This paper discusses a compiler organization in which phases act
sequentially on a source program held in core storage.

A brief description of each phase of the 1401 FORTRAN comptler 1s
given to illustrate the general scheme.

Serial compilation and the 1401 FORTRAN compiler
by L. H. Haines

The 1BM 1401 FORTRAN compiler' was designed as a set of phases
that operate sequentially on the source program. The source
program having been placed in core storage, the compiler phases
enter core one at a time. Each phase overlays its predecessor,
operates on the source program and, in turn, is overlaid by the
next phase of the sequence. Thus, in contrast to the customary
technique of passing the source program against the compiler
in core, the compiler is passed against the source program which
resides in core. It is assumed that the source program is more
concise than the object program, and that an object program of
interest can be accommodated in core.

The 1401 FORTRAN compiler was designed for a minimum of 8000
positions of core, with tape usage being optional. The fundamental
design problem stems from the core storage limitation. Because the
average number of instructions per phase and the number of
phases selected are inversely related (at least to a significant
degree), the phase organization was employed to circumvent the
core limitation. The 1401 FORTRAN compiler has 63 phases, an
average of 150 instructions per phase, and a maximum of 300
instructions in any phase.

Experience with the compiler suggests that, even though the efficiency of
basic compilation technique requires repetitive scanning of the the compilation
source program, the time required for this redundant effort is technique
small. The experience lends some credence to the following
argument.

IBM SYSTEMS JOURNAL ¢ VOL. 4 * NO. 1 « 1965

compilation
time

compiler
phases

If a phase is decomposed into two serially acting phases,
assume that the average execution time is increased by a multi-
plicative factor r. If each component phase is again decomposed
into two phases, the average total execution time of the resulting
four phases inereases to +° times the original. After k decomposi-
tions, 2* phases result, with an average total execution time of r*
times the original. Under this assumption, it follows that an n-
phase compiler takes 7'°*™ times longer than a comparable one-
phase compiler. Because some phases do not involve scanning, this
estimate may tend to be high.

Based on experience with the present compiler, it is con-
jectured that » ~ 1.05 and that the redundant work occasioned
by the use of 63 phases increases compilation time by a factor of
1.05'%:% ~ 1.3,

However, this technique reduces compilation time elsewhere,
so that the net increase can be expected to be less than con-
jectured. Since the phases act serially, tape searching is un-
necessary. Moreover, no external sorts or merges are required.
After one pass of the processor, the object program lies in core
storage, ready for execution.

Also, the present technique permits an approach to coding
that tends to reduce compilation time. Decomposition into an
appropriate number of phases often results in more available core
space for execution of an individual phase than the minimum
needed.

The typical phase requires only on the order of 150 instructions,
although twice that number are accommodated by the allocated
region in core. Thus, most of the code can be written for efficient
execution without regard to economy in the number of instructions
employed. Other advantages inherent in this type of coding are
that it is usually faster to write and easier to debug.

Except for certain extreme cases in which the object program
fills almost all of core, the compilation time in seconds ¢ is ap-
proximated by a linear function of the number of ForTRAN state-
ments n (the statements assumed to be of average complexity).
If the compiler is on tape, reads the source program from cards,
and punches a self-loading machine language object program, then
t = (0.96n 4+ 72) seconds. As a load-and-go system, with the
punching of the object program suppressed, ¢ = (0.76n 4 22)
seconds. If the system is on cards, an additional 173 seconds are
required.

The principal function of each phase of the compiler’ is in-
dicated below. Secondary functions are subordinated; for ex-
ample, error checking occurs in almost every phase, but is seldom
mentioned.

Phase 00 — Snapshot. Loads a snapshot routine into 350 positions
of core storage. This routine lists a specified amount of core
storage.

Phase 01 — System Monitor. Brings in the next phase from the
system tape or initiates reading of the next phase from cards,

L. H. HAINES

depending on whether the compiler is used as a tape or card
system. The monitor and snapshot routines are the only ones
that exist in storage throughout compilation. Because the phases
act serially, very little is required of this phase which consists of
only 20 instructions.

Phase 02 — Loader. Stores the entire source program, statement
by statement, with all non-significant blanks eliminated. The
source program is stored backwards in order to use the 1401
machine instructions that cause address registers to decrement
when processing data. Appended on the right of each statement
is a three-position internal sequence number (001 for the first
statement, 002 for the second, etc.). The sequenced source pro-
gram is printed.

Phase 03 — Scanner. Determines the type of each statement and
appends a code on the right of each statement. For example,
D for DO, 8 for STOP, I for DIMENSION statements, ete.

Phase 04 — Sort I. Determines if there is enough free storage
to expand each statement by three characters.

Phase 05 — Sort II. Statements of the same type are chained
together. Each statement expands by three characters—the ma-
chine address of the next statement of the same type.

Phase 06 — Sort III. The source program is sorted’ internally
by statement type. The order of sorting is determined by the
order in which statements of a given type undergo specific pro-
cessing by subsequent phases. For example, since DIMENSION
statements are processed (Phase 09) before DO statements (Phase
46), the DIMENSION statements are grouped together lower in
core than the DO statements.

Phase 07 — Insert Group Mark. This is a housekeeping phase.
Phase 08 — Squoze. The words that helped define the type of
each statement are eliminated, shrinking the source program.
For example, the word “DIMENSION"’ in DIMENSION statements
is eliminated.

Phase 09 — Dimension I. The DIMENSION statements are scanned,
and an array table is generated in free storage. Each table ele-
ment consists of the name of an array, its dimensions, and suffi-
cient space for additional data to be generated by Phases 11 and 12.
Phase 10 — Equivalence I. Adds simple variables present in

EQUIVALENCE statements to the array table. These variables
are treated, in effect, as one-element arrays.

Phase 11 — Equivalence I1. The array table is altered to show
the relationship between arrays. Equated arrays are chained
together. Essentially, the procedure makes known to every array
whose first element is equivalent to a secondary element of another
array the ‘“distance” to the first element of the latter array.

Phase 12 — Dimension II. The object-time addresses which de-

AN EXAMPLE OF SERIAL COMPILATION

limit each array are computed and inserted in the array table.
These addresses are also printed.

Phase 18 — Variables I. The entire source program is scanned for

variables. The following changes are made directly within the

text of the source program:

e Simple variables are tagged for later processing by Phase 16.

* Subscripted variables with constant subscripts are replaced by
the object-time address of the designated array element.
All other subscripted variables are put into a canonical form
which specifies a computation in terms of variables and con-
stants for determining the object-time address of the array
element specified.
Non-subscripted array names appearing in lists are replaced
by the object-time address that delimit the array named.
Non-subscripted array names appearing elsewhere are replaced
by the object-time address of the first element of the array.

Phase 14 — Variables II. All free storage (including the array
table) is cleared and partitioned into two tables areas—Tables I
and II. Parameters needed for the randomizer of Phase 16 are
computed.

Phase 15 — Variables I11. Does housekeeping for Phase 16.

Phase 16 — Variables IV. The source program is scanned twice
for simple variables (already tagged by Phase 13). During the
first scan, the compiler looks for variables being defined, i.e.,
those appearing on the left of an equal sign or in input lists. By
means of a randomizer that computes an indirect address (a
Table I address at which is located a Table II address), each such
variable and its object-time address is stored uniquely and se-
quentially (one after another) in Table II. The object-time ad-
dress replaces the variable name in the source program. During
the second scan, all other variables are picked up, and the same
process is carried out, except that undefined variables are noted
and Table II entries are flagged whenever referenced.

Phase 17 — Variables V. Table II is scanned. The absence of a
flag indicates an unreferenced variable. The object-time address
of each variable is printed.

Phase 18 — Constants I. The entire source program is scanned
for constants. Each eonstant encountered is normalized and tagged.
Tables T and II are destroyed.

Phase 19 — Constants II. All free storage is again cleared and
partitioned into two table areas— Tables I and II. Parameters
needed for the randomizer of Phase 20 are computed.

Phase 20 — Constants I11. The entire source program is scanned
for normalized constants (tagged by Phase 18). By means of a
randomizer (as in Phase 16), each normalized constant is stored
uniquely and sequentially (next to one another) in Table II.

L. H. HAINES

Once stored, these constants are at their object-time address and
are not disturbed for the remainder of the compilation. The
object-time address replaces the normalized constant directly in
the text of the source program.

Phase 21 — Subscripts. Under the action of Phases 14 through 20,
the canonical form for subscripted variables (see Phase 13) now
specifies a computation in terms of object-time addresses. This
phase simplifies the computation, leaving only the object-time
addresses which serve as parameters for a closed subroutine at
object time.

Phase 22 — Statement Numbers I. Statement numbers that appear
in the source program are reduced to a 3-character representation.
Statement numbers within the body of a statement are moved to
the front of the statement.

Phase 23 — Format I. FORMAT statements are checked to ensure
that they are referenced by input/output statements.

Phase 24, — Format I1. The object-time format strings are de-
veloped and stored immediately preceding the constants at the
lower end of storage.

Phase 25 — Lists I. Duplicate lists are checked and eliminated to
optimize storage at object time.

Phase 26 — Lists I1. The object-time list strings are developed and
stored immediately to the left of the format strings at the lower
end of storage.

Phase 27 — Lists I11. Each input/output statement is reduced
to the address of the list string (when present), the address of the

format string (when present), and the tape unit number (where
applicable).

Phase 28 — Statement Numbers I1. All free storage is again cleared
and partitioned into two tables—Tables I and II. Parameters
needed for Phase 29 are computed.

Phase 29 — Statement Numbers I11. By means of a randomizer
(as in Phase 16), statement number representations (Phase 22)
appearing within statements are stored uniquely, one after another,
in Table II. Each such representation is replaced by the machine
address at which it is stored.

Phase 30 — Statement Numbers IV . Statement number representa-
tions are matched against Table II entries via the randomizer
of Phase 29. The sequence number of the statement (Phase 02)
replaces the Table II entry. The Table II address (which now
contains the sequence number) replaces both the representation
and the sequence number in the source program. Undefined and
multiply-defined statement numbers are checked.

Phase 31 — Statement Numbers V. Table II is scanned for un-
referenced statement numbers (representations).

AN EXAMPLE OF SERIAL COMPILATION

Note: Whereas the source program originally was composed of constants,
variables, and statement numbers of arbitrary length, it is now highly struc-
tured and is composed of 3-character machine addresses. Machine addresses
substituted for constants and variables are their object-time addresses. Ma-
chine addresses substituted for statement numbers are indirect addresses
which currently reference Table II entries—sequence numbers of labeled
statements. Eventually (Phase 51) these indirect addresses are replaced by
the object-time addresses of the labeled statements, i.e., the addresses of
object programs compiled from these statements.

Phase 32 — Input/Output I. The residue of each 1/0 statement
other than BACKSPACE, REWIND, and END FILE is substituted
into an object-time mask. The filled-in mask and an identifier
are stored in lower core immediately adjacent to the last entry
in Table II. The identifier is the sequence number (Phase 02) or,
only when the statement originally had a statement number, the
machine address of the sequence number stored in Table 1I
(Phase 30).

Phase 33 — Arith I. All arithmetic expressions appearing in the
source program are scanned. Switches are set to indicate which
function routines must be loaded by Phase 52. Minor changes
are made to expressions, and sufficient error testing is done to
expedite Phase 34.

Phase 34 — Arith I1. By means of a transition matrix,* each
arithmetic expression is broken down into a sequence of one or two
operand sub-expressions involving temporary dummy storage
locations.

Phase 35 — Arith II1. Initialization for Phase 36.

Phase 36 — Arith IV. Redundant references to temporary dummy
storage locations are eliminated by forming maximal strings of
operands and operators from each sequence of sub-expressions.
Each string specifies the computation in which (1) unary operators
act on the entire substring immediately to their left and (2)
binary operators combine this substring with the operand on their
right.

Phase 37 — Arith V. Exponentiation operators are replaced by
substrings involving log and anti-log functions. Implied mode
changes are made explicit by inserting (or deleting) fix or float
operators in the strings. The Table IT addresses (Phase 29) ap-
pearing within IF statements (involving arithmetic expressions)
are substituted into masks of object-time instructions. The filled-in
mask replaces the addresses in the source program.

Phase 38 — Arith VI. The arithmetic strings are altered so that
temporary storage areas are shared whenever possible. Machine
addresses are determined for these areas and substituted for the
dummy addresses in the strings. Previous arithmetic and IF state-
ments are now stored, each with its identifier (Phase 32), in lower
core immediately to the left of the list and format “statements.”

Phase 39 — End file, Rewind, Backspace.

L. H. HAINES

Phase 40 — Computed Go To.
Phase 41 — Go To.

Phase 42 — Stop/Pause.
Phase 43 — Sense Light.
Phase 44 — If (Hardware).

Phases 39 through 44 are essentially the same. In each phase,
the residue of statements of the indicated type are substituted
into masks of in-line, object-time instructions. The filled-in masks
are stored with their identifiers (Phase 32) at the next available
locations in lower core.

Phase 46 — Continue. No object-time instructions are generated
for these statements. Only the identifiers (Phase 30) are stored
in lower core.

Phase 46 — Do. DO statements are analyzed for nesting. Illegal
nesting is noted. The residue of each DO statement is substituted
into an object-time mask; but in general, the exit address is left
blank. The partially filled-in mask and its identifier are stored in
lower core. An unconditional branch is generated (uniquely) to
follow (via Phase 49) the last statement within the range of the DO.

Note: At this point, the entire source program has been transformed into
(essentially) object program procedure. For simplicity, we continue to write
“gtatement’” when we mean “procedure compiled from statement.”
Phase 47 — Resort I. An area is made available for a table to
assist in resorting the statements into their original order.

Phase 48 — Resort I1. The resort table is filled with the current
location of each statement.

Phase 49 — Resort 1I1. The statements are resorted back into
their original order with the identifiers eliminated. The Table II
entries (sequence numbers of statements originally labeled with
statement numbers) are replaced by the current machine ad-
dresses of those statements. Exit addresses are substituted into
the procedure generated for DO statements (Phase 46). For each
executable statement, the sequence number and the object-time
starting address of the generated procedure are printed.

Phase 50 — Resort 1V. The statements are shifted to the places
they will occupy at object time. The Table II entries are bumped
accordingly.

Phase 61 — Replace I. The entire object program procedure is
scanned for indirect addresses (see note following Phase 31).
Each indirect address is replaced by its direct address—now
available in Table II.

Phase 52 — Function/Subroutine Loader. Relocatable function
routines and subroutines (which comprise Phase 53) are selectively
loaded. A table of starting addresses of these routines is created
in free storage.

AN EXAMPLE OF SERIAL COMPILATION

Phase 63 — Relocatable Package. This phase consists of the re-
locatable routines loaded by Phase 52.

Phase 54 — Format Loader. The object-time format routine, which
is included in this phase, is loaded.

Phase 556 — Replace I11. Those instruections in the generated object
program that should branch to the relocatable routines are modi-
fied (via the table of Phase 52) to show the object-time addresses
of these routines.

Phase 56 — Snapshot. A snapshot of the generated program is
printed if initially requested and if no source program errors
have been detected that would make program execution un-
rewarding.

Phases 67, 58, 69, 60 — Condensed Deck. When requested and
if there are no input errors, these phases punch and list the object
program as a self-loading condensed card deck.

Phase 61 — Geauzr I. This phase prints the end-of-compilation
message, initializes the sense lights, and prepares the branch into
the object program coding.

Phase 62 — Geaux II. The arithmetic routine (Phase 63) is read
into storage. Communication between this routine and the re-
locatable routines is established. The object program is executed
on option.

Phase 63 — Arithmetic Package. This phase consists of the arith-
metic routine loaded by Phase 62.

ACKNOWLEDGMENT

The author wishes to express appreciation to his colleagues,
G. Mokotoff, S. Smillie, and D. Macklin for their generous
assistance. Parts of this paper were prepared by the author for
inclusion in Reference 1.

FOOTNOTES

1. A detailed description of the compiler is given in IBM 1401 FORTRAN Specifi-
cations and Operating Procedure, Systems Reference Library C24-1455-0,
International Business Machines Corporation, (Revised Edition, June
1964).

. Normally, minor modifications are made to a compiler throughout its life.
For operational detail, the current program library documentation for
Combpiler Program 1401-r0-050 should always be consulted.

. The decision to sort the source program was quite arbitrary. It was con-
sidered more efficient than translating the source program “in place.” If
translating a less concise language than FORTRAN or translating source
programs for a large machine on a small machine, the entire source program
would not fit in core. In this case, an in-place translation would be much
more efficient.

. This technique is described by K. Samuelson and F. L. Bauer in “Se-
quential formula translation,” Communications of the ACM 3, No. 2,
76-83 (1960).

L. H. HAINES

