IBM POWERG6
accelerators:
VMX and DFU

The IBM POWERG™ microprocessor core includes two
accelerators for increasing performance of specific workloads. The
vector multimedia extension (VMX) provides a vector acceleration
of graphic and scientific workloads. It provides single instructions
that work on multiple data elements. The instructions separate a
128-bit vector into different components that are operated on
concurrently. The decimal floating-point unit (DFU) provides
acceleration of commercial workloads, more specifically, financial
transactions. It provides a new number system that performs implicit
rounding to decimal radix points, a feature essential to monetary
transactions. The IBM POWER™ processor instruction set is
substantially expanded with the addition of these two accelerators.
The VMX architecture contains 176 instructions, while the DFU
architecture adds 54 instructions to the base architecture. The IEEE
754 R Binary Floating-Point Arithmetic Standard defines decimal

L. Eisen

J. W. Ward |l

H.-W. Tast
N. Mading
J. Leenstra

S. M. Mueller

E.
S.

C. Jacobi
J. Preiss
M. Schwarz
R. Carlough

floating-point formats, and the POWERG processor—on which a
substantial amount of area has been devoted to increasing
performance of both scientific and commercial workloads—is the
first commercial hardware implementation of this format.

Introduction: VMX unit

A major purpose of high-performance microprocessors is
the manipulation of data through complex calculations.
Current designs allow for a wide array of calculations on
very large and very precise operands. While the current
standard is 64 bits, many types of calculations do not
require this high amount of precision and thus are unable
to realize the full potential of the microprocessor design
through conventional methods. Some examples include
graphics (such as calculations made by computer-aided
design tools), scientific visualizations, data encryption,
real-time video processing, and calculations used in the
evaluation of seismic data.

One alternative way to address this potential deficiency
is to use a single-instruction multiple-data (SIMD)
design. Instead of working on a single piece of data and
offering a high degree of precision, SIMD designs offer
data parallelism by performing the same operation on
multiple, lower-precision operands at the same time. This
provides multiple virtual pipelines where only a single
pipeline exists physically.

The vector multimedia extension (VMX) instruction
set—announced as AltiVec** [1]—is a SIMD extension of

the IBM Power Architecture* technology. It was jointly
developed by the IBM Corporation, Apple, Inc.,

and Freescale Semiconductor, Inc., formerly the
Semiconductor Products Sector of Motorola. The AltiVec
instruction set was designed to provide RISC (reduced
instruction set computing) type of instructions that allow
for rapid data manipulation. The AltiVec architecture
operates on 128-bit vector registers that can represent four
32-bit single-precision floating-point or integer operands,
eight 16-bit integers, or sixteen 8-bit integers.

The first IBM-designed processor to implement the
AltiVec instruction set was the IBM PowerPC* 7400 [2].
The IBM POWERG6™* processor VMX unit is the latest
incarnation of this vectorized design. The paramount
challenge of the POWERG6 processor design was its
aggressive frequency target of 13 FO4 (fanout of
4-inverter delay). This high-frequency goal put stress on
the logic design, layout, and fine-tuning of the final
design. These difficulties are discussed in more detail in
the following sections.

Unique to the POWERG6 processor design was the
introduction of a recovery unit (RU) to the processor
core. The RU is used to maintain a shadow copy of the

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

L. EISEN ET AL.

current state of the core. If an error is detected within the
core, execution in the core is halted, and the RU can be
used to restore the core to a known good state before
execution is resumed. To support this, the VMX unit had
to present its results to the RU for storage as well as
support the restoration of state in the event of a recovery.

The following sections give an overview of the
POWERG6 processor VMX implementation. Particular
focus is given to the challenges encountered in
implementing a high-frequency design and how those
challenges were overcome. The POWERG6 processor
support of the RU is discussed as well.

VMX unit overview

The VMX unit is treated as a separate execution unit by
the POWERG6 processor core. The VM X inputs are driven
by the instruction dispatch unit (IDU), which also feeds
instructions to the binary and decimal floating-point units
(BFU and DFU, respectively). Instructions are presented
to the VMX unit in program order and must be retired in
program order. The IDU tracks the order of instruction
execution across execution units, and the VMX control
logic is responsible for tracking the instructions within the
unit.

The VMX unit contains seven distinct execution
subunits that control the dataflow pipelines shown in
Figure 1. They are two load subunits, one store subunit,
and four execution subunits. The execution subunits are
the arithmetic logic unit (ALU) simple unit (XS), the
vector floating-point unit (VF), the complex unit (XC),
and the permute unit (PM). Each load unit controls its
own dataflow pipeline (two total). The remaining
subunits are divided across two execution pipelines. The
first pipeline consists of the XS, VF, and store units, and
the second pipeline consists of the XC and PM units.

While each of the four dataflow pipes may contain a
valid instruction on any given cycle, they are tracked in
parallel to ensure that program-order execution is
preserved. This also simplifies the tracking of
dependencies between the pipes; if they were allowed to
move independently, the degree of complexity would
significantly increase.

The vector register file (VRF) contains a writeback port
for each of the four dataflow pipes and is capable of
writing from all four simultaneously on any given cycle.
The POWERG processor VMX uses two instances of the
VREF: one per execution pipeline. In the VMX floorplan,
the VRFs are placed close to their corresponding pipeline;
this allows for a fast register file access. Loads and writes
update both copies of the VRF.

Instruction flow control details

Instruction flow through the VMX unit begins at the top
of the pipeline with the instruction and load data circular

L. EISEN ET AL.

queues. Under optimal operation (no stalls within the
VMX unit), the queues are bypassed and cause no delay
for the instruction. Instructions are maintained in the
queue until they are issued to their respective subunit.

The read pointer for the instruction and data queues is
controlled by two primary mechanisms: stalls and rejects.
Stalls are generated when a read-after-write (RAW)
dependency is detected. If an instruction has a RAW
dependency, it will be stalled the minimum number of
cycles required to have the data available. The primary
reason for rejects is write-after-write (WAW)
dependencies.

The different reactions to the above dependencies are
due to the stage of the VMX pipeline in which they are
detected. Instructions are allowed to stall within the top
four stages of the VMX pipeline; beyond that, they will
proceed down the pipe unimpeded. RAW dependency
detection is done early enough to catch the dependent
instruction within one of the early stalled stages.

The loading on the stall generation was a primary
concern in the unit design. To mitigate this loading as
much as possible, a reject capability was added to handle
cases that are not performance critical. Part of this load
reduction was done by moving WAW dependency
checking to a later pipeline stage. This detection is done
beyond the stall pipeline boundary. To allow for this, a
WAW-dependent instruction is invalidated from the
instruction pipeline and is reread from the queue. This
reject results in a seven-cycle delay in the instruction.
The WAW-reject pairing was done because a compiler
should be able to avoid WAW dependencies (without an
intervening RAW dependency, or otherwise an intervening
RAW dependency will generate a stall).

An instruction reject may also occur following an
estimate-form floating-point instruction. These estimate
instructions require additional pipeline stalls within the
floating-point unit (FPU). Rather than further load the
VMX stall detection logic, these instructions were fed
through the reject path. In addition, any stall condition
that would last for seven cycles or longer is fed through
the reject detection instead, since rejecting the instruction
does not result in a performance penalty.

Operands are presented to each of the execution subunits
from one of five possible sources: from the VRF, bypassed
from the load result bus, bypassed from the remote pipe,
bypassed from another subunit on the local pipe, or
bypassed from the result bus of the subunit. Operands that
are read from the VRF have no dependencies so their
results are available from the register file. The VRF write
operation requires two cycles to complete.

Operands bypassed from the load result bus are used to
cover the two-cycle window required to write the results
into the VRF. Operands bypassed from the remote
execution pipe cover the last cycle of the VRF write

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Load0 Loadl
Data/Op/EA Data/Op/EA Inst0 Instl
v v v v
>
LQ v 1Q — 3
> >
A N \ N/
> > R > | > l
«— nlNE To VRFs
To VRFs - N d N
=A =A
To VRF
WB2 WBI A
ToVRFs WB1 WB2
= BYI
S e S
R v_ | 2R " v v
Swer [>wes o — N —
v ! v v
> l > l > l > l
! v Il v
DRES | > | > | D |
' v v
> | D RTES |
>]
?] >]
%
XS VF XC PM
Figure 1

VMX pipeline. (IQ: instruction queue; LQ: load queue; BY I: first bypass stage; WB: writeback cycle; RES: result available. Execution cycles
are distinguished by shaded and unshaded bars.)

window; floorplan restrictions prevent the data from
being available sooner. Operands bypassed from the local
execution pipe cover both cycles of the VRF write

window.

Operands bypassed from the subunit result bus cover
three to four cycles—the two-cycle VRF write window

IBM J. RES. & DEV. VOL. 5l

NO. 6 NOVEMBER 2007

and the one (for XS, XC, and PM) or two (VF) cycles
preceding. These additional cycles are gained because of
the proximity between the subunit result bus and the
operand macro.

The two execution pipes are grouped as follows: Pipe A
contains the XS, VF, and store formatter, and pipe B

L. EISEN ET AL.

contains the XC and PM. This selection was done for
optimal instruction-type grouping and to have the two
pipes mirror each other as closely as possible.

The final function of the control logic is to track the
valid instructions as they pass through the execution
subunits toward completion. This tracking is done to
control the writeback ports of the VRF, to track
dependencies as they flow through the pipes, and to signal
valid VMX results to the RU.

Dependency tracking

Compromises in dependency detection proved to be one
of the most difficult aspects of the POWER6 VMX
design. Each VMX instruction can have up to three
source operands.

Dependencies of an incoming instruction had to be
done by comparing against 14 stages of each execution
pipe (28 stages total) and four stages of each load pipe (8
stages total). Accounting for 36 pipeline stages X 3 source
operands X 2 destinations for the incoming instructions
required 216 comparisons each cycle for RAW
dependencies.

WAW dependencies add another 68 comparisons. The
two execution pipes must compare the incoming target
register against the target registers of seven stages of each
pipe (2 X 2 X 7=28 compares). The incoming load targets
must be compared to ten stages of each pipe because
loads write back to the VRF much earlier than the
execution pipes (2 incoming load targets X 2 pipes X 10
stages = 40 compares).

Doing these compares on a single pipe cycle was
impossible from a loading, timing, and floorplanning
perspective. To mitigate this, compares were spread out
across three pipeline stages, with the most critical
compares done first.

The first comparisons done were to generate stalls for
RAW dependencies. If a RAW dependency exists, the
instruction will be stalled for the minimum number of
cycles required until all of its operands are available.

The second set of compares was done to calculate the
bypass controls for each operand. These bypass controls
are calculated once; if the instruction stalls because of a
RAW dependency, the bypass controls shift every cycle so
they are aligned properly when the stall is released.

The third set of compares was done to calculate reject
scenarios, such as WAW dependencies or RAW
dependencies whose stalls are greater than the reject
penalty. Instructions reach this final comparison only
after they have passed the final stall stage. Thus, any
WAW dependency that is detected is one without an
intervening read (which would have stalled because of a
RAW dependency). The compiler should not allow this to
happen, so any performance penalty from this is not
pertinent.

L. EISEN ET AL.

A reject causes the instruction to be invalidated in the
execution pipe, and the instruction is then reread from the
queue at the top of the VMX pipe. When the instruction
exits the queue, it passes through the same comparison
stages a second time. The reject penalty is seven cycles; if
a WAW dependency still exists when the rejected
instruction reaches the final comparison stage, it is
rejected again. Because of the length of the VMX
execution pipes, any given instruction can be rejected up
to two times for WAW dependencies.

PM

The vector PM is 128 bits wide; therefore, only one
instantiation of this entity exists. The vector PM performs
instructions of the following types:

e Permute.

* Merge.

e Shift (by octet and by bit).

e Splat (repeat a part of the input operand).
* Pack (modulo and saturate).

e Unpack.

The permute, merge, shift, and splat instructions are
used to efficiently replicate or align data of a storage
operand after it is loaded into a register. The pack and
unpack instructions compress and uncompress data.

The vector PM can be issued one instruction per cycle
and has a back-to-back latency of four cycles. During the
first and second stages of the pipeline, the operands and
controls are modified and applied to the crossbar switch,
which forms the third pipeline stage. The forwarding of
the result to the input register is done in the fourth
pipeline stage.

Crosshar switch

The central macro of the PM is the crossbar switch. All
instructions performed in the vector PM deliver their
results through it into the target register. The crossbar
switch is built as 16 separate multiplexers (one per byte of
the target register). Each one of these multiplexers can
select any byte of a 32-byte input vector and deliver it to
the target register.

The functionality of the crossbar is identical to the
requirements of the permute instruction. Registers A
and B (16 bytes each) deliver the 32-byte inputs to the
crossbar switch, while register C (16 bytes wide, but only
5 bits per byte used) defines the permutation for the result
value put into target register T. All other instructions
executed by vector PM are mapped to the permute
instruction. This is done by manipulating the operands in
such a way that executing a permute in the crossbar
delivers the correct result. The manipulation of the
operands is done in the first two stages of vector PM.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Figure 2(a) depicts the classical layout of a permute
crossbar. It shows how byte n of register T depends on
byte n of register C. The five bits in register C select one
byte of the 2 X 16 bytes in the source registers A and B.

Like the permute instruction, the instructions pack
modulo, merge, and splat deliver permutations of the
bytes in operands A and B. In contrast to the permute
instruction, the instructions pack modulo, merge, and
splat depend on the operation code (opcode) rather than
operand C to control the crossbar switches. For these
instructions, it is, therefore, sufficient to compute the
proper register C value for the crossbar based on the
instruction.

There are other instructions performed in the vector
PM that must modify the A and B input operands
before the values are applied to the crossbar. These
modifications are done in the two pipeline stages before
the crossbar switch. The pack pixel, for example, picks
predefined bits from a word. The pack instructions with
saturation force the saturation value depending on the
pack result and the opcode. For the unpack instructions,
predefined bits are distributed over wider areas of target
register T.

Implementation of the crossbar switch

With the POWERG6 processor high-frequency design goal,
the main challenge for the implementation of vector PM
was to design an efficient crossbar switch. A design in
which the crossbar switch uses two pipeline stages would
have increased the back-to-back latency to five cycles
and, more importantly, would have needed a register
bank for the intermediate result. The intermediate results
of a crossbar contain several times more data than the
final result. The challenge was to get the shortest possible
back-to-back latency with a minimum of silicon area and
power consumption.

The classical permute crossbar layout shown in
Figure 2(a) does not achieve the required cycle time. It
implies the wiring distances shown in Figure 2(b). The
vertical blue line is the control vector distribution. The
red (vertical) and green (horizontal) lines are the distance
to travel from the leftmost byte of operand register A to
the rightmost byte of the target register T. Along this
distance there are the logic gates forming the 32:1
multiplexer. In our technology, the fastest circuit to
implement the 32:1 multiplexer is a combination of 4:1
and 2:1 multiplexers. Although the propagation delay of
these logic gates consumes part of the cycle time, the
majority of the delay inside the crossbar is caused by the
length of the wiring and the buffers needed to drive these
long wires.

The first step to reduce the amount of vertical wire is to
move register B to the bottom of the crossbar and register
T to the vertical center. The 32:1 multiplexer is split into

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Register A (16 bytes) \
Register B (16 bytes) \\ \
Register C (16 bytes) \ \] n

Crossbar
32 bytes to 16 bytes

32:1 multiplexer

|

Register T (16 bytes) ’ n ‘
(2)

Select

Register A (16 bytes)
Register B (16 bytes)
Register C (16 bytes)

Crossbar 32 bytes to 16 bytes

Register T (16 bytes)
(®)

Register A (4 bytes)
Register A (4 bytes)

Register A (4 bytes)
Register A (4 bytes)

Crossbar 16 bytes to 16 bytes

Register C (16 bytes)
Register T (16 bytes)

2:1 multiplexer (16 bytes)

Crossbar 16 bytes to 16 bytes

Register B (4 bytes)
Register B (4 bytes)

Register B (4 bytes)
Register B (4 bytes)

©

Crossbar switch: (a) classical layout; (b) classical wiring; (c)
POWERG6 processor core layout wiring.

two 16:1 (each constructed out of 4:1 multiplexers) and a
2:1 multiplexer near the target register. This change
reduces the red line to approximately half the length of
the implementation shown in Figure 2(b). Moving
register C near register T cuts the effective length of the
blue line in half, which is the distance from the source
(register C) to the most distant sink.

L. EISEN ET AL.

Table 1

VMX simple instructions.

Instruction SIMP (bits) Subunit Description

Vector add and subtract modulo 8, 16, 32 Adder Result modulo maximum value;
computes signed and unsigned

Vector add and subtract saturate 8, 16, 32 Adder Result saturates to minimum or maximum
value, signed and unsigned

Vector add carryout unsigned 32 Adder Carryout value of most significant bit is
given in the least significant bit of result

Vector average 8, 16, 32 Adder Average of operands, signed and unsigned

Vector logical 1 Adder Boolean AND, OR, XOR, NOR

Vector select 1 Logical Selects bitwise between vector A and
vector B based on vector C

Vector integer compare 8, 16, 32 Adder >, = [+ record of all 0s and 1s]

Vector single-precision floating-point compare 32 Logical >, =, >, bounds [+ record of all 0s and 1s]

Vector integer minimum and maximum 8, 16, 32 Adder Minimum or maximum of the A and B
integer operands

Vector single-precision floating-point 32 Logical Vector single-precision minimum or

minimum and maximum maximum of the A and B floating-point
operands

Vector rotate left 8, 16, 32 Rotator Rotate left of the operand A according to
the shift amount B

Vector shift left or right 8, 16, 32 Rotator Shift left or right operand A according to
the shift amount B

Move to or from the VSCR n/a Logical Move to the VSCR

Note: VSCR: vector status and control register.

The actual layout of vector PM is shown in Figure 2(c).
The total wiring length is reduced further by cutting off
25% of the horizontal green line. With this layout, the
crossbar switch reaches the cycle-time goal of the
POWERG6 processor design with a minimum amount of
silicon area and power consumption.

ALU XS

The XS is responsible for fixed-point calculations of a
simple nature (i.e., not multiplies or divides). Many of
the applications for VMX acceleration have to perform
the same calculation on multiple fixed-point data
elements. An example of such a use would be for matrix
representation of graphics. For typical applications, the
number of bits needed for each data element is usually §,
16, or 32. The data elements are signed or unsigned
integers, and the results can be modulo arithmetic or
saturating arithmetic. Furthermore, rotates and logical
instructions are sometimes required.

The broad range of simple instructions is shown in
Table 1. Each of these instruction types has a separate
instruction opcode for each supported data element
width. Note that both integer and floating-point

L. EISEN ET AL.

compares are implemented by this unit. As a result, 86
different instructions are supported by the XS.

The biggest challenge for implementing the XS was the
high-frequency target (13 FO4). In previous designs, such
as the PowerPC 970, the XS is implemented as a two-
cycle pipeline. Mapping that design to the POWERG6
processor frequency target would have doubled the
pipeline depth, significantly impacting performance.
Therefore, a new design was needed for the POWERG6
processor. In this new XS, the actual execution pipeline is
limited to two cycles. The third cycle is used for the result
distribution, as shown in the VMX overview (Figure 1).

The ALU XS is built out of three subunits: the adder
(ADD), logical (LOG), and rotator (ROT). In Table 1,
the subunit column shows how the instructions are
mapped to each subunit. The mapping was done in such a
way that equally balanced the delays. For example, the
integer and floating-point compares are implemented in
separate subunits to support the required cycle time. The
following section describes the specifics of each subunit to
enable the two-cycle execution of the POWERG6 processor
simple unit implementation.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Operand A Operand B
v
I I I v [| I
- | v v vV Vv v v vV Vv vV Vv vV Vv v Vv e
5 2l Prepare
S ||s=4a+B|ls=4+B+1 S=A+B||S=4+B+1 S=A4+B||S=4+B+1 S=A+B+1 logic e
!14 Ln. J_* +—“. _“_+ L‘l +_“. *ﬁ
v v v v v v v v v
b] D>] > I> 1 b]]
. y [y [R .
IS Force
O
|
v
Result
Figure 3
ADD macro.
Adder

The simple unit adder subunit is built out of four ADD
macro instances with a 32-bit-wide dataflow. The four
instances of the ADD macro implement a 128-bit-wide
datapath that enables SIMD instructions for add,
subtract, average, and integer compare to execute
simultaneously on multiple data elements. Figure 3 shows
the new two-cycle 32-bit-wide ADD macro
implementation.

The first cycle is divided into three portions: A static
adder [3] using a carry select structure with 8-bit-wide
adder blocks, the carry generation, and the preparation
logic for compare, minimum and maximum, and average
operations. The carry logic is shared between the sum and
compare logic [4]. The compare logic handles 8-bit,
16-bit, and 32-bit signed and unsigned integers as well.

The critical paths are in the carry logic outputs, and the
implementation of this logic is highly optimized to fit
within the first cycle. To enable the SIMD operations of
addition, subtraction, and compare, the carry network is
extended for the additional functionality needed for the
various operand lengths. The actual sum select of the
carry select adder (or minimum and maximum selection)
is done at the beginning of the second cycle. The two
32-bit intermediate values are selected based on §8-bit
portions. The selection is done for add and sum as well as
minimum and maximum operations.

For average instructions, the result is shifted by one to
the left for the (a + b)/2 calculation. The preparation logic
in the first cycle handles saturation and the setting of the
multiplexer select signals for the second cycle generation
of the add, subtract, minimum, maximum, and integer
compare results. Finally, the force logic (as shown in

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Figure 3) generates the compare result TRUE (all bits “17)
and FALSE (all bits “0”).

Logical

The logical subunit performs four types of instructions:
Boolean logic, vector select, single-precision floating-
point compare, and floating-point minimum and
maximum. The 128-bit dataflow handles these
instructions with four instances of a 32-bit LOG macro.
The critical paths are contained in the floating-point
compare operations. Because of the POWERG6 processor
cycle time, an additional carry network was needed for
the floating-point compares. The network is a carry select
structure (as in the ADD macro), but it is optimized for
floating-point compares.

Rotator

The rotator is capable of performing rotate left, shift left,
and signed and unsigned shift right SIMD operations. As
with the ADD and LOG macros, there are four instances
of the ROT macro, each 32 bits wide, to implement the
128-bit dataflow.

There are two approaches commonly used in state-of-
the-art SIMD rotator and shifter macros. Independent
logarithmic rotator arrays for each of the supported data
types can be used with a select between the different
results, or a more complex rotator array structure that
takes the width of the different data types into account
can be used. In either case, the rotate array block is
followed by a masking stage for the shift results. Neither
of these approaches can be used for the POWER6 VMX
because of area and cycle-time limitations.

L. EISEN ET AL.

Operand B Operand A
0.7 | 16.23 |
Convert 8.15 & 24.31 |

[Rotate by 1 bit | [Rotate by 1 bit |

l Rotate by 2 bits I l Rotate by 2 bits I

. v v
3:8 l Rotate by 4 bits I l Rotate by 4 bits I
DDecode| U I I
! % % %
:,:’(Rotate by 8 bits }-»‘ Rotate by 8 bits ‘
Control Rotate by 16 or mask
logic
Mask
+¢ L

v
To ADD
Figure 4
ROT macro.
| |
v ¥ v v v v v v
’PPgen PPgen PPgen‘ ’PPgen ’PPgen ’PPgen‘ PPgen|||PPgen
I I I i
sum sum sum sum sum sum sum sum

left | | right | | left | |right| | left | | right| | left | | right
v v ! v ! v v v

‘clchlchlchla"clchlchlchla‘
v ¥] ¥] v ¥ v
Result Result Result Result

sat sat sat sat

XC dataflow.

Figure 4 shows the organization of one of the 32-bit
rotator macros. All rotates and shifts are executed as
rotate left within the first execution cycle and corrected
and masked in the second cycle. The byte left rotators
rotate up to 7-bit positions. The inputs for the byte
rotators are the four operand A bytes, and the rotate
matrix is controlled by the rotate and shift amounts in
operand B. This generates the correct rotate results for
the 8-bit-wide data elements and a simple masking is done
in the second cycle for shifts instead of rotates. However,
in the case of 16-bit data elements (halfwords) or a 32-bit
data element (word), the rotator result of the first cycle
needs to be corrected by crossing bit ranges. This crossing

L. EISEN ET AL.

of bits is performed by the halfword and word-cross
correction logic based on the masks generated in the first
cycle. The use of this rotator structure enabled us to
balance the dataflow rotate path delay with the mask
control delay. This balancing is critical in supporting the
POWERG6 processor cycle time.

Xc

The POWERG6 processor XC executes SIMD multiply,
multiply—add, multiply—sum, and sum-across
instructions. The unit is broken into four 32-bit
datapaths, each containing two multiply structures (left
and right). Each of these halfword multipliers can do
simultaneous multiplies supporting both byte and
halfword multiples (8 X 8 and 16 X 16).

The XC comprises five different blocks (Figure 5). At
the top of the complex pipe is the operand (ops) macro.
The ops macro handles selecting and multiplexing the
operands. Sources include a local feedback path from a
previous complex instruction or from the VMX bypass
macro. The VMX bypass macro multiplexes result data
from other VMX subunits and the register files. The first
true pipe stage for the unit is contained in the PPgen
(partial-product generation) macro. It generates partial
products for the booth multiplier in later stages.

Pipe stages 2 through 4 encompass the sum blocks.
Each sum block contains the partial-product (multiply)
adder and has additional support logic to add the B and
C operands. The left and right versions are identical
except for the sum and carry interfaces; the right
transmits and the left receives them.

The cla (carry lookahead adder) macro comprises the
fifth stage of the pipe. It contains a 36-bit cla whose
inputs are the 36-bit sum and carry results from the sum
block. The output of this macro is the sum, which is
broken into a 32-bit result and 4-bit overflow.

The final stage is the result macro, which selects the
correct result for the appropriate instruction being
executed: an add, even 8 X 8§ multiply, odd 8 X 8 multiply,
even 16 X 16 multiply, or an odd 16 X 16 multiply. The
products and overflows from the cla macro are tested for
positive and negative saturation (labeled sat in Figure 5)
conditions and can affect the final result (depending on
the instruction).

Vector floating-point unit

The vector floating-point unit (VFU) operates in a four-
way SIMD fashion on 4 X 32-bit binary single-precision
data. The POWERG6 VFU is a fully pipelined, 6.5-cycle,
fused multiply—add design with a 13-FO4 cycle time.

As with the other units, the biggest challenge of the
POWERG6 processor VFU design was the high-frequency,
low-latency design point. This required many optimizations,
most of which are similar to those used in the BFU [5].

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

For the VFU, the aggressive design target also resulted in
a special design style and floorplan.

As part of the VMX accelerator, the VFU had some
constraints that did not apply to the BFU. First, as an
accelerator, the VMX has a more restrictive interface to
the core. Once an instruction has reached the POWERG6
processor VFU, it has to proceed unimpeded (as
explained above in the instruction flow details section).
As a consequence, no data-dependent stalls, rejects, or
traps are supported for the VFU; therefore, some design
tricks used in the BFU—e.g., optimizing for the common
case and adding extra cycles for corner cases using
stalls—were not applicable to the VFU.

Second, the vector register file is shared by all of the
functional subunits of the VMX. This design has its pros
and cons for the VFU. To reduce hardware requirements
and speed up execution, each instruction is executed in
the subunit that is best suited for it, independent of the
data type. To enable this sharing, the data in the register
file is in memory format, which is another drawback for
VFU design. For register file data, it is preferable that
FPUs use an intermediate format that provides extra
information, like the integer bit or tags for special
operands like NaN (not a number), infinity, and zero [5].
The VFU is limited to the memory format. Thus, the
decoding and packing of the operands—which, for the
BFU, happens on the load and store interface—becomes
part of the VFU pipe.

The rest of this section describes how each of these
challenges and constraints had an impact on the VFU
design, its instruction execution, pipeline, design style,
and floorplan.

VFU instructions

Since all VMX subunits share the vector register file, each
instruction is executed in the subunit that can support it
in the most efficient way. Thus, in the POWERG6
processor design, most of the VMX binary floating-point
instructions are executed in the VFU, including the
following types of instructions:

¢ Add and subtract.

e Fused multiply—add (4 - C 4+ B) and fused negative
multiply-subtract (—(4 - C — B)).

e Converts to and from integer. The integer can be
signed or unsigned.

* Round to integral value with the four rounding modes
as defined by the IEEE Standard for Binary Floating-
Point Arithmetic [6].

* Estimate operations for 1/x, 1//x, log(x), and 2x.

Floating-point compares and the minimum and
maximum functions are executed in the XS. These

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

instructions can be executed much faster with special
integer arithmetic than with a floating-point multiply—add
unit [7].

Denormal number support

The floating-point memory format for single-precision
data divides the 32 bits into a sign s (bit 0), an exponent ¢
(bits 1 to 8), and a fraction f (bits 9 to 31). Based on the
exponent, the data has to be interpreted in three different
ways:

1. If e consists of all s, the data represent either infinity
or NaN, depending on the value of the fraction.

2. If e consists of all 0s, the represented number is
(—1)* - 2¢17127 .0 f: this is either a zero (f=0) or a
denormal number.

3. In all other cases, the represented number is a normal
number with value (—1)° - 27?7 . 1.f. Note that
denormal numbers have a different integer bit
value, and their exponent needs to be incremented
by one.

Since denormal numbers are rare, especially in media
applications, previous VM X implementations [1] handle
only normal data and, in cases of denormal numbers, trap
to software-assist code. This simplified the design of
the floating-point pipeline.

The POWERG6 processor core does not support data-
dependent stalls, rejects, or traps for VMX operations.
Thus, the POWERG6 processor VFU has to process
denormal numbers at full speed within the regular
floating-point pipeline. This requires modifications to
the FPU pipeline, as described in the next sections.

Operation modes

The VMX implements two modes, a Java** program
mode and a fast non-Java program mode. In Java
program mode, the VFU conforms to the Java program
specifications [8], which are a subset of the IEEE 754-1985
standard [6]. It differs from the IEEE standard in the
following ways:

e Except for the convert and round instructions, all
VFU instructions use the rounding mode round to
nearest even.

e Trapping on floating-point exceptions is not
supported, and exception information is not collected.

This special handling of IEEE exceptions is essential
for the POWERG6 processor design. It enabled a VMX
design without data-dependent stalls, rejects, or traps
and thus allowed for a much simpler interface to the
POWERG6 processor core.

L. EISEN ET AL.

10

In non-Java mode, denormal operands and results are
forced to zero. This feature was originally introduced to
allow for faster, imprecise processing of denormal data.
Some graphics applications can tolerate the loss of
precision for these tiny numbers but cannot afford the
performance degradation for their precise processing.

In the POWERG processor VFU design, there is no
performance difference between the two modes because
of special hardware support for denormal numbers.

High-precision estimates
To support estimates with a high precision, the VFU
performs a table lookup together with a modified
multiply—add operation. The algorithms and tables for
the high-precision estimates are taken from a previous
VMX design but had to be extended to support denormal
numbers. For example, for the reciprocal, reciprocal
square root, and log estimate, this was done by adding a
normalization stage before the table lookup.
Normalization and table lookup take four cycles.
During this time, no other VFU instruction may be
started so that the pipeline can be reused for the multiply—
add operation. Since this stall depends only on the
instruction word, it can be supported by the processor
core.

Pipeline

By default, the datapath executes the multiply—add
instruction 4 - C + B. Other instructions are executed as
special multiply—adds, e.g., add is executed as 4 - 1 + B.

As described above, the operands of the VFU are in
memory format. Extra packing and unpacking circuits
before and after the VFU datapath would have increased
the latency of the VFU and were, therefore, not an
option. Instead, the unpacking and packing are done as
part of the datapath, hiding most of their latency.

The VFU speculatively starts the execution assuming
that the operands are normal numbers. If one or more of
the operands are denormal numbers, a late correction has
to be performed. The correction mechanisms work as
follows.

Multiplier correction—The multiplier uses radix-4
Booth encoding and supports 14 partial products using
three levels of 4:2 compressors. Two partial products
bypass the first level of 4:2 compressors and are,
therefore, less timing critical. These partial products are
used for late correction of denorm inputs.

The idea for the denorm correction is to split the
multiplication ia.fa - ic.fc (for integer bits ia,ic and
fractions fa.fc) into the two terms 0.fa - ic.fc + ia - ic.fc.
This increases the number of partial products by one, to
14. Since ic.fc is Booth recoded, only one of the partial
products of 0.fa - ic.fc depends on the integer bit ic. This

L. EISEN ET AL.

partial product and the term ia - ic.fc bypass the first
compression stage.

Aligner correction—In parallel to the multiplication,
the fraction of the B operand is aligned to the product.
The timing-critical path of the aligner is the shift amount
computation. The implicit bit of the B operand is not
timing critical.

The alignment shift amount is the difference between
the exponents of the product 4 - C and the addend B. In
the VFU, it is computed assuming normal inputs.
Consequently, for denormal inputs the exponent is
assumed to be —127 instead of —126. Thus, the shift
amount can be off by either +1, —1, or —2, depending on
which of the operands are denormal.

An error of —2 in the shift amount can occur only if
both multiplicands are denormal. In this case the product
is much smaller than the addend; therefore, the product
contributes only to the sticky computation and not to the
sum. For this special case, the exact shift amount does not
matter. For the other two cases, the correction by *1 is
done by a post-shift at the beginning of the adder.

Fast carryout detection

The adder computes either the sum or the absolute
difference of the aligned addend and the product. This is
done using an end-around-carry scheme [9, 10] for which
the carryout of the addition is timing critical. The
carryout computation, therefore, needs special attention.

For the improved carryout computation, it is essential
to determine the position of the leading one of the aligned
addend relative to that of the product. For normal
operands, the leading one is identical to the integer bit.
Thus, the position of the leading one can be derived easily
from the shift amount.

For denormal numbers, this conventional mechanism
does not work, because the integer bit is zero; the
denormal number can actually have up to 23 leading
zeros. The new solution implemented in the VFU works
as follows: The VFU counts the number of leading zeros
of the B operand. It then corrects the position computed
by the conventional mechanism by this number.

Design style

In a high-frequency design, a lot of circuit effort and
tuning is needed to meet all of the design checks. To
reduce the overall design effort, and to lighten the burden
of the circuit designers, only the most timing-critical
macros were implemented in full custom style

[Figure 6(a)]. The remaining macros were implemented
as synthesized random logic macros.

For the synthesized macros to meet the timing target, a
semicustom approach was used. The synthesis was guided
by writing gate-level VHDL (Very high-speed integrated
circuit Hardware Description Language). If needed, we

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

VFU operands VFU
i ¢ ¢ operands . E—
| ABCQ | A o] CNTL
" Operand latches ESTX "4
>]
ESTX ke B | < ABCQ
. I e
Normalizer l l <
and 1/x, A 4 ¢ ¢ ¢ 4 2 ¢ NANI1 |
1//x table EXP1 NANI1 ALNI1 MULI1 8 Fii*
e — I > IR 1> J :
. Exponent g
and shift WEW Aligner Multiplier
5 1/ amowt | | handiing
— . J MUL1
v
LOGX | | [[> [> > [> J :
NaN v v v v 3
L tabl v S
0g,() table EXP3 bypassing INC3 , ADD3 : ALNI
|:] . First adder stage o 8
s 2 “ — Z
> Il &> l =] \/ RND7
' v v v 3 I
v z
24-bit incrementer LZA4 ADD4 = ADD
EXP4 » Leading Second adder I “op 3
INC4 sign anticipator stage P05 . RND6
> = l > > J @ .,
v v v v v A —
EXP5 NRM35 POWX INC4
] (De-)Normalizer 2% table ADDA4 .
v
A
= I =)] |=] g : NRMS5
v v >] % LZA4: |
RND6/RND7 >
Rounder v EXP5
POWX
> l
| Main fraction dataflow

[] Synthesized random logic macros

(@)

[] Custom macros

.+« Side datapaths (e.g., NaN handling,
estimate instructions)

(b)

Figure 6
VFU (a) dataflow and (b) floorplan of one of the VFU slices. [The macros ESTX, LOGX, and POWX are the special hardware used for the
estimate instructions 1/x, 1/sqrt(x), log(x), and 2”x. The macro CNTL decodes the instruction word and generates the control signals for the

other floating-point unit macros.]

explicitly specified the gate type and drive strength. This
process was carried out by the logic design team.

With this approach, it was possible to synthesize half
the VFU macros and still meet the aggressive timing
target. In addition to the control, most of the exponent
datapath, the special case handling, the incrementer part
of the fraction adder, the rounder, and all of the support
macros for the estimate instructions were synthesized.

Pipeline latency

With its 6.5-cycle pipeline, the VFU supports seven-
cycle back-to-back (fully pipelined) issuing of VFU
instructions. Compared to the POWERG6 processor BFU
design with its six-cycle back-to-back issuing of VFU

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

instructions [5], the seven-cycle VFU design seems less
aggressive.

The BFU achieves the six-cycle back-to-back issuing
of VFU instructions by forwarding an unrounded
intermediate result and corresponding correction terms;
the fully rounded result is available only at the end of
cycle seven. In some corner cases, the early bypass cannot
provide the correct result; this leads to data-dependent
stalls in the BFU. Because the POWERG6 processor VM X
interface does not support data-dependent latencies, this
forwarding approach was not applicable to the VFU
design.

To achieve six-cycle back-to-back issuing, the VFU
pipeline would have to be reduced to fewer than six

L. EISEN ET AL.

11

12

stages. This would require the whole dataflow to be
implemented as highly tuned custom macros and would
have increased the design effort, power, and area of the
VFU beyond budget.

Floorplan

In a high-frequency design, the wire reach puts severe
constraints on the unit floorplan. With a default wire, it
takes a whole cycle to send signals from one corner of a
VFU slice to the opposite corner. As a result, many
critical intermacro paths require good wire to close
timing, but those wires are limited. Thus, the floorplan
becomes a challenge of its own.

To ease the VM X-level wiring of the wide operand and
result buses, the operand and result ports of the VFU
should all be located near the top of the VFU. This also
helps to reduce the latency of the data distribution.
Within a VFU slice, it was essential to find a macro
placement that keeps the intermacro wires short and
reduces wire congestion so that critical connections can
afford wider wire.

The four VFU slices of the POWERG6 processor VM X
are placed side by side, similar to other vector FPU
designs [11]. However, each slice uses a special two-stack,
U-shaped floorplan, as indicated in Figure 6(b), to satisfy
the constraints mentioned above.

According to the pipeline diagram [Figure 6(a)], the
first four stages of the VFU have two parallel dataflows
for the main fraction path, passing through the aligner
and multiplier and the adder and leading-zero anticipator
(LZA). For the last three pipe stages, there is just one
fraction dataflow. This maps very well onto the U-shaped
floorplan of the VFU. The aligner and multiplier are
equally timing critical; therefore, they are placed side by
side below the operand latch macro, which holds the
operand latches. The outputs of the aligner and multiplier
then pass down the right stack through the adder and
LZA, switch to the left stack, and pass up through the
normalizer and rounder. The result then jumps over the
multiplier to the top of the VFU, where it is latched. The
paths to the estimate macros and through the incrementer
are less timing critical. They can be placed at the side and
can afford longer wire, as shown by the dotted blue lines
in Figure 6(b).

Load and store formatters

The vector instruction set contains numerous loads and
stores that require manipulation of the data used in the
operation. Some of this data manipulation is done within
the VMX unit. This breakdown in formatting was done
to limit the VM X-specific formatting requirements to the
VMX unit itself rather than forcing further complexity
into the load/store unit (LSU).

L. EISEN ET AL.

The load formatters perform a variety of functions,
such as masking off particular bits within the destination
register or shifting the loaded data left or right into the
destination register. In addition, doubleword swapping is
required to accommodate little-endian data formatting.

The load formatters also take advantage of the fact
that load data for a single load instruction is presented
across two cycles. This is because the remainder of the
POWERG6 core operates on 64-bit operands, while the
VMX operates on 128-bit operands. The two-cycle data
presentation allows the formatters to be 64 bits wide
(instead of 128 bits). The results of the staging of the
formatter are then folded back on themselves to present
all 128 bits of load data on the same cycle to the VRF.
This allows for a reduced area design point that aided in
achieving a high frequency.

Recovery actions

The POWERG processor design introduces an RU, which
maintains a shadow copy of the processor state. The
VMX unit supports the RU by presenting its results to
the RU in program order and by supporting data
returned from the RU during a recovery.

Two cycles after the results are written into the VRF,
the VMX unit sends results of its execution pipelines to
the RU. This additional delay is due to floorplan
constraints.

To save resources in routing VMX load results to the
RU, these results go directly to the RU from the LSU,
bypassing the VMX unit entirely. This presented a
difficulty because the LSU performs only some of the
data manipulation required by the AltiVec architecture;
the remainder of this formatting is performed by the
VMX unit itself. As a result, the unformatted data is
stored in the RU along with other information that is
required by the VMX unit to recreate the formatted
VMX load results. This data consists of 4 bits of the
load instruction opcode and the bottom-most 4 bits of
the load target address. Using this information and the
unformatted load data, the VMX load formatters are able
to generate the proper results following a recovery.

In the event of a recovery, the RU sends an indication
to the VMX unit that a recovery is taking place. This
indication is used to block any incoming instructions
from the IDU, and instead the VMX unit waits for inputs
from the RU. When the RU begins presenting the
recovery data, it is handled by the VMX control logic so
that the recovery data looks like incoming VMX load
instructions. The recovery data is then fed through the
load formatters before being written into the VRF.

Because the RU stores the load formatting information
in addition to the unformatted load data, the load
formatters are able to generate the proper results and
write them into the VRFs. For data that is the result of a

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

VMX logical operation, the RU forces the formatting
information to a value that results in no formatting shifts
of the results by the VM X. So while these results still
appear to be from a VMX load, the load formatters allow
the data to pass through untouched.

Introduction: DFU

Transaction processing is one of the major uses of
computers. Financial transactions require exact decimal
arithmetic. Typically, these transactions involve many
decimal multiplications, such as multiplying the cost

per minute or the tax rate per charge. These decimal
calculations must be rounded to a decimal radix point.
The decimal arithmetic component of these financial
transactions is becoming more prevalent given that other
more general components are continually being improved.

Decimal arithmetic is natural to humans and has been
the standard numeric system for thousands of years. With
the advent of the computer age, binary arithmetic has
become popular. There are two common binary number
systems in computers: fixed point, or integer, and floating
point. Decimal calculations cannot be directly implemented
with binary floating point because fractions such as 0.1
cannot be represented exactly. Instead, decimal floating-
point operations have been emulated with binary
fixed-point integers. Binary integers have performance
problems because of their limited range and their
difficulty in scaling and rounding. Binary integer
implementations keep the exponent and coefficient
partitioned and operate on them separately. Rounding
and scaling are more difficult with integers than a decimal
format. Rounding to a decimal radix point is unnatural in
binary format and requires many operations, such as
leading-ones detection, table lookup, division, or an
equivalent reciprocal multiplication, and a further
detection of trailing zeros.

In prior computer systems, decimal formats have been
limited to fixed-point decimal implementations that were
implemented on mainframe and minicomputers. There
also has been limited support for binary-coded decimal
(BCD) arithmetic instructions on desktop systems, such as
the x86 architecture in which two-digit arithmetic is
supported. The bigger implementations support fixed-
point decimal format in a packed BCD format in which
each nibble (4 bits) represents a BCD digit, and there
are up to 31 digits and a sign. These systems provide
arithmetic operations for the coefficients, but they provide
no implicit rounding. The range is limited to the number
of coefficient digits or a separate exponent is maintained in
an integer format. The fixed-point decimal instruction set
of the IBM z/Architecture* technology was defined in the
1960s when high-speed register files were very costly or
even impossible to build, and it is defined to use data
directly from memory. Today, these operations create

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

performance bottlenecks in high-speed processors because
of the scalar nature of the workloads. Many computations
depend on the result of the prior computation. Rather
than resolving dependencies in the execution unit, the
dependency is a memory interlock and is resolved in the
cache or the LSU. Memory interlocks typically require
more cycles than register interlocks, which in some
systems can be eliminated with register renaming.

A new decimal floating-point system is needed, and the
proposed IEEE 754R standard [12] defines the formats,
possible encodings, and the execution of arithmetic
operations. The POWERG6 processor design introduces a
new architecture to support this proposed standard and,
for the first time, implements this decimal floating-point
architecture in hardware. A decimal floating-point
number system is implemented that implicitly rounds
operations to a decimal radix point. This decimal
floating-point architecture is implemented completely in
hardware for both a 64-bit and a 128-bit format.

The following sections of this paper describe the
architecture, including formats, encodings, status
information, and instructions, and then describe the
hardware implementation. The basic dataflow is
described, followed by details concerning the operations
of addition, multiplication, and division.

Architecture

Given that commercial databases have more than half of
their numeric data in a decimal format [13], a BCD-like
format is desired. BCD encoding is not very efficient and
utilizes only 62.5% of the encoding space, but it allows
quick conversion from a database and is optimal for
shifting, scaling, and extracting fields of data. Binary
integer encoding provides 100% compression and fast
execution of high-order arithmetic operations, but it is
slow in reading and writing data from databases and
performing simple operations and rounding.

Binary integer encodings have their disadvantages, so
another encoding was desired. This encoding is a BCD
compressed format called densely packed decimal (DPD)
[14]. Three BCD digits, which would normally require 12
bits to represent, are compressed to 10 bits in what is
called a declet. This provides greater than 97.6% efficiency
(or 1,000 out of 1,024 possible representations). It also
has the advantage of requiring only three logic gate delays
to convert from BCD to DPD and from DPD to BCD
format. The DPD format has the same advantages of the
BCD format, but with the additional benefit of being
more compact and allowing more digits to be represented
in a given data width.

Formats

For a 64-bit data width, a BCD format can represent only
16 digits of coefficient without an exponent, or about 14

L. EISEN ET AL.

13

14

Table 2 Decimal floating-point combo field encoding.

Most significant Most significant two bits Special values
coefficient digit of the exponent value

00 01 10
0 00000 01000 10000 Infinity 11110
1 00001 01001 10001 NaN 11111

00010 01010 10010
00011 01011 10011
00100 01100 10100
00101 01101 10101
00110 01110 10110
00111r 01111 10111
11000 11010 11100
11001 11011 11101

Nl e Y e S B \S

digits with a 7-bit exponent. With DPD encoding, it is
possible to represent 15 or more digits and an exponent.
A coefficient of 50 bits (or five declets) can encode 15
decimal digits with DPD encoding. This leaves 14
remaining bits, which is a little excessive for a base-10
exponent. Encoding one more coefficient digit in BCD
format is possible, but it is inefficient. Instead, the IEEE
754R committee suggested combining a BCD coefficient
digit with a 2-bit exponent field of limited range, in which
it can have the value 0, 1, or 2, but not 3 [12]. This
combined field is 5 bits and is called the combo field. The
other 9 bits are composed of a sign bit and an 8-bit
exponent continuation field that comprises the lower 8
bits of the 10-bit exponent. The combo field encoding is
shown in Table 2. If the most significant digit is less than
eight, then the first two bits are the most significant
exponent bits, and the remaining three bits represent the
most significant coefficient digit. If the most significant
digit is eight or nine, then the first two bits of the combo
field are 11, followed by the two most significant
exponent bits, and the remaining bit indicates whether the
most significant digit of coefficient is eight or nine. There
are two remaining encodings possible that start with four
ones (1111), and these are used to encode the special
numbers infinity and NaN.

The IEEE 754R standard provides two basic decimal
formats: decimal64 and decimal128, which are, respectively,
a 64-bit doubleword and a 128-bit quadword. It also
provides one storage format: decimal32, which is a 32-bit
word in length.

A decimal floating-point number 4 can be represented
by

Ae—bias)

- 10" - Ac,

L. EISEN ET AL.

which includes a sign bit (A4s), a biased exponent (A4e)
represented as an unsigned binary integer similar to the
binary floating-point format, and a coefficient (Ac).

The coefficient is not normalized and it is an integer.
The IEEE 754R standard allows the coefficient to be
represented in binary integer format or DPD format [6].
The POWERG6 processor design uses the DPD format for
its quick conversion of BCD databases.

The exponent of the least significant bit of a coefficient
is referred to as the quantum. The quantum indicates the
magnitude of the unit of measurement, such as
millimeters (e.g., 10~%) or pennies (e.g., 10~2). The concept
of representation includes more than value; it includes
quantum as well. The set of multiple representations of
the same value are called cohorts. Each operation is
defined to have a preferred quantum. If a result is exact,
the member of the cohort with its exponent equal to or
closest to the preferred quantum is chosen. For addition
and subtraction, the preferred quantum is the minimum
of the two operand quantums, which is written as
min(Q(X), Q(Y)). Even though there may be several
representations of a value, for each operation there is
only one acceptable representation of the result. For
instance, 1.0+ 1.00 is represented in the decimal format as
10E — 1 4+ 100E — 2 =200E — 2. The result is represented
using the smaller quantum, and there is only one
acceptable result.

Table 3 gives some parameters of the different decimal
formats. First, the precision of the coefficient in decimal
digits is given, followed by the number of bits in the
biased exponent continuation field, the range of the
signed unbiased exponent, the maximum normal number
(Nmax), and the minimum normal number (N;,). The
formats follow the guidelines of the IEEE 854 standard
[15] for making the next larger format at least 2p + 2
digits, where p is the precision. Decimal32 format is not
very useful since it has only seven digits, and many
calculators have more digits. Its only purpose is a
reduction of the storage requirements for constants.
Therefore, it is implemented only with limited support.

The decimal floating-point formats provide a greater
range than their binary floating-point counterparts. For

binary, the three formats range from 10=°%, 1073, and
10=4932

Floating-point register and FPSCR

To reduce the amount of area dedicated to decimal
floating-point operations, the register file is reused from
the BFU. Because of the fundamental differences in the
requirements met between these two radices, a program is
unlikely to require both binary and decimal floating-point
computations simultaneously. The floating-point register
(FPR) files, located in the BFU, are used by both.
Quadword operands take up an even—odd pair of FPRs

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Table 3 Decimal floating-point format parameters.

Format
Decimal32 Decimal64 Decimal128
Coefficient precision (p) 7 10 34
Bits of exponent continuation 6 8 12
Exponent range —101 to 90 —398 to 369 —6,176 to 6,111
Ny (107 — 1) x 10% (10" — 1) x 10°® (10* — 1) x 104!
Ninin 1 X 1079 1 x 107383 1 x 1076143

and are addressed by the even register. The even register
holds the most significant bits of the quadword, and the
odd register holds the least significant bits. There are 32
doubleword registers that can also be addressed as 16
quadword registers. Both doubleword and quadword
data is loaded using the binary floating-point load
doubleword instructions. No new load or store
instructions are added for decimal floating point.

The floating-point status and control register (FPSCR)
is also used by both binary and decimal floating-point
architectures. Only the rounding mode is separated for
decimal floating point. The decimal rounding mode field
is 3 bits and allows eight different rounding modes. The
first four rounding modes are the same as binary: round
to nearest even, truncate, round toward positive infinity,
and round toward negative infinity. The additional four
rounding modes are round to nearest ties away from zero,
round to nearest ties toward zero, round away from zero,
and round to prepare for shorter precision. The last
rounding mode needs a little explanation. It creates a
result that is a rounding equivalent of the infinitely
precise intermediate result for further rounding to p — 1
digits. This is accomplished by truncating the
intermediate result for all cases except when the least
significant digit is 0 or 5, and in this case the result is
incremented if inexact. This makes a least significant zero
or five occur only when the intermediate result is truly
exact. Without this perturbation, a zero would appear to
be an exact result and a five would appear to be exactly
halfway between two p — 1 digit representations. This new
rounding mode for an arithmetic instruction, coupled
with a new instruction called reround, allows for exact
variable precision rounding.

For decimal as well as binary, the FPSCR also records
the class of the result for arithmetic instructions. In some
cases this results in a couple of cycles of additional
latency since subnormal numbers are difficult to detect.
For binary floating-point numbers, a subnormal number
can be detected quickly by examining the exponent since
arithmetic operations normalize the result. For decimal
floating-point numbers, detection of a subnormal number

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

is dependent on the number of coefficient digits, which is
determined by a leading-digit detect and a subtraction of
the precision, followed by an addition of the exponent
and a comparison with a constant. The classes of results
for decimal floating-point numbers are subnormal,
normal, zero, infinity, quiet NaN, and signaling NaN,
which is recorded in an encoded flag field of the FPSCR
after every decimal arithmetic operation.

Instruction set

The POWERG6 core supports decimal64 and decimall28
basic formats directly with arithmetic operations and
provides support for converting to and from the decimal32
storage format. Operations are provided for basic
arithmetic, test, quantum adjustment, conversion, and
format instructions. All operations are defined as register-
to-register operations to make interlock resolution easier
and closer to the execution unit. Load and store
instructions are borrowed from the binary floating-point
architecture to also support decimal floating point.

The basic arithmetic instructions are add, subtract,
multiply, and divide. They are defined to have two source
operands and one target operand. Each source operand
specifies an FPR for doubleword instructions or a pair of
FPRs for quadword instructions, and the target operand
designates a destination FPR or pair of FPRs. Other,
more complex arithmetic operations must be implemented
in software. The preferred quantum for add and subtract
is the minimum of the quantum of the two operands.
The preferred quantum for multiply and divide is,
respectively, the sum and difference of the quantum of the
two operands.

The test instructions provide a method for determining
the data class of the operand. They also provide
mechanisms for testing whether the number has been
rounded or could possibly have a quantum that differs
from one if greater precision were used. This is especially
useful for implementing programming languages such as
Java that support greater precision than the hardware
precision. The test data group instruction does this by
testing for extreme exponents and for the most significant 15

L. EISEN ET AL.

16

‘ Partial product creator (2X, 5X) ‘

Rotator cycle 1
[R register]

Rotator cycle 2

(Expand DPD to BCD)
(Expand DPD to BCD J
l AH register ‘ ’ AL register ‘
’ BH register ‘ ’ BL register ‘
\4D 4D/ \4D/ \4D A2D / \4D A4D 4D/ \4D AZD /
Add register — Add reglster
+1/\+1/\+1/\+1/\+1 +1/\+1 +1/\+ 1
’ ‘WH register ‘ ’ WL register ‘
[Compress BCD to DPD]
CH register ‘ ’ CL register ‘

36 digits wide (144 bits)

DFU dataflow.

digit nonzero. An extreme exponent is an indication that
the result quantum may have differed from the preferred
quantum and had been forced to be within the exponent
range. The test for most significant digit nonzero is an
indication of whether rounding could have occurred due
to the intermediate result being different in a larger
precision. It is particularly important to be able to
emulate a different precision or different exponent range
than that provided directly in hardware. Eventually many
programming languages and applications will be
optimized to the high-performance hardware decimal
formats, but flexibility is needed to support all
possibilities. The Java BigDecimal format allows
exponents and precision to be greater than these format
limits. Financial applications require the ability to round
to any precision, especially a smaller precision. The
emulation of a greater exponent range and precision is
accomplished by the use of the test data group
instruction.

The quantum adjustment instructions include quantize,
round to floating-point integer, and reround. These
instructions have a separate field designating the
rounding mode to use or indicating whether to use the
current FPSCR rounding mode. There are also separate
instructions that affect or do not affect the inexact flag.
The IEEE 754R standard defines quantize as forcing a

L. EISEN ET AL.

quantum (such as pennies) for a value. This is especially
useful prior to storing data in BCD format to a database.
The round-to-integer instruction provides a mechanism
for performing a ceiling or floor operation. Reround is an
instruction that provides a way to round an arithmetic
operation to a variable precision with only one rounding
error. This is especially important for programming
languages that provide the ability to round each
arithmetic operation to a specified precision. It is also
necessary for tax calculations that insist that a result be
rounded to a specific precision or for programming
languages that may have a slightly different precision
than the hardware precision, for example, 32 digits
instead of 34 digits.

The conversion instructions provide means to round or
convert to and from the three decimal floating-point
formats, as well as to and from the fixed-point or integer
formats. These are the only instructions that support
decimal32 format since it is only a storage format. In
addition, it is possible to emulate decimal32 arithmetic
using these instructions in conjunction with the arithmetic
instructions.

The format instructions include instructions for
inserting or extracting the coefficient to BCD format or
the exponent to binary integer format. Also included are
operations to shift the coefficient left or right. These
format instructions are useful for fast conversion to and
from existing commercial databases.

Altogether 54 instructions were added to the Power
Architecture to support decimal floating-point formats.
The POWERG6 architecture for decimal floating point is
optimized for implementing a BCD-like format in
hardware. It provides instructions that support
programming languages with greater precision and range
than hardware-based formats such as Java or formats that
are matched to hardware such as C and C++. Best
performance is possible when the programming language
provides data types that are identical to those in hardware.

Hardware implementation
The POWERG6 processor DFU is rather small but very
wide. Its main component is a wide 36-digit (or 144-bit)
adder, shown in Figure 7. The POWERG6 processor cycle
time is approximately 13 FO4 and can support only a
64-bit binary add in one cycle without complementation.
The widest decimal adder that could be built with
complementation in one cycle is four digits. A four-digit
decimal adder is actually four conditional one-digit
adders, in which the sum of 4 +B, A+ B+ 1, A+ B+6,
or A+ B+ 7 is chosen based on the carry into each digit.
Many replicated four-digit adders were used to
construct the larger adder. At a four-digit group level, the
carry into each of these adders is set to zero such that the
final sum will be equal to this sum or sum + 1. In the next

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

cycle, a four-digit increment is implemented to calculate
sum + 1 while the carry into each group is determined and
then used to select between sum and sum + 1. This is a
relatively simple, replicated building-block design. The
groups are actually 4, 4, 4, 4,2 and 4, 4, 4, 4, 2, where the
upper 18 digits can be separated from the lower 18 digits.
To be able to include a guard digit and a round digit, this
width is ideal since adders must be p + 2, where p is the
precision (16 or 34 digits). Note that the adder has a two-
cycle latency but can start a new computation every cycle.
A control signal allows the adder to be reconfigured on
the fly between one 36-digit adder or two 18-digit adders.
Quad-precision operations typically use the full 36-digit
adder, whereas double-precision operations tend to use
two 18-digit adders.

The other components of the dataflow are two DPD-
to-BCD expanders, one BCD-to-DPD compressor, a
two-cycle pipelined rotator, a partial product creator, and
eight 18-digit registers organized into four pairs (AH-AL,
BH-BL, WH-WL, and CH-CL), where each pair is
separated across the high-order and low-order half of the
dataflow. The compressor and expanders convert to and
from BCD and DPD formats, because the FPRs hold the
data in DPD format to reduce space requirements. This
takes only three gate levels, but additional delay is needed
to replicate the doubleword data to both the high and the
low half of the registers. Horizontal wire is particularly
slow in the technology used and causes large delays in
select lines that are repowered for 144-bit multiplexers.
This is especially evident in the rotator, which could not
be completed in one cycle; instead, it required two cycles
to rotate to any of 36 digits. The rotator also includes a
mask function to act as a shifter that shifts out data. The
partial product creator provides a doubler (2X) and a
quintupler (5X) to provide easy-to-create multiples for
multiplication. Both doubling and quintupling in BCD
format are digit-independent operations and do not
require any carry propagation.

The operations of addition and multiplication are
described for this dataflow. A description of division is
also available [16].

Addition
Floating-point binary addition typically involves
alignment of the operand with the smaller exponent,
addition, normalization, and rounding. Floating-point
decimal addition is slightly different and is separated into
three cases: exponents equal, aligning to the operand with
the smaller exponent, and shifting both operands.

Case 1—Exponents equal: When the exponents are
equal, the following steps are performed:

1. Expand DPD data to BCD.
2. Add the coefficients.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

3. If there is a carryout from the adder, increment the
exponent, shift the coefficient right, and round.
4. Compress the result to DPD format.

No normalization is necessary in decimal format. At
most, a shift by one digit right is necessary if there is a
carryout. Rounding is performed by incrementing the
result on a second pass through the adder. If rounding is
not necessary, this operation requires only five cycles.

Decimal floating-point operands are read from the
FPR in the BFU and are transmitted to the DFU. In
more detail, and referring to Figure 7, the two operands
are latched into the AL register and the BL register. In
cycle 1, AL is driven to one expander to convert the DPD
coefficient into BCD format and is latched in both BL
and AH. The other operand in BL is driven to the other
expander and is expanded and latched in both AL and
BH. Both high and low parts are used in case the effective
operation is subtraction, and then A-B and B-A would
be calculated in parallel. Also in cycle 1, the exponent is
driven to the exponent dataflow, and the exponent
difference is calculated. In cycles 2 and 3, the BCD data in
AL and BL is added in the low part of the adder, and AH
and BH in the high part of the adder. The carries are not
propagated between each 18-digit portion of the adder
because this is a doubleword operation. The result is
latched in WH and WL. In cycle 4, WL drives the
compressor of BCD to DPD format and then is latched in
the CL register. In cycle 5, the CL register can drive the
result to the FPRs.

A carryout of the adder will require an additional cycle
to shift the data right one digit and possibly additional
cycles for rounding. Subnormal number detection to
update the class flags in the FPSCR can also add delay.
Additionally, overflow and underflow result in a rebiased
exponent.

Case 2—Aligning to the operand with the smaller
exponent. When the exponent difference is less than or
equal to the number of leading zeros in the operand with
the bigger exponent, the operand with the larger exponent
can be shifted left to properly align it with the smaller
exponent value. For this case the following steps are
performed:

1. Expand to BCD and in parallel compare the
exponents.

2. Swap the operands, creating two operands called big
and small.

3. Shift the operand with the larger exponent left by the
exponent difference.

4. Add aligned big to small.

Round, if necessary.

6. Compress to DPD format.

e

L. EISEN ET AL.

17

18

Table 4 Execution times of addition, subtraction, multi-
plication, and division.

Cycles required for execution

Doubleword operands Quadword operands

Case 1 add/sub 9to 13 11 to 15
Case 2 add/sub 11 to 15 13 to 17
Case 3 add|sub 13 to 17 15to 19
Multiplication 19+ N 21 + 2N
Division 82 154

Note: N is the number of digits in the first operand excluding leading zeros.

Similar to case 1, no rounding is necessary unless there
is a carryout. Results are aligned to the preferred
exponent, which is the smallest exponent of the two
operands.

Case 3—Shifting both operands: If the exponent
difference is greater than the number of leading zeros in
the operand with the bigger exponent, then both
operands are shifted. This could be avoided if the adder is
2p digits wide, but this is prohibitive to implement for the
34-digit format. The steps are the following:

1. Expand to BCD and, in parallel, compare the
exponents.

2. Swap the operands.

3. Shift the operand with the larger exponent left by the
exponent difference (D).

4. Reshift the operand with the larger exponent left by
the number of leading zeros in its coefficient (Z).

5. Compute D — Z and shift the operand with the
smaller exponent right by the result.

6. Add the now-aligned coefficient.

7. Round.

8. Compress the result to DPD format.

These three cases are executed concurrently, and in the
event of a conflict, the faster case is given precedence.
This is evident for step 3 of case 3, in which we first
incorrectly shift left by the exponent difference and then
have to reshift by the number of leading zeros. This is
done because the leading-zero count is not finished in
time to set the shift amount by step 3; the hardware,
therefore, assumes it a case 2 and discards the result if it is
wrong. For subtraction of a doubleword format, both the
high and low adder halves are used, so 4 — Band B— 4
cannot be computed in parallel. Instead, they are
computed serially, and the result is selected based on the
carryout. The number of cycles necessary to complete
each of the three cases of addition is shown in Table 4.

L. EISEN ET AL.

Multiplication

Multiplication of the decimal floating-point coefficients is
performed by a serial sequence of a digit multiplication, a
shift, and summations. If P is the product of M times N,
where M contains p digits of precision, then

P)
P=>(MN)x10.
i=0

Quadword operands are processed in this
straightforward manner and require two cycles for each
iteration, necessitated by the two-cycle latency through
the adder. To reduce the number of multiples maintained
in the partial product creator block of Figure 7, partial
products are formed with summations of easy-to-generate
multiples 1X, 2X, 5X, and 10X [17]. This provides less
storage of multiples, since only 1X needs to be stored and
2X and 5X can be calculated very quickly with the BCD
doubler and BCD quintupler. Although the adder is
needed to create each required multiple from this subset
of multiples, no latency is added to the iteration because
these computations can be interleaved in the adder every
other cycle with the partial product summations.

For doubleword operands, a technique of summing
pairs of partial products is used to reduce the average
multiplication iteration to one cycle. This is shown by

r/2 .
P = [(M,N)+10(M,,,N)] X 100",

i=0
To accomplish this, the dataflow is split into two separate
72-digit halves. The lower half of the adder alternates
between generating multiples M;N and 10(M;,1N), where
the multiplication by 10 is a simple one-digit shift left.
These multiples are then passed to the upper half of the
dataflow. The upper half of the adder interleaves the
computations for generating the partial product pairs
(M;N) 4+ 10(M;;1N) and partial product accumulations
Py = P;+ 100 - [(M;N) + 10(M;;N)], where the
multiplication by 100 is a simple two-digit shift left. The
number of cycles necessary to complete each of the
multiplication operations is dependent on the number of
significant digits in the first operand and is shown in
Table 4.

Division

The divide algorithm chosen for the POWERG6 processor
design uses a nonrestoring division algorithm with
prescaling. Nonrestoring division iteratively generates
quotient digits using the following steps:

1. Quotient selection based on a partial remainder ¢qe.

2. Multiplication of the divisor D by the quotient digit.

3. Computation of the next partial remainder P;), as
shown by

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

P =P D.

(i+1) (i)~ Dser(i)

Each iteration takes four cycles to complete: one cycle
for quotient selection, one cycle for digit multiplication,
and two cycles to compute the next partial remainder.
Correctly rounding the common case of an inexact
quotient requires that the number of iterations to
complete the division be one greater than the target
precision.

The divisor and numerator are prescaled in such a way
that the divisor is greater than 1 and strictly less than
1.11. This simplifies the quotient selection process by
simply extracting the most significant digit of the partial
remainder. This simplification in the quotient selection
process of the division iteration comes with an upfront
cost of 12 cycles to complete the prescaling of the
numerator and divisor. This prescaling is a multiplication
of the numerator and denominator by a two-digit number
generated from a 90-entry by 8-bit programmable logic
array lookup table.

Multiplication of the selected quotient by the now-
prescaled divisor is done by selecting the appropriate
multiple of the divisor. To reduce the number of divisor
multiples that must be maintained in the partial products
creator, quotient selections are made from a redundant
set of {—5 to +5}. This is done by adjusting the quotient
digits on the fly after they are selected and before they are
put into the final result register. This on-the-fly quotient
adjustment is done in parallel with the next partial
remainder computation and does not affect the critical
path in the divisor iteration. Divisor multiples 1X, 3X, and
4X are precomputed and stored in the partial product
creator, and 2X and 5X are generated on the fly in the
BCD doubler and BCD quintupler logic in the partial
product creator block. Table 4 shows the number of
cycles necessary to complete the common case for the two
division algorithms.

Summary

The VMX unit provides acceleration of graphics and
scientific workloads and operates on multiple fixed-point
or floating-point operands with a single instruction.
Vectors of 128 bits are separated into 16 X 8-bit, 8 X 16-
bit, or 4 X 32-bit operands, and the arithmetic is
computed in parallel. The architecture is very rich and
robust and supports hundreds of instructions. An
overview of the unit is given here, including insights into
each of its execution subunits. One of the primary
challenges of this design was tracking dependencies
through the pipelines given the high-frequency
requirements. Details of how this challenge was solved
are given. Design additions that were necessary to
support the POWERG6 processor RU are discussed.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

The POWERG6 processor DFU accelerates financial
transactions and provides the first hardware
implementation of the IEEE 754R standard decimal data
types. Decimal floating point requires alignment and
rounding, and it has unnormalized coefficients. The
architecture and implementation are robust to adapt to
applications or languages that require larger, smaller,
or identical precision and exponent range. This supports
the varying requirements of decimal floating-point
applications. The architecture and implementation are
designed to be small but sufficient to accelerate current
software implementations. Size is minimized by reusing
the large BFU register file and by eliminating the need for
a separate load and store interface. Instead, hardware is
invested in the most frequent operations, such as format
manipulation and basic arithmetic.

The two POWERG6 processor accelerators have been
discussed in detail. Both are designed at the POWER®6
processor clock speed of more than 5 GHz with a
technology-independent cycle time of 13 FO4. The
POWERG6 processor design is targeted for performance,
and the VMX and DFU add two application-specific
accelerators to boost both scientific and commercial
transaction performance.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Freescale
Semiconductor, Inc., Sun Microsystems, Inc., or Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References

1. Freescale Semiconductor, AltiVec™ Technology Programming
Environments Manual, 2006; see http.|/www.freescale.com|files|
32bit/doc[ref_manual| ALTIVECPEM pdf.

2. M. S. Schmookler, M. Putrino, C. Roth, M. Sharma, A.
Mather, J. Tyler, H. Van Nguyen, M. N. Pham, and J. Lent,
“A Low-Power, High-Speed Implementation of a PowerPC™
Microprocessor Vector Extension,” Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, Adelaide,
Australia, 1999, pp. 14-16.

3. M. M. Ziegler and M. R. Stan, “A Unified Design Space for
Regular Parallel Prefix Adders,” Proceedings of the Conference
on Design, Automation and Test in Europe, Paris, France, 2004,
pp. 1386-1387.

4. N. Miding, J. Leenstra, J. Pille, R. Sautter, S. Buttner, S.
Ehrenreich, and W. Haller, “The Vector Fixed Point Unit of
the Synergistic Processor Element of the Cell Architecture
Processor,” Proceedings of the 31st European Solid-State
Conference, Grenoble, France, 2005, pp. 203-206.

5. S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener,
“POWERG Binary Floating-Point Unit,” Proceedings of the
18th IEEE Symposium on Computer Arithmetic (ARITHIS),
Montpellier, France, 2007, pp. 77-86.

6. ANSI/IEEE Standard 754-1985, “1EEE Standard for Binary
Floating-Point Arithmetic,” ©1985 IEEE; see http://
754r.ucbtest.org/standards|754xml.html.

7. S. M. Mueller and W. J. Paul, Computer Architecture:
Complexity and Correctness, Springer-Verlag, Berlin,
Germany, 2000, pp. 351-436.

™

L. EISEN ET AL.

19

20

8. J. Gosling, B. Joy, and G. Steele, The Java™ Language
Specification, Addison-Wesley, Boston, MA, 1996.

9. E. M. Schwarz, “Binary Floating-Point Unit Design: The
Fused Multiply-Add Dataflow,” High-Performance Energy-
Efficient Microprocessor Design, V. G. Oklobdzija and R. K.
Krishnamurthy, Eds., Springer, Dordrecht, The Netherlands,
2006, pp. 189-208.

10. X. Y. Yu, Y.-H. Chan, M. Kelly, E. Schwarz, B. Curran, and
B. Fleischer, “A 5GHz+ 128-bit Binary Floating-Point Adder
for the POWERG6 Processor,” Proceedings of the European
Solid-State Circuits Conference, Montreux, Switzerland, 2006,
pp. 166-169.

11. H.-J. Oh, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. Cottier,
B. W. Michael, H. Nishikawa, et al., “A Fully Pipelined
Single-Precision Floating-Point Unit in the Synergistic
Processor Element of a Cell Processor,” IEEE J. Solid-State
Circuits 41, No. 4, 759-771 (2006).

12. ANSI/IEEE,“DRAFT Standard for Floating-Point
Arithmetic P754,” Draft 1.2.5, see “Working Group
Records,” at http://754r.ucbtest.org/.

13. M. F. Cowlishaw, “Decimal Floating-Point: Algorism for
Computers,” Proceedings of the 16th IEEE Symposium on
Computer Arithmetic, 2003, pp. 104-111.

14. M. Cowlishaw, “Densely Packed Decimal Encoding,” /EE
Proceedings—Computers and Digital Techniques 149, No. 3,
102-104 (May 2002).

15. ANSI/IEEE Standard 854-1987, “1EEE Standard for
Radix-Independent Floating-Point Arithmetic,” ©1987 IEEE;
see http:||754r.ucbtest.org/standards/854xml.html.

16. E. M. Schwarz and S. Carlough, “POWERG6 Decimal Divide,”
submitted to the 18th IEEE International Conference on
Application-Specific Systems, Architectures and Processors,
Montreal, Canada, July 2007.

17. R. K. Richards, Arithmetic Operations in Digital Computers,
D. Van Nostrand Company, Inc., New York, 1955,
pp. 247-285.

Received January 17, 2007; accepted for publication
February 21, 2007, Internet publication October 23, 2007

L. EISEN ET AL.

Lee Eisen IBM Systems and Technology Group, 11400 Burnet
Road, Austin, Texas 78758 (leisen@us.ibm.com). Mr. Eisen is a
Senior Technical Staff Member in the high-performance processor
design team. He received a B.S. degree in electrical engineering
from Texas A&M University. He has worked on the PowerPC 602,
PowerPC 603*, PowerPC 603ev, PowerPC 750* (all Somerset
Design Center), POWER4*, POWER4+*, and PowerPC 970
processors. Mr. Eisen was the lead power engineer, VMX leader,
and core hardware bring-up lead for the POWERG6 processor
design.

John Wesley (Wes) Ward Il 1BM Systems and Technology
Group, 11400 Burnet Road, Austin, Texas 78758
(wesward@us.ibm.com). Mr. Ward is an Advisory Engineer in the
high-performance processor design team. He received a B.S. degree
in electrical engineering from the University of Texas. Mr. Ward
has worked on verification, timing, and logic design on numerous
processor core designs—including Power PC 620*, POWER4,
POWER4+, PowerPC 970, and POWERS™ processors. For the
POWERG6 processor design, his responsibilities included design and
implementation of the VMX issue queue and instruction fetch unit
(IFU) prefetch logic.

Hans-Werner Tast IBM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(tast@de.ibm.com). Mr. Tast received a Dipl.-Ing. degree in
electrical engineering from the Fachhochschule Ulm, Germany.
Mr. Tast was the Logic Design Leader of the cache systems for
several generations of IBM zSeries™ processors. He worked on the
Cell Broadband Engine** (Cell/B.E.) processor synergistic
processor elements (SPEs) and the POWERG6 processor VM X unit.
In 2004, he assumed a lead position in the concept of a new level of
cache hierarchy for future zSeries processors.

Nicolas Mading 1BM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(nmaeding(@de.ibm.com). Mr. Mading is currently an Advisory
Development Engineer for vector fixed-point unit developments.
He received an M.S. degree from the Technical University of
Chemnitz, Germany. He worked in several areas of the Cell/B.E.
processor development, including logic design, integration, and
system bring up. He later worked on the vector fixed-point
execution unit of the POWERG6 processor VMX. His interests are
in computer architecture, high-frequency design, low power, and
design for testability and reliability.

Jens Leenstra [BM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(leenstra@de.ibm.com). Dr. Leenstra received an M.S. degree from
the University of Twente and a Ph.D. degree from the University
of Eindhoven, both of The Netherlands. He has worked in several
areas of development, including logic design and verification of I/O
chips, multiprocessor system verification of the IBM S/390* G2
and G3 mainframe computers, the Cell/B.E. processor SPEs, and
the POWERG6 processor VM X unit. He is currently working on
next-generation IBM microprocessors. Dr. Leenstra’s current
interests focus on computer architecture, high-frequency design,
low power, and design for testability.

Silvia M. Mueller 1BM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(smm@de.ibm.com). Dr. Mueller is a Senior Technical Staff

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

Member in the high-performance processor design team. She
received B.S. degrees in mathematics and computer science, an
M.S. degree in mathematics, and a Ph.D. degree in computer
science from the University of Saarland, Germany. In 1998, she
became a Privatdozent at the computer science department of the
University of Saarland and still holds a teaching assignment there.
Dr. Mueller joined IBM at Boeblingen in late 1999. From 2001 to
2003 she was on an international assignment in Austin, Texas,
joining the Sony-Toshiba-IBM Design Center developing the
Cell/B.E. processor. She led the team for the floating-point units
for the Cell/B.E. processor and for the POWERG6 processor VMX.

Christian Jacobi 1BM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(cjacobi@de.ibm.com). Dr. Jacobi received an M.S. degree
(Diplom-Informatiker) and a Ph.D. degree, both in computer
science, from Saarland University, Germany. He has worked on
formal verification techniques, mainly for FPUs, floating-point
logic design, logic verification, and physical implementation for
various IBM microprocessors. He is now working on cache designs
for future zSeries processors.

Jochen Preiss [BM Systems and Technology Group,
Schoenaicherstrasse 220, D-71032 Boeblingen, Germany
(preiss@de.ibm.com). Dr. Preiss is a Staff Hardware Engineer for
FPUs in the microprocessor design team. He received a B.S. degree
in mathematics and M.S. and Ph.D. degrees in computer science,
all from the University of Saarland, Germany. For his master’s
thesis, he received the Guenther Hotz Award. Dr. Preiss worked on
the development of the PowerPC 970 series IFU and the POWERG6
processor VMX FPU.

Eric M. Schwarz 1BM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(eschwarz@us.ibm.com). Dr. Schwarz is a Distinguished Engineer
in IBM zSeries, iSeries®, and pSeries® processor development. He
received a B.S. degree in engineering science from the Pennsylvania
State University and M.S. and Ph.D. degrees in electrical
engineering from Ohio University and Stanford University,
respectively. He worked on the successors to the 4381 and 9370
computers as well as on the IBM G4, G5, G6, 2900, 2990, z9*-109,
and POWERG6 processor-based computers. He led the FPU
development for these computers and was Chief Engineer of the
IBM 2900 system in 2000. Dr. Schwarz is active in the IEEE
Symposium on Computer Arithmetic and has been on the program
committee since 1993.

Steven R. Carlough 1BM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(scarloug@us.ibm.com). Dr. Carlough is a Senior Engineer in
zSeries, iSeries, and pSeries processor development. He received
B.S. and M.S. degrees, both in electrical engineering, and a Ph.D.
degree in electrical engineering, all from Rensselaer Polytechnic
Institute. He has worked on fixed-point units for z990 and z9-109
servers and the decimal FPU in the POWERG6 processor-based
computer.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

L. EISEN ET AL.

21

