Register C (16 bytes)

Crossbar 32 bytes to 16 bytes

Register T (16 bytes)

Crossbar 16 bytes to 16 bytes

Register C (16 bytes)

2:1 multiplexer (16 bytes)

Crossbar 16 bytes to 16 bytes

Register A (4 bytes)

Register A (4 bytes)

Register A (4 bytes)

Register A (4 bytes)

Register B (4 bytes)

Register B (4 bytes)

Register B (4 bytes)

Register B (4 bytes)

(a)

(b)

(c)

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

5

The actual layout of vector PM is shown in Figure 2(c).

The total wiring length is reduced further by cutting off

25% of the horizontal green line. With this layout, the

crossbar switch reaches the cycle-time goal of the

POWER6 processor design with a minimum amount of

silicon area and power consumption.

ALU XS

The XS is responsible for fixed-point calculations of a

simple nature (i.e., not multiplies or divides). Many of

the applications for VMX acceleration have to perform

the same calculation on multiple fixed-point data

elements. An example of such a use would be for matrix

representation of graphics. For typical applications, the

number of bits needed for each data element is usually 8,

16, or 32. The data elements are signed or unsigned

integers, and the results can be modulo arithmetic or

saturating arithmetic. Furthermore, rotates and logical

instructions are sometimes required.

The broad range of simple instructions is shown in

Table 1. Each of these instruction types has a separate

instruction opcode for each supported data element

width. Note that both integer and floating-point

compares are implemented by this unit. As a result, 86

different instructions are supported by the XS.

The biggest challenge for implementing the XS was the

high-frequency target (13 FO4). In previous designs, such

as the PowerPC 970, the XS is implemented as a two-

cycle pipeline. Mapping that design to the POWER6

processor frequency target would have doubled the

pipeline depth, significantly impacting performance.

Therefore, a new design was needed for the POWER6

processor. In this new XS, the actual execution pipeline is

limited to two cycles. The third cycle is used for the result

distribution, as shown in the VMX overview (Figure 1).

The ALU XS is built out of three subunits: the adder

(ADD), logical (LOG), and rotator (ROT). In Table 1,

the subunit column shows how the instructions are

mapped to each subunit. The mapping was done in such a

way that equally balanced the delays. For example, the

integer and floating-point compares are implemented in

separate subunits to support the required cycle time. The

following section describes the specifics of each subunit to

enable the two-cycle execution of the POWER6 processor

simple unit implementation.

Table 1 VMX simple instructions.

Instruction SIMP (bits) Subunit Description

Vector add and subtract modulo 8, 16, 32 Adder Result modulo maximum value;

computes signed and unsigned

Vector add and subtract saturate 8, 16, 32 Adder Result saturates to minimum or maximum

value, signed and unsigned

Vector add carryout unsigned 32 Adder Carryout value of most significant bit is

given in the least significant bit of result

Vector average 8, 16, 32 Adder Average of operands, signed and unsigned

Vector logical 1 Adder Boolean AND, OR, XOR, NOR

Vector select 1 Logical Selects bitwise between vector A and

vector B based on vector C

Vector integer compare 8, 16, 32 Adder ., ¼ [þ record of all 0s and 1s]

Vector single-precision floating-point compare 32 Logical ., ¼, �, bounds [þ record of all 0s and 1s]

Vector integer minimum and maximum 8, 16, 32 Adder Minimum or maximum of the A and B

integer operands

Vector single-precision floating-point

minimum and maximum

32 Logical Vector single-precision minimum or

maximum of the A and B floating-point

operands

Vector rotate left 8, 16, 32 Rotator Rotate left of the operand A according to

the shift amount B

Vector shift left or right 8, 16, 32 Rotator Shift left or right operand A according to

the shift amount B

Move to or from the VSCR n/a Logical Move to the VSCR

Note: VSCR: vector status and control register.

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

6

Adder

The simple unit adder subunit is built out of four ADD

macro instances with a 32-bit-wide dataflow. The four

instances of the ADD macro implement a 128-bit-wide

datapath that enables SIMD instructions for add,

subtract, average, and integer compare to execute

simultaneously on multiple data elements. Figure 3 shows

the new two-cycle 32-bit-wide ADD macro

implementation.

The first cycle is divided into three portions: A static

adder [3] using a carry select structure with 8-bit-wide

adder blocks, the carry generation, and the preparation

logic for compare, minimum and maximum, and average

operations. The carry logic is shared between the sum and

compare logic [4]. The compare logic handles 8-bit,

16-bit, and 32-bit signed and unsigned integers as well.

The critical paths are in the carry logic outputs, and the

implementation of this logic is highly optimized to fit

within the first cycle. To enable the SIMD operations of

addition, subtraction, and compare, the carry network is

extended for the additional functionality needed for the

various operand lengths. The actual sum select of the

carry select adder (or minimum and maximum selection)

is done at the beginning of the second cycle. The two

32-bit intermediate values are selected based on 8-bit

portions. The selection is done for add and sum as well as

minimum and maximum operations.

For average instructions, the result is shifted by one to

the left for the (aþb)/2 calculation. The preparation logic

in the first cycle handles saturation and the setting of the

multiplexer select signals for the second cycle generation

of the add, subtract, minimum, maximum, and integer

compare results. Finally, the force logic (as shown in

Figure 3) generates the compare result TRUE (all bits ‘‘1’’)

and FALSE (all bits ‘‘0’’).

Logical

The logical subunit performs four types of instructions:

Boolean logic, vector select, single-precision floating-

point compare, and floating-point minimum and

maximum. The 128-bit dataflow handles these

instructions with four instances of a 32-bit LOG macro.

The critical paths are contained in the floating-point

compare operations. Because of the POWER6 processor

cycle time, an additional carry network was needed for

the floating-point compares. The network is a carry select

structure (as in the ADD macro), but it is optimized for

floating-point compares.

Rotator

The rotator is capable of performing rotate left, shift left,

and signed and unsigned shift right SIMD operations. As

with the ADD and LOG macros, there are four instances

of the ROT macro, each 32 bits wide, to implement the

128-bit dataflow.

There are two approaches commonly used in state-of-

the-art SIMD rotator and shifter macros. Independent

logarithmic rotator arrays for each of the supported data

types can be used with a select between the different

results, or a more complex rotator array structure that

takes the width of the different data types into account

can be used. In either case, the rotate array block is

followed by a masking stage for the shift results. Neither

of these approaches can be used for the POWER6 VMX

because of area and cycle-time limitations.

Figure 3
ADD macro.

Operand A Operand B

Result

C
y
cl

e
1

C
y
cl

e
2

S � A � B S � A � B � 1 S � A � B � 1
Carry

logic
Prepare

logic

Force

logicAverage Average Average Average

S � A � B S � A � B � 1 S � A � B S � A � B � 1

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

7

Figure 4 shows the organization of one of the 32-bit

rotator macros. All rotates and shifts are executed as

rotate left within the first execution cycle and corrected

and masked in the second cycle. The byte left rotators

rotate up to 7-bit positions. The inputs for the byte

rotators are the four operand A bytes, and the rotate

matrix is controlled by the rotate and shift amounts in

operand B. This generates the correct rotate results for

the 8-bit-wide data elements and a simple masking is done

in the second cycle for shifts instead of rotates. However,

in the case of 16-bit data elements (halfwords) or a 32-bit

data element (word), the rotator result of the first cycle

needs to be corrected by crossing bit ranges. This crossing

of bits is performed by the halfword and word-cross

correction logic based on the masks generated in the first

cycle. The use of this rotator structure enabled us to

balance the dataflow rotate path delay with the mask

control delay. This balancing is critical in supporting the

POWER6 processor cycle time.

XC

The POWER6 processor XC executes SIMD multiply,

multiply–add, multiply–sum, and sum-across

instructions. The unit is broken into four 32-bit

datapaths, each containing two multiply structures (left

and right). Each of these halfword multipliers can do

simultaneous multiplies supporting both byte and

halfword multiples (8 3 8 and 16 3 16).

The XC comprises five different blocks (Figure 5). At

the top of the complex pipe is the operand (ops) macro.

The ops macro handles selecting and multiplexing the

operands. Sources include a local feedback path from a

previous complex instruction or from the VMX bypass

macro. The VMX bypass macro multiplexes result data

from other VMX subunits and the register files. The first

true pipe stage for the unit is contained in the PPgen

(partial-product generation) macro. It generates partial

products for the booth multiplier in later stages.

Pipe stages 2 through 4 encompass the sum blocks.

Each sum block contains the partial-product (multiply)

adder and has additional support logic to add the B and

C operands. The left and right versions are identical

except for the sum and carry interfaces; the right

transmits and the left receives them.

The cla (carry lookahead adder) macro comprises the

fifth stage of the pipe. It contains a 36-bit cla whose

inputs are the 36-bit sum and carry results from the sum

block. The output of this macro is the sum, which is

broken into a 32-bit result and 4-bit overflow.

The final stage is the result macro, which selects the

correct result for the appropriate instruction being

executed: an add, even 83 8 multiply, odd 83 8 multiply,

even 16 3 16 multiply, or an odd 16 3 16 multiply. The

products and overflows from the cla macro are tested for

positive and negative saturation (labeled sat in Figure 5)

conditions and can affect the final result (depending on

the instruction).

Vector floating-point unit

The vector floating-point unit (VFU) operates in a four-

way SIMD fashion on 4 3 32-bit binary single-precision

data. The POWER6 VFU is a fully pipelined, 6.5-cycle,

fused multiply–add design with a 13-FO4 cycle time.

As with the other units, the biggest challenge of the

POWER6 processor VFU design was the high-frequency,

low-latency design point. This requiredmany optimizations,

most of which are similar to those used in the BFU [5].

Figure 4

DecodeDecodeDecode

ROT macro.

Operand AOperand B

3:8
Decode

Control

logic
Rotate by 16 or mask

Mask

To ADD

0..7

8..15

16..23

24..31

Rotate by 1 bit

Rotate by 2 bits

Rotate by 4 bits

Rotate by 1 bit

Rotate by 2 bits

Rotate by 4 bits

Rotate by 8 bitsRotate by 8 bits

Convert

Figure 5

XC dataflow.

cla

PPgen PPgen PPgen PPgen PPgen PPgen PPgen PPgen

sum

left

Result

sum

right

sat
Result

sat
Result

sat
Result

sat

sum

left

sum

right

sum

left

sum

right

sum

left

sum

right

ops

cla cla cla cla cla cla cla

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

8

For the VFU, the aggressive design target also resulted in

a special design style and floorplan.

As part of the VMX accelerator, the VFU had some

constraints that did not apply to the BFU. First, as an

accelerator, the VMX has a more restrictive interface to

the core. Once an instruction has reached the POWER6

processor VFU, it has to proceed unimpeded (as

explained above in the instruction flow details section).

As a consequence, no data-dependent stalls, rejects, or

traps are supported for the VFU; therefore, some design

tricks used in the BFU—e.g., optimizing for the common

case and adding extra cycles for corner cases using

stalls—were not applicable to the VFU.

Second, the vector register file is shared by all of the

functional subunits of the VMX. This design has its pros

and cons for the VFU. To reduce hardware requirements

and speed up execution, each instruction is executed in

the subunit that is best suited for it, independent of the

data type. To enable this sharing, the data in the register

file is in memory format, which is another drawback for

VFU design. For register file data, it is preferable that

FPUs use an intermediate format that provides extra

information, like the integer bit or tags for special

operands like NaN (not a number), infinity, and zero [5].

The VFU is limited to the memory format. Thus, the

decoding and packing of the operands—which, for the

BFU, happens on the load and store interface—becomes

part of the VFU pipe.

The rest of this section describes how each of these

challenges and constraints had an impact on the VFU

design, its instruction execution, pipeline, design style,

and floorplan.

VFU instructions

Since all VMX subunits share the vector register file, each

instruction is executed in the subunit that can support it

in the most efficient way. Thus, in the POWER6

processor design, most of the VMX binary floating-point

instructions are executed in the VFU, including the

following types of instructions:

� Add and subtract.
� Fused multiply–add (A � C þ B) and fused negative

multiply–subtract (�(A � C � B)).
� Converts to and from integer. The integer can be

signed or unsigned.
� Round to integral value with the four rounding modes

as defined by the IEEE Standard for Binary Floating-

Point Arithmetic [6].
� Estimate operations for 1/x, 1=

ffiffiffi
x
p

; log(x), and 2^x.

Floating-point compares and the minimum and

maximum functions are executed in the XS. These

instructions can be executed much faster with special

integer arithmetic than with a floating-point multiply–add

unit [7].

Denormal number support

The floating-point memory format for single-precision

data divides the 32 bits into a sign s (bit 0), an exponent e

(bits 1 to 8), and a fraction f (bits 9 to 31). Based on the

exponent, the data has to be interpreted in three different

ways:

1. If e consists of all 1s, the data represent either infinity

or NaN, depending on the value of the fraction.

2. If e consists of all 0s, the represented number is

(�1)s � 2eþ1�127 � 0.f; this is either a zero (f ¼ 0) or a

denormal number.

3. In all other cases, the represented number is a normal

number with value (�1)s � 2e�127 � 1.f. Note that

denormal numbers have a different integer bit

value, and their exponent needs to be incremented

by one.

Since denormal numbers are rare, especially in media

applications, previous VMX implementations [1] handle

only normal data and, in cases of denormal numbers, trap

to software-assist code. This simplified the design of

the floating-point pipeline.

The POWER6 processor core does not support data-

dependent stalls, rejects, or traps for VMX operations.

Thus, the POWER6 processor VFU has to process

denormal numbers at full speed within the regular

floating-point pipeline. This requires modifications to

the FPU pipeline, as described in the next sections.

Operation modes

The VMX implements two modes, a Java** program

mode and a fast non-Java program mode. In Java

program mode, the VFU conforms to the Java program

specifications [8], which are a subset of the IEEE 754-1985

standard [6]. It differs from the IEEE standard in the

following ways:

� Except for the convert and round instructions, all

VFU instructions use the rounding mode round to

nearest even.
� Trapping on floating-point exceptions is not

supported, and exception information is not collected.

This special handling of IEEE exceptions is essential

for the POWER6 processor design. It enabled a VMX

design without data-dependent stalls, rejects, or traps

and thus allowed for a much simpler interface to the

POWER6 processor core.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

9

In non-Java mode, denormal operands and results are

forced to zero. This feature was originally introduced to

allow for faster, imprecise processing of denormal data.

Some graphics applications can tolerate the loss of

precision for these tiny numbers but cannot afford the

performance degradation for their precise processing.

In the POWER6 processor VFU design, there is no

performance difference between the two modes because

of special hardware support for denormal numbers.

High-precision estimates

To support estimates with a high precision, the VFU

performs a table lookup together with a modified

multiply–add operation. The algorithms and tables for

the high-precision estimates are taken from a previous

VMX design but had to be extended to support denormal

numbers. For example, for the reciprocal, reciprocal

square root, and log estimate, this was done by adding a

normalization stage before the table lookup.

Normalization and table lookup take four cycles.

During this time, no other VFU instruction may be

started so that the pipeline can be reused for the multiply–

add operation. Since this stall depends only on the

instruction word, it can be supported by the processor

core.

Pipeline

By default, the datapath executes the multiply–add

instruction A � Cþ B. Other instructions are executed as

special multiply–adds, e.g., add is executed as A � 1 þ B.

As described above, the operands of the VFU are in

memory format. Extra packing and unpacking circuits

before and after the VFU datapath would have increased

the latency of the VFU and were, therefore, not an

option. Instead, the unpacking and packing are done as

part of the datapath, hiding most of their latency.

The VFU speculatively starts the execution assuming

that the operands are normal numbers. If one or more of

the operands are denormal numbers, a late correction has

to be performed. The correction mechanisms work as

follows.

Multiplier correction—The multiplier uses radix-4

Booth encoding and supports 14 partial products using

three levels of 4:2 compressors. Two partial products

bypass the first level of 4:2 compressors and are,

therefore, less timing critical. These partial products are

used for late correction of denorm inputs.

The idea for the denorm correction is to split the

multiplication ia.fa � ic.fc (for integer bits ia,ic and

fractions fa,fc) into the two terms 0.fa � ic.fc þ ia � ic.fc.
This increases the number of partial products by one, to

14. Since ic.fc is Booth recoded, only one of the partial

products of 0.fa � ic.fc depends on the integer bit ic. This

partial product and the term ia � ic.fc bypass the first

compression stage.

Aligner correction—In parallel to the multiplication,

the fraction of the B operand is aligned to the product.

The timing-critical path of the aligner is the shift amount

computation. The implicit bit of the B operand is not

timing critical.

The alignment shift amount is the difference between

the exponents of the product A � C and the addend B. In

the VFU, it is computed assuming normal inputs.

Consequently, for denormal inputs the exponent is

assumed to be �127 instead of�126. Thus, the shift

amount can be off by eitherþ1,�1, or�2, depending on

which of the operands are denormal.

An error of�2 in the shift amount can occur only if

both multiplicands are denormal. In this case the product

is much smaller than the addend; therefore, the product

contributes only to the sticky computation and not to the

sum. For this special case, the exact shift amount does not

matter. For the other two cases, the correction by 61 is

done by a post-shift at the beginning of the adder.

Fast carryout detection

The adder computes either the sum or the absolute

difference of the aligned addend and the product. This is

done using an end-around-carry scheme [9, 10] for which

the carryout of the addition is timing critical. The

carryout computation, therefore, needs special attention.

For the improved carryout computation, it is essential

to determine the position of the leading one of the aligned

addend relative to that of the product. For normal

operands, the leading one is identical to the integer bit.

Thus, the position of the leading one can be derived easily

from the shift amount.

For denormal numbers, this conventional mechanism

does not work, because the integer bit is zero; the

denormal number can actually have up to 23 leading

zeros. The new solution implemented in the VFU works

as follows: The VFU counts the number of leading zeros

of the B operand. It then corrects the position computed

by the conventional mechanism by this number.

Design style

In a high-frequency design, a lot of circuit effort and

tuning is needed to meet all of the design checks. To

reduce the overall design effort, and to lighten the burden

of the circuit designers, only the most timing-critical

macros were implemented in full custom style

[Figure 6(a)]. The remaining macros were implemented

as synthesized random logic macros.

For the synthesized macros to meet the timing target, a

semicustom approach was used. The synthesis was guided

by writing gate-level VHDL (Very high-speed integrated

circuit Hardware Description Language). If needed, we

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

10

explicitly specified the gate type and drive strength. This

process was carried out by the logic design team.

With this approach, it was possible to synthesize half

the VFU macros and still meet the aggressive timing

target. In addition to the control, most of the exponent

datapath, the special case handling, the incrementer part

of the fraction adder, the rounder, and all of the support

macros for the estimate instructions were synthesized.

Pipeline latency

With its 6.5-cycle pipeline, the VFU supports seven-

cycle back-to-back (fully pipelined) issuing of VFU

instructions. Compared to the POWER6 processor BFU

design with its six-cycle back-to-back issuing of VFU

instructions [5], the seven-cycle VFU design seems less

aggressive.

The BFU achieves the six-cycle back-to-back issuing

of VFU instructions by forwarding an unrounded

intermediate result and corresponding correction terms;

the fully rounded result is available only at the end of

cycle seven. In some corner cases, the early bypass cannot

provide the correct result; this leads to data-dependent

stalls in the BFU. Because the POWER6 processor VMX

interface does not support data-dependent latencies, this

forwarding approach was not applicable to the VFU

design.

To achieve six-cycle back-to-back issuing, the VFU

pipeline would have to be reduced to fewer than six

Figure 6
VFU (a) dataflow and (b) floorplan of one of the VFU slices. [The macros ESTX, LOGX, and POWX are the special hardware used for the

estimate instructions 1/x, 1/sqrt(x), log(x), and 2^x. The macro CNTL decodes the instruction word and generates the control signals for the

other floating-point unit macros.]

Second adder

stage

Leading

sign anticipator

ADD4LZA4

ADD3
First adder stage

MUL1ALN1

Aligner Multiplier

24-bit incrementer

INC3

INC4

NaN

bypassing

NaN

handling

NAN1EXP1

EXP3

EXP4

EXP5
(De-)Normalizer

NRM5

RND6/RND7
Rounder

VFU operands

B
C

A

VFU

operands

Operand latches

ESTX

LOGX

2x table

POWX

ABCQ

Normalizer

and 1/x,

1/ x table

Exponent

and shift

amount

ABCQ

MUL1

ADD3

ALN1

ADD4

INC4

NRM5

RND6

ESTX

CNTL

NAN1

L
O

G
X

LZA4

EXP5

EXP1

RND6

E
X

P
3

IN
C

3

POWX

E
X

P
4

RND7

Synthesized random logic macros Custom macros

(a) (b)

Main fraction dataflow

Side datapaths (e.g., NaN handling,

estimate instructions)

Log2(x) table

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

11

stages. This would require the whole dataflow to be

implemented as highly tuned custom macros and would

have increased the design effort, power, and area of the

VFU beyond budget.

Floorplan

In a high-frequency design, the wire reach puts severe

constraints on the unit floorplan. With a default wire, it

takes a whole cycle to send signals from one corner of a

VFU slice to the opposite corner. As a result, many

critical intermacro paths require good wire to close

timing, but those wires are limited. Thus, the floorplan

becomes a challenge of its own.

To ease the VMX-level wiring of the wide operand and

result buses, the operand and result ports of the VFU

should all be located near the top of the VFU. This also

helps to reduce the latency of the data distribution.

Within a VFU slice, it was essential to find a macro

placement that keeps the intermacro wires short and

reduces wire congestion so that critical connections can

afford wider wire.

The four VFU slices of the POWER6 processor VMX

are placed side by side, similar to other vector FPU

designs [11]. However, each slice uses a special two-stack,

U-shaped floorplan, as indicated in Figure 6(b), to satisfy

the constraints mentioned above.

According to the pipeline diagram [Figure 6(a)], the

first four stages of the VFU have two parallel dataflows

for the main fraction path, passing through the aligner

and multiplier and the adder and leading-zero anticipator

(LZA). For the last three pipe stages, there is just one

fraction dataflow. This maps very well onto the U-shaped

floorplan of the VFU. The aligner and multiplier are

equally timing critical; therefore, they are placed side by

side below the operand latch macro, which holds the

operand latches. The outputs of the aligner and multiplier

then pass down the right stack through the adder and

LZA, switch to the left stack, and pass up through the

normalizer and rounder. The result then jumps over the

multiplier to the top of the VFU, where it is latched. The

paths to the estimate macros and through the incrementer

are less timing critical. They can be placed at the side and

can afford longer wire, as shown by the dotted blue lines

in Figure 6(b).

Load and store formatters

The vector instruction set contains numerous loads and

stores that require manipulation of the data used in the

operation. Some of this data manipulation is done within

the VMX unit. This breakdown in formatting was done

to limit the VMX-specific formatting requirements to the

VMX unit itself rather than forcing further complexity

into the load/store unit (LSU).

The load formatters perform a variety of functions,

such as masking off particular bits within the destination

register or shifting the loaded data left or right into the

destination register. In addition, doubleword swapping is

required to accommodate little-endian data formatting.

The load formatters also take advantage of the fact

that load data for a single load instruction is presented

across two cycles. This is because the remainder of the

POWER6 core operates on 64-bit operands, while the

VMX operates on 128-bit operands. The two-cycle data

presentation allows the formatters to be 64 bits wide

(instead of 128 bits). The results of the staging of the

formatter are then folded back on themselves to present

all 128 bits of load data on the same cycle to the VRF.

This allows for a reduced area design point that aided in

achieving a high frequency.

Recovery actions

The POWER6 processor design introduces an RU, which

maintains a shadow copy of the processor state. The

VMX unit supports the RU by presenting its results to

the RU in program order and by supporting data

returned from the RU during a recovery.

Two cycles after the results are written into the VRF,

the VMX unit sends results of its execution pipelines to

the RU. This additional delay is due to floorplan

constraints.

To save resources in routing VMX load results to the

RU, these results go directly to the RU from the LSU,

bypassing the VMX unit entirely. This presented a

difficulty because the LSU performs only some of the

data manipulation required by the AltiVec architecture;

the remainder of this formatting is performed by the

VMX unit itself. As a result, the unformatted data is

stored in the RU along with other information that is

required by the VMX unit to recreate the formatted

VMX load results. This data consists of 4 bits of the

load instruction opcode and the bottom-most 4 bits of

the load target address. Using this information and the

unformatted load data, the VMX load formatters are able

to generate the proper results following a recovery.

In the event of a recovery, the RU sends an indication

to the VMX unit that a recovery is taking place. This

indication is used to block any incoming instructions

from the IDU, and instead the VMX unit waits for inputs

from the RU. When the RU begins presenting the

recovery data, it is handled by the VMX control logic so

that the recovery data looks like incoming VMX load

instructions. The recovery data is then fed through the

load formatters before being written into the VRF.

Because the RU stores the load formatting information

in addition to the unformatted load data, the load

formatters are able to generate the proper results and

write them into the VRFs. For data that is the result of a

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

12

VMX logical operation, the RU forces the formatting

information to a value that results in no formatting shifts

of the results by the VMX. So while these results still

appear to be from a VMX load, the load formatters allow

the data to pass through untouched.

Introduction: DFU
Transaction processing is one of the major uses of

computers. Financial transactions require exact decimal

arithmetic. Typically, these transactions involve many

decimal multiplications, such as multiplying the cost

per minute or the tax rate per charge. These decimal

calculations must be rounded to a decimal radix point.

The decimal arithmetic component of these financial

transactions is becoming more prevalent given that other

more general components are continually being improved.

Decimal arithmetic is natural to humans and has been

the standard numeric system for thousands of years. With

the advent of the computer age, binary arithmetic has

become popular. There are two common binary number

systems in computers: fixed point, or integer, and floating

point. Decimal calculations cannot be directly implemented

with binary floating point because fractions such as 0.1

cannot be represented exactly. Instead, decimal floating-

point operations have been emulated with binary

fixed-point integers. Binary integers have performance

problems because of their limited range and their

difficulty in scaling and rounding. Binary integer

implementations keep the exponent and coefficient

partitioned and operate on them separately. Rounding

and scaling are more difficult with integers than a decimal

format. Rounding to a decimal radix point is unnatural in

binary format and requires many operations, such as

leading-ones detection, table lookup, division, or an

equivalent reciprocal multiplication, and a further

detection of trailing zeros.

In prior computer systems, decimal formats have been

limited to fixed-point decimal implementations that were

implemented on mainframe and minicomputers. There

also has been limited support for binary-coded decimal

(BCD) arithmetic instructions on desktop systems, such as

the x86 architecture in which two-digit arithmetic is

supported. The bigger implementations support fixed-

point decimal format in a packed BCD format in which

each nibble (4 bits) represents a BCD digit, and there

are up to 31 digits and a sign. These systems provide

arithmetic operations for the coefficients, but they provide

no implicit rounding. The range is limited to the number

of coefficient digits or a separate exponent is maintained in

an integer format. The fixed-point decimal instruction set

of the IBM z/Architecture* technology was defined in the

1960s when high-speed register files were very costly or

even impossible to build, and it is defined to use data

directly from memory. Today, these operations create

performance bottlenecks in high-speed processors because

of the scalar nature of the workloads. Many computations

depend on the result of the prior computation. Rather

than resolving dependencies in the execution unit, the

dependency is a memory interlock and is resolved in the

cache or the LSU. Memory interlocks typically require

more cycles than register interlocks, which in some

systems can be eliminated with register renaming.

A new decimal floating-point system is needed, and the

proposed IEEE 754R standard [12] defines the formats,

possible encodings, and the execution of arithmetic

operations. The POWER6 processor design introduces a

new architecture to support this proposed standard and,

for the first time, implements this decimal floating-point

architecture in hardware. A decimal floating-point

number system is implemented that implicitly rounds

operations to a decimal radix point. This decimal

floating-point architecture is implemented completely in

hardware for both a 64-bit and a 128-bit format.

The following sections of this paper describe the

architecture, including formats, encodings, status

information, and instructions, and then describe the

hardware implementation. The basic dataflow is

described, followed by details concerning the operations

of addition, multiplication, and division.

Architecture

Given that commercial databases have more than half of

their numeric data in a decimal format [13], a BCD-like

format is desired. BCD encoding is not very efficient and

utilizes only 62.5% of the encoding space, but it allows

quick conversion from a database and is optimal for

shifting, scaling, and extracting fields of data. Binary

integer encoding provides 100% compression and fast

execution of high-order arithmetic operations, but it is

slow in reading and writing data from databases and

performing simple operations and rounding.

Binary integer encodings have their disadvantages, so

another encoding was desired. This encoding is a BCD

compressed format called densely packed decimal (DPD)

[14]. Three BCD digits, which would normally require 12

bits to represent, are compressed to 10 bits in what is

called a declet. This provides greater than 97.6% efficiency

(or 1,000 out of 1,024 possible representations). It also

has the advantage of requiring only three logic gate delays

to convert from BCD to DPD and from DPD to BCD

format. The DPD format has the same advantages of the

BCD format, but with the additional benefit of being

more compact and allowing more digits to be represented

in a given data width.

Formats

For a 64-bit data width, a BCD format can represent only

16 digits of coefficient without an exponent, or about 14

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

13

digits with a 7-bit exponent. With DPD encoding, it is

possible to represent 15 or more digits and an exponent.

A coefficient of 50 bits (or five declets) can encode 15

decimal digits with DPD encoding. This leaves 14

remaining bits, which is a little excessive for a base-10

exponent. Encoding one more coefficient digit in BCD

format is possible, but it is inefficient. Instead, the IEEE

754R committee suggested combining a BCD coefficient

digit with a 2-bit exponent field of limited range, in which

it can have the value 0, 1, or 2, but not 3 [12]. This

combined field is 5 bits and is called the combo field. The

other 9 bits are composed of a sign bit and an 8-bit

exponent continuation field that comprises the lower 8

bits of the 10-bit exponent. The combo field encoding is

shown in Table 2. If the most significant digit is less than

eight, then the first two bits are the most significant

exponent bits, and the remaining three bits represent the

most significant coefficient digit. If the most significant

digit is eight or nine, then the first two bits of the combo

field are 11, followed by the two most significant

exponent bits, and the remaining bit indicates whether the

most significant digit of coefficient is eight or nine. There

are two remaining encodings possible that start with four

ones (1111), and these are used to encode the special

numbers infinity and NaN.

The IEEE 754R standard provides two basic decimal

formats: decimal64 and decimal128, which are, respectively,

a 64-bit doubleword and a 128-bit quadword. It also

provides one storage format: decimal32, which is a 32-bit

word in length.

A decimal floating-point number A can be represented

by

A ¼ ð�1ÞðAsÞ � 10
ðAe�biasÞ � Ac;

which includes a sign bit (As), a biased exponent (Ae)

represented as an unsigned binary integer similar to the

binary floating-point format, and a coefficient (Ac).

The coefficient is not normalized and it is an integer.

The IEEE 754R standard allows the coefficient to be

represented in binary integer format or DPD format [6].

The POWER6 processor design uses the DPD format for

its quick conversion of BCD databases.

The exponent of the least significant bit of a coefficient

is referred to as the quantum. The quantum indicates the

magnitude of the unit of measurement, such as

millimeters (e.g., 10�3) or pennies (e.g., 10�2). The concept

of representation includes more than value; it includes

quantum as well. The set of multiple representations of

the same value are called cohorts. Each operation is

defined to have a preferred quantum. If a result is exact,

the member of the cohort with its exponent equal to or

closest to the preferred quantum is chosen. For addition

and subtraction, the preferred quantum is the minimum

of the two operand quantums, which is written as

min(Q(X), Q(Y)). Even though there may be several

representations of a value, for each operation there is

only one acceptable representation of the result. For

instance, 1.0þ1.00 is represented in the decimal format as

10E� 1þ 100E� 2¼ 200E� 2. The result is represented

using the smaller quantum, and there is only one

acceptable result.

Table 3 gives some parameters of the different decimal

formats. First, the precision of the coefficient in decimal

digits is given, followed by the number of bits in the

biased exponent continuation field, the range of the

signed unbiased exponent, the maximum normal number

(Nmax), and the minimum normal number (Nmin). The

formats follow the guidelines of the IEEE 854 standard

[15] for making the next larger format at least 2p þ 2

digits, where p is the precision. Decimal32 format is not

very useful since it has only seven digits, and many

calculators have more digits. Its only purpose is a

reduction of the storage requirements for constants.

Therefore, it is implemented only with limited support.

The decimal floating-point formats provide a greater

range than their binary floating-point counterparts. For

binary, the three formats range from 10638, 106308, and

1064,932.

Floating-point register and FPSCR

To reduce the amount of area dedicated to decimal

floating-point operations, the register file is reused from

the BFU. Because of the fundamental differences in the

requirements met between these two radices, a program is

unlikely to require both binary and decimal floating-point

computations simultaneously. The floating-point register

(FPR) files, located in the BFU, are used by both.

Quadword operands take up an even–odd pair of FPRs

Table 2 Decimal floating-point combo field encoding.

Most significant

coefficient digit

Most significant two bits

of the exponent value

Special values

00 01 10

0 00000 01000 10000 Infinity 11110

1 00001 01001 10001 NaN 11111

2 00010 01010 10010

3 00011 01011 10011

4 00100 01100 10100

5 00101 01101 10101

6 00110 01110 10110

7 00111 01111 10111

8 11000 11010 11100

9 11001 11011 11101

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

14

and are addressed by the even register. The even register

holds the most significant bits of the quadword, and the

odd register holds the least significant bits. There are 32

doubleword registers that can also be addressed as 16

quadword registers. Both doubleword and quadword

data is loaded using the binary floating-point load

doubleword instructions. No new load or store

instructions are added for decimal floating point.

The floating-point status and control register (FPSCR)

is also used by both binary and decimal floating-point

architectures. Only the rounding mode is separated for

decimal floating point. The decimal rounding mode field

is 3 bits and allows eight different rounding modes. The

first four rounding modes are the same as binary: round

to nearest even, truncate, round toward positive infinity,

and round toward negative infinity. The additional four

rounding modes are round to nearest ties away from zero,

round to nearest ties toward zero, round away from zero,

and round to prepare for shorter precision. The last

rounding mode needs a little explanation. It creates a

result that is a rounding equivalent of the infinitely

precise intermediate result for further rounding to p� 1

digits. This is accomplished by truncating the

intermediate result for all cases except when the least

significant digit is 0 or 5, and in this case the result is

incremented if inexact. This makes a least significant zero

or five occur only when the intermediate result is truly

exact. Without this perturbation, a zero would appear to

be an exact result and a five would appear to be exactly

halfway between two p� 1 digit representations. This new

rounding mode for an arithmetic instruction, coupled

with a new instruction called reround, allows for exact

variable precision rounding.

For decimal as well as binary, the FPSCR also records

the class of the result for arithmetic instructions. In some

cases this results in a couple of cycles of additional

latency since subnormal numbers are difficult to detect.

For binary floating-point numbers, a subnormal number

can be detected quickly by examining the exponent since

arithmetic operations normalize the result. For decimal

floating-point numbers, detection of a subnormal number

is dependent on the number of coefficient digits, which is

determined by a leading-digit detect and a subtraction of

the precision, followed by an addition of the exponent

and a comparison with a constant. The classes of results

for decimal floating-point numbers are subnormal,

normal, zero, infinity, quiet NaN, and signaling NaN,

which is recorded in an encoded flag field of the FPSCR

after every decimal arithmetic operation.

Instruction set

The POWER6 core supports decimal64 and decimal128

basic formats directly with arithmetic operations and

provides support for converting to and from the decimal32

storage format. Operations are provided for basic

arithmetic, test, quantum adjustment, conversion, and

format instructions. All operations are defined as register-

to-register operations to make interlock resolution easier

and closer to the execution unit. Load and store

instructions are borrowed from the binary floating-point

architecture to also support decimal floating point.

The basic arithmetic instructions are add, subtract,

multiply, and divide. They are defined to have two source

operands and one target operand. Each source operand

specifies an FPR for doubleword instructions or a pair of

FPRs for quadword instructions, and the target operand

designates a destination FPR or pair of FPRs. Other,

more complex arithmetic operations must be implemented

in software. The preferred quantum for add and subtract

is the minimum of the quantum of the two operands.

The preferred quantum for multiply and divide is,

respectively, the sum and difference of the quantum of the

two operands.

The test instructions provide a method for determining

the data class of the operand. They also provide

mechanisms for testing whether the number has been

rounded or could possibly have a quantum that differs

from one if greater precision were used. This is especially

useful for implementing programming languages such as

Java that support greater precision than the hardware

precision. The test data group instruction does this by

testing for extreme exponents and for the most significant

Table 3 Decimal floating-point format parameters.

Format

Decimal32 Decimal64 Decimal128

Coefficient precision (p) 7 10 34

Bits of exponent continuation 6 8 12

Exponent range �101 to 90 �398 to 369 �6,176 to 6,111

Nmax (107 � 1) 3 1090 (1016 � 1) 3 10369 (1034 � 1) 3 106,111

Nmin 1 3 10�95 1 3 10�383 1 3 10�6,143

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

15

digit nonzero. An extreme exponent is an indication that

the result quantum may have differed from the preferred

quantum and had been forced to be within the exponent

range. The test for most significant digit nonzero is an

indication of whether rounding could have occurred due

to the intermediate result being different in a larger

precision. It is particularly important to be able to

emulate a different precision or different exponent range

than that provided directly in hardware. Eventually many

programming languages and applications will be

optimized to the high-performance hardware decimal

formats, but flexibility is needed to support all

possibilities. The Java BigDecimal format allows

exponents and precision to be greater than these format

limits. Financial applications require the ability to round

to any precision, especially a smaller precision. The

emulation of a greater exponent range and precision is

accomplished by the use of the test data group

instruction.

The quantum adjustment instructions include quantize,

round to floating-point integer, and reround. These

instructions have a separate field designating the

rounding mode to use or indicating whether to use the

current FPSCR rounding mode. There are also separate

instructions that affect or do not affect the inexact flag.

The IEEE 754R standard defines quantize as forcing a

quantum (such as pennies) for a value. This is especially

useful prior to storing data in BCD format to a database.

The round-to-integer instruction provides a mechanism

for performing a ceiling or floor operation. Reround is an

instruction that provides a way to round an arithmetic

operation to a variable precision with only one rounding

error. This is especially important for programming

languages that provide the ability to round each

arithmetic operation to a specified precision. It is also

necessary for tax calculations that insist that a result be

rounded to a specific precision or for programming

languages that may have a slightly different precision

than the hardware precision, for example, 32 digits

instead of 34 digits.

The conversion instructions provide means to round or

convert to and from the three decimal floating-point

formats, as well as to and from the fixed-point or integer

formats. These are the only instructions that support

decimal32 format since it is only a storage format. In

addition, it is possible to emulate decimal32 arithmetic

using these instructions in conjunction with the arithmetic

instructions.

The format instructions include instructions for

inserting or extracting the coefficient to BCD format or

the exponent to binary integer format. Also included are

operations to shift the coefficient left or right. These

format instructions are useful for fast conversion to and

from existing commercial databases.

Altogether 54 instructions were added to the Power

Architecture to support decimal floating-point formats.

The POWER6 architecture for decimal floating point is

optimized for implementing a BCD-like format in

hardware. It provides instructions that support

programming languages with greater precision and range

than hardware-based formats such as Java or formats that

are matched to hardware such as C and Cþþ. Best
performance is possible when the programming language

provides data types that are identical to those in hardware.

Hardware implementation

The POWER6 processor DFU is rather small but very

wide. Its main component is a wide 36-digit (or 144-bit)

adder, shown in Figure 7. The POWER6 processor cycle

time is approximately 13 FO4 and can support only a

64-bit binary add in one cycle without complementation.

The widest decimal adder that could be built with

complementation in one cycle is four digits. A four-digit

decimal adder is actually four conditional one-digit

adders, in which the sum of AþB, AþBþ 1, AþBþ 6,

or AþBþ 7 is chosen based on the carry into each digit.

Many replicated four-digit adders were used to

construct the larger adder. At a four-digit group level, the

carry into each of these adders is set to zero such that the

final sum will be equal to this sum or sumþ 1. In the next

Figure 7

DFU dataflow.

Compress BCD to DPD

4D 4D 4D 4D 2D 4D 4D 4D 4D 2D

�1 �1 �1 �1 �1�1 �1 �1 �1 �1

Add register Add register

BH register

AH register

BL register

AL register

Expand DPD to BCD

Expand DPD to BCD

WH register WL register

CH register CL register

R register

Partial product creator (2�, 5�)

36 digits wide (144 bits)

Rotator cycle 1

Rotator cycle 2

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

16

cycle, a four-digit increment is implemented to calculate

sumþ 1 while the carry into each group is determined and

then used to select between sum and sum þ 1. This is a

relatively simple, replicated building-block design. The

groups are actually 4, 4, 4, 4, 2 and 4, 4, 4, 4, 2, where the

upper 18 digits can be separated from the lower 18 digits.

To be able to include a guard digit and a round digit, this

width is ideal since adders must be p þ 2, where p is the

precision (16 or 34 digits). Note that the adder has a two-

cycle latency but can start a new computation every cycle.

A control signal allows the adder to be reconfigured on

the fly between one 36-digit adder or two 18-digit adders.

Quad-precision operations typically use the full 36-digit

adder, whereas double-precision operations tend to use

two 18-digit adders.

The other components of the dataflow are two DPD-

to-BCD expanders, one BCD-to-DPD compressor, a

two-cycle pipelined rotator, a partial product creator, and

eight 18-digit registers organized into four pairs (AH–AL,

BH–BL, WH–WL, and CH–CL), where each pair is

separated across the high-order and low-order half of the

dataflow. The compressor and expanders convert to and

from BCD and DPD formats, because the FPRs hold the

data in DPD format to reduce space requirements. This

takes only three gate levels, but additional delay is needed

to replicate the doubleword data to both the high and the

low half of the registers. Horizontal wire is particularly

slow in the technology used and causes large delays in

select lines that are repowered for 144-bit multiplexers.

This is especially evident in the rotator, which could not

be completed in one cycle; instead, it required two cycles

to rotate to any of 36 digits. The rotator also includes a

mask function to act as a shifter that shifts out data. The

partial product creator provides a doubler (23) and a

quintupler (53) to provide easy-to-create multiples for

multiplication. Both doubling and quintupling in BCD

format are digit-independent operations and do not

require any carry propagation.

The operations of addition and multiplication are

described for this dataflow. A description of division is

also available [16].

Addition

Floating-point binary addition typically involves

alignment of the operand with the smaller exponent,

addition, normalization, and rounding. Floating-point

decimal addition is slightly different and is separated into

three cases: exponents equal, aligning to the operand with

the smaller exponent, and shifting both operands.

Case 1—Exponents equal: When the exponents are

equal, the following steps are performed:

1. Expand DPD data to BCD.

2. Add the coefficients.

3. If there is a carryout from the adder, increment the

exponent, shift the coefficient right, and round.

4. Compress the result to DPD format.

No normalization is necessary in decimal format. At

most, a shift by one digit right is necessary if there is a

carryout. Rounding is performed by incrementing the

result on a second pass through the adder. If rounding is

not necessary, this operation requires only five cycles.

Decimal floating-point operands are read from the

FPR in the BFU and are transmitted to the DFU. In

more detail, and referring to Figure 7, the two operands

are latched into the AL register and the BL register. In

cycle 1, AL is driven to one expander to convert the DPD

coefficient into BCD format and is latched in both BL

and AH. The other operand in BL is driven to the other

expander and is expanded and latched in both AL and

BH. Both high and low parts are used in case the effective

operation is subtraction, and then A–B and B–A would

be calculated in parallel. Also in cycle 1, the exponent is

driven to the exponent dataflow, and the exponent

difference is calculated. In cycles 2 and 3, the BCD data in

AL and BL is added in the low part of the adder, and AH

and BH in the high part of the adder. The carries are not

propagated between each 18-digit portion of the adder

because this is a doubleword operation. The result is

latched in WH and WL. In cycle 4, WL drives the

compressor of BCD to DPD format and then is latched in

the CL register. In cycle 5, the CL register can drive the

result to the FPRs.

A carryout of the adder will require an additional cycle

to shift the data right one digit and possibly additional

cycles for rounding. Subnormal number detection to

update the class flags in the FPSCR can also add delay.

Additionally, overflow and underflow result in a rebiased

exponent.

Case 2—Aligning to the operand with the smaller

exponent: When the exponent difference is less than or

equal to the number of leading zeros in the operand with

the bigger exponent, the operand with the larger exponent

can be shifted left to properly align it with the smaller

exponent value. For this case the following steps are

performed:

1. Expand to BCD and in parallel compare the

exponents.

2. Swap the operands, creating two operands called big

and small.

3. Shift the operand with the larger exponent left by the

exponent difference.

4. Add aligned big to small.

5. Round, if necessary.

6. Compress to DPD format.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

17

Similar to case 1, no rounding is necessary unless there

is a carryout. Results are aligned to the preferred

exponent, which is the smallest exponent of the two

operands.

Case 3—Shifting both operands: If the exponent

difference is greater than the number of leading zeros in

the operand with the bigger exponent, then both

operands are shifted. This could be avoided if the adder is

2p digits wide, but this is prohibitive to implement for the

34-digit format. The steps are the following:

1. Expand to BCD and, in parallel, compare the

exponents.

2. Swap the operands.

3. Shift the operand with the larger exponent left by the

exponent difference (D).

4. Reshift the operand with the larger exponent left by

the number of leading zeros in its coefficient (Z).

5. Compute D � Z and shift the operand with the

smaller exponent right by the result.

6. Add the now-aligned coefficient.

7. Round.

8. Compress the result to DPD format.

These three cases are executed concurrently, and in the

event of a conflict, the faster case is given precedence.

This is evident for step 3 of case 3, in which we first

incorrectly shift left by the exponent difference and then

have to reshift by the number of leading zeros. This is

done because the leading-zero count is not finished in

time to set the shift amount by step 3; the hardware,

therefore, assumes it a case 2 and discards the result if it is

wrong. For subtraction of a doubleword format, both the

high and low adder halves are used, so A� B and B� A

cannot be computed in parallel. Instead, they are

computed serially, and the result is selected based on the

carryout. The number of cycles necessary to complete

each of the three cases of addition is shown in Table 4.

Multiplication

Multiplication of the decimal floating-point coefficients is

performed by a serial sequence of a digit multiplication, a

shift, and summations. If P is the product of M times N,

where M contains p digits of precision, then

P ¼
Xp

i¼0

ðM
i
NÞ3 10

i
:

Quadword operands are processed in this

straightforward manner and require two cycles for each

iteration, necessitated by the two-cycle latency through

the adder. To reduce the number of multiples maintained

in the partial product creator block of Figure 7, partial

products are formed with summations of easy-to-generate

multiples 13, 23, 53, and 103 [17]. This provides less

storage of multiples, since only 13 needs to be stored and

23 and 53 can be calculated very quickly with the BCD

doubler and BCD quintupler. Although the adder is

needed to create each required multiple from this subset

of multiples, no latency is added to the iteration because

these computations can be interleaved in the adder every

other cycle with the partial product summations.

For doubleword operands, a technique of summing

pairs of partial products is used to reduce the average

multiplication iteration to one cycle. This is shown by

P ¼
Xp=2

i¼0

½ðM
i
NÞ þ 10ðM

iþ1
NÞ�3 100

i
:

To accomplish this, the dataflow is split into two separate

72-digit halves. The lower half of the adder alternates

between generating multiples MiN and 10(Miþ1N), where

the multiplication by 10 is a simple one-digit shift left.

These multiples are then passed to the upper half of the

dataflow. The upper half of the adder interleaves the

computations for generating the partial product pairs

(MiN)þ 10(Miþ1N) and partial product accumulations

Piþ1 ¼ Pi þ 100 � [(MiN) þ 10(Miþ1N)], where the

multiplication by 100 is a simple two-digit shift left. The

number of cycles necessary to complete each of the

multiplication operations is dependent on the number of

significant digits in the first operand and is shown in

Table 4.

Division

The divide algorithm chosen for the POWER6 processor

design uses a nonrestoring division algorithm with

prescaling. Nonrestoring division iteratively generates

quotient digits using the following steps:

1. Quotient selection based on a partial remainder qsel.

2. Multiplication of the divisor D by the quotient digit.

3. Computation of the next partial remainder P(iþ1), as

shown by

Table 4 Execution times of addition, subtraction, multi-

plication, and division.

Cycles required for execution

Doubleword operands Quadword operands

Case 1 add/sub 9 to 13 11 to 15

Case 2 add/sub 11 to 15 13 to l7

Case 3 add/sub 13 to 17 15 to 19

Multiplication 19 þ N 21 þ 2N

Division 82 154

Note: N is the number of digits in the first operand excluding leading zeros.

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

18

Pðiþ1Þ ¼ PðiÞ � q
selðiÞ �D:

Each iteration takes four cycles to complete: one cycle

for quotient selection, one cycle for digit multiplication,

and two cycles to compute the next partial remainder.

Correctly rounding the common case of an inexact

quotient requires that the number of iterations to

complete the division be one greater than the target

precision.

The divisor and numerator are prescaled in such a way

that the divisor is greater than 1 and strictly less than

1.11. This simplifies the quotient selection process by

simply extracting the most significant digit of the partial

remainder. This simplification in the quotient selection

process of the division iteration comes with an upfront

cost of 12 cycles to complete the prescaling of the

numerator and divisor. This prescaling is a multiplication

of the numerator and denominator by a two-digit number

generated from a 90-entry by 8-bit programmable logic

array lookup table.

Multiplication of the selected quotient by the now-

prescaled divisor is done by selecting the appropriate

multiple of the divisor. To reduce the number of divisor

multiples that must be maintained in the partial products

creator, quotient selections are made from a redundant

set of f�5 toþ5g. This is done by adjusting the quotient

digits on the fly after they are selected and before they are

put into the final result register. This on-the-fly quotient

adjustment is done in parallel with the next partial

remainder computation and does not affect the critical

path in the divisor iteration. Divisor multiples 13, 33, and

43 are precomputed and stored in the partial product

creator, and 23 and 53 are generated on the fly in the

BCD doubler and BCD quintupler logic in the partial

product creator block. Table 4 shows the number of

cycles necessary to complete the common case for the two

division algorithms.

Summary

The VMX unit provides acceleration of graphics and

scientific workloads and operates on multiple fixed-point

or floating-point operands with a single instruction.

Vectors of 128 bits are separated into 16 3 8-bit, 8 3 16-

bit, or 4 3 32-bit operands, and the arithmetic is

computed in parallel. The architecture is very rich and

robust and supports hundreds of instructions. An

overview of the unit is given here, including insights into

each of its execution subunits. One of the primary

challenges of this design was tracking dependencies

through the pipelines given the high-frequency

requirements. Details of how this challenge was solved

are given. Design additions that were necessary to

support the POWER6 processor RU are discussed.

The POWER6 processor DFU accelerates financial

transactions and provides the first hardware

implementation of the IEEE 754R standard decimal data

types. Decimal floating point requires alignment and

rounding, and it has unnormalized coefficients. The

architecture and implementation are robust to adapt to

applications or languages that require larger, smaller,

or identical precision and exponent range. This supports

the varying requirements of decimal floating-point

applications. The architecture and implementation are

designed to be small but sufficient to accelerate current

software implementations. Size is minimized by reusing

the large BFU register file and by eliminating the need for

a separate load and store interface. Instead, hardware is

invested in the most frequent operations, such as format

manipulation and basic arithmetic.

The two POWER6 processor accelerators have been

discussed in detail. Both are designed at the POWER6

processor clock speed of more than 5 GHz with a

technology-independent cycle time of 13 FO4. The

POWER6 processor design is targeted for performance,

and the VMX and DFU add two application-specific

accelerators to boost both scientific and commercial

transaction performance.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Freescale
Semiconductor, Inc., Sun Microsystems, Inc., or Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References
1. Freescale Semiconductor, AltiVece Technology Programming

Environments Manual, 2006; see http://www.freescale.com/files/
32bit/doc/ref_manual/ALTIVECPEM.pdf.

2. M. S. Schmookler, M. Putrino, C. Roth, M. Sharma, A.
Mather, J. Tyler, H. Van Nguyen, M. N. Pham, and J. Lent,
‘‘A Low-Power, High-Speed Implementation of a PowerPCe

Microprocessor Vector Extension,’’ Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, Adelaide,
Australia, 1999, pp. 14–16.

3. M. M. Ziegler and M. R. Stan, ‘‘A Unified Design Space for
Regular Parallel Prefix Adders,’’ Proceedings of the Conference
on Design, Automation and Test in Europe, Paris, France, 2004,
pp. 1386–1387.

4. N. Mäding, J. Leenstra, J. Pille, R. Sautter, S. Buttner, S.
Ehrenreich, and W. Haller, ‘‘The Vector Fixed Point Unit of
the Synergistic Processor Element of the Cell Architecture
Processor,’’ Proceedings of the 31st European Solid-State
Conference, Grenoble, France, 2005, pp. 203–206.

5. S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener,
‘‘POWER6 Binary Floating-Point Unit,’’ Proceedings of the
18th IEEE Symposium on Computer Arithmetic (ARITH18),
Montpellier, France, 2007, pp. 77–86.

6. ANSI/IEEE Standard 754-1985, ‘‘IEEE Standard for Binary
Floating-Point Arithmetic,’’ �1985 IEEE; see http://
754r.ucbtest.org/standards/754xml.html.

7. S. M. Mueller and W. J. Paul, Computer Architecture:
Complexity and Correctness, Springer-Verlag, Berlin,
Germany, 2000, pp. 351–436.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

19

8. J. Gosling, B. Joy, and G. Steele, The Javae Language
Specification, Addison-Wesley, Boston, MA, 1996.

9. E. M. Schwarz, ‘‘Binary Floating-Point Unit Design: The
Fused Multiply–Add Dataflow,’’ High-Performance Energy-
Efficient Microprocessor Design, V. G. Oklobdzija and R. K.
Krishnamurthy, Eds., Springer, Dordrecht, The Netherlands,
2006, pp. 189–208.

10. X. Y. Yu, Y.-H. Chan, M. Kelly, E. Schwarz, B. Curran, and
B. Fleischer, ‘‘A 5GHzþ 128-bit Binary Floating-Point Adder
for the POWER6 Processor,’’ Proceedings of the European
Solid-State Circuits Conference, Montreux, Switzerland, 2006,
pp. 166–169.

11. H.-J. Oh, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. Cottier,
B. W. Michael, H. Nishikawa, et al., ‘‘A Fully Pipelined
Single-Precision Floating-Point Unit in the Synergistic
Processor Element of a Cell Processor,’’ IEEE J. Solid-State
Circuits 41, No. 4, 759–771 (2006).

12. ANSI/IEEE,‘‘DRAFT Standard for Floating-Point
Arithmetic P754,’’ Draft 1.2.5, see ‘‘Working Group
Records,’’ at http://754r.ucbtest.org/.

13. M. F. Cowlishaw, ‘‘Decimal Floating-Point: Algorism for
Computers,’’ Proceedings of the 16th IEEE Symposium on
Computer Arithmetic, 2003, pp. 104–111.

14. M. Cowlishaw, ‘‘Densely Packed Decimal Encoding,’’ IEE
Proceedings—Computers and Digital Techniques 149, No. 3,
102–104 (May 2002).

15. ANSI/IEEE Standard 854-1987, ‘‘IEEE Standard for
Radix-Independent Floating-Point Arithmetic,’’ �1987 IEEE;
see http://754r.ucbtest.org/standards/854xml.html.

16. E. M. Schwarz and S. Carlough, ‘‘POWER6 Decimal Divide,’’
submitted to the 18th IEEE International Conference on
Application-Specific Systems, Architectures and Processors,
Montreal, Canada, July 2007.

17. R. K. Richards, Arithmetic Operations in Digital Computers,
D. Van Nostrand Company, Inc., New York, 1955,
pp. 247–285.

Received January 17, 2007; accepted for publication

Lee Eisen IBM Systems and Technology Group, 11400 Burnet
Road, Austin, Texas 78758 (leisen@us.ibm.com). Mr. Eisen is a
Senior Technical Staff Member in the high-performance processor
design team. He received a B.S. degree in electrical engineering
from Texas A&M University. He has worked on the PowerPC 602,
PowerPC 603*, PowerPC 603ev, PowerPC 750* (all Somerset
Design Center), POWER4*, POWER4þ*, and PowerPC 970
processors. Mr. Eisen was the lead power engineer, VMX leader,
and core hardware bring-up lead for the POWER6 processor
design.

John Wesley (Wes) Ward III IBM Systems and Technology
Group, 11400 Burnet Road, Austin, Texas 78758
(wesward@us.ibm.com). Mr. Ward is an Advisory Engineer in the
high-performance processor design team. He received a B.S. degree
in electrical engineering from the University of Texas. Mr. Ward
has worked on verification, timing, and logic design on numerous
processor core designs—including Power PC 620*, POWER4,
POWER4þ, PowerPC 970, and POWER5* processors. For the
POWER6 processor design, his responsibilities included design and
implementation of the VMX issue queue and instruction fetch unit
(IFU) prefetch logic.

Hans-Werner Tast IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(tast@de.ibm.com). Mr. Tast received a Dipl.-Ing. degree in
electrical engineering from the Fachhochschule Ulm, Germany.
Mr. Tast was the Logic Design Leader of the cache systems for
several generations of IBM zSeries* processors. He worked on the
Cell Broadband Engine** (Cell/B.E.) processor synergistic
processor elements (SPEs) and the POWER6 processor VMX unit.
In 2004, he assumed a lead position in the concept of a new level of
cache hierarchy for future zSeries processors.

Nicolas Mäding IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(nmaeding@de.ibm.com). Mr. Mäding is currently an Advisory
Development Engineer for vector fixed-point unit developments.
He received an M.S. degree from the Technical University of
Chemnitz, Germany. He worked in several areas of the Cell/B.E.
processor development, including logic design, integration, and
system bring up. He later worked on the vector fixed-point
execution unit of the POWER6 processor VMX. His interests are
in computer architecture, high-frequency design, low power, and
design for testability and reliability.

Jens Leenstra IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(leenstra@de.ibm.com). Dr. Leenstra received an M.S. degree from
the University of Twente and a Ph.D. degree from the University
of Eindhoven, both of The Netherlands. He has worked in several
areas of development, including logic design and verification of I/O
chips, multiprocessor system verification of the IBM S/390* G2
and G3 mainframe computers, the Cell/B.E. processor SPEs, and
the POWER6 processor VMX unit. He is currently working on
next-generation IBM microprocessors. Dr. Leenstra’s current
interests focus on computer architecture, high-frequency design,
low power, and design for testability.

Silvia M. Mueller IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(smm@de.ibm.com). Dr. Mueller is a Senior Technical Staff

L. EISEN ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

20

February 21, 2007; Internet publication October 23, 2007

Member in the high-performance processor design team. She
received B.S. degrees in mathematics and computer science, an
M.S. degree in mathematics, and a Ph.D. degree in computer
science from the University of Saarland, Germany. In 1998, she
became a Privatdozent at the computer science department of the
University of Saarland and still holds a teaching assignment there.
Dr. Mueller joined IBM at Boeblingen in late 1999. From 2001 to
2003 she was on an international assignment in Austin, Texas,
joining the Sony–Toshiba–IBM Design Center developing the
Cell/B.E. processor. She led the team for the floating-point units
for the Cell/B.E. processor and for the POWER6 processor VMX.

Christian Jacobi IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(cjacobi@de.ibm.com). Dr. Jacobi received an M.S. degree
(Diplom-Informatiker) and a Ph.D. degree, both in computer
science, from Saarland University, Germany. He has worked on
formal verification techniques, mainly for FPUs, floating-point
logic design, logic verification, and physical implementation for
various IBM microprocessors. He is now working on cache designs
for future zSeries processors.

Jochen Preiss IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(preiss@de.ibm.com). Dr. Preiss is a Staff Hardware Engineer for
FPUs in the microprocessor design team. He received a B.S. degree
in mathematics and M.S. and Ph.D. degrees in computer science,
all from the University of Saarland, Germany. For his master’s
thesis, he received the Guenther Hotz Award. Dr. Preiss worked on
the development of the PowerPC 970 series IFU and the POWER6
processor VMX FPU.

Eric M. Schwarz IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(eschwarz@us.ibm.com). Dr. Schwarz is a Distinguished Engineer
in IBM zSeries, iSeries*, and pSeries* processor development. He
received a B.S. degree in engineering science from the Pennsylvania
State University and M.S. and Ph.D. degrees in electrical
engineering from Ohio University and Stanford University,
respectively. He worked on the successors to the 4381 and 9370
computers as well as on the IBM G4, G5, G6, z900, z990, z9*-109,
and POWER6 processor-based computers. He led the FPU
development for these computers and was Chief Engineer of the
IBM z900 system in 2000. Dr. Schwarz is active in the IEEE
Symposium on Computer Arithmetic and has been on the program
committee since 1993.

Steven R. Carlough IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(scarloug@us.ibm.com). Dr. Carlough is a Senior Engineer in
zSeries, iSeries, and pSeries processor development. He received
B.S. and M.S. degrees, both in electrical engineering, and a Ph.D.
degree in electrical engineering, all from Rensselaer Polytechnic
Institute. He has worked on fixed-point units for z990 and z9-109
servers and the decimal FPU in the POWER6 processor-based
computer.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 L. EISEN ET AL.

21

