
In  many  industries,  production  planning  involves the allocation of 
various  resources in the joint  production of similar  products.  Inven- 
tory levels,  labor decisions,  and a n  economic choice of lot sixes  are  all 
injluential in the planning  process. 

Formulated in terms of mathematical  programming, the economic  and 
mathematical  facets of production  planning  are  discussed. A feasible 
computation  technique i s  suggested. 

Fabrication  and  assembly  operations 
Part IV Linear programming in production 

planning 

by B. P. Dzielinski 

Industry  has applied  linear  programming in a variety of ways. For 
instance,  linear  programming models have been used by  individual 
firms in  the  metal working  industries to plan the production  rates 
of a single product  and  to  determine  the  optimal assignment of 
jobs to machines. 

This  paper outlines  a  linear  programming model that is appli- 
cable to a  metal-working firm producing  several  different  products 
jointly  on a fixed collection of equipment.  The decision-making 
model is concerned with economic lot sizes as well as inventory 
levels and work-force allocations. The lot-size decisions fix the 
quantity  and  timing of production  for  each  product. Since quan- 
tities  produced may  not  match  demand schedules, inventory  plans 
are also  generated. The work-force decisions, which determine the 
labor force needed on a  regular-time and  on  an overtime basis, 
provide the most economic levels of the  plant  labor force for 
producing the lot-size decisions. 

One might  ask,  “Why use linear  programming to  study  the 
question of economic lot sizes?” The answer is simply that,  in 
metal working  industries,  production  rate  and  lot size are  two 
factors that can  affect costs on a  pronounced Scale.’’’ A linear pro- 
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gramming model enables an individual firm to  manipulate  these 
factors and meet its demand  requirements a t  minimum  cost. In  
the selection of lot sizes, production economies can  be effected by 
distributing  setup costs  over  large  quantities, but  the indivisi- 
bilities of setup costs  introduce  discontinuities  into the problem. 
On the  other  hand,  lot sizes for the distinct  products  must  observe 
plant  capacity restrictions. A model applicable to lot-size decisions 
has been developed by  Manne13  and used experimentally  by 
Dzielinski, Baker, and Manne.4 

Certain problems  arise in  the  Manne  formulation of the lot- 
size model when  production  must  be  planned  for  several  thousand 
distinct  products.  First of all, it requires as  many equations as 
products  in the linear  programming matrix. Secondly,  a  large 
number of variables are involved, because it is possible to specify 
many  alternative  production schedules for  each  product.  Special 
techniques  can  be  applied to overcome these  problems by employ- 
ing the  Dantzig  and Wolfe5 decomposition principle to accomplish 
a reduction  in the large  number of equations. Also, the  alternative 
production schedules can  be  generated, as  they  are needed, by 
means of the Whitin  and Wagner‘ type of algorithm.  This tech- 
nique  eliminates the task of computing and searching  over  a vast 
collection of existing schedules as required in  the linear  program- 
ming  solution of the  Manne economic lot-size model. These  prob- 
lems and  their solutions are discussed in this  part of the paper. 
The theoretical  and  programming  aspects of the same  problems 
have  been treated  by Dzielinski and Gomory.6 

The Dzielinski, Baker,  and Allanne study  introduced  the concept 
of a feasible  production  schedule. If g q T  denotes the delivery  require- 
ments of product i (i = 1, . . * , I )  in  planning period 7 (T = 

1, . . . , T ) ,  and is the  amount of planned  production of product 
i for the  jth production  schedule ( j  = 1, . , J )  in  planning period 
7, the following expressions must be satisfied for  each i and j: 

and 
‘p T 

t = 1, . *  , T -  1 (1) 

7=1 7 = 1  

where xiiT 2. 0, gi ,  2 0, and T is the  total  number of planning 
periods.  Expressions 1 and 2 ensure  a  production  schedule that 
a t  least satisfies the delivery  requirements.  Each  product  has 2*” 
such  feasible schedules. The rules for generating  these  schedules 
have  previously been For example, we obtain  the  four 
feasible schedules of Table 1 if (1) for a given  product, we generate 
production  schedules which do not  violate expressions 1 and 2,  ( 2 )  
we let T = 3, and (3) we have  requirements gl , g2 , g3 (all  greater 
than zero) for the first, second and  third planning  periods respec- 
tively.  Other schedules would violate the conditions of Equations 1 
and/or 2 or be  “dominated”  by  these  four schedules. In this 
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method, the requirements  making  up the production  quantities 
are never  split into  fractional  parts; each gzT is scheduled in  its 
entirety. 

Table 1 Feasible production schedules 

Schedule 
r = 1  7 = 2  7 = 3  Nuwtber 

Amount produced for 

- 
j = 1  

X = Bi1 x = giz + g i 3  z = 0 j = 3  
X = g i ~  + g i z  x = o  x = gi3 j = a  
x = gi1 + giz + gi3  x = 0 x = o  

j = 4  x = gi1 x = Biz x = gi3 

Let us now consider the production  planning model of Dzielin- 
ski,  Baker, and  Manne, which  assumes a plant  that makes  a 
variety of different products  for  each of which the delivery  require- 
ments g i r  are assumed to be known. The  plant  can  make  many of 
these  products  simultaneously  and,  for  reasons of economy, would 
like to arrange  production so that  the requirements  are  met  and 
the load on  the  plant labor force in the various  periods is smoothed. 
The most economic production schedules, when  determined  by 
linear  programming, minimize on  inventory  holding  costs,  setup 
costs, regular  payroll  costs,  overtime and  shift  premium payroll 
costs, and hiring and layoff  costs--all subject  to  stated restrictions. 
Hence, the production  planning model relates the feasible  pro- 
duction schedules to labor  requirements  in the following manner. 
A labor coefficient hiikr is calculated  from the  quantities x i i r  in 
the feasible production schedules by the expression 

where a,,( and b z k  refer, respectively, to  the  setup  time  and  the  unit- 
production  time of product i in  facility (or labor  group) IC ( k  = 

1, . . .  , K )  
We now describe the production  planning model, the economic 

the cost lot-size a.nd optimal work-force planning model. The objective is to 
minimize the cost equation 

(4 .O) 

The first expression, B;,Cji , represents the inventory  holding 
cost that is required to produce the  ith product  by  the  jth pro- 
duction schedule. The solution  variable B i j  is associated  with the 
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production schedule j. For each  product,  there  is one B i j  for each 
jth schedule, and each 8; has  a  corresponding  cost coefficient Ci . 
This coefficient rcprescnts the holding cost of inventory  associated 
with  each  production schedule and is calculated as follows: 

T 

C<i = ci, ztj,, 
7=1 

where c, ,  is a cost value that indicates the material cost of product 
i and  is discounted  with  respect to period r. 

The  expressionx,, [xl Rk7rWkrr]  represents the  total cost of 
labor  assigned to  the labor  solution  variables Wklr . Each Wkrr 
represents the number of workers of labor  group lc (or assigned to  
facility k )  and  labor  payment class r during period r. Here, r = 1 
is used for  first  shift, straight  time, r = 2  for  first  shift, straight  and 
overtime; r = 3 for second shift,  straight  time; r = 4  for second 
shift,  straight  and  overtime; r = 5 for  third  shift,  straight  time;  etc. 
The labor  cost coefficient associated  with  a type lcr worker in the 
7th period is denoted as Rk7? . 

The  last expression, xkr [r,:Wz + I'LW;], represents the 
t,otal cost of changing the size of the work force (number of workers) 
in any facility  (labor  group) lc during period 7. The solution  var- 
iables WG and W, represent the rccommcnded hiring and layoff, 
expressed as  number of workcrs in  facility  (labor  group) 16 during 
period r. Their respective cost coefficients are  denoted as I'z 
and I'; . 

Minimization of the cost equation is subject to a  set of asso- 
ciated side conditions. The first of these  conditions is 

$ [ F ~ , , 0 . ~ ]  - H,,,,Wk,, 5 0 for  all I C ,  7 .  (4.1) 

This is the equation of labor  requirements  in  planning the pro- 
duction for I products. The expression in the bracket, the labor 
man-hours  required,  contains the labor coefficient hiiki  that is 
derived  from  each feasible production  quantity x,ir . Thus, the 
production schedules are represented as labor  man-hour schedules. 
The  total  plant labor assigned is given by HkrWktr , in which 
H k r  denotes the number of hours a type kr worker works in  a  period. 

In  the production  planning model, the  alternative  production 
schedules specified for  each  product are associated  with the solution 
variable B i i  for which the following conditions must be  observed: 

8 , i  = I for all i 
7 

and 

8ii 2 0. 1 (4 . a  

The variable 8i i  requires some interpretation here. If the 8ii 
are integers, Equations 4.2 assure that  they can  be  only 0 or 1. For 
fixed i, only  one 8ii can  be 1, the  others  must be 0. Thus, if all the 
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eij  are integers and  satisfy 4.2, they  can be  interpreted as selecting, 
from the existing  list of labor coefficients, for  each  product  exactly 
one  production  schedule to be followed. However,  according to 
Manne,3 it is possible that  the linear  programming  method pro- 
duces  proper  positive  fractions of the variable eii . There  are I + m 
equations,  in which m is determined  by  the values of K and T .  By 
Equation 4.1, there  must be a t  least one positive eii . This  accounts 
for I of the I + m positive  variables. Thus,  there  are a t  most m 
products  for which more than one eii is  positive. Since only  one 
eii is  positive  whenever I is  much  larger than m, the number of m 
variables a t  proper  fractional  values is limited and  can be treated 
by some appropriate rounding process. 

A so-called labor  balance equation  augments  the  production 
labor planning  model: 

This  equation  relates  the size of work force from  one period to  the 
next.  Different  values of the work force variables W: and W i  for 
each  planning period T indicate that  the  plant should take  on 
more  workers than currently  available or should reduce its  current 
labor force. However,  hiring and dismissal costs must be considered 
when  evaluating  such  results. 

The production  planning model was designed to assure that 
labor certain  production  plant  capacities would not  be violated. The 
capacity following equations  are used for this purpose: 

W k l r  + W k Z 7  5 M k  first  shift 1 
I 

W k S r  + Wklr 5 M k  second  shift  for all k ,  7 ,  

Wkjr f W k G r  5 M k  third  shift 1 (4.4) 

where M k  denotes the  plant  capacity for  facility  (labor  group) k ,  
expressed in  number of workers. For example, the first of these 
equations  states  that  the  sum of the number of workers assigned 
to  straight  time only (W,clT) and  to  straight plus  overtime (W,,,), 
both  in  the  first  shift  and  in  facility  (labor group) k during period 
r,  may  not exceed the value M k  . The  other  two  equations  refer 
in similar manner  to  the second and  third  shifts. 

The following conditions are adjoined to  Equations 4.0 through 
4.4. 

w k :  2 0 

eii 2 o 
Le., none of the solution  variables may be assigned negative  values. 

The  nature of the linear  programming  matrix, as described in 
Equations 4, is  illustrated  in  Table 2. The  main  substance of the 
model lies in the labor  requirement  constraint  Equation 4.1 and 
the constraint  Equations 4.2. 
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The model discussed was tested on some data obtained  from numerical 
a real  operating  plant.  The  plant model, applied to  the production example 
of  3.5 distinct  products,  contained  two  facilities. It was decided to  
plan  production  for  three  periods  on a 2-shift basis. The  data were 
generated  according to  the definitions and rules of Equations 1 
through 4. A standard linear  programming code7 for an IBM 704 

was used to  obtain  the  optimum feasible solution.  An  example of 
the  output of this solution is shown  in Table 3. 

Examination of this  table shows, for  instance, that variable 814 
(product 1, schedule 4) was in the optimal  solution. The  table 
indicates that production of tthis  product  occurred  only  in the sec- 
ond  facility and took place in all three periods  exactly as required. 
On the  other  hand,  variable 825,4 shows that  the production  for 
the requirements of period 3 was made  with  the  requirements 
of period 2, and  that product 25 required both facilities. 

Examination of the work-force variables shows that a full 
cornplcment of workers in facility 1 was allocated  for  all  time 
periods and  shifts;  this  value was 5, the capacity of this  facility. 
For  facility 2, we had a full  complement of 117 workers on  the 
first  shift  only; in fact, W,,, (being  in the optimal  solution) shows 
that these  workers were required to  work  overtime the first  period, 
but  not  in  the second or  third periods. For  shifts 2,  only 3 workers 
were required in  facility  2.  The value of WG = 3  indicates that 
3 workers were hired at  the  start of period 1.  This was necessary 
because no workers were availabIe at  the  start of period 1 on  the 
second shift of facility  2. 

The disposal  activities (slack variables) give interesting clues 
to  the  nature of the method.  The  numbers 281, 52, 0 refer only to 
facility 1. Even  though 5  workers were allocated on each  shift, 
not  all of their  time was needed for  production  work;  for period 1, 
in  fact,  there were 281 hours of idle time. I n  period 2, there were 
only 52 hours of idle time,  and  in period 3, there were none. The 
method  determined that it was less costly to  pay  the idle time 
than  to dismiss first and rehire later  on  this  facility when labor 
would be needed in  the  later periods. 

The  results on facility  2  are  in reverse, since the numbers 
0, 273, 946 indicate  complete  utilization of labor  in  the first  period, 
273 idle hours  in  the second period, and 946 idle hours  in the  third 
period. The method decided that  the cost of this idle time was 
still less than dismissal cost for  these  workers. The values of 114 
appearing  in the lower right-hand  corner of Table 3 indicate the 
number of additional  workers that could be hired  for  facility  2. 

Many earlier  computer  runs  with  this model4 did not  apply  the 
special techniques used in  this example. 

When  Equations 4 are converted into a linear  programming model 
matrix,  they consist of I + 5KT constraint rows and (2T-1) properties 
I + 8KT columns (slack and artificial  columns not included). 
This  formulation leads to several problems. If I ,  the number of 
distinct  products,  equals  or exceeds several  hundred, an equally 
high number of constraint rows of the  matrix is generated,  and 
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Table 2 Product  schedule variables and work-farce variables 

Variables 

Cost coefficients 

Labor 
requirements 
( k ~  rows) 

Convexity 
constraints 
( I  rows)* 

Labor 
balance 
equations 
( k ~  rows)* 

Labor 
capacity 
equations 
( k ~  rows 
Per 
shift)* 

1 1 ... I 

Product  schedule  variables 

1 1 ... 1 

*Note:  Empty positions signify zeros. 

... 
- 
... 

... 

the computation  task  can go beyond the capabilities of current 
computer  programs.  Furthermore,  in many  applications,  the  plan- 
ning  function  may  require T (the  total  number of planning periods) 
to be in  the neighborhood of 10, and K (the  number of distinct 
facilities) in  the neighborhood of 25, generating 5KT, or 1250, 
additional  constraint rows. It is possible to overcome this problem 
by  reducing the number of rows through  approximations,  forming 

128 B. P. DZIELINSKI 



the neighborhood of 10, we have 2'O-l = 512 separate  activities 
for  each  product, and if production is planned  for 500 products, 
a total of 256,000 columns  (activities)  must be generated  for the 
programming  matrix. The simplex algorithm used to solve the 
problem of Equations 4 is faced with  a  very  large  computational 
task, since, on each  iteration, it  must  determine  from  this large 
collection of activities the best  one  for  improving the criterion 
function. 

rows and columns that can be generated  from Equations 4 use model size 
two  techniques: (1) the Dant'zig  and Wolfe Decomposition Prin- 
ciple5 for overcoming the problem of the large  number of con- 
straint rows, and (2) the Whitin  and Wagner' dynamic  version 
of the economic lot-size formula  for overcoming the large  number 
of columns. Their  applications to  this problem are fully described 
by Dzielinski and  Gomory.G In  terms of the model, the methods 
of solution  can be described in the following way: 

1. The linear  programming matrix is split  into several parts.  From 
Equation 4.1, a  submatrix A ,  is obtained which consists of the 
labor coefficients. A second submatrix, A ,  , can be obtained  from 
Equations 4.2. A ,  is associated  with A ,  and consists of the convex 
constraint coefficients. 

The  methods  for solving the problem of the large  number of reducing the 

r c,, pl2 . . . C, c,, . . 

2 .  The combinations of A ,  and A, can  be solved by  themselves as 
a  linear  program, the problem being to maximize T A,% subject 
to A,% = d, where T refers to  the price vector  in an ordinary  linear 
programming  problem, and d represents the  right side of Equations 
4.2. Although this problem  is  almost as large as  the original  prob- 
lem, it can be solved much more easily. If we denote  by A i i  the 
column of A,  corresponding to  the variable , we see that  the 
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above expression max P . Ale splits up  into a series of separate 
problems,  one  for  each product i, and  each of the  form 

max ( r .A i1  , P - A ; ,  , . . . , r.AiNJ.(Oil  , . , e,,,), ( 5 )  I subject to 

For  the solution, we simply set eii equal to  1 for the j value  for 
which the scalar  product a . A i i  is greatest,  and  set  all  other eii’s 
to  0. 

Thus  far,  only a  portion of the  entire problem of Equations 4 
has been solved here,  namely, the economic lot-size decisions for 
each  product.  The  next  step is to  determine if the economic lot- 
size decisions, when combined for the I products,  are feasible with 
regard to  plant capacities and, if so, what should  be the most 
economic labor  allocations to produce the given lot sizes for an  
overall feasible or optimally feasible solution. 

3.  A so-called “master problem’’ is formed and solved as  an ordi- 
nary  linear programming  problem. The independent economic lot- 
size solutions  obtained a t  this  stage for  each  product i are combined 
to  give, for the whole problem,  a  solution which not  only includes 
Equations 4.1, 4.3, and 4.4, but also a single additional  equation 
that introduces the combined product  solutions into  the overall 
solution  by  a single variable  with an upper  bound of 1. 
4. From the master-problem  solution, we derive  a new price 
vector r which includes  a price component  for  each  equation. This 
component  represents the marginal  value of each  facility  (labor 
group) and  time period. 

5. We  apply  these prices to  the variables  in  Equation 5, the so- 
called independent  problems  for  each  product i, and  repeat  the 
previous  steps,  beginning with  step 2. 

At  each  stage,  the new solutions  from step 2 are combined and 
added  as a  variable to  the master  problem. The process terminates 
when the solutions to  the independent  problems  are the same in 
successive iterations. 

In  the computation of Equation 5, we investigate  scalar  prod- 
ucts  as numerous  as schedules on  every  iteration of the optimi- 
zation process. Fortunately, finding the largest a Aii for fixed i 
can  be  done  by a  recursive  dynamic  programming  calculation of 
the  Whitin  and  Wagner type.’ The problem is to find for  each i 
the “dominant” schedule j that minimizes 

where 8(x) = 0 for x = 0, 6(x)  = 1 for x # 0, and 
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The right  side of Equation 6 is merely an expanded  description of 
H A i ;  , where the price  vector H contains a component  for  each 
constraint  equation  in the programming  matrix.  These  components 
give an evaluation of the economic significance of the equation. 
In  particular, the F ~ ,  values  represent the economic value of the 
labor  requirement  constraints  (i.e.,  Equation 4.1), and  for  our pur- 
poses are  interpreted as  the  unit labor cost for the labor coefficients 
in each  production  schedule Ai; . Thus,  by  rearranging the terms, 
we obtain  two values, A i ,  and Bi, , for  each period 7. 

In  viewing Equation 6 as  an economic lot-size problem, Ai, 
becomes the  setup cost and Bi, the marginal cost of production. 
To minimize the equation, we introduce the function C,,(y). This 
function  is the minimum cost of filling all  requirements gi. up  to 
and including the 7th period and having an  amount y of extra pro- 
duction  on  hand at   the end of the 7th  period. CiT(y) can be obtained 
recursively from 

Cil(Y) = Ail%/ + gill + Bi,(Y + Sil) (7.1) 

Ci7(y> = min { A , , W  + Bi,(4 + Ci,r-l(y + g Z T  - 4 1  (7 -2) 
O < x < y + g i 7  and 7 > 1  

Thus,  to  obtain C i r ( 0 ) ,  the minimum cost of filling all  orders, 
it is only necessary to  compare  values  corresponding to z = 0 and 
z = y + 9;. approximately T ( T  + l)/2 times.  Backtracking to  
obtain  the z i i r  that gave  this cost is  only  a  very  small  additional 
calculation which is substituted  for  evaluating 2 T - 1  scalar  products 
for  each  product i. 

By a Dantzig and Wolfe decomposition, followed by  an appli- 
cation of a column generating  technique, a problem  originally 
calling for simplex computations  on an ( I  + 5 K T ) ( I  + 5KT)  
matrix  (and for the investigation of scalar  products  with  columns 
as  numerous as schedules) is reduced to a  problem calling for sim- 
plex computations  on a (5KT + 1)(5KT + I )  matrix  and  for 
a  string of I associated  dynamic  programming  calculations. 

The  above formulations were coded and  tested  in an IBM 7090 
experimental  computer  program. The code consists of a simplex 
algorithm needed to solve the master  problem, and a  dynamic 
programming  algorithm to solve the economic lot-size problems. 
The code is designed to allow the simplex algorithm to  evaluate 
an ever-increasing numbcr of columns. These  additional columns, 
which we denote  as  production  plan  vectors,  are  systematically 
generated as needed for the master  problem  through the use of 
recursive Equation 7.2. The elements of the  production  plan vec- 
tors  are  the combined labor  hours of the economic lot-size solutions 
for the individual  products. The same  capability is now being im- 
plemented as  the Discrete  Production  Resource  Allocator  (DPRA) 
in  the 7040/44 Linear  Programming  System 111.' 

Table 4 presents  a  summary of some test problems solved by 
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ciple. The  advantages of the dynamic programming algorithm are 
especially significant for Problem C: fewer production schedules 
need  be evaluted for the increased number of planning periods. 

This  approach considers all possibilities and  has the  advantage 
that it is only necessary to read product requirements, material 
costs, setup times, and process times into  the computer. The 
machine generates the feasible production schedules as  they  are 
required. It is not necessary to create,  maintain, or update a large 
file of feasible production schedules. 
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Symbol key 
i product index (1, . . , I) 
j production schedule index (1, . . . , J )  
k facility (or labor group) index (1, . . , K )  
T labor  payment class 
7 planning period index (1, . . , 2‘) 
g delivery requirements 
x planned production 
a setup  time 
b unit-production time 
h labor coefficient associated with variable x 
H number of worker hours 
R cost coefficient associated with  variable W 
I’ cost coefficient associated with variable W 
C cost coefficient associated with variable 0 
M plant  capacity, expressed in number of workers 
W number of workers 

?r price vector 
I 6’ variable associated with  product schedules 
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