
Algorithms  for  the  design of traflc-signal  progressions  for  jixed-time 
control are described. 

Least-squares  and minimax  f i ts  are  used  to derive solutions  for  given 
volume  requirements  within specijied limits of speed and cycle time. 

The  algorithms have been  programmed  for  processing  on a digital 
computer,  thus  reducing  the  initial  design  time  considerably  and 
leading to solutions  that are superior  to  manually derived designs. 

Algorithms  for  traffic-signal  control 
by L. A. Yardeni 

Control of vehicular traffic presents a problem of ever-increasing 
severity, especially along arteries  with large numbers of traffic 
signals. Many  attempts have been made to  set  the timing of the 
signals for satisfactory traffic  flow. However, most of these designs 
for fixed-time control require a manual analysis of the traffic sit- 
uation. Such designs are time-consuming and do not  always lead to 
the best possible solution. 

This paper presents two algorithms that have been programmed 
for processing on a digital computer. The initial work in developing 
good  traffic-signal progressions is reduced from days  to minutes, and 
solutions superior to those derived manually are realized.' 

Major traffic arteries  are characterized by  a  string of signalized 
the problem intersections and relatively heavy vehicular flow in  either or both 

directions during a t  least some hours of the day. Ideally, any one 
vehicle or group of vehicles should be  allowed to proceed along the 
artery at a  suitable speed without  stopping or slowing  down due to 
red signal intervals. Although such an ideal situation  can be 
achieved rarely for two-way streets, it can be approached by 
properly setting all the traffic signals along the artery. 

The problem consists of finding the correct timing for each 
signal in order to arrive at  the best overall solution. Presently,  city 
traffic engineers find a solution (which is not necessarily optimal) 
by drawing time/space diagrams, as shown in Figure 1. The vertical 
distances between the horizontal lines indicate the true-scale 
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Figure 1 Time/space diagram 

TIME, IN SECONDS -t 

distances of the signalized intersections. The lines themselves rep- 
resent the red-signal interval  times in both directions, whereas 
the blanks between reds are  the green (plus amber) interval times, 
called green split (expressed in seconds) or green  ratio (percentage of 
the  entire signal cycle). The two pairs of parallel diagonal lines 
enclose the through-bands in opposite directions; their slope rep- 
resents the speed a vehicle must  maintain  in order to  stay  as  part 
of a group, or platoon, of vehicles moving along the major  street 
without signal interference. 

The essential input information for a time/space diagram is 
limited to  the distances between the intersections in the system  and 

. the green ratios for these signals. For the conventional drawing 
board design, various  sets of speeds and cycle times  are used with 
green splits precomputed from averaged volume data.  The number 
of such input sets that can be tried  for the best solution is limited 
by the time required to draw  and  evaluate the results. The al- 
gorithms described in this paper overcome this limitation because 
they can be programmed for digital computer application. 

Usually, an  attempt is made to design for higher speeds within 
the legal speed limits. Shorter cycle times, such as 60 seconds or 
less, are also preferred, because they provide shorter average wait- 
ing  time  for vehicles stopped at  a red signal. But in view of accel- 
eration losses due to signal switching, shorter cycles reduce the 
feasible volume (vehicles per hour).  The algorithms described here 
take  into  account  these conflicting requirements: they allow a 
computer to select the highest feasible speeds and  the lowest  cycle 
time withiu given ranges. The computer accepts volume data for 
each intersection and computes proportional green ratios in prep- 
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aration for the design computations. It also considers input  data 
for the free-flow volume versus speed relations in  computing actual 
flow capabilities of the through-bands. 

The  quality of the design may depend on  the criterion of 
objectives optimality or measure of effectiveness chosen. Typical design 

objectives may be  defined as follows: (1) minimize red-phase inter- 
ference in the through-band, (2) maxinlize through-band widths, 
(3) maximize  some criteria of flow quality, os (4) select a maximum 
speed and minimum cycle combination that meets flow demands. 
The  last design objective listed is used in the approach of this 
paper. It is felt that this objective is superior to other optimization 
criteria examined, because it addresses itself explicitly to meeting 
traffic throughput requirements. 

The algorithms 
From a  set of intersections along an artery,  the intersection with 

initial the lowest green ratio is selected as a base. All other intersections 
base bands may now  be  considered independently in  relation to  this base. 

Through-bands enclosing an entire green split of the base inter- 
section are  initially the widest possible bands for a given set of 
green ratios.  Figure 2 shows the relation of any  other intersection 
to  the base. 

Figure 2 Midpoint relations 
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Comidcr ally i~ltcrscctio~l L :it a distance I ) ,  from t l l o  has(:. 
Assuming any pair of spccds V ,  and V ,  , we may  draw  them a t  their 
proper slopes through the midpoint of the base's green  interval. 
Transposing  this  point along both directions to I ,  we obtain  the 
turn-around  time Ti which is given by  the  sum of travel  times  in 
both directions: 

Also, 

where 

To assure that  the signal  timing  for  intersection I does not  inter- 
fere  with the initial  base  bands, it is required that: 

T. = c . n .  
I a ?  (2) 

or 

where ni is an  integer that yields a cycle ci within a given allowed 
range (e.g., 50 to 100 seconds). This  is  an ideal cycle time which 
would eliminate  any red  phase  band  interference  for  intersection I .  

In  a real  system, it is seldom feasible to select  a  system cycle 
time c that properly satisfies the above  requirement  simultaneously 
for  all  intersections. 

For system cycle c, the deviation A, from the ideal turn- 
around  time  for  intersection I ,  Ti , is  then Ai = A,, + A,2 = 

Ti - m i  . 

for  all  intersections  simultaneously. To  do  this,  the conventional linear fit 
least-squares  fit is  applied. 

The  optimization objective  is now to minimize these  deviations least-squares 

The criterion  function A is now defined as: 

or, by using Equation 2, 

A = (ci - c)'n?. 

Minimization  with  respect to c yields the best cycle time for  a  given 
pair of speeds, VI and V 2  , or a  mean  speed V .  

Some manipulation of variables gives other  equivalent forms 
of this  function  as follows: Replacing T ,  from Equation 1, 



= p (Di - Kni)2 ,  (4) 
4 

where K = cV/2 is a  system  constant, the space-periodicily con- 
stant, to be discussed further. 

Equations 3 or 4 may be used to calculate an optimal cyclc 
lcngth ( 6 )  for given speeds, an optimal  average  speed (V')  for 
given cycle lengths, or an optimal  system  constant (K") .  

Any  pair of c and V satisfying the condition K" = cV/2 is 
equally  optimal  with  respect to  the criteria of minimum A. As 
shown later,  the  actual selection of c and V values is governed by 
other considerations, whereas the function A is defined in  terms of 
the  systems  constant K only. 

Before differentiation and evaluation of a  formula  for  optimal 
values K" of K ,  the  function A is first generalized. According to 
Equation 4 and Figure 3, K" is the slope of a  best fit through  the 
discrete  points  relating D, and ni . 

Figure 3 Space-periodicity fit 

/ I / I 

J ~ b" + K"r 

n- 

I 

The first obvious generalization is to provide  for an intercept, 
or a base line, which does not necessarily coincide with  the location 
of any real intersection, as follows: 
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Both K and b are expressed in  units of distance,  i.e.,  feet; b is 
Ihe distance of an imaginary base intersection  from the first inter- 
section; K is the system's space periodicity  constant. In  the present 
formulation, K depends  primarily  on the given fixed distances 
(Di  - 6 ) ;  it may possibly have more than one optimal  value if 
one or more intersections are assigned different values of ni . For 
some intersections, its relative position to  the best-fit line of slope 
K may be very close to flipping from one value of ni to  the next; 
e.g., intersection 5 in Figure 3 may be assigned n5 = 4, but would 
be assigned n5 = 5 for  a  very  slight change in K .  This would yield 
another  value of KO. To select the best KO, we can  plug the different 
K" back into  Equation 5 until we find the lowest value of A ,  use 
some other goodness-of-fit test, or test for expected bandwidth. 

To  improve the  fitting even further, we modify the algorithm algorithm 
to consider only relevant  deviations. This is done by  taking  into refinements 
account  all differences in green splits. 

If the green interval of intersection I in  Figure 2 is  larger than 
' the base green interval, it is not necessary to have A i ,  = Asz = 0 

for noninterference in  the through-bands.  This consideration allows 
relaxation of the requirement expressed by Equation 2 .  The mod- 
ified formula  is of the form 

Ti = c,n,(l f S i ) ,  

where 

0 5 gi < 0.5, 

gi being an appropriate expression for the difference between the 
green ratios of the intersection I and  the base. The sign (+ or -), 
depending  on the occurrence of a lead-trail or trail-lead fit (as cx- 
plained  later),  tends to decrease the derivations  in the least-squares 

Redefining our  integers ni as modified integers nzi = n, (1 f g i )  
~- fit, as shown in  Figure 4. 

we obtain: 

A = - (Di - b - K m J 2 .  

So far,  this criterion  function is essentially a sum of squarcs of 
rather rigidly defined deviations. It lends itself readily to  the 
customary  least-squares fit. Prior to performing such  a fit, an 
additional  generalization  is now introduced: the weighting of the 
deviations  by  a weighting coefficient a; so that 

4 
V" ; (6) 

4 
V %  

~ A = -2 ( D i  - b - KmJ'a;. (7) 

The  introduction of this  factor obviously renders considerable 
flexibility to  our formulation  and  can  provide the decision maker 
with a  range of distinct models. Such models depend  on the method 

ALGORITHMS F O R   T R A F F I C - S I G N A L   C O N T R O L  153 



Figure 4 Space-periodicity fit with modified nl, mi 
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used for the selection of ai's. For example, consider the following 

I 
cases: 

(1) All a, = 1 (obviously, this  trivial case yields Equation 6). 

(2) ai = max I F i L ) ,  

where F i L  is later defined by Equation 9 as a  function of required 
volume and green ratio  for  intersection I in  direction L. In  this 
model, the  deviations  are  thus weighted by coefficients that provide 
a ranking of the intersections  with  respect to their degree of crit- 
icality. A critical  intersection is loosely considered as one that 
imposes design restrictions  on the system. 

(3) Modification of ai's as a result of an iteration  procedure.  For 
example, starting with  all ai = I, design through-bands and 
determine the  band limiting  intersections, and  then assign values 
ai > 1 to these  intersections and redesign. This  may be repeated 
any desired number of times.  Finally select the design with max- 
imum  band  widths. 

L 
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I Differentiating Equation 7 with respect to K and b, and  setting 
~ d A / d K  and aA/db  equal to zero, KO and bo are derived: 

where the summations are  taken over all  intersections; Di is the 
distance of any intersection I from the first intersection or, more 
generally, from any reference point  in the  system if the m,'s are 
derived and b is measured with respect to  that same reference point; 
mi is the modified integer; and ai is a properly defined weighting 
coefficient for intersection I .  

by assigning different values to  the  set ( m i ) .  A simple method bandwidth 
provides the selection of all feasible sets  within the given ranges of test 
speeds and cycle times. Clearly, each set of {KO, bo}  is an optimum 

j with respect to a distinct  set {mi 1 .  Some possible discrimination 
and selection criteria  for the best {KO, bo}  have been mentioned. 
Another possible criterion is developed next. 

Just  as we defined an ideal cycle time ( c i )  for intersection I ,  
an ideal constant (Kj) can be considered as follows: 

As implied earlier, different values of K" and bo may be obtained expected 

mi 
so that  any one deviation in the least-squares fit is: 

di  = (K;  - K")mi. 

This expression, when used in its absolute form, is useful in obtain- 
ing an estimate of expectable through-band  widths,  and  further in 

,. developing another selection criteria  for KO. 
First,  the largest  deviation is found: 

d, = max (dif = max ( IKi - KO/ mi},  

from which the worst K ,  , say K ,  , is obtained. 

initially feasible through-band  width is approximately: 
Next it is  recognized that  the minimum reduction in the 

where gw is the absolute difference in green ratios as earlier defined. 
Now let GaL equal the green interval (in seconds) of the im- 

aginary base in direction I,. This is the initially feasible band 
width. Then  the maximum cxDect,ed band width is given bv: 



minimax 
linear fit 

volume 

Figure 5 A speed/volume curve 
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is the green  ratio  for thc base  in  dircction L, and 

is thc relatively  worst  deviation  from the system's  periodicity 
constant. 

If we set  the  right-hand side of Equation 8 equal to  zero, we 
obtain  the conditions  for  through-band  feasibility,  i.e., 

Thus,  an  estimate of through-band  feasibility  and  relative 
magnitude  can be obtained  from fixed distance  and  variable flow 
information  only,  independent of cycle or interval  times and speeds. 
However, this assumes that green  ratios  are selected in some fixed 
relation to volume  ratios. 

An alternative  algorithm is based on  the criterion  function 

as shown in  Equation 6. In  this  approach, K" and bo are evaluated 
and  alternative values  selected by a  minimax  algorithm as follows: 

6" = min  {max (Si) ) "-f K "  and bo .  

Traffic volume and through-bands 
As indicated  earlier,  a highest-speed and lowest-cycle combination 
is selected within allowable limits  for  both speeds and cycle times. 
A further  restriction  for  both  algorithms described can  be imposed 
by considering the speed/volume  relationships. 

When considering traffic flow on a  freeway or in a  tunnel, we 
observe that,   at  relatively  high speeds, wider vehicular  spacings 
reduce the traffic density.  Empirical and theoretical studies" of 
such traffic-flow characteristics show that traffic volume  (i.e., 
vehicles per  hour) decreases with  increasing  speeds. This relation- 
ship holds true for  normal  free flow. At a  point of maximum  volume 
a t  a  reduced  speed, flow becomes unstable  and finally turns  into a 
forced flow. I n  this region, speed and volume  decrease  simulta- 
neously. Figure 5 shows a  typical  speed/volume  curve. The program 
accepts  only  a single-valued function of volume, so that only  one 
section,  either the normal  or forced flow part,  can be considered. 

Such a speed/volume  relation  can  be  established  for any  urban 
artery  as if all signalized intersections were assumed to  be green 
and  continuous free flow permitted  for  an extended  period. These 
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which provides for a trail-lead configuration. 
When extreme values of (I! (close to zero or one) are used, it is 

possible to interfere  with one band while the  other is given excess 
green time (outside of band). Such positioning is not  permitted  and 
the algorithm overrides the design required by (I! to  take full advan- 
tage of the available green phase. 

Extensions 
The following extensions to  the algorithms described may yield 

curvilinear significant results. These extensions may be incorporated in  future 
fit versions of the program. 

A curvilinear fit for a  set of system  constants or speeds along 
an  artery may provide better results. Such a fit implies that, in- 
stead of the fixed speed along an arterial direction, speeds varying 
from location to location would be imposed. In  this case, two alter- 
native approaches are considered: 

1. Obtain a second (or higher) order curvilinear fit, then approxi- 
mate  this fit by connecting line segments, perferably improving 
on  the curvilinear fit. 

2. Develop a simple linear fit for the first three intersections, and 
test for goodness of fit; if good, include the  fourth intersection, 
and test again; if not good, the first segment is composed of 
the first two intersections only. Continue  until an appropriate 
number of segments for all intersections is developed. 

In  both cases, the smallest allowed  cycle time that meets the 
volume demand (via the speed/volume relation) is picked. For 
each segment and its systems constant K j  , a speed is then calcu- 
lated for the condition 

The  actual speeds can be selected in relation to volume demands 
in  both directions. The offset design does not change, with the 
exception that each segment has its own  base.  Offsets can be easily 
transformed to a common reference time at, say, the first intersec- 
tion. As long as each segment meets its volume requirements, it 
may be desirable to  obtain different bandwidths for different 
segments. 

network The previous modification leads to a further extension, i.e., 
control the  adaptation of such a method to network control. 

Consider a network element of 2 X 2 intersections. Although 
we can design a progression around  three legs of such an element, 
we are normally faced with the problem of nonclosure if only one 
speed is considered. If we allow  sufficient (but  practical) speed 
change around the element, closure can be obtained on some best- 
fit basis. 

The extension to larger networks does not pose a conceptual 
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Such a time/space approach to  the network control problem may 
not yield as good results as with an “instantaneous decision”  con- 
trol  system, but  it could require considerably less equipment. 

Computer program 

A computer program3 was written  in FORTRAN-language for 
the IBM 1620, 7040, and 7090 systems. The  input  data accepted 
and utilized by the program include: 

Speed/volume curve values 
Intersection distances 
Number of effective lanes 
Cycle time range 
Desired cycle time precision 
Volumes approaching each intersection 

Various program option controls, such as  left-turn phase selec- 
7 Minimum pedestrian crossing times 

tion, double cycle control, etc. 

Initially, green ratios  are developed from volumes and min- 
imum  pedestrian crossing times. Then  a  set of alternative  system 
constants  are developed. Next, minimum cycle time  and maximum 

j speed are computed within the restrictions of given volume de- 
mands and speed/volume relation. Finally, offsets that provide 
through-bands with maximum volumes are computed for all inter- 
sections. 

Output is provided in  terms of selected system cycle time, 
average speeds in both  arterial directions, feasible system volumes, 
and intersection green splits  and offsets. Time-space diagrams can 
be machine-plotted if an IBM 1627 plotter is available. 

The complete solution (with card-punched results) for a 15- to 
20-intersection arterial progression requires 20 to 30 minutes on a 
1620 MODEL I (40K and 1311 disk file) system. Larger problems can 
be handled with an IBM 7000 series system in a few minutes. 

> 
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