
This  paper  discusses a compiler Organization in which  phases act 
sequentially on a  source program held in core storage. 

d brief description of each phase of the 1401 FORTRAN compiler is 
given to illustrate the general scheme. 

Serial  compilation  and  the 1401 FORTRAN compiler 
by L. H. Haines 

The IBM 1401 FORTRAN compiler'  was  designed as a  set of phases 
that operate sequentially on the source program. The source 
program having been placed in core storage, the compiler phases 
enter core one at  a  time.  Each phase overlays its predecessor, 
operates on the source program and,  in turn, is overlaid by  the 
next phase of the sequence. Thus,  in  contrast  to  the customary 
technique of passing the source program against  the compiler 
in core, the compiler is passed against  the source program which 
resides in core. It is assumed that  the source program is more 
concise than  the object program, and that  an object program of 
interest can be accommodated in core. 

The 1401 FORTRAN compiler was designed  for a minimum of 8000 
positions of core, with tape usage being optional. The fundamental 
design problem stems from the core storage  limitation. Because the 
average number of instructions per phase and  the number of 
phases selected are inversely related (at least to a significant 
degree), the phase organization was employed to circumvent the 
core limitation. The 1401 FORTRAN compiler has 63 phases, an 
average of 150 instructions per phase,  and  a maximum of 300 
instructions  in  any phase. 

Experience with the compiler suggests that, even though the 
basic compilation technique requires repetitive scanning of the 
source program, the time required for this  redundant effort is 
small. The experience lends some  credence to  the following 
argument. 

efficiency of 
the  compilation 
technique 
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If a phase is decomposed into  two serially acting phases, 
assume that  the average execution time is increased by a multi- 
plicative factor r. If each component phase is again decomposed 
into two phases, the average total execution time of the resulting 
four phases increases to r' times the original. After IC decomposi- 
tions, 2" phases result, with an average total execution time of rk 
times the original. Under this assumption, it follows that  an n- 
phase compiler takes T ' ~ ~ ~ ~  times longer than a comparable one- 
phase compiler. Because some phases do not involve scanning, this 
estimate may tend to be high. 

Based on experience with the present compiler, it is con- 
jectured that r 'v 1.05 and  that  the  redundant work  occasioned 
by the use of 63 phases increases compilation time  by  a  factor of 
1.0510ga63 N 1.3. 

However, this technique reduces compilation time elsewhere, 
so that  the  net increase can be expected to be less than con- 
jectured. Since the phases act serially, tape searching is un- 
necessary. Moreover, no external  sorts or merges are required. 
After one pass of the processor, the  object program lies in core 
storage,  ready for execution. 

Also, the present technique permits an approach to coding 
that tends to reduce compilation time. Decomposition into  an 
appropriate  number of phases often results in more available core 
space for execution of an individual phase than  the minimum 
needed. 

The  typical phase requires only on the order of 150 instructions, 
although twice that number are accommodated by the allocated 
region in core. Thus, most of the code can be written for efficient 
execution without regard to economy in the number of instructions 
employed. Other  advantages  inherent  in  this  type of coding are 
that  it is usually faster to write and easier to debug. 

Except for certain extreme cases in which the  object program 
compilation fills almost all of core, the compilation time  in seconds 1 is ap- 
time proximated by a linear function of the number of FORTRAN state- 

ments n (the  statements assumed to be of average complexity). 
If the compiler is on tape, reads the source program from cards, 
and punches a self-loading machine language object program, then 
t = (0.96n + 72) seconds. As a load-and-go system,  with the 
punching of the object program suppressed, t = (0.76n + 22) 
seconds. If the system is on cards, an additional 173 seconds are 
required. 

The principal function of each phase of the compiler' is in- 
compiler dicated below. Secondary functions are  subordinated; for ex- 
Phases ample, error checking occurs in almost every phase, but is  seldom 

mentioned. 
Phase 00 - Snapshot. Loads a  snapshot  routine  into 350 positions 
of core storage. This  routine lists a specified amount of core 
storage. 
Phase 01 - System Monitor. Brings in the next phase from the 
system  tape or initiates reading of the next phase from cards, 
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Note: Whereas the source program originally was composed of constants, 
variables, and  statement numbers of arbitrary length, it is now highly  struc- 
tured  and is composed of 3-character  machine addresses. Machine addresses 
substituted for constants  and variables  are their object-time addresses. Ma- 
chine addresses substituted for statement numbers are indirect  addresses 
which currently reference Table I1 entries-sequence numbers of labeled 
statements.  Eventually  (Phase 51) these  indirect  addresses are replaced by 
the object-time addresses of the labeled statements, Le., the addresses of 
object  programs compiled from these statements. 

Phase 32 - Input/Output I .  The residue of each I/O statement 
other than BACKSPACE, REWIND, and E N D  FILE is substituted 
into an object-time mask. The filled-in mask and  an identifier 
are  stored  in lower  core immediately adjacent  to  the last entry 
in  Table 11. The identifier is the sequence number (Phase 02) or, 
only when the  statement originally had a  statement  number,  the 
machine address of the sequence number stored in  Table I1 
(Phase 30). 

Phase 33 - Arith I. All arithmetic expressions appearing  in the 
source program are scanned. Switches are  set to indicate which 
function  routines  must be loaded by  Phase 52. Minor changes 
are  made to expressions, and sufficient error  testing is done to 
expedite Phase 34. 

Phase 34 - Arith I I .  By means of a  transition matrix,‘ each 
arithmetic expression is broken down into a sequence of one or two 
operand sub-expressions involving temporary  dummy storage 
locations. 
Phase 35 - Arith I I I .  Initialization for Phase 36. 

Phase 36 - Arith I V .  Redundant references to temporary dummy 
storage locations are eliminated by forming maximal strings of 
operands and  operators from each sequence of sub-expressions. 
Each  string specifies the computation  in which (1) unary  operators 
act on the  entire substring immediately t o  their  left  and (2) 
binary  operators combine this  substring with the operand on their 
right. 
Phase 37 - Arith V .  Exponentiation  operators  are replaced by 
substrings involving log and anti-log functions. Implied mode 
changes are  made explicit by inserting (or deleting) fix or float 
operators  in the strings. The  Table I1 addresses (Phase 29) ap- 
pearing within IF statements (involving arithmetic expressions) 
are  substituted  into masks of object-time instructions. The filled-in 
mask replaces the addresses in the source program. 

Phase 38 - Arith V I .  The  arithmetic  strings  are  altered so that 
temporary  storage  areas  are shared whenever possible. Machine 
addresses are determined for these areas  and  substituted for the 
dummy addresses in the strings.  Previous  arithmetic  and IF state- 
ments are now stored, each with its identifier (Phase 32), in lower 
core immediately to  the left of the list  and  format  “statements.” 

Phase 39 - End $le, Rewind, Backspace. 
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Phase 53 - Relocatable Package. This phase consists of the re- 
locatable  routines loaded by  Phase 52. 

Phase 54 - Format Loader. The object-time format  routine, which 
is included in this phase, is loaded. 

Phase 55 - Replace I I .  Those instructions  in the generated object 
program that should branch to  the relocatable routines  are modi- 
fied (via the table of Phase 52) to show the object-time addresses 
of these routines. 

Phase 56 - Snapshot. A snapshot of the generated program is 
printed if initially requested and if no source program errors 
have been detected that would make program execution un- 
rewarding. 

Phases 57,  58, 59, 60 - Condensed Deck. When requested and 
if there  are no input errors, these phases punch  and  list the object 
program as a self-loading condensed card deck. 

Phase 61 - Geaux I .  This phase prints  the end-of-compilation 
message, initializes the sense lights, and prepares the branch into 
the  object program coding. 

Phase 69 - Geaux I I .  The arithmetic  routine (Phase 63)  is read 
into storage. Communication between this routine  and the re- 
locatable routines is established. The  object program is executed 
on option. 

Phase 63 - Arithmetic Package. This phase consists of the  arith- 
metic routine loaded by Phase 62. 
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FOOTNOTES 

1. A detailed  description of the compiler is given in IBM 1401 FORTRAN Specifi- 
cations  and  Operating  Procedure, Systems Reference Library C24-1455-0, 
International Business Machines  Corporation,  (Revised Edition,  June 
1964). 

2. Normally,  minor modifications are made to  a compiler throughout i ts  life. 
For operational  detail, the  current program library  documentation for 
Compiler Program 1401-FO-050 should  always be consulted. 

3. The decision to  sort  the source program was quite  arbitrary. It waa con- 
sidered more efficient than  translating  the source program “in place.” If 
translating a less concise language than FORTRAN or translating source 
programs  for a large  machine  on  a  small machine, the  entire source program 
would not fit in core. In  this case, an in-place translation would be much 
more efficient. 

4. This technique is described by K. Samuelson and F. L. Bauer  in “Se- 
quential  formula  translation,” Communications of the ACM 3, No. 2, 
76-83 (1960). 


