
This paper discusses a compiler Organization in which phases act
sequentially on a source program held in core storage.

d brief description of each phase of the 1401 FORTRAN compiler is
given to illustrate the general scheme.

Serial compilation and the 1401 FORTRAN compiler
by L. H. Haines

The IBM 1401 FORTRAN compiler' was designed as a set of phases
that operate sequentially on the source program. The source
program having been placed in core storage, the compiler phases
enter core one at a time. Each phase overlays its predecessor,
operates on the source program and, in turn, is overlaid by the
next phase of the sequence. Thus, in contrast to the customary
technique of passing the source program against the compiler
in core, the compiler is passed against the source program which
resides in core. It is assumed that the source program is more
concise than the object program, and that an object program of
interest can be accommodated in core.

The 1401 FORTRAN compiler was designed for a minimum of 8000
positions of core, with tape usage being optional. The fundamental
design problem stems from the core storage limitation. Because the
average number of instructions per phase and the number of
phases selected are inversely related (at least to a significant
degree), the phase organization was employed to circumvent the
core limitation. The 1401 FORTRAN compiler has 63 phases, an
average of 150 instructions per phase, and a maximum of 300
instructions in any phase.

Experience with the compiler suggests that, even though the
basic compilation technique requires repetitive scanning of the
source program, the time required for this redundant effort is
small. The experience lends some credence to the following
argument.

efficiency of
the compilation
technique

IBM SYSTEMS JOURNAL VOL. 4 * NO. 1 * 1965 73

If a phase is decomposed into two serially acting phases,
assume that the average execution time is increased by a multi-
plicative factor r. If each component phase is again decomposed
into two phases, the average total execution time of the resulting
four phases increases to r' times the original. After IC decomposi-
tions, 2" phases result, with an average total execution time of rk
times the original. Under this assumption, it follows that an n-
phase compiler takes T ' ~ ~ ~ ~ times longer than a comparable one-
phase compiler. Because some phases do not involve scanning, this
estimate may tend to be high.

Based on experience with the present compiler, it is con-
jectured that r 'v 1.05 and that the redundant work occasioned
by the use of 63 phases increases compilation time by a factor of
1.0510ga63 N 1.3.

However, this technique reduces compilation time elsewhere,
so that the net increase can be expected to be less than con-
jectured. Since the phases act serially, tape searching is un-
necessary. Moreover, no external sorts or merges are required.
After one pass of the processor, the object program lies in core
storage, ready for execution.

Also, the present technique permits an approach to coding
that tends to reduce compilation time. Decomposition into an
appropriate number of phases often results in more available core
space for execution of an individual phase than the minimum
needed.

The typical phase requires only on the order of 150 instructions,
although twice that number are accommodated by the allocated
region in core. Thus, most of the code can be written for efficient
execution without regard to economy in the number of instructions
employed. Other advantages inherent in this type of coding are
that it is usually faster to write and easier to debug.

Except for certain extreme cases in which the object program
compilation fills almost all of core, the compilation time in seconds 1 is ap-
time proximated by a linear function of the number of FORTRAN state-

ments n (the statements assumed to be of average complexity).
If the compiler is on tape, reads the source program from cards,
and punches a self-loading machine language object program, then
t = (0.96n + 72) seconds. As a load-and-go system, with the
punching of the object program suppressed, t = (0.76n + 22)
seconds. If the system is on cards, an additional 173 seconds are
required.

The principal function of each phase of the compiler' is in-
compiler dicated below. Secondary functions are subordinated; for ex-
Phases ample, error checking occurs in almost every phase, but is seldom

mentioned.
Phase 00 - Snapshot. Loads a snapshot routine into 350 positions
of core storage. This routine lists a specified amount of core
storage.
Phase 01 - System Monitor. Brings in the next phase from the
system tape or initiates reading of the next phase from cards,

74 L. H. HAINES

Note: Whereas the source program originally was composed of constants,
variables, and statement numbers of arbitrary length, it is now highly struc-
tured and is composed of 3-character machine addresses. Machine addresses
substituted for constants and variables are their object-time addresses. Ma-
chine addresses substituted for statement numbers are indirect addresses
which currently reference Table I1 entries-sequence numbers of labeled
statements. Eventually (Phase 51) these indirect addresses are replaced by
the object-time addresses of the labeled statements, Le., the addresses of
object programs compiled from these statements.

Phase 32 - Input/Output I . The residue of each I/O statement
other than BACKSPACE, REWIND, and E N D FILE is substituted
into an object-time mask. The filled-in mask and an identifier
are stored in lower core immediately adjacent to the last entry
in Table 11. The identifier is the sequence number (Phase 02) or,
only when the statement originally had a statement number, the
machine address of the sequence number stored in Table I1
(Phase 30).

Phase 33 - Arith I. All arithmetic expressions appearing in the
source program are scanned. Switches are set to indicate which
function routines must be loaded by Phase 52. Minor changes
are made to expressions, and sufficient error testing is done to
expedite Phase 34.

Phase 34 - Arith I I . By means of a transition matrix,‘ each
arithmetic expression is broken down into a sequence of one or two
operand sub-expressions involving temporary dummy storage
locations.
Phase 35 - Arith I I I . Initialization for Phase 36.

Phase 36 - Arith I V . Redundant references to temporary dummy
storage locations are eliminated by forming maximal strings of
operands and operators from each sequence of sub-expressions.
Each string specifies the computation in which (1) unary operators
act on the entire substring immediately t o their left and (2)
binary operators combine this substring with the operand on their
right.
Phase 37 - Arith V . Exponentiation operators are replaced by
substrings involving log and anti-log functions. Implied mode
changes are made explicit by inserting (or deleting) fix or float
operators in the strings. The Table I1 addresses (Phase 29) ap-
pearing within IF statements (involving arithmetic expressions)
are substituted into masks of object-time instructions. The filled-in
mask replaces the addresses in the source program.

Phase 38 - Arith V I . The arithmetic strings are altered so that
temporary storage areas are shared whenever possible. Machine
addresses are determined for these areas and substituted for the
dummy addresses in the strings. Previous arithmetic and IF state-
ments are now stored, each with its identifier (Phase 32), in lower
core immediately to the left of the list and format “statements.”

Phase 39 - End $le, Rewind, Backspace.

78 L. H. HAINES

Phase 53 - Relocatable Package. This phase consists of the re-
locatable routines loaded by Phase 52.

Phase 54 - Format Loader. The object-time format routine, which
is included in this phase, is loaded.

Phase 55 - Replace I I . Those instructions in the generated object
program that should branch to the relocatable routines are modi-
fied (via the table of Phase 52) to show the object-time addresses
of these routines.

Phase 56 - Snapshot. A snapshot of the generated program is
printed if initially requested and if no source program errors
have been detected that would make program execution un-
rewarding.

Phases 57, 58, 59, 60 - Condensed Deck. When requested and
if there are no input errors, these phases punch and list the object
program as a self-loading condensed card deck.

Phase 61 - Geaux I . This phase prints the end-of-compilation
message, initializes the sense lights, and prepares the branch into
the object program coding.

Phase 69 - Geaux I I . The arithmetic routine (Phase 63) is read
into storage. Communication between this routine and the re-
locatable routines is established. The object program is executed
on option.

Phase 63 - Arithmetic Package. This phase consists of the arith-
metic routine loaded by Phase 62.

ACKNOWLEDGMENT

The author wishes to express appreciation to his colleagues,
G. Mokotoff, S. Smillie, and D. Macklin for their generous
assistance. Parts of this paper were prepared by the author for
inclusion in Reference 1.

FOOTNOTES

1. A detailed description of the compiler is given in IBM 1401 FORTRAN Specifi-
cations and Operating Procedure, Systems Reference Library C24-1455-0,
International Business Machines Corporation, (Revised Edition, June
1964).

2. Normally, minor modifications are made to a compiler throughout i ts life.
For operational detail, the current program library documentation for
Compiler Program 1401-FO-050 should always be consulted.

3. The decision to sort the source program was quite arbitrary. It waa con-
sidered more efficient than translating the source program “in place.” If
translating a less concise language than FORTRAN or translating source
programs for a large machine on a small machine, the entire source program
would not fit in core. In this case, an in-place translation would be much
more efficient.

4. This technique is described by K. Samuelson and F. L. Bauer in “Se-
quential formula translation,” Communications of the ACM 3, No. 2,
76-83 (1960).

