Algorithms for the design of traffic-signal progressions for fixed-time
conlrol are described.

Least-squares and minimaz fits are used to derive solutions for given
volume requirements within specified limils of speed and cycle time.

The algorithms have been programmed for processing on a digilal
computer, thus reducing the initial design time considerably and
leading to solutions that are superior to manually derived designs.

Algorithms for traffic-signal control
by L. A. Yardeni

Control of vehicular traffic presents & problem of ever-increasing
severity, especially along arteries with large numbers of traffic
signals. Many attempts have been made to set the timing of the
signals for satisfactory traffic flow. However, most of these designs
for fixed-time control require a manual analysis of the traffic sit-
uation. Such designs are time-consuming and do not always lead to
the best possible solution.

This paper presents two algorithms that have been programmed
for processing on a digital computer. The initial work in developing
good traffic-signal progressions is reduced from days to minutes, and
solutions superior to those derived manually are realized.

Major traflic arteries are characterized by a string of signalized

the problem intersections and relatively heavy vehicular flow in either or both
directions during at least some hours of the day. Ideally, any one
vehicle or group of vehicles should be allowed to proceed along the
artery at a suitable speed without stopping or slowing down due to
red signal intervals. Although such an ideal situation can be
achieved rarely for two-way streets, it can be approached by
properly setting all the traflic signals along the artery.,

The problem consists of finding the correct timing for each
signal in order to arrive at the best overall solution. Presently, city
traffic engineers find a solution (which is not necessarily optimal)
by drawing time/space diagrams, as shown in Figure 1. The vertical
distances between the horizontal lines indicate the true-scale
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Figure 1 Time/space diagram
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distances of the signalized intersections. The lines themselves rep-
resent the red-signal interval times in both directions, whereas
the blanks between reds are the green (plus amber) interval times,
called green split (expressed in seconds) or green ratio (percentage of
the entire signal cycle). The two pairs of parallel diagonal lines
enclose the through-bands in opposite directions; their slope rep-
resents the speed a vehicle must maintain in order to stay as part
of a group, or platoon, of vehicles moving along the major street
without signal interference.

The essential input information for a time/space diagram is
limited to the distances between the intersections in the system and
the green ratios for these signals. For the conventional drawing
board design, various sets of speeds and cycle times are used with
green splits precomputed from averaged volume data. The number
of such input sets that can be tried for the best solution is limited
by the time required to draw and evaluate the results. The al-
gorithms deseribed in this paper overcome this limitation because
they can be programmed for digital computer application.

Usually, an attempt is made to design for higher speeds within
the legal speed limits. Shorter cycle times, such as 60 seconds or
less, are also preferred, because they provide shorter average wait-
ing time for vehicles stopped at a red signal. But in view of accel-
eration losses due to signal switching, shorter cycles reduce the
feasible volume (vehicles per hour). The algorithms described here
take into account these conflicting requirements: they allow a
computer to select the highest feasible speeds and the lowest cycle
time within given ranges. The computer accepts volume data for
each intersection and computes proportional green ratios in prep-
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aration for the design computations. It also considers input data
for the free-flow volume versus speed relations in computing actual
flow capabilities of the through-bands.

The quality of the design may depend on the criterion of
optimality or measure of effectiveness chosen. Typical design
objectives may be defined as follows: (1) minimize red-phase inter-
ference in the through-band, (2) maximize through-band widths,
(3) maximize some criteria of flow quality, or (4) select a maximum
speed and minimum cycle combination that meets flow demands.
The last design objective listed is used in the approach of this
paper. It is felt that this objective is superior to other optimization
criteria examined, because it addresses itself explicitly to meeting
traffic throughput requirements.

The algorithms

From a set of intersections along an artery, the intersection with
the lowest green ratio is selected as a base. All other intersections
may now be considered independently in relation to this base.
Through-bands enclosing an entire green split of the base inter-
section are initially the widest possible bands for a given set of
green ratios. Figure 2 shows the relation of any other intersection
to the base.

Figure 2 Midpoint relations
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Consider any interseetion [ at a distance D, from the base.
Assuming any pair of speeds V, and V, , we may draw them at their
proper slopes through the midpoint of the base’s green interval.
Transposing this point along both directions to I, we obtain the
turn-around time T; which is given by the sum of travel times in
both directions:

_D: Di_ <L L)
o=y, *y, =Py, * 7./
Also,

D,
T = 5,

where

1A
Vl + VZ.

14

To assure that the signal timing for intersection / does not inter-
fere with the initial base bands, it is required that:

T = cm;, (2)

or

n.
C; *

where 7, is an integer that yields a cycle ¢; within a given allowed
range (e.g., 50 to 100 seconds). This is an ideal cycle time which
would eliminate any red phase band interference for intersection 1.

In a real system, it is seldom feasible to select a system cycle
time ¢ that properly satisfies the above requirement simultaneously
for all intersections.

For system cycle ¢, the deviation A; from the ideal turn-
around time for intersection 7, T'; , is then A, = A,; + A, =
T, —cn,.

The optimization objective is now to minimize these deviations
for all intersections simultaneously. To do this, the conventional
least-squares fit is applied.

The criterion function A is now defined as:

A = Z (T. - Cn,')z,
or, by using Equation 2,
A = Z (c; — ¢)n’. (3)

Minimization with respect to ¢ yields the best cycle time for a given
pair of speeds, V, and V, , or a mean speed V.

Some manipulation of variables gives other equivalent forms
of this function as follows: Replacing T'; from Equation 1,
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= 53 (D — Ka), @

where K = ¢V/2 is a system constant, the space-periodicity con-
stant, to be discussed further.

Fquations 3 or 4 may be used to calculate an optimal cycle
length (¢°) for given speeds, an optimal average speed (V°) for
given cycle lengths, or an optimal system constant (K°).

Any pair of ¢ and V satisfying the condition K° = ¢V/2 is
equally optimal with respect to the criteria of minimum 4. As
shown later, the actual selection of ¢ and V values is governed by
other considerations, whereas the function 4 is defined in terms of
the systems constant K only.

Before differentiation and evaluation of a formula for optimal
values K° of K, the function A is first generalized. According to
Equation 4 and Figure 3, K° is the slope of a best fit through the
discrete points relating D, and n, .

Figure 3 Space-periodicity fit
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The first obvious generalization is to provide for an intercept,
or a base line, which does not necessarily coincide with the location
of any real intersection, as follows:
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4= T (D~ b~ Kn.y. %)

Both K and b are expressed in units of distance, i.e., feet; b is
the distance of an imaginary base intersection from the first inter-
section; K is the system’s space periodicity constant. In the present
formulation, K depends primarily on the given fixed distances
(D; — b); it may possibly have more than one optimal value if
one or more intersections are assigned different values of n; . For
some intersections, its relative position to the best-fit line of slope
K may be very close to flipping from one value of n; to the next;
e.g., intersection 5 in Figure 3 may be assigned n; = 4, but would
be assigned n; = 5 for a very slight change in K. This would yield
another value of K°. To select the best K°, we can plug the different
K’ back into Equation 5 until we find the lowest value of A, use
some other goodness-of-fit test, or test for expected bandwidth.

To improve the fitting even further, we modify the algorithm
to consider only relevant deviations. This is done by taking into
account all differences in green splits.

If the green interval of intersection I in Figure 2 is larger than
the base green interval, it is not necessary to have A;; = A;,, = 0
for noninterference in the through-bands. This consideration allows
relaxation of the requirement expressed by Equation 2. The mod-
ified formula is of the form

T: = cn(l £ g2,
where
0< g <05

g. being an appropriate expression for the difference between the
green ratios of the intersection I and the base. The sign (4 or —),
depending on the occurrence of a lead-trail or trail-lead fit (as ex-
plained later), tends to decrease the derivations in the least-squares
fit, as shown in Figure 4.

Redefining our integers n, as modified integers m; = n, (1 + ¢.)
we obtain:

4= 2 (D, —b— Em). ©)

So far, this criterion function is essentially a sum of squares of
rather rigidly defined deviations. It lends itself readily to the
customary least-squares fit. Prior to performing such a fit, an
additional generalization is now introduced: the weighting of the
deviations by a weighting coeflicient a; so that

4 =152 (D, — b - Em)d @)
The introduction of this factor obviously renders considerable
flexibility to our formulation and can provide the decision maker

with a range of distinet models. Such models depend on the method
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Figure 4 Space-periodicity fit with modified n;, m;,
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used for the selection of a;’s. For example, consider the following
cases:

(1) All ¢, = 1 (obviously, this trivial case yields Equation 6).
(2) a; = max {F,‘L},
L

where F, is later defined by Equation 9 as a function of required
volume and green ratio for intersection I in direction L. In this
model, the deviations are thus weighted by coefficients that provide
a ranking of the intersections with respect to their degree of crit-
icality. A critical intersection is loosely considered as one that
imposes design restrictions on the system.

(3) Modification of a,’s as a result of an iteration procedure. IFor
example, starting with all a; = 1, design through-bands and
determine the band limiting intersections, and then assign values
a; > 1 to these intersections and redesign. This may be repeated
any desired number of times. Finally select the design with max-
imum band widths.
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Differentiating Equation 7 with respect to K and b, and setting
dA /3K and 3dA/db equal to zero, K° and b° are derived:

Ko = 220 2 aiDom, — D) aiD: 3 aim,
> ol Y dmi — () aimy)

and

b’ = z:—las (XxalD; — K° X aim,),

where the summations are taken over all intersections; D, is the
distance of any intersection 7 from the first intersection or, more
generally, from any reference point in the system if the m,’s are
derived and b is measured with respect to that same reference point;
m; 1s the modified integer; and a, is a properly defined weighting
coefficient for intersection 1.

As implied earlier, different values of K° and b° may be obtained
by assigning different values to the set {m,}. A simple method
provides the selection of all feasible sets within the given ranges of
speeds and cycle times. Clearly, each set of {K°, b°} is an optimum
with respect to a distinct set {m,}. Some possible discrimination
and selection criteria for the best {K°, b°} have been mentioned.
Another possible criterion is developed next.

Just as we defined an ideal cycle time (c,) for intersection I,
an ideal constant (K;) can be considered as follows:

D, —b°

K, ==>2—2
m;

s0 that any one deviation in the least-squares fit is:
d,’ = (K, - Ka)m,'.

This expression, when used in its absolute form, is useful in obtain-
ing an estimate of expectable through-band widths, and further in
developing another selection criteria for K°.

First, the largest deviation is found:

d, = max {d;} = max {|K; — K°| m.},

from which the worst K, , say K., , is obtained.
Next it is recognized that the minimum reduction in the
initially feasible through-band width is approximately:
2

~2 K K= g) = 2 AK, (1 — g.)-
AB:VIK", K| gw)-—VC AK,-(1 — g,)-c

AK,,
?6(1 = yu)
where ¢, is the absolute difference in green ratios as earlier defined.
Now let Gz equal the green interval (in seconds) of the im-
aginary base in direction L. This is the initially feasible band
width. Then the maximum expected band width is given by:
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Figure 5 A speed/volume curve
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Biwx, = G, — AB;, = ¢ G — kr‘C(l - ng)
where

Gy,

SLL: ¢

is the green ratio for the base in direction L, and

is the relatively worst deviation from the system’s periodicity
constant.

If we set the right-hand side of Equation 8 equal to zero, we
obtain the conditions for through-band feasibility, i.e.,

I — g,

Thus, an estimate of through-band feasibility and relative
magnitude can be obtained from fixed distance and variable flow
information only, independent of cyele or interval times and speeds.
However, this assumes that green ratios are selected in some fixed
relation to volume ratios.

An alternative algorithm is based on the criterion function
{6.} = {D: — b — Km,}

as shown in Equation 6. In this approach, K° and b° are evaluated
and alternative values selected by a minimax algorithm as follows:

8’ = min {max (8;)} — K’ and b°.
K )

Traffic volume and through-bands

As indicated earlier, a highest-speed and lowest-cycle combination
is selected within allowable limits for both speeds and cycle times.
A further restriction for both algorithms described can be imposed
by considering the speed/volume relationships.

When considering traffic flow on a freeway or in a tunnel, we
observe that, at relatively high speeds, wider vehicular spacings
reduce the traffic density. Empirical and theoretical studies® of
such traffic-flow characteristics show that traffic volume (i.e.,
vehicles per hour) decreases with increasing speeds. This relation-
ship holds true for normal free flow. At a point of maximum volume
at a reduced speed, flow becomes unstable and finally turns into a
forced flow. In this region, speed and volume decrease simulta-
neously. Figure 5 shows a typical speed/volume curve. The program
accepts only a single-valued function of volume, so that only one
section, either the normal or foreed flow part, can be considered.

Such a speed/volume relation can be established for any urban
artery as if all signalized intersections were assumed to be green
and continuous free flow permitted for an extended period. These
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curves represent the road (or lane) flow capacity as a function of
speed only. They may differ considerably in values represented,
depending on road conditions (e.g., slipperiness, visibility). The
volumes obtained from traffic counts on signalized arteries are
obviously not for free flow. They are usually given for pulsed flow,
or platoon flow, which results from signal flow gating. The following
gating relationship can be assumed for an intersection:

Actual (pulsed) volume

- - -F = green ratio r>1,
Free (capacity) volume

where F is a safety or inefficiency factor, which may be used to
compensate for acceleration and deceleration losses due to signal-
ization and also for inaceuracy of the assumed speed/volume curve.
F may also roughly compensate for the errors due to neglect of
intersection widths and related crossing times. Although it is
possible to develop theoretical expressions to account for these
effects, it is felt that, in practice, it suffices to relate F inversely to
cycle length. The speed/volume curve is employed to estimate free
flow volumes for given speeds.
Rewriting the above gating relationship, we have
Gy

Q1
—1-F = . — —
Fir 811‘ c’

where, again,
Fp = (Vi) = 5,(Vy),

as defined by the speed/volume curve.

Now let @,,, be the required volume (flow demand) approach-
ing intersection / in direction L. Then the required free flow
volume is

(C73
g,‘ = _'"F . 9
I ©)
The required equivalent free-flow volume for the artery is deter-
mined by the bottleneck intersection, which is the one with a green
ratio G,. and a demand @, , which yield the largest free flow
volume:

Gonr,
F, = "= F. 10
L= (10)

Checking against the speed/volume curve, we find the max-
imum speed (if any) at which such equivalent free-flow volume is
feasible. If no such volume is feasible, it may be possible to increase
the green ratios sufficiently to allow the volume demand at a rea-
sonable speed. This may impose impractical restriction of cross-
street traffic flow. In such cases, the arterial flow demand cannot
be met and some compromise is required. In a properly controlled
system, it may be desired to allow demands (entering traffic) only
to the extent that normal flow (at above minimum speeds prior to
flow breakdown) can be maintained.
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Figure 6 shows a typical mid-green relationship for such trans-
posed intersections. Again we transpose the base midpoint along
both bands to the intersection under consideration, so that

P =c+ 3G

yields
P—ty,=c+ 3G — t,
and

P+t =c+ 3G + L,

where

T, = ti1 + tia-

These two transposed points represent the band midpoints
and as such may be slightly shifted as the band is being narrowed
by red-interval interferences. The intersection’s mid-green points
are moved as close as possible to both band midpoints. Offset posi-
tioning considers the unavoidable deviations A;; and A,, . The
designer may select equal deviations or assign values inversely
related to traffic volumes. Generally, we assume some weighting
factor «; and (1 — «;) for direction 1 and 2, respectively, where
0<a; <1.

Thus, we require:

a; Ay = (1 — a;)A,. (11)
But
A =¢: +c+ 3G — (P + 1)
=¢: + 3G — G) — L,
Ay =P — ti, — (¢: + 3G)
= — to — }G — G) — 6,

where ¢, is the offset for intersection 1.
Substituting in Equation 11 and solving for ¢, , we obtain

¢ = tilai + (C - tiz)(l - ai) - %(G, - Gb)

This formula provides a least deviations positioning for all inter-
sections that transpose into the ¢ zone (Figure 6), and it yields a
lead-trazl interference configuration. This ¢ zone is defined by

<T, <ec.

For intersections that transpose into the c¢/2 zone, where
0 < T.: < ¢/2, asimilar development yields
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¢, = laa; + (C - ti2)(l - O‘i) - %(G‘L - Gb) + ca;

which provides for a trail-lead configuration.

When extreme values of « (close to zero or one) are used, it is
possible to interfere with one band while the other is given excess
green time (outside of band). Such positioning is not permitted and
the algorithm overrides the design required by « to take full advan-
tage of the available green phase.

Extensions

The following extensions to the algorithms described may yield
curvilinear  significant results. These extensions may be incorporated in future
fit versions of the program.

A curvilinear fit for a set of system constants or speeds along
an artery may provide better results. Such a fit implies that, in-
stead of the fixed speed along an arterial direction, speeds varying
from location to location would be imposed. In this case, two alter-
native approaches are considered:

1. Obtain a second (or higher) order curvilinear fit, then approxi-
mate this fit by connecting line segments, perferably improving
on the curvilinear fit.

. Develop a simple linear fit for the first three intersections, and
test for goodness of fit; if good, include the fourth intersection,
and test again; if not good, the first segment 1s composed of
the first two intersections only. Continue until an appropriate
number of segments for all intersections is developed.

In both cases, the smallest allowed cycle time that meets the
volume demand (via the speed/volume relation) is picked. For

each segment and its systems constant K, , a speed is then calcu-
lated for the condition

" c
K; = 5 V;.

The actual speeds can be selected in relation to volume demands
in both directions. The offset design does not change, with the
exception that each segment has its own base. Offsets can be easily
transformed to a common reference time at, say, the first intersec-
tion. As long as each segment meets its volume requirements, it
may be desirable to obtain different bandwidths for different
segments.

network The previous modification leads to a further extension, i.e.,
control the adaptation of such a method to network control.

Consider a network element of 2 X 2 intersections. Although
we can design a progression around three legs of such an element,
we are normally faced with the problem of nonclosure if only one
speed is considered. If we allow sufficient (but practical) speed
change around the element, closure can be obtained on some best-
fit basis.

The extension to larger networks does not pose a conceptual
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problem, although it may become quite complex computationally.
Such a time/space approach to the network control problem may
not yield as good results as with an ‘““instantaneous decision” con-
trol system, but it could require considerably less equipment.

Computer program

A computer program® was written in FomrTRAN-language for
the 1BM 1620, 7040, and 7090 systems. The input data accepted
and utilized by the program include:

Speed/volume curve values

Intersection distances

Number of effective lanes

Cyecle time range

Desired cycle time precision

Volumes approaching each intersection

Minimum pedestrian crossing times

Various program option controls, such as left-turn phase selec-
tion, double cycle control, etc.

® & o & & 0 o0 o0

Initially, green ratios are developed from volumes and min-
imum pedestrian crossing times. Then a set of alternative system
constants are developed. Next, minimum cycle time and maximum
speed are computed within the restrictions of given volume de-
mands and speed/volume relation. Finally, offsets that provide
through-bands with maximum volumes are computed for all inter-
sections.

Output is provided in terms of selected system cycle time,
average speeds in both arterial directions, feasible system volumes,
and intersection green splits and offsets. Time-space diagrams can
be machine-plotted if an 1BM 1627 plotter is available.

The complete solution (with card-punched results) for a 15- to
20-intersection arterial progression requires 20 to 30 minutes on a
1620 MODEL I (40K and 1311 disk file) system. Larger problems can
be handled with an 1BM 7000 series system in a few minutes.
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