
This paper analyzes the addition operation of floating-point systems.

The analysis of a million executed Jloating-point additions i s pre-
sented as an aid in optimizing design and measuring performance.

The frequency of the various shifts for floating-point additions with
different radices was derived from the basic data so that designs with

I An analysis of floating-point addition
by D. W. Sweeney

The major problem in designing a floating-point system is the
addition operation. Knowledge of the relative importance of
each of the suboperations can assist the designer in materially
improving performance. Of special import are the provisions for
shifting in pre-addition alignment of the operand radix points and
in post-addition normalization of the result. Since these shifts
vary over a wide range, provision must be made for the worst cases,
without requiring the time of these extremes for all cases.

This paper provides data on the amount and type of shifting
related to the floating-point operation. The data were collected
by tracing the execution of a representative set of problems. An
analysis of the results and some comments on design choices are
included.

tion often employs an exponent which indicates the displacement notation
of the radix point from a fixed position, e.g., the number -278.437
is represented as -2.78437 X lo2, and the number +.000743 is
represented as +7.43 x I n a computer, these numbers are
conveniently represented as +03 -27843700, and -03+74300000,
the first two digits being the exponent, and the last eight digits the
fraction. The radix (in this example, 10) and the position of the
radix point (to the left of the most significant fraction digit) are
normally fixed for a given arithmetic unit. By restricting the
exponent to be less than some modulus and adding it to that
modulus, the exponent can be treated as a non-negative integer.

Instead of placing the radix point in a number, scientific nota- floating-point

IBM SYSTEMS JOURNAL * VOL. 4 NO. I - 1965 31 I

and zero fractional results and exponent underflows should be set
to this “zero.”

Other limitations inherent in the data flow paths and the
register-adder complex, as defined for other operations, can also
pose implementation problems. The greatest difficulty for the
designer lies in determining the appropriate compromises between
cost and speed when he is designing actual hardware, or between
storage space and speed when he is designing a floating-point
subroutine.’ To assist the designer in his choice, relevant data are
needed with regard to the frequency of floating-point additions,
the various amounts of shifting, the number of times the shift
amounts exceed the precision representable, and the frequency of
recomplementation, etc.

The frequency of the various shifts depends on the radix of
the computer, the type of problem, and the data associated with
the problem. This frequency is relatively independent of the
method by which a particular computer executes the floating-
point addition, except for certain small differences in handling
extreme cases. It is important to obtain representative problems
with realistic data and examine the types of shifting encountered
during execution of these problems.

The study involved two phases. The first phase contributed
to the design of a particular binary comp~ter .~ This design in-
volved a shifter that could shift a few places (say 0 to 6) very
quickly. Long shifts could then be done by taking multiple jumps
(of 6), with the excess (1 to 5) being done in the same manner as a
short shift. The problem was to determine if this design was suf-
ficiently fast or if a larger shifter had to be considered.

Six representative problems were selected from those pro-
cessed by an IBM 704 at a computational laboratory serving a wide
variety of engineers and scientists. A tracing program already
available for the 704 was modified to gather the data. One of
these problems was traced twice with different input data. If an
entire problem could not be traced, the process was terminated
after tracing about 250,000 floating additions. These data suf-
ficed to show that the chosen design was adequate.

The second phase of the study was undertaken to confirm the
results of the first phase by gathering more data and examining
different problems. The study was expanded to include the analysis
of floating-point additions with radices greater than two. Again,
six problems were analyzed, this time selected from several labora-
tories. One of the problems was traced twice with different input
data. In this phase of the study, the analysis was terminated after
tracing about 500,000 instructions (unless the problem had been
completed earlier). The number of instructions traced, and the
number and percentage of floating-point additions included are
shown in Table 1.

A frequency count of the amount of alignment and normaliea-
tion shifting was kept for each problem traced. In summarizing
these data, it was decided to express each shift as a percentage of

ANALYSIS OF FLOATING-POINT ADDITION

data
gathering

Table 2 clu

shif t

result 0
overflow

"

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27-53
54-255

Equal weight by shijt
Alignment Normalization

- 0.39
- 23.30

24.29 58.04
17.14 8.42
10.59 2.69
7.64 1.42
6.55 0.89
6.44 0.70
5.81 0.56
4.50 0.56
0.90 0.40
1 .05 0.31
0.96 0.23
0.78 0.13
0.99 0.25
0.95 0.35
0.54 0.13
0.60 0.04
0.38 0.03
0.38 0.07
0.43 0.09
0.34 0.09
0.27 0.10
0.37 0.09
0.28 0.07
0.22 0.10
0.23 0.15
0.24 0.10
0.19 0.30
0.73
6.21

~~

-
-

I Table 3 Shifting as a function of the effective signs

sh i f t I
result O
overflow

0
1
2
3
4
5
6
7
8
9

10

15
16
17
18
19
20
21
22
23
24
25
26

over 54
27-53

Totals

Like signs
Align- Normali-
ment zation

-
-

12.54
7.07
3.93
2.89

4.51
2.85
1.86
0.44
0.60
0.94
0.63
0.83
0.39
0.12
0.36
0.10
0.10
0.28
0.05
0.06
0.14
0.12
0.07
0.06
0.05
0.06
0.43
2.81

42.27

2.98

17.43
29.66
0.01
0.00
0.02
0.01
0.01
0.01

0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.03
0.01
0.01
0.00
0.00
0.00
0.00

-

0.02

-
-

Unlike sians

-

Align-
ment

-
-

13.74
6.22
4.84
3.64
4.79
3.56
2.28
1.92
0.66
0.63
0.90
0.72
0.71
0.42
0.36
0.22
0.19
0.21
0.22
0.27
0.20
0.26
0.18
0.17
0.19
0.21
0.10
0.43
4.49

52.73

Normali-
zation

0.82
.~

-
30.59
8.00
3.17
1.52
1.32
1.02
0.62
1 .00
0.93
0.56
0.66
0.15
0.21
0.31
0.16
0.02
0.06
0.09
0.16
0.14
0.05
0.06
0.06
0.19
0.49
0.09
0.28
-
-

Total
Align- Normali-
ment zation

-
-

26.28
13.29
8.77
6.53
7.77
8.07
5.13
3.78
1.10
1.23

1.35
1.54

0.48

0.29
0.31
0.50
0.32
0.26
0.40
0.30
0.24
0.25
0.26
0.16
0.86
7.30

LOO. 00

1 .a4

0.81

0.58

0.82
17.43
60.25

3.17
1.54
1.33
1.03
0.63
1.02
0.93
0.56
0.66
0.16
0.22
0.31
0.16
0.03
0.06
0.09
0.17
0.15
0.08
0.07
0.07
0.19
0.49
0.09
0.28

8.01

-
-

of normalization can occur, depending upon the number of the
leading digits that are equal. In any case, the result must be nor-
malized a t least one position since it is less than one-half. If signs
are unlike and the alignment shift is one position, any amount
of normalization may occur. If the alignment shift is more than
one position, the normalization shift can be, at most, one position.
If the operands are unnormalized, there may be a normalization
shift. Table 3 shows that a small percentage of operands caused
such normalization.

If recomplementation is time consuming, Table 3 also contains
a clue to the design of the sign and true-complement controls
so that this step can be bypassed in most cases. For normalized
operands, an ambiguous result sign appears only if there is no
alignment shift and the operand signs are unlike. This situation
occurs only 13.7 percent of the time, and no more than half of these

36 D. w. SWEENEY

In cycles of these cycles consists of six subcycles. During a subcycle, an addi-
Computer Average Maximum tion can take place, or either one or two alignment or norndization

shifts can be executed. For like signs, shifts from 1 to 10 positions
704 8.0 34
709 7 . 3 15

require one extra cycle (one subcycle is reserved for the addition),
7090 6 . 3 15 shifts from 11 to 22 positions require two extra cycles, etc. For
7094 3 . 0 12 unlike signs, shifts from 1 to 8 positions require one extra cycle

(one subcycle has been reserved for the addition, and another for a
possible normalization of l), shifts from 9 to 20 positions require
two extra cycles, etc. For unlike signs, no shifts or shifts of one
position cause most of the normalization (19.96 out of 22.14 per-
cent). Therefore, allowing two subcycles for alignment and addi-
tion, normalization of 1 to 8 positions requires one extra cycle,
of 9 to 20 positions requires two extra cycles, etc. This counting is
somewhat conservative because allowance for normalization is
counted twice in some cases. On the other hand, no allowance has
been made for (1) normalization of the small percentage of un-
normalized operands, or (2) recomplementation of the multiplier
quotient (M Q) register and adjustment of the MQ sign.

The results of these computations are given in Table 6. It will
be noted that the design modifications based on knowledge of the
suboperations improved the average speed significantly, but had
relatively little effect on the maximum speed.

Many of the principles discussed apply equally well to com-
other puters employing other radices. A decimal computer is obviously
radices of interest. Other possibilities are radices that are powers of 2

(i.e., 4, 8, 16, etc.), since a binary adder can still be used in such
computers. For examples, in the 7094, the floating-point format
has an 8-bit exponent based on radix 2, with a normalized 27-bit
fraction f in the range 1/2 5 I f 1 < 1.

The same format could represent an exponent with implied
radix 8 and a fraction in the range 1/8 5 I f 1 < 1.

This length of normalized fraction gives less precision than the
7094, since there is the possibility of one or two leading zeros. The
exponent has a much larger range (8' = 2"). In this configuration,
each bit of exponent difference on alignment will force a shift of
three positions. Normalization also takes place in shifts of three
positions, with a corresponding adjustment of the exponent by 1
for each jump shift.

The possible results are slightly different for radices larger
than 2. For example, in the case of radix 8, the fractional result

Table 7 Possible results for normalized operands, radix 8

Shift

0
1
2

Result
Like signs Unlike signs Operands after alignment

1 / 8 I f l < l 1 / 8 < f z < l
-~

1/4<r <2 -7/8<r <7/8
1 / 8 I f 1 < l 1/64<fz<1/8 9/64<r<9/8 O<r <63/64
1/8<fl<1 1/512<fz!<1/64 65/512<r<65/64 7/64<r<511/512

I

38 D. W. SWEENEY

Shift

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

over

32.64
12.11
8.61
6.72
7.17
3.88
4.39
4.82
1.29
1.28
1.31
0.48
0.58
0.38
0.38
0.32
0.33
0.32
0.40
0.48
0.36
0.53
0.48
0.33
0.36
0.36
0.19
9.50

Table 9 Normalization shift frequencies for various radices

Shift

result 0
overflow

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Radix
2 4 8 10 16 32 64

1.42
19.65
59.38

6.78
3.47
2.35
1.91
1.06
0.56
0.48
0.16
0.14
0.08
0.09
0.32
0.55
0.16
0.02
0.04
0.09
0.08
0.07
0.12
0.07
0.07
0.09
0.11
0.16
0.52

1.42 1.42 1.42 1.42 1.42 1.42
10.67 6.52 7.19 5.50 5.69 2.60
72.11 79.40 79.80 82.35 83.86 87.36

7.96 8.75 8.04 7.29 5.99 6.04
3.35 1.64 1.55 1.38 0.87 1.23
1.49 0.38 0.28 1.01 0.88 0.47
0.34 0.43 1.03 0.30 0.41 0.88
0.14 0.71 0.16 0.32 0.88
0.92 0.25 0.25 0.43
0.18 0.22 0.28
0.13 0.28
0.15
0.18
0.17
0.27
0.52

radix, many leading zeros are possible in a normalized fraction,
and any shift deletes a larger part of the precision available.

For a serial arithmetic unit, the speed advantages of fewer
shifts are apparent. For a parallel unit, design studies comparing
multi-path radix 2 shifters against a jump shift with a larger
radix suggest that the latter requires less circuitry for an equivalent
speed.

These were among the considerations that led to the choice of
radix 16 for SYSTEM/360. A further discussion can be found in
Reference 4.

The trend in post-shifting for overflow and other shifts is
somewhat erratic. At first, it was thought that the oonversion and
analyzing routine was incorrectly programmed. However, examina-
tion of the original data shows that there are certain conditions
with respect to overflow on like-sign addition, and with respect to
figure loss on unlike-sign addition, that can cause abrupt dis-
continuities. This is illustrated by Table 10 which shows how the
fractional part of a number N could be represented as the radix
varies.

40 D. W. SWEENEY

Table 10 Number representation os a function of the radix

Radiz
N 2 4 8 16 32 64

1/8 .l .l .001 .001 .001 . O O l
-”

1/2 . l .01 .01 .01 . 01 . 01
1/2 . I .1 . I .1 . I .1
1 .l .01 .001 .0001 .00001 .000001
2 . l . l .01 .001 ,0001 .00001
4 . 1 .01 . I . 01 ,001 ,0001
8 . I . 1 .001 . I . 01 . O O l

Adding 1/2 + 1/2 causes an overflow for all radices. However,
when adding 4 + 4, an overflow occurs for radices 2 and 8 only.
Other examples of this discontinuity are apparent in Table 10
and can easily be constructed for larger or smaller values. A similar
condition existing for zero alignment shifts (if the signs are unlike)
can cause a figure loss and a post-shift of one position as the radix
increases.

As pointed out earlier, the necessity for recomplementation of
results can almost be eliminated. This same technique can be
applied for computers with larger radices. Table 11, based on data
from the second phase of the study, shows the percentages of
floating additions with zero shift and unlike signs for various
radices. Only these cases (except for the small fraction of un-
normalized operands) can give an ambiguous result which may
require recomplementation. In fixed point work, approximately
50 percent of the additions would be expected to involve unlike
signs with one-half requiring recomplementation. Therefore,
about 25 percent of all additions would involve recomplementation.
Table 11 shows that, more than 13 percent of the time, recomple-
mentation is unIikeIy for the largest radix examined. Thus, the
same technique discussed for radix 2 would be effective for any
design with a larger radix.

The data presented can also be used to evaluate double-pre-
cision designs. Some of the data would be slightly different if
greater precision were used in the analysis. For example, with
more bits to match, probably fewer results would have been zero,
thus increasing the number of operations with relatively lengthy
normalizations. However, lengthy alignments or normalizations
do not have a substantial effect. For example, in the case of the
data gathered, the average time for the 7094 would only increase
from 3.0 to 3.08 cycles if all alignments greater than 27 positions
(.0086 from Table 3) and all zero results (.0082) take five cycles.

If double-precision operations are not provided, the designer
should facilitate double-precision programming. Double-precision
addition, the most difficult floating-point operation, occurs in
every double-precision multiply or divide subroutine. Conse-
quently, an instruction for adding a single-precision operand to a

ANALYSIS OF FLOATING-POINT ADDITION

Table 11 Percenfoges of odd
operations with zero shift ond
unlike signs for various radices

Radix Percentage

2 15.3
4 18.0
8 21.5

10 22.0
16 22.2
32 23.9
64 25.7

double
precision

41

double-precision operand with a double-precision result has merit.
This instruction can be used in a simple double-precision addition
routine which first adds the two low-order portions of the operands
and then successively adds the high-order portions to provide a
double-precision result. Provision should also be made for a
double-length product and for a remainder on division.

If double-precision operations are offered or facilitated, some
additional design alternatives are available for improving single-
precision performance. These designs concern the retention of the
bits or digits shifted beyond the right end of a single-precision
register during alignment. If the operands are normalized and the
signs are alike, there is no need to retain any information shifted
out of the register. If the operands are normalized and the signs
are unlike, there is, a t most, one non-zero digit that can be shifted
back into the single-precision register. Normalization of more than
one digit can only be the result of no alignment shift or an align-
ment shift of one position, regardless of the radix base. Also, in a
serial arithmetic unit, performance is greatly improved if single-
precision shifting suffices for single-precision operations. I n a
parallel arithmetic unit, it is possible to save the time and cir-
cuitry necessary to provide complementation in the low-order
register if separate signs are retained as in the 7094.

ACKNOWLEDGMENT

The assistance of J. C. Gibson, L. 0. Nippe, and others in analysis
and computation is appreciated.

CITED REFERENCES AND FOOTNOTES

1. See S. G. Campbell, “Floating point operations,” Planning a Computer
System, W. Buchholz ed., McGraw-Hill Book Company, 1962, pp 92-106,
for a discussion of floating-point representation, precision, and significance.

2. See F. P. Brooks, Jr., and K. E. Iverson, Automatic Data Processing,
John Wiley and Sons, 1963, pp. 184-199, for further discussion of floating-
point arithmetic and an example of an algorithm for floating-point addition.

3. This study was undertaken during the design of the IBM 7030.
4. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of the

IBM System/360,” ZBM Journal of Research and Development 8, No. 2,
87-101, April 1964.

42 D. W. SWEENEY

