
This  paper  reviews  the  procedure of evolving  statistical  classification 
rules. 

Selection of variables, naethods of classtfication,  selection of a  decision 
rule,  and  the  problem of analyzing  efectiveness of the  technique  are 
considered. 

T h e  procedure i s  denzonstrated  computationally  by  means of a n  
example.  

Statistical  classification  techniques 
by C. F. Kossack 

One of the  important  areas of statistical  analysis is discrimination 
problems of among different populations. A suggested term for this analysis 
discernment is discernment  theory. Within this  area  there  are essentially three 
theory major types of problems. So much confusion in  terminology exists 

that  it seems appropriate to first mention  each type of problem 
before considering the particuIar probIem of statistical  classification 
techniques. 

1. The identification or discrimination  problem. If for a given 
group of distinct  populations  there is available a multi-variate 
random  variable, the identification problem is that of evolving 
an index or numerical  measure  making use of the multi-variate 
random  variable  in  such  a  way that  this index, or measure, when 
evaluated  for each of the populations,  “best”  identifies or dis- 
criminates  among the several  populations. The classical approach 
to  this problem is that of using a linear discriminant  function as 
first introduced by R. A. Fisher.’ 

2. The  statistical  sorting  or  numerical  taxonomy  problem. If one 
has reason to believe that his  multi-variate sample came from 
more than one distinct  population, the  statistical sorting problem 
is that of evolving a rule, based only on the information  contained 
in the mixed sample, for sorting the sample observations  into the 
several  (the  exact  number may itself be unknown) distinct popula- 
tions. An approach to  this problem considering each variable to 
be of a simple attribute (zero or one) type has been developed 
by T. T. Tanimato.2 
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3. The classification or diagnosis problem. If for a given group of 
distinct  multi-variate  populations one has  available  separate 
samples, the classification problem is that of evolving a decision 
rule that would enable one to assign a new or additional  observa- 
tion or individual  into his proper population if all one knows about 
the individual is his multi-variate  observational  vector and  that 
he came from one of the given populations. It is this  latter problem 
that is the concern of the present  paper. 

For the convenience of the reader who may wish to review 
terminology, the following glossary (of terms used) is inserted: 
M a x i m u m  likelihood  estimates. If f(X,, XZ, . . . , X,; e )  is the probability 
density for random  sample of size n drawn from a  population  with unknown 
parameter 0 then  the maximum likelihood estimate of e is the number i such 
that 

f(X1, x,, . . * , x,; ei 2 f(X1, x,, * .  * , x,; 0’) 
where 0’ is any other possible value of e. 

Multi-variate  normal  probability  densit?]  function. 

f ( X ,  , x,, . . * , X,) = ( 1/2?T)L’2 dL”T 
k k  

exp [ -(1/2) c c cif(x< - P J ( x ~  - pi)] 

where the inverse of the matrix Iluilll is the matrix of variances and covari- 
ances. 
Multinomial  probabilit?]  density  function. The multinomial distribution is 
associated with  repeated  trials of an  event which can have more than  two 
outcomes. Its functional form is: 

,=1  1 = 1  

Measurement scales. 
Nominal  or classi$cator?l scale. When  numbers or other symhols are used 
simply to classify an object or characteristic.  Example: the designation of 
postal zones. 
Ordinal or ranking scale. If a  “greater than” relationship holds for all pairs 
of classes of a nominal scale, we have an ordinal scale. Example:  ranks  in 
the  military service. 
Interval  scale. An ordinal scale in which the differences (“distances”) be- 
tween any two  numbers on the scale have  comparative meaning. Example: 
measurement of temperature. 
Ratio scale. An interval scale in which the zero point can not he arbitrarily 
chosen. Example:  measurement of mass (as contrasted with temperature 
where assignment of zero to different temperatures on alternative scales, 
e.g., centigrade and  Farenheit, is permissible). 

Random variable. A variable whose occurrence is governed by a probability 
density  function. 

Categorical  type  variable. A variable whose measurement is in the nominal or 
classificatory scale. 

Testing a statistical  hypothesis. A statistical hypothesis is any  statement rela- 
tive to  the  nature of the probability  function of a random variable, and  any 
rule based upon  observational data  that determines  whether or not one rejects 
the hypothesis is a test of the  statistical hypothesis.  Example: for the normal 
probability density function, 
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an hypothesis might be “The mean is less than 50,” and a test of this  hypothe- 
sis the rule, “If the mean of a  sample  from the population exceeds 65, reject 
the hypothesis.” 

Most  powerful test of a  statistical  hypothesis. The power of a test of a statistical 
hypothesis is the probability of rejecting the hypothesis when i t  is false, while 
the level of significance of a test is the  probability of rejecting the hypothesis 
when i t  is true. A most powerful test is one that has  maximum power relative 
to all tests of equal or lower level of significance. 

Likelihood. Let X ,  X z ,  . . . , X ,  be a  sample of size n from a population with 
probability  density  function f(X, 0).  The likelihood of the sample is then  the 
product: L = f(X,, O)j(X,, e )  . . . f(X,, e). 

Non-parametric  methods. Techniques for estimating  parameters  and  testing 
hypotheses which require  no  assumption about  the form of the probability 
density function are called non-parametric methods. 

Studentized form of a  statistic. A statistic is said to be “studentized” when t h t  
parameter values in  the originally derived  form of the  statistic  are replaced 
by  their maximum likelihood estimates  from an available  sample. Example: 
if the original form was S = -dC [(Xi - p)”n], then  its  studentized  form 
would be s -= dx [(Xi - X)z/n] ,  where p = parameter  (the population 
mean)  and X = X i / n  (the sample mean). 

The  theory of statistical classification deals with the problem 
statistical of assigning one or more individuals to one of several possible 
classification groups  or  populations  on the basis of a set of characteristics  ob- 

served  on them.  Thus,  the problem of classification can be con- 
sidered as a special case or  application of multi-variate decision 
theory.  The  nature of the observed characteristics may  vary from 
problem to problem. In some cases they  may be all of a measured 
type while in  another  situation  the  variables  may  all  be of the 
simple categorical type of attributes  in which each observation 
can take  on  but one of a finite number of distinct  values  or  states. 
Siege1 has  noted3 that “measurements  may, in general, be from 
four scales: the nominal, ordinal,  interval,  and  ratio scales. In  
any given multi-variate classification problem, the measurements 
may be of a  mixture involving some or  all of these  types of 
variables.” It should be expected that numerous  approaches  have 
been advanced as  to how one should go about evolving a classifi- 
cation decision rule. It is the purpose of this  paper  to examine the 
general problem of statistical classification and  then  to discuss 
some of the proposed solutions  in some detail. 

It should be recognized that since the  area of interest  has been 
designated as statistical classification, this means that  the decision 
rule must be based upon observational data available  from samples 
from the several  populations rather  than  on known population 
characteristics. Thus we assume that we have a sample of indi- 
viduals  from  each  population and for each of these  individuals 
we have  available the same  set of observations as  are available 
for the individual  requiring classification. 

Consider for illustration  a well-known classification problem, 
that of a  prospective student applying  for admission by sub- 
mitting  credentials  such as his high school records and  in  addition 
being given a battery of admission tests.  These data become the 
multi-variate  set of observations  available  on  each  applicant. 
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The problem is to classify, in  advance, the applicant  into  the 
population to which he belongs, where the alternatives  are  the 
population of those students who can successfully complete college 
training  and  the  population of students who will not complete 
the college courses successfully. Available to  the admissions office 
are  the same data  on former students, some known to have com- 
pleted and  the remaining known not  to have  completed college. 

There  are  many classification problems  in science and  industry. 
For example,  in  biometric  investigations  one may  want  to assign 
a skull  found  in archaeological excavations to some dynastic period 
on the basis of anthropometric  measurements. A taxonomist may 
want to classify a plant specimen into  its proper species on  the 
basis of measurements on its roots,  stems, leaves, and flowers. 
Manufactured  articles  may be accepted or rejected on  the basis 
of certain  measurements  made to determine  whether  or not  they 
conform to specifications. Personnel  may  be assigned to  duties 
on  the basis of their scores in a battery of tests given to each 
employee.  These and  many more are essentially  problems in 
classification and  in a  general sense are problems of statistical 
discrimination. 

The first attempt  to  study  the discrimination  problem sta- 
tist,ically was made  by  Karl  Pearson  in 1921. In  a  paper4  by 
M. L. Tildesley, Pearson  introduced the concept of a  coefficient 
of racial likeness to serve as a  measure of the “distance”  between 
populations. The coefficient was defined in  terms of sample  means 
and variances. The coefficient assumed that all the observations 
were of a measured type having,  in fact,  the same  variance  and 
being uncorrelated. The coefficient was used to determine the 
probability that samples  came  from  one and  the same  population 
and in  this sense served  as  a test of divergence rather  than  as a 
classification rule. 

In  1925, P. C. Mahalanobis of the  Calcutta School of Statistics 
introduced the concept of a  “measure” of divergence between 
two  populations  and  in 1928, in  a paper’ presented  to the  Indian 
Science Congress, he proposed a generalized distance  function, Dz.  
The original  form of 0’ involved  only  population  means,  variances, 
and covariances but  the  “studentized” form of the  statistic was 
considered a t  some length  by R. C. Bose and S. N. Roy  in a 
series of papers.‘ 

In  1936, R. A. Fisher  initiated  a new approach to  the problem 
of discrimination and classification with the introduction of linear 
discriminant  functional  analysis.  This  approach led to a new 
method of deriving test  criteria  suitable  to  multiple  variate 
situations. The principle behind the choice of a  “discriminant 
function” is merely to reduce multi-variate  problems to univariate 
problems, a process that has been found  extremely useful in  multi- 
variate analysis. The problem is reduced to  that of a single variable 
by choosing a linear  combination of the original  variables and  then 
constructing  a  statistic  suitable  for the univariate case. In  principle, 
the discriminant  function need not be linear but can  be enlarged 
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to cover any class of functions. But in practice, a linear function 
of the original or transformed variables is nearly always chosen 
because it does not lead to complex distribution problems. 

Another classification technique that is closely related to that 
of Mahalanobis’ 0’ and Fisher’s linear discriminant function is the 
one obtained  by the late Abraham Wald. In a paper’ appearing 
in 1944, Wald made an  important  contribution  by introducing 
the statistical classification problem. He considered the specific 
problem of classifying a single p-variate observation into one of 
two p-variate normal populations, 111 and r12, being given that 
the observation belongs to 111 or to II,. The classification problem 
is reduced to a problem in testing the hypothesis H,: that  the 
observation belongs to 111, against the  alternative hypothesis H z :  
that  the observation belongs to IT,. The  fundamental lemma 
due to Neyman and Pearson provides a classification statistic 
to classify the observation in lI, or lIz in a  manner that is “best,” 
where the “best” manner of classification corresponds to  the 
most powerful test of H ,  against H,. In the first instance the 
population parameters  are assumed to be  known, so that  the 
classification statistic, depending on the parameters, is exactly 
known. In general the parameters  are  not known and  it is therefore 
required that they be estimated from samples from the populations. 

The next section of the paper outlines a step-by-step procedure 
content of which may be  followed in deriving a classification rule. This is 

of the steps to a particular problem. Finally the distribution  and 
multi-population problems are considered. 

paper followed by an illustrative example which details the application 

Derivation of a classification rule 

Let us  now  look at  the steps required to evolve a classification 
rule. Statistical classification rules, in general, depend either upon 
the concept of likelihood  where one considers the ratios of the 
likelihoods that  the observation to be  classified came from the 
suspect populations, or they depend upon the value of some 
classification statistic whose form is assumed and is evaluated 
for the individual requiring classification. The samples that are 
available from each population are used to estimate the likelihood 
ratios or the constants in the classification statistic, depending on 
which approach is being used. 

There  are four major steps that must be accomplished if one 
is to evolve a classification rule, in brief: selection of the variables, 
selection of the classification technique, selection of the decision 
rule, and  an analysis of effectiveness. These we  now consider. 

The selection of the variables  to be used in making the classification. 
selection of Here one encounters problems such as whether or not  to include 
variables in his observational vector variables of different types, how reliable 

each available variable can be measured or determined, the dis- 
crimination power of the variable relative to  the populations of 
interest, the inter-relationship of the variables, and  the cost of 
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making each variable  determination.  The decisions of selection 
depend  in the main  on personal judgments since a t  present no 
good selection rule exists. 

The technique to be used in making the classification  estimate 
and the use of available sample  data to make the estimates. One can 
identify several estimation  techniques in the  literature: 

1. Non-parametric  estimation. In  this procedure the “closest” 
neighbors of the observation  are identified in  the pooled samples 
and  the percentage of these that belong to each population is 
used as  the likelihood ratio  estimates.  Figure 1 graphically dis- 
plays the concept. Then  the likelihood values for each population 
are  estimated  as f,(Z) = n , /N ,  where ni = numbers of points  in 
the neighborhood that are from the sample from population I T i  

and Ni is the  total  number of observations  available from II,. 

2. ClassiJication by categories. In  this procedure, each variable 
is converted to a categorical type  and one thus  has  states X,,, 

are  then identified, there being a total of C = nlnz . . . np different 
product classes. For example, suppose X ,  is the sex variable 
having the two states: S,, = male and XlZ = female, and X ,  
is the variable for age which has been converted to say,  three 
states: X,, = young, S,, = middle age, S,, = old. Then  there 
would  be 2 . 3  = 6 product classes: 

C,  = X,,X,, = young, males; 
C, = S,,S,, = young, females; 
C3 = S,,S,, = middle aged,  males; 
C, = X,,X,, = middle aged, females; 
C, = X,,X,, = old, males; 
C6 = S,,S,, = old, females. 

The frequencies N , ,  are  then determined, represent,ing the  number 
of individuals from the population Hi who fall in the C ,  class. The 
likelihood value for each class is then  taken  to be ft(C,) = n , , / N i .  

3. Parametric  classification. If a  density  function  can be specified 
for each population, then  the  parameter vector 0 = e,, e,, . . . , 0, 
can be estimated for each  population by using the maximum 
likelihood estimate  obtained from each sample. Then  the likeli- 
hood value associated with  the observation Z for each population 
would be L,(Z)  = f,(Z; di). Two of the most common density 
functions used are the  multi-variate normal and  the multinomial. 

4. Classification  statistics. The use of a classification statistic 
is usually restricted to  the two-population case since one finds 
that most  such  statistics  are formed through an algebraic simplifi- 
cation of the likelihood ratio  function  obtained by dividing the 
likelihood values for the two competitive  populations.  Such sta- 
tistics usually involve the moments of the population  distributions 
as well as  the observational  vector, 2. To evaluate  the  statistic 

X,,, . . * , Snp for the  pth variable. All possible product classes 
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for a given 2, the maximum likelihood estimates of the parameters 
as  obtained from the respective samples are used. Some of the 
better known statistics  are: 

a)  The Wald Statistic: 
D D  

a s 1  p = 1  

where cpa = general term in the inverse of the common co- 
variance  matrix  and = mean of X ,  in population H i .  

where index, i, indicates the characteristic for the  ith popu- 
lation. 

c) The Anderson Statistic: 

A(Z)  = alZl + azZz + + apZp + . . a + a p Z p  + b 

where 

and r is the positive root of the  matrix equation 

( Z q  8 1 7  CS;”, { x::) 6 )  = 0 ,  
where the matrices are 

x:;) = r X::) + (1 - r) x;:’ 

and  the vector of mean differences, 6, is 

8, = P P  - P P  

d) The Shaw Statistic 

( 2 )  ( 1 )  

X(Z) = 2 2 (e:;) - e:l“))zpz,. 
a = l  p = 1  

Selection of the  decision  rule  to be used in making  the  actual 
selection of classification  decision for  a given  observation. To discuss this  step 
decision rule a t  this  stage it seems best to restrict  our consideration to  the two- 

population classification problem. We then have  available  for 
making the classification decision either a likelihood ratio that is 
a  numerical  function of the observational  vector Z,  say, L(Z),  
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or we have a classification statistic defined as  a  numerical  function 
of 2, say C(2) .  In  either case a decision rule  is then simply the 
division of the L(2) or C(2) one-dimensional interval  into  two 
regions such that for  those 2’s that yield an L(2) or C(2)  that 
falls  in region one the individual will be classified into  population 
one;  otherwise  into  population  two. Thus we have  reduced the 
problem of classification to  that of determining the one region. 

There  are  in general three decision strategies used in  situations 
like this. The first  relates to  the control of the probabilities of mak- 
ing errors of misclassification. There  are  two  such errors, the error 
of classifying an individual who really belongs to population II, 
into  population II, and  the error of classifying an individual who 
really relongs to II, into  population II,. 

Since once we have  designated  one region of classification, the 
other region is  automatically  determined (being the complement 
of the first region with  respect to  the entire  sample  space), we can 
select the regions so as  to  control one of the errors of misclassifica- 
tion or so as  to in some way  balance the probability of one type 
error  against the probability of making the  other  type  error 
(i.e., making  both probabilities  equal), but we cannot exercise 
independent  control  on  each  error  separately. 

The second approach to selection of the classification region 
relates to  the cost of making misclassification errors. We can de- 
termine the expected cost of misclassification through  the formula: 

C(R) = nlP(2 I 1, R ) C @  I 1) + qzPU I 2,  R)C(1 I 21, where 

pi = the a priori  probability of encountering an observa- 
tion to be classified from II;, 

p ( i  I j, R)  = the probability  associated  with the region R of 
classifying an individual  into  population I I i  given 
that he  really belongs to I I i ,  and 

C ( i  I j) = the cost of misclassifying an individual  into  popula- 
tion Hi given that  he really belongs to IIi. 

Usually one is interested  in  obtaining the region R that essentially 
minimizes this expected  cost. 

The  third  approach uses the so-called minimax  approach  found 
in decision making. In  this case one seeks the region R that mini- 
mizes the maximum  error that one may  make. Often  these re- 
quirements  depend  on  numerical  methods  for  their  application. 
It seems best to defer a  more  detailed discussion of this  step  until 
an  actual example is considered. 

Determining  the  operational  effectiveness of the classification 
technique. Basic to  the measurement of the operational ef- 
fectiveness of any classification technique  are  the probabilities: 

p ( i  I j) = the probability of misclassifying an individual who 
* 15 belongs in  population I I i  into  population I I i .  

From these  probabilities one can evolve expected  cost  estimates as 
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well as  other  criteria of worth. To  obtain  estimates of these  proba- 
bilities one  requires the conditional  distribution  function of the 
likelihood ratios or the classification statistic used in the technique. 
In  some cases these  distributions  can be expressed either exactly or 
approximately  in  mat.hematica1  form  and  then the misclassification 
probability  estimations  simply  require the evaluation of an integral 
over the required region. When  such  a mathematical  representation 
is not available, an empirical  approach  can be used involving the 
individual  observations  available  in the samples to produce an 
empirical  estimation of the conditional  distributions.  Here  again 
it seems best to discuss the details of this  step  later  around  an 
actual problem. 

Example 
To demonstrate' how these  approaches are  actually utilized in a 
practical  problem,  let us consider the simple example of a classifi- 
cation  problem, that of student admission to  an engineering cur- 
riculum.  Here we have the two populations- 

II,: Students who would fail to do  satisfactory work if admitted. 
n,: Students who would do satisfactory  work if admitted. 
Let  us consider for this example each of the four  major  steps re- 
quired to evolve the classification rule. 

T h e  selection of the  variables  to be used. The problem of selec- 
step 1 tion of variables  in classification applications is comparable to 

that found  in  most scientific problems especially when the problem 
is being studied  on  an empirical or statistical basis. Thus one 
must  not  only select variables that form an  adequate  set for the 
discernment, but also must  often consider techniques  for  reducing 
the original set of variables down to a more manageable set, 
since the use of a large  number of variables  in  such  problems 
frequently  produces  both  arithmetic  as well as theoretical compli- 
cations.  Included  in  this  consideration is the possibility that 
transforms of the original  variables may provide a better basis 
for  making the classification than one would have if he used 
the variables  in their original  form. We will forego in  this  paper 
any  further discussion of this  fundamental problem and simply 
use for  illustrative  purposes the following three  variables: 
X ,  = The individual's score on a Mathematics  Placement  test. 
X ,  = The individual's score on an English test. 
X ,  = The individual's  General Aptitude  Test score. 

T h e  technique  to be used in making  the  classification. Since the 
step 2 observational  vector  consists of three measured  variables which we 

have reason to believe are  distributed  in  each  population  as the 
multi-variate  normal  distribution  with  there being an equal co- 
variance  matrix for the two  normal  distributions,  let us elect  to 
use the Wald Classification Statistic  as  the  technique.  Thus 
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and  the classification rule that we will  use will be: 
“If W ( 2 )  > X classify the 2 as being in population II,.” 
(That is, we  will admit  the  student  to  the curriculum.) Kow 
W ( 2 )  is a linear  function of 2 which when the summation signa 
are expanded yields the form: 

W(2) = [u11(p:2) - p.“:) + P ( p : 2 )  - pi1)) + uls(p;z) - p 3 ] 2 ,  

+ [u21(pL:2) - p i 1 ) )  + u22(p:2)  - pL:l)) + u23(p;2) - p Y ) ] Z  

+ [ ~ ~ ~ ( p : ”  - pi1)) + u32(pi2)  - p:’)) + - p ; ‘ ) ) ] z , .  

Thus  to  evaluate  the coefficient of W ( 2 )  we will use as  estimates 
of the uVq’s and  the pi1) and p:’) the corresponding covariance and 
mean  values  obtained  from the two  samples. That is, the N ,  
sets of triples (Xl, X,,   X,)  assumed  available  from unsuccessful 
students.  Say  that  these samples  have the numerical  characters 
shown in  Table 1. Then  inverting  the covariance matrix  and sub- 

Table 1 

Sample means Matrix of Pooled  Covariances 

Population 1 Population 2 

stituting  these values into  the  equation for the Wald  Statistic, 
we obtain 

W(2) = +0.03752, + 0.06722, + 0.19112,. 

Then if we were considering an individual for classification, say 
one whose scores on the  three  tests were 

2, = (34, 36, l a ) ,  

we would have  the value of the  statistic as 

W(2J = 0.0375(34) + 0.0672(36) + 0.1911(12) = 5.987. 

The question of classification has  then been reduced to  that of 
deciding if W(2,)  = 5.987 is greater than a  prescribed X. 

Selection of the  decision  rule  to be used in making  the  actual 
classification. In  our student’s  admission  problem we have seen 
how the problem was reduced to  the question of how to determine 
the  appropriate value of X. TWO of the three  general decision ap- 
proaches  present  themselves  for  consideration  here: the control 
of error  approach and  the cost control  approach. Let us consider each 
of these  in  turn. 

1. T h e  control of error  approach. For our problem  let us assume 
that  the admissions office requires an admission policy such that 
the probability of a student doing unsuccessful work if admitted 
should  be less than or equal  to one tenth. 
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Also assume we know: 

q1 = the a priori  probability of a  candidate  for admission being 

qz = the a  priori  probability of a  candidate for admission being 
from  population n, = 0.25, 

from  population TI, = 0.75. 

Then if we wish an admission policy that would operate so as to 
minimize the expected loss, we have  that 

LA = nlp(2 I 1, X>c(2 I l> + q$(l I 2, X)c(l I 2) 
where LA is the expected loss. In  our particular case, 

LA = (0.25)(10)~(2 I 1, X) + (0.75)(20)~(1 I 2, X) 

= 2.5p(2 I 1, X) + 15.Op(l 12, X). 

So we seek a X which would minimize LA. One can  simply try dif- 
ferent  values of X, determine the  p(2 I 1, X) and p(1 I 2, X) cor- 
responding to  the X and  then  compute  the LA. Since the relation- 
ship  between L, and X is quite  smooth, one  can  through  such  a 
trial procedure  approximate the appropriate minimizing value 
of X within  three or four  steps. 

Determining the  efectiveness of the  above classiJication rule. 
In  the case of the above  two populations-control of misclassifi- 
cation  error situation-we compute the probabilities: 

p(2 I 1) = P {admitting a student who subsequently does un- 
satisfactory  work} 

= P {classifying 2 into TI, when 2 belongs to nl } , 
and 

p(1 I 2) = P {failing to  admit a student who could do successful 
work] 

= P {classifying 2 into TII1 when 2 belongs to n,) . 
Under Step 3 we determined the classification rule (i.e., the X) 
such that p(2  I 1) = 0.10. To determine p(1 1 2) we have 

W ,  = uii(p:') - p ~ ' ) ) p ~ z )  = 11.422, 

and,  due  to  the  equal covariance  assumption, 

V ,  = 3.676, 

P P  - 
i=l  i = l  

so 
1 ( 1 0 . 2 0 - 1 1 . 4 2 2 ) /  d/8=% 

P(1 I 2) = s_ e d% = 0.26. - z = / 2  

The rationale  in  these  probability  evaluations  can  best be exhibited 
graphically  (Figure  2). 

Thus we find that  the operational effectiveness of the classifi- 
cation  rule is such that p ( 2  I 1) = 0.10 and  p(l I 2) = 0.26. If 
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Figure 2 Probability evaluations 

07.746 10.203 11.422 

one is disturbed  over the size of p( l  I 2 ) ,  he  can  either increase 
the allowable size of p ( 2  I 1) or he may seek additional or new 
variables that  better discriminate between the two  populations. 

Additional considerations 

Essentially,  each of the classification techniques identified above 
follow the four  main  developmental  steps that were enumerated 
in  detail for the Wald Classification Statistic. Two  additional 
problems warrant special mention, however. 

The first  is the so-called distribution problem. That is, the 
distribution requirement to have some knowledge as  to how the  statistic or 
problem likelihood ratio being used is distributed  in  probability  under the 

condition that  an individual comes from n,. This knowledge is 
required if one wants  to  formulate  the  particular classification 
rule to meet an error  control or cost criterion. It is also needed 
if one is to  estimate measures of operational effectiveness. We used 
the information that W ( 2 )  was normally  distributed to generate 
these  distribution  requirements  in the  student admission illustra- 
tive example. One may, however, be interested  in using a classifi- 
cation  technique  for which the  mathematical form of its conditional 
probability  distribution is unknown. In  that  case, especially if 
one has available a high speed  digital  computer and  the sample 
sizes are sufficiently large,  one  can  resort to  the use of an empirically 
generated  conditional  distribution using the sample data. To 
illustrate the concept,  let  us  suppose that we have available  in 
the  student admission problem data  on 190 individuals  known to 
be from  population II, (unsuccessful). Then if the value of the 
statistic, W,(Z) ,  were computed  for the 190 cases, these  observa- 
tions could be tabulated  into a  cumulated  frequency  distribution, 
the distribution  plotted  and  a  smooth  distribution  function  drawn 
free-hand to  approximate  the ogive of the underlying  conditional 
probability  distribution.  From  such  graphical  representation  ap- 
propriate  values of p ( 2  1 1, X) and p(1 1 2,  X) could be  determined 
for  corresponding  values of X. In  our  error  control classification 
rule  for the college admission problem we would have the fre- 
quency  distribution  and  graphical  representation  as shown in 
Table 2 and  Figure 3. 
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A comparable  empirical  estimate of the  distribution of W ( Z )  
under the condition that  the observation belongs to population 
II, could be evolved through  the use of the observation  available 
in the sample from II,. The only variation  in  the technique would 
be in the accumulation of the frequencies. In  this second case 
one would accumulate the frequencies with increasing W’s. 

Thus me would have an estimate of p ( 2  I 1, X) which yields 
the  estimate of the probability of classifying an individual who 
is a II, as a n, if one used the decision rule “If W ( 2 )  > X classify 
the individual  into 

The second problem that warrants  additional  mention is the multi- 
multi-population  problem.  Here we are  interested  in classification population 
procedures that could classify an individual  into one of the several problem 
populations, where the  number of populations is greater than two. 

If one can associate with each population, I I i ,  a pi, the a  priori 
probability of obtaining for classification an observation  from 
population I I i 7  and a cost factor, C(j  I i), associated with mis- 
classifying an observation from I I i  as being from II,, then a 
decision rule is available that will minimize the expected cost of 
making classification. The rule states  that: 

“If 
P P 

for all j ( j  # I;) then z should be  classified into u k . ”  

If the inequality becomes an equality for some indices along with k ,  
then  it is  immaterial as  to whether the individual is classified 
into I I k  or one of the populations whose index yields the  equality. 

To illustrate the application of this rule, consider a three- 
population classification problem with 

Table 2 Frequency distribution Figure 3 Empirical distribution of W(Z) given 
for  W,(Z) college 
problem,  population III (Z) 

Interval ?”ally CZL 
> - 

4.50-  5.24 9 1 
5.25-  5.99 I!) 1 
6.00-  6.74 24 I 
6.75-  7.49 25 138 
7.50- 8.24 21 1 
8.25-  8.99 17 SI) 47 0 3 0  

9.00-  9.74 24 72 38 
9.i5-10.49 12 38 20 020 - 

10.50-11.24 18 24 13 
11.25-11.99 2 G 03 O lo  

12.00-12.74 4 

- 

4.50 

I _ _ I  .” I 

6 00 7.50 9.00 10.50 12.00 13 50 
WQ 
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II, ?” II, II, 
11, - 2 

n2[ 3 ’1 
G 6 
with the Z to be classified having  population likelihood values of 

pl(Z) = 0.40, p 2 ( Z )  = 0.50, p3(Z) = 0.25. 

Consider then  the  summations: 

i # 1, X1 = qzpz(z)c(1 I 2) + &P3(Z)c(1 I 3); 

i f 2, s, = qlPl(z)c(2 I 1) + P3P3(Z)C(2 I 3); 

i # 3, 8 3  = 41pl(Z)c(3 I 1) + qzpz(z)c(3 1 1). 

We  have: 

X, = ($)(0.50)(2) 4- (*)(0.25)(7) = 0.61, 
X, = (+)(0.40)(3) + (Q)(0.25)(1) = 1.01, 

X, = ($)(0.40)(6) ($)(0.50)(6) = 2.20. 

And  in this case, since X, is the smallest  sum, we would classify 
the observation 2 into II1. 

It should  be  noted that if this  method were to be  utilized when 
no misclassification costs were available and one  assumes that 
all the C(j I i) are equal,  say to  unity,  then  the inequalities  can  be 
shown to reduce to: 

“If 

~kpk(Z) < qipi(Z) for all i # IC, 
classify Z into I I k ,  that is the most  probable  population.” 

Suppose that one does not  have available a priori  probabilities, 
then it is not possible to use the concept of minimum  expected 
loss. In  this case one of the decision strategies  available is that 
of using a  minimax  solution, that is to  obtain  the classification 
decision rule that minimizes the maximum  probability of making 
a misclassification error. To evolve this rule we may first consider 
the log likelihood functions: 

Now the inequalities, Ui,k(Z) 2 Ci - Ck, k = 1, 2, * , p ,  ( k  # j ) ,  
with the Ck’s being taken  as non-negative will define a set of 
classification regions R,, R,, * . , R, in the sample  space. To find 
the  set of R’s that yields the minimax  solution, it is required that 
we use the (7,’s such that  the probabilities of correctly classifying 
an  observation from TIi into IIi  are  equal for  all i’s. Here we have 

pini 1 l I i ,R}  = 1- p J X )  d X ,  i = 1 , 2 ,  * - , p .  
R i  

The particular  method of numerical  evaluation of these  integrals 
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for trial values of the C,’s would depend upon the assumed nature 
of the distribution  functions p , ( X ) .  

classification techniques will usually require the use of high speed remarks 
computing facilities. This is especially true if the dimension of the 
problem is a t  all large or if one must empirically generate the con- 
ditional  distribution of the  statistic being used by utilizing the 
individual  observations  available  in the samples. There  are  many 
unresolved problems associated with the use of many of these 
techniques, but  it is felt that  the systematic  exploration of their 
applicability  in  many  practical problems cannot help but  advance 
the general state of the  art. Although the discriminating power of 
the set of variables  currently being accumulated  can be deter- 
mined, the characteristics of the underlying  distributions and  the 
relative effectiveness of the competitive procedures must in  many 
respects be tackled  pragmatically.  Attention must be given to  the 
problem of estimating  both the underlying  a  priori  probabilities 
associated with  the populations being considered along with the 
misclassification cost factors.  Individuals  may feel that such 
refinements are  inappropriate to their  particular classification 
problem, but  it can be argued that until one addresses himself to 
the problem in some such systematic  and scientific way, no real 
improvement can be expected. The criterion of worth of any 
system is its operational  effectiveness and  thus one should not 
only feel challenged to  obtain  estimates of the operational ef- 
fectiveness of the “system” he is now using, but he should also 
investigate how the effectiveness may be improved by using one 
of the above  statistical classification techniques. 

In conclusion it should be noted that  the practical use of these concluding 
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These  papers introduce concepts involved in adapting the principal 
programming  components within a single system. 

After  an  examination of the over-all structure, the system’s assembler, 
loader, and compilers are discussed. In  this  discussion  (Parts I 
through V )  attention i s  focused on the general design notions  with 
minimal reference to the detail of mechanization and particular 
machines.  Such reference, where necessary, i s  made to implementation 
of the system  on the 7090. 

Part V I  compares implementation of the system  on  diferent  machines 
and, to a  certain extent, isolates the concepts that are independent of 
hardware. 

Part V I I  i s  devoted to a general analysis  of the system  design. 

Although some familiarity  with the individual  system components 
i s  assumed, an  e$ort i s  made to address the systems engineer irrespec- 
tive of his particular  programming  experience. 

Design of an  integrated  programming 
and  operating  system 

Part I: System considerations 
and the monitor 

Part 11: The assembly program 
and its language 

Part 111: Expanded function of the loader 

Part IV: The system’s FORTRAN compiler 

Part V: The system’s COBOL compiler 

Part VI: Implementation on different 
machines 

Part VII: Analysis of the system  design 

Parts I and I I  are published in this  issue.  The others will appear 
in successive issues. 


