Massively parallel
electrical-conductivity
imaging of hydrocarbons
using the IBM Blue Gene/L
supercomputer

Large-scale controlled-source electromagnetic (CSEM) three-
dimensional (3D) geophysical imaging is now receiving
considerable attention for electrical-conductivity mapping of
potential offshore oil and gas reservoirs. To cope with the typically
large computational requirements of the 3D CSEM imaging
problem, our strategies exploit computational parallelism and
optimized finite-difference meshing. We report on an imaging
experiment utilizing 32,768 tasks (and processors) on the IBM
Blue Gene/L™ (BG/L) supercomputer at the IBM T. J. Watson
Research Center. Over a 24-hour period, we were able to image a
large-scale marine CSEM field dataset that previously required
more than 4 months of computing time on distributed clusters
utilizing 1,024 tasks on an InfiniBand® fabric. The total initial
data-fitting errors (i.e., “misfits”) could be decreased by 67%
within 72 completed inversion iterations, indicating the existence of
an electrically resistive region in the southern survey area below a
depth of 1,500 m underneath the seafloor. The major part of the
residual misfit stems from transmitter-parallel receiver components
that have an offset from the transmitter sail line (broadside
configuration). Modeling confirms that improved broadside data
fits can be achieved by considering anisotropic electrical
conductivities. While delivering a satisfactory gross-scale image for
the depths of interest, the experiment provides important evidence
for the necessity of discriminating between horizontal and vertical
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conductivities for maximally consistent 3D CSEM inversions.

Introduction

Seismic methods have a long and established history in
hydrocarbon (i.e., oil and gas) exploration and are very
effective in mapping geologic reservoir formations.
However, these methods are not good at discriminating
the different types of reservoir fluids contained in the rock
pore space, such as brines, water, oil, and gas. This
discrimination challenge has encouraged the development
of new geophysical technologies that can be combined with
established seismic methods to directly image fluids. One
technique that has recently emerged, with considerable
potential, utilizes low-frequency electromagnetic (EM)
energy to map variations in the subsurface electrical
conductivity, o (in units of Siemens per meter), or its

reciprocal (1/c in units of ohm-meters), usually called
resistivity, of offshore oil and gas prospects [1-5].
Resistivity is a more meaningful quantity for imaging
hydrocarbons. A resistivity increase, compared to the
surrounding geological strata, may directly indicate
potential reservoirs. EM field measurements have been
shown to be highly sensitive to changes in the pore fluid
types and the location of hydrocarbons, given a sufficient
resistivity contrast between hydrocarbons and fluids such
as brine or water.

With the marine controlled-source EM (CSEM)
measurement technique, a deep-towed electric-dipole
transmitter is used to excite a continuous low-frequency
(~0.1 to 10 Hz) EM signal that is measured on the
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seafloor by electric and magnetic field detectors, where
the largest transmitter-detector offsets can exceed 15 km.
The data is initially collected in the time domain.
Conversion to the frequency domain involves application
of a window function, with its characteristics defined by
the fundamental signal frequency, which is 0.125 Hz in the
present survey. To cover larger depth ranges, multiple
transmitter frequencies are usually employed in a survey.
Similar to acoustic wave propagation, the attenuation rate
as a function of exploration depth increases with the wave
frequency. Current technologies require low-frequency
EM signals (<1 Hz) to interrogate to reservoir depths as
deep as 4 km.

Exploration with the CSEM technology in the search
for hydrocarbons now extends to highly complex and
subtle offshore geological environments. The geometries
of the reservoirs are inherently three-dimensional (3D)
and exceedingly difficult to map without recourse to
3D EM imaging experiments, requiring fine model
parameterizations, spatially exhaustive survey coverage,
and multicomponent data. The 3D imaging problem,
which in this paper is also referred to as the inversion
problem, usually has large computational demands, due to
the computationally expensive solution of the forward
modeling problem, that is, the EM field simulation on a
given 3D finite-difference (FD) grid. Moreover, large data
volumes require many forward solutions in an iterative
inversion scheme. Therefore, we have developed an
imaging algorithm that utilizes two levels of parallelization,
one applied to the modeling (or imaging) volume and the
other applied to the data volume. The algorithm is designed
for arbitrarily large datasets, allowing for an arbitrarily
large number of parallel tasks, while the computationally
idle message passing is minimized. We have further
incorporated an optimal meshing scheme that allows us to
separate the imaging or modeling mesh from the simulation
mesh. This provides for significant acceleration of the 3D
EM field simulation, having a direct impact on the time to
solution for the 3D imaging process.

Here, we report an imaging experiment, utilizing 32,768
tasks (and processors) on the IBM Blue Gene/L* (BG/L)
supercomputer located at the IBM T. J. Watson Research
Center. The experiment is novel in terms of both
computational resources utilized and amount of data
inverted. Our main purpose is to provide a feasibility
study for the effectiveness of the employed algorithm.
Further, the results obtained will improve important base
knowledge for the design of upcoming large-scale CSEM
surveys and improve the automated imaging method for
data interpretation.

Problem formulation

We formulate the inverse problem, mentioned in the
introduction, by finding a model m with m piecewise
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constant electrical-conductivity parameters that describe
the earth model reproducing a given dataset. Specifically,
the inversion algorithm minimizes the error functional,

@ :% [D(d°bs - d")r* {D(d"bs - d")]
+ %A(Wm)T(Wm), (1)

where T denotes the transpose operator, and T* denotes
the Hermitian conjugate operator. In the above
expression, the predicted data vectors (from a starting
model) and observed data vectors are denoted by d” and
d°%, respectively, where each has 1 complex values. These
vectors consist of electric or magnetic field values
specified at the measurement points, where the predicted
data is determined through solution of the time harmonic
3D Maxwell’s equations in the diffusive approximation.
We have also introduced a diagonal weighting matrix,
D, .., into the error functional to compensate for noisy
measurements. To stabilize the minimization of Equation
(1), and to reduce model curvature in three dimensions,
we introduce a matrix W,,x,,, based upon an FD
approximation to the Laplacian (V?) operator applied in
Cartesian coordinates. The parameter 4 attempts to
balance the data error and the model smoothness
constraint.

The forward problem

Within an inversion framework, the forward problem is
solved multiple times to simulate the EM field, denoted
by the vector E, and thus, the data dP for a given model
m. EM wave propagation is controlled by the vector
Helmholtz equation,

VXV XE +iou,oE = —iouJ, (2)

where source vector, free-space magnetic permeability,
and angular frequency are denoted by J, o, and o,
respectively (see [6] for specific details). Our solution
method is based on the consideration that the number of
model parameters required to simulate realistic 3D
distributions of the electrical conductivity ¢ can typically
exceed 107, FD modeling schemes are ideally suited for
this task and can be parallelized to handle large-scale
problems that cannot be easily treated otherwise [6]. After
approximating Equation (2) on a staggered grid at a
specific angular frequency, using finite differencing and
eliminating the magnetic field, we obtain a linear system
for the electric field,

KE = S, 3)

where K is a sparse complex symmetric matrix with 13
non-zero entries per row [6]. The diagonal entries of K
depend explicitly on the conductivity parameters that we
seek to estimate through the inversion process. Since the
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electric field, E, also depends upon the conductivity,
implicitly, this gives rise to the nonlinearity of the inverse
problem. The fields are sourced (i.e., generated) with a
grounded wire or loop embedded within the modeling
domain, described by the discrete source vector, S, and
include Dirichlet boundary conditions imposed upon the
problem. To help avoid excessive meshing near the
source, we favor a scattered-field formulation to the
forward modeling problem. In this instance, E is replaced
with Eg in Equation (3). The source term, for a given
transmitter, will now depend upon the difference between
the 3D conductivity model and a simple background
model, weighted by the background electric field Ey,
where E = E, + E,. Simple background models with one-
dimensional (1D) conductivity distributions, i.e., models
in which ¢ changes only with depth, are used because fast
semi-analytical solutions for E, are available. Given the
solution of the electric field in Equation (3), the magnetic
field can be easily determined from a numerical
implementation of Faraday’s law. An efficient solution
process is paramount. We solve Equation (3) to a
predetermined error level using iterative Krylov subspace
methods, using either a biconjugate gradient (BICG) or
quasi-minimum residual (QMR) scheme with
preconditioning [6].

Minimization procedure

In large-scale nonlinear inverse problems, as considered
here, we minimize Equation (1) using gradient-based
optimization techniques because of their minimal storage
and computational requirements. We characterize these
methods as gradient-based techniques because they
employ only first-derivative information of the error
functional in the minimization process, specifically —V¢.
Gradient-based methods include steepest decent,
nonlinear conjugate gradient, and limited memory quasi-
Newton schemes, with the latter usually providing the
best inverse solution convergence, however, at a larger
computational expense. Solution accelerators are
discussed in [7], which also provides detailed derivation of
the gradients and an efficient scheme for their
computation. Here, we focus on a nonlinear conjugate
gradient (NLCG) minimization approach as a trade-off
between inverse solution convergence and computational
effort per inversion iteration.

Exploitation of solution parallelism

In order to realistically image the subsurface of large
survey areas at a sufficient level of resolution and detail,
industrial CSEM datasets can contain up to hundreds of
transmitter—receiver arrays operating at different
frequencies, with a spatial covering of more than

1,000 km?. This easily requires thousands of solutions to
the forward modeling problem for just one imaging
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experiment. Hence, the computational demands for
solving the 3D inverse problem are enormous. To cope
with this problem, our algorithm utilizes two levels of
parallelization, one over the modeling domain and the
other over the data volume.

First, in solving the forward problem on a distributed
environment, we split the FD simulation grid, not the
matrix, among a Cartesian processor topology, which
shall be called local communicator (LC). As the linear
system is relaxed during the iterative solution, which
involves matrix—vector products on each of the
processors, values of the solution vector at the current
Krylov iteration not stored on the processor must be
passed by neighbors within LC to complete the matrix—
vector products. Additional global communication across
the LC is needed to complete several dot products at each
relaxation step of the Krylov iteration. The solution time
increases linearly with the number of parallel tasks, up to
a point at which the increase in message-passing overhead
dominates. A study of the FLOP (floating-point
operation) rate versus communicator size for the Intel
Paragon™®* architecture is exemplified in [6].

To carry out many forward simulations
simultaneously, we employ multiple LCs, connected via a
group of lead processors, with one lead task assigned to
each LC. The topology of this lead group defines the
communicator on which the iterative NLCG inversion
framework is carried out, here called the global
communicator (GC). This distribution of the forward
modeling problems, or data decomposition, is highly
parallel. Assuming the optimal LC size has been
estimated for a given range of mesh sizes, the size of the
GC (which equals the number of LCs) can be increased
linearly with the data volume. The relative amount of
communication within the GC remains constant because
communication within the GC is needed only in order to
complete several dot products per inversion iteration and
to sum the contributions from each LC to the global
gradient vector. The main computational and
communication burden occurs with the forward FD
solving. As outlined below, we adapt FD mesh sizes
according to given transmitter—receiver configurations
and minimum spatial sampling requirements. To keep a
balanced computational and communication workload
between all LCs, the data decomposition is based on a
balanced distribution of the FD grids in terms of grid
sizes.

Optimal mesh considerations

Although our experience using two parallelization levels

has been satisfactory, in order to solve the very large

problems of interest, we must obtain a higher level of

efficiency. One promising approach, which we have

previously reported [8], is to design an optimal FD 95
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Figure 1

Ilustration of the conductivity averaging scheme of Equation (4)
in two dimensions.

simulation mesh for each source excitation in Equation (3).
FD meshing for field simulation then considers only
part of the total model volume where it can have an
appreciable effect in the imaging process. Moreover,
minimum spatial grid sampling intervals are dictated by
the EM field wavelength and, hence, can be optimized
according to a specific source excitation frequency.
Optimizing both mesh size and spatial sampling, we
create a collection of simulation grids, Q, that support
the EM field simulation for all different sources contained
in the dataset. All simulation grids act upon a common
model grid, Q,,, which defines the imaging volume. Both
types of grids are Cartesian with conformal grid axes.
Key to the grid separation is an appropriate mapping
scheme that transfers the material properties from Q. to
Q. The imaging process provides piecewise constant
estimates of the electrical conductivity, which are defined
by the cells of Q,,. The staggered FD mesh €, on the
other hand, involves edge-based directional
conductivities, needed for constructing the stiffness
matrix K in Equation (3) (see also [6] and [9] for detalils).
In the case in which Q,,, = Q, an edge conductivity, ¢°, is
computed from ¢° = Zle ow;, with w; = dV;/ Z?:, dv;.
Here, w; represent weights corresponding to volume
fractions of the four cells on Q,, that share the edge ¢° on
Q.. Furthermore, the edge conductivity ¢° is simply an
arithmetic volume average of the four model cell
conductivities. When Q,,, # Q, the conductivity mapping
involves parallel and serial circuit analysis, resulting in an
arithmetic and harmonic conductivity averaging scheme
[8, 10]. The averaging scheme is exemplified in Figure 1
for an x-directed edge conductivity ¢5 in two dimensions.
Here, model and simulation meshes are represented by
dashed and solid lines, respectively. The material average
is to be specified from the formula
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The inner integration constitutes a point-wise parallel
conductivity average, while the outer integration provides
for the effective conductivity in series, arising over the
integrated edge length (x;; — x;) of the simulation mesh.
The total integration area assigned to ¢% is shown by the
red rectangle in Figure 1.

Extension to the full 3D case is straightforward, with
the discrete representation exemplified by

—1 -1

I
1 J
7 Z] dVio, | Ax;| AX, (5)
j =

€
=2
X

=

where AX is the edge length of the simulation cell along
the x-coordinate direction. Similarly, aj and ¢¢ involve
averaging along the y- and z-coordinates, respectively. In
Equation (5), the averaging along AX involves a number
of J serially connected discrete parallel circuits, P;, each
with a volume V. The length of P; along the edge is Ax;,
where Zf:l Ax; = AX. Further, I; is the number of cells
on the modeling grid contributing to P;, with ¢; and dV;
the individual model cell conductivities and volume
fractions, respectively.

We are also required to specify d6°/da, which is needed
to define the gradient on the modeling grid because it is
linked to the forward modeling problem on the
simulation grid(s) (see [9] for details on the equal-grid
case). Thus,

2 -2

e J

1.
e 4 Z 1 dav,
do /(")O’k :H/ - AX} 7 E] dViGi 7./(7 (6)
= J = J

where J is now the number of discrete parallel circuits
with a non-zero contribution from ¢;,. When Q,, = Q,,
we have J =1, Ax; = AX and 9d6°/do), = wy, which

is the weighting coefficient defined above as

we =dVi/ S0 dV;.

Electrical-conductivity imaging of hydrocarbons
using the BG/L supercomputer

CSEM data is usually characterized by a large dynamic
range, which can reach more than ten orders of
magnitude. This requires the ability to analyze data in a
self-consistent manner that incorporates all structures not
only on the reservoir scale at tens of meters, but on the
geological basin scale at tens of kilometers, and must
include salt domes, detail bathymetry, and other 3D
peripheral geology structures that can influence the
measurements [11, 12]. These complications motivate the
need for an automated 3D conductivity inversion process
for successful conductivity imaging of hydrocarbons.
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Trial-and-error 3D forward modeling is too cumbersome
to be effective. Both model size and amount of the
required data provide ample justification for utilizing the
massively parallel BG/L supercomputer for the task. Such
a platform, which can scale up to 131,072 processors,
allows for the capability to image prospective oil and gas
reservoirs at the highest resolution possible and on
timescales acceptable to the exploration process.

The 3D imaging experiment we present here
demonstrates the points mentioned above. The data was
acquired offshore of South America. The sail lines and 23
detector locations on a 40 X 40 km? grid used for
subsurface conductivity mapping are shown in Figure 2.
Data was collected from nearly 1 million transmitter
sites along the sail lines shown. Obviously, this amount
of data cannot be treated with the current inversion
methodology, even with a massively parallel implementation.
Every source treated by the imaging algorithm requires a
forward simulation, an adjoint computation, as well as
two or more additional simulations for step control for
each nonlinear inversion update. To efficiently deal with
this data volume, we use a general reciprocity principle
that involves the interchange of transmitter and receiver
points. Hence, the positions of the actual CSEM
transmitter along the sail line become the computational
receiver profiles, and the actual CSEM detectors on the
seafloor become computational sources, referred to as
sources in the following.

The equivalent reciprocal problem involves 951,423
data points and 207 effective sources, since there are 23
source locations with three polarizations and each
operating at the three discrete excitation frequencies of
0.125 Hz, 0.25 Hz, and 0.5 Hz. Each effective transmitter
is polarized according to the antenna orientation of its
corresponding detector. The exact seafloor detector
orientations were determined by analyzing the data
polarizations and phase reversals with respect to the
source sail lines. Data processing involves binning in
time, followed by spectral decomposition and spatial
filtering. Timing errors were removed by forcing the data
phases to match the frequency-offset scaling behavior
appropriate to solutions of Maxwell’s equations.

The survey layout in Figure 2 contains different
transmitter—receiver configurations to be considered, as
illustrated in Figure 2(a). For the transmitter sail line
position with respect to a given detector on the sea bottom,
we consider the so-called overflight (left) configuration, in
which the sail line is directly over the detector. In the
broadside configuration (right), the towed transmitter
passes at an offset Ay to one side of the detector. Three
components are recorded by the receiver antennas of the
detector: inline horizontal (E,), perpendicular horizontal
(£,), and vertical (E.) electric fields.
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Layout of the sail lines (red and blue) and 23 detector locations
(crosses) on the sea bottom for the offshore controlled-source
electromagnetic (CSEM) survey. Part (a) illustrates configuration
geometries within the dataset. Part (b) shows bathymetry values
(seafloor elevation values on contour lines) in meters below sea level.
The example data shown in this paper corresponds to the reciprocal
treatment of the detector and the sail lines, respectively, marked by
the blue cross and the blue lines. (Designators such as RC04 and
RCO8A are labels for sail lines assigned by ExxonMobil.)

A starting model is necessary to launch the inversion
process and resolve some final issues associated with
phase components in the data. It is obviously favorable to
achieve minimum data misfits (i.e., data-fitting errors)
with the starting model. Therefore, the model used has
been constructed from knowledge of the sea bottom
bathymetry, the seawater electrical-conductivity-versus-
depth profile, and 1D inversion of the amplitude
components of the common-receiver gathers, based on
the inline overflight measurement configuration (£'). The
resulting 1D models were then refined by comparing
selected simulation results with field observations. In
order to accommodate all sail lines and detector sites in
the model, a large parameterization was required for Q,.
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In order to model bathymetry, the minimum required
spatial grid sampling interval A is kept constant with

A =125 m for the horizontal (x and y) coordinates, while
it ranges from 50 to 200 m in z. This corresponds to 403
nodes along x and y, 173 nodes vertically, and thus
approximately 27.8 million model cells.

To restrict the size of the simulation grid for each source
activation, we have assigned each source a separate mesh.
Both mesh size and spatial grid sampling rate are based on
skin depth estimations. The skin depth J, a commonly
used constant in EM applications, is defined as the depth
below the surface of a conductor (in our case, at the
transmitter location) at which the current density decays
to 1/e (~0.37) of the surface current density. Using the
approximation

5 =503/,/0,

mesh intervals depend on the source excitation frequency,
f, and the background conductivity, ay, of the employed
starting model. Horizontal mesh size is based on ten skin
depths from the source midpoint, assuming o, = 0.5 S/m
(Siemens/meter); the resulting mesh ranges were of
sufficient size to accommodate the specific sail lines of data
assigned to the effective sources. The horizontal spatial
grid sampling intervals, A=250 m, 200 m, and 125 m, vary
with frequencies f=0.125 Hz, 0.25 Hz, and 0.5 Hz,
respectively. The vertical meshing was identical to that
employed in the modeling mesh in order to account for an
accurate representation of the seafloor elevation values.
With these considerations, we were able to reduce the size
of the simulation meshes significantly; the number of x
and y grid nodes both ranged from 128 to 162. Solution
accuracy was verified against solutions in which Q;=Q,,.

A maximum of 256 MB of memory per task was
available on the BG/L supercomputer. The largest
memory requirement results from temporary storage of
the forward solutions within one inversion iteration. To
stay within the machine limits, each simulation grid
was distributed across an LC size of 512 processors,
relying on the interprocessor bandwidth to support the
BICG/QMR solvers. Sixty-four LCs were then used to
distribute the 207 effective sources and their associated
data. Thus, the total number of tasks employed in the
imaging experiment was 32,768. Disk I/O and file system
performance were minor concerns, as the generated image
output was relatively modest, ~2.5 GB per inversion
update, which was written to disk in parallel using 512
tasks. Data output at each inversion iteration consisted of
predicted and observed measurements with a total file size
of 170 MB. A lead task within the global communicator
was assigned to dump the data output after each
inversion update.

Prior to the actual imaging experiment, performance
tests were carried out. Baseline evaluation involved an
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inversion in which the large model grid (size 403 X403 X 173
nodes) represented the simulation grid for each source.
Here are some findings:

1. We compared the job performance using 32 message-
passing interface (MPI) tasks completed on the BG/L
platform (with a CPU speed of 700 MHz) versus an
Intel (Pentium™* 4, with a CPU speed of 2.6 GHz)
cluster with Gigabit Ethernet fabric. A forward
solution used 25 seconds per 100 QMR iterations on
the BG/L platform, compared to 23 seconds on the
Intel Pentium 4 platform. The computational burden
of the QMR solver is dominated by complex double-
precision matrix—vector multiplications with indexed
memory access. The 64-bit IBM Power Architecture*
of the BG/L platform is designed for FLOPs,
achieving an efficient memory access. Profiling shows
that for our application, the architecture
compensates for the lower processor speed of the
BG/L platform.

2. Using an LC size of up to 4,096, workload scalability
tests revealed that the QMR solution time decreases
linearly with the number of parallel tasks. The linear
behavior starts to flatten for a larger number of
tasks.

3. A 1,024-task job on the BG/L platform showed that
the average communication time was about 25% of
the total solution time per inversion iteration. The
distribution of the communication overhead is as
follows. Collective communications within GC are
mainly global reduction operations and amount to
about 50% of the overhead with typical message sizes
of 16 bytes. Point-to-point blocking message passing
within LC amounted to 20% overhead, with 30 KB
for the average message size. Barrier synchronization
provided 30% of the overhead.

The relatively long idle time that is due to global barrier
synchronization, which is done after each inversion
iteration, indicates the importance of a balanced workload
distribution among all LCs. The QMR solver convergence
behavior depends on how numerically well-posed the
problem is. Numerically, this can be expressed in terms of
the condition number of the FD stiffness matrix K in
Equation (3), which in turn is governed by the aspect ratio
and conductivity contrasts within Q. Because the latter
changes dynamically with the model updates during an
inversion, faster barrier synchronization would require an
adequately sophisticated scheme for dynamically adapting
the LC size.

Over a 24-hour period, 72 inversion-model updates
were realized on the BG/L platform, and the relative
squared error misfit measure was reduced by nearly 67%.
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Six selected plots of overflight and broadside electric field data amplitudes (gray) vs. the transmitter offset projected onto the receiver profile
lines (RC04, RC06, RCO7, RCO8A) shown in Figure 2. Shown here are data fits produced by the starting model (red) and for iteration 72

(blue). See text for details.
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log p (2 + m)

Average resistivity computed over three depth ranges for solution
72: (a) water bottom to 500 m below mud line (BML); (b) interval
500 to 1,500 m BML; (c) interval 1,500 to 2,500 m BML. Resistiv-
ity is rendered on a base 10 log scale.
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As exemplified in Figure 3, good fits, to within the
anticipated noise, were obtained for the horizontal and
vertical inline electric field overflight data, E!

[Figure 3(a)] and E! [Figure 3(b)], as well as for the
horizontal perpendicular and vertical broadside electric
fields, EY [Figure 3(c)] and E? [Figure 3(d)]. We observed
that the major residual misfits originate from the
broadside inline components, E® [Figures 3(e) and 3(f)].

The average resistivity computed over three depth
ranges for solution 72 is shown in Figure 4. The sea
bottom defines the depth z = 0. Inspection of the images
shows increased resistivity in the southern model section
for depths below 1,500 m. Such is also observed
broadside of the sail lines, for the depth range 0—1,500 m.
Along the sail lines, however, little to no resistivity
increase is observed. Here, the image has distortions,
which are likely caused by the data acquisition method.

A possible explanation for this outcome is the
inconsistencies observed in fitting the inline component of
the broadside data compared to other data components.
This is particularly true of inline overflight data. Clearly,
the overflight data will be most sensitive to resistivity
variations along the sail lines, while broadside data will be
more sensitive to resistivity variations off the sail lines.
This enhanced resistivity observed off the sail lines may
arise from the attempt of the inversion algorithm to fit the
inline broadside data. Enhanced resistivity amplifies the
broadside inline model data, reducing the mismatch
between observed and predicted data. Nevertheless, it was
still not possible to achieve acceptable data fits, indicating
a systematic bias in the underlying assumptions employed
in the inversion processing.

One critical assumption in this inversion was that the
conductivity is isotropic; that is, conductivity within a cell
does not vary with direction. However, it is well known
within sedimentary rocks that fine-grain bedding planes
can induce the rocks to exhibit transverse electrical
anisotropy [13, 14]. In addition, parallel interbedding of
rocks with different conductivities can lead to anisotropic
behavior. Thus, the conductivity can be expected to
depend strongly on directions, parallel and perpendicular
to the bedding planes. In the context of marine CSEM,
reference [15] shows that the effects of electrical
anisotropy can produce significant anomalies, even as
large as target reservoir responses, and a consensus is now
emerging that electrical anisotropy is a stronger factor in
influencing marine CSEM measurement than previously
believed.

Two tests were carried out to verify the importance of
anisotropy. First, we repeated the initial stage of the
inversion process to test the degree to which electrical
anisotropy is affecting the broadside inline data, and to
what lesser extent it influences the overflight and
broadside perpendicular and vertical data. This involved
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an anisotropic model with the vertical conductivity fixed
at the conductivity used in the initial isotropic inversion
and the horizontal conductivity set to three times the
vertical conductivity below the water bottom. A sampling
of the results is shown in Figure 5, confirming that the
data is very likely to be significantly more consistent with
an anisotropic conductivity model than with an isotropic
one. Furthermore, we reran two inversions with a subset
of the data, comprising 36 effective transmitters. Using
the same isotropic starting model, the inversions differed
by using an isotropic and anisotropic model
parameterization. After 62 iterations, the anisotropic
model achieved a final data fit that was 27% lower than
the isotropic result. A complete anisotropic inversion of
this data has yet to be carried out.

Conclusions

We have made significant progress in reducing the
computational demands of large-scale 3D EM imaging
problems. Exploiting multiple levels of parallelism over
the data and model spaces and utilizing different meshing
for field simulation and imaging provides a capability for
solving large 3D imaging problems that cannot be
addressed otherwise in a timely manner.

Results of the BG/L platform experiment for this
offshore data show that the broadside inline component
data displays a systematic bias that is most likely
attributable to conductivity anisotropy between the
vertical and horizontal directions. The other field
components were satisfactorily fit by an isotropic model,
showing that these field components are significantly less
sensitive to this kind of anisotropy. The speed at which
the Blue Gene/L supercomputer delivered this result is
essential to the time frame in which the exploration
process is conducted. This work provides motivation to
extend the 3D conductivity imaging methodology to the
anisotropic situation.
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