Thus discussion presents a unified method for organizing the con-
Jiguration data of manufacturing files, and for generaling and re-
trieving essential quantities from the files. The required processing
operalions, which include various requirements and engineering-
change compulations, are explained with the aid of matrixz algebra.

An important objective of the method is to permit a reasonably opti-
mal balance between the bulk-storage requirements and the amount of
time required for processing.

Fabrication and assembly operations

Part III Matrix methods for processing
configuration data

by P. G. Loewner

The manufacturing process of a complex product made up of
various components includes a series of assembly and fabrication
steps. In each step, several discrete parts are used in the con-
struction of another part. Fach part is identified by a unique
number. Some parts, known as details, are purchased directly
from other firms and can be considered raw materials. Parts con-
structed from other parts are known as assemblies. Those assem-
blies that represent the firm’s final products are sometimes
known as final assemblies; other assemblies represent intermediate
steps in the manufacturing process and are therefore called sub-
assemblies.

Strict control over inventories, schedules, costs, and other items
of interest to management requires that information about the
structure of a part be retrieved rapidly. For example, a sales fore-
cast or a customer order generates a demand for final assemblies.
This demand in turn generates a demand for subassemblies at
each step in production. To compute the demand for parts at any
step, complete structural information about each step of the man-
ufacturing process is needed. On the other hand, if an alteration of
a part is contemplated, it is essential to gauge in advance the effect
of that change on the manufacturing process. To do this, it is

IBM SYSTEMS JOURNAL * VOL. 4 * NO. 2 - 1965

next-assembly
matrix

necessary to know every part that the assembly in question enters
into. Hence, complete structural information is required.

This discussion describes a structural data processing method
that is capable of performing various functions associated with the
assembly of discrete parts. Among the functions are simple and
computed references (simple and total bills of materials, where-
used traces, detailed and accumulated costs, reorder points and
gquantities, ete.) and requirement computations (including netted,
reorder, and time-dependent requirements). Consideration is given
throughout to engineering changes.

The matrix algebra approach to the bill of materials and other
structural problems, based on the work of Vazsonyi,' is presented
as introductory background information. The description of file
organization and planned capabilities of the data processing system
includes a definition of algorithms for each computation. The
discussion is restricted to non-cyclic systems; i.e., systems in
which no part is used at any level in the assembly of itself. Typical
applications are shown for structural data references and require-
ment computations.

Although matrix algebra is used for descriptive purposes,
matrices are not stored as regular arrays. List processing methods
are used in the implementation to economize on storage space.

Matrix algebra approach

To illustrate the concept of structural information, consider a
simple manufacturing process as represented by the tree in Figure 1.
The process makes two products; the products are labelled part 1
and part 4. In order to manufacture part 1, a subassembly must
be made first. Notice that there are two details (part 2 and part 5),
one subassembly, and two final assemblies. The tree serves to
describe not only the number of units needed to make a final as-
sembly, but also the order in which they must be assembled.

Figure 1 Structure of a simple manufacturing process

An arrow in the tree will be called a branch and a circle a node.
A node has one (and only one) directed path to a final assembly. If
node b lies above node ¢ in a given path, such that n branches
intervene between ¢ and b, then node c is said to be at distance n
from b. Moreover, any node is at distance zero from itself.

The information given in the tree can also be presented in a
set of matrices. Obviously, in order to assemble any part, we must

P. G. LOEWNER

triangularity

[10000]
51310
10100/
00010

100021}

The diagonal has 1 in each entry, representing the fact that the
zero distance is included in this matrix. In our example, T = N° +
N' 4+ N? and, in general,

5
T=2>XN=I+N+N+--- +N°, @)

where § is the largest distance in the structure. Since
] 8
T=YN=I+ > N*
k=0 k=1

and, because N°*' = 0,

8+1 E]
N.T = ZNIG: ZNk)
k=1 k=1
then
T—-NT=U-NT-=1.
Hence
T = (- N)"\. 3)

In practice, (2) is more useful than (3) as a way of solving for 7.

Another property of the N matrix is that it can be triangular-
ized. In a triangular matrix, no non-zero entries exist on or above
the main diagonal. An obvious way of triangularizing the matrix
above is to permute rows and columns. If we define the level of a
part as d + 1, where d is the maximum distance of the part from
a final product, one way to obtain triangularity is to sort the part
numbers on levels. Since parts 1 and 4 are final products, we put
them first. Next we put part 3, and finally parts 2 and 5. Thus, we
arrive at the triangular matrix N ,

14325
[00000]1

00000]4
100003
21300(2
102000]5

where part numbers are written on the top and side to indicate the
column and row corresponding to them. The technique of sorting
on levels is only one of the many ways of triangularizing N.

’

P. G. LOEWNER

The N matrix is sparse—only a very small proportion of the
entries are non-zero. This turns out to be a cruecial factor in plan-
ning suitable processing methods.

Later we see that matrix multiplications of the form V - T and
T - V,where V is a vector variable, can yield vectors of information
about each part. Assume, for the example depicted in Figure 1, an
order for 5 units of part number 1, and 10 units of part number 4.
We can write this demand as a column vector, say D, of the form

57
0
0

10
0

where the demand for each part appears as a component in the
vector. Since ¢;; units of part ¢ are needed to make one unit of
part j, the total requirement for part ¢ in fulfilling the demand d;
for part j is t;;d; . Hence, the total requirement r; in fulfilling all
demands is D ; t;;d; . A requirements vector R is thus specified by
the matrix product 7' - D.

In the above example, performing the multiplication gives

Ffﬂ
35
5.

10
20|

The vector R specifies the unit quantity of each part needed to
meet the order. In addition to giving the number of each detail
needed, it also yields the number of subassemblies required at each
level of the assembly.

The requirements multiplication would be a simple matter if 7
could be kept in storage. Because T is much more dense than N,
it is more feasible to store N then 7. For this reason, we will later
describe algorithms that perform the indicated multiplication
using N rather than 7.

File organization

The data files consist of three groups of data: the product structure
file, the level file, and the parts data file.

The product structure file (PSF) consists of the next-assembly
quantity matrix N stored in two forms: ordered by columns, and
ordered by rows. Both forms are kept in memory in order to
facilitate rapid retrieval by row or by column. To take advantage of
the sparseness of N, only the non-zero elements are stored. Each
element is stored with a row or column index, as appropriate.

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

typical
matrix
operations

product
structure
file

Moreover, a row or column begins with its own index. Thus, for
row form, we store each row ,N as

{i) (.7; 'ni:') I Uz # 0 for all j}

If all n;; = 0, the entire row, including its index, is omitted. Sim-
ilarly, for column form, we store each column N as

{j7 (Z; ni:‘) |ni,' # 0 for all 'L}

The column and its index are omitted if all entries are zero. The
compactness of this representation can be increased by making use
of variable-length fields.

For the matrix obtained from Figure 1, the actual information
stored would be: {2, (1, 2), (8, 3), (4, 1); 3, (1,1); 5, (4, 2)} for N
in row order, and {1, (2, 2), (3, 1);3, (2, 3);4, (2, 1), (5,2)} for N in
column order. Punctuation has been added only for purposes of
illustration. The n,;; and its associated index have been grouped to-
gether by parentheses. A number standing by itself is a column or
row index.

From the above discussion, it can be seen that, although matrix
algebra is used to formalize the subject, the procedures are imple-
mented with the aid of list processing methods. Since the matrices
are large and very sparse, the elimination of zero elements sharply
reduces the amount of memory required.

It is shown later that very efficient algorithms could be form-
ulated by processing the N matrix if it were feasible to store the
matrix in triangular form. The process of triangularization, which
requires a great deal of sorting, might be justified if N did not
change as frequently as it actually does. Changes that alter the
level structure of the manufacturing process and, hence, change the
triangular order of N, may occur frequently. To achieve some
of the efficiency of triangularization without incurring a great deal
of sorting, we work with a semitriangular N.

We define the row semitriangular matrix N, as an N matrix
with its rows permuted such that, were the columns of N ordered
by the same permutation, the resulting matrix would be a tri-
angular matrix N, . The column semitriangular matrix N, is the
counterpart of N, , ordered by columns. For the matrix of Figure
1, we would have the following two matrices:

12345 14325
[00000] %oooﬂ

00000
10000
20310

100020/

21300
10000
00000

10200 0]

1
2
3.
4

5

Much sorting time is saved by working with a semitriangular
matrix. A change to N that alters the level order of a part requires

P. G. LOEWNER

a rearrangement of the columns of N¢r and the rows of Ngr .
However, such a change does not require a rearrangement of the
individual elements within the rows of Nz or the columns of N¢rp .
It is shown later that the algorithms for N, can be applied to Ngr
or Ny fairly easily. They are nearly as efficient when applied to
the semitriangular matrix.

The level file (LF) has a record for each level of the manu-
facturing process, listing all parts that enter the manufacture at
that level for the first time. The top level, the final product level,
is designated as level 1. The levels preceding the top level are
numbered two, three, ete. For the manufacturing process of Figure
1, the file is shown in Table 1. In this unique-level system, detail
number 2 is considered in level 3 only, although it also enters the
assembly process at the second level: it is assigned to level 3
because it enters that level first. The parts in Table 1, said to be
in level order, are ordered by level, and within level by part number.
Methods of level computation are discussed later.

The purpose of the level file is to make the N matrix effectively
semitriangular, even though both of the forms in which it is stored
are in haphazard order. For example, if it is necessary to perform
some operation with N, , by consulting the level file one can
select the rows of N in level order and thus effectively perform the
operation as if N were semitriangular. The same argument holds
for an operation with Nz .

Associated with each part is a list of numbers describing
important characteristics of the part. The lists for all parts are
known jointly as the parts data file (PDF). For each part 7, the
PDF has a record with the items listed in Table 2 (other items may
also appear). In this table, the references to rows and columns are

an aid to locating a desired row or column. If the files are kept on

Table 2 Typical items in a parts data file

¢ Local cost. Price of purchases for details, or one-level fabrication cost
for assemblies. The one-level fabrication cost includes only the cost
incurred in putting the immediate components together to make a
part, and does not include the cost of the components.
Standard labor element. Amount of labor time required to assemble a
part from its immediate components.
Lead time. Amount of time that elapses between the start of manu-
facture of a part and the availability of that part (within one level).
Availability. Number of units of part ¢ available in stock.
Reorder point. Inventory threshold at which a reorder for part ¢
should be placed.
Reorder quantity. Minimum number of units of part ¢ that should be
reordered when a; < k.
Part identification. The manufacturer’s identifier for part ¢; this is
stored in PDF for reference purposes.
Reference to row. Address of the stored row of N corresponding to
part <.
Reference to column. Address of the stored column of N corresponding
to part <.

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

Table 1 Example
order

of

level-file

Level

engineering

changes

112

disk storage, the reference is a disk address, and both representa-
tions of N can be stored in random order. However, if the files are
kept on tape, the only way of referencing N in triangular order is
to store its column-by-column representation in semitriangular
order of columns and its row-by-row representation in semitri-
angular order of rows, thus minimizing the number of tape passes
when searching. In this case, the reference might be the record
number on the tape.

It is useful to visualize each class of information in Table 2 as
a vector with an entry for each part. Thus the vector C of detailed
costs, given as

C = [61)02:03))cn]y

where 7 is the total number of parts in the system, has a component
for each part 7. In this respect, PDF can be thought of as a set
of vectors, each representing different characteristics for the parts.
The information for each part is stored as a list.

System capabilities

A configuration data processor may be envisioned as a group of
programs that are adaptable to a wide range of application envi-
ronments. The underlying objective is to provide a set of programs
from which the user can select as required by his special needs.
The number of functional programs should be as small as possible
without sacrificing the versatility of the system. The computational
system is capable of quite different kinds of structural data proc-
essing: file maintenance (engineering changes), and basic compu-
tational retrieval functions.

Up to this point, we have discussed a manufacturing process
as though it were represented by a single N. In practice, however,
engineering changes force one to consider multiple N’s. From its
conception as a proposed product to its manufacture, a product
undergoes numerous changes at the design development, testing,
and manufacturing stages; in fact, products are sometimes released
into the market while still undergoing changes. Each change, in
effect, creates a new process that has a distinet N associated with it.

Iingineering changes may also occur in satisfying a demand for
custom-made products; plants producing large and costly products
often tailor standard designs to customer specifications. Hence
each article is described by a distinet N. Each of the N’s may be
recorded and retained because maintenance, repair, and modifi-
cations demand that the structural data of any product be known
in exact detail.

To economize space, we can store the various N’s as either
pivotal or delta matrices. A pivotal N is simply a complete N that
serves as a reference point in a stream of engineering changes,
whereas a AN is the set of changes that must be applied to the
previous stream to produce an updated N. To retrieve N, it may
therefore be necessary to go through a series of delta N’s. In some
circumstances, it is desirable to permit a stream of changes to

P. G. LOEWNER

diverge; if this is permitted, a particular desired N can be obtained = Table 3 Example of a delta level
by following a path in a tree of changes. file

As the chain progresses, pivotal matrices may be stored as Level
necessary to achieve a balance between storage economy and proe-
essing time. This procedure also applies to the parts data file —3,6
and the level file. For each engineering change, the PDF, PSF, and 3
LF are given identifying header records. These records specify
the effective date of the change and/or its serial number; other
descriptive information may also be included.

As an example of an engineering change, assume that we wish
to change the matrix representing Figure 1 as follows:

[00000)] 00000
20310 30310
10000 10000
00000 00000
1000 20] 100020/

Parts

The only change is in n,,, which is changed to 3. Thus, we would
store AN as {2, (1, 3)}. Deletions can be made by entering the row
and column index with a zero element.

In this system, new rows and columns can be added by enter-
ing them in the previously defined form. Since the row and column
indices are not in the N being modified, the rows and columns are
added without replacing any indices. Therefore, files are auto-
matically created by applying an engineering change, together with
the initial files, to a set of files containing only zero elements. The
zero files do not take much space because of our file organization
scheme.

This procedure applies to the parts data file as well. With the basic
level file, however, we have a somewhat different problem. The functions
level file has a list of parts for each level. When a change is made
to a level, that change consists of the insertion or deletion of a
part. Thus, we indicate a change by listing the level, followed by
the list of parts, each with a positive or negative sign indicating
additions or removals, respectively. IFor example, consider that
we want to change the level file given in Table 1. Assume that
part number 3 is removed from level 2 and placed in level 3, and
that a new part (part number 6) is added to level 2. The ALF is
shown in Table 3.

The basic functions in the method are dependent upon the
matrix operations V « N and N - V, where V is a row or column
vector as dictated by compatibility considerations. Given N stored
by rows, it is obvious how to perform a multiplication B = N - V
by operations of the form

ry = Zniivi- 4)

If an entire row of N is zero, we can skip that step and set r; to
zero. Given N stored by columns, we can initially set the vector B

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

Figure 2 Flow chart to zero and iterate the following equation,
for obtaining R = T*V
— o E=RE+'No, =12 ,m)

where ‘N is the ith column of N, v, is the 7th element of V and m
is the dimension of V. This step can be omitted whenever ‘N = 0.
This method can be very fast if V has many zero elements. Notice
that whenever »; = 0, we may also omit the step. Thus, the
sparseness of both N and V serves to hasten the computation.
Similar reasoning appliesto R = V - N,

A second useful pair of functions are V - T and T - V. To
perform the indicated multiplication by using N rather than T
and making only one pass over N, a semitriangular N is applied.
The use of N¢r or Ny, creates a few problems, since the order of
the rows in the above matrices is in general not the same as the
order of the columns. If we want to perform the multiplication
'SL:C’;I :d‘“ Nyr - V, then V must be in the same order as the columns of Nz»
lvEs and, therefore, in natural (or customer) order. Note that the
Tt resulting vector is in the order of the rows of Nz, . To avoid re-

memt1 arranging the result vector, the following algorithm is used.

Let "Ny, be the N, matrix with all columns not in level k
replaced by zeros. Let R be a column vector with all entries
not in level & replaced by zeros. Let B denote R ordered in level
order, L be the number of levels, and set R, equal to V in the
W N« R following recursion equation (see Figure 2 for a flow-charted expla-~

MATRIX—VECTOR nation).
PRODUCT

l Generate B® from R,
ReoR+w Ry, = R, + (k)NCTRI(ck)

VECTOR ADDITION

} k=1,2 - ,L—1. (6)

We can generate B“*" at the same time we generate R,., by
testing each element of R,., , as it is produced, to determine
whether it belongs in level k + 1. The last R,.; is the desired
TV—— vector B . This algorithm works very well if Equation 5 is used

NUMBER OF PARTS and the columns of N are ordered within each level in the same
NUMBER OF PARTS IN LEVEL k

PART INDEX order as the rows. An equivalent algorithm can be formulated for

WITHINLEVEL PART INDEX R = V - T by letting ,Nzr be the Nzr matrix with all rows not

ith ELEMENT OF R VECTOR on the kth level replaced by zeros.
mth ELEMENT OF R VECTOR

MATRIX OF M[K] COLUMNS AND It is interesting to note that *’ N, can be replaced by wNzr,
COLUMNS. OF N IN LeveL 3. and vice versa, provided that the placement of the circumflex is
suitably rearranged.

One of the advantages of matrix methods for solving bill-of-
checking material problems is that one can check the results by back solu-
of results tions. From Equation 3, T - (I — N) = [I. It follows that the

general algorithm B = T - V, using N, has the back solution:
R=V 4 N:-R.

EXPLANATION

To speed up checking, one can collapse the matrix N by using
only its checksums: row sums, column sums, and total sum. To
describe the checking formally, let U be a row or column vector
consisting of only 1’s. Then U - N and N - U represent the two

P. G. LOEWNER

checksum vectors of N, and U - N - U represents the total check-
sum. The general algorithm is checked by the identity

U-R=1U-V+ (UN)R.
The other computations are checked by similar identities.

Structural data references

The structural data references are sets of information that can be
obtained from the given files. Simple references, such as those cited
in Table 4, are directly retrievable from the files.

Table 4 Directly retrievable file references

Reference Notation Remarks

Bill of Materials J The B/M for a part is the corresponding
column of N.

Where-Used Trace ; The W /U trace for a part is the corre-
sponding row of N.

Boolean B/M ‘ The Boolean or skeleton B/M is the cor-
responding column of N with only 0 and 1
entries.

Boolean W/U Trace ; The Boolean or skeleton W /U trace of a
part is the corresponding row of N with
only 0 and 1 entries.

Detailed Cost ; Directly obtainable from PDF.

Standard Labor ; Directly obtainable from PDF.

Lead Time ; Directly obtainable from PDF.

Reorder Point ; Directly obtainable from PDF.

Reorder Quantity ; Directly obtainable from PDF.

Basic Levels There are three basic levels; details, sub-
assemblies, and final assemblies. The basic
level of a part can be obtained by search-
ing the row and column reference in PDF,
If the part has a row, but no column in N,
it is a detail. If it has a column, but no
row, it is a top assembly. If it has both, it
is a subassembly.

The following references require some computation:

Total Bill of Materials. This reference is column ‘7 of T and can
be computed from N by letting U be a column vector consisting
of 1 in the 7th place and 0’s elsewhere. Then

‘P =T.U,

in which the algorithm for 7' - V described previously can be used.

Total Where-Used Trace. This reference is the corresponding row
of T. It can be computed by an algorithm equivalent to the
preceding one, where U now represents a row vector with 1 in the
ith place and 0’s elsewhwere. Then

,'T = U'T,
for which the algorithm for ¥V - T can be used.

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

computed
references

unique level
computation

Total Boolean Bill of Materials. From a column 7, this reference
yields a vector ‘T in which each entry is 0 or 1 when ¢,; is zero or
non-zero, respectively.

Total Boolean Where-Used Trace. This reference is similar to the
previous one except that it refers to a row of 7.

Selective Reference. The selective reference for a part ¢ is the bill
of materials for that part, exploded level by level for each part
used in the manufacture of 7. It is a useful compromise that often
avoids the need for a complete tree, which is tedious to generate
and bulky in volume. Thus, the selective reference for part ¢ in
Figure 1 is:

@ uses two (2, one (3®;
® uses three ().

No entry is needed for part 2, because it is a detail and uses no
parts. The selective reference for part 4 is:

® uses one (@ and two ()

To obtain a selective reference, we list the columns of N indicated
by ‘T. To obtain a selective reference for several parts and for a
restricted number of levels, we generate a Boolean vector V to
identify the parts wanted. Then we obtain 7' from N by using a
Boolean version of (6), carried out to L iterations only, where L
is the number of levels involved.

Accumulated Cost. This reference yields the total cost of a part,
including the cost of details and fabrication. If C is the vector of

detailed costs, the vector of accumulated cost, V, is found by
V = C . T. Since ¢, is the cost of part 7, and »; the accumulated
cost of part j, we have

v,- = Z:C,'tij,
and therefore
V=CT.

Accumulated Labor Element. If S denotes a vector of labor elements,
the accumulated labor element vector H is given by S + T. The
derivation is similar to the one for accumulated cost.

Level Identification. There can be various definitions of level; in
many contexts, a part is not assigned a unique level. However, for
our purposes, we consider only one unique-level definition. The
level of a part is determined by its position in the level file.

The algorithms for the unique-level computation follow: let
U, be a column vector of all 1’s, then

Uipp=N-U, for k=1,2, - until U;,, = 0.
Letting the last &k = L,

P. G. LOEWNER

L
V = Z U}c,
k=0

where the summation is non-Boolean. The resulting vector V has
an entry for each part, listing its level in terms of the longest path
from any final product.

At engineering-change time, levels can be recomputed by using
a faster algorithm that takes advantage of delta matrices, wher-
ever possible, to avoid unnecessary scanning of the complete N.

Requirements computations

The requirements computation makes it possible to determine the
quantity of each part that must be purchased or manufactured
to meet a given demand. It is important to understand that the
demand may be for any part, although a demand for details is
not likely. Typically, in order to reach a wider market, a manu-
facturing concern sells subassemblies as well as final products.

We define the demand vector D in such a manner that d, is
the number of units of part ¢ in demand. Of special interest are
four functions: simple, edited, reorder, and time-dependent
requirements.

For simple requirements,

R=T-D,

where the result vector R is so defined that r; is the total number
of units of part 7 that must be purchased (for details) or manu-
factured (for assemblies) to meet the demand given by D. The
simple requirement function gives a total for each part.

If parts are available in stock, the requirements must be
“netted” (adjusted against stock); whenever the availability of
an assembly is netted against the requirement vector, the require-
ments for parts at lower levels change. The object of edited require-
ments is to use as many items as possible from available stock,
using the assemblies of lower level number first.

In the following algorithm for the semitriangular N, we define
D as the demand vector, A as the availability vector, A* as the
edited stock availability vector, B as the edited requirements
vector, L as the number of levels, and m, denotes the number of
parts in level <. For any of these vectors, let V be V reordered by
levels (to correspond to semitriangular order), but otherwise re-
main in natural order. Also, let V*’ be V with all entries not in
level k replaced by zeros. Let (,,Ng» be the Nz, matrix in which,
except for level k, all rows have been replaced by zeros.

Step 1. For initialization, set ¢ = 1 and B = 0, and obtain
F=D-1A4

Step 2. E(i) = F(i) + (i)NRT . R.
Step 3. Letting e” represent the jth element
(G=1,2 +--,m) in £, the sth level of £,

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

simple
requirements

edited
requirements

117

reorder
requirements

time-dependent
requirements

7 =e” and @ =0 for ¢” >0

#2 =0 and @ = —e” for e <0.

Step 4. If i < L, increase 7 by 1 and continue with step 2.
If ¢ = L, the algorithm is completed, giving R and A*
as the computed results.

In step 3, we form R and A% i.e., the resulting vectors are in
level order. In step 2, we need B in natural order. Since the order
of elements in B** is the same as the order in R'*, we simply form
R from R'” by passing over R once and inserting r{” into the
proper places of R. R actually expands as it is computed. At the
ith stage, R contains only elements in levels 1 to 7, and no elements
in levels 7 -+ 1 to L. At each level, we compute m, elements. Thus

L
>~m; = P where P denotes the total number of parts.
i=1

The reorder requirements computation function, a refinement
of the edited requirements computation, is designed to keep stock
availability from falling below the reorder point (wherever possible)
and to generate orders when the reorder point is reached. Letting
K denote the vector of reorder points, and @ the vector of reorder
quantities, the algorithm for simple edited requirements should
be modified as follows: In step 1:

F=D—-UAd-KR=D—-—4+RK

Replace step 3 with the following (j = 1, 2, -+ , m;):
#7 =0 for e}” <0

AY =g for 0<ef < gl

A7) ()
i i

7

% = max (k{7 — ¢, 0).

2 (1)

e;? for ;7 <e”

The time-dependent requirement, a refinement of the simple
requirement, considers the lead time of each part. This time, b, ,
represents the number of time intervals required for part 2 from
start to availability. Consequently, the demand D is now a matrix
whose elements d;, refer to the demand for part 7 at time 7. We
define G as a matrix containing elements g,, representing the
quantity of part 7 that must be available at time 7. Let K be a
requisition matrix whose elements r;, represent the number of
parts 7 on which we must start working at time 7. Then it is quite
obvious that

gir = ri,r—b.’

and

Ti‘r = gi,‘r+b.‘-

The computation required to calculate G or R is quite formidable.

However, a simplification can be attained if we assume unique

P. G. LOEWNER

lead times, i.e., we ignore the time necessary to attach each indi-
vidual part to the subassembly.® Let B denote a vector of lead
times, where b, is the time required to obtain part ¢ from its
immediate predecessors. Considering only the total time required
to produce that subassembly,

D
gir = dip + Z Nii¥iry
i=1
so that
D
gi7 = dif + Znifgj,’r+bj)
i=1
which may be written as
Gr — Dr + N‘G7+B,

where G"*” is a symbolic representation of g;..,, for all j. Similarly,

»
Tir = iirave = Qi rep; T+ Eniiri,r+bi'
i=1

This may be written as
Rr — D7+B’ + N'RT+B,,

where b/ is defined as b; when the ¢th row of N is used.

In calculating g, or r,, for details and subassemblies, we must
consider not only d;, or d, .., but also the future requirements for
a part as determined by the future demand for all higher-level
assemblies containing the part. A more accurate description of the
steps needed to obtain the time dependent requirement is now
presented. Included is a method for determining the length of
future time that must be considered.

Let U be a Boolean selection vector with 1’s in the position of
parts whose requirement we wish to determine. Using the Boolean
version of the algorithm for semitriangular N described before,
caleulate V = U - T. This step can be omitted if we are interested
in all parts, in which case V consists of all 1’s. For all parts in-
dicated by V, compute h; , which refers to the planning horizon
for each part j. (For details, h; = b; .) Then, continuing level by
level, set
h; = b; + max {h;}.

nii>=0
Where applicable, a simpler method is to specify h; as input.
Again, for all parts indicated by V, set

Tir = dﬂ',f+b,‘-

This can be done by shifting the rows of the D matrix to the left.
For final products, the answer consists of the shifted D. For all
other parts we must continue, in order of their levels, as follows:
for each non-zero n,; , shift the jth row of the B matrix b, units
to the left, multiply it by n,; , and add this to the 7th row of the
R matrix.

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

Figure 3 Structural example
including lead times

by—4
bs—1
LEAD TIMES

Table 5 Demand matrix D

T

1234567891011

2
1
1
0
0

Consider the example in Figure 3 for which the demand matrix
is shown in Table 5. Then

[00000] [10000]
00000 01000
11020 31120
10000 10010
10001 0] 1001 1]

To compute 73, , we generate U = (0, 0, 1, 0, 0) and then
compute V=U -T = (1, 1, 1, 1, 0) (Boolean multiplication). Thus,
we can ignore part 5.

We now compute A, , hs , ks, hy . For details,

hs = b, = 0. For subassemblies, compute h, :
hy = by + max {hs} =44+ 0 = 4.

For final products, we compute A, and A, :

hy = b, + max {h;, hy} = 6 + max {0, 4} = 10
hy = by + max {hy} =3 4+ 0 = 3.

Thus, we have the values for b, and h; indicated in Table 6. We
are interested only in the part of D shown in Table 7. When
shifting by b, , we receive the result shown in Table 8.

For the next level, we compute part 4, for which n,, = 1, as
in Table 9. We shift the first row left b, = 4 places, and add to
the fourth row, leading to the result of Table 10. Next, we compute
part 3, for which n;, = 1 and ng, = 2. We shift rows 1, 2, 4 left
by bs = 0, multiply by ns; , and add to row 3, receiving the result
of Table 11. Thus, r;; = 12.

Simple requirements could be computed, in this method, by
making b, = h, = 0. Thus, the simple requirement is a special case
of the time-dependent requirement. The edited and reorder require-
ments can also be generalized as time-dependent computations.

Concluding remarks

The discussion shows how to obtain various quantities from the
next-assembly matrix N. Minimal, although appreciable, use is
made of bulk storage. The N matrix is stored in two forms. At
some loss of speed, memory space can be approximately halved if
only one of the matrices is used.

In an alternative method for solving bill-of-materials problems,
the total-requirement matrix 7' is also saved. By this method, the
retrieval and requirement computations are greatly speeded up
and simplified. The general algorithm is not used. However, bulk
storage requirements would be considerably increased, and engi-
neering changes more awkwardly accomplished, because AT is
needed in addition to AN. A possible way of using AT is shown by
Gleiberman.?

P. G. LOEWNER

Table 6 Llead times and plan- Table 7 Relevant portions of
ning horizons the demand matrix

T

1234567891011

222 2 2

Table 10

Random access bulk storage, provided by magnetic disks, is
well suited to this application. However, tapes are also feasible
for certain application environments, provided the semitriangular
matrices are stored in their level order to allow one-pass com-
putations.

ACKNOWLEDGMENT

Parts of this report are based on unpublished work by L. Glei-
berman. The author is also greatly indebted to the contributions
of B. Ocampo and D. Berger, and to insights obtained from un-
published work by E. Homer.

CITED REFERENCES AND FOOTNOTE

1. A. Vazsonyi, “The use of mathematics in production and inventory con-
trol,” Management Science 1, No. 1 (Oct. 1954).

2. The unique lead-time restriction can be removed if one is willing to add
some dummy parts to the N matrix.

3. L. Gleiberman, “The engineering change of the total requirement matrix
for a bill of materials,” Management Science 10, No. 3, 488-493 (April 1964).

MATRIX METHODS FOR PROCESSING CONFIGURATION DATA

Table 8 Shifted portions of the
demand matrix

