
This paper  analyzes the addition operation of floating-point systems. 

The  analysis of a  million executed Jloating-point additions i s  pre- 
sented as  an aid in optimizing  design and measuring performance. 

The frequency of the various shifts for floating-point  additions  with 
different radices was derived from the basic data so that designs with 
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The  major problem in designing a  floating-point  system  is the 
addition  operation. Knowledge of the relative  importance of 
each of the suboperations  can  assist the designer in materially 
improving  performance. Of special  import are  the provisions  for 
shifting  in  pre-addition alignment of the operand  radix  points  and 
in post-addition normalization of the result.  Since  these  shifts 
vary  over a wide range,  provision must be  made  for the worst cases, 
without requiring the  time of these  extremes  for  all cases. 

This  paper provides data  on  the  amount  and  type of shifting 
related to  the floating-point  operation. The  data were collected 
by  tracing  the execution of a  representative set of problems. An 
analysis of the results and some  comments on design choices are 
included. 

tion  often employs an exponent which indicates the displacement notation 
of the radix  point  from a fixed position, e.g., the  number -278.437 
is represented as -2.78437 X lo2, and  the  number +.000743 is 
represented as +7.43 x I n  a  computer,  these  numbers  are 
conveniently  represented as  +03 -27843700, and -03+74300000, 
the first  two  digits  being the exponent, and  the last  eight  digits the 
fraction. The radix  (in this example, 10) and  the position of the 
radix point  (to  the  left of the most significant fraction  digit) are 
normally fixed for a given arithmetic  unit.  By  restricting  the 
exponent to  be less than some modulus and  adding it to  that  
modulus, the exponent  can  be  treated  as a non-negative  integer. 

Instead of placing the radix  point in a  number, scientific nota- floating-point 
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and zero fractional  results  and  exponent underflows should be set 
to  this “zero.” 

Other  limitations  inherent  in  the  data flow paths  and  the 
register-adder complex, as  defined for  other  operations,  can  also 
pose implementation  problems. The  greatest difficulty for the 
designer  lies in  determining the  appropriate compromises between 
cost and speed  when he  is designing actual  hardware, or between 
storage  space  and speed  when he is designing a floating-point 
subroutine.’ To assist the designer in  his choice, relevant data  are 
needed with  regard to  the frequency of floating-point  additions, 
the various  amounts of shifting, the number of times the shift 
amounts exceed the precision representable, and  the frequency of 
recomplementation, etc. 

The frequency of the various  shifts  depends  on the radix of 
the computer, the  type of problem, and  the  data associated with 
the problem. This frequency  is  relatively  independent of the 
method  by which a  particular  computer  executes the floating- 
point  addition,  except  for  certain  small differences in  handling 
extreme cases. It is important  to  obtain  representative problems 
with  realistic data  and examine the  types of shifting  encountered 
during  execution of these problems. 

The  study involved  two phases. The first  phase  contributed 
to  the design of a  particular  binary comp~ter .~   This  design  in- 
volved a  shifter that could shift a few places (say 0 to 6) very 
quickly.  Long  shifts could then  be  done by taking  multiple  jumps 
(of 6), with  the excess (1 to 5) being  done in  the  same  manner  as a 
short  shift.  The problem  was to determine if this design was suf- 
ficiently fast or if a  larger  shifter had  to be  considered. 

Six representative  problems were selected from  those pro- 
cessed by  an IBM 704 at a  computational  laboratory  serving  a wide 
variety of engineers and scientists. A tracing  program  already 
available  for the 704 was modified to  gather  the  data. One of 
these  problems was traced twice  with  different input  data. If an 
entire problem could not be traced,  the process was terminated 
after  tracing  about 250,000 floating  additions.  These data suf- 
ficed to  show that  the chosen  design  was adequate. 

The second  phase of the  study was undertaken  to confirm the 
results of the first  phase by  gathering more data  and examining 
different  problems. The  study was  expanded to include the analysis 
of floating-point additions  with  radices  greater  than  two. Again, 
six problems were analyzed,  this  time selected  from  several  labora- 
tories.  One of the problems was traced  twice  with different input 
data.  In  this phase of the  study,  the analysis  was  terminated  after 
tracing  about 500,000 instructions (unless the problem  had been 
completed  earlier). The number of instructions  traced,  and  the 
number and percentage of floating-point  additions  included are 
shown in  Table 1. 

A  frequency  count of the  amount of alignment and normaliea- 
tion  shifting was kept for  each  problem  traced. In  summarizing 
these data, it was decided to express  each  shift as a  percentage of 
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Table 2 clu 

shif t  

result 0 
overflow 

" 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27-53 
54-255 

Equal  weight by shijt 
Alignment  Normalization 

- 0.39 
- 23.30 

24.29 58.04 
17.14 8.42 
10.59 2.69 
7.64 1.42 
6.55 0.89 
6.44 0.70 
5.81 0.56 
4.50 0.56 
0.90 0.40 
1 .05  0.31 
0.96 0.23 
0.78 0.13 
0.99 0.25 
0.95 0.35 
0.54 0.13 
0.60 0.04 
0.38 0.03 
0.38 0.07 
0.43 0.09 
0.34 0.09 
0.27 0.10 
0.37 0.09 
0.28 0.07 
0.22 0.10 
0.23 0.15 
0.24 0.10 
0.19 0.30 
0.73 
6.21 

~~ 

- 
- 



I Table 3 Shifting as a function of the effective signs 

sh i f t  I 
result O 
overflow 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

over 54 
27-53 

Totals 

Like  signs 
Align-  Normali- 
ment  zation 

- 
- 

12.54 
7.07 
3.93 
2.89 

4.51 
2.85 
1.86 
0.44 
0.60 
0.94 
0.63 
0.83 
0.39 
0.12 
0.36 
0.10 
0.10 
0.28 
0.05 
0.06 
0.14 
0.12 
0.07 
0.06 
0.05 
0.06 
0.43 
2.81 

42.27 

2.98 

17.43 
29.66 
0.01 
0.00 
0.02 
0.01 
0.01 
0.01 

0.00 
0.00 
0.00 
0.01 
0.01 
0.00 
0.00 
0.01 
0.00 
0.00 
0.01 
0.01 
0.03 
0.01 
0.01 
0.00 
0.00 
0.00 
0.00 

- 

0.02 

- 
- 

Unlike  sians 

- 

Align- 
ment 

- 
- 

13.74 
6.22 
4.84 
3.64 
4.79 
3.56 
2.28 
1.92 
0.66 
0.63 
0.90 
0.72 
0.71 
0.42 
0.36 
0.22 
0.19 
0.21 
0.22 
0.27 
0.20 
0.26 
0.18 
0.17 
0.19 
0.21 
0.10 
0.43 
4.49 

52.73 

Normali- 
zation 

0.82 
.~ 

- 
30.59 
8.00 
3.17 
1.52 
1.32 
1.02 
0.62 
1 .00 
0.93 
0.56 
0.66 
0.15 
0.21 
0.31 
0.16 
0.02 
0.06 
0.09 
0.16 
0.14 
0.05 
0.06 
0.06 
0.19 
0.49 
0.09 
0.28 
- 
- 

Total 
Align-  Normali- 
ment  zation 

- 
- 

26.28 
13.29 
8.77 
6.53 
7.77 
8.07 
5.13 
3.78 
1.10 
1.23 

1.35 
1.54 

0.48 

0.29 
0.31 
0.50 
0.32 
0.26 
0.40 
0.30 
0.24 
0.25 
0.26 
0.16 
0.86 
7.30 

LOO. 00 

1 .a4 

0.81 

0.58 

0.82 
17.43 
60.25 

3.17 
1.54 
1.33 
1.03 
0.63 
1.02 
0.93 
0.56 
0.66 
0.16 
0.22 
0.31 
0.16 
0.03 
0.06 
0.09 
0.17 
0.15 
0.08 
0.07 
0.07 
0.19 
0.49 
0.09 
0.28 

8.01 

- 
- 

of normalization  can occur, depending  upon the number of the 
leading digits that  are equal. In  any case, the result must be nor- 
malized a t  least  one position since it is less than one-half. If signs 
are unlike and  the alignment  shift is one position, any  amount 
of normalization  may occur. If the alignment  shift is more than 
one position, the normalization shift  can be, at most, one position. 
If the operands are unnormalized, there  may be a  normalization 
shift.  Table 3 shows that a small percentage of operands caused 
such normalization. 

If recomplementation is time consuming, Table 3 also contains 
a clue to  the design of the sign and  true-complement  controls 
so that  this  step can be bypassed in  most cases. For normalized 
operands, an ambiguous result sign appears only if there is no 
alignment  shift and  the operand signs are unlike. This  situation 
occurs only 13.7 percent of the time, and no more than half of these 
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In cycles of these cycles consists of six subcycles. During a  subcycle, an addi- 
Computer  Average Maximum tion  can  take place, or either  one or two  alignment or norndization 

shifts  can be  executed. For like signs, shifts  from 1 to 10 positions 
704 8.0  34 
709 7 . 3  15 

require  one  extra cycle (one  subcycle is reserved  for the addition), 
7090 6 . 3  15 shifts  from 11 to 22 positions  require  two extra cycles, etc. For 
7094 3 . 0  12 unlike signs, shifts  from 1 to 8 positions  require  one extra cycle 

(one  subcycle has been  reserved  for the addition, and  another  for a 
possible normalization of l), shifts  from 9 to 20 positions  require 
two  extra cycles, etc. For unlike signs, no  shifts or shifts of one 
position  cause  most of the normalization (19.96 out of 22.14 per- 
cent).  Therefore, allowing two  subcycles  for  alignment and addi- 
tion,  normalization of 1 to 8 positions  requires  one extra cycle, 
of 9 to  20 positions  requires  two extra cycles, etc.  This  counting is 
somewhat  conservative  because allowance for  normalization is 
counted  twice  in  some cases. On the  other  hand, no  allowance has 
been  made  for (1) normalization of the small  percentage of un- 
normalized  operands, or (2) recomplementation of the multiplier 
quotient ( M Q )  register and  adjustment of the MQ sign. 

The results of these  computations are given  in  Table 6. It will 
be  noted that  the design modifications based on knowledge of the 
suboperations  improved the average  speed  significantly, but  had 
relatively  little effect on  the maximum  speed. 

Many of the principles discussed apply  equally well to com- 
other puters employing other radices. A decimal  computer is obviously 
radices of interest.  Other possibilities are radices that  are powers of 2 

(i.e., 4, 8, 16, etc.), since a binary  adder  can  still  be used in  such 
computers. For examples, in  the 7094, the floating-point format 
has  an 8-bit  exponent  based  on  radix 2, with a normalized 27-bit 
fraction f in  the range  1/2 5 I f 1  < 1. 

The  same  format could represent an  exponent  with implied 
radix 8 and a fraction  in the range 1/8 5 I f 1  < 1. 

This  length of normalized  fraction  gives less precision than  the 
7094, since there is the possibility of one  or  two  leading zeros. The 
exponent  has a much  larger  range (8' = 2"). In  this configuration, 
each  bit of exponent difference on  alignment will force a shift of 
three positions. Normalization also takes place in shifts of three 
positions, with a  corresponding adjustment of the exponent  by 1 
for  each  jump  shift. 

The possible results are slightly  different  for  radices  larger 
than 2. For example, in  the case of radix 8, the fractional  result 

Table 7 Possible  results for normalized operands, radix 8 

Shift 

0 
1 
2 

Result 
Like  signs  Unlike  signs Operands  after  alignment 

1 / 8 I f l < l   1 / 8 < f z < l  
-~ 

1/4<r  <2  -7/8<r  <7/8 
1 / 8 I f 1 < l  1/64<fz<1/8 9/64<r<9/8 O<r <63/64 
1/8<fl<1 1/512<fz!<1/64 65/512<r<65/64  7/64<r<511/512 

I 
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Shift 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

over 

32.64 
12.11 
8.61 
6.72 
7.17 
3.88 
4.39 
4.82 
1.29 
1.28 
1.31 
0.48 
0.58 
0.38 
0.38 
0.32 
0.33 
0.32 
0.40 
0.48 
0.36 
0.53 
0.48 
0.33 
0.36 
0.36 
0.19 
9.50 



Table 9 Normalization shift  frequencies for various  radices 

Shift 

result 0 
overflow 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Radix 
2  4 8 10 16 32 64 

1.42 
19.65 
59.38 

6.78 
3.47 
2.35 
1.91 
1.06 
0.56 
0.48 
0.16 
0.14 
0.08 
0.09 
0.32 
0.55 
0.16 
0.02 
0.04 
0.09 
0.08 
0.07 
0.12 
0.07 
0.07 
0.09 
0.11 
0.16 
0.52 

1.42 1.42 1.42 1.42 1.42 1.42 
10.67 6.52 7.19 5.50 5.69 2.60 
72.11 79.40 79.80 82.35 83.86 87.36 

7.96  8.75  8.04  7.29  5.99  6.04 
3.35  1.64  1.55 1.38 0.87  1.23 
1.49  0.38  0.28  1.01  0.88  0.47 
0.34  0.43  1.03  0.30  0.41  0.88 
0.14 0.71 0.16  0.32  0.88 
0.92  0.25  0.25  0.43 
0.18  0.22  0.28 
0.13  0.28 
0.15 
0.18 
0.17 
0.27 
0.52 

radix, many leading zeros are possible in a normalized fraction, 
and  any shift deletes a larger part of the precision available. 

For a serial arithmetic  unit,  the speed advantages of fewer 
shifts are  apparent. For a parallel unit, design studies comparing 
multi-path  radix 2 shifters  against a jump  shift  with a larger 
radix suggest that  the  latter requires less circuitry for an equivalent 
speed. 

These were among the considerations that led to  the choice of 
radix 16 for SYSTEM/360. A further discussion can be found in 
Reference 4. 

The  trend  in post-shifting for overflow and  other shifts is 
somewhat erratic.  At first, it  was thought that  the oonversion and 
analyzing  routine was incorrectly programmed. However, examina- 
tion of the original data shows that there  are  certain conditions 
with respect to overflow on like-sign addition,  and  with respect to 
figure loss on unlike-sign addition, that can cause abrupt dis- 
continuities. This is illustrated  by  Table 10 which shows how the 
fractional part of a  number N could be represented as the radix 
varies. 
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Table 10 Number representation os a function of the radix 

Radiz 
N 2 4  8 16 32 64 

1/8 .l  .l .001  .001  .001 . O O l  
-” 

1/2 . l  .01 .01 .01 . 01 . 01 
1/2 . I  .1 . I  .1 . I  .1 
1 .l .01 .001 .0001 .00001 .000001 
2 . l  . l  .01 .001 ,0001 .00001 
4 . 1  .01 . I  . 01 ,001 ,0001 
8 . I  . 1  .001 . I  . 01 . O O l  

Adding 1/2 + 1/2 causes an overflow for  all  radices. However, 
when adding 4 + 4, an overflow occurs  for  radices 2 and 8 only. 
Other examples of this  discontinuity  are  apparent  in  Table 10 
and can  easily  be  constructed  for  larger or smaller  values. A similar 
condition  existing  for zero alignment  shifts (if the signs are unlike) 
can  cause  a figure loss and a post-shift of one  position as the radix 
increases. 

As pointed out earlier, the necessity  for  recomplementation of 
results  can  almost  be eliminated. This  same  technique  can  be 
applied  for  computers  with  larger  radices. Table 11, based on  data 
from the second phase of the  study, shows the percentages of 
floating  additions  with zero shift and unlike  signs  for  various 
radices.  Only  these cases (except for  the small  fraction of un- 
normalized  operands)  can  give an ambiguous  result which may 
require  recomplementation. In  fixed point work, approximately 
50 percent of the additions would be  expected to  involve  unlike 
signs with one-half requiring  recomplementation.  Therefore, 
about 25 percent of all  additions would involve  recomplementation. 
Table 11 shows that, more than 13 percent of the  time, recomple- 
mentation is unIikeIy for the largest  radix  examined.  Thus, the 
same  technique discussed for  radix 2 would be effective for any 
design  with  a  larger  radix. 

The  data presented can also be used to  evaluate double-pre- 
cision designs. Some of the  data would be slightly  different if 
greater precision were used in  the analysis. For example,  with 
more bits to  match,  probably fewer results would have been zero, 
thus increasing the  number of operations  with  relatively  lengthy 
normalizations.  However,  lengthy  alignments or normalizations 
do  not  have a substantial effect. For example, in  the case of the 
data gathered, the average  time  for  the 7094 would only  increase 
from 3.0 to  3.08 cycles if all  alignments  greater than 27 positions 
(.0086 from  Table 3) and  all zero results (.0082) take five cycles. 

If double-precision operations are not provided, the designer 
should  facilitate double-precision programming. Double-precision 
addition, the most difficult floating-point  operation,  occurs in 
every double-precision multiply or divide  subroutine. Conse- 
quently, an instruction  for  adding a single-precision operand to a 

ANALYSIS OF FLOATING-POINT ADDITION 

Table 11  Percenfoges of odd 
operations with zero shift ond 
unlike signs for various radices 

Radix Percentage 

2 15.3 
4 18.0 
8 21.5 

10 22.0 
16 22.2 
32 23.9 
64 25.7 

double 
precision 
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double-precision operand  with a double-precision result  has  merit. 
This  instruction  can be used in a simple double-precision addition 
routine  which  first  adds  the  two low-order portions of the operands 
and  then successively adds  the high-order  portions to provide a 
double-precision result.  Provision  should also be made  for a 
double-length  product and for a remainder on division. 

If double-precision operations are offered or facilitated,  some 
additional design alternatives  are  available for  improving single- 
precision performance.  These  designs concern the  retention of the 
bits or digits  shifted  beyond the right  end of a single-precision 
register during  alignment. If the operands are normalized and  the 
signs are alike, there  is no  need to  retain  any  information  shifted 
out of the register. If the operands are normalized and  the signs 
are unlike, there is, a t  most,  one non-zero digit that  can be  shifted 
back into  the single-precision register.  Normalization of more than 
one  digit  can  only be the result of no  alignment  shift or an align- 
ment  shift of one  position,  regardless of the radix  base. Also, in a 
serial arithmetic  unit, performance  is greatly improved if single- 
precision shifting suffices for single-precision operations. I n  a 
parallel arithmetic  unit, it is possible to  save  the  time  and cir- 
cuitry necessary to provide  complementation  in the low-order 
register if separate signs are  retained as in the 7094. 
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