This paper reviews the procedure of evolving statistical classification
rules.

Selection of variables, methods of classification, selection of a decision
rule, and the problem of analyzing effectiveness of the technique are
constdered.

The procedure is demonstraled computationally by means of an
example.

Statistical classification techniques
by C. F. Kossack

One of the important areas of statistical analysis is discrimination
problems of among different populations. A suggested term for this analysis
discernment is discernment theory. Within this area there are essentially three
theory major types of problems. So much confusion in terminology exists

that it seems appropriate to first mention each type of problem

before considering the particular problem of statistical classification
techniques.

1. The identification or discrimination problem. 1f for a given
group of distinct populations there is available a multi-variate
random variable, the identification problem is that of evolving
an index or numerical measure making use of the multi-variate
random variable in such a way that this index, or measure, when
evaluated for each of the populations, “best’” identifies or dis-
criminates among the several populations. The classical approach
to this problem is that of using a linear discriminant function as
first introduced by R. A. Fisher.!

2. The statistical sorting or numerical taxonomy problem. If one
has reason to believe that his multi-variate sample came from
more than one distinet population, the statistical sorting problem
is that of evolving a rule, based only on the information contained
in the mixed sample, for sorting the sample observations into the
several (the exact number may itself be unknown) distinet popula-
tions. An approach to this problem considering each variable to
be of a simple attribute (zero or one) type has been developed
by T. T. Tanimato.”
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3. The classification or diagnosis problem. If for a given group of
distinet multi-variate populations one has available separate
samples, the classification problem is that of evolving a decision
rule that would enable one to assign a new or additional observa-
tion or individual into his proper population if all one knows about
the individual is his multi-variate observational vector and that
he came from one of the given populations. It is this latter problem
that is the concern of the present paper.

For the convenience of the reader who may wish to review
terminology, the following glossary (of terms used) is inserted:
Maximum lkelihood estimates. If f(Xy, Xo, --- , Xm; 6) is the probability
density for random sample of size n drawn from a population with unknown

parameter 6 then the maximum likelihood estimate of 6 is the number 8 such
that

f(le Xz: Tty Xn; é) Z f(le XZ, Tt Xna 0,)
where 8 is any other possible value of 6.

Multi-variate normal probability density function.

f(Xl, X2, ka) — (1/2’"_)15/2\/[—0_7;—‘
exp |:_(1/2) 2 2 X = )X, - “],)i|

i=1 =1
where the inverse of the matrix ||¢¥]] is the matrix of variances and covari-
ances.

Mullinomial probability density function. The multinomial distribution is
associated with repeated trials of an event which can have more than two
outcomes. Its functional form is:

n! . Xk
[(X1, Xoy -0, Xi) = m,—z!pfpf cpEt

M easurement scales.
Nominal or classificalory scale. When numbers or other symbols are used
simply to classify an object or characteristic. Example: the designation of
postal zones.
Ordinal or ranking scale. If a ““greater than’’ relationship holds for all pairs
of classes of a nominal scale, we have an ordinal scale. Example: ranks in
the military service.
Interval scale. An ordinal scale in which the differences (“‘distances’) be-
tween any two numbers on the scale have comparative meaning. Example:
measurement of temperature.
Ratio scale. An interval scale in which the zero point can not be arbitrarily
chosen. Example: measurement of mass (as contrasted with temperature
where assignment of zero to different temperatures on alternative scales,
e.g., centigrade and Farenheit, is permissible).

Random variable. A variable whose occurrence is governed by a probability
density function.

Categorical type variable. A variable whose measurement is in the nominal or
classificatory scale.

Testing a statistical hypothesis. A statistical hypothesis is any statement rela-
tive to the nature of the probability function of a random variable, and any
rule based upon observational data that determines whether or not one rejects
the hypothesis is a test of the statistical hypothesis. Example: for the normal
probability density function,

(X) = 1/V2r exp [—(L;—ﬁ} dx,

STATISTICAL CLASSIFICATION TECHNIQUES

terminology




statistical
classification

138

an hypothesis might be “The mean is less than 50,”” and a test of this hypothe-
sis the rule, “If the mean of a sample from the population exceeds 65, reject
the hypothesis.”

Most powerful test of a statistical hypothesis. The power of a test of a statistical
hypothesis is the probability of rejecting the hypothesis when it is false, while
the level of significance of a test is the probability of rejecting the hypothesis
when it is true, A most powerful test is one that has maximum power relative
to all tests of equal or lower level of significance.

Likelihood. Let Xy, X, - -+, X, be a sample of size n from a population with
probability density function f(X, 6). The likelihood of the sample is then the
product: L = f(X1, 0)f(Xs, 6) --- f(Xn, 6).

Non-parametric methods. Techniques for estimating parameters and testing
hypotheses which require no assumption about the form of the probability
density function are called non-parametric methods.

Studentized form of a statistic. A statistic is said to be “studentized’”” when the
parameter values in the originally derived form of the statistic are replaced
by their maximum likelihood estimates from an available sample. Example:
if the original form was 8§ = /X [(X: — u)?/n], then its studentized form
would be s = /¥ [(X; — X)2/n], where 4 = parameter (the population
mean) and X = 3 X;/n (the sample mean).

The theory of statistical classification deals with the problem
of assigning one or more individuals to one of several possible
groups or populations on the basis of a set of characteristics ob-
served on them. Thus, the problem of classification can be con-
sidered as a special case or application of multi-variate decision
theory. The nature of the observed characteristics may vary from
problem to problem. In some cases they may be all of a measured
type while in another situation the variables may all be of the
simple categorical type of attributes in which each observation
can take on but one of a finite number of distinet values or states.
Siegel has noted® that ‘““measurements may, in general, be from
four scales: the nominal, ordinal, interval, and ratio scales. In
any given multi-variate classification problem, the measurements
may be of a mixture involving some or all of these types of
variables.” It should be expected that numerous approaches have
been advanced as to how one should go about evolving a classifi-
cation decision rule. It is the purpose of this paper to examine the
general problem of statistical classification and then to discuss
some of the proposed solutions in some detail.

It should be recognized that since the area of interest has been
designated as statistical classification, this means that the decision
rule must be based upon observational data available from samples
from the several populations rather than on known population
characteristics. Thus we assume that we have a sample of indi-
viduals from each population and for each of these individuals
we have available the same set of observations as are available
for the individual requiring classification.

Consider for illustration a well-known classification problem,
that of a prospective student applying for admission by sub-
mitting credentials such as his high school records and in addition
being given a battery of admission tests. These data become the
multi-variate set of observations available on each applicant.
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The problem is to classify, in advance, the applicant into the
population to which he belongs, where the alternatives are the
population of those students who can successfully complete college
training and the population of students who will not complete
the college courses successfully. Available to the admissions office
are the same data on former students, some known to have com-
pleted and the remaining known not to have completed college.

There are many classification problems in science and industry.
For example, in biometric investigations one may want to assignh
a skull found in archaeological excavations to some dynastic period
on the basis of anthropometric measurements. A taxonomist may
want to classify a plant specimen into its proper species on the
basis of measurements on its roots, stems, leaves, and flowers.
Manufactured articles may be accepted or rejected on the basis
of certain measurements made to determine whether or not they
conform to specifications. Personnel may be assigned to duties
on the basis of their scores in a battery of tests given to each
employee. These and many more are essentially problems in
classification and in a general sense are problems of statistical
discrimination.

The first attempt to study the discrimination problem sta-
tistically was made by Karl Pearson in 1921. In a paper® by
M. L. Tildesley, Pearson introduced the concept of a coeflicient
of racial likeness to serve as a measure of the “distance” between
populations. The coefficient was defined in terms of sample means
and variances. The coefficient assumed that all the observations
were of a measured type having, in fact, the same variance and
being uncorrelated. The coefficient was used to determine the
probability that samples came from one and the same population
and in this sense served as a test of divergence rather than as a
clagsification rule.

In 1925, P. C. Mahalanobis of the Calcutta School of Statistics
introduced the concept of a ‘“measure” of divergence between
two populations and in 1928, in a paper® presented to the Indian
Science Congress, he proposed a generalized distance function, D”.
The original form of D? involved only population means, variances,
and covariances but the “studentized” form of the statistic was
considered at some length by R. C. Bose and S. N. Roy in a
series of papers.®

In 1936, R. A. Fisher initiated a new approach to the problem
of diserimination and classification with the introduction of linear
discriminant functional analysis. This approach led to a new
method of deriving test criteria suitable to multiple variate
situations. The principle behind the choice of a “discriminant
function” is merely to reduce multi-variate problems to univariate
problems, a process that has been found extremely useful in multi-
variate analysis. The problem is reduced to that of a single variable
by choosing a linear combination of the original variables and then
constructing a statistic suitable for the univariate case. In principle,
the discriminant function need not be linear but can be enlarged
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to cover any class of functions. But in practice, a linear function
of the original or transformed variables is nearly always chosen
because it does not lead to complex distribution problems.

Another classification technique that is closely related to that
of Mahalanobis’ D* and Fisher’s linear discriminant function is the
one obtained by the late Abraham Wald. In a paper’ appearing
in 1944, Wald made an important contribution by introducing
the statistical classification problem. He considered the specific
problem of classifying a single p-variate observation into one of
two p-variate normal populations, II; and II,, being given that
the observation belongs to II, or to II,. The classification problem
is reduced to a problem in testing the hypothesis H,: that the
observation belongs to II,, against the alternative hypothesis H,:
that the observation belongs to II;. The fundamental lemma
due to Neyman and Pearson provides a classification statistic
to classify the observation in TI, or II; in a manner that is ‘‘best,”
where the “best” manner of classification corresponds to the
most powerful test of H, against H,. In the first instance the
population parameters are assumed to be known, so that the
classification statistic, depending on the parameters, is exactly
known. In general the parameters are not known and it is therefore
required that they be estimated from samples from the populations.

The next section of the paper outlines a step-by-step procedure
which may be followed in deriving a classification rule. This is
followed by an illustrative example which details the application
of the steps to a particular problem. Finally the distribution and
multi-population problems are considered.

Derivation of a classification rule

Let us now look at the steps required to evolve a classification
rule. Statistical classification rules, in general, depend either upon
the concept of likelihood where one considers the ratios of the
likelihoods that the observation to be classified came from the
suspect populations, or they depend upon the value of some
classification statistic whose form is assumed and is evaluated
for the individual requiring classification. The samples that are
available from each population are used to estimate the likelihood
ratios or the constants in the classification statistic, depending on
which approach is being used.

There are four major steps that must be accomplished if one
is to evolve a classification rule, in brief: selection of the variables,
selection of the classification technique, selection of the decision
rule, and an analysis of effectiveness. These we now consider.

The selection of the variables to be used tn making the classification.
Here one encounters problems such as whether or not to include
in his observational vector variables of different types, how reliable
each available variable can be measured or determined, the dis-
crimination power of the variable relative to the populations of
interest, the inter-relationship of the variables, and the cost of
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making each variable determination. The decisions of selection
depend in the main on personal judgments since at present no
good selection rule exists.

The technigue to be used in making the classification estimate
and the use of available sample data to make the estimates. One can
identify several estimation techniques in the literature:

1. Non-paramelric estimation. In this procedure the ‘“‘closest”
neighbors of the cbservation are identified in the pooled samples
and the percentage of these that belong to each population is
used as the likelihood ratio estimates. Figure 1 graphically dis-
plays the concept. Then the likelihood values for each population
are estimated as f,(Z) = n,/N, where n, = numbers of points in
the neighborhood that are from the sample from population TI;
and N,; is the total number of observations available from II,.

2. Classification by categories. In this procedure, each variable
is converted to a categorical type and one thus has states Sy,
Sz, -+, Sa, » for the pth variable. All possible product classes
are then identified, there being a total of C = nyn, - - - n, different
product classes. For example, suppose X, is the sex variable
having the two states: S;; = male and S,, = female, and X,
is the variable for age which has been converted to say, three
states: 8, = young, S, = middle age, S,; = old. Then there
would be 2-3 = 6 product classes:

= 5;:8:2 = young, males;
= 8,8, = young, females;
= 8118:: = middle aged, males;
= 8,182 = middle aged, females;
= 5,:8:: = old, males;

Cs = S5,8;: = old, females.

The frequencies N ., are then determined, representing the number
of individuals from the population II; who fall in the C, class. The
likelihood value for each class is then taken to be f,(C,) = n,.,/N..

3. Parametric classification. If a density function can be specified
for each population, then the parameter vector 6 = 6,, 6,, -+ - , 6,
can be estimated for each population by using the maximum
likelihood estimate obtained from each sample. Then the likeli-
hood value associated with the observation Z for each population
would be L.(Z) = §.(Z; 8,). Two of the most common density
functions used are the multi-variate normal and the multinomial.

4. Classification statistics. The use of a classification statistic
is usually restricted to the two-population case since one finds
that most such statistics are formed through an algebraic simplifi-
cation of the likelihood ratio function obtained by dividing the
likelihood values for the two competitive populations. Such sta-
tistics usually involve the moments of the population distributions
as well as the observational vector, Z. To evaluate the statistic
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for a given Z, the maximum likelihood estimates of the parameters
as obtained from the respective samples are used. Some of the
better known statistics are:

a) The Wald Statistic:

P P

W(Z) — Z Z N(,u(Z) (1)>Z

¢=1 p=1

where ¢°° = general term in the inverse of the common co-
variance matrix and pl” = mean of X, in population II,.

The Purdue Statistic:

P P
B(Z) = Z Z [(‘71{:) - a’(’;’))Zqu - 2(”?1“)#;” - U(2>P~p2))Z

¢=1 p=1
1y (1) (z) (2)
+ (Um#p Mo — U(z)#p )]

where index, ¢, indicates the characteristic for the 7th popu-
lation.

¢) The Anderson Statistic:
A(Z) = alZI + a2Z2 + et + apr + ce + apZP + b

where

P

a, = Z U(T)(/"'(Z) - .u;l)):

=1

—\/a Z(l) aa’u‘” + \/a 2(2) , (2)
'\/a (2)a+‘\/a/ (l)a ’

e

and r is the positive root of the matrix equation

{qu 5 (r ) Z(” ,

where the Z matrices are

o= 2 - 20

and

(r’) — 2 Z(l) + (1 - 7'2) Z;]z),

and the vector of mean differences, 4, is

_ @ a
8, = Uy — Mp .

The Shaw Statistic

P P
82y = 2 2 (% — )Z,Z,.

¢=1 p=1

Selection of the decision rule fo be used in making the actual
selection of classification decision for a gien observation. To discuss this step
decision rule at this stage it seems best to restrict our consideration to the two-

population classification problem. We then have available for
making the classification decision either a likelihood ratio that is
a numerical function of the observational vector Z, say, L(Z),
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or we have a classification statistic defined as a numerical function
of Z, say C(Z). In either case a decision rule is then simply the
division of the L(Z) or C(Z) one-dimensional interval into two
regions such that for those Z’s that yield an L(Z) or C(Z) that
falls in region one the individual will be classified into population
one; otherwise into population two. Thus we have reduced the
problem of classification to that of determining the one region.

There are in general three decision strategies used in situations
like this. The first relates to the control of the probabilities of mak-
ing errors of misclassification. There are two such errors, the error
of classifying an individual who really belongs to population II,
into population IT, and the error of classifying an individual who
really relongs to II, into population II,.

Since once we have designated one region of classification, the
other region is automatically determined (being the complement
of the first region with respect to the entire sample space), we can
select the regions so as to control one of the errors of misclassifica-
tion or so as to in some way balance the probability of one type
error against the probability of making the other type error
(i.e., making both probabilities equal), but we cannot exercise
independent control on each error separately.

The second approach to selection of the classification region
relates to the cost of making misclassification errors. We can de-
termine the expected cost of misclassification through the formula:

C(R) = ap2 | 1, B)C2| 1) + ¢.p(1 ]2, R)C(1 | 2), where

q; = the a priori probability of encountering an observa-
tion to be classified from IT;,

p(i | j, B) = the probability associated with the region R of
classifying an individual into population II, given
that he really belongs to II,, and

C(i | j) = the cost of misclassifying an individual into popula-
tion II; given that he really belongs to II;.

Usually one is interested in obtaining the region R that essentially
minimizes this expected cost.

The third approach uses the so-called minimax approach found
in decision making. In this case one seeks the region R that mini-
mizes the maximum error that one may make. Often these re-
quirements depend on numerical methods for their application.
It seems best to defer a more detailed discussion of this step until
an actual example is considered.

Determining the operational effectiveness of the classtfication
technique. Basic to the measurement of the operational ef-
fectiveness of any classification technique are the probabilities:

p(z | /) = the probability of misclassifying an individual who
. belongs in population II; into population II,.

From these probabilities one can evolve expected cost estimates as

STATISTICAL CLASSIFICATION TECHNIQUES

analysis of
effectiveness




144

well as other criteria of worth. To obtain estimates of these proba-
bilities one requires the conditional distribution function of the
likelihood ratios or the classification statistic used in the technique.
In some cases these distributions can be expressed either exactly or
approximately in mathematical form and then the misclassification
probability estimations simply require the evaluation of an integral
over the required region. When such a mathematical representation
is not available, an empirical approach can be used involving the
individual observations available in the samples to produce an
empirical estimation of the conditional distributions. Here again
it seems best to discuss the details of this step later around an
actual problem.

Example

To demonstrate® how these approaches are actually utilized in a
practical problem, let us consider the simple example of a classifi-
cation problem, that of student admission to an engineering cur-
riculum. Here we have the two populations—

I1,: Students who would fail to do satisfactory work if admitted.
II,: Students who would do satisfactory work if admitted.

Let us consider for this example each of the four major steps re-
quired to evolve the classification rule.

The selection of the variables to be used. The problem of selec-
tion of variables in classification applications is comparable to
that found in most scientific problems especially when the problem
is being studied on an empirical or statistical basis. Thus one
must not only select variables that form an adequate set for the
discernment, but also must often consider techniques for reducing
the original set of variables down to a more manageable set,
since the use of a large number of variables in such problems
frequently produces both arithmetic as well as theoretical compli-
cations. Included in this consideration is the possibility that
transforms of the original variables may provide a better basis
for making the classification than one would have if he used
the variables in their original form. We will forego in this paper
any further discussion of this fundamental problem and simply
use for illustrative purposes the following three variables:

X, = The individual’s score on a Mathematics Placement test.
X, = The individual’s score on an English test.
X: = The individual’s General Aptitude Test score.

The technique to be used in making the classification. Since the
observational vector consists of three measured variables which we
have reason to believe are distributed in each population as the
multi-variate normal distribution with there being an equal co-
variance matrix for the two normal distributions, let us elect to
use the Wald Classification Statistic as the technique. Thus

3 3

W(Z> = Z E qu(/"'c(lz) - ule))Zm

¢=1 p=1
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and the classification rule that we will use will be:
“If W(Z) > X classify the Z as being in population II,.”
(That is, we will admit the student to the curriculum.) Now

W(Z) is a linear function of Z which when the summation signs
are expanded yields the form:

WZ) = [o"(w” — p") + o(w” — ") + o (ws” — w17
[ (#(2) (1)) + 22(“(2) (1))_|_ (#(2) #él) ]Z
+ [ (#(2) (1)) + 32(M(2) (1)) + 33( (2) (1) ]Z3

Thus to evaluate the coeﬁiment of W(Z) we will use as estimates
of the a,,’s and the p{’ and p* the corresponding covariance and
mean values obtained from the two samples. That is, the N,
sets of triples (X,, X,, X;) assumed available from unsuccessful
students. Say that these samples have the numerical characters
shown in Table 1. Then inverting the covariance matrix and sub-

Table 1

Sample means Matrix of Pooled Covariances

Population 1 Population 2 ’

@ =X, =4353 @@ = X, = 60.26
fr® = X0 = 4442 56® = X, = 59.50
a0 = X® = 1637 m® = X; = 27.02

stituting these values into the equation for the Wald Statistic,
we obtain

W(Z) = +0.0375Z, 4+ 0.0672Z, + 0.1911Z,.

Then if we were considering an individual for classification, say
one whose scores on the three tests were

= (34, 36, 12),
we would have the value of the statistic as
W(Z,) = 0.0375(34) + 0.0672(36) + 0.1911(12) = 5.987.

The question of classification has then been reduced to that of
deciding if W(Z,) = 5.987 is greater than a prescribed A.

Selection of the decision rule to be used in making the actual
classification. In our student’s admission problem we have seen
how the problem was reduced to the question of how to determine
the appropriate value of A. Two of the three general decision ap-
proaches present themselves for consideration here: the control
of error approach and the cost control approach. Let us consider each
of these in turn.

1. The control of error approach. FYor our problem let us assume
that the admissions office requires an admission policy such that
the probability of a student doing unsuccessful work if admitted
should be less than or equal to one tenth.
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What is needed is the distribution function of the statistic
W(Z) since we would like to select A such that P{W(Z) > A | Z
belongs to II;} = 0.10. We know that W(Z)is asymptotically
normally distributed under the condition that Z belongs fo II,
with the mean,

P P
W= 3 3 o — u

i=1 =1
and variance,
P P
— i (2) (1) (2) n
Vw = Z Z o (i = o ) — ).
i=1 i=1
For the sample data whose characteristics were given above

we find upon substituting the appropriate sample characteristics
into the formula for the means and variance that

W, = 7.746 and
Vw = 3.676.
Thus we have to solve for A in the equation

1 ® gz
2(1) = f 22 g7 = 0.10.
p( l ) m <>\—W,)/\/7;e

From the table of areas under the normal curve we have

A —7.746

1.282 =
V' 3.676

and
A = 10.20,
and our classification decision rule can be stated as:

“U W(Z) = +0.0350Z, 4+ 0.0448Z, 4+ 0.12747Z, > 10.20
classify the observation as belonging to I1,.”

(That is, admit the student to the curriculum.)

In a more general sense we can balance the two values of the
two misclassification probabilities by selecting the appropriate
value of X so as to meet any single constraint that might be im-
posed. For example, one may wish to control the errors such that
two probabilities are equal. It is evident that the solution of the
resulting integral equation may require a numerical technique
of some sort.

2. The cost control approach. Consider in our student admission
example that we have avilable the cost factors:

C(2 ] 1) = the cost of misclassifying an individual into population
II, when he really belongs to II, (admitting a poor
student) = 10, and

C(1|2) = the cost of classifying an individual into population
II, when he belongs to II, (failing to admit a good
student) = 20.
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Also assume we know:

¢, = the a priori probability of a candidate for admission being
from population I, = 0.25,

g, = the a priori probability of a candidate for admission being
from population II, = 0.75.

Then if we wish an admission policy that would operate so as to
minimize the expected loss, we have that
Ly=qp2|1,Nc@ [ D) + gp(1 |2, Nl | 2)
where L, is the expected loss. In our particular case,
Ly, = (0.25(100p(2 | 1, ») + (0.75)(20)p(1 | 2, »)
= 25p2 | 1,N) 4+ 15.0p(1 [ 2, N).

So we seek a A which would minimize L. One can simply try dif-
ferent values of A, determine the p(2 | 1, A) and p(1 | 2, A) cor-
responding to the A and then compute the L,. Since the relation-
ship between L, and A is quite smooth, one can through such a
trial procedure approximate the appropriate minimizing value
of A within three or four steps.

Determining the effectiveness of the above classification rule.
In the case of the above two populations—control of misclassifi-
cation error situation—we compute the probabilities:

p(2| 1) = P {admitting a student who subsequently does un-
satisfactory work}

= P {classifying Z into II, when Z belongs to II,},
and

p(1| 2) = P {failing to admit a student who could do successful
work}

= P {classifying Z into II, when Z belongs to IL,}.

Under Step 3 we determined the classification rule (i.e., the A)
such that p(2 | 1) = 0.10. To determine p(1 | 2) we have

P P
We= 2 2 o""(u® — u)u® = 11.422,
i=1 {=1
and, due to the equal covariance assumption,
Vv = 3.676,

80

1 (10.20~11.422)/ V37676
p(11]2) = T/2:f e ¥ dZ = 0.26.
M v—

The rationale in these probability evaluations can best be exhibited
graphically (Figure 2).

Thus we find that the operational effectiveness of the classifi-
cation rule is such that p(2 | 1) = 0.10 and p(1 | 2) = 0.26. If
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Figure 2 Probability evaluations
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one is disturbed over the size of p(1 | 2), he can either increase
the allowable size of p(2 | 1) or he may seek additional or new
variables that better diseriminate between the two populations.

Additional considerations

LEssentially, each of the classification techniques identified above
follow the four main developmental steps that were enumerated
in detail for the Wald Classification Statistic. Two additional
problems warrant special mention, however.

The first is the so-called distribution problem. That is, the
requirement to have some knowledge as to how the statistic or
likelihood ratio being used is distributed in probability under the
condition that an individual comes from II,. This knowledge is
required if one wants to formulate the particular classification
rule to meet an error control or cost criterion. It is also needed
if one is to estimate measures of operational effectiveness. We used
the information that W(Z) was normally distributed to generate
these distribution requirements in the student admission illustra-
tive example. One may, however, be interested in using a classifi-
cation technique for which the mathematical form of its conditional
probability distribution is unknown. In that case, especially if
one has available a high speed digital computer and the sample
sizes are sufficiently large, one can resort to the use of an empirically
generated conditional distribution using the sample data. To
illustrate the conecept, let us suppose that we have available in
the student admission problem data on 190 individuals known to
be from population II, (unsuccessful). Then if the value of the
statistie, W,(Z), were computed for the 190 cases, these observa-
tions could be tabulated into a cumulated frequency distribution,
the distribution plotted and a smooth distribution function drawn
free-hand to approximate the ogive of the underlying conditional
probability distribution. From such graphical representation ap-
propriate values of p(2 | 1, A) and p(1 | 2, \) could be determined
for corresponding values of A. In our error control classification
rule for the college admission problem we would have the fre-
quency distribution and graphical representation as shown in
Table 2 and Figure 3.
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A comparable empirical estimate of the distribution of W (Z)
under the condition that the observation belongs to population
II, could be evolved through the use of the observation available
in the sample from Il,. The only variation in the technique would
be in the accumulation of the frequencies. In this second case
one would accumulate the frequencies with increasing W’s.

Thus we would have an estimate of p(2 | 1, A) which yields
the estimate of the probability of classifying an individual who
is a II, as a II, if one used the decision rule “If W(Z) > X classify
the individual into II,.”

The second problem that warrants additional mention is the multi-
multi-population problem. Here we are interested in classification population
procedures that could classify an individual into one of the several problem
populations, where the number of populations is greater than two.

If one can associate with each population, II;, a ¢,, the a priori
probability of obtaining for classification an observation from
population TI;, and a cost factor, C(j | ¢), associated with mis-
classifying an observation from II; as being from II;, then a
decision rule is available that will minimize the expected cost of
making classification. The rule states that:

({If

P

gpZDyell |9 < 20 qpd@)e | 79)

i=1,#k i=1,#]
for all j ( # k) then Z should be classified into II,.”

If the inequality becomes an equality for some indices along with &,
then it is immaterial as to whether the individual is classified
into II, or one of the populations whose index yields the equality.

To illustrate the application of this rule, consider a three-
population classification problem with

q1=1/2, q2:1/31 (J%:l/(j
and the cost matrix C(7 j),

Table 2 Frequency distribution Figure 3 Empirical distribution of W(Z) given II1
for Wi(Z) college entrance 1.00

problem, population Il (Z)
0.90

Interval Tally Cum. % 0.80

0.70

50— 5. 9 190
.25~ 5. 19 181
.00~ 6. 24 162
J75- 7. 28 138
.50- 8. 21 110
25~ 8. 17 89
.00- 9. 24 72
.75-10. 12 38
.50~11. 18 24
.25-11.9¢ 2 6

0.60

0.50

RELATIVE CULMULATIVE FREQUENCY

0.40

0.30

[SREIN
W= OO OW~IOO Ut

.00-12. 4 4
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o m, I

mi- 2 7
Im,j3 - 1
I,|6 4 -
with the Z to be classified having population likelihood values of
p(Z) = 040, p.(Z) = 0.50, p,(Z) = 0.25.
Consider then the summations:
i 1,8 = ¢:p(2)C(1 | 2) + g:ps(2)C(1 | 3);
1#2,8 = ¢p(Z)C2 | 1) + ¢:ps(2)C2 | 3);
15 3,8 = ap(2)CB | 1) + ¢p(Z)C3 | 1).
We have:
8: = (1(0.50)(2) + (3)(0.25)(7) = 0.61,
8. = (3)(0.40)(3) + (§)(0.25)(1) = 1.01,

s = (§)(0.40)(6) + ($)(0.50)(6) = 2.20.

And in this case, since S, is the smallest sum, we would classify
the observation Z into II,.

It should be noted that if this method were to be utilized when
no misclassification costs were available and one assumes that
all the C(j | 7) are equal, say to unity, then the inequalities can be
shown to reduce to:

‘(If
upi(Z) < qp;i(Z) forall j =k,
classify Z into II,, that is the most probable population.”

Suppose that one does not have available a priori probabilities,
then it is not possible to use the concept of minimum expected
loss. In this case one of the decision strategies available is that
of using a minimax solution, that is to obtain the classification
decision rule that minimizes the maximum probability of making
a misclassification error. To evolve this rule we may first consider
the log likelihood functions:

Upn® = log 247

Now the inequalities, U; (Z2) 2 C; — C, k = 1,2, - -+, p, (k #= 7),
with the C,’s being taken as non-negative will define a set of
classification regions R,, R,, - - , R,, in the sample space. To find
the set of B’s that yields the minimax solution, it is required that
we use the C,’s such that the probabilities of correctly classifying
an observation from II; into II,; are equal for all 7’s. Here we have

p{H, III,', R} = p,(X) dX, i= 1,2, e, P,
R

The particular method of numerical evaluation of these integrals
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for trial values of the C,’s would depend upon the assumed nature
of the distribution functions p;(X).

In conclusion it should be noted that the practical use of these
classification techniques will usually require the use of high speed
computing facilities. This is especially true if the dimension of the
problem is at all large or if one must empirically generate the con-
ditional distribution of the statistic being used by utilizing the
individual observations available in the samples. There are many
unresolved problems associated with the use of many of these
techniques, but it is felt that the systematic exploration of their
applicability in many practical problems cannot help but advance
the general state of the art. Although the diseriminating power of
the set of variables currently being accumulated can be deter-
mined, the characteristics of the underlying distributions and the
relative effectiveness of the competitive procedures must in many
respects be tackled pragmatically. Attention must be given to the
problem of estimating both the underlying a priori probabilities
associated with the populations being considered along with the
misclassification cost factors. Individuals may feel that such
refinements are inappropriate to their particular classification
problem, but it can be argued that until one addresses himself to
the problem in some such systematic and scientific way, no real
improvement can be expected. The criterion of worth of any
system is its operational effectiveness and thus one should not
only feel challenged to obtain estimates of the operational ef-
fectiveness of the ‘“‘system’ he is now using, but he should also
investigate how the effectiveness may be improved by using one
of the above statistical classification techniques.
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concluding
remarks




These papers introduce concepts involved in adapting the principal
programming components within a single system.

After an examination of the over-all structure, the system’s assembler,
loader, and compilers are discussed. In this discussion (Parts I
through V) attention is focused on the general design notions with
minimal reference to the delail of mechanization and particular
machines. Such reference, where necessary, s made to implementation
of the system on the 7090.

Part VI compares implementation of the system on different machines
and, to a certain extent, isolates the concepts that are independent of
hardware.

Part VII is devoted to a general analysis of the sysiem design.

Although some familiarity with the indiwidual system components
1s assumed, an effort is made to address the systems engineer trrespec-
tive of his particular programming experience.

Design of an integrated programming
and operating system

Part I: System considerations
and the monitor

Part II: The assembly program
and its language

Part III: Expanded function of the loader
Part IV: The system’s FORTRAN compiler
Part V: The system’s cOBOL compiler

Part VI: Implementation on different
machines

Part VII: Analysis of the system design

Parts I and 11 are published in this issue. The others will appear
1N SUCCESSIVE 1SSUES.




