
This  discussion  presents a unified  method for organizing  the con- 
figuration  data of manufacturing  files,  and for generating  and re- 
trieving  essential  quantities from the  files.  The  required  processing 
operations,  which  include  various  requirements  and  engineering- 
change  computations,  are  explained  with  the  aid of m a t r k  algebra. 

An important objective of the method i s  to permit a reasonably  opti- 
mal balance  between  the  bulk-storage  requirenaents and the amount of 
time required for processing. 

Fabrication  and  assembly  operations 
Part I11 Matrix methods for processing 

by P. G. Loewner 
configuration  data 

The manufacturing process of a complex product made up of 
various components includes a series of assembly and fabrication 
steps. In each step, several discrete parts  are used in the con- 
struction of another  part.  Each  part is identified by a unique 
number. Some parts, known as details, are purchased directly 
from other firms and can be  considered raw materials. Parts con- 
structed from other parts  are known as assemblies. Those assem- 
blies that represent the firm’s final products  are sometimes 
known as final assemblies; other assemblies represent intermediate 
steps in  the manufacturing process and  are therefore called sub- 
assemblies. 

Strict control over inventories, schedules, costs, and  other  items 
of interest to management requires that information about  the 
structure of a part be retrieved rapidly.  For example, a sales fore- 
cast or a customer order generates a demand for final  assemblies. 
This demand in turn generates a demand for subassemblies a t  
each step  in production. To compute the demand for parts at  any 
step, complete structural information about each step of the man- 
ufacturing process is needed. On the  other  hand, if an alteration of 
a part is contemplated, it is essential to gauge in  advance the effect 
of that change on the manufacturing process. To do this, it is 
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necessary to know every part  that  the assembly in question enters 
into. Hence, complete structural information is required. 

This discussion describes a  structural  data processing method 
that is capable of performing various functions associated with the 
assembly of discrete parts. Among the functions are simple and 
computed references (simple and  total bills of materials, where- 
used traces, detailed and accumulated costs, reorder points and 
quantities,  etc.)  and requirement computations (including netted, 
reorder, and time-dependent requirements). Consideration is given 
throughout to engineering changes. 

The  matrix algebra approach to  the bill of materials  and  other 
structural problems, based on the work of Vazsonyi,' is presented 
as introductory background information. The description of file 
organization and planned capabilities of the  data processing system 
includes a definition of algorithms for each computation. The 
discussion is restricted to non-cyclic systems; i.e., systems in 
which  no part is  used at  any level in the assembly of itself. Typical 
applications are shown for structural  data references and require- 
ment  computations. 

Although matrix algebra is used for descriptive purposes, 
matrices are  not stored as regular arrays.  List processing methods 
are used in the implementation to economize on storage space. 

Matrix algebra  approach 

To illustrate the concept of structural information, consider a 
simple manufacturing process as represented by the  tree in Figure 1. 
The process makes two products; the products  are labelled part 1 
and  part 4. In  order to manufacture part I, a subassembly must 
be made first. Notice that there  are two details  (part 2 and  part 5), 
one subassembly, and two final assemblies. The  tree serves to 
describe not only the number of units needed to make a final as- 
sembly, but also the order in which they  must be assembled. 

Figure 1 Structure of a simple manufacturing process 

An arrow in the tree will  be  called a branch and  a circle a node. 
A node has one (and only one) directed path to a final assembly. If 
node b lies above node c in  a given path, such that n branches 
intervene between c and b, then node c is said to be at  distance n 
from 6 .  Moreover, any node is at  distance zero from itself. 

next-assembly The information given in  the tree can also be presented in  a 
matrix set of matrices. Obviously, in order to assemble any  part, we must 



- - 
1 0 0 0 0  

5 1 3 1 0  

T =  1 0 1 0 0 .  

0 0 0 1 0  

-0 0 0 2 1- 

The diagonal has 1 in each entry,  representing the  fact  that  the 
zero distance is included in  this  matrix. In  our example, T = N o  + 
N' + N', and,  in general, 

where 6 is the largest  distance  in the  structure. Since 

and, because N6" = 0, 
6 + 1  6 

N * T  = N k  = N k ,  
k - 1   k = 1  

then 

T - N * T  = ( I  - N)T = 1 .  

Hence 

T = ( I  - N)- ' .  (3) 

In  practice, (2) is more useful than (3) as a way of solving for T .  
Another  property of the N matrix is that it can be triangular- 

triangularity ized. In  a triangular  matrix, no non-zero entries exist on or above 
the main diagonal. An obvious way of triangularizing the  matrix 
above is to permute rows and columns. If we define the level of a 
part  as d + 1, where d is the maximum distance of the  part  from 
a final product, one way to  obtain  triangularity is to  sort the part 
numbers  on levels. Since parts 1 and 4 are final products, we put 
them first.  Next we put  part 3, and finally parts 2 and 5. Thus, we 
arrive a t  the  triangular  matrix N ,  , 

1 4 3 2 5  

0 0 0 0 0  

4 0 0 0 0 0  

1 
- 

N T =  3, 1 0 0 0 0  

2 1 3 0 0  

L o 2 0 0 0 - 5  

2 

where part numbers are  written on the  top  and side to indicate the 
column and row corresponding to them. The technique of sorting 
on levels is only one of the  many ways of triangularizing N .  
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The N matrix  is sparse-only a very  small  proportion of the 
entries  are non-zero. This  turns  out  to be a crucial  factor in  plan- 
ning  suitable processing methods. 

Later we see that  matrix multiplications of the  form V - T and 
T V ,  where V is a  vector  variable,  can yield vectors of information 
about  each  part. Assume, for the example  depicted in  Figure 1, an  
order  for 5 units of part number 1, and 10 units of part number 4. 
We  can  write  this  demand as a column vector,  say D, of the form 

0 

L 01 

where the demand  for  each part  appears as a component  in the 
vector.  Since ti; units of part i are needed to  make one unit of 
part j, the  total  requirement  for  part i in fulfilling the demand d j  
for  part j is t i j d j  . Hence, the  total  requirement ri in fulfilling all 
demands is cj ti ; d j  . A requirements  vector R is thus specified by 
the matrix  product T . D. 

In  the above  example,  performing the multiplication gives 

R =  

' 5  

35 

5 

10 

-20 

The vector R specifies the  unit  quantity of each part needed to 
meet the order. In  addition to giving the number of each  detail 
needed, i t  also yields the number of subassemblies  required a t  each 
level of the assembly. 

The  requirements  multiplication would be a simple matter if T 
could be kept  in  storage. Because T is much  more dense than N ,  
it is more feasible to  store N then T .  For this reason, we will later 
describe  algorithms that perform the indicated  multiplication 
using N rather  than T.  

File organization 

The  data files consist of three groups of data:  the product  structure 
file, the level file, and  the  parts  data file. 

The product  structure file (PSF) consists of the next-assembly 
quantity  matrix N stored  in  two forms:  ordered by columns, and 
ordered by rows. Both forms are  kept  in  memory  in  order  to 
facilitate  rapid  retrieval  by row or  by column. To  take  advantage of 
the sparseness of N ,  only the non-zero elements are stored.  Each 
element  is  stored  with a row or column  index, as  appropriate. 

typical 
matrix 
operations 

product 
structure 
file 
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Moreover,  a row or column begins with its own index.  Thus,  for 
row form, we store  each row iN as 

f i ,  (j, n,,) n,, # 0 for all j ) .  

If all n,, = 0, the entire row, including its index, is omitted. Sim- 
ilarly, for column  form, we store  each  column 'N as 

{j, (i, nii) I n,, # 0 for all i ) .  
The column and its index are  omitted if all  entries  are zero. The 
compactness of this  representation  can  be  increased  by  making use 
of variable-length fields. 

For  the  matrix  obtained  from  Figure 1, the  actual  information 
stored would be: ( 2 ,  (1, 2 ) ,  (3, 3), (4, 1); 3, (1, 1); 5 ,  (4, 2 ) )  for N 
in row order,  and { 1, ( 2 , 2 ) ,  (3, 1); 3, (2,  3); 4, (2, l), ( 5 , 2 ) }  for N in 
column  order. Punctuation  has been added  only  for  purposes of 
illustration. The nii and  its associated index have been grouped to- 
gether  by  parentheses. A number  standing  by itself is a column or 
row index. 

From  the  above discussion, it can be seen that, although  matrix 
algebra  is used to  formalize the subject, the procedures are imple- 
mented  with  the  aid of list processing methods.  Since the matrices 
are large and  very sparse, the elimination of zero elements  sharply 
reduces the  amount of memory  required. 

It is shown later  that very efficient algorithms could be form- 
ulated  by processing the N matrix if it were feasible to store the 
matrix  in  triangular  form.  The process of triangularization, which 
requires  a great deal of sorting,  might  be justified if N did  not 
change as frequently  as  it  actually does. Changes that  alter  the 
level structure of the manufacturing process and, hence, change the 
triangular  order of N ,  may occur  frequently. To achieve some 
of the efficiency of triangularization  without  incurring  a  great  deal 
of sorting, we work  with a semitriangular N .  

We define the row semitriangular  matrix NRT as  an N matrix 
with its rows permuted  such that, were the columns of N ordered 
by  the same  permutation, the resulting matrix would be a tri- 
angular  matrix N ,  . The column  semitriangular  matrix N , ,  is the 
counterpart of NE, , ordered by columns. For  the  matrix of Figure 
1, we would have  the following two  matrices: 

1 2 3 4 5  

0 0 0 0 0  

0 0 0 0 0  

1 0 0 0 0  

2 0 3 1 0  

1 0 0 0 2 0  

1 

4 

3 N , ,  = 

2 

5 

1 4 3 2 5  

0 0 0 0 0  

2 1 3 0 0  

1 0 0 0 0  

0 0 0 0 0  

~ 0 2 0 0 0  

Much  sorting  time is saved by working with a  semitriangular 
matrix. A change to N that  alters  the level order of a part requires 

110 P. G .  LOEWNER 





disk storage, the reference is a disk address,  and both representa- 
tions of N can be stored in random  order. However, if the files are 
kept  on  tape,  the only way of referencing N in  triangular  order is 
to  store  its column-by-column representation in semitriangular 
order of columns and  its row-by-row representation in semitri- 
angular  order of rows, thus minimizing the number of tape passes 
when searching. In  this case, the reference might be the record 
number  on the  tape. 

It is useful to visualize each class of information  in  Table 2 as 
a vector  with an  entry for  each part.  Thus  the vector C of detailed 
costs, given as 

= [ c l j  c Z l  c 3 )  * * * 7 c?L], 

where n is the  total number of parts  in  the system,  has  a component 
for each part i. In this respect, PDF can be thought of as a set 
of vectors, each representing different characteristics  for the  parts. 
The information  for each part is stored as a  list. 

System  capabilities 

A configuration data processor may be envisioned as a  group of 
programs that  are adaptable to a wide range of application  envi- 
ronments. The underlying objective is to provide a set of programs 
from which the user can select as required  by his special needs. 
The number of functional programs should be as small as possible 
without sacrificing the versatility of the system. The computational 
system is capable of quite different kinds of structural  data proc- 
essing: file maintenance (engineering changes), and basic compu- 
tational  retrieval  functions. 

Up to this  point, we have discussed a  manufacturing process 
engineering as  though it were represented by a single N .  In  practice, however, 
changes engineering changes force one to consider multiple N’s. From  its 

conception as a proposed product to  its manufacture, a product 
undergoes numerous changes at  the design development,  testing, 
and  manufacturing  stages; in fact,  products are sometimes released 
into  the  market while still undergoing changes. Each change, in 
effect, creates  a new process that has a distinct N associated with it. 

Engineering changes may also occur in  satisfying  a  demand  for 
custom-made products;  plants producing large and costly products 
often  tailor standard designs to customer specifications. Hence 
each article is described by a distinct N .  Each of the N’s may  be 
recorded and  retained because maintenance,  repair, and modifi- 
cations  demand that  the  structural  data of any product be known 
in exact  detail. 

To economize space, we can  store the various N’s as  either 
pivotal  or  delta  matrices. A pivotal N is simply a complete N that 
serves as a reference point in a  stream of engineering changes, 
whereas a AN is the  set of changes that must be applied to  the 
previous stream to produce an updated N .  To retrieve N ,  it may 
therefore be necessary to go through a series of delta N’s. In some 
circumstances, it is desirable to permit  a  stream of changes to 
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diverge; if this is permitted, a  particular desired N can be obtained 
by following a path  in a tree of changes. 

As the chain progresses, pivotal  matrices  may be  stored as 
necessary to achieve a  balance  between  storage economy and proc- 
essing time.  This  procedure also applies to  the  parts  data file 
and  the level file. For each engineering change, the  PDF,  PSF,  and 
LF are given  identifying  header  records.  These  records specify 
the effective date of the change and/or its serial  number;  other 
descriptive  information may also be  included. 

As an example of an engineering change, assume that we wish 
to change the matrix  representing  Figure 1 as follows: 

N =  

0 0 0 0 0  

2 0 3 1 0  

1 0 0 0 0  

0 0 0 0 0  

0 0 0 2 0 .  

to M = 

0 0 0 0 0  

3 0 3 1 0  

1 0 0 0 0  

0 0 0 0 0  

0 0 0 2 0 .  

The  only change is in n, which is changed to 3. Thus, we would 
store AN as { 2, (1, 3 )  1 .  Deletions  can  be  made  by  entering the row 
and column index with a zero element. 

In  this  system, new rows and columns  can be added  by  enter- 
ing  them  in  the previously defined form. Since the row and column 
indices are  not  in  the N being modified, the rows and columns are 
added  without replacing any indices. Therefore, files are auto- 
matically  created  by  applying an engineering  change,  together with 
the initial files, to a set of files containing  only zero elements. The 
zero files do  not  take  much space because of our file organization 
scheme. 

This procedure  applies to  the  parts  data file as well. With  the 
level file, however, we have a somewhat  different  problem. The 
level file has a  list of parts  for  each level. When  a  change is made 
to a level, that change  consists of the insertion or deletion of a 
part.  Thus, we indicate a change by listing the level, followed by 
the list of parts,  each  with a positive or negative  sign  indicating 
additions or removals,  respectively. For example, consider that 
we want  to change the level file given in  Table 1. Assume that 
part number 3 is removed from level 2 and placed in level 3, and 
that a new part  (part  number 6) is added to level 2. The ALF is 
shown in  Table 3. 

The basic functions  in the method  are  dependent  upon  tile 
matrix  operations V N and N . V ,  where V is a row or column 
vector as  dictated by compatibility  considerations.  Given N stored 
by rows, it is  obvious how to perform  a  multiplication R = N . V 
by  operations of the form 

ri = nipt. 
i 

(4) 

If an entire row of N is zero, we can  skip  that  step  and  set ri to 
zero. Given N stored  by columns, we can  initially set  the  vector R 
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to zero and  iterate  the following equation, 

R = R + " v i  i = 1, 2 ,  , m, (5) 

where iN is the  ith column of N ,  vi is the  ith element of V and m 
is the dimension of V .  This  step can be omitted whenever 'N = 0. 
This  method  can be very fast if V has  many zero elements. Notice 
that whenever vi = 0, we may also omit the step.  Thus, the 
sparseness of both N and V serves to hasten  the computation. 
Similar reasoning applies to R = V - N .  

A second useful pair of functions are V T and T - V .  To 
perform the indicated  multiplication  by using N rather  than T 
and  making  only one pass over N ,  a  semitriangular N is applied. 
The use of N,T or NET creates  a few problems, since the order of 
the rows in  the above  matrices is in general not the same as  the 
order of the columns. If we want to perform the multiplication 
N R T  V ,  then V must be in the same  order as  the columns of NR, 
and, therefore, in  natural (or customer) order. Note that  the 
resulting  vector is in  the order of the rows of NRT . To avoid re- 
arranging the result  vector, the following algorithm is used. 

Let (')NCT be the NcT matrix  with  all columns not  in level k 
replaced by zeros. Let R',' be a column vector  with  all  entries 
not  in level k replaced by zeros. Let i? denote R ordered in level 
order, L be the number of levels, and  set R, equal to V in  the 
following recursion equation (see Figure 2 for a flow-charted expla- 
nation). 

Generate l ? : k )  from R, 

R,,, = R, + (k)NCTI?:k) 

We can generate I ? ( ' + ' )  at  the same time we generate R,,, by 
testing each element of , as it is produced, to determine 
whether it belongs in level IC + 1. The  last R,,, is the desired 
vector R . This  algorithm works very well if Equation 5 is used 
and  the columns of N are ordered within  each level in  the same 
order as  the rows. An equivalent  algorithm  can be formulated  for 
R = V - T by  letting (,) NET be the NR, matrix  with  all rows not 
on the kth level replaced by zeros. 

It is interesting to note that (')NCT can be replaced by (,)NRT , 
and vice versa, provided that  the placement of the circumflex is 
suitably  rearranged. 

One of the  advantages of matrix  methods  for solving bill-of- 
material problems is that one can check the results  by  back solu- 
tions. From  Equation 3, T . ( I  - N )  = I .  It follows that  the 
general algorithm R = T - V ,  using N ,  has  the back solution: 

1 k = 1 , 2 ,  - a *  , L - 1.  

R = V + N * R .  

To speed up checking, one  can collapse the  matrix N by using 
only its checksums: row sums, column sums, and  total sum. To 
describe the checking formally, let u be a row or column vector 
consisting of only 1's. Then u N and N - 0 represent the two 
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checksum  vectors of N ,  and 0 . N 0 represents the  total check- 
sum.  The general  algorithm is checked by  the  identity 

0 - R  = 0 . V  + ( U * N ) . R .  
The  other  computations  are checked by  similar  identities. 

Structural data references 
The  structural  data references are  sets of information that can  be computed 
obtained  from  the given files. Simple references, such as those  cited references 
in  Table 4, are directly  retrievable  from the files. 

Table 4 Directly retrievable  file references 

Reference  Notation  Remarks 

Bill of Materials iN The B / M  for a part is the corresponding 
column of N .  

Where-Used  Trace iN The W / U  trace for a part is the corre- 
sponding row of N .  

Boolean B / M  in The Boolean or skeleton B / M  is the cor- 
responding column of N with only 0 and 1 
entries. 

Boolean W / U  Trace iN The Boolean or skeleton W / U  trace of a 
part is the corresponding row of N with 
only 0 and 1 entries. 

Detailed Cost c i  Directly obtainable from PDF. 
Standard  Labor si Directly obtainable from PDF. 
Lead T i m e  bi Directly obtainable from PDF. 
Reorder Point k i  Directly  obtainable from PDF. 
Reorder Quuntity p i  Directly obtainable from PDF. 
Basic Levels There  are  three basic levels; details, sub- 

assemblies, and final assemblies. The basic 
level of a part  can  be  obtained  by search- 
ing the row and column reference in  PDF. 
If the  part has a row, but no column in N ,  
it is a detail. If it has a column, but no 
row, it is a top assembly. If it has both,  it 
is a subassembly. 

The following references require some computation: 

1 Total Bill of Materials. This reference is column iT of T and  can 
’ be  computed  from N by  letting U be a column vector  consisting 
i of 1 in  the  ith place and 0’s elsewhere. Then 

’T = T * U ,  

in which the algorithm  for T - V described previously  can be used. 

Total Where-Used  Trace. This reference is the corresponding row 
of T.  It can  be  computed  by an  algorithm  equivalent to  the 
preceding  one, where U now represents  a row vector  with 1 in  the 
ith place and 0’s elsewhwere. Then 

‘T = U * T ,  
for which the algorithm  for V T can  be  used. 
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Total  Boolean  Bill of Materials. From a column jT, this reference 
yields a  vector ‘ p  in which each entry is 0 or 1 when ti’ is zero or 
non-zero, respectively. 

Total  Boolean  Where-Used  Trace. This reference is  similar to  the 
previous  one  except that it refers to a row of T.  

Selective  Reference. The selective reference for a part i is the bill 
of materials  for that  part, exploded level by level for each part 
used in  the  manufacture of i. It is  a useful compromise that often 
avoids the need for a complete  tree, which is  tedious to generate 
and  bulky  in volume. Thus, the selective reference for part i in 
Figure 1 is: 

@ uses two 0, one 0; 
0 uses three 0. 
No entry is needed for part 2, because it is a  detail  and uses no 
parts.  The selective reference for part 4 is: 

@ uses one 0 and two @ 

To  obtain a selective reference, we list  the columns of N indicated 
by ‘F .  To  obtain a selective reference for  several parts  and for  a 
restricted  number of levels, we generate  a Boolean vector to 
identify the  parts  wanted.  Then we obtain F from fi by using a 
Boolean version of (6), carried out  to L iterations  only, where L 
is the  number of levels involved. 

I 

Accumulated Cost. This reference yields the  total cost of a part, 
including the cost of details  and fabrication. If C is the vector of 
detailed costs, the vector of accumulated cost, V, is found by 
V = C T .  Since ci  is the cost of part i, and v i  the accumulated 
cost of part j ,  we have 

vi = Citii, 

and therefore 

V = C.T.  

Accuwvulated Labor  Element. If S denotes  a  vector of labor elements, 
the accumulated  labor  element  vector H is given by S T .  The 
derivation  is  similar to  the one for accumulated cost. 

Level  Identification. There  can be various definitions of level; in 
many contexts, a part is not assigned a  unique level. However, for 
our purposes, we consider only one unique-level definition. The 
level of a part is  determined  by its position in  the level file. 

The algorithms for the unique-level computation follow: let 
unique level 0, be a column vector of all l’s, then 

Letting  the  last IC = L, 
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where the summation is non-Boolean. The resulting  vector V has 
an  entry for each part, listing its level in  terms of the longest path 
from  any final product. 

At engineering-change time, levels can be recomputed  by using 
a  faster  algorithm that  takes  advantage of delta  matrices, wher- 
ever possible, to avoid  unnecessary  scanning of the complete N .  

Requirements computations 

The requirements  computation  makes it possible to determine the 
quantity of each part  that  must be purchased or  manufactured 
to meet  a given demand. It is important  to  understand  that  the 

, demand  may be for any  part,  although a  demand  for  details is 
not likely. Typically,  in  order to reach  a wider market, a  manu- 
facturing concern sells subassemblies as well as final products. 

We define the  demand vector D in such  a  manner that d, is 
the  number of units of part i in  demand. Of special interest  are 
four  functions: simple, edited,  reorder, and time-dependent 
requirements. 

For simple requirements, 

I R = T . D ,  

where the result  vector R is so defined that ri is the  total  number simple 
of units of part i that  must be purchased (for details) or manu- requirements 
factured (for assemblies) to meet the demand given by D. The 
simple requirement  function gives a total for each part. 

“netted”  (adjusted  against  stock); whenever the availability of requirements 
an  assembly is netted  against  the requirement  vector, the require- 
ments for parts  at lower levels change. The object of edited  require- 
ments  is to use as  many  items as possible from available  stock, 
using the assemblies of lower level number  first. 

In  the following algorithm  for the semitriangular N ,  we define 
D as  the demand  vector, A as the availability  vector, A* as  the 
edited  stock  availability  vector, R as  the edited  requirements 
vector, L as  the number of levels, and m i  denotes the number of 
parts  in level i. For any of these  vectors,  let P be V reordered by 
levels (to correspond to semitriangular  order), but otherwise re- 
main  in natural order. Also, let V‘k’ be V with  all  entries  not  in 
level k replaced by zeros. Let (k ,NR12  be the N , ,  matrix  in which, 
except for level k,  all rows have been replaced by zeros. 

S t e p  1. For initialization,  set i = 1 and R = 0, and  obtain 

If parts  are available in  stock,  the requirements must be edited 

p = r j - g  
S tep  2 .  8‘;) = P‘i) + ( I I N R T  . R. 

S t e p  3. Letting eji’ represent the  jth element 

( j  = 1, 2,  * .  . , mi) in  the  ith level of 8, 



T i  A ( & )  - - 0 and &:.'i' = -e:') for eli' < 0. 

Step 4. If i < L, increase i by 1 and  continue  with  step 2 .  
If i = L, the algorithm is completed, giving R and A* 
as the computed  results. 

In  step 3, we form fi and A*, i.e., the resulting  vectors are  in 
level order. In  step 2,  we need R in  natural  order. Since the order 
of elements  in I?'i' is the same as  the order  in R"),  we simply  form 
R from R'i' by passing  over R once and inserting Tii' into  the 
proper places of R. R actually  expands as it is computed. At  the 
i th  stage, R contains  only  elements  in levels 1 to i, and no  elements 
in  levels i + 1 to L. At each level, we compute m i  elements. Thus 

The reorder  requirements  computation  function, a refinement 
reorder of the edited  requirements  computation, is designed to keep  stock 
requirements availability  from falling below the reorder  point  (wherever possible) 

and  to generate  orders  when the reorder  point  is  reached. Letting 
K denote the vector of reorder  points, and Q the vector of reorder 
quantities, the algorithm  for  simple  edited  requirements  should 
be modified as follows: In  step 1: 

The time-dependent  requirement, a refinement of the simple 
time-dependent requirement, considers the lead time of each part.  This  time, bi , 
requirements represents the number of time  intervals  required  for part i from 

start  to availability.  Consequently, the demand D is now a matrix 
whose elements d;, refer to  the demand  for  part i a t  time r .  We 
define G as a matrix containing  elements gi, representing the 
quantity of part i that  must be  available a t  time T. Let R be a 
requisition matrix whose elements r i r  represent the number of 
parts i on which we must  start working a t  time 7.  Then  it is quite 
obvious that 

Tir = gi,r+b;. 

The  computation required to calculate G or R is quite formidable. 
However, a simplification can  be  attained if  we assume  unique 
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lead  times,  i.e., we ignore the  time necessary to  attach each indi- 
vidual part  to  the subassembly.' Let B denote a vector of lead 
times,  where bi is the  time required to obtain  part i from its 
immediate predecessors. Considering  only the  total  time required 
to produce that subassembly, 

P 

= di, + n;iri,, 
i = 1  

so that 

which may be written as 

G' = D' + N - g + B ,  

where Gr+L( is a symbolic representation of g i r+bi  for  all j. Similarly, 
n 

rir = g i . r + b ,  = d i , , + b ,  + 2 niiri,i+bi. 
i = 1  

This may be  written as 
R' = Dr'B' + N-R''B',  

where b; is defined as bi when the  ith row of N is used. 
In  calculating gtT or ri7 for  details  and subassemblies, we must 

consider not only di ,  or di , r + b i  but also the  future  requirements for 
a part as determined  by the  future  demand for all higher-level 
assemblies containing the  part. A  more accurate description of the 
steps needed to  obtain  the  time dependent  requirement is now 
presented.  Included  is  a  method  for  determining the length of 
future  time  that  must be considered. 

Let 0 be  a Boolean selection vector  with 1's in  the position of 
parts whose requirement we wish to determine. Using the Boolean 
version of the algorithm  for  semitriangular fl described before, 
calculate 8 = 0 . T.  This  step  can be  omitted if we are  interested 
in all parts,  in which case v consists of all 1's. For all  parts in- 
dicated  by v, compute hi , which refers to  the planning  horizon 
for  each part j .  (For details, hi = b j  .) Then,  continuing level by 
level, set 

hi = bi + max { h , ) .  

Where  applicable,  a  simpler  method is to specify hi as  input. 
Again, for  all parts indicated  by 8, set 

? I i , # O  

Ti, = d i . r + b ; .  

This can  be  done  by shifting the rows of the D matrix  to  the  left. 
For final products, the answer  consists of the shifted D. For all 
other  parts we must continue, in  order of their levels, as follows: 
for each non-zero n i j  , shift the  jth row of the R matrix bi units 
to  the left,  multiply it by n,i , and  add  this  to  the  ith row of the 
R matrix. 
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Figure 3 Structural example Consider the example in Figure 3 for which the demand  matrix 
including  lead times is shown in  Table 5. Then 

R Q  r o  0 0 0 01 [l 0 0 0 01 

1 0 0 1 0  

1 0 0 1 1  

To compute rB1 , -we generate 0 = (0, 0, 1, 0,  0) and  then 
compute v = U !i? = (1, 1, 1, 1,0) (Boolean multiplication).  Thus, 
we can  ignore part 5. 

TREE 

I 
We now compute h, , h, , h, , h, . For details, 

h, = 6, = 0. For subassemblies, compute h, : 
b1=6 

br= 3 h, = b, + max ( h a }  = 4 + 0 = 4. 
b,=O 

b4=4 For final products, we compute h, and h, : 
b.= 1 

LEAD TIMES 

Table 5 Demand  matrix  D 

7 

i 1 2 3 4 5 6 7 8 9 1 0 1 1  

h,  = b, + max { h ,  , h4}  = 6 + max {0, 4 )  = 10 

h, = 6, + max {ha} = 3 + 0 = 3. 

Thus, we have the values  for b, and hi indicated in  Table 6. We 
are  interested  only  in  the  part of D shown in  Table 7. When 
shifting by bi , we receive the result shown in  Table 8. 

For  the  next level, we compute part 4, for which n4, = 1, as 
in  Table 9. We shift  the first row left b, = 4 places, and  add  to 
the  fourth row, leading to  the result of Table 10. Next, we compute 
part 3, for which %a1 = 1 and ~ ~ 3 2  = 2. We shift rows 1, 2,  4 left 
by ba = 0, multiply  by n31 , and  add  to row 3, receiving the result 
of Table 11. Thus, ~ 3 1  = 12. 

making bi = hi = 0. Thus,  the simple  requirement is a special case 
4 0 0 of the time-dependent  requirement. The edited  and reorder  require- 
3 2 2 2 2 2 2 2 1 1  1 1 

5 0 o o 0 0 o I 0 0 0 o ments  can also be generalized as time-dependent  computations. 

1 2 2 2 3 3 3 2 2 2  2 2 Simple requirements could be  computed,  in  this  method,  by 

I Concluding remarks 

The discussion shows how to  obtain  various  quantities  from  the 
next-assembly matrix N .  Minimal,  although  appreciable, use is 
made of bulk  storage. The N matrix  is  stored  in  two forms. At  
some loss of speed, memory  space  can  be  approximately  halved if 
only  one of the matrices  is  used. 

In  an  alternative method  for solving bill-of-materials problems, 
the total-requirement  matrix T is also saved. By this  method,  the 
retrieval  and  requirement  computations  are  greatly speeded up 
and simplified. The general  algorithm  is  not  used.  However,  bulk 
storage  requirements would be  considerably  increased, and engi- 
neering  changes  more  awkwardly accomplished, because AT is 
needed in  addition to AN. A possible way of using AT is  shown by 
Gleibermz~n.~ 



~- ~ 

Table 7 Relevant portions of 
the demand  matrix 

Table 6 Lead times and  plan- 
ning horizons 

Table 8 Shifted portions of the 
demand  matrix 

7 7 

1 2 3 4 5 6 7 8 9 1 0 1 1  1 2 3 4 5  
1 2 3 4  i 

2 2 2  2  2 
2 

2 2 2 2 2  

2 

2 

1 

6 3 0 4  
2 

I 1 0 3 0 4  
-I- 

Table 9 Table 10 Table 11 

i 

1 
2 
3 
4 

3 

~ 

7 = 1  -“ 7 

i 1 2 
2 
2 
6 (3 X 2) 

i 1 

1 2 

4 1 

1 2 

2  2 

x 2 

4 3 

- 1 -  
12 

new 4  3 

Random access bulk  storage,  provided  by  magnetic  disks,  is 
well suited to  this  application. However, tapes  are also feasible 
for  certain  application  environments,  provided the semitriangular 
matrices  are  stored  in  their level order to allow one-pass com- 
putations. 
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