In many industries, production planning involves the allocation of
various resources in the joint production of similar products. Inven-
tory levels, labor decisions, and an economic choice of lot sizes are all
influential in the planning process.

Formulated in terms of mathematical programming, the economic and
mathematical facets of production planning are discussed. A feastble
compulalion technique is suggested.

Fabrication and assembly operations

Part IV Linear programming in production
planning

by B. P. Dzielinski

Industry has applied linear programming in a variety of ways. For
instance, linear programming models have been used by individual
firms in the metal working industries to plan the production rates
of a single product and to determine the optimal assignment of
jobs to machines.

This paper outlines a linear programming model that is appli-
cable to a metal-working firm producing several different products
jointly on a fixed collection of equipment. The decision-making
model is eoncerned with economie lot sizes as well as inventory
levels and work-force allocations. The lot-size decisions fix the
quantity and timing of production for each product. Since quan-
tities produced may not matech demand schedules, inventory plans
are also generated. The work-force decisions, which determine the
labor force needed on a regular-time and on an overtime basis,
provide the most economic levels of the plant labor force for
producing the lot-size decisions.

One might ask, “Why use linear programming to study the
question of economic lot sizes?”’” The answer is simply that, in
metal working industries, production rate and lot size are two
factors that can affect costs on a pronounced scale.”'* A linear pro-
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gramming model enables an individual firm to manipulate these
factors and meet its demand requirements at minimum cost. In
the selection of lot sizes, production economies can be effected by
distributing setup costs over large quantities, but the indivisi-
bilities of setup costs introduce discontinuities into the problem.
On the other hand, lot sizes for the distinet products must observe
plant capacity restrictions. A model applicable to lot-size decisions
has been developed by Manne,® and used experimentally by
Dzielinski, Baker, and Manne.*

Certain problems arise in the Manne formulation of the lot-
size model when production must be planned for several thousand
distinet products. First of all, it requires as many equations as
products in the linear programming matrix. Secondly, a large
number of variables are involved, because it is possible to specify
many alternative production schedules for each product. Special
techniques can be applied to overcome these problems by employ-
ing the Dantzig and Wolfe® decomposition principle to accomplish
a reduction in the large number of equations. Also, the alternative
production schedules can be generated, as they are needed, by
means of the Whitin and Wagner® type of algorithm. This tech-
nique eliminates the task of computing and searching over a vast
collection of existing schedules as required in the linear program-
ming solution of the Manne economic lot-size model. These prob-
lems and their solutions are discussed in this part of the paper.
The theoretical and programming aspects of the same problems
have been treated by Dazielinski and Gomory.°®

The Dzielinski, Baker, and Manne study introduced the concept
of a feasible production schedule. If ¢., denotes the delivery require-~
ments of product ¢ (¢ = 1, --- |, I) in planning period = (r =
1, .-+, T),and z,;, is the amount of planned production of product
1 for the jth production schedule (j = 1, -- -, J) in planning period
7, the following expressions must be satisfied for each ¢ and j:

t t
ZJCHTZZQU e, T =1 (1)
T=1 T=1

and

T T
; Tijr = ; giﬂ (2)

where xz;;, > 0, g, 2> 0, and T is the total number of planning
periods. Expressions 1 and 2 ensure a produetion schedule that
at least satisfies the delivery requirements. Each product has 2”7
such feasible schedules. The rules for generating these schedules
have previously been discussed.®>"* For example, we obtain the four
feasible schedules of Table 1 if (1) for a given product, we generate
production schedules which do not violate expressions 1 and 2, (2)
we let T = 3, and (3) we have requirements ¢, , ¢, , g5 (all greater
than zero) for the first, second and third planning periods respec-
tively. Other schedules would violate the conditions of Equations 1
and/or 2 or be “dominated” by these four schedules. In this
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the cost

method, the requirements making up the production quantities
are never split into fractional parts; each g,, is scheduled in its
entirety.

Table 1 Feasible production schedules

Schedule Amount produced for
Number T=1 T =2

0
0

= gua + giz + gis
= gi + g2

= gn

= ga

[ (O
[ I | R
nnn

Let us now consider the production planning model of Dzielin-
ski, Baker, and Manne, which assumes a plant that makes a
variety of different products for each of which the delivery require-
ments ¢,, are assumed to be known. The plant can make many of
these produets simultaneously and, for reasons of economy, would
like to arrange production so that the requirements are met and
the load on the plant labor foree in the various periods is smoothed.
The most economic production schedules, when determined by
linear programming, minimize on inventory holding costs, setup
costs, regular payroll costs, overtime and shift premium payroll
costs, and hiring and layoff costs—all subject to stated restrictions.
Hence, the production planning model relates the feasible pro-
duction schedules to labor requirements in the following manner.
A labor coefficient h,;;, is calculated from the quantities z,;, in
the feasible production schedules by the expression

hi”” _ {0 lf x“‘, = 0, (3)
@i + biZiie if 2. > 0,

where a,, and b, refer, respectively, to the setup time and the unit-
production time of product 7 in facility (or labor group) & (k¢ =
1, -, K).

We now describe the production planning model, the economic
lot-size and optimal work-force planning model. The objective is to
minimize the cost equation

+ kz [Z Rk,,Wk”]

+ 2 [F;Wﬁ + rk;Wk;]. (4.0)

kT
The first expression, ».; 0,,C;; , represents the inventory holding
cost that is required to produce the 7th product by the jth pro-

duction schedule. The solution variable 6,; is associated with the
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production schedule j. For each produect, there is one 8;; for each
jth schedule, and each 8,; has a corresponding cost coefficient C; .
This coeflicient represents the holding cost of inventory associated
with each production schedule and is calculated as follows:

7
Cu = chr Lijry
=1

where ¢,, is a cost value that indicates the material cost of product
7 and is discounted with respect to period 7.

The expression Zkf [Z, R,..W,..] represents the total cost of
labor assigned to the labor solution variables W,,, . Each W,,,
represents the number of workers of labor group k (or assigned to
facility k) and labor payment class r during period . Here, r = 1
is used for first shift, straight time, r = 2 for first shift, straight and
overtime; r = 3 for second shift, straight time; » = 4 for second
shift, straight and overtime;r = 5 for third shift, straight time; ete.
The labor cost coefficient associated with a type kr worker in the
7th period is denoted as R, .

The last expression, Y ;. [[AW,5 + T, W], represents the
total cost of changing the size of the work force (number of workers)
in any facility (labor group) & during period r. The solution var-
iables W, and W, represent the recommended hiring and layoff,
expressed as number of workers in facility (labor group) k during
period r. Their respective cost coefficients are denoted as T,!
and T, .

Minimization of the cost equation is subject to a set of asso-
ciated side conditions. The first of these conditions is

I

> [Z hii,c,a,.f] - > H., W, <0 forallk, r. 4.1)

i=1

This is the equation of labor requirements in planning the pro-
duction for I products. The expression in the bracket, the labor
man-hours required, contains the labor coefficient h,;,, that is
derived from each feasible production quantity z.;, . Thus, the
production schedules are represented as labor man-hour schedules.
The total plant labor assigned is given by Z, H, W,.., in which
H,, denotes the number of hours a type kr worker works in a period.

In the production planning model, the alternative production
schedules specified for each product are associated with the solution
variable 6;; for which the following conditions must be observed:

2.6, =1 forallé
and (4.2)
6:; = 0.

The variable 6,; requires some interpretation here. If the 6;;
are integers, Iiquations 4.2 assure that they can be only 0 or 1. For
fixed 4, only one 8;; can be 1, the others must be 0. Thus, if all the
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6,; are integers and satisfy 4.2, they can be interpreted as selecting,
from the existing list of labor coefficients, for each product exactly
one production schedule to be followed. However, according to
Manne,’ it is possible that the linear programming method pro-
duces proper positive fractions of the variable 6,; . There are I + m
equations, in which m is determined by the values of K and T. By
Equation 4.1, there must be at least one positive 6,; . This accounts
for I of the I + m positive variables. Thus, there are at most m
products for which more than one 6,; is positive. Since only one
6.; is positive whenever I is much larger than m, the number of m
variables at proper fractional values is limited and can be treated
by some appropriate rounding process.

A so-called labor balance equation augments the production
planning model:

Wo—=Wa+ 2o Wi = 2 Wi forallk, 7. (4.3)

This equation relates the size of work force from one period to the
next. Different values of the work force variables W,: and W, for
each planning period 7 indicate that the plant should take on
more workers than currently available or should reduce its current
labor force. However, hiring and dismissal costs must be considered
when evaluating such results.

The production planning model was designed to assure that
certain production plant capacities would not be violated. The
following equations are used for this purpose:

Wklr + W}cg.,- S Mk fiI‘st Shlft
Wi, + Wi < M, second shifty forall k, 7, (4.4)

Wksf + Wkﬁf < Mk thlI‘d Shlft

where M, denotes the plant capacity for facility (labor group) k,
expressed in number of workers. For example, the first of these
equations states that the sum of the number of workers assigned
to straight time only (W,,,) and to straight plus overtime (Ws,),
both in the first shift and in facility (labor group) k during period
7, may not exceed the value M, . The other two equations refer
in similar manner to the second and third shifts.

The following conditions are adjoined to Equations 4.0 through
4.4.

Wkr‘r > 0

Wir 2.0 forall k,», =, 1, 4, (4.5)

We 20
8:; 20

i.e., none of the solution variables may be assigned negative values.

The nature of the linear programming matrix, as described in
Equations 4, is illustrated in Table 2. The main substance of the
model lies in the labor requirement constraint Equation 4.1 and
the constraint Equations 4.2.
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The model discussed was tested on some data obtained from
a real operating plant. The plant model, applied to the production
of 35 distinct produets, contained two facilities. It was decided to
plan production for three periods on a 2-shift basis. The data were
generated according to the definitions and rules of Equations 1
through 4. A standard linear programming code’ for an 1BM 704
was used to obtain the optimum feasible solution. An example of
the output of this solution is shown in Table 3.

Examination of this table shows, for instance, that variable 8,,
(product 1, schedule 4) was in the optimal solution. The table
indicates that production of this product occurred only in the sec-
ond facility and took place in all three periods exactly as required.
On the other hand, variable 6,;,, shows that the production for
the requirements of period 3 was made with the requirements
of period 2, and that product 25 required both facilities.

Examination of the work-force variables shows that a full
complement of workers in facility 1 was allocated for all time
periods and shifts; this value was 5, the capacity of this facility.
For facility 2, we had a full complement of 117 workers on the
first shift only; in fact, W,,, (being in the optimal solution) shows
that these workers were required to work overtime the first period,
but not in the second or third periods. For shifts 2, only 3 workers
were required in facility 2. The value of W,; = 3 indicates that
3 workers were hired at the start of period 1. This was necessary
because no workers were available at the start of period 1 on the
second shift of facility 2.

The disposal activities (slack variables) give interesting clues
to the nature of the method. The numbers 281, 52, 0 refer only to
facility 1. Even though 5 workers were allocated on each shift,
not all of their time was needed for production work; for period 1,
in fact, there were 281 hours of idle time. In period 2, there were
only 52 hours of idle time, and in period 3, there were none. The
method determined that it was less costly to pay the idle time
than to dismiss first and rehire later on this facility when labor
would be needed in the later periods.

The results on facility 2 are in reverse, since the numbers
0, 273, 946 indicate complete utilization of labor in the first period,
273 idle hours in the second period, and 946 idle hours in the third
period. The method decided that the cost of this idle time was
still less than dismissal cost for these workers. The values of 114
appearing in the lower right-hand corner of Table 3 indicate the
number of additional workers that could be hired for facility 2.

Many earlier computer runs with this model* did not apply the
special techniques used in this example.

When Equations 4 are converted into a linear programming
matrix, they consist of I + 5KT constraint rows and (277%)
I + S8KT columns (slack and artificial columns not included).
This formulation leads to several problems. If I, the number of
distinet products, equals or exceeds several hundred, an equally
high number of constraint rows of the matrix is generated, and
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Table 2 Product schedule variables and work-force variables

Product schedule variables

Variables

01 012

21 20 v Oay

Cost coefficients

Cll 012

Ca Cou - Oy

Labor
requirements
(kr rows)

hlll 1 h121 1

hlllZ h1212

hllKT h12KT

h2111
h2]12

hagr  hagr - hregr

Convexity
congtraints
(I rows)*

1 1

Labor
balance
equations
(k7 rows)*

Labor
capacity
equations
(kr rows
per
shift)*

*Note: Empty positions signify zeros.
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the computation task can go beyond the capabilities of current
computer programs. Furthermore, in many applications, the plan-
ning function may require T (the total number of planning periods)
to be in the neighborhood of 10, and K (the number of distinct
facilities) in the neighborhood of 25, generating 5KT, or 1250,
additional constraint rows. It is possible to overcome this problem
by reducing the number of rows through approximations, forming
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the neighborhood of 10, we have 2'°"! = 512 separate activities
for each product, and if production is planned for 500 products,
a total of 256,000 eolumns (activities) must be generated for the
programming matrix. The simplex algorithm used to solve the
problem of Equations 4 is faced with a very large computational
task, since, on each iteration, it must determine from this large
collection of activities the best one for improving the criterion
function.

The methods for solving the problem of the large number of
rows and columns that can be generated from Equations 4 use
two techniques: (1) the Dantzig and Wolfe Decomposition Prin-
ciple’ for overcoming the problem of the large number of con-
straint rows, and (2) the Whitin and Wagner® dynamic version
of the economic lot-size formula for overcoming the large number
of columns. Their applications to this problem are fully deseribed
by Dzielinski and Gomory.’ In terms of the model, the methods
of solution can be described in the following way:

1. The linear programming matrix is split into several parts. From
Equation 4.1, a submatrix A, is obtained which consists of the
labor coefficients. A second submatrix, 4, , can be obtained from
Equations 4.2. 4, is associated with A, and consists of the convex
constraint coeflicients.

(711 012 e (V1 J Czl e Cl.l 1
hon Puso o0 hign heoy oo R
hl]l? h12|2 hl.ll? h"le? h’IJlZ

hivir Posvr o0 Bigvr hanr =00 Ry

hiver Risosr 0 higar herer oo Rpga

Piskr hagr cc hiskr hoikr oo Rugke

i i

2. The combinations of 4, and A, can be solved by themselves as
a linear program, the problem being to maximize = - 4,6 subject
to A,0 = d, where = refers to the price vector in an ordinary linear
programming problem, and d represents the right side of Equations
4.2. Although this problem is almost as large as the original prob-
lem, it can be solved much more easily. If we denote by A;; the
column of A, corresponding to the variable 6,; , we see that the
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above expression max m - A0 splits up into a series of separate
problems, one for each product ¢, and each of the form

max (r-Ay, 7 An, -, T Aw) (0, -+, Oin),

subject to
Ni

E 0“ = 1.
i=1

For the solution, we simply set 8;; equal to 1 for the j value for
which the scalar product - A;; is greatest, and set all other 6,,’s
to 0.

Thus far, only a portion of the entire problem of Equations 4
has been solved here, namely, the economic lot-size decisions for
each product. The next step is to determine if the economic lot-
size decisions, when combined for the I products, are feasible with
regard to plant capacities and, if so, what should be the most
economic labor allocations to produce the given lot sizes for an
overall feasible or optimally feasible solution.

3. A so-called “master problem’’ is formed and solved as an ordi-
nary linear programming problem. The independent economic lot-
size solutions obtained at this stage for each product ¢ are combined
to give, for the whole problem, a solution which not only includes
Equations 4.1, 4.3, and 4.4, but also a single additional equation
that introduces the combined product solutions into the overall
solution by a single variable with an upper bound of 1.

4. From the master-problem solution, we derive a new price
vector = which includes a price component for each equation. This
component represents the marginal value of each facility (labor
group) and time period.

5. We apply these prices to the variables in Iiquation 5, the so-
called independent problems for each product 7, and repeat the
previous steps, beginning with step 2.

At each stage, the new solutions from step 2 are combined and
added as a variable to the master problem. The process terminates
when the solutions to the independent problems are the same in
successive iterations.

In the computation of Equation 5, we investigate scalar prod-
ucts as numerous as schedules on every iteration of the optimi-
zation process. Fortunately, finding the largest = - A,; for fixed ¢
can be done by a recursive dynamic programming calculation of
the Whitin and Wagner type.® The problem is to find for each %
the ““dominant’’ schedule j that minimizes

A= Z — T@nd(®) + by + Cy (6)

kT

= Z {A:.8(x) + B},

T

where §(x) = Oforxz = 0, 8(x) = 1 forx # 0, and
Ai-r = Z — TreQi

k
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B, = Z — Trebin 1 Cir
k

The right side of Equation 6 is merely an expanded description of
7w - A,; , where the price vector = contains a component for each
constraint equation in the programming matrix. These components
give an evaluation of the economic significance of the equation.
In particular, the 7., values represent the economic value of the
labor requirement constraints (i.e., Equation 4.1), and for our pur-
poses are interpreted as the unit labor cost for the labor coeflicients
in each production schedule 4,; . Thus, by rearranging the terms,
we obtain two values, 4;, and B;, , for each period 7.

In viewing Equation 6 as an economic lot-size problem, A,
becomes the setup cost and B,, the marginal cost of production.
To minimize the equation, we introduce the function C,,(y). This
function is the minimum cost of filling all requirements g,, up to
and including the 7th period and having an amount y of extra pro-
duction on hand at the end of the rth period. C..(y) can be obtained
recursively from

Cn(y) = Ai15(y -+ gn) + Bil(?/ + gil) (71)
Ci.(y) = min {4,,8@) + B;,@) + Ci sy + gir — 2} (7.2)
0<z<y—+g¢g:; and 7>1

Thus, to obtain C,7(0), the minimum cost of filling all orders,
it is only necessary to compare values corresponding to z = 0 and
2 = y + g.. approximately T(T + 1)/2 times. Backtracking to
obtain the 2,;, that gave this cost is only a very small additional
caleulation which is substituted for evaluating 2”7 scalar products
for each produet 7.

By a Dantzig and Wolfe decomposition, followed by an appli-
cation of a column generating technique, a problem originally
calling for simplex computations on an (I + 5KT)(I 4+ 5KT)
matrix (and for the investigation of scalar products with columns
as numerous as schedules) is reduced to a problem calling for sim-
plex computations on a (5KT 4+ 1)(5KT 4 1) matrix and for
a string of I associated dynamie programming calculations.

The above formulations were coded and tested in an 1BM 7090
experimental computer program. The code consists of a simplex
algorithm needed to solve the master problem, and a dynamic
programming algorithm to solve the economic lot-size problems.
The code is designed to allow the simplex algorithm to evaluate
an ever-increasing number of columns. These additional columns,
which we denote as production plan vectors, are systematically
generated as needed for the master problem through the use of
recursive Equation 7.2. The elements of the production plan vec-
tors are the combined labor hours of the economic lot-size solutions
for the individual products. The same capability is now being im-
plemented as the Discrete Production Resource Allocator (DPRA)
in the 7040/44 Linear Programming System III1.*

Table 4 presents a summary of some test problems solved by
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the experimental computer program. Part I of the table shows the
effect of different values on the size of the linear programming
matrix. Part II shows the magnitudes of the rows and columns
if the problem of Equations 4 were set up as an ordinary linear pro-
gramming problem. Therefore, the simplex algorithm would be
required to iterate on a basis of close to 500 rows. Part IIT shows
the magnitude of the rows and columns of the master problem
and the I associated dynamic programming calculations when
problems are solved by the experimental program. In part IV,
computational results are given for problems labelled A, B, and C.

Some important characteristics are indicated by Table 4.
Specifically, calculations are performed on a much smaller scale
than is indicated by only an application of the decomposition prin-

Table 4 Sample problem parameters and solution characteristics

1. Parameters that determine size of problems

I number of products

. K number of facilities

. T number of periods

S number of shifts

. (8 4+ 2)KT + 2 work force constraint rows 26
. 2KT + 3 work force columns 36
3KT slack columns 18
L (2T YI total production schedules 1712

—
©OH wNo o=

. Size of problems as ordinary LP Problems
. (1) + (5) number of rows 454
. (6) + (7) + (8) number of columns 1766

ot
=]

Size of problems decomposed with dynamic programming
. () number of rows 26
. (6) + () number of columns* 54
. (1) T(T + 1)/2 number of calculations to 2568
solve the I dynamic pro-
gramming problems

. Computations on the lest decomposed problems

with dynamic programming
. total time to compute optimal solution** 7.52
. total phase two iterations 22
. time to create a production plan (an average

in minutes 0.352
. number of production plans created 20
. time between iterations, not including time

to create a production plan (average in min.) 0.009
. number of production plans in the optimal

solution 6 11

* The column numbers represent the number available at the start of the
computations of the master problem. Column additions are made to the
problem during the computations; for the sample problem, these magni-
tudes are shown in IV, 17.

** This time does not include machine time for setting up the problem and
outputting the optimal solution.
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ciple. The advantages of the dynamic programming algorithm are
especially significant for Problem C': fewer production schedules
need be evaluted for the increased number of planning periods.

This approach considers all possibilities and has the advantage
that it is only necessary to read product requirements, material
costs, setup times, and process times into the computer. The
machine generates the feasible production schedules as they are
required. Tt is not necessary to create, maintain, or update a large
file of feasible production schedules.
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Symbol key

1
j
k
r
i
g
T
a
b
h
H
R
r
c
M
w
0
T

product index (1, --- , I)

production schedule index (1, --- , J)
facility (or labor group) index (1, --- , K)
labor payment class

planning period index (1, --- , T)
delivery requirements

planned production

setup time

unit-production time

labor coeflicient associated with variable =
number of worker hours

cost coefficient associated with variable W
cost coefficient associated with variable W
cost coefficient associated with variable 6
plant capacity, expressed in number of workers
number of workers

variable associated with product schedules
price vector
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