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Large-scale controlled-source electromagnetic (CSEM) three-
dimensional (3D) geophysical imaging is now receiving
considerable attention for electrical-conductivity mapping of
potential offshore oil and gas reservoirs. To cope with the typically
large computational requirements of the 3D CSEM imaging
problem, our strategies exploit computational parallelism and
optimized finite-difference meshing. We report on an imaging
experiment utilizing 32,768 tasks (and processors) on the IBM
Blue Gene/Le (BG/L) supercomputer at the IBM T. J. Watson
Research Center. Over a 24-hour period, we were able to image a
large-scale marine CSEM field dataset that previously required
more than 4 months of computing time on distributed clusters
utilizing 1,024 tasks on an InfiniBandt fabric. The total initial
data-fitting errors (i.e., ‘‘misfits’’) could be decreased by 67%
within 72 completed inversion iterations, indicating the existence of
an electrically resistive region in the southern survey area below a
depth of 1,500 m underneath the seafloor. The major part of the
residual misfit stems from transmitter-parallel receiver components
that have an offset from the transmitter sail line (broadside
configuration). Modeling confirms that improved broadside data
fits can be achieved by considering anisotropic electrical
conductivities. While delivering a satisfactory gross-scale image for
the depths of interest, the experiment provides important evidence
for the necessity of discriminating between horizontal and vertical
conductivities for maximally consistent 3D CSEM inversions.

Introduction

Seismic methods have a long and established history in

hydrocarbon (i.e., oil and gas) exploration and are very

effective in mapping geologic reservoir formations.

However, these methods are not good at discriminating

the different types of reservoir fluids contained in the rock

pore space, such as brines, water, oil, and gas. This

discrimination challenge has encouraged the development

of new geophysical technologies that can be combinedwith

established seismic methods to directly image fluids. One

technique that has recently emerged, with considerable

potential, utilizes low-frequency electromagnetic (EM)

energy to map variations in the subsurface electrical

conductivity, r (in units of Siemens per meter), or its

reciprocal (1/r in units of ohm-meters), usually called

resistivity, of offshore oil and gas prospects [1–5].

Resistivity is a more meaningful quantity for imaging

hydrocarbons. A resistivity increase, compared to the

surrounding geological strata, may directly indicate

potential reservoirs. EM field measurements have been

shown to be highly sensitive to changes in the pore fluid

types and the location of hydrocarbons, given a sufficient

resistivity contrast between hydrocarbons and fluids such

as brine or water.

With the marine controlled-source EM (CSEM)

measurement technique, a deep-towed electric-dipole

transmitter is used to excite a continuous low-frequency

(;0.1 to 10 Hz) EM signal that is measured on the
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seafloor by electric and magnetic field detectors, where

the largest transmitter-detector offsets can exceed 15 km.

The data is initially collected in the time domain.

Conversion to the frequency domain involves application

of a window function, with its characteristics defined by

the fundamental signal frequency, which is 0.125 Hz in the

present survey. To cover larger depth ranges, multiple

transmitter frequencies are usually employed in a survey.

Similar to acoustic wave propagation, the attenuation rate

as a function of exploration depth increases with the wave

frequency. Current technologies require low-frequency

EM signals (,1 Hz) to interrogate to reservoir depths as

deep as 4 km.

Exploration with the CSEM technology in the search

for hydrocarbons now extends to highly complex and

subtle offshore geological environments. The geometries

of the reservoirs are inherently three-dimensional (3D)

and exceedingly difficult to map without recourse to

3D EM imaging experiments, requiring fine model

parameterizations, spatially exhaustive survey coverage,

and multicomponent data. The 3D imaging problem,

which in this paper is also referred to as the inversion

problem, usually has large computational demands, due to

the computationally expensive solution of the forward

modeling problem, that is, the EM field simulation on a

given 3D finite-difference (FD) grid. Moreover, large data

volumes require many forward solutions in an iterative

inversion scheme. Therefore, we have developed an

imaging algorithm that utilizes two levels of parallelization,

one applied to the modeling (or imaging) volume and the

other applied to the data volume. The algorithm is designed

for arbitrarily large datasets, allowing for an arbitrarily

large number of parallel tasks, while the computationally

idle message passing is minimized. We have further

incorporated an optimal meshing scheme that allows us to

separate the imaging ormodelingmesh from the simulation

mesh. This provides for significant acceleration of the 3D

EM field simulation, having a direct impact on the time to

solution for the 3D imaging process.

Here, we report an imaging experiment, utilizing 32,768

tasks (and processors) on the IBM Blue Gene/L* (BG/L)

supercomputer located at the IBM T. J. Watson Research

Center. The experiment is novel in terms of both

computational resources utilized and amount of data

inverted. Our main purpose is to provide a feasibility

study for the effectiveness of the employed algorithm.

Further, the results obtained will improve important base

knowledge for the design of upcoming large-scale CSEM

surveys and improve the automated imaging method for

data interpretation.

Problem formulation
We formulate the inverse problem, mentioned in the

introduction, by finding a model m with m piecewise

constant electrical-conductivity parameters that describe

the earth model reproducing a given dataset. Specifically,

the inversion algorithm minimizes the error functional,

U ¼ 1

2
Dðdobs � d

pÞ
h iT�

Dðdobs � d
pÞ

h i

þ 1

2
k ðWmÞT Wmð Þ; ð1Þ

where T denotes the transpose operator, and T* denotes

the Hermitian conjugate operator. In the above

expression, the predicted data vectors (from a starting

model) and observed data vectors are denoted by dp and

dobs, respectively, where each has n complex values. These

vectors consist of electric or magnetic field values

specified at the measurement points, where the predicted

data is determined through solution of the time harmonic

3D Maxwell’s equations in the diffusive approximation.

We have also introduced a diagonal weighting matrix,

Dn3n, into the error functional to compensate for noisy

measurements. To stabilize the minimization of Equation

(1), and to reduce model curvature in three dimensions,

we introduce a matrix Wm3m based upon an FD

approximation to the Laplacian (r2) operator applied in

Cartesian coordinates. The parameter k attempts to

balance the data error and the model smoothness

constraint.

The forward problem
Within an inversion framework, the forward problem is

solved multiple times to simulate the EM field, denoted

by the vector E, and thus, the data d
p for a given model

m. EM wave propagation is controlled by the vector

Helmholtz equation,

r3r3 Eþ ixl
0
rE ¼ �ixl

0
J; ð2Þ

where source vector, free-space magnetic permeability,

and angular frequency are denoted by J, l0, and x,

respectively (see [6] for specific details). Our solution

method is based on the consideration that the number of

model parameters required to simulate realistic 3D

distributions of the electrical conductivity r can typically

exceed 107. FD modeling schemes are ideally suited for

this task and can be parallelized to handle large-scale

problems that cannot be easily treated otherwise [6]. After

approximating Equation (2) on a staggered grid at a

specific angular frequency, using finite differencing and

eliminating the magnetic field, we obtain a linear system

for the electric field,

KE ¼ S; ð3Þ

where K is a sparse complex symmetric matrix with 13

non-zero entries per row [6]. The diagonal entries of K

depend explicitly on the conductivity parameters that we

seek to estimate through the inversion process. Since the
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electric field, E, also depends upon the conductivity,

implicitly, this gives rise to the nonlinearity of the inverse

problem. The fields are sourced (i.e., generated) with a

grounded wire or loop embedded within the modeling

domain, described by the discrete source vector, S, and

include Dirichlet boundary conditions imposed upon the

problem. To help avoid excessive meshing near the

source, we favor a scattered-field formulation to the

forward modeling problem. In this instance, E is replaced

with Es in Equation (3). The source term, for a given

transmitter, will now depend upon the difference between

the 3D conductivity model and a simple background

model, weighted by the background electric field Eb,

where E¼ Ebþ Es. Simple background models with one-

dimensional (1D) conductivity distributions, i.e., models

in which r changes only with depth, are used because fast

semi-analytical solutions for Eb are available. Given the

solution of the electric field in Equation (3), the magnetic

field can be easily determined from a numerical

implementation of Faraday’s law. An efficient solution

process is paramount. We solve Equation (3) to a

predetermined error level using iterative Krylov subspace

methods, using either a biconjugate gradient (BICG) or

quasi-minimum residual (QMR) scheme with

preconditioning [6].

Minimization procedure
In large-scale nonlinear inverse problems, as considered

here, we minimize Equation (1) using gradient-based

optimization techniques because of their minimal storage

and computational requirements. We characterize these

methods as gradient-based techniques because they

employ only first-derivative information of the error

functional in the minimization process, specifically�r/.
Gradient-based methods include steepest decent,

nonlinear conjugate gradient, and limited memory quasi-

Newton schemes, with the latter usually providing the

best inverse solution convergence, however, at a larger

computational expense. Solution accelerators are

discussed in [7], which also provides detailed derivation of

the gradients and an efficient scheme for their

computation. Here, we focus on a nonlinear conjugate

gradient (NLCG) minimization approach as a trade-off

between inverse solution convergence and computational

effort per inversion iteration.

Exploitation of solution parallelism
In order to realistically image the subsurface of large

survey areas at a sufficient level of resolution and detail,

industrial CSEM datasets can contain up to hundreds of

transmitter–receiver arrays operating at different

frequencies, with a spatial covering of more than

1,000 km2. This easily requires thousands of solutions to

the forward modeling problem for just one imaging

experiment. Hence, the computational demands for

solving the 3D inverse problem are enormous. To cope

with this problem, our algorithm utilizes two levels of

parallelization, one over the modeling domain and the

other over the data volume.

First, in solving the forward problem on a distributed

environment, we split the FD simulation grid, not the

matrix, among a Cartesian processor topology, which

shall be called local communicator (LC). As the linear

system is relaxed during the iterative solution, which

involves matrix–vector products on each of the

processors, values of the solution vector at the current

Krylov iteration not stored on the processor must be

passed by neighbors within LC to complete the matrix–

vector products. Additional global communication across

the LC is needed to complete several dot products at each

relaxation step of the Krylov iteration. The solution time

increases linearly with the number of parallel tasks, up to

a point at which the increase in message-passing overhead

dominates. A study of the FLOP (floating-point

operation) rate versus communicator size for the Intel

Paragon** architecture is exemplified in [6].

To carry out many forward simulations

simultaneously, we employ multiple LCs, connected via a

group of lead processors, with one lead task assigned to

each LC. The topology of this lead group defines the

communicator on which the iterative NLCG inversion

framework is carried out, here called the global

communicator (GC). This distribution of the forward

modeling problems, or data decomposition, is highly

parallel. Assuming the optimal LC size has been

estimated for a given range of mesh sizes, the size of the

GC (which equals the number of LCs) can be increased

linearly with the data volume. The relative amount of

communication within the GC remains constant because

communication within the GC is needed only in order to

complete several dot products per inversion iteration and

to sum the contributions from each LC to the global

gradient vector. The main computational and

communication burden occurs with the forward FD

solving. As outlined below, we adapt FD mesh sizes

according to given transmitter–receiver configurations

and minimum spatial sampling requirements. To keep a

balanced computational and communication workload

between all LCs, the data decomposition is based on a

balanced distribution of the FD grids in terms of grid

sizes.

Optimal mesh considerations
Although our experience using two parallelization levels

has been satisfactory, in order to solve the very large

problems of interest, we must obtain a higher level of

efficiency. One promising approach, which we have

previously reported [8], is to design an optimal FD
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simulation mesh for each source excitation in Equation (3).

FD meshing for field simulation then considers only

part of the total model volume where it can have an

appreciable effect in the imaging process. Moreover,

minimum spatial grid sampling intervals are dictated by

the EM field wavelength and, hence, can be optimized

according to a specific source excitation frequency.

Optimizing both mesh size and spatial sampling, we

create a collection of simulation grids, Xs, that support

the EM field simulation for all different sources contained

in the dataset. All simulation grids act upon a common

model grid, Xm, which defines the imaging volume. Both

types of grids are Cartesian with conformal grid axes.

Key to the grid separation is an appropriate mapping

scheme that transfers the material properties from Xm to

Xs. The imaging process provides piecewise constant

estimates of the electrical conductivity, which are defined

by the cells of Xm. The staggered FD mesh Xs, on the

other hand, involves edge-based directional

conductivities, needed for constructing the stiffness

matrix K in Equation (3) (see also [6] and [9] for details).

In the case in which Xm¼Xs, an edge conductivity, re, is
computed from re ¼

P4
i¼1 riwi; with wi ¼ dVi=

P4
j¼1 dVj:

Here, wi represent weights corresponding to volume

fractions of the four cells on Xm that share the edge re on
Xs. Furthermore, the edge conductivity re is simply an

arithmetic volume average of the four model cell

conductivities. When Xm 6¼ Xs, the conductivity mapping

involves parallel and serial circuit analysis, resulting in an

arithmetic and harmonic conductivity averaging scheme

[8, 10]. The averaging scheme is exemplified in Figure 1

for an x-directed edge conductivity re
x in two dimensions.

Here, model and simulation meshes are represented by

dashed and solid lines, respectively. The material average

is to be specified from the formula

r
e

x
¼

Z x
iþ1

x
i

Z y
jþ1=2

y
j�1=2

rðx; yÞdy
 !�1

dx

2
4

3
5
�1

: ð4Þ

The inner integration constitutes a point-wise parallel

conductivity average, while the outer integration provides

for the effective conductivity in series, arising over the

integrated edge length (xiþ1� xi) of the simulation mesh.

The total integration area assigned to re
x is shown by the

red rectangle in Figure 1.

Extension to the full 3D case is straightforward, with

the discrete representation exemplified by

r
e

x
¼
XJ
j¼1

1

V
j

XIj
i¼1

dV
i
r
i

0
@

1
A
�1

Dx
j

2
4

3
5
�1

DX; ð5Þ

where DX is the edge length of the simulation cell along

the x-coordinate direction. Similarly, re
y and re

z involve

averaging along the y- and z-coordinates, respectively. In

Equation (5), the averaging along DX involves a number

of J serially connected discrete parallel circuits, Pj, each

with a volume Vj. The length of Pj along the edge is Dxj,
where

PJ
j¼1 Dxj ¼ DX: Further, Ij is the number of cells

on the modeling grid contributing to Pj, with ri and dVi

the individual model cell conductivities and volume

fractions, respectively.

We are also required to specify ]re/]rk, which is needed

to define the gradient on the modeling grid because it is

linked to the forward modeling problem on the

simulation grid(s) (see [9] for details on the equal-grid

case). Thus,

]re
=]r

k
¼ re

2

DX

XJ
j¼1

Dx
j

1

V
j

XIj
i¼1

dV
i
r
i

0
@

1
A
�2

dV
k

V
j

; ð6Þ

where J is now the number of discrete parallel circuits

with a non-zero contribution from rk. When Xm ¼ Xs,

we have J ¼ 1, Dxj ¼ DX and ]re/]rk ¼ wk, which

is the weighting coefficient defined above as

wk ¼ dVk=
P4

j¼1 dVj:

Electrical-conductivity imaging of hydrocarbons
using the BG/L supercomputer
CSEM data is usually characterized by a large dynamic

range, which can reach more than ten orders of

magnitude. This requires the ability to analyze data in a

self-consistent manner that incorporates all structures not

only on the reservoir scale at tens of meters, but on the

geological basin scale at tens of kilometers, and must

include salt domes, detail bathymetry, and other 3D

peripheral geology structures that can influence the

measurements [11, 12]. These complications motivate the

need for an automated 3D conductivity inversion process

for successful conductivity imaging of hydrocarbons.

Figure 1

Illustration of the conductivity averaging scheme of Equation (4) 

in two dimensions.

yj�1
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Trial-and-error 3D forward modeling is too cumbersome

to be effective. Both model size and amount of the

required data provide ample justification for utilizing the

massively parallel BG/L supercomputer for the task. Such

a platform, which can scale up to 131,072 processors,

allows for the capability to image prospective oil and gas

reservoirs at the highest resolution possible and on

timescales acceptable to the exploration process.

The 3D imaging experiment we present here

demonstrates the points mentioned above. The data was

acquired offshore of South America. The sail lines and 23

detector locations on a 40 3 40 km2 grid used for

subsurface conductivity mapping are shown in Figure 2.

Data was collected from nearly 1 million transmitter

sites along the sail lines shown. Obviously, this amount

of data cannot be treated with the current inversion

methodology, evenwithamassivelyparallel implementation.

Every source treated by the imaging algorithm requires a

forward simulation, an adjoint computation, as well as

two or more additional simulations for step control for

each nonlinear inversion update. To efficiently deal with

this data volume, we use a general reciprocity principle

that involves the interchange of transmitter and receiver

points. Hence, the positions of the actual CSEM

transmitter along the sail line become the computational

receiver profiles, and the actual CSEM detectors on the

seafloor become computational sources, referred to as

sources in the following.

The equivalent reciprocal problem involves 951,423

data points and 207 effective sources, since there are 23

source locations with three polarizations and each

operating at the three discrete excitation frequencies of

0.125 Hz, 0.25 Hz, and 0.5 Hz. Each effective transmitter

is polarized according to the antenna orientation of its

corresponding detector. The exact seafloor detector

orientations were determined by analyzing the data

polarizations and phase reversals with respect to the

source sail lines. Data processing involves binning in

time, followed by spectral decomposition and spatial

filtering. Timing errors were removed by forcing the data

phases to match the frequency-offset scaling behavior

appropriate to solutions of Maxwell’s equations.

The survey layout in Figure 2 contains different

transmitter–receiver configurations to be considered, as

illustrated in Figure 2(a). For the transmitter sail line

position with respect to a given detector on the sea bottom,

we consider the so-called overflight (left) configuration, in

which the sail line is directly over the detector. In the

broadside configuration (right), the towed transmitter

passes at an offset Dy to one side of the detector. Three

components are recorded by the receiver antennas of the

detector: inline horizontal (Ex), perpendicular horizontal

(Ey), and vertical (Ez) electric fields.

A starting model is necessary to launch the inversion

process and resolve some final issues associated with

phase components in the data. It is obviously favorable to

achieve minimum data misfits (i.e., data-fitting errors)

with the starting model. Therefore, the model used has

been constructed from knowledge of the sea bottom

bathymetry, the seawater electrical-conductivity-versus-

depth profile, and 1D inversion of the amplitude

components of the common-receiver gathers, based on

the inline overflight measurement configuration ðE i
xÞ: The

resulting 1D models were then refined by comparing

selected simulation results with field observations. In

order to accommodate all sail lines and detector sites in

the model, a large parameterization was required for Xm.

Figure 2

Layout of the sail lines (red and blue) and 23 detector locations 

(crosses) on the sea bottom for the offshore controlled-source 

electromagnetic (CSEM) survey. Part (a) illustrates configuration 

geometries within the dataset. Part (b) shows bathymetry values 

(seafloor elevation values on contour lines) in meters below sea level. 

The example data shown in this paper corresponds to the reciprocal 

treatment of the detector and the sail lines, respectively, marked by 

the blue cross and the blue lines. (Designators such as RC04 and 

RC08A are labels for sail lines assigned by ExxonMobil.)
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In order to model bathymetry, the minimum required

spatial grid sampling interval D is kept constant with

D¼ 125 m for the horizontal (x and y) coordinates, while

it ranges from 50 to 200 m in z. This corresponds to 403

nodes along x and y, 173 nodes vertically, and thus

approximately 27.8 million model cells.

To restrict the size of the simulation grid for each source

activation, we have assigned each source a separate mesh.

Both mesh size and spatial grid sampling rate are based on

skin depth estimations. The skin depth d, a commonly

used constant in EM applications, is defined as the depth

below the surface of a conductor (in our case, at the

transmitter location) at which the current density decays

to 1/e (;0.37) of the surface current density. Using the

approximation

d ¼ 503=
ffiffiffiffiffiffiffiffi
r

b
f

q
;

mesh intervals depend on the source excitation frequency,

f, and the background conductivity, rb, of the employed

starting model. Horizontal mesh size is based on ten skin

depths from the source midpoint, assuming rb¼ 0.5 S/m

(Siemens/meter); the resulting mesh ranges were of

sufficient size to accommodate the specific sail lines of data

assigned to the effective sources. The horizontal spatial

grid sampling intervals, D¼250 m, 200 m, and 125 m, vary

with frequencies f¼ 0.125 Hz, 0.25 Hz, and 0.5 Hz,

respectively. The vertical meshing was identical to that

employed in the modeling mesh in order to account for an

accurate representation of the seafloor elevation values.

With these considerations, we were able to reduce the size

of the simulation meshes significantly; the number of x

and y grid nodes both ranged from 128 to 162. Solution

accuracy was verified against solutions in which Xs¼Xm.

A maximum of 256 MB of memory per task was

available on the BG/L supercomputer. The largest

memory requirement results from temporary storage of

the forward solutions within one inversion iteration. To

stay within the machine limits, each simulation grid

was distributed across an LC size of 512 processors,

relying on the interprocessor bandwidth to support the

BICG/QMR solvers. Sixty-four LCs were then used to

distribute the 207 effective sources and their associated

data. Thus, the total number of tasks employed in the

imaging experiment was 32,768. Disk I/O and file system

performance were minor concerns, as the generated image

output was relatively modest, ;2.5 GB per inversion

update, which was written to disk in parallel using 512

tasks. Data output at each inversion iteration consisted of

predicted and observed measurements with a total file size

of 170 MB. A lead task within the global communicator

was assigned to dump the data output after each

inversion update.

Prior to the actual imaging experiment, performance

tests were carried out. Baseline evaluation involved an

inversion inwhich the largemodel grid (size 40334033173

nodes) represented the simulation grid for each source.

Here are some findings:

1. We compared the job performance using 32 message-

passing interface (MPI) tasks completed on the BG/L

platform (with a CPU speed of 700 MHz) versus an

Intel (Pentium** 4, with a CPU speed of 2.6 GHz)

cluster with Gigabit Ethernet fabric. A forward

solution used 25 seconds per 100 QMR iterations on

the BG/L platform, compared to 23 seconds on the

Intel Pentium 4 platform. The computational burden

of the QMR solver is dominated by complex double-

precision matrix–vector multiplications with indexed

memory access. The 64-bit IBM Power Architecture*

of the BG/L platform is designed for FLOPs,

achieving an efficient memory access. Profiling shows

that for our application, the architecture

compensates for the lower processor speed of the

BG/L platform.

2. Using an LC size of up to 4,096, workload scalability

tests revealed that the QMR solution time decreases

linearly with the number of parallel tasks. The linear

behavior starts to flatten for a larger number of

tasks.

3. A 1,024-task job on the BG/L platform showed that

the average communication time was about 25% of

the total solution time per inversion iteration. The

distribution of the communication overhead is as

follows. Collective communications within GC are

mainly global reduction operations and amount to

about 50% of the overhead with typical message sizes

of 16 bytes. Point-to-point blocking message passing

within LC amounted to 20% overhead, with 30 KB

for the average message size. Barrier synchronization

provided 30% of the overhead.

The relatively long idle time that is due to global barrier

synchronization, which is done after each inversion

iteration, indicates the importance of a balanced workload

distribution among all LCs. The QMR solver convergence

behavior depends on how numerically well-posed the

problem is. Numerically, this can be expressed in terms of

the condition number of the FD stiffness matrix K in

Equation (3), which in turn is governed by the aspect ratio

and conductivity contrasts within Xs. Because the latter

changes dynamically with the model updates during an

inversion, faster barrier synchronization would require an

adequately sophisticated scheme for dynamically adapting

the LC size.

Over a 24-hour period, 72 inversion-model updates

were realized on the BG/L platform, and the relative

squared error misfit measure was reduced by nearly 67%.
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Figure 3
Six selected plots of overflight and broadside electric field data amplitudes (gray) vs. the transmitter offset projected onto the receiver profile 

lines (RC04, RC06, RC07, RC08A) shown in Figure 2. Shown here are data fits produced by the starting model (red) and for iteration 72 

(blue). See text for details.
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As exemplified in Figure 3, good fits, to within the

anticipated noise, were obtained for the horizontal and

vertical inline electric field overflight data, E i
x

[Figure 3(a)] and E i
z [Figure 3(b)], as well as for the

horizontal perpendicular and vertical broadside electric

fields, Eb
y [Figure 3(c)] and Eb

z [Figure 3(d)]. We observed

that the major residual misfits originate from the

broadside inline components, Eb
x [Figures 3(e) and 3(f )].

The average resistivity computed over three depth

ranges for solution 72 is shown in Figure 4. The sea

bottom defines the depth z ¼ 0. Inspection of the images

shows increased resistivity in the southern model section

for depths below 1,500 m. Such is also observed

broadside of the sail lines, for the depth range 0–1,500 m.

Along the sail lines, however, little to no resistivity

increase is observed. Here, the image has distortions,

which are likely caused by the data acquisition method.

A possible explanation for this outcome is the

inconsistencies observed in fitting the inline component of

the broadside data compared to other data components.

This is particularly true of inline overflight data. Clearly,

the overflight data will be most sensitive to resistivity

variations along the sail lines, while broadside data will be

more sensitive to resistivity variations off the sail lines.

This enhanced resistivity observed off the sail lines may

arise from the attempt of the inversion algorithm to fit the

inline broadside data. Enhanced resistivity amplifies the

broadside inline model data, reducing the mismatch

between observed and predicted data. Nevertheless, it was

still not possible to achieve acceptable data fits, indicating

a systematic bias in the underlying assumptions employed

in the inversion processing.

One critical assumption in this inversion was that the

conductivity is isotropic; that is, conductivity within a cell

does not vary with direction. However, it is well known

within sedimentary rocks that fine-grain bedding planes

can induce the rocks to exhibit transverse electrical

anisotropy [13, 14]. In addition, parallel interbedding of

rocks with different conductivities can lead to anisotropic

behavior. Thus, the conductivity can be expected to

depend strongly on directions, parallel and perpendicular

to the bedding planes. In the context of marine CSEM,

reference [15] shows that the effects of electrical

anisotropy can produce significant anomalies, even as

large as target reservoir responses, and a consensus is now

emerging that electrical anisotropy is a stronger factor in

influencing marine CSEM measurement than previously

believed.

Two tests were carried out to verify the importance of

anisotropy. First, we repeated the initial stage of the

inversion process to test the degree to which electrical

anisotropy is affecting the broadside inline data, and to

what lesser extent it influences the overflight and

broadside perpendicular and vertical data. This involved

Figure 4

Average resistivity computed over three depth ranges for solution 

72: (a) water bottom to 500 m below mud line (BML); (b) interval 

500 to 1,500 m BML; (c) interval 1,500 to 2,500 m BML. Resistiv-

ity is rendered on a base 10 log scale.

(a)

(b)

(c)

1 2log    (� � m)�
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Figure 5
Six selected plots of overflight and broadside electric field data amplitudes (gray) vs. the transmitter offset projected onto the profile. Shown 

are data fits produced by a starting model with isotropic (red) and anisotropic (blue) electrical conductivity.
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an anisotropic model with the vertical conductivity fixed

at the conductivity used in the initial isotropic inversion

and the horizontal conductivity set to three times the

vertical conductivity below the water bottom. A sampling

of the results is shown in Figure 5, confirming that the

data is very likely to be significantly more consistent with

an anisotropic conductivity model than with an isotropic

one. Furthermore, we reran two inversions with a subset

of the data, comprising 36 effective transmitters. Using

the same isotropic starting model, the inversions differed

by using an isotropic and anisotropic model

parameterization. After 62 iterations, the anisotropic

model achieved a final data fit that was 27% lower than

the isotropic result. A complete anisotropic inversion of

this data has yet to be carried out.

Conclusions

We have made significant progress in reducing the

computational demands of large-scale 3D EM imaging

problems. Exploiting multiple levels of parallelism over

the data and model spaces and utilizing different meshing

for field simulation and imaging provides a capability for

solving large 3D imaging problems that cannot be

addressed otherwise in a timely manner.

Results of the BG/L platform experiment for this

offshore data show that the broadside inline component

data displays a systematic bias that is most likely

attributable to conductivity anisotropy between the

vertical and horizontal directions. The other field

components were satisfactorily fit by an isotropic model,

showing that these field components are significantly less

sensitive to this kind of anisotropy. The speed at which

the Blue Gene/L supercomputer delivered this result is

essential to the time frame in which the exploration

process is conducted. This work provides motivation to

extend the 3D conductivity imaging methodology to the

anisotropic situation.
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